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Introduction 
 
The hypothalamic-pituitary-adrenal (HPA) axis controls the body’s “fight or flight” response through a series 
of endocrine and immune signals directed at ensuring immediate survival and later re-establishing 
homeostasis.  Changes in the tone of this response have been observed in veterans with Gulf War Illness 
(GWI). Studies report abnormal cell proliferation, impaired function and persistent oxidative stress in 
circulating immune cells of patients. Similarly dysregulation of the HPA axis includes hypersensitivity in 
cytokine feedback as well as suppression of cortisol and neurotransmitters responsible for mediating innate 
and adaptive immunity. This is further complicated by the impact on the HPA axis of a myriad of regulatory 
interactions both within and between i) the immune system and ii) the sex-hormone axis, the hypothalamic-
pituitary-gonadal (HPG) axis. 
 
We proposed that severe physical or psychological insult to the endocrine and immune systems can 
displace these from a normal regulatory equilibrium into a compromised stable state. This state is 
characterized by a self-perpetuating inflammatory response that involves regulatory imbalance between the 
HPA, HPG and immune axes. To explore the validity of this hypothesis our objective was to create 
comprehensive engineering models of endocrine-immune interaction dynamics in order to identify (i) 
theoretical failure modes of the endocrine-immune interplay that align with GWI, and (ii) promising treatment 
strategies that exploit the naturally occurring stable points of these systems.  
 
Body. 
 
At the time of our last update we had completed a re-assessment of the modeling approach and 
successfully identified, refined and deployed a discrete modeling paradigm enabling us to circumvent the 
significant gaps in the required parameter estimates exist in the literature. This new approach was 
described in greater detail in the previous report (September, 2012) (Task 1) and consists in an extension 
of the discrete logical network methodology proposed originally by Thomas et al. [1,2] and developed further 
by Mendoza and Xenarios [3]. Importantly, this approach supports the seamless integration of kinetic 
information wherever available, be it simple sequential precedence, relative time scale or detailed 
dynamics.  
 
We have now completed the original scope of Task 1 through Task 5. However as a result of improvements 
in computational efficiency we have been able to extend the basic models beyond what was originally 
anticipated.  With the concerted efforts of Dr. Craddock, new programming staff Mark Rice and Ryan del 
Rosario and research interns Simar Singh and Lundy McKibbin we have continued to: (1) design and 
deploy a distributed version of the computing code, (2) increase the granularity of the multi-axis model and 
the implement a statistical scheme for model validation, (3) significantly extend the scope and increase 
fidelity of the detailed immune model, and (4) develop a prototype model of neuro-inflammation, and (5) 
designed and deployed a first prototype of the treatment optimization scheme.    
 
1. Continued algorithm development and speed-up. (Task 1). The core concept of the approach we 
have used is connectivity. Key biological regulatory processes have been translated into a set of discrete 
logic circuits. Analysis of these networks makes it possible to identify the number and type (e.g. oscillatory, 
etc…) of resting states as well as their molecular and cellular profile without detailed knowledge of response 
dynamics.  Early implementations of this analysis were made in a high-level rapid-prototyping environment 
(Python) facilitating development but severely limiting computational performance. As mentioned previously, 
under this discrete formalism the number of model variables determines the total number of system-wide 
states such that a model of N state variables possesses 3N states. As a result the number of total system-
wide states increases rapidly as new state variable elements are added. Initially these calculations were 
encoded into a rapid-prototyping Python script that was used to search the above-mentioned network for 
stable equilibrium states (Version 0).  Within a 24-hour threshold time (86,400 seconds) this version is 
capable of analyzing up to 14 variables (4,782,969 states) with a memory usage in the range of gigabytes 
(GB) (Figure 1).  High-performance computing staff, programmers Rice and del Rosario, re-engineered the 
search algorithm and its implementation in several stages.  First, the algorithm was directly re-coded in the 
C programming language (Version 1) as it is both memory-efficient and approximately 30 times faster than 
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Python. This increased performance enabled analysis of a 17-variable model (129,140,163 possible 
discrete states) in 24 hours at a memory usage in the megabyte (MB) range.  Next, the serial algorithm was 
re-engineered through the introduction of ternary data structures to efficiently optimize memory usage and 
run time, and prepare the algorithm for parallel implementation (Version 2).  Here, in the 24-hour threshold 
time, a 19-variable model (1,162,261,467 states) was analyzed at MB memory usage. Thirdly, the algorithm 
was implemented with parallel tasking (Version 3), using multiple levels of parallel threading (m0 to m4).  
Here we have successfully run a model with 23 variables (94,143,178,827 states) within a day using only 
MB’s of memory.  Finally, we have parallelized the code further with a supervisory layer based on message 
passing interface (MPI) (Version 4) to make full use of the high-performance computing resources on the 
University of Miami’s Pegasus cluster.  While performance measures are still being evaluated we have 
successfully analyzed a 25 variable circuit model (847,288,609,443 discrete states). Continued 
improvements to computational efficiency are ongoing. 
  
 
2. Continued refinement of an integrated model of HPA-HPG-immune interaction (Task 3, Task 5).  
We had previously extended our early model of HPA axis dynamics [4] by including feed-forward and 
feedback interactions with sex hormone regulation and immune response. A circuit model had been 
constructed that linked state variables across the HPA axis with hypothalamic-pituitary-gonadal (HPG) 
function in both men and women, as well as a coarse-grained mode of the immune system consisting of 
innate (IIR) and adaptive (AIR) immune components. A critical review of this model prompted us to: (i) re-
assess the coarse-graining of the immune components (IIR and AIR aggregate nodes), increasing the level 
of detail to improve fidelity, and (ii) define and implement an alternate validation measure.   
 
• A modified multi-axis model. In a first coarse iteration of the model, immune function was described 

simply in terms cytokine activity of the innate (IIR) and adaptive (AIR) immune responses.  Here the 
aggregation of all adaptive immune response into the AIR node lacked the complexity needed to capture 
shifts between Th1 and Th2 activity.  Further resolution was added to the immune model by separating 
the AIR into Th1 and Th2 activity and by adding both cell population activity, as well as cytokine 
signaling separately.  In this modified immune module innate immune cells (ICells) produce cytokines 
that regulate the innate immune response (IIR) including interleukin (IL) -1, IL-6, IL-8, IL-12, IL-15, IL-23 
and tumor necrosis factor alpha (TNF-α). These IIR signals serve to prime helper T cells towards a Th1 
type adaptive immune response (T1Cell), producing Th1 pro-inflammatory cytokines (T1Cyt) including 
IL-2, interferon-gamma (IFN-γ), and tumor necrosis factor beta (TNF-β). This further activates ICells, 
while suppressing the Th2 adaptive immune response  (T2Cell).  The T2Cell node promotes the 
production of the Th2 anti-inflammatory cytokines (T2Cyt) IL-4, IL-5, IL-10 and IL-13, which serve to 
inhibit the activity of T1Cell and ICells.  Interaction with the HPA axis is mediated by CORT suppressing 
ICell and Th1Cell activity, while IIR and Th1Cyt signals stimulate the HPA. Additionally, new interactions 
between the immune and HPG axis were included where Th1Cyt signals suppress GnRH and LH/FSH 
release and the dimorphic response of sex hormones TEST/ EST serve to induce Th1/Th2 activity. 
 

• A probabilistic measure of alignment with experimental data. Alignment of model predictions with 
experimental data were previously assessed on the basis of discrete Hamming distance and visualized 
with a Sammon projection of the latter. In order to provide a more continuous measure of similarity or 
dissimilarity we have adopted a probabilistic measure proposed by Brown [5]. Here, we calculate the 
significance of alignment between experimental data and a given state predicted by the model using a 
meta-analysis technique that combines non-independent test statistics.  Null probability p-values for 
individual variables are calculated using two-sample t-tests between ill subjects and healthy controls.  
To give the probability of obtaining the model value by chance ‘right-handed’ one-tailed tests are used 
when the model predicts a high state, ‘left-handed’ tests when predictions are low, and two-tailed tests 
when the prediction is a nominal value.  These non-independent statistics are then combined into a chi-
squared test statistic, which is scaled to T = T0/c with 2N/c degrees of freedom, where c = σ2/4N.  This 
statistic is then used in the scaled chi-squared distribution to determine the overall probability of 
obtaining the alignment by chance.  The advantage of this method is that it accommodates for the 
dependence between variables, allows for a statement of confidence on alignment for each individual 
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model predicted state, and does not depend on the number of measureable markers allowing for direct 
comparison across models. 
 

Details of this analysis and the final multi-axis model are described in Appendix A in manuscript recently 
submitted to PLoS One [6]. In brief, co-regulation of the HPA, HPG and immune systems has been 
described as a revised circuit model consisting of 14 state variables where each variable can assume one 
of three discrete states at any point in time: -1 (inhibited), 0 (nominal) and +1 (elevated).  In this model the 
HPA axis continues to be described in terms of corticotropin-releasing hormone (CRH), adrenocorticotropic 
hormone (ACTH), cortisol (CORT) and cytostolic glucocorticoid receptors (GRs), which unlike membrane 
bound receptors, dimerize (GRD) (Figure 2A-B). HPG function is again described by the levels of 
gonadotropin-releasing hormone (GnRH), of luteinizing homone (LH) as well as testosterone (TEST) in 
males (Figure 2 C) and estradiol (EST) in females (Figure 2 D-G). As before, the effects of gender merit 
special attention as testosterone (TEST) exhibits an inhibitory effect on the HPA axis while estrogen (EST) 
and progesterone can stimulate or suppress HPA activity depending on the phase of menstrual cycle. 
Theses components are integrated with the revised immune model described above.   
 
Results of simulations conducted on the refined model can be summarized as follows: 
 
• Male subjects. Inclusion of basic immune function and sex hormone regulation by the HPG axis with 

HPA function (HPA-GR-Immune-HPG model) in male subjects (Figure 2C) resulted in the emergence of 
5 stable equilibrium states. Once again the first state was that of normal health (SS0). Low levels of 
ACTH and elevated expression of the glucocorticoid receptors GR and GRD characterized the second 
equilibrium state (SS1). The third stable state (SS2) exhibited supprssed innate and Th1 immune 
responses (low ICell, IIR, T1Cell, and T1Cyt), with increased Th2 activity (high T2Cell and T2Cyt).  The 
fourth state (SS3) presented low ACTH, suppressed innate and Th1 immune activity (low ICell, IIR, 
T1Cell and T1Cyt), and elevated Th2 and glucocorticoid receptor activity (high GRD, GR, T2Cell and 
T2Cyt).  The final state (SS4) displayed hypercortisolism, suppressed HPG activity and a shift towards 
the Th1 immune response (low T2Cell, T2Cyt, GnRH, LH/FSH and TEST/EST, and high CORT, GRD, 
GR, T1Cyt and T1Cell). 

