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Abstract—We formulate and study the thinnest path
problem for secure communication in wireless ad hoc
networks. The objective is to find a path from a source to its
destination that results in the minimum number of nodes
overhearing the message by a judicious choice of relaying
nodes and their corresponding transmission powers. We
adopt a directed hypergraph model of the problem and
establish the NP-completeness of the problem in 2-D net-
works. We then develop two polynomial-time approxima-
tion algorithms that offer
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ratios for general directed hypergraphs (which can model
non-isotropic signal propagation in space) and constant ap-
proximation ratios for ring hypergraphs (which result from
isotropic signal propagation). We also consider the thinnest
path problem in 1-D networks and 1-D networks embedded
in a 2-D field of eavesdroppers with arbitrary unknown
locations (the so-called 1.5-D networks). We propose a
linear-complexity algorithm based on nested backward
induction that obtains the optimal solution for both 1-
D and 1.5-D networks. This algorithm does not require
the knowledge of eavesdropper locations and achieves the
best performance offered by any algorithm that assumes
complete location information of the eavesdroppers.

Index Terms—Hypergraph, Thinnest Path, Secure Com-
munication, NP-complete, Approximation Algorithms, Ap-
proximation Ratio

I. I NTRODUCTION

A. The Thinnest Path Problem

We consider thethinnest path problem for secure
communication in wireless ad hoc networks. For a given
source and a destination, the thinnest path problem asks
for a path from the source to the destination that results
in the minimum number of nodes hearing the message.
Such a path is achieved by carefully choosing a sequence
of relaying nodes and their corresponding transmission
powers.

At first glance, one may wonder whether the thinnest
path problem is simply a shortest path problem with the
weight of each hop given by the number of nodes that
hear the message in that hop. Realizing that a node may
be within transmission range of multiple relaying nodes
and should not be counted multiple times in the total
weight (referred to as the width) of the resulting path,
we see that the thinnest path problem does not have a
simple cost function that is summable over edges. But
rather, the width of a path is given by the cardinality of
the union of all receiving nodes in each hop, which is a
highly nonlinear function of the weight of each hop. One
may then wonder whether we can redefine the weight of
each hop as the number of nodes that hear the message
for the first time. Such a definition of edge weight indeed
leads to a summable cost function. Unfortunately, in
this case, the edge weight cannot be predetermined until
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the thinnest path from the source to the destination in
question has already been established.

A more fundamental difference between the thinnest
path and the shortest path problems is that the thinnest
path from a single source to all other nodes in the
network do not form a tree. In other words, the thinnest
path to a node does not necessarily go through the
thinnest path to any of its neighbors. The loss of the tree
structure is one of the main reasons that the thinnest path
problem is much more complex than the shortest path
problem. Indeed, as shown in this paper, the thinnest
path problem is NP-complete, which is in sharp contrast
with the polynomial nature of the shortest path problem.

Another aspect that complicates the problem is the
choice of the transmission power at each node (within
a maximum value that may vary across nodes). In this
case, the network cannot be modeled as a simple graph in
which the neighbors of each node are prefixed. In this
paper, we adopt thedirected hypergraph model which
easily captures the choice of different neighbor sets at
each node. While a graph is given by a vertex setV and
an edge setE consisting of cardinality-2 subsets ofV , a
hypergraph [1] is free of the constraint on the cardinality
of an edge. Specifically, any non-empty subset ofV can
be an element (referred to as a hyperedge) of the edge set
E. Hypergraphs can thus capture group behaviors and
higher-dimensional relationships in complex networks
that are more than a simple union of pairwise relation-
ships [2]. In a directed hypergraph [3], each hyperedge is
directed, going from a source vertex to a non-empty set
of destination vertices. An example is given in Fig. 1-(a)
where we have2 directed hyperedges rooted at a source
node v with each hyperedge modeling a neighbor set
of v under a specific power. The directed hypergraph
model of the thinnest path problem is thus readily seen:
rooted at each node are multiple directed hyperedges,
each corresponding to a distinct neighbor set feasible
under the maximum transmission power of this node.
The problem is then to find a minimum-width hyperpath
from the source to the destination where the width of a
hyperpath is given by the cardinality of the union of the
hyperedges on this hyperpath.

B. Main Results

Based on the directed hypergraph formulation, we
show that the thinnest path problem in2-D networks
is NP-complete even under a simple disk propagation
model. This result is established through a reduction
from the minimum dominating set problem in graphs, a
classic NP-complete problem. The most challenging part
of this reduction is to show the reduced problem is real-
izable under a 2-D disk model. We further establish that
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even with a fixed transmission power at each node (in
this case, the resulting hypergraph degenerates to a stan-
dard graph), the thinnest path problem is NP-complete.
We then propose two polynomial-time approximation
algorithms that offer

√
n
2 and n

2
√
n−1

approximation
ratios for general directed hypergraphs (which can model
non-isotropic signal propagation in space) and constant
approximation ratios for ring hypergraphs (which result
from isotropic signal propagation). Heren is the total
number of vertices.

We also establish the polynomial nature of the prob-
lem in 1-D and 1.5-D networks,where a 1.5-D network
is a 1-D network embedded in a 2-D field of eaves-
droppers with arbitrary unknown locations. We propose
an algorithm based on a nested backward induction
(NBI) starting at the destination. We show that this NBI
algorithm hasO

(
n
)

time complexity. Since the size of
the input data isO

(
n
)
, the proposed algorithm is order

optimal. It solves the thinnest path problem in both the 1-
D and 1.5-D networks. In particular, no algorithm, even
with complete location information of the eavesdroppers,
can obtain a thinner path than the NBI algorithm which
does not require knowledge of eavesdropper locations.

In a broader context, our techniques of using directed
crosses and exposed disk hypergraphs in establishing
the NP-completeness of the problem may spark new
tools for complexity studies in geometrical hypergraphs
and graphs. The bounding techniques and the use of
sphere packing results in analyzing the performance of
the two approximation algorithms may also find other
applications in algorithmic analysis.

C. Related Work

There is a large body of literature on security issues
in wireless ad hoc networks (see, for example, [4], [5]).
However, the thinnest path problem has not been studied
in the literature except in [6]. Chechiket al. studied the
thinnest path (referred to as the secluded path in [6])
and the thinnest Steiner tree in graphs. They showed
that the problem in a general graph is NP-complete and
strongly inapproximable. They proposed an algorithm
with an approximation ratio of

√
∆ + 3 where ∆ is

the maximum degree of the graph. They further studied
the problem in several special graph models including
graphs with bounded degree, hereditary graphs, and
planar graphs. However, their study focuses on the
problem in topological graphs, whereas we focus on
hypergraphs and geometric graphs. The results obtained
in [6] do not apply to special hypergraphs satisfying
certain geometric properties that result naturally from
the communication problem studied in this paper. This
paper also includes several new results on the thinnest
path problem under the graph model. Specifically, we
establish the NP-completeness of the problem in2-D
disk graphs and3-D unit disk graphs. The results in [6]
and this work thus complement each other to provide
a more complete picture of the thinnest path problem
under different (hyper)graph models.

In the general context of algorithmic studies in hy-
pergraphs, Ausielloet al. [7] tackled the problem of

finding theµ-optimal hyperpath whereµ is a general
measure on hyperpaths that satisfies a certain monotone
property. They established the NP-completeness of this
problem for general measures. The thinnest path problem
can be seen as anµ-optimal traversal problem with the
measureµ given by the number of vertices covered
by the path. Since this is a special measure, their NP-
completeness result developed under general measures
does not apply. Furthermore, in many applications, the
resulting hypergraphs have certain topological and/or ge-
ometrical properties, and the computational complexities
under these special models require separate analysis.

Another realated problem is the shortest path problem
in hypergraphs, which remains a polynomial-time prob-
lem as its counterpart under the graph model. The static
shortest hyperpath problem was considered by Knuth [8]
and Galloet al. [3] in which Dijkstra’s algorithm for
graph was extended to obtain the shortest hyperpaths.
Ausiello et al. proposed a dynamic shortest hyperpath
algorithm for directed hypergraphs, considering only the
incremental problem (i.e., network changes contain only
edge insertion and weight decrease) with the weights of
all hyperedges limited to a finite set of numbers [9].
In [10], Gao et al. developed the first fully dynamic
shortest path algorithms for general hypergraphs. As
discussed earlier, the thinnest path problem is fundamen-
tally different and significantly more complex than the
shortest path problem.

The widest path problem has been well studied under
the graph model [11], [12], and the existing results
can be easily extended to hypergraphs. The widest path
problem asks for a path whose minimum edge weight
along the path is maximized. In other words, the width
of a path is given by the minimum edge weight on
that path, which is different from the definition of path
width in the thinnest path problem studied in this paper.
As a consequence, the widest path problem is not the
complement of the thinnest path problem. Since the tree
structure is preserved in the widest path problem (i.e.,
the widest path to a node must go through the widest
path to one of its neighbors), it remains a polynomial
time problem. The thinnest path problem, however, is
NP-complete in general.

