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Abstract—We formulate and study the thinnest path the thinnest path from the source to the destination in
problem for secure communication in wireless ad hoc question has already been established.
networks. The objective is to find a path from a source to its A more fundamental difference between the thinnest

destination that results in the minimum number of nodes . .
overhearing the message by a judicious choice of relaying path and the shortest path problems is that the thinnest

nodes and their corresponding transmission powers. We Path from a single source to all other nodes in the
adopt a directed hypergraph model of the problem and network do not form a tree. In other words, the thinnest
establish the NP-completeness of the_pro_blem in Z-D net- path to a node does not necessarily go through the
works. We then develop two polynomial-time approxima- - hinnest path to any of its neighbors. The loss of the tree

tion algorithms that offer \/g and ;—/— approximation . . .
ratios for general directed hypergraéﬁs (\l/vhich can model Structure is one of the main reasons that the thinnest path

non-isotropic signal propagation in space) and constant ap Problem is much more complex than the shortest path
proximation ratios for ring hypergraphs (which result from  problem. Indeed, as shown in this paper, the thinnest
isotropic signal propagation). We also consider the thinn& path problem is NP-complete, which is in sharp contrast
F;]ath lgr%b']fle‘(;” %‘D “et"‘é‘:rks apd 1‘_5} ”ertt‘)"_’t?r'?s e”r:lt(’re]ddﬁd with the polynomial nature of the shortest path problem.
:ocgtions (Itehe c;o-ec{:\\lllee?j :cL)%pt[a) S’n\(levtl\Nor?(s)l. 3v)é upropg\ge a A_nother aspect that 9ompllcates the problem IS_ the
linear-complexity algorithm based on nested backward choice of the transmission power at each node (within
induction that obtains the optimal solution for both 1- a maximum value that may vary across nodes). In this
D and 1.5-D networks. This algorithm does not require case, the network cannot be modeled as a simple graph in
g‘e tk”O"‘f"edge of e?}’es‘érobpper 'OC?“O’.‘; antdh atChie"eS thewhich the neighbors of each node are prefixed. In this
est performance offere any algorithm that assumes . .
comp?ete location informatio)rg of);hegeavesdroppers. papgr, we adopt thd'rec,ted hypgrgraph quel which
easily captures the choice of different neighbor sets at

Index Terms—Hypergraph, Thinnest Path, Secure Com- . L
munication, NP-complete, Approximation Algorithms, Ap- each node. While a graph is given by a vertexiseind

proximation Ratio an edge sely consisting of cardinality-2 subsets bf, a
. INTRODUCTION hypergraph [1] is free of the constraint on the cardinality
A. The Thinnest Path Problem of an edge. Specifically, any non-empty subset’ofan

. hethi h | ; be an element (referred to as a hyperedge) of the edge set
We consider thethinnest path problem for secure E. Hypergraphs can thus capture group behaviors and

communication in \_Nlre_less ad hqc networks. For a givehopar dimensional relationships in complex networks
source and a destination, the thinnest path problem as gt are more than a simple union of pairwise relation-

for a path from the source to the destination that resugﬁips [2]. In a directed hypergraph [3], each hyperedge is

in the minimum number of nodes hearing the messaggeqteq going from a source vertex to a non-empty set
Such a path is achieved by carefully choosing a sequengeyeqtination vertices. An example is given in Fig. 1-(a)
of relaying nodes and their corresponding transmissigh o . we have directed hyperedges rooted at a source
POWETS. . nodev with each hyperedge modeling a neighbor set

At first glang:e, one may wonder whether the th_lnne%tf v under a specific power. The directed hypergraph
path problem is simply a shortest path problem with thr%odel of the thinnest path problem is thus readily seen:

weight of each hop given by the ”F”?“ber of nodes th?‘(BOted at each node are multiple directed hyperedges,
hear the message in that hop. Realizing that a node ch corresponding to a distinct neighbor set feasible

be within transmission range of multiple relaying node, nder the maximum transmission power of this node.

anq should not be counted _multiple times in.the totgl, o problem is then to find a minimum-width hyperpath
weight (referred to as the width) of the resulting pathfrom the source to the destination where the width of a

we see that the thinnest path problem does not have,a, ik is given by the cardinality of the union of the
simple cost function that is summable over edges. BH peredges on this hyperpath

rather, the width of a path is given by the cardinality of
the union of all receiving nodes in each hop, which is @8. Main Results

highly nonlinear function of the weight of each hop. One p.<aq on the directed hypergraph formulation, we

may then wonder whether we can redefine the weight gf J\ that the thinnest path problem 23D networks
each hop as the number of nodes that hear the MesSAgRp_complete even under a simple disk propagation
for the first time. Such a definition of edge weight indeeg, e This result is established through a reduction
Iegds to a summable.cost function. Unfortungtely, 'ﬂom the minimum dominating set problem in graphs, a
this case, the edge weight cannot be predetermined u'a}gssic NP-complete problem. The most challenging part
OThis work was supported by the Army Research Laboratory Ne_gf this reduction is tq show the reduced problem_ls real-
work Science CTA under Cooperative Agreement W911NF-@®%3. izable under a 2-D disk model. We further establish that
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even with a fixed transmission power at each node (fmding the p-optimal hyperpath where is a general
this case, the resulting hypergraph degenerates to a staeasure on hyperpaths that satisfies a certain monotone
dard graph), the thinnest path problem is NP-completeroperty. They established the NP-completeness of this
We then propose two polynomial-time approximatioproblem for general measures. The thinnest path problem
algorithms that of_fer\/g and 2\/% appr_oximation can be seen as arroptimal traversal probl_em with the
ratios for general directed hypergraphs (which can modmleasureu, given by the number of vertices covered
non-isotropic signal propagation in space) and constdmt the path. Since this is a special measure, their NP-
approximation ratios for ring hypergraphs (which resuttompleteness result developed under general measures
from isotropic signal propagation). Here is the total does not apply. Furthermore, in many applications, the
number of vertices. resulting hypergraphs have certain topological and/or ge-
We also establish the polynomial nature of the prolmmetrical properties, and the computational complexities
lem in 1-D and 1.5-D networks,where a 1.5-D networkinder these special models require separate analysis.
is a 1-D network embedded in a 2-D field of eaves- Another realated problem is the shortest path problem
droppers with arbitrary unknown locations. We proposa hypergraphs, which remains a polynomial-time prob-
an algorithm based on a nested backward inductibem as its counterpart under the graph model. The static
(NBI) starting at the destination. We show that this NBshortest hyperpath problem was considered by Knuth [8]
algorithm hasO(n) time complexity. Since the size ofand Galloet al. [3] in which Dijkstra’s algorithm for
the input data iso(n), the proposed algorithm is ordergraph was extended to obtain the shortest hyperpaths.
optimal. It solves the thinnest path problem in both the #usiello et al. proposed a dynamic shortest hyperpath
D and 1.5-D networks. In particular, no algorithm, evealgorithm for directed hypergraphs, considering only the
with complete location information of the eavesdropper8)cremental problem (i.e., network changes contain only
can obtain a thinner path than the NBI algorithm whiclkedge insertion and weight decrease) with the weights of
does not require knowledge of eavesdropper locationsll hyperedges limited to a finite set of numbers [9].
In a broader context, our techniques of using directdd [10], Gao et al. developed the first fully dynamic
crosses and exposed disk hypergraphs in establishstgrtest path algorithms for general hypergraphs. As
the NP-completeness of the problem may spark nediscussed earlier, the thinnest path problem is fundamen-
tools for complexity studies in geometrical hypergraphslly different and significantly more complex than the
and graphs. The bounding techniques and the use shiortest path problem.
sphere packing results in analyzing the performance of The widest path problem has been well studied under
the two approximation algorithms may also find othethe graph model [11], [12], and the existing results
applications in algorithmic analysis. can be easily extended to hypergraphs. The widest path
C. Related Work problem asks for a path whose minimum edge weight

. . o along the path is maximized. In other words, the width
There is a large body of literature on security issugsy 4 path is given by the minimum edge weight on

in wireless ad hoc networks (see, for example, [4], [S}4¢ path, which is different from the definition of path

However, the thinnest path problem has not been studiggh, in the thinnest path problem studied in this paper.