• Female subjects. In the specific case of positive feedback along the HPG axis and suppressive 
interaction with the HPA axis, the HPA-GR-Immune-HPG model for female subjects (Figure 2F) 
supported 11 steady states. In addition to 5 states equivalent to those obtained for the male subjects, 
we found new steady states that corresponded to suppressed HPA axis and innate immune response 
(low CRH, ACTH, CORT, ICell and IIR), while the HPG and anti-inflammatory response were elevated 
(high T2Cell, T2Cyt, GnRH, LH/FSH and EST). This combination occurred at each of the three low, 
nominal and high values for glucocorticoid receptor activity (GR/GRD) (SS5, SS6 and SS7, 
respectively).  The final three additional states all supported suppressed HPA (CRH, ACTH, and CORT) 
and T1Cell activity, with elevated HPG activity (GnRH, LH/FSH and EST). These were again 
differentiated by their glucocorticoid receptor levels (GR/GRD at low (SS8), nominal (SS9) and high 
(SS10) values). Note that a stable steady state characterized by low cortisol levels was found only for 
female subjects. 

• Alignment with experimental data. To validate these results the predicted steady states were first 
compared to steroid and cytokine levels recorded in male Gulf War veterans with GWI and healthy 
veterans (HCs) as part of a sister study [7]. As experimental measures for ACTH, GR, GRD, and 
immune cells populations were not available, certain steady states could not be distinguished and 
validated separately from one another. Comparison to the nominal states (SS0/SS1) showed poor 
alignment, with a null probability of p=0.82, suggesting that the GWI profile cannot be considered the 
same as normal behavior.  The predicted states presenting a shift towards Th2 immune activation 
(SS2/SS3) showed improved alignment with a significance of p=0.38. However the final state (SS4) 
displaying hyper-cortisolism, low TEST and a shift towards Th1 immune activation yielded the best 
alignment with a null probability of p=0.30, supporting the notion of a more classical Th1 auto-immune 
signature with a concurrent (and perhaps stabilizing) endocrine component in GWI. 

As a much greater proportion of women than men are affected by CFS, we compared the predicted 
steady states identified with the female model to experimental data collected under two compatible 
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studies [8,9]. Alignment with the baseline nominal setting in measureable variables (SS0/SS1) was poor, 
p=0.83, reinforcing that CFS is distinctly different from normal regulatory behavior. The Th2-shifted 
immune profiles predicted by the model (SS2/SS3) showed a significant alignment with the measured 
signature (p=0.04), suggesting that Th2 activation in CFS may at least in part be supported by 
homeostatic drive. This emphasized further by a low degree of alignment with the Th1 immune activated 
state, with hypercortisolism, and low EST (p=0.28). Improved alignment was found with states with a 
shift towards Th2, coupled with hypocortisolism, and high EST (SS5/SS6/SS7) (p=0.02).  States 
presenting with only hypocortisolism and high EST, and no immune activation (SS8/SS9/SS10) aligned 
very weakly with the measured profile (p=0.60), suggesting that hypocortisolism, increased EST, and 
Th2 activation in combination are key CFS profile features that might owe at least part of their 
persistence to basic homeostatic control.   

 
 
3. Refinement of detailed immune circuitry including Th17 and neurotransmission (Task 2, 3 and 5). 
Based on the work of Folcik et al. (2007, 2011) [10,11] and an extensive review of recent literature, we 
constructed an initial wiring diagram describing cytokine signaling between immune cell populations [12] 
(see excerpts of manuscript in preparation; Appendix B in 2012 annual report). We have now extended this 
first detailed model of immune signaling at two levels of granularity: 
 
• Addition of Treg and Th17 components to aggregate model of cytokine signaling. The specific 

cytokines supported in the initial model included interleukin (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, 
IL-13, IL-23, IL-27, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α. In order to improve 
computational efficiency, cytokines were grouped according to their dominant action into either a 
monokine (MK) or cytokine (CK) group (Folcik et al., 2011)[11]. We have now extended the model to 
include the actions of IL-17, 21 and 23 as well as TGF-β. The extended model also includes T regulatory 
(Treg), Th17 and activated Th17(23) cell populations as well as IgA and IgG antibody classes. This 
updated version of the cytokine signaling network includes as before the effects of stress and sex 
hormones for male subjects only at this time (Figure 3). Results of our stability analysis on this second-
generation model that can be summarized as follows: 

 
o Stable immune response modes in male subjects. Application of this discrete dynamical 

analysis to the detailed endocrine-immune network yielded three predicted stable steady states. 
As always, the first state was that of normal health (SS0).  The second stable state (SS1) 
presented with low anti-inflammatory cytokines (CK2), low testosterone, and suppressed NK cell 
activity, Th1 and Th2 immune cell activity, accompanied by elevated Th1 inflammatory cytokines 
(CK1), high cortisol levels, and increased cytotoxic T lymphocyte (CTL) and Treg cell activity.  
The third stable attractor (SS2) also displayed low NK cell activity and testosterone levels, with 
elevated cortisol, CK1 and CTL activity. However this state presented a different immune profile 
characterized by low TGF-β levels, elevated monocyte cytokines (MK1, MK2, MK6, MK21), and 
increased Th17 activity (CK17, Th17(23), TH17b).  These results are consistent with the findings 
of the integrated HPA-HPG-immune model discussed above, but with added resolution in terms 
of immune function, which indicates alternate equilibria defined by different stable levels of 
regulatory T cell activity, or Th17 immune response. 

o Alignment with experimental data.  Once again, these predicted steady states were 
compared with experimental data used in Section 1 [7-9]. We found alignment of GWI with the 
healthy reference state (SS0) corresponded to a null probability of p=0.87, indicating very poor 
alignment.  Improved alignment was observed with SS1 (p= 0.30). This is comparable to the 
results found for the high CORT, low TEST, elevated Th1 response state using the integrated 
HPA-HPG-Immune model described previously (section 2).  Further improvement was found 
when comparing GWI to the final predicted stable state (SS2) (p=0.12), suggesting that chronic 
Th17 activation, hypercortisolism, and low TEST observed in this illness may persist in part as a 
result of homeostatic drive. For male CFS subjects we found comparably poor alignment with 
the reference baseline state SS0 (p=0.76).  However, alignment with state SS1 (p=0.16) was 
dramatically different from GWI, emphasizing the distinct nature of CFS. Distinct as they may 
be, these illnesses nonetheless share some common components that our group has begun to 
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delineate at the level of specific pathways [13]. Consistent with this we found comparable 
alignment of CFS and GWI with SS2 (p=0.12) albeit for slightly different reasons. Thus, while 
GWI aligns best with Th17 dysregulation, CFS alignment suggests slightly different imbalance of 
Th17 and/or Treg response. 

.  
• High fidelity model of individual cytokine actions. Improved alignment with the clinical data can be 

accomplished by including additional key interactions in the model regulatory network, and by increasing 
resolution of the model in terms of the state variables represented.  Key interactions located outside the 
immune network include critical neurotransmitters linking the brain and central nervous system with the 
HPA axis and the immune system. The neurotransmitters norepinephrine (NorEpi), and acetylcholine 
(ACh) are significant regulators of cytokine production, and therefore immune function. Neuropeptide Y 
(NPY) is also key component of the stress response, and its subsequent effects on the immune system. 
The latter has now been shown to play a significant role in CFS [14].  These messengers have now 
been included in a more refined model of the immune system and it’s interface with neurotranmission 
(Figure 4).  Their effect on the immune system however is not simple.  In the previous immune model 
several cytokines were aggregated into groups.  NorEpi, ACh and NPY were found to have differing 
effects on the production of cytokines within individual groups.  To accommodate these varied 
responses several of the aggregate nodes were separated into their individual constituent entities 
increasing the resolution, and complexity, of the extended immune model.  The overall resulting high 
fidelity model of the extended immune system, including HPA, HPG and CNS inputs is shown in Figure 
4. A first analysis has shown the following: 
 

o Preliminary stable immune response modes in male subjects. Discrete logical analysis of the 
preliminary high fidelity extended immune model produced two steady states.  Normal health 
characterized the first state (SS0), while the second state (SS1) presented with low IL-1, MK6, 
TEST and NK cell activity, and high IL-12, MK2, CK1, CK2, CTL, CORT and NPY.  Note that 
several of the cytokines that were once aggregated (IL-1, IL-8, IL-12) now present with differing 
profiles.  These yield a complicated mixed Th1:Th2 profile consistent with our previous analysis 
of GWI.  Further refinement of other aggregate nodes, and inclusion of the Th17 axis is currently 
underway. 

 
o  Preliminary alignment with experimental data.  We found in GWI that aligns with the nominal 

steady state (SS0) at a significance level p=0.85 again indicating poor alignment with normal 
health.  Alignment with the alternate steady state (SS1) however was much more significant (p= 
0.07).  This both supports a notion of a complex stable combined Th1:Th2 response in this 
illness, and suggests a brain component in its perpetuation. Further analysis with the refined 
model is being conducted. 

  
Collectively these simulations of known endocrine-immune circuitry support the existence alternate 
homeostatic regimes, some of which overlap substantially with observed immune and endocrine status in 
male GWI and female CFS subjects. Such overlap with naturally occurring stable regulatory regimes would 
certainly be consistent with the persistence of symptoms long after the initiating event. This same 
characteristic may also explain why these illnesses appear in many ways resistant to treatment. 
 