II. PROBLEM FORMULATION

A. Basic Concepts of Directed Hypergraphs

A directed hypergraph H = (V,E) consists of a setV
of vertices and a setE of directed hyperedges [3]1. Each
directed hyperedgee ∈ E has a single source vertexse
and a non-empty set of destination verticesTe. We let
n = |V | denote the number of vertices.

A disk hypergraph is a special directed hypergraph
whose topology is determined by a set of pointsV =
{v1, . . . , vn} located in ad-dimensional Euclidean space
and a maximum rangeRi associated with each vertex
vi. There exists a hyperedgee from sourcese = vi to
destination setTe if and only if Te consists of vertices
located within thed-dimensional sphere centered atvi

1In [3], it is referred to as the forward hyperarcs.
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replacements

Fig. 1: (a): Directed hypergraph; (b): Disk hypergraph; (c): Unit disk
hypergraph.

with a radius r ∈ (0, Ri]. A unit disk hypergraph
(UDH) is a disk hypergraph with unit maximum range
(Ri = 1) for all vertices. Fig. 1 shows examples of a
directed hypergraph, a disk hypergraph, and a unit disk
hypergraph.

A ring hypergraph is a generalized disk hypergraph
where associated with each vertexvi is a minimum range
ri as well as a maximum rangeRi. Hyperedges rooted
at vi are formed by spheres centered atvi with radii
satisfying ri < r ≤ Ri. It is easy to see that a disk
hypergraph is a ring hypergraph withri = 0, a disk
graph is a ring hypergraph withri = Ri for all i, and
a unit disk graph (UDG) is a ring hypergraph withri =
Ri = 1 for all i.

B. The Thinnest Path Problem

Consider a wireless ad-hoc network withn nodes
located in ad-dimension Euclidean space. Each node
can choose the power, within a maximum value, for the
transmission of each message. The chosen power, along
with the signal propagation model, determines the set
of neighbors that can hear the message. The maximum
transmission power is in general different across nodes.
The objective is to find a path between a given source-
destination pair that involves the minimum number of
nodes hearing the message.

As discussed in Sec. I-A, we formulate the problem
using a directed hypergraph. Each node is a vertex.
The directed hyperedges rooted at a node are given by
distinct neighbor sets of this node feasible under its
maximum transmission power and the signal propagation
model. Under a general nonisotropic propagation model,
we end up with a general hypergraph. The only property
the resulting hypergraph has is the monotonicity of
the hyperedge set. Specifically, the hyperedges rooted
at each node can be ordered in such a way (say,
e1, e2, . . . , el) that Tei ⊂ Tei+1 and |Tei | = |Tei+1 | − 1.
This is due to the nature of wireless broadcasting where
nodes reachable under transmission powerη can also
be reached under any power greater thanη. Under an
isotropic propagation model, we end up with a disk
hypergraph. If all nodes have the same maximum range2,
we have a unit disk hypergraph. This hypergraph model
also applies to networks with eavesdroppers. Each eaves-
dropper can be seen as a node with zero transmission
range. It is thus a vertex with no outgoing hyperedges.

Given a source-destination pair(s, t), a hyperpath
from s to t is defined as a sequence of hyperedges

2Transmission range and transmission power are used interchange-
ably.

L = {e1, . . . , em} such thatsei ∈ Tei−1 for 1 < i ≤ m,
se1 = s, andt ∈ Tem . Define the cover̂L of L to be the
set of vertices inL, i.e.,

L̂
∆
= ∪mi=1 Tei ∪ {se1},

The widthW (L) is then given by

W (L)
∆
=|L̂|.

The thinnest path problem asks for a hyperpath from
s to t with the minimum width. Note that choosing
a hyperedgee = {se, Te} simultaneously chooses the
relaying nodese and its transmission power (determined
by Te).

III. NP-COMPLETE PROBLEMS

In this section, we show that the thinnest path (TP)
problem is NP-complete in several special geometric hy-
pergraphs and graphs. This implies the NP-completeness
of the problem in general directed hypergraphs.

A. TP in 2-D Disk Hypergraphs

In this subsection, we prove the NP-completeness
of the thinnest path problem in2-D disk hypergraphs.
While a stronger result is shown in the next subsection,
the proof of this result provides the main building block
for the proof of the next result.

The result is established through a reduction from
the maximum dominating set (MDS) [13] problem. The
MDS problem asks for the minimum subset of vertices
in a given graph such that every vertex in the graph is
either in the subset or a direct neighbor of a vertex in the
subset. The following theorem formally establishes the
polynomial reduction (denoted by≤P ) from MDS to TP
in 2-D disk hypergraphs. Since the thinnest path problem
is clearly in the NP space, this theorem establishes the
NP-completeness of TP in 2-D disk hypergraphs.

Theorem 1: MDS ≤P TP in 2-D disk hypergrpahs.

To prove Theorem 1, consider an MDS problem in an
arbitrary graphG. We first construct ageneral directed
hypergraphH1 based onG such that a thinnest path
in H1 leads to an MDS inG. The main challenge in
the proof is to show thatH1 is realizable under a 2-D
disk model. There are two main difficulties. First, line
crossing is inevitable when we drawH1 on a 2-D plane.
The implementation of hyperedges that cross each other
needs special care to avoid unwanted overhearing that
may render the reduction invalid. Second, the geometric
structure of 2-D disk hypergraphs dictates that there are
at most 5 vertices (even with arbitrary ranges) that can
reach a common sixth vertex but not each other. It is thus
challenging to implement a vertex with up ton incoming
hyperedges inH1 while preserving the reduction.

Our main approach to overcoming the above diffi-
culties is to allow directed overhearing. Specifically,
messages transmitted along one hyperedge may be heard
by vertices implementing another hyperedge inH1, but
not vise verse. By carefully choosing the directions of the
introduced overhearing, we ensure that the resulting 2-D
disk hypergraphH2, while having a different topological
structure fromH1, preserves the reduction from MDS
in G.
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Another challenge in constructingH2 is to ensure
the polynomial nature of the reduction. The number
of additional vertices added inH2 needs to be in a
polynomial order in the size ofG. This often limits the
use of reduced transmission ranges as a way to avoid
unwanted overhearing: exponentially small transmission
ranges may require exponentially many vertices to con-
nect two fixed points.

A detailed proof is given in Appendix A.

B. TP in 2-D Unit Disk Hypergraphs

We now establish the NP-completeness of TP in 2-D
unit disk hypergraphs (UDH). The proof builds upon
the proof of Theorem 1. The only difference is that
when implementing the general directed hypergraphH1,
we no longer have the freedom of choosing the maxi-
mum transmission range of each vertex. This presents
a non-trivial challenge. As stated in Sec. III-A, our
approach to circumventing the constraints imposed by
the geometrical structures of 2-D disk hypergraphs is to
allow directed overhearing, which is achieved by care-
fully choosing different maximum transmission ranges
of various vertices. To implement a 2-D UDH for the
reduction, however, all vertices must have the same
maximum transmission range.

To address this issue, we introduce a special type of
disk hypergraphs, calledexposed disk hypergraphs, and
show that TP ink-D exposed disk hypergraphs can be
reduced to TP ink-D UDH for anyk ≥ 2. We then show
that the2-D disk hypergraphH2 constructed in the proof
of Theorem 1 can be modified to an exposed hypergraph
while preserving the reduction. We thus arrive at the NP-
completeness of TP in 2-D UDH based on the transitivity
of polynomial time reduction.

Definition 1: In a disk hypergraphH = (V,E), let
τv denote the closest non-neighbor3 of v. Define4

ǫv
∆
=
1

2
(d(v, τv)−Rv),

whered(v, τv) is the distance betweenv andτv (ǫv is set
to 1 whenv does not have non-neighbors). Anexposed
area Φv of v is defined as

Φv
∆
=Dv,Rv+ǫv\

⋃

u∈V

Du,Ru
,

whereDv,r denotes the closed ball centered atv with
radiusr. A disk hypergraph isexposed if every vertex
has a non-empty exposed area.

Fig. 2: Exposed hypergraphs and exposed areas (H1 is not exposed
sincev has an empty exposed area;H2 andH3 are exposed).

Lemma 1: TP in k-D exposed disk hypergraphs≤P

TP in k-D UDH.

3A vertex is a non-neighbor ofv if it is outside the maximum range
Rv of v.

4The parameter1
2

can be change to an arbitrary positive value
smaller than1.

Proof: The basic idea is to place super vertices at
specific locations in exposed areas to force vertices on
a thinnest path to use transmission ranges smaller than
the maximum value. The problem is thus transformed
to the case with disk hypergraphs where vertices may
have different maximum transmission ranges. A detailed
proof is given in Appendix B.