in_the literature except in [6]. Chechét al. studied t_he As a consequence, the widest path problem is not the
thinnest path (referred to as the secluded path in [§])pjlement of the thinnest path problem. Since the tree
and the thinnest Steiner tree in graphs. They showed,cyre is preserved in the widest path problem (i.e.,

that the problem in a general graph is NP-complete apgy \yidest path to a node must go through the widest
strongly inapproximable. They proposed an algorithiga o one of its neighbors), it remains a polynomial

with an approximation ratio of/A + 3 where A is e problem. The thinnest path problem, however, is
the maximum degree of the graph. They further St“d'q\fl’P-complete in general.

the problem in several special graph models including
graphs with bounded degree, hereditary graphs, and [l. PROBLEM FORMULATION
planar graphs. However, their study focuses on th Basic Concepts of Directed Hypergraphs

problem in topological gr_aphs, whereas we focus oN A directed hypergraph H = (V, E) consists of a set’
hypergraphs and geometric graphs. The results obtaingde tices and a sef of directed hyperedges [3]Each
in [6] do not apply to special hypergraphs satisfyingjjrecteq hyperedge c E has a single source vertex

certain geometric properties that result naturally frorgnd a non-empty set of destination verticgs We let
the communication problem studied in this paper. This: V| denote the number of vertices
paper also includes several new results on the thinnesty disk hypergraph is a special direc.ted hypergraph

path problem under the graph model. Specifical_ly, Wehose topology is determined by a set of poifts—
establish the NP-completeness of the problemzid ., ~ ', v |ocated in ad-dimensional Euclidean space

disk graphs and-D unit disk graphs. The results in [6] 54 3 maximum rang®; associated with each vertex
and this work thus complement each other to providue There exists a hyperedgefrom sources, = v; to

H H i e — Uy
a more complete picture of the thinnest path problefibgtination sefr, if and only if 7. consists of vertices

under different (hyper)graph models. . located within thed-dimensional sphere centered at
In the general context of algorithmic studies in hy-

pergraphs, Ausiellcet al. [7] tackled the problem of in[3], it is referred to as the forward hyperarcs.
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L={e1,...,en} such thats., € T, , for 1 < i <m,
/a se, = s, andt € T, . Define the coveL of L to be the
ws set of vertices inL, i.e.,

@ LEUR, Te, U {se,},
The widthW (L) is then given by

W(L)2ILI.
(a) (b) (c) The thinnest path problem asks for a hyperpath from
Fig. 1: (a): Directed hypergraph; (b): Disk hypergraph; (@it disk s to ¢ with the minimum width. Note that choosing
hypergraph. a hyperedges = {s.,7.} simultaneously chooses the

with a radiusr € (0,R;]. A unit disk hypergraph relaying nodes. and its transmission power (determined
(UDH) is a disk hypergraph with unit maximum rangdy 7).

(R, = 1) for all vertices. Fig. 1 shows examples of a I1l. NP-COMPLETE PROBLEMS
directed h h, a disk h h, and it disk . . :
h;sgrgrap)r/]pergrap a disk-hypergrapn, and a unit dis In this section, we show that the thinnest path (TP)

: - ; ; blem is NP-complete in several special geometric hy-
A ring hypergraph is a generalized disk hypergrapHJro A
where associated with each vertgxs a minimum range pergraphs and graphs. Thls_lmplles the NP-completeness
r; as well as a maximum rang@;. Hyperedges rooted of the problem in general directed hypergraphs.
at v; are formed by spheres centeredwatwith radii A. TP in 2-D Disk Hypergraphs

satisfyingr; < r < R;. It is easy to see that a disk | this subsection, we prove the NP-completeness
hypergraph is a ring hypergraph with = 0, a disk of the thinnest path problem ia-D disk hypergraphs.
graph is a ring hypergraph with; = R; for all 7, and \whjle a stronger result is shown in the next subsection,
a unit disk graph (UDG) is a ring hypergraph with= " the proof of this result provides the main building block
R; =1 for all i. for the proof of the next result.
B. The Thinnest Path Problem The result is established through a reduction from
Consider a wireless ad-hoc network with nodes thg;naxwglum dorl?lnfatlrl% set .(MDS) [133) pr?blfem. ;!’he
located in ad-dimension Euclidean space. Each nod.<'¥I broblem asks for the minimum SUbset ot Vertices
D a given graph such that every vertex in the graph is

can choose the power, within a maximum value, for th . X : .
transmission of each message. The chosen power algrllt@er in the subset or a direct neighbor of a vertex in the
’ ’ set. The following theorem formally establishes the

with the signal propagation model, determines the S&Y . :
of neighbors that can hear the message. The maximi) Iygo(;r)lilgeductlon ﬁdegqted Elquzhf_rom '\tADSﬂ:O TT:)I
transmission power is in general different across noddg.~ = GISK ypergrapns. Since e thinnest path probiem

The objective is to find a path between a given sourcﬁ—lcIearly in the NP Space, this t_heorem establishes the
destination pair that involves the minimum number o P-completeness of TP in 2-D disk hypergraphs.
nodes hearing the message. Theorem 1: MDS <p TP in 2-D disk hypergrpahs.

As discussed in Sec. I-A, we formulate the problem 1, 66 Theorem 1, consider an MDS problem in an
using a directed hypergraph. Each node is a verteyiiary graphi. We first construct aeneral directed
The directed hyperedges rooted at a node are given bergraphH, based onG such that a thinnest path
distinct neighbor sets of this node feasible under it§ H, leads to an MDS inG. The main challenge in
maximum transmission power and the signal propagati% proof is to show thaf, is realizable under a 2-D
model. Under a general nonisotropic propagation modgt, model. There are two main difficulties. First, line
we end up with a general hypergraph. The only propertyqqing is inevitable when we drafi on a 2-D plane.
the resulting hypergraph has is the monotonicity Gf e jmplementation of hyperedges that cross each other
the hyperedge set. Specifically, the hyperedges rootggy g special care to avoid unwanted overhearing that
at each node can be ordered in such a way (S@¥py render the reduction invalid. Second, the geometric
€1, €2, ..., e) hatTe, C Te4q and I Te,| = |T€i+1|, — L structure of 2-D disk hypergraphs dictates that there are
This is due to the nature of ere!es_s broadcasting wheLe <t 5 vertices (even with arbitrary ranges) that can
nodes reachable under transmission poweran also o401 5 common sixth vertex but not each other. It is thus
_be rea_ched under_any power greater tlﬂ;arUn_der an challenging to implement a vertex with upstancoming
isotropic propagation model, we end up with a d'shyperedges irfl, while preserving the reduction.
hypergraph. If.allinodes have the same maximum range Our main approach to overcoming the above diffi-
we have a unit disk hypergraph. This hypergraph modgl,sies s to allow directed overhearing. Specifically,
also applies to networks with eavesd.roppers. Each €aVhfsssages transmitted along one hyperedge may be heard
dropper can be seen as a node with zero transm'SSerrtices implementing another hyperedgefin, but
range. It is thus a vertex with no outgoing hyperedges, ¢ yjse verse. By carefully choosing the directions of the

Given a source-destination pais, t), a hyperpath jnyqqyced overhearing, we ensure that the resulting 2-D
from s to ¢ is defined as a sequence of hyperedgefsy hypergrapts,, while having a different topological

2Transmission range and transmission power are used iategeh T‘StruGCture fromH,, preserves the reduction from MDS
ably. n G.
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Another challenge in constructing/s is to ensure Proof: The basic idea is to place super vertices at
the polynomial nature of the reduction. The numbespecific locations in exposed areas to force vertices on
of additional vertices added it/ needs to be in a a thinnest path to use transmission ranges smaller than
polynomial order in the size aff. This often limits the the maximum value. The problem is thus transformed
use of reduced transmission ranges as a way to aveadthe case with disk hypergraphs where vertices may
unwanted overhearing: exponentially small transmissidrave different maximum transmission ranges. A detailed

ranges may require exponentially many vertices to coproof is given in Appendix B. ]
nect two fixed points. With Lemma 1 providing a bridge between disk and
A detailed proof is given in Appendix A. unit disk hypergraphs, all we need to show is that MDS
can be reduced to TP 2D exposed disk hypergraphs.
B. TP in 2-D Unit Disk Hypergraphs Lemma 2: MDS <p TP in 2-D exposed disk hyper-
We now establish the NP-completeness of TP in 2-prpahs.
unit disk hypergraphs (UDH). The proof builds upon  Proof: See Appendix C. ]

the proof of Theorem 1. The only difference is that Based on Lemma 1 and Lemma 2, we arrive at the
when implementing the general directed hypergrah following theorem. _
we no longer have the freedom of choosing the maxi- Theorem 2: MDS <p TP in 2-D UDH.