4. An early model of neuroinflammation (extension to Task 3).  Elevated levels of pro-inflammatory 
cytokines negatively impact learning, memory and neurogenesis. The intense immune activation in the brain 
that characterizes infections, injury, neurotrauma and severe/chronic stressful conditions, can induce hyper-
excitability of neuronal circuits perpetuating an inflammatory state within the CNS resulting in excitotoxicity, 
and eventually apoptosis and neurodegeneration resulting in learning and memory impairments.   To 
explore these mechanisms we have constructed a first model with Neurons, Neural Progenitor Cells 
(NPCs), Endothelial Cells (ECells), Microglia, and Astrocytes as key cellular components, while interleukin 
(IL)-1, IL-4, IL-6, tumor necrosis factor (TNF)-α, and OX-2 membrane glycoprotein (CD200) comprise a 
simplified neuro-inflammatory response.  As numerous studies show communication of inflammatory 
information to the brain via both humoral and neuronal mechanisms, hormone signaling is included via 
Insulin-like Growth Factor 1 (IGF-1), Vascular Endothelial Growth Factor (VEGF), Brain Derived 
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Neurotrophic Factor (BDNF), and cortisol (CORT). The neurotransmission component is conveyed with the 
inclusion of Acetylcholine (ACh), Norepinephrine (NE), Glutamate (Glut), and Adenosine Triphosphate 
(ATP).  Stress-induced immune activation is a neurally initiated phenomenon, via the activation of 
noradreneregic pathways and altered cholinergic neurotransmission.  Elevated brain cytokines produce 
further activation of stress response systems such as the HPA axis and the SNS.  The multiple feed forward 
and feedback connections between these elements found in the neurophysiology literature are depicted in 
the circuit model shown in Figure 5.  

 
• Stable immune response modes in the brain - a first analysis:  Interaction among these 

various cell populations via immune, hormone and neurotransmitter signals ultimately revealed 
two steady states.  The first, again, is the normal reference state of health (SS0).  The alternate 
steady state (SS1) is characterized by low levels of ACh, BDNF, IGF-1, IL-4, and VEGF and 
suppressed activity of Astrocytes, ECells, NPCs, and Neurons, accompanied by elevated levels 
of CORT, Glut, IL-1, IL-6, and TNF-α, and over activation of Microglia.  This is consistent with a 
chronic neuroinflammatory state.  The elevated CORT levels, seen to align with GWI in our other 
models, suggests a possible involvement of a persistent and stable neuro-inflammatory cascade 
in this illness. 

 
5. Continued development of treatment design (Task 6, 7). Analysis of the above-mentioned regulatory 
signaling circuits not only provides information describing the stable steady states available to the system 
but also extensively describes the ensemble of transitory states that lead unequivocally to one steady state 
or another; these are said to lie within that steady state’s basin of attraction. Importantly, these subsets of 
transitory states will lead to that specific stable state independently of an individual’s immune and endocrine 
response kinetics. This guaranteed convergence to a healthy equilibrium makes them attractive as broadly 
applicable treatment destination states. In the design of minimally invasive interventions our basic paradigm 
is therefore to identify the closest transitory state(s) that lie within the basin of attraction that ensures a 
return to normal homeostasis.  

 
o A global trajectory search formalism. We have formalized the treatment course as a vector 

describing a path from the state of disease to health.  Allowable transitions between states along 
the path consist of normal evolution of the system, as described by our logic rules, and 
transitions induced by clinically feasible interventions.  To find treatment course paths that meet 
these criteria we have formulated our search as a global optimization problem. We have chosen 
to use a Genetic Algorithm (GA) optimization method, as the discrete nature of our model 
naturally accommodates the GA solution procedure.  Initially, the GA seeds the solution space by 
generating random solutions composed of binary strings or “chromosomes” representing a 
treatment path. Each member of this initial population is checked against a fitness function and 
assigned a fitness score. Top ranking members of the population are then chosen as the parent 
solutions for the next generation. Each generation is made up of the chosen parent population 
plus combinations of crossed-over “mated” parent solutions with a small chance for random 
mutation. This process runs over a set number of generations or until optimum results are found. 
This allows a rapid search of the global space, while mutations minimize the chance of remaining 
in local minima.  

 
o A multiple objective criterion. Our fitness function divides the overall the solution string into 

segments describing each time-step in a treatment course. The overall desirability of a solution is 
assessed on the basis of three objectives: (i) feasibility or compliance with the model, (ii) 
compliance with allowable treatment perturbations, and (iii) the minimal invasiveness and 
duration of treatment. The first and second of these objectives has been implemented in the first 
trial version. For each time step segment subsequent time-steps are compared to the allowable 
transition states and assigned a compliance score based on the minimum hamming distance 
separating the proposed solution state and the allowable states. Overall fitness of a solution is 
then the sum of the hamming measures for all state transitions along a given solution path. A 
fitness value of zero indicates a perfect compliance with model behavior and allowable 
interventions.  
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Based on this paradigm we have started work on Tasks 6 and 7. A first fitness function based on model 
compliance, as well as the GA algorithm itself, have been designed and implemented. Currently, we are in 
the process of optimizing code parameters (population size, number of generations, mutation rate, etc…) to 
efficiently search the large state spaces of our multi-systems model.   
 
Additionally, we are currently refining these models as well as the treatment search algorithm to incorporate 
the effects of timescale. This will make it possible to take advantage of saddle point states or unstable 
intermediate states that lie between the basins of attraction. We are currently investigating avenues for 
exploiting broad classes of kinetic scales that might make it possible to reduce the treatment complexity 
even further and tailor these interventions to patient sub-groups. 
 
6. Continuing work. Ongoing work involves the continued refinement of a circuit model describing 
mechanisms of neuroinflammation and neurotransmission in the brain. Efforts are also now shifting to the 
completion and validation of the treatment design algorithm. This will be the major area of development as 
we begin simulation of treatment strategies, the principal deliverable of this project.  
 
Timeline.  As described in the previous report dated September 30, 2011, the University of Alberta’s 
Research services Office submitted on behalf of the principal investigator a request for a one-year 
extension of the project term due to administrative delays. This request was reviewed initially by Ms. Strock 
and Dr. Phillips of the DoD (January 23, 2012) and we were asked to resubmit this request at a later date 
(6-8 months before end of project term). We have since confirmed with Dr. Rebecca Fisher that this 
continues to be the correct course of action (ref. email from Dr. Fisher dated September 21, 2012). In 
accordance with Dr. Fisher’s recommendation we are submitting a formal request for a one-year no-cost 
extension as part of our request to transfer this award to Nova Southeastern University retroactive to June 
1, 2013. 
 
Key Research Accomplishments. 
In keeping with the milestones described in the project submission initial efforts were directed at: 
 

• Consistent with the previously completed Task 1, we have further improved the efficiency of the 
serial C code, again delivering order of magnitude improvements in execution speed and memory 
usage. Importantly we have engineered a parallel framework based on MPI and Pthread protocols to 
deploy this code onto distributed high-performance platforms. This code is now deployed and fully 
operational on the University of Miami Pegasus 2 platform. 

• Consistent with the now completed Task 2, we have continued to refine our previous model of 
immune signaling mechanisms. These now include the actions of Th3 and Th17 axes, implemented 
in models at two levels of granularity.  

• We have now basically completed Task 3 as defined originally. In this regard we have produced a 
refined multi-axis model, further developed our validation scheme and submitted to PLoS One a first 
complete manuscript describing co-regulation across HPA, HPG and immune axes in men and 
women.  

• In an extension to original Task 2 and 3, we have produced a first circuit model of inflammatory 
processes occurring in the brain and involving the cell types and immune signaling specific to this 
physiological compartment. Early analyses of this model show the persistence of a chronic 
neuroinflammatory state perpetuated by overactive microglia and underactive astrocytes, leading to 
loss of neuron function, in conjunction with elevated levels of cortisol. 

• Consistent with Task 4 and Task 5 we have conducted a refined analysis of multi-stability properties 
of both the broad HPA-HPG-immune model and the detailed BIS immune model. Comparing 
predicted equilibrium states with experimental immune and endocrine data from male and female 
GWI and CFS subjects we find:  

o Male GWI and CFS subjects align with states showing hypercortisolism, low testosterone, 
elevated Th1 inflammatory cytokines, decreased NK cell activity in conjunction with an 
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elevated Th17 response, although male CFS subjects also show a propensity to align with an 
elevated Treg response suggesting a mixed immune signature for this illness not seen in 
GWI. 

o Female CFS subjects align with states showing hypocortisolism, elevated estrogen, and a 
shift towards Th2 activation. 

• We have re-assessed our approach to treatment design (Task 6, 7) and have begun encoding an 
approach based on a global search for a treatment course assisting an optimal walk through a 
discrete endocrine immune state space leading from an illness to a healthy condition. 

 
Reportable Outcomes. 
The results of these latest analyses are being communicated as follows: 

• The previous draft manuscript Craddock et al., 2013, enclosed as Appendix A, has been extensively 
revised and is now submitted to the journal PLoS One. Similarly we expect the extensions and 
revisions to the detailed immune model (working document in Appendix B, Annual Report 2012, 
Fritsch et al., 2013), to be ready for submission to the journal Molecular Systems Biology by October 
this year. 

• Early results were presented at a closed meeting sponsored by the CDC and the CFIDS Association 
of America and held at the Cold Spring Harbor Laboratory’s Banbury Centre in Long Island, NY 
(Sep. 30 -Oct 3, 2012). 

• We will be submitting two abstracts for oral presentation at the IACFS/ME 11th Biennial International 
Research and Clinical Conference to be held in San Francisco, California, USA, March 20-23, 2014. 
The conference is co-sponsored by Stanford University. 

Regarding synergy with complementary research efforts, these findings were recently used to secure an 
invited GWIRP Consortium Award, now awarded (prime institution - Nova Southeastern University). The are 
also being used in support of 2 VA Merit applications that have been reviewed and invited for resubmission 
this month.  
 
Conclusions. 
We are currently processing a formal request for a one-year no-cost extension of the project term due to a 
delayed start. We have carried out a major shift in paradigm and continue to refine these regulatory circuit 
models as well as developing new components such as the neuroinflammatory model. The basic 
algorithmic framework has now been translated and re-engineered to deploy larger more detailed models 
on distributed high-performance platforms like the Pegasus 2 platform at the University of Miami. 
 