With Lemma 1 providing a bridge between disk and
unit disk hypergraphs, all we need to show is that MDS
can be reduced to TP in2-D exposed disk hypergraphs.

Lemma 2: MDS ≤P TP in 2-D exposed disk hyper-
grpahs.

Proof: See Appendix C.
Based on Lemma 1 and Lemma 2, we arrive at the

following theorem.
Theorem 2: MDS ≤P TP in 2-D UDH.

C. TP in 2-D Disk Graphs and 3-D Unit Disk Graphs

In this subsection, we consider the thinnest path
problem in disk graphs and unit disk graphs (UDG).
Recall that disk and unit disk graphs are special ring
hypergraphs withri = Ri andri = Ri = 1, respectively.
In other words, they can be seen as hypergraphs where
each vertex has only one outgoing hyperedge directed to
its prefixed neighbor set (determined by its fixed trans-
mission power). This also shows that disk hypergraphs
and disk graphs are not special cases of each other. Given
the same set of vertices and their associated maximum
ranges, a disk hypergraph has a topology different from
that of a disk graph: each vertex in general has more
than one outgoing hyperedge due to the freedom of
using smaller transmission ranges. The same holds for
UDH and UDG. As a consequence, the complexity of
TP in disk and unit disk graphs cannot be inferred from
Theorems 1 and 2, and needs to be studied separately.

Theorem 3: MDS ≤P TP in 2-D disk graphs.
Proof: In the proof of Theorem 1, the vertices along

the thinnest path in the constructed 2-D disk hypergraph
H2 all use their maximum ranges. Thus, MDS inG can
be reduced to TP in a disk graph constructed fromH2

by including only those hyperedges associated with the
maximum range of each vertex.

Next we consider TP in UDG. Unfortunately, the
approach through exposed disk hypergraphs used in
showing the NP-completeness of TP in UDH does not
apply, since it hinges on vertices being able to use any
transmission range smaller than a maximum value. The
difficulty, however, can be circumvented for 3-D UDG
as shown in the following theorem.

Theorem 4: MDS in degree-3 graphs≤P TP in 3-D
UDG.

The proof is similar to that of Theorem 1 with two
main differences. First, line crosses are implemented by
using the third dimension to “go around”, rather than
using different transmission ranges (a luxury absent in
UDG) to create directed crosses. Second, reduction from
MDS in graphs with a maximum degree of3 ensures
that there are at most4 incoming edges to each super
vertex in the reduced UDG. This makes the geometric
constraint on the number (at most11 in a 3-D Euclidean
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space) of vertices that can reach a common vertex but not
each other inconsequential5. A detailed proof is given in
Appendix D.

Note that using a reduction from MDS in graphs with
a constant maximum degree rather than MDS in general
graphs leads to a weaker statement. While MDS in both
cases are NP-complete, the former is approximable with
a constant ratio, and the latter a ratio ofO

(
log n

)
.

Theorems 1-3 thus give alogn order lower bound
on the approximation ratio of those problems whereas
Theorem 4 provides a constant lower bound.

IV. POLYNOMIAL COMPLEXITY PROBLEMS

In this section, we consider the thinnest path prob-
lem in 1-D networks. We show that the problem is
polynomial time by constructing an algorithm with time
complexity of O

(
n
)
. Since the input data has size

O
(
n
)
, the proposed algorithm is order-optimal. We then

consider the1.5-D problem and show that the algorithm
developed for 1-D networks directly applies to the1.5-D
problem.

A. 1-D Networks

Consider a network under a general propagation model
with n nodes located on a straight line. Each vertex
vi is associated with a coordinatexi on the line (the
vertex index vi and its locationxi are often used
interchangeably). Without loss of generality, we assume
that x1 ≤ x2 ≤ . . . ≤ xn.

s(v4) t(v9)v8v7v6v5v3v2v1

Fig. 3: A 1-D network (circles represent maximum ranges under a
disk propagation model).

It is clear that every node located between the source
s and the destinationt (see Fig 3) will hear the message
no matter which path is chosen and all nodes to the right
of t can be excluded from the thinnest path. Therefore,
finding the thinnest path is equivalent to minimizing the
number of vertices to the left ofs that can overhear
the message. The problem is nontrivial. Due to the
arbitrariness of the node locations and propagation range,
a forward path (i.e., every hop moves the message to the
right towardt) from s to t may not exist and nodes to
the left of s may need to act as relays. The question is
thus how to efficiently find out whether a forward path
exists and if not, which set of nodes to the left ofs need
to relay the message.

We propose an algorithm based on nested backward
induction (NBI). For each vertexv, we define its prede-
cessorρv to be the nearest vertex on the left side ofv

5We can consider a reduction from MDS in graphs with a maximum
degree up to9 (see Appendix D).

that can reachv:
ρv =argmax

u∈V
{xu : xu < xv,

∃e ∈ E s.t. se = u andv ∈ Te}. (1)
Thus, in order to reachv, its predecessorρv or a vertex
to the left of ρv has to transmit. In other words, those
vertices betweenρv and v cannot directly reachv.
Equivalently, any vertex to the right ofv can only hear
a message froms through a relay byρv or a vertex to
the left of ρv.

The NBI algorithm is then carried out in two steps.
In the first step, the predecessors of certain vertices are
obtained one by one starting fromt moving towards.
Specifically, the predecessor oft, denoted byu1 = ρt, is
first obtained. Ifxu1 ≤ xs, then the first step terminates.
Otherwise, the predecessor ofu1, denoted byu2 = ρu1 ,
is obtained and its location compared withxs. The
same procedure continues until the currently obtained
predecessor is to the left ofs or is s itself. The first step
thus produces a sequence of verticesu1, u2, . . . , ul with
u1 = ρt, u2 = ρu1 , . . ., ul = ρul−1

andxul
≤ xs. Then

L1 := {ul, ul−1, . . . , u1, t} is a valid path fromul to
t. If ul = s, the algorithm terminates, and the thinnest
path from s to t is given byL1. Otherwise, we carry
out Step 2 of the algorithm where we find a path from
s to ul. Specifically, letV ′ denote the set of vertices
located betweenul andul−1 includingul but notul−1.
LetE′ denote the set of all hyperedges whose source and
destination vertices are inV ′. As shown in Appendix E
on the correctness of the algorithm, any hyperpathL2

from s to ul in the sub-hypergraphH ′ = (V ′, E′)
concatenated withL1 gives a thinnest path froms to
t. Finding such anL2 can be easily done by a breadth-
first search (BFS) inH ′. However, the resulting time
complexity isO

(
n2

)
. Hence, we propose a special BFS

procedure that reduces the time complexity toO
(
n
)
.

The trick here is to set up two pointers,kl and kr, to
the locations of the leftmost and the rightmost vertices
in V ′ that have been discovered. Due to the geometric
structure of the 1-D network, each time we only need to
search vertices to the left ofkl and vertices to the right
of kr. The detailed algorithm is given below.

1. Enqueues, setkl andkr to the index ofs.
2. Repeat until the queue is empty orul is found:

– Dequeue a vertexv and examine it
– If v = ul, go to step 4.
– Otherwise,
∗ While v can reachvkr+1

· Enqueuevkr+1 andkr ← kr + 1
· Set the parent ofvkr+1 to v

∗ While v can reachvkl−1

· Enqueuevkl−1 andkl ← kl − 1
· Set the parent ofvkl−1 to v

3. If the Queue is empty, return “no path froms to t”.
4. Trace back tos and returnL2.
The following theorem establishes the correctness of

the proposed NBI algorithm. Furthermore, it reveals
a strong property of the path obtained by NBI under
a disk propagation model. Specifically, under a disk
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propagation model, we define thecovered area A(L)
of a hyperpathL = {e1, . . . , em} as

A(L)
∆
=

m⋃

i=1

Dsei ,rei
, (2)

where rei is the minimum transmission range that in-
duces hyperedgeei, i.e.,

rei = max
v∈Tei

{d(sei , v)}. (3)

Theorem 5 shows that the covered area of the path
obtained by NBI is a subset of the covered area of any
feasible path froms to t.

Theorem 5: NBI algorithm finds the thinnest path
L∗. Furthermore, under a disk propagation model, given
any valid pathL from s to t, we haveAL∗ ⊆ AL.

Proof: See Appendix E.
Theorem 6: The time complexity of the NBI algo-

rithm is O
(
n
)
.

Proof: TheO
(
n
)

complexity of the first step of NBI
is readily seen. In the second step, the time complexity
is dominated by updating the queue at each iteration. Let
k denote the number of iterations in step 2. Note that we
only checkmi + 2 vertices at iterationi, wheremi is
the number of new vertices that have been enqueued at
this iteration and

∑k

i=1 mi ≤ |V ′|. Also k is bounded
by |V ′|. Hence the total time complexity of this step is
bounded by

∑k
i=1(mi + 2) ≤ 3|V ′|. We thus arrive at

the theorem.