mum transmission range of each vertex. This presems 1p in 2-D Disk Graphs and 3-D Unit Disk Graphs

a non-trivial challenge. As stated in Sec. llI-A, our In thi bseci der the thi ¢ path

approach to circumventing the constraints imposed b T)I 'S Sl:j_slfc |on,hwe Zon5|_tedr_ ke 'EneSUng

the geometrical structures of 2-D disk hypergraphs is oblem In 01K grapns and unit disk grapns (_ _)'
Recall that disk and unit disk graphs are special ring

allow directed overhearing, which is achieved by car ypergraphs with; — R; andr; — B; — 1, respectively.

fully choosing different maximum transmission range th ds. th b h hs wh
of various vertices. To implement a 2-D UDH for the ' Other woras, theéy can be seen as hypergrapns where
3ch vertex has only one outgoing hyperedge directed to

reduction, however, all vertices must have the sant ; . : I
maximum transmission range. its prefixed neighbor set (determined by its fixed trans-

To address this issue, we introduce a special type wssion power). This also shows that disk hypergraphs

disk hypergraphs, calleekposed disk hypergraphs, and and disk graphs are not special cases of each other. Given

show that TP ink-D exposed disk hypergraphs can pihe same set of vertices and their associated maximum
reduced to TP irk-D UDH for any > 2. We then show ranges, a disk hypergraph has a topology different from

that the2-D disk hypergraphil, constructed in the proof :h::] Oénae d:': g?ﬁph;] eicrz dveert(zx (Ien tgetnhtzaflrgeajonr;o;ef
of Theorem 1 can be modified to an exposed hypergrajh utgoing nyp ge au

. . . . sing smaller transmission ranges. The same holds for
while preserving the reduction. We thus arrive at the NP- .
b g UDH and UDG. As a consequence, the complexity of

completeness of TP in 2-D UDH based on the transqup in disk and unit disk graphs cannot be inferred from

of ggg’nr:gg::all:tlme;ed?:;tﬁ;hergrapm — (V.E), let Theorems 1 :?md 2, and nee_ds to be_ studied separately.
7, denote the closest non-neighbboof v. Define Theorem 3: MDS <p TP in 2-D disk graphs.
Al Proof: In the proof of Theorem 1, the vertices along
=5 (d(v, 7) = Ro), the thinnest path in the constructed 2-D disk hypergraph
whered(v, 7,,) is the distance betweenandr, (¢, is set Hs all use their maximum ranges. Thus, MDSGhcan
to 1 whenwv does not have non-neighbors). Axposed be reduced to TP in a disk graph constructed frm
area ¢, of v is defined as by including only those hyperedges associated with the
q)véDv,Rv+ev\ U Dy R, maximum range of each vertex. [ |
wev Next we consider TP in UDG. Unfortunately, the
where D,, . denotes the closed ball centeredvawith  approach through exposed disk hypergraphs used in
radiusr. A disk hypergraph isxposed if every vertex showing the NP-completeness of TP in UDH does not
has a non-empty exposed area. apply, since it hinges on vertices being able to use any

S, g, transmission range smaller than a maximum value. The
) 4\1,/\ difficulty, however, can be circumvented for 3-D UDG
K/ as shown in the following theorem.

€ Theorem 4: MDS in degree3 graphs<p TP in 3-D
UDG.
H,y H, H; The proof is similar to that of Theorem 1 with two
Fig. 2: Exposed hypergraphs and exposed aréhsi¢ not exposed main differences. First, line crosses are implemented by
sincev has an empty exposed aredy and Hs are exposed). using the third dimension to “go around”, rather than
Lemma 1: TP in k-D exposed disk hypergrapksp  using different transmission ranges (a luxury absent in
TP in k-D UDH. UDG) to create directed crosses. Second, reduction from

MDS in graphs with a maximum degree 8fensures
3A vertex is a non-neighbor af if it is outside the maximum range that there are at most incoming edges to each super
R, of v. ) g .
4The parameter% can be change to an arbitrary positive valuevertex in the reduced UDG. This makes the geometric

smaller than. constraint on the number (at mdst in a 3-D Euclidean



space) of vertices that can reach a common vertex but tloat can reach:

each other inconsequenfial detailed proof is given in Py =argmax{z, : T, < Ty,
Appendix D. uev
Je € E st.se =uandv e T,}. (1)

Note that using a reduction from MDS in graphs with in ord b q
a constant maximum degree rather than MDS in genea:ﬂuhs' Iln for fer tohreac , Its pre elcessr(]m or advertﬁx
graphs leads to a weaker statement. While MDS in botfl (€ 'eft of p, has to transmit. In other words, those

cases are NP-complete, the former is approximable wi\fﬁrt'_ce? b(letweenov and v ;:]anr)ort] ((jllfrectly r(Ta(;]h;.
a constant ratio, and the latter a ratio 6f(logn). Equivalently, any vertex to the right f can only hear

Theorems 1-3 thus give #gn order lower bound a message from through a relay by, or a vertex to
on the approximation ratio of those problems Whereélge left of p,.

Theorem 4 provides a constant lower bound. The '_\'BI algorithm is then carried out n two §teps.
In the first step, the predecessors of certain vertices are

obtained one by one starting frotnmoving towards.
Specifically, the predecessorfdenoted byu; = py, is

In this section, we consider the thinnest path prolfirst obtained. Ifz,,, < z,, then the first step terminates.
lem in 1-D networks. We show that the problem i©therwise, the predecessorf, denoted byus = py,,
polynomial time by constructing an algorithm with timeis obtained and its location compared with. The
complexity of O(n) Since the input data has sizesame procedure continues until the currently obtained
O(n) the proposed algorithm is order-optimal. We thepredecessor is to the left efor is s itself. The first step

IV. POLYNOMIAL COMPLEXITY PROBLEMS

consider thel .5-D problem and show that the algorithmthus produces a sequence of vertiegsus, . . ., u; with
developed for 1-D networks directly applies to the-D  w; = pi, us = puyy - - -, W = pu,_, andz,, < z,. Then
problem. Ly := {u,w_1,...,u1,t} is a valid path fromu; to

t. If u; = s, the algorithm terminates, and the thinnest
A. 1-D Networks path froms to ¢ is given by L;. Otherwise, we carry

. . t Step 2 of the algorithm where we find a path from
Consider a network under a general propagation mOd;elfto u;. Specifically, letV’ denote the set of vertices

with n nodes located on a straight line. Each vertelx includi
v; is associated with a coordinate on the line (the ocatt?d betweeny; andw;_, including v but notu;_,.
vertex indexwv; and its locationx; are often used LetE dgnote th_e setof al hyperedgesyvhose source and
. ! ) ! . destination vertices are ili’. As shown in Appendix E
interchangeably). Without loss of generality, we assume .
thatzy <z <...< 1. on the correct.ness of the algorithm, any hyperphath
from s to w; in the sub-hypergrapti?’ = (V' E’)
concatenated with,; gives a thinnest path from to
t. Finding such an., can be easily done by a breadth-
first search (BFS) inH’. However, the resulting time
complexity iSO(nQ). Hence, we propose a special BFS
procedure that reduces the time complexity Qgn).
The trick here is to set up two pointerg, and k,., to
the locations of the leftmost and the rightmost vertices
Fig. 3: A 1-D network (circles represent maximum ranges wrade in V'’ that have been discovered. Due to the geometric
disk propagation model). structure of the 1-D network, each time we only need to

It is clear that every node located between the sourggarch vertices to the left df and vertices to the right
s and the destination (see Fig 3) will hear the message®f -~ The detailed algorithm is given below.
no matter which path is chosen and all nodes to the righft. Enqueuss, setk; andk, to the index ofs.
of t can be excluded from the thinnest path. Therefore2. Repeat until the queue is empty @ris found:

finding the thinnest path is equivalent to minimizing the — Dequeue a vertex and examine it
number of vertices to the left of that can overhear — If v =y, go to step 4.

the message. The problem is nontrivial. Due to the — Otherwise,

arbitrariness of the node locations and propagation range, * While v can reachvy,. 11

a forward path (i.e., every hop moves the message to the . Enqueuevy, 1, andk, < k. + 1
right towardt) from s to ¢ may not exist and nodes to . Set the parent ofy,, ,; to v

the left of s may need to act as relays. The question is
thus how to efficiently find out whether a forward path
exists and if not, which set of nodes to the leftsafieed . Set the parent ofy, ; to0 v
to relay the message. If th . tv. return * th frofio £