Simulations based on these models have shown that the illness-specific effects of gender are particularly 
striking. Work continues on the refinement of the intervention design component. Initial analyses favor the 
deployment of a joint hormone-immune intervention over strategies that target these systems separately. 
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Figure 1. Evolution of computational performance.  Evolution of computer wall time as a function model 
complexity described in terms of the number of state variables (ternary nodes). In less than a year, re-
engineering of the computer code supporting the identification of stable states in a regulatory system has 
enable an almost 2-fold increase in the number of state variables in the circuit model. 
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Figure 2. Increased granularity multi-axis model. A significant revision of the discrete circuit model of HPA 
function (A,B) augmented with HPG-immune interactions in male subjects (C) and female subjects (D-G) in the 
specific case of positive feedback along the female HPG axis and suppressive interaction with the HPA axis 
(revised and resubmitted manuscript) [6]. Green directed edges represent an up-regulation of the target by the 
source node whereas a red terminal edge represents a suppressive action. 
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Figure 3. Detailed Immune model revised.  Circuit diagram of the detailed immune system model revised to 
include elements of Th17 and Treg activity mediated by TGF-β, IL-21, IL-23, IL-27 and others. This is a 
significant increase in granularity from the previous such model and has resulted in a revision of draft 
manuscript, now underway and due for submission before year end  [12]. 
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Figure 4. High-resolution immune model with neurotransmission oversight. Circuit diagram of a first prototype 
model capturing fine-grained immune signaling with the contribution of immune modulating neurotransmitters 
neuro-peptide Y (NPY), acetylcholine (ACh) and norepinephrine (NEpi). This model is still in progress and will 
incorporate the Th17 and Treg axes as well as additional neurotransmitters as we move forward.     
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Figure 5. A first prototype model of brain immunity.  A first circuit model describing the regulation of neuro-
inflammation in the brain that includes the role of neurons, neural progenitor cells (NPCs), endothelial cells 
(ECells), microglia, and astrocytes as key cellular components as well as basic signaling mechanisms involving 
interleukin (IL)-1, IL-4, IL-6, tumor necrosis factor (TNF)-α, and OX-2 membrane glycoprotein (CD200) and 
other molecular messengers. 
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Abstract 27 

A key component in the body’s stress response, the hypothalamic-pituitary-adrenal (HPA) 28 

axis orchestrates changes across a broad range of major biological systems. Its dysfunction 29 

has been associated with numerous chronic diseases including Gulf War Illness (GWI) and 30 

chronic fatigue syndrome (CFS). Though tightly coupled with other components of endocrine 31 

and immune function, few models of HPA function account for these interactions. Here we 32 

extend conventional models of HPA function by including feed-forward and feedback 33 

interaction with sex hormone regulation and immune response. We use this multi-axis model 34 

to explore the role of homeostatic regulation in perpetuating chronic conditions, specifically 35 

GWI and CFS. An important obstacle in building these models remains the scarcity of in vivo 36 

kinetic data. We circumvented this using a discrete logic representation based solely on 37 

literature of physiological and biochemical connectivity to provide a qualitative description of 38 

system behavior. This connectivity model linked molecular variables across the HPA axis, 39 

hypothalamic-pituitary-gonadal (HPG) axis in men and women, as well as a simple immune 40 

network. Inclusion of these interactions produced at multiple alternate homeostatic states. 41 

Experimental data for endocrine-immune markers measured in male GWI subjects showed 42 

the greatest alignment with predictions of a naturally occurring alternate steady state 43 

presenting with hypercortisolism, low testosterone and a shift towards a Th1 immune 44 

response. In female CFS subjects, expression of these markers aligned with an alternate 45 

homeostatic state displaying hypocortisolism, high estradiol, and a shift towards an anti-46 

inflammatory Th2 activation. These results support a role for homeostatic drive in 47 

perpetuating dysfunctional cortisol levels through persistent interaction with the immune 48 

system and HPG axis.  This same basic drive may also perpetuate sexually dimorphic 49 

responses due to inherently different behavior of the male and female HPG. Though coarse, 50 

these models may nonetheless support the design of robust treatments that might exploit 51 

these regulatory regimes.  52 

53 
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Introduction 53 

The hypothalamic-pituitary-adrenal (HPA) axis, a key component in the body’s stress 54 

response, serves to articulate changes in a broad range of homeostatic regulators as a 55 

function of environmental cues.  Such cues can consist of both physical stressors (injury, 56 

infection, thermal exposure) and psycho-emotional stressors (frustration, fear, fight or flight 57 

decisions).  Instantiation of this survival program is accomplished through controlled 58 

modulation of the neuroendocrine and immune systems, as well as the sympathetic nervous 59 

systems [1-3].  Considering its function as a broad-reaching integrator of major physiological 60 

systems, it is no surprise that numerous chronic conditions have been associated with 61 

abnormal regulation of the HPA axis, including major depressive disorder (MDD) [4, 5], post-62 

traumatic stress disorder (PTSD) [6-8], Alzheimer’s disease [9], Gulf War Illness (GWI) [10-63 

12], and chronic fatigue syndrome (CFS) [13-15].  When compared to non-deployed 64 

veterans, Golier et al. [10] found that symptomatic Gulf War veterans without psychiatric 65 

illness, as well as veterans with PTSD alone, showed significantly greater cortisol 66 

suppression to dexamethasone (DEX) suggesting markedly enhanced negative feedback 67 

along the HPA axis. Further study by these same investigators indicated that this might be 68 

due to a significantly attenuated ACTH response by the pituitary in veterans with GWI 69 

without PTSD [11, 12]. A similar suppression of cortisol response to DEX was found in CFS 70 

subjects by Van Den Eede et al. [13] with this being further exacerbated by oestrogen 71 

intake. With regard to HPA circadian dynamics, CFS subjects were found to exhibit 72 

significantly increased adrenal sensitivity to ACTH and marginally increased inhibitory 73 

feedback during the nocturnal period when compared with control subjects and CFS 74 

subjects comorbid with fibromyalgia (FM) [14, 15]. Conversely the pain-dominant CFS-FM 75 

subjects showed significantly blunted cortisol inhibitory feedback. While evidence such as 76 

this implicates abnormal regulation of HPA function leading to chronic hypocortisolic and 77 

hypercortisolic states in these illnesses, the genesis of this dysregulation is unclear.  78 

 79 
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Previously we investigated the possibility that some of these pathological states may 80 

coincide with naturally occurring alternate homeostatic stable states [16]. These “backup 81 

programs” would offer a way of maintaining homeostatic control in crisis situations at the 82 

cost of reduced function.  The existence of such multiple stable states is characteristic of 83 

systems that incorporate feed-forward and feedback mechanisms. Feedforward loops in 84 

biology play the crucial role of driving rapid acute responses, while feedback loops will 85 

generally limit the extent of a response. Both will also drive complex dynamic behavior, 86 

including differentiation and periodicity [17].  While small perturbations may force temporary 87 

departures, these systems return to their original resting states once these perturbations are 88 

removed.  If however, the perturbation is of significant strength and duration, the system 89 

may be incapable of returning to its normal operating regime and instead may assume a 90 

new alternate resting state.  Knowledge of the system dynamics can allow us to map these 91 

different stable states and several mathematical models of the HPA exist [18-26].  So far, 92 

only one such model is known to accommodate multi-stability in the dynamic behavior of the 93 

HPA axis. It does so via the addition of a feed-forward mechanism involving dimerization of 94 

the glucocorticoid receptor (GR) complex  [27] (Figure 1).  In this process glucocorticoid 95 

(GC) bound GRs form homodimers that translocate into the cell nucleus to bind DNA, up-96 

regulating GR synthesis and producing a positive feedback loop.  However, this model and 97 

the majority of other models do not extend beyond the physiological boundaries of the HPA 98 

axis itself and thus are limited in their predictive capabilities.  As discussed in the following 99 

sections, HPA activity is intertwined with the behavior of the hypothalamic-pituitary-gonadal 100 

(HPG) axis and the immune system, among others, and this interplay should not be ignored 101 

when considering the number and nature of stationary states available to the overarching 102 

system.  Our hypothesis is that these alternate regulatory regimes may facilitate the 103 

persistence of complex chronic illnesses like GWI and CFS. To evaluate the role of alternate 104 

homeostatic attractors in these illnesses we constructed a computational model of regulatory 105 

control linking the HPA, HPG and immune systems. 106 

 107 



 5 

There is a substantial body of physiological and biochemical data for many biological 108 

systems describing the connectivity between molecular and cellular elements, the presence 109 

of recurring structural motifs and functional modules.  For example, negative autoregulation, 110 

in which a transcription factor represses its own transcription, is a simple network motif 111 

observed in many transcription networks.  While, numerous motifs have been found in 112 

biological networks (negative/positive autoregulation, coherent/incoherent and multi-output 113 

feedforward loops, single-input modules and dense overlapping regulons) [28], data 114 

regarding the precise stoichiometry and kinetics of these systems in humans is extremely 115 

limited.  Many existing models rely heavily on animal data as a source of kinetic parameters, 116 

or adopt general order of magnitude estimates when this data is lacking.  To circumvent this 117 

issue and draw on the rich body of known molelcular and cellular interactions in 118 

physiological and biochemistry, we have adopted the discrete logical network methodology 119 

proposed originally by Thomas et al. [29, 30] and developed further by Mendoza and 120 

Xenarios [31]. By applying logic rules to a network of known interactions it is possible to 121 

identify the number of stable resting states, their type as well as their molecular and cellular 122 

description, without detailed knowledge of the response dynamics. In this work we use this 123 

method to extend our previous analysis of human HPA axis dynamics by including its 124 

regulatory interactions with the neighboring HPG axis and immune system. This resulting 125 

mathematical model better represents the complexity of endocrine-immune interactions by 126 

supporting the detection and identification of alternate resting modes of the HPA-HPG-127 

immune axis. Based on connectivity information alone, we show that multi-stability is easily 128 

obtained from these interacting systems. Moreover, we show that experimental data from 129 

our on-going studies of GWI and CFS show better alignment with these alternate resting 130 

modes than with the typical healthy homeostatic stable state. Ultimately, knowledge of such 131 

homeostatic modes could be used to identify promising applications of pharmaceutical, 132 

hormone and/or immune therapy that exploit the body’s natural dynamics to reinforce 133 

treatment effects.  134 

 135 
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Methods 136 

Ethics Statement 137 

All subjects signed an informed consent approved by the Institutional Review Board of the 138 

University of Miami. Ethics review and approval for data analysis was also obtained by the 139 