B. 1.5-D Networks

We now consider the1.5-D problem where in-network
nodes are located on a line and eavesdroppers are located
in a d-dimensional space that contains the line network.
We focus on the disk propagation model. A unit cost
is incurred for each in-network node that hears the
message and a non-negative costc is incurred for each
eavesdropper that hears the message. The objective is to
find a pathL∗ from s to t with the minimum total cost:

L∗∆=arg min
L={e1,...,em}

{
∑

v∈A(L)

c(v)} (4)

where c(v) is the cost for vertexv, and A(L) is the
covered area of pathL as defined in (2).

Based on Theorem 5, it is easy to see that NBI
provides the optimal solution to the 1.5-D thinnest
path problem without knowledge of the eavesdroppers
locations. More specifically, no algorithm, even with
complete knowledge of the locations of the eavesdrop-
pers, can obtain a thinner path than NBI which does not
require location knowledge of the eavesdroppers.

V. A PPROXIMATION ALGORITHMS

In this section, we introduce two approximation algo-
rithms for the thinnest path problem and analyse their
performance in different types of hypergraphs.

A. Shortest Path Based Approximation Algorithm

Given a general directed hypergraphH with source
vertex s and destination vertext, we set the weight of
a hyperedge to be the number of destination vertices in
this hyperedge:

w(e)
∆
=|Te| (5)

The shortest hyperpath algorithm froms to t is then ob-
tained under this weight definition as an approximation
of the thinnest path. The following theorem quantifies
the performance of this shortest path based algorithm
(SPBA).

Theorem 7: The SPBA algorithm provides a
√

n
2 -

approximation for TP in general directed hypergraphs,
a 2(1 + 2α)d-approximation ford−dimensional ring
hypergraphs withα =

maxvi∈V Ri

max{minvi∈V ri,minu,v∈V d(u,v)} .

Additionally, the ratio
√

n
2 of the SPBA algorithms is

asymptotically tight even in2-D disk hypergraphs.
Proof: See Appendix F.

B. Tree Structure Based Approximation Algorithm

Approximation occurs in two places in SPBA. First,
the width of a path is approximated by the sum of
the widths of the hyperedges on that path. Second, the
thinnest path to a vertex is assumed to go through the
thinnest path to one of its incoming neighbors. The first
approximation can be avoided while maintaining the
polynomial nature of the approximation algorithm. In
particular, we can ensure that the width of a path is cor-
rectly obtained by using the set union operation instead
of summation. The assumption on the tree structure of
the thinnest paths allows us to use Dijkstra’s algorithm
with some modifications. Specifically, for each vertex,
we need to store the current thinnest path froms to this
vertex rather than only the width of this path and the
parent of this vertex on this path. This allows us to take
the set union operation when we update the neighbors
of this vertex. Given below is the performance of this
tree structure based algorithm (TSBA).

Theorem 8: The TSBA algorithm provides a n

2
√
n−1

-
approximation for general directed hypergraphs,2(1 +
2α)d-approximation for d−dimensional ring hyper-
graphs withα =

maxvi∈V Ri

max{minvi∈V ri,minu,v∈V d(u,v)} . Addi-
tionally, the ratio n

2
√
n−1

of the TSBA algorithm is tight
in general directed hypergraphs and asymptotically tight
in disk hypergraphs in the worst case.

Proof: See Appendix G.

C. Performance Comparison

While the approximation ratio of TSBA is better than
that of SPBA, these are worst-case performances and do
not imply that TSBA outperforms SPBA in every case
as shown in Fig 4.

vs

t

Fig. 4: An example where SPBA outperforms TSBA (SPBA returns
the path that goes through all solid black hyperedges tov and then to
t, which is the thinnest path; TSBA returns the path that contains all
dashed hyperedges, which is not the thinnest path).

Fig. 5 shows the average performance of these two
algorithms. We see that both algorithms have relatively
small approximation ratios growing sub-linearly with the
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Fig. 5: Average performance of SPBA and TSBA (a 2-D network with
n vertices uniformly and randomly distributed on an

ρ
× n

ρ
square with

ρ = 1.5; the maximum range of each vertex randomly chosen from
interval [Rmin, Rmax] with Rmin = 1, Rmax = 5; average taken
over 1000 such random2-D disk hypergraphs).

number of vertices. In general, TSBA outperforms SPBA
on average, as also demonstrated in a number of other
simulation results (omitted due to the space limit).

VI. CONCLUSION

We studied the complexity and developed optimal and
approximation algorithms for the thinnest path problem
for secure communications in wireless ad hoc networks.
In establishing the NP-completeness of the problem, our
techniques of using directed crosses and exposed disk
hypergraphs may spark new tools for complexity studies
in geometrical hypergraphs and graphs. The bounding
techniques and the use of sphere packing results in
analyzing the performance of the two approximation al-
gorithms may also find other applications in algorithmic
analysis.

APPENDIX A. PROOF OFTHEOREM 1

A. Reduction from MDS to TP in A General Directed
Hypergraph H1

Consider the MDS problem in a graphG with n
verticesv1, . . . , vn. We construct a directed hypergraph
H1 based onG as follows. The vertex set ofH1 includes
the n vertices ofG augmented by a destination vertex
vn+1 andn super verticesvs1, . . . , v

s
n. A super vertexvsi

corresponds to the normal vertexvi and is a set ofns

normal vertices. The hyperedges inH1 are all rooted at
the normal verticesv1, . . . , vn. Specifically, rooted atvi
(1 ≤ i ≤ n) are ki + 1 directed hyperedges, whereki
is the degree ofvi in G. Each hyperedge rooted atvi
has two destinations:vi+1 and a super vertexvsj whose
corresponding normal vertexvj dominates6 vi in the
original graphG. Fig. 6 is an example illustrating the
construction ofH1 from G.

From the construction ofH1, we see that any path
from v1 to vn+1 must traverse through all normal vertices
one by one. There are multiple hyperedges leading
from vi to vi+1, each involving a super vertex that
corresponds to a dominating node ofvi in G. Thus,
choosing a hyperedge going fromvi to vi+1 is equivalent
to choosing a dominating node ofvi in G. Since every
path from v1 to vn+1 includes all then + 1 normal
vertices, the thinnest path is given by the one with the

6A vertex in a graph is dominated by itself and any of its one-hop
neighbors.

minimum number of super vertices, thus leading to the
MDS in G. At this point, the sizens of a super vertex
can be any positive integer. As will become clear later,
to implementH1 under a 2-D disk model, additional
normal vertices need to be added. As a consequence,
paths fromv1 to vn+1 may include different numbers of
normal vertices. To preserve the reduction, we need to
make sure that the width of a path is dominated by the
number of super vertices it covers. This can be achieved
by choosing anns sufficiently large (see Appendix A-D)

.  .  .

v1 v2 v3 v4 v5 v6

vs1 vs2 vs3 vs4 vs5

v1

v2

v3
v4

v5

(a) (b)
Fig. 6: The construction ofH1 from G: (a) the graphG; (b) the

hypergraphH1 (v1 is dominated byv1 and v3 in G. We thus have
two hyperedges rooted atv1 in H1: one reaches(v2, vs1), the other
(v2, vs3).).

The following lemma formally establishes the correct-
ness of the reduction.

Lemma 3: There is a dominating set with sizek in
G if and only if there is a path fromv1 to vn+1 in H1

with width kns + n+ 1.
Proof: First, assume thatG has a dominating setS

with sizek. By the definition of dominating set, for each
vertexvi in G, there is a vertexvj ∈ S that dominatesvi.
From the construction ofH1, there exists a hyperedgeei
(i = 1, . . . , n) in H1 directed fromvi to vertexvi+1 and
super vertexvsj corresponding to the dominating nodevj
in G. Thus, the hyperpath{e1, . . . , en} is a path from
v1 to vn+1 with width kns + n + 1. The width comes
from the fact that alln + 1 vertices inVH1 are on the
path along withk super vertices, each consisting ofns

normal vertices.
Conversely, assume that there exists a path fromv1

to vn+1 in H1 with width kns + n + 1. Based on the
construction ofH , every path fromv1 to vn+1 consists
of n hyperedges rooted at each of then normal vertices
v1, . . . , vn. Thus, a path with widthkns + n + 1 must
containk super vertices. From the construction of the
hyperedges, we conclude that the vertices inG that
correspond to thosek super vertices along the given path
form a dominating set with sizek.

B. A 2-D Grid Representation of H1

The directed hypergraphH1 obtained above does not
satisfy the geometric properties of 2-D disk hypergraphs
(see Sec. II). To prove Theorem 1, we need to modify
H1 to a 2-D disk hypergraphH2 while preserving
the reduction from MDS inG. Our approach is to
realize the topological structure of each hyperedge in
H1 by adding additional vertices with carefully chosen
locations and maximum ranges to lead from the source
vertex to the destination vertices of this hyperedge.
The number of additional vertices, however, should be
kept at a polynomial order with the problem size to
ensure the polynomial nature of the reduction. This can
be achieved by adding vertices on a 2-D grid with a
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constant grid spacing, which allows a constant maximum
range, thus polynomially many additional vertices. The
detailed implementation ofH1 under a 2-D disk model
is given in the next subsection. As a preparatory step,
we show in this subsection that the hyperedges inH1

can be represented by line segments of a 2-D grid with
a constant grid spacing.