We propose an algorithm based on nested backwarg € Queue is empty, return “no path fronto ",

induction (NBI). For each vertex, we define its prede- Trace b","Ck & and returnL?.
cessorp, to be the nearest vertex on the left sidevof The following theorem establishes the correctness of

the proposed NBI algorithm. Furthermore, it reveals

5We can consider a reduction from MDS in graphs with a maximuf® SIrong property of the path obtained by NBI under
degree up t® (see Appendix D). a disk propagation model. Specifically, under a disk

*x While v can reachvy, _1
- Enqueuevy,_; andk; < k; — 1
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propagation model, we define trevered area A(L) The shortest hyperpath algorithm fronto ¢ is then ob-

of a hyperpathl = {ey,...,e,} as tained under this weight definition as an approximation
A(DA m of the thinnest path. The following theorem quantifies
(L)= U Ds.;reys @) the performance of this shortest path based algorithm
i=1
wherer,, is the minimum transmission range that in(SPBA). ) .
duces hyperedge, i.e., Theorem 7: The SPBA algorithm provides §/%-

A3) approximation for TP in general directed hypergraphs,

re; = max{d(se,;,v)}. e - ! !
veTe; a 2(1 + 2a)?-approximation ford—dimensional ring
Theorem 5 shows that the covered area of the pe\’ippergraphs withy — max,, cv R;

obtained by NBI is a subset of the covered area of any, .. - max{miny ey i, minu ey d(uv)}
feasible path froms to . AYddltlonaIIy, the rat|o\/§ of the SPBA algorithms is

Theorem 5: NBI algorithm finds the thinnest path asymptotically tight even i2-D disk hypergraphs.

L*. Furthermore, under a disk propagation model, given F'00f: See Appendix F. u
any valid pathZ from s to t, we haveA,- C Ay.

Proof: See Appendix E. L . . .
Theorem 6: The time complexity of the NBI algo- Approximation occurs in two places in SPBA. First,
rithm isO(n). the width of a path is approximated by the sum of

Proof: TheO(n) complexity of the first step of NBI the widths of the hyperedges on that path. Second, the

is readily seen. In the second step, the time complexig‘!””eSt path to a vertex is assumed to go through the
is dominated by updating the queue at each iteration. LB{nnest path to one of its incoming neighbors. The first
k denote the number of iterations in step 2. Note that vPProximation can be avoided while maintaining the
only checkm; + 2 vertices at iteration, wherem; is poly_nomlal nature of the approximation algonthr_n. In
the number of new vertices that have been enqueuedP@fticular, we can ensure that the width of a path is cor-
this iteration andeﬂ m; < [V']. Also k is bounded rectly obtained by using the set union operation instead

by |V’|. Hence the total time complexity of this step i©f summation. The assumption on the tree structure of
bounded byz’.“ (m; +2) < 3|V’|. We thus arrive at the thinnest paths allows us to use Dijkstra’s algorithm
the theorem - m With some modifications. Specifically, for each vertex,

we need to store the current thinnest path froto this

B. 1.5-D Networks vertex rather than only the width of this path and the

We now consider thé.5-D problem where in-network parent of this vertex on this path. This allows us to take
nodes are located on a line and eavesdroppers are locdf@iset union operation when we update the neighbors
in a d-dimensional space that contains the line networkf this vertex. Given below is the performance of this
We focus on the disk propagation model. A unit codfee structure based algorithm (TSBA).
is incurred for each in-network node that hears the Theorem 8: The TSBA algorithm provides g—2—-
message and a non-negative coss incurred for each approximation for general directed hypergraphd, +
eavesdropper that hears the message. The objective i249¢-approximation for d—dimensional ring hyper-

B. Tree Sructure Based Approximation Algorithm

find a pathL* from s to ¢ with the minimum total cost: graphs witha = max{min,,,;n\/a')r(‘?jfn‘i/nfi,gv ORI Addi-
L*2arg  min { > )} (4) tionally, the ratio;—~— of the TSBA algorithm is tight
L=ter,..em} veA(L) in general directed hypergraphs and asymptotically tight
where c(v) is the cost for vertex,, and A(L) is the in disk hypergraphs in the worst case.
covered area of path as defined in (2). Proof: See Appendix G. |

Based on Theorem 5, it is easy to see that NBI
provides the optimal solution to the 1.5-D thinnes Performance Comparison
path problem without knowledge of the eavesdroppers
locations. More specifically, no algorithm, even with While the approximation ratio of TSBA is better than
complete knowledge of the locations of the eavesdrofitat of SPBA, these are worst-case performances and do
pers, can obtain a thinner path than NBI which does nBft imply that TSBA outperforms SPBA in every case
require location knowledge of the eavesdroppers. ~ a@s shown in Fig 4.

V. APPROXIMATION ALGORITHMS

mmmore .).
In this section, we introduce two approximation algo- t
rithms for the thinnest path problem and analyse their
performance in different types of hypergraphs.
A. Shortest Path Based Approximation Algorithm Fig. 4: An example where SPBA outperforms TSBA (SPBA returns

; : : the path that goes through all solid black hyperedges &md then to
Given a general directed hypergraﬁh with source t, which is the thinnest path; TSBA returns the path that dostall

vertex s and destination vertex, we set the weight of gashed hyperedges, which is not the thinnest path).
a hyperedge to be the number of destination vertices in

this hyperedge: Fig. 5 shows the average performance of these two

A algorithms. We see that both algorithms have relatively
w(e)=|Tel ®)  small approximation ratios growing sub-linearly with the
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minimum number of super vertices, thus leading to the
Sy MDS in G. At this point, the sizen, of a super vertex
—=—DPBA can be any positive integer. As will become clear later,

to implementH; under a 2-D disk model, additional

normal vertices need to be added. As a consequence,

paths fromwv; to v,,41 may include different numbers of
normal vertices. To preserve the reduction, we need to
make sure that the width of a path is dominated by the

e pell, 100 120 00 number of super vertices it covers. This can be achieved
Fig. 5: Average performance of SPBA and TSBA (a 2-D networthwi by choosing am sufficiently large (see Appendlx A-D)

(a ~ w
~ w :
« @

Average approximation ratio

-

0 20 40

n vertices uniformly and randomly distributed or%ax % square with 'Ufl Us Vg
p = 1.5; the maximum range of each vertex randomly chosen fromy, vs |
interval [Rinin, Rmaz]| With Ry, = 1, Rimaz = 5; average taken v
over 1000 such randora-D disk hypergraphs). 3 2
4
number of vertices. In general, TSBA outperforms SPBA”2 4 : g :
vl 3 vi 3

on average, as also demonstrated in a number of other

U3
simulation results (omitted due to the space limit). , (@) _ (b)
Fig. 6: The construction off; from G: (a) the graphG; (b) the

hypergraphH; (v; is dominated byv; andvs in G. We thus have
two hyperedges rooted at; in Hp: one reacheguvz,v), the other

We studied the complexity and developed optimal arld2; v3)-):

approximation algorithms for the thinnest path problem The following lemma formally establishes the correct-
for secure communications in wireless ad hoc networksess of the reduction.

In establishing the NP-completeness of the problem, ourLemma 3: There is a dominating set with siZein
techniques of using directed crosses and exposed digkf and only if there is a path from; to v, 1 in Hy
hypergraphs may spark new tools for complexity studiagith width kn, + n + 1.

in geometrical hypergraphs and graphs. The bounding Proof: First, assume tha® has a dominating sef
techniques and the use of sphere packing results viith sizek. By the definition of dominating set, for each
analyzing the performance of the two approximation alrertexv; in G, there is a vertex; € S that dominates,.
gorithms may also find other applications in algorithmi&rom the construction off;, there exists a hyperedge

VI. CONCLUSION

analysis. (:=1,...,n)in Hy directed fromv; to vertexv;; and
super vertex; corresponding to the dominating nodg
APPENDIXA. PROOF OFTHEOREM 1 in G. Thus, the hyperpatfies,...,e,} is a path from
A. Reduction from MDS to TP in A General Directed vy t0 v,41 With width kns + n + 1. The width comes
Hypergraph H; from the fact that alln + 1 vertices inVy, are on the
Consider the MDS problem in a grapli with » Path along withk super vertices, each consisting 1of
verticesuv, ..., v,. We construct a directed hypergraptiormal vertices.