IRB of the University of Alberta. 140 

 141 

An Integrative Multi-systems Model of the HPA-HPG-Immune System 142 

There is a substantial amount of physiological data describing the HPA, HPG and immune 143 

systems as stand-alone entities.  To a much lesser degree there also exists evidence for the 144 

mutual interactions between these systems.  The following sections describe the 145 

experimental evidence used to infer the topology of an overarching HPA-HPG-immune 146 

interaction network (Figure 1). 147 

  148 

The HPA Axis: Activation of the HPA axis begins at the paraventricular nucleus (PVN) of 149 

the hypothalamus. Specifically, afferents transmitting stress related information in the brain 150 

converge on the medial parvocellular neurons of the PVN inducing the release of several 151 

peptides, including corticotropin-releasing hormone (CRH) and arginine vasopression (AVP), 152 

into the pituitary hypophysial-portal circulation.  The unique vascular system allows very 153 

small quantities of these hypothalamic hormones to act directly on their targets in the 154 

anterior pituitary without dilution by systemic circulation.  CRH and AVP act in conjunction on 155 

membrane bound CRH-R1 receptors in the anterior pituitary to stimulate adrenocorticotropic 156 

hormone (ACTH) synthesis, and its rapid release into peripheral circulation.  ACTH 157 

circulates to the adrenal cortex where it acts on the membrane bound MC2-R receptor to 158 

simulate the release of GCs (corticosterone in the rat, and cortisol (CORT) in humans and 159 

nonhuman primates).  To regulate the stress response, GCs exert negative feedback at the 160 

hypothalamus and pituitary to inhibit further synthesis and release of CRH and ACTH, 161 

respectively [32].  This is the standard view of the HPA axis utilized in the majority of models 162 

(Figure 1 A).  However, as noted by Gupta et al. [27] circulating glucocorticoids act via 163 
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cytostolic GRs, which, unlike membrane bound receptors, dimerize (GRD) and translocate 164 

into the cell nucleus upon activation to up-regulate GR synthesis and interact with other 165 

relevant transcription factors, or GC-sensitive genes (Figure 1 B).  Gupta et al. included this 166 

GR expression feedforward loop at the pituitary, as it is a main driver of the HPA axis, and 167 

found a resulting bistability in the HPA system [27].  However, all nucleated cells possess 168 

GRs, as GCs influence practically every system in the body, suggesting this feedforward 169 

loop may be important in other tissues beyond the HPA axis.  As described below major 170 

systems affected by GCs include the HPG axis and immune system. 171 

 172 

The HPG Axis:  GCs have an inhibitory effect on the HPG axis, a central regulator of the 173 

reproductive system, at all levels [33-37]. Activation of the HPG starts from brain generated 174 

pulsatile signals that stimulate the preoptic area of the hypothalamus to produce 175 

gonadotropin-releasing hormone (GnRH).  GnRH is secreted into the pituitary hypophysial 176 

portal bloodstream, which carries it to the pituitary gland, where it activates membrane 177 

bound GnRH-R receptors, resulting in the synthesis and secretion of luteinizing homone 178 

(LH) and follicle-stimulating hormone (FSH) into circulation.  These gonadotropins flow to the 179 

gonads where they work synergistically to promote the secretion of the sex steroids.  In 180 

males, LH binds to receptors on Leydig cells in the testes to stimulate the synthesis and 181 

secretion of testosterone (TEST).  In females, LH activates receptors on Theca interna cells 182 

in the ovaries to stimulate the release of androstenedione, which is aromatized by granulosa 183 

cells to produce estradiol (EST), and progesterone (PROG).  TEST negatively feeds back on 184 

the HPG to inhibit GnRH, FSH and LH secretion and synthesis [33].  This feedback 185 

mechanism is somewhat more complex in females where, depending on the phase of the 186 

female menstrual cycle, EST and PROG can exert either positive or negative feedback on 187 

the production and release of GnRH and the gonadotropins  [36, 38, 39].         188 

 189 

A lesser-known aspect is that several components of the HPG axis exert reciprocal effects 190 

on the HPA axis  [33, 34, 36]. Testosterone exhibits an inhibitory effect on all levels of the 191 
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HPA [33] (Figure 1 C), whereas EST and PROG can serve to stimulate or inhibit the HPA 192 

axis depending on menstrual cycle phase, or phase of life [34].  These affects may be 193 

mediated through changes in adrenocorticoid synthesis, stress-induced ACTH and GC 194 

release, and CRH and AVP synthesis in the PVN, by direct activation of oestrogen and 195 

androgen receptors along the HPA or via interaction between GRs and sex steroid receptors 196 

to regulate transcription [33,34,36].  Thus, an interactive functional crosstalk exists between 197 

the HPA and HPG axes, which cannot be ignored when investigating HPA axis regulation 198 

and dysfunction.  Mutual inhibition between the HPA and HPG (Figure 1 C) was considered 199 

standard for males.  However, as it is not clear whether the EST and PROG 200 

inhibition/stimulation of the HPA occurs in coordination with the inhibition/stimulation of the 201 

HPG, these cases were explored for females alone as separate alternative models of the 202 

HPA-HPG interaction (Figure 1 D-G) in addition to the model considered for males. 203 

 204 

A Simple Model of the Immune System: While not typically considered part of the 205 

neuroendocrine system, the immune system plays a very important role in regulating the 206 

HPA axis.  Here we base our simplified immune system upon our previous work detailing the 207 

communication network of the immune response [40].  Cells of the innate immune response 208 

(ICells), including mononuclear phagocytes, such as macrophages, and dendritic cells, 209 

natural-killer (NK) cells, endothelial cells and mucosal epithelial cells, communicate via the 210 

release of numerous cytokines.  Cytokines that regulate the innate immune response (IIR) 211 

include interleukin (IL) -1, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α), and can also 212 

include IL-12, a primary mediator of early innate immunity.  Primarily, these signals serve to 213 

activate and recruit other ICells, which in turn produce more cytokines.  IL-15, which 214 

stimulates proliferation of NK cells and effector T-lymphocytes, can also be considered as 215 

part of the IIR as well as IL-23, an important inflammatory signal contributing to the Th17 216 

response against infection.  217 

 218 
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IIR signals can also serve to prime helper T cells towards a Th1 type adaptive immune 219 

response (T1Cell).  This response produces Th1 proinflammatory cytokines (T1Cyt) 220 

including IL-2, interferon-gamma (IFN-γ), and tumor necrosis factor beta (TNF-β), which 221 

further activates ICells, while suppressing the Th2 adaptive immune response  (T2Cell).  222 

The T2Cell is responsible for the production of the Th2 anti-inflammatory cytokines (T2Cyt) 223 

IL-4, IL-5, IL-10 and IL-13, which have important anti-inflammatory and immunosuppressive 224 

activities, and serve to inhibit the activity of T1Cell and ICells.  225 

 226 

Cytokines can also serve as mediators between the immune and endocrine systems. 227 

Between the HPA and the immune network there exists a mutual crosstalk [41-43] (Figure 1 228 

C-G).  The IIR and T1Cell cytokines selected here serve to stimulate the HPA axis at all 229 

levels [41-43].  CORT, in turn, acts to suppress the activity of ICells (specifically NK cells 230 

[44], and DC cells [45]), and the T1Cell [46] causing a shift from the inflammatory to the anti-231 

inflammatory response [41, 42, 47].   The interaction between the HPG and the immune 232 

system is complex and sexually dimorphic, and is still an active field of research.  However, 233 

at a general coarse level of description TEST serves to stimulate the development of the 234 

Th1 response [48] (Figure 1 C), whereas EST inhibits the Th1 response causing a shift 235 

towards the Th2 anti-inflammtory response [48,49].    The reciprocal crosstalk from the 236 

immune system to the HPG is equally intricate.  In broad terms this conversation is 237 

communicated via T1Cyt.  Receptors for TNF-α and IFN-γ are expressed in testicular Leydig 238 

cells and there is evidence that these cytokines can directly inhibit testosterone production 239 

[50].  TNFα also decreases the release of GnRH in the hypothalamus and LH in the pituitary 240 

gland in both males [50] and females [51] eventually leading to a decrease in sex steroid 241 

levels.  As such, we model the T1Cyt as inhibiting GnRH and LH/FSH in both male and 242 

female models.   243 

 244 

 245 

 246 
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A Discrete State Representation 247 

Following the methods of Thomas et al. [29, 30], and more recently Mendoza and Xenarios 248 

[31], the neuroendocrine-immune system was represented as a connectivity model 249 

consisting of interconnected molecular and cellular variables with three discrete states: -1 250 

(inhibited), 0 (nominal) and 1 (activated). According to this type of model the current state of 251 

all variables in a system is described by a state vector , such that: 252 

𝑥𝑡=𝑥1𝑡,𝑥2𝑡,…,𝑥𝑁𝑡	                                                   (1) 253 

where xN (t) is the state of the Nth variable of the system at time t.  The image vector 
x(t +1)  254 

describes the preferred state towards which the system evolves in the next time increment. 255 

The state value of the image vector for the ith variable is determined from its current state 256 

and a set of balanced ternary logic statements based on the current value of variable and 257 

the mode of action (i.e. activate or inhibit) of the neighboring input variables. These logic 258 

statements are expressed as follows (Eq. 2):  259 

𝑥𝑖𝑡+1=(𝑥𝑖1𝐴𝑡!𝑥𝑖2𝐴𝑡…𝑥𝑖𝑗𝐴𝑡)∇(𝑥𝑖1𝐼𝑡!𝑥𝑖2𝐼𝑡…𝑥𝑖𝑘𝐼𝑡)(𝑥𝑖1𝐴𝑡!𝑥𝑖2𝐴𝑡…𝑥𝑖𝑗𝐴𝑡)¬(𝑥𝑖1𝐼𝑡!𝑥𝑖2𝐼𝑡…𝑥𝑖𝑘𝐼𝑡)                          260 

(2) 261 

 262 

where the  ∇, ∨, and ¬ symbols are ternary HIGH/LOW PASS, OR and NOT operators, xij
A  263 

is the state of the ith variable’s jth activator, xik
I is the state of the ith variable’s kth inhibitor.  The 264 

ternary operators given in Equation (2) are described in further detail in Supplementary 265 

Tables 1- 3. The first entry in Equation (2) is used when the variable possesses both 266 

activators and inhibitors, the middle when the variable has only activators and last when the 267 

activator has only inhibitors.  268 

 269 

Applying Equation (2) to each variable in the model for the mth state of the system, 
xm (t) , 270 

defines the image vector 
xm (t +1)  for that state. With 

xm (t +1)  defined, the system may be 271 

updated asynchronously (allowing only one variable to change at a time) following the 272 

x(t)