We first embed the normal vertices ofH1 evenly
in a horizontal line in a 2-D space (see Fig. 7 for
an illustration). Below this line is a2n2 × 4n2 unit
grid. There are4n vertical lines betweenvi and vi+1

(1 ≤ i ≤ n) that are partitioned into three zones (C1
i ,

C2
i , C3

i ) of n, 2n, andn vertical lines, respectively. The
super vertices are embedded evenly on a horizontal line
below the grid. The horizontal position of super vertex
vsi is betweenvi andvi+1.

Next, we specify how a hyperedge traverses the grid
from its source vertex to its destination vertices. Recall
that every hyperedge inH1 is directed from a normal
vertex vi to a super vertexvsj and the next normal
vertexvi+1. To preserve the reduction, we need to ensure
that each hyperedge can only reach its normal vertex
destination after reaching its super vertex destination. To
facilitate the implementation around the super vertices
(see Appendix A-C2), we designate the middle zone
C2

i betweenvi and vi+1 for traveling down to super
vertexvsi and then up to the corresponding normal vertex
destination (see regionC2

1 in Fig. 7). Each hyperedge
involving vsi has two designated vertical lines inC2

i

(one for going down to, the other going up from the
super vertex). To connect the designated vertical lines
in zone C2

i with the source vertex and then to the
normal destination vertex, we designate two horizontal
lines for each hyperedge. The traverse of the hyperedge
is completed by designating one vertical line inC1

i

and one inC3
i to connect the normal vertices with the

corresponding designated horizontal lines. Since there
are at mostn2 hyperedges, the designed grid size is
sufficient to ensure that each hyperedge traverses through
a distinct set of line segments in the grid. .

... ......

Fig. 7: A 2-D grid representation ofH1 (the two hyperedges rooted
at v1 from the example given in Fig. 6 are illustrated in green and
blue, respectively).

C. Implementing H1 under A 2-D Disk Model

Based on the 2-D grid representation ofH1, we can
construct a 2-D disk hypergraphH2 that preserves the
reduction. Specifically, we place a sequence of evenly
spaced normal vertices with a constant maximum range

along the line segments in the grid that form each
hyperedge ofH1. The distance between two adjacent
vertices is set to their maximum range. The constant
maximum range can be set sufficiently small (say,1

5 ) to
avoid overhearing across vertices on different hyperedges
that may render the reduction invalid. There are two
issues that remain to be addressed: the implementation
of crosses and that around super vertices.

1) Implementaion of Crosses: The line crossing in
the grid representation ofH1 make overhearing across
hyperedges inevitable. However, by exploiting the free-
dom of choosing the maximum range for each vertex, we
can implementdirected crosses that allow us to preserve
the reduction. Specifically, when two line segments in the
grid representation cross, we can choose the maximum
ranges of the vertices along these two lines in such a
way that messages transmitted over one line can be heard
by vertices on the other but not vise verse. A specific
implementation is given in Fig. 8.

Fig. 8: A disk hypergraph implementation of a directed crosswhere the
circles represent the maximum range of vertices (messages transmitted
on the blue line can be heard by nodes on the red line, but not vise
versa).

Next, we show how carefully choosing the direction
of each cross allows us to preserve the reduction. The
cross directions are defined by assigning a level index to
each line segment in the grid representation. Specifically,
For a hyperedge rooted atvi in H1, its line segments
before and after reaching the super vertex destination
have levelsi andi+1, respectively. Then, each cross has
a direction pointing from the higher level segment to the
lower one (i.e., messages transmitted on the higher level
segment can be heard by the vertices along the lower
level segment but not vise versa). If the two segments
have the save level, the direction of the cross can be
arbitrary. To see that this directed implementation of
crosses preserves the reduction, we only need to notice
that any path fromv1 to vn+1 still needs to go through
all the n normal vertices one by one and must reach a
super vertex before reaching the next normal vertex.

2) Implementation Around Super Vertices: Recall
that a super vertex inH1 is a set ofns normal vertices
that have no outgoing hyperedges. It can be implemented
by ns points with zero maximum range and located
sufficiently close to each other (so that any path from
v1 to vn+1 in H2 includes either all of them or none of
them).

Consider first the implementation of one incoming
hyperedge to a super vertexvsj . Recall that in the 2-
D grid representation ofH1, a hyperedge approaches
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and leavesvsj through two vertical lines in zoneC2
j

(see Fig. 7). One implementation of this U-turn around
vsj is to add6 normal vertices with specific maximum
ranges and locations. As shown in Fig. 9, these6 vertices
include three anchor verticesu−

1 , u0
1, and u+

1 with
maximum ranger, two interface verticesν−1 andν+1 that
connect with the grid, and a bridging vertexµ11, all with
maximum ranger2 . The value ofr and the connection
with the grid will be specified later.

r
u−
1

u0
1 u+

1

ν−
1 ν+

1

µ11

Fig. 9: Implementation of one hyperedge passing through a super
vertex. Starting fromν−

1
, the message traverse toν+

1
throughµ11 ,

u−
1

, u0
1
, u+

1
. The super vertex hears the message in the transmission

from u0
1

to u+

1
.

A challenge remains in the implementation of up ton
incoming hyperedges to the same super vertex. Note that
under a 2-D disk model, one can at most have5 vertices
(even with arbitrary ranges) that reach a common sixth
vertex but not each other. The key to circumvent this
difficulty is to allow directed overhearing, similar to the
idea behind the implementation of the crosses. Specifi-
cally, the reduction is preserved as long as a hyperedge
rooted atvj cannot overhear a message transmitted over
a hyperedge rooted atvi for any i < j. The detailed
implementation is as follows. The fist step is to designate
the vertical lines in zoneC2

j to the incoming hyperedges
of vsj based on the indices of their source vertices.
Specifically, the incoming hyperedge with the smallest
source vertex index takes the two center most lines in
C2

j , and so on. Consider first the implementation of
the two incoming hyperedges (say,e1 and e2) with the
smallest source vertex indices. As shown in Fig. 10, we
first implemente1 as described above (see Fig. 9). The
structure of the implementation ofe2 is similar except
that the maximum range of the anchor verticesu−

2 , u0
2,

and u+
2 is set to4r to prevent unwanted overhearing.

As a consequence, more bridging vertices (µ21, µ22, µ23

with maximum ranger
2 , r, and 2r, respectively) are

needed to connect the interface vertexν−2 to the anchor
vertexu−

2 . Note that no vertices alonge2 (the centers of
the blue circles in Fig. 10) are in the range of any vertices
along e1 (the green circles). The correct direction of
overhearing is thus ensured.

The same procedure continues for any additional
incoming hyperedges tovsi , in the ascending order of
their source vertex indices inH1. Note that the range of
the anchor vertices in thekth hyperedge is4kr, growing
exponentially withk. The maximum ranges (specifically,
r
2 , r, . . . ,

4k

2 r) of the bridging vertices{µki} are chosen
to preserve the polynomial nature of the reduction. In this
way, the number of additional vertices for implementing
the kth hyperedge is2k + 4, and the total number of
additional vertices around one super vertex is at most

n2 + 3n.

u−
2

u0
2u
0
2 u+

2

ν−
2

µ21

µ22

µ23

ν+

2

4r

Fig. 10: Implementation of the second incoming hyperedge toa super
vertex.

Next we consider the value ofr which should be set
sufficiently small to avoid overhearing across hyperedges
leading to different super vertices. Note that the width
of the area covered by the additional vertices around a
super vertex is4 times the largest maximum range of
the anchor vertices. We thus setr = 4−nn, considering
the distance between two adjacent super vertices being
4n.

The last issue is to connect the interface vertices with
the grid. Each interface vertex needs to be connected
with a designated vertical line inC2

j . While the vertical
lines in C2

j are evenly spaced, the horizontal positions
of the interface vertices have an exponential structure
due to the exponentially growing range of the anchor
vertices. Furthermore, the vertices realizing the vertical
lines in the grid have a constant range, whereas the
interface vertices have an exponentially smaller range
of r = 4−nn. If we connect them using a sequence
of vertices with a constant range, unwanted overhearing
will occur near the interface vertices. On the other hand,
connecting them using vertices with ranger results
in an exponential number of additional vertices. To
preserve the correctness and the polynomial nature of the
reduction, we propose the scheme detailed in Fig. 11.