H, based orG as follows. The vertex set df; includes ~ Conversely, assume that there exists a path from
the n vertices of G augmented by a destination vertes0 vn+1 IN Hy with width kns +n + 1. Based on the

Ung1 andn super vertices:, ..., v3. A super vertex: construction offf, every path fromv; to v, 4, consists
corresponds to the normal vertex and is a set of, of n hyperedges rooted at _each. of thenormal vertices
normal vertices. The hyperedgesif are all rooted at ?1:- -+ V- Thus, & path with widttkn, +n + 1 must
the normal vertices, . . ., v,. Specifically, rooted ab; contain k super vertices. From the construction of the

(1 < i <n)arek,; + 1 directed hyperedges, wheke hyperedges, we conclude thqt the verticesc_lnthat

is the degree of; in G. Each hyperedge rooted af correspond to thosle super vertices along the given path
has two destinations;;;; and a super vertex; whose form a dominating set with size. u
corresponding normal vertex; dominate$ v; in the B. A 2-D Grid Representation of H;

original graphG. Fig. 6 is an example illustrating the

construction ofH; from G. : . . )

. satisfy the geometric properties of 2-D disk hypergraphs
frOI;:omtct)he co;qstrl:tt:rt;or;rofef{%r,"\éve ﬁiﬁl ;r(])arl:nzryeﬂaéz éjs,ee Sec. Il). To prove Theorem 1, we need to modify
U1 10 Un+1 MUSTITAVETS ug vert 1 to a 2-D disk hypergraphf, while preserving

one by one. There are multiple hyperedges Ieadi'?lqe reduction from MDS inG. Our approach is to
from v; to v;;1, each involving a super vertex that

o . realize the topological structure of each hyperedge in
corres_ponds to a dommgtmg node of n G. .Thus, H, by adding additional vertices with carefully chosen
choosing a hyperedge going framto v;, is equivalent locations and maximum ranges to lead from the source
to choosing a dominating node of in GG. Since every

ath from v to includes all the 1 normal vertex to the destination vertices of this hyperedge.
P U1 10 Uny1 INCIUCES T The number of additional vertices, however, should be

vertices, the thinnest path is given by the one with ﬂl?ept at a polynomial order with the problem size to
6A vertex in a graph is dominated by itself and any of its onp-ho€MNSUre _the p0|ynom"’_i| nature of the redUCt'on-_ Th'_s can
neighbors. be achieved by adding vertices on a 2-D grid with a

The directed hypergrapH; obtained above does not
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constant grid spacing, which allows a constant maximuaiong the line segments in the grid that form each
range, thus polynomially many additional vertices. Theyperedge ofH;. The distance between two adjacent
detailed implementation of/; under a 2-D disk model vertices is set to their maximum range. The constant
is given in the next subsection. As a preparatory stemaximum range can be set sufficiently small (s?)/to
we show in this subsection that the hyperedged/in avoid overhearing across vertices on different hyperedges
can be represented by line segments of a 2-D grid withat may render the reduction invalid. There are two
a constant grid spacing. issues that remain to be addressed: the implementation
We first embed the normal vertices d@f; evenly of crosses and that around super vertices.
in a horizontal line in a 2-D space (see Fig. 7 for 1) Implementaion of Crosses. The line crossing in
an illustration). Below this line is @&n? x 4n? unit the grid representation aff; make overhearing across
grid. There arein vertical lines between; andv,,; hyperedges inevitable. However, by exploiting the free-
(1 < i < n) that are partitioned into three zoneS}( dom of choosing the maximum range for each vertex, we
C2?, C3) of n, 2n, andn vertical lines, respectively. The can implementiirected crosses that allow us to preserve
super vertices are embedded evenly on a horizontal litiee reduction. Specifically, when two line segments in the
below the grid. The horizontal position of super vertegrid representation cross, we can choose the maximum
v; is betweenv; and v . ranges of the vertices along these two lines in such a
Next, we specify how a hyperedge traverses the griiay that messages transmitted over one line can be heard
from its source vertex to its destination vertices. Recdly vertices on the other but not vise verse. A specific
that every hyperedge iif; is directed from a normal implementation is given in Fig. 8.
vertex v; to a super vertex; and the next normal
vertexv; 1. To preserve the reduction, we need to ensure
that each hyperedge can only reach its normal vertex .
destination after reaching its super vertex destination. T < "
facilitate the implementation around the super vertices LY
(see Appendix A-C2), we designate the middle zone
C? betweenv; and v;;1 for traveling down to super
vertexv; and then up to the corresponding normal vertex
destination (see regio6? in Fig. 7). Each hyperedge
involving v; has two designated vertical lines i6i?
(one for going down to, the other going up from therig s: A disk hypergraph implementation of a directed crabere the
super vertex). To connect the designated vertical linegcles represent the maximum range of vertices (messagesntitted
in zone C2 with the source vertex and then to thé" the blue line can be heard by nodes on the red line, but set vi

normal destination vertex, we designate two horizont‘é?rsa)' how h fully choosi he directi
lines for each hyperedge. The traverse of the hyperedgfé\leXt' we show how carefully choosing the direction
each cross allows us to preserve the reduction. The

is completed by designating one vertical line @ 0 L ; L .
and one inC3 to connect the normal vertices with thec0SS directions are defined by assigning a level index to
K3

corresponding designated horizontal lines. Since theg8Ch line segmentin the grid representation. Specifically,

are at mostn? hyperedges, the designed grid size i5°7 @ hyperedge rooted at in Hy, its line segments

sufficient to ensure that each hyperedge traverses throl§fiore and after reaching the super vertex destination
a distinct set of line segments in the grid. . have levels andi—+1, respectively. Then, each cross has

ol o2 B a direction pointing from the highgr level segmt_ant to the
ll ll ll v v lower one (i.e., messages transmitted on the higher level
ket NCLRC &L % % segment can be heard by the vertices along the lower
level segment but not vise versa). If the two segments
have the save level, the direction of the cross can be
arbitrary. To see that this directed implementation of
crosses preserves the reduction, we only need to notice
that any path from to v, still needs to go through
all the n normal vertices one by one and must reach a
TS * 115_ * * super vertex before reaching the next normal vertex.
U vy U3 Vg U5 2) Implementation Around Super Vertices: Recall
Fig. 7: A 2-D grid representation off; (the two hyperedges rooted that a super vertex iif; is a set ofn, normal vertices
g}qu’ :;?S';eg:iseleﬁmp'e given in Fig. 6 are illustrated in green angh o paye no outgoing hyperedges. It can be implemented
by ns points with zero maximum range and located
) ) sufficiently close to each other (so that any path from
C. Implementing H, under A 2-D Disk Model v1 10 v,41 IN Hy includes either all of them or none of
Based on the 2-D grid representation 8f, we can them).
construct a 2-D disk hypergrapt, that preserves the Consider first the implementation of one incoming
reduction. Specifically, we place a sequence of everityperedge to a super vertex. Recall that in the 2-
spaced normal vertices with a constant maximum ran@e grid representation of{;, a hyperedge approaches




and leavesv; through two vertical lines in zond.flj2 n? + 3n.
(see Fig. 7). One implementation of this U-turn around
v; is to add6 normal vertices with specific maximum
ranges and locations. As shown in Fig. 9, thésertices
include three anchor vertices;, «{, and u] with
maximum range, two interface vertices;” andv;" that
connect with the grid, and a bridging vertey,, all with
maximum range;. The value ofr and the connection
with the grid will be specified later.

Fig. 10: Implementation of the second incoming hyperedge saper
vertex.