 11 

generalized logical analysis of Thomas et al. [29, 30].  According to this method the ith 273 

variable of the mth state vector 
xm (t)  is moved one step towards its preferred image 274 

xm (t +1)  (e.g. If 
xm (t)  = -1 and 

xm (t +1)  = 1, then 
xi (t) is set to 0).  Thus, for each current 275 

state of the system there are potentially several subsequent states towards which it may 276 

asynchronously evolve.  277 

 278 

The number of states, and the values they can be assigned, determine the total number of 279 

states available to the model system. With the ternary logic used here, a model of N 280 

variables possesses 3N states.  As a result, the number of states increases rapidly as new 281 

variables are added.  By analyzing all possible states of the system a temporal sequence of  282 

states may be discerned.  To interpret the results, each state of the system can be 283 

represented as an element in a graph.   The evolution from one state to a subsequent state 284 

can be represented as a directed edge between the two states in this graph.  Representation 285 

of the state trajectories in this fashion makes it possible to draw on the concepts and tools of 286 

graph theory for analysis of the system dynamics.  Steady states are defined as those states 287 

for which the image vector is the same as the current state vector; in other words the state 288 

possesses an out degree of 0.  289 

 290 

 291 

Comparison to Model 292 

GWI Cohort Sample Collection:  Similar cytokine profiles and endocrine measures were 293 

obtained as part of a larger ongoing study of 27 GWI and 29 HC subjects recruited from the 294 

Miami Veterans Administration Medical Center. Subjects were male with an average age of 295 

43 years and BMI of 28. Inclusion criteria was derived from Fukuda et al. [52], and consisted 296 

in identifying veterans deployed to the theater of operations between August 8, 1990 and 297 

July 31, 1991, with one or more symptoms present after 6 months from at least 2 of the 298 

following: fatigue; mood and cognitive complaints; and musculoskeletal complaints. Subjects 299 
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were in good health prior to 1990, and had no current exclusionary diagnoses [53]. Use of 300 

the Fukuda definition in GWI is supported by Collins et al. [54]. Control subjects consisted of 301 

gulf war era sedentary veterans and were matched to GWI subjects by age, body mass 302 

index (BMI) and ethnicity. Additional details regarding this cohort and the laboratory assays 303 

performed are available in Broderick et al. [55]. 304 

 305 

CFS Cohort Sample Collection:  Levels of cortisol (CORT) and estradiol (EST) measured 306 

in peripheral blood were obtained from the Wichita Clinical dataset [56] for a group of 39 307 

female CFS subjects and 37 Healthy controls (HCs) with an average age of 52 years and an 308 

average body mass index (BMI) of 29. Additional details of this cohort and the laboratory 309 

assays performed may be found in work previously reported by our group [57, 58]. Multiplex 310 

cytokine profiles were obtained in plasma from a separate but demographically comparable 311 

cohort of 40 female CFS subjects and a group of 59 healthy female matched control 312 

subjects studied by our group at the University of Miami [59]. Average age in this cohort was 313 

53 years with an average BMI of 26. Profiling of cytokine concentrations was performed in 314 

morning blood plasma samples using an enzyme-linked immuno-absorbent assay (ELISA)-315 

based assay. Details of this protocol and results of a comparative analysis of cytokine 316 

expression patterns are available in Broderick et al. [59]. In both studies a diagnosis of CFS 317 

was made using the International Case Definition [53,60]. Exclusion criteria for CFS included 318 

all of those listed in the current Centers for Disease Control (CDC) CFS case definition, as 319 

well as psychiatric exclusions, as clarified in the International CFS Working Group [60]. 320 

 321 

Statistical Analysis:  Brown’s theoretical approximation [61] of Fisher's statistics was used 322 

to calculate the significance of alignment between experimental data and a given model 323 

predicted state .   Fisher's method, a meta-analysis technique, combines probabilities to 324 

obtain the overall significance of a set of P-values obtained from independent tests of the 325 

same null hypothesis. The combined χ2 statistic, 326 



 13 

𝑇0=−2𝑖=1𝑁ln(𝑝𝑖)                                                          (3) 327 

 where N is the number of measureable variables and pi is the corresponding P-values under 328 

the null hypothesis, has a χ2 distribution with 2N degrees of freedom assuming that the 329 

performed tests are independent.  As the molecular variables of the endocrine and immune 330 

system interact with one another, as evidenced by the above connectivity diagrams, they are 331 

not independent. As a result, direct application of this test statistic is invalid, since the 332 

assumption of independence is violated.  Brown [61] suggested a method for combining 333 

non-independent tests. If the tests are not independent, then the statistic T0 has mean m = 334 

2N and variance (σ2) given as, 335 

𝜎2=4𝑁+2𝑖=1𝑁−1𝑗=𝑖+1𝑁𝑐𝑜𝑣(−2ln𝑝𝑖,−2ln𝑝𝑗)                                (4) 336 

where pi and pj are the P-values for each test and the covariance (cov) is calculated as, 337 

𝑐𝑜𝑣(−2ln𝑝𝑖,−2ln𝑝𝑗)=𝜌𝑖𝑗(3.25+0.75𝜌𝑖𝑗),	  	  	  	  	  	  	  	  	  &	  	  	  	  	  	  	  0≤𝜌𝑖𝑗≤1𝜌𝑖𝑗(3.27+0.71𝜌𝑖𝑗),	  	  −0.5≤𝜌𝑖𝑗≤0                          338 

(5) 339 

with ρij being the unadulterated correlation between variable i and variable j. Finally, the 340 

overall significance P of a set of non-independent tests is calculated using the statistic T 341 

which under the null hypothesis follows the central χ2 distribution, where T = T0/c with 2N/c 342 

degrees of freedom and c = σ2/4N. 343 

 344 

Here, we test if each experimental measure aligns with a given model predicted state.  Our 345 

null hypothesis is that the experimental measures do not align.  P-values for individual 346 

variables, pi, are calculated using two-sample t-tests between ill subjects and healthy 347 

controls.  Where model predictions give a variable as high (+1), ‘right-handed’ one-tailed test 348 

are used, whereas a ‘left-handed’ test was used when model predictions are low (-1), to give 349 

the probability of obtaining the predicted value when the null hypothesis is true.  For the 350 

case where the model predicts normal behavior for a variable (0) a two-tailed t-test is used.  351 

However, the p-value from the two-tailed test, ptwo-tail, gives the probability that there is an 352 

observable difference between illness and control, which is the null hypothesis.  To rectify 353 
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this, when comparing to a model predicted variable of 0 we take the P-value to be pi = 1 - 354 

ptwo-tail, giving the probability of obtaining the predicted value when the null hypothesis is true.        355 

 356 

All cohort data was normalized using a Log2 transformation before T-tests and correlation 357 

calculations were performed.   The unadulterated correlation values ρij between two 358 

variables i and j were calculated in healthy subjects as the pairwise Pearson's linear 359 

correlation coefficient between variables .  The above-mentioned experimental data was 360 

compared against model predictions based on the five measureable variables, namely 361 

TEST/EST, CORT, IIR, T1Cyt, and T2Cyt.  Where model variables represent an aggregate 362 

set of markers each experimentally measured constituent marker was compared individually 363 

to the model predicted value.  For example, T1Cyt is composed of IL-2, IFNγ and TNFβ, 364 

therefore 3 individual P-values were calculated based on the predicted value of T1Cyt.    365 

 366 

Results 367 

Stable States in the HPA Models 368 

Application of the discrete state representation to the basic stand-alone HPA model (Figure 369 

1 A) generated 27 system states, and failed to produce multiple stable states (Figure 2).  370 

This is consistent with previous ordinary differential equation based models of this basic 371 

representation of the HPA axis [21-26].  Discrete state representation of the HPA-GR model 372 

(Figure 1 B) generated 243 system states.  Of these, 2 system states possessed no 373 

outbound edges and were stable attractor steady states (Figure 2).  In the first steady state 374 

all state variables assumed nominal values whereas the second steady state corresponded 375 

to activation of state variables GRD and GR with suppression of ACTH and CORT.  Once 376 

again this solution is consistent with that obtained by analysis of the ordinary differential 377 

equation model of the HPA-GR system proposed by Gupta et al. [27] and Ben Zvi et al. [16].  378 

 379 

Combining the HPA-GR axis with the HPG axis and immune system (Figure 1 B-G) 380 

altogether produced 4,782,969 system states.  For the male HPG (model a) (Figure 1 C), 381 
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and three of the four female HPG models (models b, d and e) (Figure 1 D,E,G) five steady 382 

states were identified (Figure 2).  One stable state is characterized by nominal values for all 383 

variables (SS0), which corresponds to the typically normal resting state of the system.  The 384 

first alternate state (SS1) displays low ACTH with high GRD and GR, while the second 385 

(SS2) has inhibited innate and Th1 immune responses (low ICell, IIR, T1Cell, and T1Cyt), 386 

with increased Th2 activity (high T2Cell and T2Cyt).  The third stable state (SS3) appears to 387 

be a combination of SS1 and SS2 with low ACTH, ICell, IIR, T1Cell and T1Cyt, and high 388 

GRD, GR, T2Cell and T2Cyt.  The final state (SS4) presents with hypercortisolism, 389 

suppressed TEST and a shift towards the Th1 immune reponse (low T2Cell, T2Cyt, GnRH, 390 

LH/FSH and TEST/EST, and high CORT, GRD, GR, T1Cyt and T1Cell).   The persistently 391 

low CORT state seen in the previous stand-alone HPA models of Gupta et al. [16] and Ben 392 

Zvi et al. [27], was not recovered here.  Instead, CORT was expressed at a nominal or high 393 

value for all predicted states.  SS1 most closely resembles the results of Gupta et al. [27], 394 

and Ben Zvi et al. [16], however these previous models only considered a single regulator of 395 

CORT, namely ACTH.  The lack of a predicted hypocortisolic state in SS1 here can be 396 

attributed to the interplay of multiple regulators of CORT (ACTH, IIR, TEST/EST, and 397 

T1Cyt).  Inclusion of additional regulators is not expected to further alter this state.   398 

 399 

In the final female HPG model (model c) (Figure 1 F), corresponding to the ovulation phase, 400 

these same five states were recovered along with six new additional states (Figure 2).  In the 401 

first three additional states the HPA axis and innate immune response are suppressed with 402 

low CRH, ACTH, CORT, ICell and IIR, while the HPG and anti-inflammatory response are 403 

raised with high T2Cell, T2Cyt, GnRH, LH/FSH and EST.   The difference between the three 404 

states is noted in the level of glucocorticoid receptor response, GR and GRD, which together 405 

take values of low (SS5), nominal (SS6) and high (SS7).  The remaining three additional 406 

states all give suppressed HPA (CRH, ACTH, and CORT) and lowered T1Cell activity, with 407 

high HPG activity (GnRH, LH/FSH and EST), and are again differentiated by their 408 

glucocorticoid receptor levels (GR, GRD): low (SS8), nominal (SS9) and high (SS10). 409 
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 410 