Since the generated sequence of circles{Ei} are
within the boundary given by linesAC and BD and
the boundary lines corresponding to different interface
vertices do not cross (see Fig. 12), the above scheme
does not introduce overhearing, thus preserving the re-
duction. The polynomial nature of the reduction can be
shown based on the following lemma.

Lemma 4: Consider the geometrical scheme de-
scribed in Fig. 11. Assume∠CAB ≥ π

4 . The num-
ber of circles {Ei}, denoted byk, satisfies k ≤
2(logR1−logR2)

R1−R2
L + 1 whenR1 6= R2, andk ≤ 2L

R1
+ 1

whenR1 = R2, whereR1, R2 denote the radii of circles
O1 andO2, andL the distance between linesAB and
CD.

Proof: Assume firstR1 6= R2. Without loss of
generality, assumeR1 > R2. Since lineAB and CD
are parallel, the three linesAC, O1O2 andBD intersect
at one point, denoted byO in Fig. 11. Letα, β, and
θ denote the angles∠O1OA, ∠OAB and ∠OO1B,
respectively.

It can be shown that all the circles{Ei} are tangential
to the same boundary line. Without loss of generality,
assume that the tangential line isAC, i.e., di ≤ d′i and
ri = di. Based on simple geometry, the lengths of the
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A B

C D

FO1

O2
E1

E2

d1

d′1

d2

d′2

L

O

α

β

θ

Fig. 11: Consider first the downward part from the grid to a left
interface vertexν−

i
. Let O1 denote the location of the last vertex on

the designated vertical line in the grid, andO2 the location ofν−
i

.
The circles centered atO1 andO2 represent their maximum ranges.
Let A,B andC,D denote the intersecting points of these two circles
with the horizontal lines at their centers. LetE1 denote the intersection
between circleO1 and lineO1O2. Let d1 andd′

1
denote the distance

betweenE1 and the two linesAC and BD, respectively. Next we
draw a circle with radiusr1 = min{d1, d′1} centered atE1. Let E2

denote the intersection between circleE1 and lineO1O2, and a similar
circle centered atE2 is drawn. This procedure is repeated to generate
a sequence of circles until the last generated circle coversO2. This
sequence of circles{Ei} gives the locations and the maximum ranges
of the vertices connecting the grid andν−

i
. The upward part fromν+

i

to the grid is done with the same procedure except starting from ν+
i

.

C2
j

vsj
Fig. 12: Connecting the interface vertices with the grid.

line segments of{OEi} forms an equal ratio sequence:
OEi+1 = OEi − ri = OEi(1− sinα),

with OE1 = OO1 −R1. We thus have
OEi+1 = (OO1 −R1)(1 − sinα)i.

Based on the stopping condition of the procedure, the
numberk of circles is given by the minimum indexi
such thatOEi+1 ≤ OO2. We thus have
k = min{i ∈ N : OEi+1 ≤ OO2}
= min{i ∈ N : (OO1 −R1)(1 − sinα)i ≤ OO2}

= min{i ∈ N : i ≤
log OO2

OO1−R1

log(1− sinα)
}

≤ log(OO2/OO1)/ log(1 − sinα) + 1. (6)

Since∆OO2D and∆OO1B are similar triangles, the
ratio OO2

OO1
equals the ratioR2

R1
. Also because− log(1 −

x) ≥ x for 0 ≤ x ≤ 1, (6) can be written as
k ≤ (logR1 − logR2)/ sinα+ 1. (7)

BecauseO1AO is a triangle andβ ≥ π
4 , the value of

sinα can be lower bounded as follows:

sinα =
R1

OO1
sinβ ≥ R1

OO1

√
2

2
≥ R1 −R2

O1O2

√
2

2
. (8)

Furthermore, sinceθ = α + β > β, the length of
O1O2 = L

sin θ
has an upper bound:O1O2 ≤ L

sin β
≤√

2L. Hence (8) leads to:
sinα ≥ (R1 −R2)/(2L). (9)

Substituting (9) into (7), we have
k ≤ 2L(logR1 − logR2)/(R1 −R2) + 1.

Consider nextR1 = R2. The sequence of circles{Ei}
have the same radiusR1. SinceO1O2 = L

sin θ
< 2L, the

boundk ≤ 2L
R1

+ 1 holds.
To satisfy the assumption of∠CAB ≥ π

4 in Lemma 4,
we set the distance between the last horizontal line of
the grid and the horizontal line of super vertices ton.
This ensures that angle∠BAO ≤ π

4 . Note that in the
downward part from the grid to a left interface vertex
ν−i , R1 is a constant andR2 = 4−nn

2 . Hence the bound
on k given in Lemma 4 can be written as:

k ≤ 2(logR1 + n log 4− logn)

R1 − 4−nn/2
L+ 1

≤ 2(logR1 + n log 4)

R1 − 1/8
n+ 1,

which is in the order ofO
(
n2

)
. A similar argument can

be made for the upward part whereR1 = 4−nn andR2

is a constant. The same holds forR1 = R2. Hence the
total number of additional vertices to connect the grid to
the interface vertices of a super vertex is in the order of
O
(
n3

)
.

D. Reduction from MDS to TP in the 2-D Disk Hyper-
graph H2

With H2 constructed, we now establish the correctness
of the reduction from the MDS inG to the TP fromv1
to vn+1 in H2.

Lemma 5: Let ns = n2 + 1 wheren2 is the total
number of normal vertices inH2. There is a dominating
set with sizek in G if and only if there is a path fromv1
to vn+1 in H2 with width betweenkns and(k+1)ns−1.

Proof: The chosen value ofns ensures that the
width of a path fromv1 to vn+1 is dominated by the
number of super vertices that it covers. The correctness
of the reduction thus follows from the same arguments in
the proof of Lemma 3 based on the construction ofH2.

The polynomial nature of the reduction is clear from the
construction ofH2. We thus arrive at Theorem 1.

APPENDIX B. PROOF OFLEMMA 1

Consider a TP problem froms to t in a k-D exposed
disk hypergraphsH = (V,E). We construct ak-D UDH
H ′ as follows. First, the normal vertex setV ′ of H ′

is given byV , except that the ranges of anyv′ ∈ V ′

equalsmaxv∈V Rv. Next, for each vertexv′ ∈ V ′, we
place a super vertex inΦv (i.e., the exposed area of
the corresponding vertex inH) that contains|V | + 1
normal vertices located sufficiently7 close to each other.

7The |V | + 1 normal vertices are sufficiently close such that any
transmission from one of these vertices to a vertex outside this super
vertex reaches all the|V |+ 1 normal vertices in this super vertex.



11

The super vertices have the same range as the normal
vertices inV ′, ensuringH ′ is a UDH. The reduction can
thus be seen by noticing that while the enlarged ranges
introduce additional hyperedges inH ′, these hyperedges
cannot be on a thinnest path due to the fact that they all
contain at least one super vertex.

APPENDIX C. PROOF OFLEMMA 2

In this proof, we modify the2-D disk hypergraphH2

in the proof of Theorem 1 to a2-D exposed disk hy-
pergraphH3 while preserving the polynomial reduction.
Based on the definition, a sufficient condition for a2-
D disk hypergraph to be exposed is that none of the
maximum range disks are completely inside any other.
The vertices inH2 for realizing the line segments of
the grid satisfy this condition. We only need to modify
the implementations of the crosses and around the super
vertices.

A. Implementation of Crosses

(a) (b)

(c) (d)

R

A

B

C

D

E

BC = RB = RC = R tan θ ≃ 0.5543R

BD = (1 −
1

2 cos θ
)R ≃ 0.4283R

θ = 29o

Fig. 13: To implement a directed cross shown in (a), we first
implement a vertex for the blue line with maximum rangeR at location
A (the blue circle) shown in (b). Next we draw a perpendicular bisector
betweenA and E (the right intersecting point of the circle with
the line). On this vertical line, we find two pointsB and C such
that ∠BAE = ∠CAE = 29o. At each point, we put a vertex
for the red line with radius equal to the length ofBC (illustrated
by the two red circles in (b)). Simple geometry calculation leads to
BD < BC < AB = BE. This ensures that verticesB andC are
exposed yet cannot overhear vertices located atA andE. We complete
the implementation by adding vertices on the vertical lineBC and the
horizontal lineAE (see (c) and (d)). Note that to preserve the exposure
of verticesB andC, the maximum ranges of vertices from pointE to
the right side need to be enlarged gradually to the constant maximum
range of normal vertices on the grid (this only requires a constant
number of additional vertices).

In the implementation of directed crosses inH2 (see
Fig. 8), some vertices on the line with a lower level
index may have an empty exposed area (see the red
disks in Fig. 8 that are completely covered by blue
ones). To implement a direct cross in a2-D exposed
disk hypergraph, the maximum ranges of vertices on the
line with a lower level index need to be small enough to
preserve the direction of the cross but also large enough
to make the vertices exposed. We propose the scheme
described in Fig. 13.