Next we consider the value ef which should be set
sufficiently small to avoid overhearing across hyperedges
leading to different super vertices. Note that the width
of the area covered by the additional vertices around a
super vertex ist times the largest maximum range of

Fig. 9: Implementation of one hyperedge passing through peersu the anChor vertices. We thus set= 4™ "n, ConSidering
vertex. Starting fromv;, the message traverse tq° through u11,  the distance between two adjacent super vertices being
uy, u?, uf The super vertex hears the message in the transmissigp, .
from uf to uy". The last issue is to connect the interface vertices with

A challenge remains in the implementation of upito the grid. Each interface vertex needs to be connected
incoming hyperedges to the same super vertex. Note theth a designated vertical line id‘f. While the vertical
under a 2-D disk model, one can at most hawertices lines in 0]2 are evenly spaced, the horizontal positions
(even with arbitrary ranges) that reach a common sixtif the interface vertices have an exponential structure
vertex but not each other. The key to circumvent thidue to the exponentially growing range of the anchor
difficulty is to allow directed overhearing, similar to thevertices. Furthermore, the vertices realizing the velrtica
idea behind the implementation of the crosses. Specifiies in the grid have a constant range, whereas the
cally, the reduction is preserved as long as a hyperedgterface vertices have an exponentially smaller range
rooted atv; cannot overhear a message transmitted ovef r = 4 "n. If we connect them using a sequence
a hyperedge rooted at for any i < j. The detailed of vertices with a constant range, unwanted overhearing
implementation is as follows. The fist step is to designatll occur near the interface vertices. On the other hand,
the vertical lines in zon€" to the incoming hyperedgesconnecting them using vertices with rangeresults
of v; based on the indices of their source vertice§d an exponential number of additional vertices. To
Specifically, the incoming hyperedge with the smallegtreserve the correctness and the polynomial nature of the
source vertex index takes the two center most lines iaduction, we propose the scheme detailed in Fig. 11.
C%, and so on. Consider first the implementation of Since the generated sequence of circlds;} are
the two incoming hyperedges (say, and es) with the within the boundary given by linestlC' and BD and
smallest source vertex indices. As shown in Fig. 10, wibe boundary lines corresponding to different interface
first implemente; as described above (see Fig. 9). Theertices do not cross (see Fig. 12), the above scheme
structure of the implementation ef is similar except does not introduce overhearing, thus preserving the re-
that the maximum range of the anchor vertiegs 3, duction. The polynomial nature of the reduction can be
and ug is set to4r to prevent unwanted overhearingshown based on the following lemma.

As a consequence, more bridging vertices; (22, fio3 Lemma 4: Consider the geometrical scheme de-
with maximum rangez, r, and 2r, respectively) are scribed in Fig. 11. AssumeCAB > 7. The num-
needed to connect the interface vert€x to the anchor ber of circles {E;}, denoted byk, satisfiesk <
vertexu, . Note that no vertices along (the centers of 20oefui—losfe) 1 41 when Ry # Rs, andk < 2 +1
the blue circles in Fig. 10) are in the range of any vertice/sheanl = R, whereR;, R, denote the radii of circles
along e; (the green circles). The correct direction ofD; and O, and L the distance between line$B and
overhearing is thus ensured. CD.

The same procedure continues for any additional Proof: Assume firstR; # Rs. Without loss of
incoming hyperedges to;, in the ascending order of generality, assumé?; > R». Since line AB and CD
their source vertex indices iff;. Note that the range of are parallel, the three line$C, O, 02 and BD intersect
the anchor vertices in thith hyperedge ig*r, growing at one point, denoted b@ in Fig. 11. Leta, /3, and
exponentially withk. The maximum ranges (specifically,¢ denote the angles0O:0A, ZOAB and Z00:B,

EoTy ey %r) of the bridging verticeq 1;} are chosen respectively.
to preserve the polynomial nature of the reduction. In this It can be shown that all the circl€s?;} are tangential
way, the number of additional vertices for implementingp the same boundary line. Without loss of generality,
the kth hyperedge ik + 4, and the total number of assume that the tangential line A", i.e., d; < d} and
additional vertices around one super vertex is at most = d;. Based on simple geometry, the lengths of the
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sin & can be lower bounded as follows:
i sin 8 > T Q > Ll _RQQ. (8)
00, 00, 2 0105 2
Furthermore, sincéd = o + 5 > f, the length of
0105 = 45 has an upper bound,0, < 5 <
V2L. Hence (8) leads to:
sina > (Ry — Rg)/(2L). 9
Substituting (9) into (7), we have
k <2L(log Ry —log R2)/(R1 — R2) + 1.
Consider nexR®; = R». The sequence of circldd?; }
have the same radiug,. Since0,0, = =&, < 2L, the
boundk < #= + 1 holds. m
To satisfy the assumption ofCAB > 7 in Lemma 4,
we set the distance between the last horizontal line of
the grid and the horizontal line of super verticesnto

This ensures that angléBAO < 7. Note that in the

sina =

Fig. 11: Consider first the downward part from the grid to & lefdownward part from the grid to a left interface vertex

interface vertexv; . Let Oy denote the location of the last vertex on

the designated vertical line in the grid, adzb the location ofv,”.

The circles centered &b; and O2 represent their maximum ranges.
Let A, B andC, D denote the intersecting points of these two circles
with the horizontal lines at their centers. Li8{ denote the intersection
between circleD; and lineO102. Letd; andd) denote the distance
betweenE; and the two linesAC and BD, respectively. Next we

draw a circle with radiusy = min{d;,d}} centered at,. Let E

v; , Ry is a constant and, = 47;". Hence the bound

on k given in Lemma 4 can be written as:
2(log Ry + nlog4 —logn)

k< L+1
- Ry *4771%/2 +
< 2(log Ry 4+ nlog4) b1,
Ry —1/8

denote the intersection between ciréle and lineO; Oz, and a similar . - 2 -
circle centered at’s is drawn. This procedure is repeated to generatthCh is in the order of) (n ) A similar argument can
a sequence of circles until the last generated circle cogersThis  be made for the upward part wheRs = 47"n and R,

sequence of circle$E; } gives the locations and the maximum rangess g constant. The same holds fB; = R». Hence the

of the vertices connecting the grid am . The upward part from "
to the grid is done with the same procedure except startiog fr,".

R

F

b
[

h

¢ g

00

000X,

Fig. 12: Connecting the interface vertices with the grid.

line segments of OF;} forms an equal ratio sequence

OE,H_l = OE,L' —Tr; = OEZ(l - sina),
with OE, = 00, — R;. We thus have
OEi—H = (001 — Rl)(l — sina)l.

total number of additional vertices to connect the grid to
the interface vertices of a super vertex is in the order of
O(n?).

D. Reduction from MDS to TP in the 2-D Disk Hyper-
graph Hs

With Hy constructed, we now establish the correctness
of the reduction from the MDS i+ to the TP fromu,
to vy, y1 IN Hs.

Lemma 5: Let ny = no + 1 wherens is the total
number of normal vertices ifl,. There is a dominating
set with sizek in G if and only if there is a path from,
to vy, 41 In Ho with width betweerkn and(k-+1)n,—1.

Proof: The chosen value ofi, ensures that the
width of a path fromv; to v,41 is dominated by the
number of super vertices that it covers. The correctness
of the reduction thus follows from the same arguments in
the proof of Lemma 3 based on the constructionf

[ ]
The polynomial nature of the reduction is clear from the

Based on the stopping condition of the procedure, theynsirction ofH,. We thus arrive at Theorem 1.

numberk of circles is given by the minimum indek

such thatOFE; 1 < O02. We thus have
k= min{i eN: OEiJrl < OOQ}
=min{i € N: (001 — R;)(1 —sina)’ < 005}

00,
< log 56, =x; )

mindi €N i
min{i € Nt < log(1 — sin @)

<1og(002/00;)/log(1 —sina) + 1. (6)

APPENDIXB. PROOF OFLEMMA 1

Consider a TP problem fromto ¢ in a k-D exposed
disk hypergraph#f = (V, E). We construct &-D UDH
H'’ as follows. First, the normal vertex s&t’ of H’
is given by V, except that the ranges of any € V'
equalsmax,cy R,. Next, for each vertex’ € V', we
place a super vertex i®, (i.e., the exposed area of

SinceAOO, D andAOO, B are similar triangles, the the corresponding vertex iif) that contains|V| + 1

. OO .
ratio 552 equals the ratiof2. Also because-log(1 —

xz) >z for 0 <z <1, (6) can be written as

k < (log Ry —log Ry)/sina + 1. (7

BecauseO; AO is a triangle and3 > 7,

normal vertices located sufficienflglose to each other.