Overall, inclusion of the simplified immune system and the HPG works to regulate CORT 411 

levels in the HPA axis.  The male HPG (HPG model a), and the majority of female HPG 412 

configurations (HPG models b, d and e), serve to produce either nominal values of CORT, 413 

with the potential of a shift towards Th2 activation (SS2 and SS3), or a hypercortisolic state 414 

with low TEST/EST and a shift towards Th1 (SS4). Only connections associated with the 415 

female gender (HPG model c) were responsible for the emergence of a natural 416 

hypocortisolic state (SS5 – SS10).   This hypocortisolic state comes with high EST and may 417 

have a shift towards Th2 activation in the immune system. 418 

 419 

Comparison of GWI and CFS to Predicted States 420 

Application of Brown’s meta-analysis method allowed for the calculation of a combined P-421 

value comparing the experimental data with the predicted stable states, allowing for the 422 

alignment between different predicted stable states to be ranked.  As experimental 423 

measures allowed for comparison with only five variables (TEST/EST, CORT, IIR, T1Cyt, 424 

and T2Cyt) several of the predicted stable states resulted in the same experimental profile 425 

and resulting combined P-value despite being distinct states (e.g. SS0 and SS1 both show 426 

nominal values for the five measureable variables).      427 

 428 

To compare to our model the difference between steroid and cytokine levels recorded in 429 

male Gulf War veterans with GWI and HCs were compared to the steady state values 430 

predicted by the male variant of the HPA-GR-Immune-HPG model (model a).  Comparison 431 

to the nominal states (SS0/SS1) showed poor alignment, PSS0/SS1 = 0.82, suggesting that the 432 

GWI profile cannot be considered the same as nominal behavior.  Alignment with states 433 

presenting a shift towards Th2 immune activation (SS2/SS3) showed better alignment, 434 

PSS2/SS3 = 0.38, although with low significance.  The final state, displaying hypercortisolism, 435 

low TEST and a shift towards Th1 immune activation (SS4), yielded the best alignment, PSS4 436 

= 0.30, again however, with a low overall significance. 437 
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 438 

The difference between steroid and cytokine levels of female CFS subjects and HCs were 439 

compared to the steady state values predicted by the female variants of the HPA-GR-440 

Immune-HPG models (model b-e).  Again, alignment with states presenting nominal 441 

changes in measureable variables (SS0/SS1) was poor, PSS0/SS1 = 0.83, supporting that CFS 442 

is distinctly different from normal behavior.   The Th2 shifted immune profile states 443 

(SS2/SS3) showed a significant alignment, PSS2/SS3 = 0.04, suggesting Th2 activation in 444 

CFS.  This is further supported by low alignment with the Th1 immune activated state, with 445 

hypercortisolism, and low EST (SS4), PSS4 = 0.28. Improved alignment is seen in states with 446 

a shift towards Th2, coupled with hypocortisolism, and high EST (SS5/SS6/SS7), PSS5/SS6/SS7 447 

= 0.02, suggesting that these features contribute to the CFS profile.  This is also supported 448 

by low alignment with states only presenting hypocortisolism and high EST with no immune 449 

activation (SS8/SS9/SS10), PSS8/SS9/SS10 = 0.60.  450 

 451 

Discussion 452 

The existence of multiple stable states is a prime characteristic of systems incorporating 453 

feedforward and feedback mechanisms, and plays a critical part in guiding the complex 454 

dynamics observed in biology.  These alternate stable regulatory regimes occur due to the 455 

feedforward and feedback mechanisms within the system and may allow escape routes for 456 

survival of an insult and provide support in the medium or long-term to what is equivalent to 457 

an uneasy cease-fire or adaptive compromise. An example of such compromises in 458 

functional status in exchange for survival include vasovagal response to decreased blood 459 

pressure and syncope (“fainting”) [62]. From an evolutionary perspective it would be 460 

advantageous for a pathogen to establish an adaptive relationship with the host. As naturally 461 

occurring alternate states of homeostasis are inherently stable exploiting, these regimes 462 

could be an advantageous way for a pathogen to establish long-term chronic infection, in 463 

essence using the body’s own homeostatic drive to maintain the status quo.  To explore this 464 

hypothesis, we constructed a simple but integrated model incorporating three of the body’s 465 
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major regulatory axes: the HPA, the HPG and the immune system.  Modeling the dynamic 466 

properties of these complex systems presents a significant challenge, as much of the 467 

detailed information describing in vivo kinetics in humans is unavailable. However, there is a 468 

very significant body of connectivity data describing the interactions between the molecular 469 

and cellular elements of these biological systems.  To make use of this wealth of information 470 

we have applied a discrete state representation to the neuroendocrine immune system 471 

based solely on the biological connectivity found in the literature and a set of ternary logical 472 

rules.  Using a discrete logic methodology proposed by Thomas [30], we demonstrated that 473 

the inclusion of feedforward/feedback loops leads to multiple stable states.  Indeed, addition 474 

of the positive feedback loop regulating glucocorticoid receptor dimerization (GR-GRD) to a 475 

basic model of the HPA axis generated an alternate homeostatic state characterized by high 476 

receptor expression and low circulating cortisol levels, a result found previously by Gupta et 477 

al. [27] and Ben Zvi et al.  [16] using differential equation based models. So dependent is the 478 

natural emergence of these states on the regulatory wiring that inclusion of this receptor 479 

dimerization in a more complex HPA-Immune-HPG models resulted in the disappearance of 480 

this alternate hypocortisolic state through compensatory effects of these axes. Only when all 481 

three interacting axes were included was an alternate hypocortisolic condition recovered.  482 

Therefore while simple models require the inclusion of positive receptor feedback dynamics 483 

to produce mutlistability, these effects become inherent in more coarse, but comprehensive 484 

regulatory circuits, and receptor-level feedback becomes less of a contributor in the support 485 

of multiple attractor states.  Coarse-grained but comprehensive models may suffice 486 

therefore in capturing physiologically relevant and clinically verifiable response dynamics.     487 

 488 

Our analysis of these coarse grained models spanning across multiple regulatory axes 489 

highlighted the important role of gender in supporting a persistent hypocortisolic condition.  490 

Due to the suppressive actions of the male gonadal system in regulating itself and the HPA 491 

axis, a low cortisol steady state is never available to the male, at least theoretically at this 492 

level of detail.   In women however, the combined effect of EST and PROG on the HPA still 493 
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remains somewhat inconsistent [34,63] owing to the varying effects of these hormones 494 

during and after the menstrual cycle. EST is generally believed to stimulate the HPA axis 495 

during the menstrual cycle [63-65], however evidence indicates that in perimenopausal, 496 

menopausal or ovariectomized women the HPA axis response is inversely correlated with 497 

plasma EST levels suggesting an inhibitory effect [65,66]. This suggests that sex hormone 498 

regulation may change in feedback polarity and act as both inhibitor and activator of the 499 

HPA axis. For this reason HPA-HPG interaction in women will in theory readily support the 500 

presence of a stable hypocortisolic condition when HPG axis regulation inhibits the HPA axis 501 

while stimulating itself.   502 

   503 

In addition to sex hormone regulation, interaction with the immune system also appears to 504 

play a significant role in determining abnormal cortisol levels. In our coarse-grain models, 505 

cortisol exerts a suppressive action on the innate immune system and the Th1 adaptive 506 

immune response.  Conversely, positive feedback by certain components of the immune 507 

system promotes increases in cortisol levels, which support a hypercortisolic steady state.  508 

While, inclusion of the glucocorticoid receptor dimerization (GR-GRD) in these models 509 

yielded additional steady states, it did not result in any significant changes to the profile in 510 

regards to cortisol levels. Combining the actions of HPA, HPG and immune regulation 511 

supported the existence of a stable hypercortisolic state in all models of men and women 512 

while a persistent hypocortisolic state was available only in women and only under certain 513 

modes of HPG regulation. Once again, while the inclusion of the GR-GRD receptor 514 

dimerization in this overarching model yielded additional steady states, it did not result in any 515 

significant changes to the homeostatic profiles. 516 

 517 

These findings suggest that abnormally high levels of cortisol and adaptive immune 518 

activation, in this case Th1, may be perpetuated under certain conditions by the system’s 519 

own homeostatic drive. This prediction of persistent and stable Th1 activation is consistent 520 

with evidence of anomalies in immune signaling in GWI [55,67,68]. Skowera et al. measured 521 
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intracellular production of cytokines in peripheral blood and found ongoing Th1-type immune 522 

activation in symptomatic Gulf War Veterans compared to healthy counterparts [67]. More 523 

recent work confirmed this finding while also suggesting that this may occur in the more 524 

complex context of a mixed Th1:Th2 response [55], something not captured by the simple 525 

immune model used here.  Though we were unable to find documented reports of lower 526 

testosterone levels in GWI beyond the experimental data presented here, a large study of 527 

gulf war veterans in the UK found increased risk of fertility problems in this population [69], 528 

suggesting a possible relation. 529 

 530 

In much the same way, conditions involving hypocortisolism and a Th2 shift may also be 531 

perpetuated at least in part by the natural homeostatic regulatory programming.  In this case 532 

the homeostatic program may be driven by sex steroid suppression of the HPA axis and 533 

promotion of HPG function coupled with the mutual inhibition between the Th1 response and 534 

function of the gonadal axis, a configuration seemingly available only to female subjects in 535 

our models. This would suggest that the hypocortisolism seen in diseases, such as CFS [70-536 

72], could be a result of the complexity afforded by the interaction between the HPA, 537 

immune and HPG axes in female subjects.  Indeed model predictions describing such an 538 

alternate homeostatic state in women aligned with our experimental results from CFS 539 

subjects, and is consistent with previous findings of Th2 activation in CFS (Brenu et al., 540 