B. Implementation around Super Vertices

In the previous implementation around a super vertex
vsj , all the vertices are exposed except the anchor vertices
{u−

i , u
+
i } and the bridging vertices{µik}. However,

we notice that these vertices would all be exposed if
there were no interface vertices. Our solution is thus to
move all the interface vertices away from their original
positions by a constant distance and add a constant
number of vertices to connect each new interface vertex
to the bridging vertex or the anchor vertex on the right
side. A detailed implementation is shown in Fig. 14.

Fig. 14: An interface vertex on the left side is replaced by three
vertices with maximum rangesr, 2

3
r and r

2
, respectively. These three

vertices are located on a vertical line to the left side of theoriginal
location of the interface vertex with a distance ofr. An interface vertex
on the right side is replaced by two vertices with maximum range r

2
located on a vertical line to the right side of the original location of
the interface vertex with distancer

2
. Under this implementation, the

exposed areas of the anchor and bridging vertices are right above the
point where they are tangential with the horizontal line of the super
vertices (as illustrated by the arrows).

APPENDIX D. PROOF OFTHEOREM 4

Consider an MDS problem in a graphG with a
maximum degree of3. We first follow the first two steps
in the proof of Theorem 1 to build the grid representation
of hypergraphH1. Note that due to the unit range of all
vertices, we set the size of the grid to a constant greater
than 1 (say, 5) to avoid unwanted overhearing. Next,
we implement this representation in a3-D UDG while
preserving the reduction. Any line segment of hyper-
edges inH1 is replaced by a sequence of unit disks, one
just touching the another. Any cross between two line
segments can be easily implemented by using the third
dimension, as shown in Fig. 15. In this implementation,
there is no overhearing between vertices on these two
line segments at all. SinceG has a maximum degree
of 3, there are at most4 hyperedges passing through
a super vertex. It can be easily implemented without
any unwanted overhearing (see Fig. 16). To prevent the
super vertices from relaying messages, we place amega
vertex besides each super vertex. This mega vertex is
only within the range of this super vertex and contains
more normal vertices than the total number of normal
vertices in the reduced graph (including the normal
vertices contained in all the super vertices but not those
in other mega vertices). In this way, a path via any super
vertex covers at least one mega vertex, thus cannot be
the thinnest path. Fig. 16 illustrates the implementation
around a super vertex8. The correctness of the reduction

8We can consider reduction from MDS in graphs with a maximum
degree up to9. In this case, there are at most10 incoming hyperedges.
Along with the mega vertex, they can be packed around a super vertex
without overhearing.
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follows from the same arguments as in the proof of
Lemma 3.

Fig. 15: An implementation of a cross in3-D UDG.

Mega vertex

Fig. 16: Implementation around the super vertices in UDG.

APPENDIX E. PROOF OFTHEOREM 5

We first show that as long as there exists a path from
s to t, there exists a path froms to ul that traverses only
the sub-hypergraphH ′. This can be shown by noticing
that ul must hear the message froms beforeul−1 and
any vertex to the right oful−1. This is due to the
monotonicity of wireless broadcast and the definition of
predecessor. Consequently, there must exist a path from
s to ul in H ′. SinceV ′ is covered by the hyperedge
leading fromul to ul−1 in L1, the concatenation ofL1

with any path toul in H ′ covers the same set of vertices.
Specifically, the cover of the path returned by NBI is the
set of vertices located between (and including)ul andt.
Since any path froms to t covers this set of vertices,
the correctness of the algorithm is established.

Next, we prove the property ofAL∗ under the disk
propagation model. We first state the following lemma
that follows directly from triangle inequality.

Lemma 6: Let D1 andD2 denote two closed balls
in R

d with radii r1 and r2, respectively. Leta denote
the distance between the centers ofD1 andD2. If 0 ≤
a ≤ |r1 − r2|, thenD2 ⊂ D1.

Based on Lemma 6, for any vertexv betweenul and
ul−1, we haveDv,Rv

⊂ Aul,d(ul,ul−1). ThereforeAL∗ =

AL1 =
⋃l

k=1 Duk,d(uk,uk−1) (let u0 = t). Next, consider
an arbitrary pathL from s to t. We show that for anyuk

(k = 1, . . . , l), Duk,d(uk,uk−1) ⊂ AL. Specifically, since
uk−1 must first hear the message fromuk or a vertex to
the left ofuk, Duk,d(uk,uk−1) is a subset of the covered
area of this hop inL based on Lemma 6. This completes
the proof.

APPENDIX F. PROOF OFTHEOREM 7

A. For General Directed Hypergraphs

Let L1 denote the path froms to t provided by
SPBA andLopt = {e1, e2, . . . , ek} the thinnest path.
If multiple thinnest paths exist, letLopt be the one with
the minimum number of hyperedges. LetL(L) denote
the length (i.e., the sum of hyperedge weights) ofL.

Since each vertex covered inL1 (except the sources)
contributes to the weight of at least one hyperedge in

L1, the widthW (L1) is no larger than the length of this
path plus one. Also becauseL1 is the shortest path, its
length is no larger than the length ofLopt. We thus have

W (L1) ≤ L(L1) + 1 ≤ L(Lopt) + 1. (10)
We then obtain the approximation ratio by deriving an
upper bound ofL(Lopt) as a function ofW (Lopt).

Note that the destination setTe of hyperedgeei on
Lopt cannot containk − i + 1 vertices: its own source
vertexsei and vertices in{sei+2 , sei+3 , . . . , sek , t}. The
later holds because otherwiseLopt is not the the thinnest
path with minimum number of hyperedges. We thus have

L(Lopt) ≤
k∑

i=1

(W (Lopt)− (k − i+ 1))

= kW (Lopt)− k(k + 1)/2

≤W (Lopt)(W (Lopt)− 1)/2, (11)
where (11) comes fromk ≤ W (Lopt)− 1. Substituting
(11) into (10), we have

W (L1) ≤W (Lopt)(W (Lopt)− 1)/2 + 1

≤W 2(Lopt)/2, (12)
where (12) holds sinceW (Lopt) ≥ 2.

Based on (12), ifW (Lopt) ≤
√
2n, thenW (L1) ≤

1
2W

2(Lopt) ≤
√

n
2W (Lopt). Otherwise, we have

W (L1) ≤ n ≤
√

n
2W (Lopt). In summary, SPBA

provides a
√

n
2 approximation.

B. For Ring Hypergraphs

Since a ring hypergraph is a special directed hyper-
graph, all the analysis in the previous subsection applies.
Specifically, inequality (10) holds. The problem then
remains in obtaining a tighter upper bound ofL(Lopt)
based on the geometrical properties of ring hypergraphs.

First, note that the length of a hyperpathL equals the
sum of the number of times each vertex is reached. Let
Ev denote the set of hyperedges onLopt that includev
in their destination sets, i.e.,

Ev
∆
={e ∈ Lopt : v ∈ Te}.

Now we construct a subsetE′
v of Ev by iteratively re-

moving one from any pair of hyperedges whose positions
in Lopt are adjacent until no such pair exists. Because at
most half of the hyperedges are removed fromEv, the
size ofE′

v is at least half of the size ofEv, in another
word |Ev| ≤ 2|E′

v|.
Let Rmax and Rmin denote the largest maximum

range and the smallest minimum range among all ver-
tices in the given ring hypergraphHr, respectively. Let
R′

min be the larger one betweenRmin and the smallest
distance between any two vertices inHr. Based on
the construction ofE′

v, the set of source vertices of
hyperedges inE′

v satisfies two properties. First, based on
the definition of ring hypergraphs, the distance between
any source vertex in the set andv is no larger than the
maximum range of this vertex and hence no larger than
Rmax. Second, the distances between any two source
vertices in the set are larger thanRmin and hence
R′

min. Otherwise the two hyperedges rooted at these two
vertices can reach the source vertex of each other and
hence they are adjacent inLopt (recall thatei ∈ Lopt

cannot reach any vertex in{sei+2 , sei+3 , . . . , sek}).
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Given these two properties, the size ofE′
v thus is

upper bounded by the maximum number of points in the
Euclidean space that are at mostRmax away fromv and
at leastR′

min apart from each other. This is equivalent
to a sphere packing problem of arranging the maximum
number of small spheres with radiusR′

min/2 inside a
large sphere with radiusRmax + R′

min/2. An upper
bound of this packing problem is the ratio between the
volumes of the large and small spheres. We thus have:

|E′
v| ≤

(Rmax +R′
min/2)

d

(R′
min/2)

d
= (1 + 2α)d,

whereα = Rmax/R
′
min. Recall that|Ev| ≤ 2|E′

v|. Note
that the destinationt can only be reached by the last
hyperedgeek and hence|Et| = |{ek}| = 1. We thus
have

L(Lopt) =
∑

v∈L̂opt\{t}

|Ev|+ |Et| (13)

≤ 2(1 + 2α)d(W (Lopt)− 1) + 1

≤ 2(1 + 2α)dW (Lopt)− 1. (14)
Substituting (14) into (10). we have
W (L1) ≤ L(Lopt) + 1 ≤ 2(1 + 2α)dW (Lopt), (15)

i.e., SPBA provides a2(1 + 2α)d-approximation for TP
in d-D ring hypergrpahs.