"The |V| + 1 normal vertices are sufficiently close such that any
transmission from one of these vertices to a vertex outsigesuper

the value of vertex reaches all thg/| + 1 normal vertices in this super vertex.
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The super vertices have the same range as the normallmplementation around Super Vertices
vertices inV’, ensuringH’ is a UDH. The reduction can | the previous implementation around a super vertex
thus be seen by noticing that while the enlarged ranggs a| the vertices are exposed except the anchor vertices
introduce addition_al hyperedges i, these hyperedges{u;u:r} and the bridging verticeq.;,}. However,
cannot be on a thinnest path due to the fact that they glk notice that these vertices would all be exposed if
contain at least one super vertex. there were no interface vertices. Our solution is thus to
move all the interface vertices away from their original
positions by a constant distance and add a constant

In this proof, we modify the-D disk hypergraphi{, number of vertices to connect each new interface vertex
in the proof of Theorem 1 to &-D exposed disk hy- to the bridging vertex or the anchor vertex on the right
pergraphH; while preserving the polynomial reduction.side. A detailed implementation is shown in Fig. 14.
Based on the definition, a sufficient condition forRa 5
D disk hypergraph to be exposed is that none of the
maximum range disks are completely inside any other.
The vertices inH, for realizing the line segments of /
the grid satisfy this condition. We only need to modify ! = ‘
the implementations of the crosses and around the super |

vertices. N NS

A. Implementation of Crosses

APPENDIXC. PROOF OFLEMMA 2

Fig. 14: An interface vertex on the left side is replaced bye¢h
BC — Rp — Rg — Rtan 0 ~ 0.5543R vertices with maximum ranges 2r and 5, respectively. These three

N BD = (1 - 5.l )R ~0.4283R vertices are located on a vertical line to the left side of dhiginal

A R location of the interface vertex with a distancerofin interface vertex

on the right side is replaced by two vertices with maximumgeag
located on a vertical line to the right side of the originatdton of
the interface vertex with distancg. Under this implementation, the
77777 ) 3 exposed areas of the anchor and bridging vertices are rigiveathe
point where they are tangential with the horizontal line loé super
vertices (as illustrated by the arrows).

APPENDIXD. PROOF OFTHEOREM4

Consider an MDS problem in a grapfi with a
maximum degree of. We first follow the first two steps
in the proof of Theorem 1 to build the grid representation
of hypergraphH;. Note that due to the unit range of all
vertices, we set the size of the grid to a constant greater
than 1 (say, 5) to avoid unwanted overhearing. Next,
we implement this representation in3aD UDG while
preserving the reduction. Any line segment of hyper-
_ _ _ . ~edges inf; is replaced by a sequence of unit disks, one
Fig. 13: To implement a directed cross shown in (a), we f'rﬁhst touching the another. Any cross between two line
implement a vertex for the blue line with maximum ran@et location o . .
A (the blue circle) shown in (b). Next we draw a perpendiculsecior  S€gments can be easily implemented by using the third
between A and E (the right intersecting point of the circle with dimension, as shown in Fig. 15. In this implementation,
the line). On this vertical line, we find two point8 and C' such i ; ;
that ZBAE = JOAE — 20°, At each point, we put a vertex t_here is no 0verhearmg_ between vertlcgs on these two
for the red line with radius equal to the length &iC' (ilustrated lIN€ Segments at all. Sinc& has a maximum degree
by the two red circles in (b)). Simple geometry calculatieads to of 3, there are at most hyperedges passing through

BD < BC < AB = BE. This ensures that verticeB and C' are HVE H
exposed yet cannot overhear vertices located ahd E. We complete a super vertex. It can be easily |mplemented without

the implementation by adding vertices on the vertical € and the @ny unwanted overhearing (see Fig. 16). To prevent the
horizontal lineAE (see (c) and (d)). Note that to preserve the exposusuper vertices from relaying messages, we plaoega
of vertices B andC, the maximum ranges of vertices from poiitto  \,artex besides each super vertex. This mega vertex is
the right side need to be enlarged gradually to the constamximum L . .
range of normal vertices on the grid (this only requires astamt ONly within the range of this super vertex and contains
number of additional vertices). more normal vertices than the total number of normal
In the implementation of directed crossesfif (see Vertices in the reduced graph (including the normal
Fig. 8), some vertices on the line with a lower leveyertices contained in all the super vertices but not those
index may have an empty exposed area (see the japther mega vertices). In this way, a path via any super
disks in Fig. 8 that are completely covered by plu¥ertex covers at least one mega vertex, thus cannot be
ones). To implement a direct cross in2aD exposed the thinnest path. Fig. 16 illustrates the implementation
disk hypergraph, the maximum ranges of vertices on t}fgound a super vertBxThe correctness of the reduction
line with a IOW?I’ IeYeI index need to be small enoth to 8We can consider reduction from MDS in graphs with a maximum
preserve the direction of the cross but also large enougdyree up t®. In this case, there are at mdst incoming hyperedges.
to make the vertices exposed. We propose the scheff@ng with the mega vertex, they can be packed around a suguesv
described in Fig. 13 without overhearing.
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follows from the same arguments as in the proof ak,, the widthWW(L,) is no larger than the length of this
Lemma 3. path plus one. Also becaudg is the shortest path, its
length is no larger than the length 6f,:. We thus have
W(L1) < L(L1) + 1< L(Lop) + 1. (10)
= We then obtain the approximation ratio by deriving an
upper bound ofZ(L,,:) as a function ofi¥ (L ).

Note that the destination s& of hyperedgee; on
L+ cannot contairk — i + 1 vertices: its own source
vertexs., and vertices in{sc,.,, Se;,5,---,Se,,t}. The
later holds because otherwisg,; is not the the thinnest
path with minimum number of hyperedges. We thus have

k
L(Lopt) < Z(W(Lom) —(k—i+1))

= kW (Lopt) — k(k+1)/2

< W(Lopt)(W(Lopt) - 1)/2a (11)
where (11) comes froms < W (L,,:) — 1. Substituting
(11) into (10), we have

APPENDIXE. PROOF OFTHEOREMS W(L1) < W (Lopt)(W (Lopt) —1)/2+ 1
We first show that as long as there exists a path from < W2(Lopt) /2, (12)

s to, there exists a path fromto v, that traverses only \yhere (12) holds SINCE (Lopt) > 2.
the sub-hypergraphi’. This can be shown by noticing  Based on (12), i (Lop:) < V21, thenW (Ly) <
that v; must hear the message frasmbeforew,;_; and IW2(Low) < /EW(Lop). Otherwise, we have

any vertex to the right ofu;_;. This is due to the IQ/V(Ll) < n < /EW(Low). In summary, SPBA
monotonicity of wireless broadcast and the definition CHrovides_a\/@ ;pprof(imation
5 .

predecessor. Consequently, there must exist a path from
s to w, in H'. SinceV' is covered by the hyperedgeB. For Ring Hypergraphs

leading fromu, to _“l—lli” Ly, the concatenation of, Since a ring hypergraph is a special directed hyper-
with any path to, in H' covers the same set of verticesy 4o gl the analysis in the previous subsection applies.
Specmcall_y, the cover of the path retu_med l_)y NBI is th%pecifically, inequality (10) holds. The problem then
S(_at of vertices located between (and_ mcludmg)andt. remains in obtaining a tighter upper bound SfL.:)
Since any path frons to ¢ covers this set of vertices, pyageq on the geometrical properties of ring hypergraphs.
the correctness of the algorithm is established. _ First, note that the length of a hyperpattequals the
Next, we prove the property ol under the disk g of the number of times each vertex is reached. Let

propagation model. We fir§t state the fo!lowing IemmE} denote the set of hyperedges bp,; that includev
that follows directly from triangle inequality. in their destination sets, i.e.,

Lemma 6: Let D; and D, denote two closed balls E,Ué{e € Loyt :vET).

in R? with radii r,_and r,, respectively. Leta denote 0. \ve construct a subsét!, of E, by iteratively re-
the distance between the centersityf and D;. If 0 < moving one from any pair of hyperedges whose positions
a < |ry —raf, thenDy C D in L., are adjacent until no such pair exists. Because at
Based on Lemma 6, for any vertexbetween; and most half of the hyperedges are removed fraipn the
up-1, We lhaveD,Uﬂv C Auyd(urun—1)- ThereforeAL*_z size of E/, is at least half of the size dF,, in another
ALy = Ui=1 Duy d(up,ui—y) (I€Lug = t). Next, consider 4.4 \E,| < 2|E")|.
an arbitrary path. from s to ¢. We show that for any, Let Rya, and R,.;, denote the largest maximum
(k=1,....0), Dugd(uy.uy_r) C Ar. Specifically, sincé range and the smallest minimum range among all ver-
ug—1 must first hear the message from or a vertex {0 jjces in the given ring hypergraph,, respectively. Let
the left of ux, Dy, d(uy,u, ) IS @ subset of the coveredR;nm be the larger one betwedh,,;, and the smallest
area of this hop inL based on Lemma 6. This completesjisiance between any two vertices ii,. Based on
the proof. the construction ofE’, the set of source vertices of
hyperedges i/, satisfies two properties. First, based on
_ the definition of ring hypergraphs, the distance between
A. For General Directed Hypergraphs any source vertex in the set ands no larger than the
Let L; denote the path froms to ¢ provided by maximum range of this vertex and hence no larger than
SPBA andL,,, = {ei,es,...,ex} the thinnest path. R,,,... Second, the distances between any two source
If multiple thinnest paths exist, let,,; be the one with vertices in the set are larger thaR,,;, and hence
the minimum number of hyperedges. LE{L) denote R/ ... Otherwise the two hyperedges rooted at these two
the length (i.e., the sum of hyperedge weightsy.of  vertices can reach the source vertex of each other and
Since each vertex covered Iy (except the source) hence they are adjacent i, (recall thate; € L,y
contributes to the weight of at least one hyperedge aannot reach any vertex ifsc, ., Se,.s,-- -, Se, })-

Fig. 15: An implementation of a cross 5D UDG.