2011, Nakamura et al., 2010 and Natelson et al., 2005, Broderick et al., 2010).  This 541 

alignment with a naturally occurring homeostatic conditions may explain, at least in part, the 542 

biased prevalence of such persistent diseases in women [73-78].  Indeed, these authors 543 

report that approximately 70% of observed CFS patients are women.  Additionally, the 544 

prevalence of CFS in the 40–49-year-old age range [78], and the higher prevalence of 545 

gynecological conditions and gynecological surgeries in women with CFS [79] supports the 546 

evidence that HPA suppression by estradiol appears more likely in perimenopausal, 547 

menopausal or ovariectomized women [65,66].  Interestingly, as many as 1 in 3 CFS 548 

subjects have reported symptom relief during pregnancy [80]. The normal trend in 549 
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pregnancy towards increased cortisol levels, especially in the third trimester, might be a 550 

contributing factor that would support the key involvement of sex hormone regulation 551 

proposed by our analysis [81].  While, in normal pregnancy this increase in cortisol typically 552 

coincides with an increase in cortisol-binding globulin (CBG) maintaining the level of free 553 

cortisol, CBG genetic variants in CFS have the potential to alter normal CBG function 554 

[82,83].    555 

 556 

While certainly more comprehensive than their predecessors, these models remain relatively 557 

coarse representations of the interplay between the endocrine and immune systems.  558 

This is particularly true of immune model granularity, especially when one considers the 559 

complex signaling network supported by immune cells as well as other immune-sensitive 560 

cells [84].  The important role of key neurotransmitters linking the central nervous system 561 

with the HPA axis and the immune system was also under-represented in this first 562 

generation of models. For example, norepinephrine and epinephrine stimulate the β2-563 

adrenoreceptor-cAMP-protein kinase A pathway inhibiting the production of 564 

Th1/proinflammatory cytokines and stimulating the production of Th2/anti-inflammatory 565 

cytokines causing a selective shift from cellular to humoral immunity [85,86].  Additionally, 566 

lymphocytes express most of the cholinergic components found in the nervous system.  567 

Lymphocytes may be stimulated by, or release, acetylcholine thus constituting an immune 568 

regulating cholinergic system secondary to the nervous system [87].  Another 569 

neurotransmitter, neuropeptide Y (NPY), also serves as a powerful immune modulator [88] 570 

and has recently been shown to play a role in CFS [89].  These components are without 571 

question important, however based on our initial observations from this piecewise analysis 572 

we expect that increased detail will lead to the emergence of additional response programs 573 

rather than the elimination of attractors found here. 574 

 575 

As these models are based on currently documented knowledge of human physiology and 576 

regulatory biochemistry they are necessarily incomplete. Nonetheless the simple models 577 
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presented here illustrate the importance of an integrative approach to understanding 578 

complex illnesses. Further refinement of the model to include more detailed description of 579 

interactions within and between the HPA, HPG and immune systems could extend its 580 

applicability to other illnesses as would the incorporation of other key systems such as the 581 

brain and central nervous systems. Yet, even with the coarse-grained co-regulation 582 

networks investigated we found numerous stable resting states that differ significantly from 583 

normal and were indicative of complex and persistent regulatory imbalances.  Findings such 584 

as this support the use of an alternate model for disease, one which is not necessarily 585 

associated with failure of individual components, but rather with a shift in their coordinated 586 

actions away from normal regulatory behavior. Response to exercise and other stressors 587 

has the potential to be very different in these new regulatory regimes. This is something that 588 

we have observed firsthand in our work with human GWI and CFS subjects [90].   589 

 590 

Finally, when considering alignment with the experimental data presented here for CFS and 591 

GWI, it is important to remember that it was never our hypothesis that these illnesses 592 

resulted solely from the actions of homeostatic drive. Instead we proposed that homeostatic 593 

drive might be a significant contributor to the persistence of illness mechanisms. Because 594 

these naturally occurring regimes, once instantiated, provide an alternate stable 595 

homeostasis resistant to change, it may offer fertile ground in support of many chronic 596 

pathological processes. The alignment of several immune and endocrine markers modeled 597 

here with experimental data from CFS and GWI, two chronic conditions, would support at 598 

least partial involvement of the body’s own homeostatic drive in facilitating the perpetuation 599 

of these conditions. This may promote resistance to therapy and the natural regulatory 600 

barrier to change, even positive change, should at least be considered in the design of 601 

robust treatment avenues.     602 
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Tables 843 

Table 1:  Ternary HIGH/LOW PASS operator 844 
A ∇B B = -1 B = 0 B = 1 
A = -1 0 0 -1 
A = 0 0 0 -1 
A = 1 1 1 0 

 845 
Table 2: Ternary OR operator 846 

A∨B B = -1 B = 0 B = 1 
A = -1 -1 0 1 
A = 0 0 0 1 
A = 1 1 1 1 

 847 
Table 3: Ternary NOT operator 848 

A ¬A 

-1 1 

0 0 

1 -1 
 849 

 850 

Figure Legends 851 

 852 

Figure 1:  Standard and extended HPA models.  (A) Standard HPA model. (B) HPA-GR 853 

model of Gupta et al. [27]. Integrated models (C) HPA-GR-Immune-HPGa for males, and (D) 854 

HPA-GR-Immune-HPGb, (E) HPA-GR-Immune-HPGc, (F) HPA-GR-Immune-HPGd, and (G) 855 

HPA-GR-Immune-HPGe for females. 856 

 857 

Figure 2: Steady states of standard and extended HPA models.  White – nominal state (0); 858 

Green – high state (1); Red – low state (-1); Grey – N/A to the model. 859 

 860 
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Appendix B:  
 
Updated scope of work (SOW) submitted as part of request for transition of award to Nova Southeastern 

University. 
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Revised Statement of Work (SOW) - Relocation to Nova Southeastern University (NSU), FL 
 
The following SOW has been updated to reflect current status of project consistent with the annual progress report submitted in 
September, 2012. Described are the remaining activities required for completion. These will now be conducted by the Broderick 
group from its new home institution: Nova Southeastern University, Fort Lauderdale, Florida.  
 
In support of Dr. Broderick’s transition Nova Southeastern University is entering into a service agreement with the Center for 
Computational Sciences (CCS) at the University of Miami, which will serve as the principal high-performance computing resource 
for the Broderick group from this point forward. The latter will continue to use the University of Alberta’s WestGrid high-
performance computing platform during the transition period in order to ensure continuity of the work. 
 
Task 1. Evaluate and select agent-based simulation environment.  Completed.  
 
Task 2. Define and encode immune cell populations and interaction rules.  Completed.  
 
Task 3. Refine HPA axis model and integrate with immune model.   Completed. 
 
MILESTONE I: Completion and release of validated model combining ODE representation of the HPA axis and a discrete 
population-based model of the immune system. Target date:  Completed. 
 
Extensions to original Task 2, 3. 

3.a. Extension of circuit model of neuro-inflammatory cascades. In an extension of the original mandate for Task 2, the 
circuit logic approach is also being applied to model inflammatory processes occurring in the brain and involving the cell 
types and immune signaling specific to this physiological compartment.   

3.b. Extension to sex hormone and thyroid axes. Task 3 has also been extended beyond the original mandated scope to now 
include the endocrine axis regulating sex hormones. We expect to integrate thyroid function in this regulatory circuitry as 
well. 

 Timeline extended mandate: Months 1-4, Year 3 (now December, 2013) 
 Site(s): Nova Southeastern University 
 
Task 4. Design and conduct formal sensitivity and multi-stability analyses.  Completed 
 
Task 5. Network analysis of alternate homeostatic states.    Completed 

 
Extensions to original Task 4, 5. These steps will be repeated in the analysis of the extensions to the model proposed in 3(a) and 
3(b).  
 Timeline extended mandate: Months 1-4, Year 3 (now December, 2013) 
 Site(s): Nova Southeastern University 
 
MILESTONE II: Verification of hypothesis that GWI symptoms persist because the endocrine-immune system now occupies and 
alternate homeostatic stable point and engages a new sub-optimal stress response control program.  
 Target date: Month 4, Year 3 (now December, 2013); Currently 70% complete. 
 
Task 6. Identify and deploy large-scale optimization. This involves the selection of the best algorithm for exhaustive search of 

intervention possibilities.  We expect the combined endocrine-immune system to present multiple stable points and the 
landscape describing its dynamic response to be complex.  As a result standard techniques for optimization of treatment time 
course would terminate their search in the first region where treatment performance ceases to improve.  Overall such a 
treatment may be quite remote from that available in the neighboring response “valley”. 
Timeline: Months 2-4, Year 3 (now October - December 2013) 
 
6.a. Review global search algorithms. Review latest developments in evolutionary programming techniques as well as 

hybrid techniques to determine the most suitable search algorithm.  Acquire or develop code and deploy on CCS 
platform and test on logic model developed in 4b. 
Timeline: Month 1-2, Year 3 (now September - October 2013) 
Site(s): Nova Southeastern University 

6.b. Configure simulation-based optimization scheme.  Configure an interface that evaluates the fitness of candidate 
interventions by repeatedly launching short logic model simulations as it conducts its search for the most robust 
treatment course. Test and deploy. 
Timeline: Months 2-6, Year 3 (now October - February, 2014) 
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Site(s): Nova Southeastern University  

 
Task 7. Identify candidate treatment courses for GWI. Using the optimization scheme developed and deployed in Task 6, launch 

optimization runs from multiple initial conditions of endocrine-immune status.  Assess these options and report. 

Timeline: Months 5-12 Year 3 

7.a. Define and encode solution fitness criteria.  Identify and describe mathematically the immune and endocrine descriptors 
that can be safely changed and over what range they may be changed.  Incorporate these constraints with treatment goals 
and define optimization problem formally. 
Timeline: Month 3-5, Year 3 (now November, 2013 - January, 2014)  
Site(s): Nova Southeastern University 

7.b. Search for broadly applicable candidate treatment courses.  Identify a set of initial conditions of cytokine, hormone and 
immune cell abundance and launch repeated searches for optimal treatments from these points. 
Timeline: Months 6-9, Year 3 (now February - May, 2014) 
Site(s): Nova Southeastern University 

7.c. Critically assess candidate treatments. Review candidate treatment courses and assess these critically based on efficacy 
and minimal invasiveness. Propose design of pilot clinical trials for evaluation of the best candidates.   
Timeline: Months 10-11, Year 3 (now June - July, 2014)  
Site(s): Nova Southeastern University 

7.d.  End of project review and report. Timeline: Month 12, year 3 (now August, 2014).  

 
 
  

 

 

 

 