C. Asymptotic tightness

We now prove that
√

n
2 -ratio is asymptotically tight

even for2-D disk hypergrpahs. The proof has two steps.
First, we construct a directed hypergraphH for which
the worst case ratio is asymptotically reached. Next, we
show a 2-D disk implementation ofH .

Consider the the following hypergraphH illustrated in
Fig. 17 withk red verticesv1, . . . , vk andk′ blue vertices
u1, . . . , uk′ along with the sources and the destination
t. Each red vertexvi has one outgoing hyperedgee with
Te = {v1, . . . , vi−1, vi+1} (let vk+1 denotet). Each blue
ui has one outgoing hyperedgee with Te = {ui+1} (let
uk′+1 denotet). Finally, we add two hyperedges that
connect sources to v1 andu1 respectively.

s t

v1 v2 v3 vk

u1 u2 u3 uk′

Fig. 17: A worst case scenario for SPBA.

Let k′ = k(k + 1)/2 + 1. Since the shortest path
traverses through the blue hyperedges while the thinnest
path through the red ones, the approximation ratio is
given by:

γ(k) = (k2 + k + 2)/(2k + 4). (16)
Note that the total number of vertices is

n = k + k′ + 2 = k + k(k + 1)/2 + 1.

Whenn is large,k ∼
√
2n andα(k) ∼ k

2 ∼
√

n
2 .

Next, we implement the above hypergraph under a 2-D
disk model as illustrated in Fig. 18. The red vertices are
located on a straight line withRv1 = Rv2 = 1, Rvi =
2i−2 for i > 2. The source vertexs is located on the
line to the left ofv1, and both its maximum range and its
distance tov1 equals toRvk . The terminal vertext has a

maximum range of0 and is located to the right ofvk with
a distance ofRvk . The maximum range of a blue vertex
ui is Rvk−iǫ whereǫ is a small positive value to prevent
ui−1 from overhearing messages transmitted byui. And
the blue vertices are located on a route froms to t that
contains two vertical line segments of length(1+ l)Rvk

and a horizontal one of length3Rvk , as demonstrated by
the blue dashed lines in Fig. 18. The positive parameter
l is used to prevent a blue vertex from overhearing the
last red vertexvk. In the asymptotic regime with largek,
l can be set sufficiently large so that thek′ blue vertices
can be implemented along the depicted route froms to
t.

s t

(1 + l)Rvk

3Rvk
Fig. 18: A 2-D disk implementation of the worst case scenariofor

SPBA.

APPENDIX G. PROOF OFTHEOREM 8

Let L2 denote the path in hypergraphH from s to
t given by the TSBA algortihm andLopt the thinnest
path. LetL1(v) andL2(v) denote the paths froms to
a vertexv given by SPBA and TSBA, respectively. The
following lemma establishes a property ofL2(v).

Lemma 7: For any hyperedgee in H , we have,∀v ∈
Te,

W (L2(v)) ≤ |L̂2(se) ∪ Te|.
Proof: Lemma 7 follows directly from the tree

structure of TSBA.

A. For General Directed Hypergraphs

Let Lopt = {e1, . . . , ek} denote the thinnest path. For
ease of presentation, let the sequence of source vertices
se1 , . . . , sek and the final destinationt be denoted as
v1, . . . , vk+1. Let U = {vi}k+1

i=1 . Based on Lemma 7, we
have, for alli = 1, . . . , k,

W (L2(vi+1)) ≤ |L̂2(vi) ∪ Tei |
≤W (L2(vi)) + |Tei\{v1, . . . , vi+1}|+ 1

= W (L2(vi)) + |Tei\U |+ 1, (17)
where (17) holds sinceTei does not contain vertices in
{sei+2 , . . . , sek , t}. Summing (17) overi, and noticing
thatW (L2(v1)) = 1 andL2(vk+1) = L2, we have:

W (L2) ≤ k + 1 +

k∑

i=1

|Tei\U |.

Next, since
W (Lopt) = k + 1 + | ∪ki=1 (Tei\U)|,

we can upper bound|Tei\U | by W (Lopt) − k − 1 for
any i = 1, . . . , k. Thus

W (L2) ≤ k + 1 + k(W (Lopt)− k − 1).
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The right side of this inequality is a quadratic function
of k with the maximum atk = W (Lopt)/2. We thus
have

W (L2) ≤ 1 +W 2(Lopt)/4.

If W (Lopt) ≤ 2
√
n− 1, the approximation ratioγ is

given by
γ = W (Lopt)/4 + 1/W (Lopt) ≤ n/2

√
n− 1. (18)

The inequality holds because the functionx
4 + 1

x
is an

increasing function forx ≥ 2.
If W (Lopt) > 2

√
n− 1, we have

γ ≤ n/W (Lopt) ≤ n/(2
√
n− 1). (19)

This completes the proof for case of general directed
hypergraphs.

B. For Ring Hypergraphs

Let L1(t) = {e1, e2, . . . , ek} be the shortest path from
s to t. Letvi denote the source vertex ofei andvk+1 = t.
We prove, through induction, the following inequality for
all i = 1, . . . , k + 1:

W (L2(vi)) ≤ L(L1(vi)) + 1. (20)
When i = 1, (20) holds since

W (L2(v1)) = 1,L(L1(v1)) = 0.
Now assume that (20) holds fori − 1, i.e.,

W (L2(vi−1)) ≤ L(L1(vi−1)) + 1. Based on Lemma 7
and this induction assumption, we have:

W (L2(vi)) ≤ |L̂2(vi−1) ∪ Tei−1 |
≤W (L2(vi−1)) + |Tei−1 |
≤ L(L1(vi−1)) + 1 + |Tei−1 |
= L(L1(vi)) + 1.

This completes the induction. Consideringvk+1 = t, we
have

W (L2) ≤ L(L1(t)) + 1. (21)
From (15), (10), and (21), we haveW (L2(t)) ≤

2(1 + 2α)dW (Lopt), i.e., TSBA provides a2(1 + 2α)2

approximation for ring hypergrpahs.

C. Asymptotic tightness

We first construct a directed hypergraphH as illus-
trated in Fig. 19. The vertex set ofH consists of two
types of vertices:k+1 normal verticesv0, . . . , vk−1 and
t, andk super verticesu1, . . . , uk−1, u, each containing
k − 1 normal vertices. Rooted at each normal vertexvi
are two hyperedgesei+1 and e′i+1. Hyperedgeei has
destination verticesTei = {vi, ui} and hyperedgee′i has
destination verticesTe′

i
= {vi, u}.

It is easy to see that the thinnest path fromv0 to t
is Lopt = {e′1, e′2, . . . , e′k, e′k} with width 2k. However,
TSBA returns the pathLd = {e1, e2, . . . , ek} with width
k2 + 1 in the worst case9. The approximation ratio is

γ =
W (L)

W (Lopt)
=

k2 + 1

2k
=

n

2
√
n− 1

.

Given the similarity betweenH and the hypergraph
H1 constructed in the proof of Theorem 1, we can
follow the same approach given in Appendix A to

9Note thatvi can updatevi+1 through bothei+1 and e′i+1
with

the same width. Since the order of hyperedges used in the update is
arbitrary, ei+1 could be used to updatevi+1 for all 1 ≤ i ≤ k − 1
in the worst case.

. . .

v1 v2

v0 t

vk−2 vk−1

u1 u2 uk−1

u

e1 e2 ek−1

e′1 e′2 e′k−1

e′k

Fig. 19: A worst case scenario for TSBA.

implementH under a 2-D disk model. However, this
implementation requires additional vertices (referred to
as auxiliary vertices) that may render our previous
approximation analysis invalid. To maintain the ratio,
each original vertex (including the vertices in a super
vertex) in H is replaced withc vertices (clustered
together) in its 2-D disk implementation, wherec is the
number of auxiliary vertices introduced by the imple-
mentation. In this case, TSBA returns a path that covers
{u1, . . . , uk−1, v0, . . . , vk} along with a set of auxiliary
vertices. The thinnest path covers{u, v0, . . . , vk} and
another set of auxiliary vertices. The approximation ratio
in this 2-D disk hypergraph is given by

γ =
(k2 + 1)c+ c′

2kc+ c′′
=

k2 + 1 + c′

c

2k + c′′

c
wherec′ andc′′ denote the number of auxiliary vertices
covered by the path returned by TSBA and the thinnest
path. Sincec′

c
≤ 1 and c′′

c
≤ 1, whenn is large, we

haveγ ∼ n

2
√
n−1

, i.e., the approximation ratio n

2
√
n−1

is
asymptotically tight in2-D disk hypergraphs.
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