Fig. 16: Implementation around the super vertices in UDG.

APPENDIXF. PROOF OFTHEOREM7
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Given these two properties, the size Bf thus is maximum range o and is located to the right af, with
upper bounded by the maximum number of points in thee distance of?,, . The maximum range of a blue vertex
Euclidean space that are at magf,., away fromv and u; is R, —ie wheree is a small positive value to prevent
at leastR/ .. apart from each other. This is equivalent;_; from overhearing messages transmittedubyAnd
to a sphere packing problem of arranging the maximuthe blue vertices are located on a route freno ¢ that
number of small spheres with radiug,,;,/2 inside a contains two vertical line segments of lendth+ ) R,
large sphere with radiu®,,.. + R.,;,/2. An upper and a horizontal one of lengR,, , as demonstrated by
bound of this packing problem is the ratio between thie blue dashed lines in Fig. 18. The positive parameter
volumes of the large and small spheres. We thus haveé:is used to prevent a blue vertex from overhearing the

| < (Rmaz + Rlin/2)? — (14 20) last red vertexy. In the asymptotic regime with lardg
v (R, /2)? ’ I can be set sufficiently large so that thieblue vertices
wherea = Ry4./ R, - Recall thalE,| < 2|E/|. Note can be implemented along the depicted route froto
that the destinatiort can only be reached by the last.
hyperedgee,, and henceE;| = |{ex}| = 1. We thus
have

L(Lopt) =Y, |Bo|+|E| (13)
vELope\{t}

<2(1 4+ 20) W (Lopt) — 1) + 1

< 2(1 4 20) W (Lopt) — 1. (14) A A A
Substituting (14) into (10). we have Y YAV

W (L) < L(Lopt) + 1 < 2(1 4 20) "W (Lope),  (15) — 3R,

i.e., SPBA provides &(1 + 2a)?%-approximation for TP Fig. 18: A 2-D disk implementation of the worst case scenéio
in d-D ring hypergrpahs. SPBA.

C. Asymptotic tightness

We now prove that\/g-ratio is asymptotically tight
even for2-D disk hypergrpahs. The proof has two steps. Let L, denote the path in hypergraghi from s to
First, we construct a directed hypergraphfor which ¢ given by the TSBA algortihm and.,,; the thinnest
the worst case ratio is asymptotically reached. Next, weath. Let L, (v) and Ly(v) denote the paths from to

APPENDIXG. PROOF OFTHEOREM8

show a 2-D disk implementation df. a vertexv given by SPBA and TSBA, respectively. The
Consider the the following hypergraghillustrated in  following lemma establishes a property b$(v).

Fig. 17 withk red vertices, . .., v, andk’ blue vertices  Lemma 7: For any hyperedgein H, we haveyv €

uy, ..., ur along with the source and the destination 7,

t. Each red vertex; has one outgoing hyperedgevith W (La(v)) < |E2(Se) UT.|.

Te = {v1,...,vi—1,vit1} (letv4, denoter). Each blue Proof: Lemma 7 follows directly from the tree

u; has one outgoing hyperedgewith T, = {u;1} (let  strycture of TSBA. m

ur 41 denotet). Finally, we add two hyperedges that
connect source to v; andwu; respectively.

s t A. For General Directed Hypergraphs
vy Vs U3 vk Let Loy = {e1, e , e+ denote the thinnest path. Fo_r
ease of presentation, let the sequence of source vertices
e Seys---55¢, and the final destinatiom be denoted as
U1 us ug Upr v1, ..., vpp1. LetU = {v;}7!. Based on Lemma 7, we
Fig. 17: A worst case scenario for SPBA. have, for alli =1, ..., k,
Let ¥ = k(k + 1)/2 + 1. Since the shortest path W(La(vit1)) < |[L2(vi) UTe,|
traverses through the blue hyperedges while the thinnest < W (L (v;)) + |Te, \{v1, ..., viz1}| + 1
path through the red ones, the approximation ratio is = W (La(v;)) + | T \U| + 1, (17)

given by: where (17) holds sinc@., does not contain vertices in

2
V(k) = (k" + k+2)/(2k +4). (16)  {5.1sr- ., 5c,,t}. Summing (17) over, and noticing
Note that the total number of vertices is thatW(Lg(vl)) =1 and Ly(vps1) = Lo, we have:
n=k+k+2=~k+k(k+1)/2+1 k

Whenn is large,k ~ v2n anda(k) ~ & ~ /2. W(Ly) <k+1+> [T.\U|.
Next, we implement the above hypergraph under a 2-D i=1

disk model as illustrated in Fig. 18. The red vertices afdeXt Since .
located on a straight line witt®,, = R,, = 1, R,, = W(Lopt) =k + 1+ [ Uiy (Te,\U)],

2i=2 for ; > 2. The source vertex is located on the W& can upper boundle \U| by W(Lop) —k — 1 for
line to the left ofv;, and both its maximum range and it ? = 1,..., k. Thus

distance to; equals toR,, . The terminal vertex has a W(Ly) < k+1+ k(W (Lopt) —k —1).
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The right side of this inequality is a quadratic function
of k£ with the maximum att = W (L,p:)/2. We thus
have
W(Lg) <14+ W?2(Lopt) /4.

If W(Lopt) < 24/n— 1, the approximation ratio is
given by

v =W (Lopt)/4+ 1/W(Lopt) <n/2v/n—1. (18) Fig. 19: A worst case scenario for TSBA.
The inequality holds because the functigni- % is an

. . . implement H under a 2-D disk model. However, this
increasing function fot > 2. implementation requires additional vertices (referred to
If W(Lopt) > 2v/n— 1, we have as auxiliary vertices) that may render our previous
7 =n/Wilep) < n/(2vn—1). (19)  approximation analysis invalid. To maintain the ratio,
This completes the proof for case of general directedcy original vertex (including the vertices in a super

hypergraphs. vertex) in H is replaced withc vertices (clustered
together) in its 2-D disk implementation, whetés the

B. For Ring Hypergraphs number of auxiliary vertices introduced by the imple-

Let Ly (t) = {e1,es, ..., ex} be the shortest path from mentation. In this case, TSBA ret_urns a path tha_t_covers
stot. Letv; denote the source vertexefandu, ;= ¢. 141+ Uk—1,00, .., vk} along with a set of auxiliary
We prove, through induction, the following inequality forvertices. The thinnest path covefs, v, ..., vz} and
alli=1,... k+1: another set of auxiliary vertices. The approximation ratio

W (La(v:)) < L£(L1(v;)) + 1. (20) in this 2-D disk thpergraphl is gi\2/en by y
Wheni = 1, (20) holds since Y= (W +Detd K +1+7%
W(Lz(v1)) =1, L(L1(v1)) = 0. 2kc +c” 2k + <

Now assume that (20) holds foi — 1, i.e., Wherec’ andc” denote the number of auxiliary vertices
W (La(vi—1)) < L£(L1(vi_1)) + 1. Based on Lemma 7 covered by the path returned by TSBA and the thinnest

and this induction assumption, we have: path. Since- < 1 and - < 1, whenn is large, we
W (La(v;)) < |La(vie1) U T, || havey ~ T Lil, i.e., the approximation ratlg—%lk1 is

< W(La(vi 1)) + |To, | asymptotically tight in2-D disk hypergraphs.
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9Note thatv; can updatev; 41 through bothe; ;1 and e;_H with
the same width. Since the order of hyperedges used in theteujmla
arbitrary, e; 1 could be used to update;; forall 1 <i < k-1
in the worst case.



