
UNCLASSIFIED

Casbar User's Guide - Version 2

Rowan J. Gollan 1, Brendan T. O'Flaherty 1, Peter A. Jacobs 1, Ian A.

Johnston 2 and Alan Harrland 2

1 The University of Queensland

2 Weapons Systems Division

Defence Science and Technology Organisation

DSTO�GD�0746

ABSTRACT

The Collaborative Australian Ballistics Research code, Casbar , is a simulation
tool for the analysis of the interior ballistics of guns. The code solves a two-
phase, axisymmetric form of the governing equations for the �ow of gas and
particulates in the gun, and accommodates multiple projectiles within the sim-
ulation. Casbar is also suitable for investigating intermediate ballistics, and
can alternatively be used as a general compressible �ow solver. Casbar sup-
ports user-customized types of deterred or undeterred propellant grain, �exible
de�nition of initial conditions and ignition sources, and various constitutive
submodels for simulating interphase drag and heat transfer, intergranular stress
and propellant ignition. This document, the Casbar User's Guide - Version 2,
explains the use of the code and available options, and provides a worked ex-
ample with corresponding input �les. It is an update to the previous document
Casbar User's Guide, DSTO�GD�0594, re�ecting recent updates performed to
the numerical code.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO�GD�0746 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 DEFENCE
Facsimile: (08) 7389 6567

© Commonwealth of Australia 2013
AR No. AR-015-619
May, 2013

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

Contents

1 Introduction 1

2 Overview of the simulation procedure 2

3 Constructing input �les 3

3.1 Problem speci�cation �le . 4

3.1.1 Simulation control parameters . 5

3.1.2 Gas model . 8

3.1.3 Grain ignition model . 9

3.1.4 Interphase heat transfer model . 10

3.1.5 Grain burning model . 10

3.1.6 Intergranular stress model . 10

3.1.7 Interphase drag model . 12

3.1.8 Flow conditions . 13

3.1.9 Block de�nition of the �ow domain 14

3.1.9.1 User-de�ned �ll functions 15

3.1.9.2 Boundary conditions 16

3.1.9.3 Constructing surfaces: geometry 17

3.1.10 Projectile speci�cation . 18

3.1.11 Igniter modelling . 19

3.1.11.1 Ignition zone . 19

3.1.11.2 Igniter �ux at a boundary 20

3.1.12 Specifying history locations . 23

3.1.13 Summary: simulation checklist . 23

3.2 Propellant grain description �le . 24

3.2.1 De�nition of the energetic material solid types 25

3.2.2 De�nition of the propellant grain types 26

4 Postprocessing tools 27

4.1 Extracting �eld data: casbar_post.py . 27

4.2 Extracting history data: casbar_history.x 28

4.3 Extracting pro�le data: casbar_prof.py 29

4.4 Separating the data for multiple projectiles 30

UNCLASSIFIED iii

DSTO�GD�0746 UNCLASSIFIED

Appendices

A Example: The AGARD gun 31

A.1 AGARD gun description . 31

A.2 Listing of agard_propellant.py . 31

A.3 Listing of agard_air.lua . 33

A.4 Listing of agard.py . 35

A.5 Running the simulation . 38

iv UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

1 Introduction

Casbar is a suite of simulation tools that may be used to analyse the interior ballistic
process in gun systems. The analysis is based on solving a governing set of conservation
equations that describe the two-phase �ow within a gun chamber. The equations are solved
by discretising in a �nite-volume manner. Thus Casbar is considered a computational �uid
dynamics (CFD) tool.

This document is a manual on the use of Casbar � it provides information about input
preparation, running simulations and post-processing. Additionally, some example cases
are explained as tutorials. This manual only includes enough theory so that the input op-
tions are explained clearly. For more information on the theory behind the Casbar program,
see Gollan, Johnston, O'Flaherty and Jacobs, Development of Casbar: a Two-phase Flow
Code for the Interior Ballistics Problem, 16th Australasian Fluid Mechanics Conference
(2007).

UNCLASSIFIED 1

DSTO�GD�0746 UNCLASSIFIED

2 Overview of the simulation procedure

Setting up a simulation is mostly an exercise in writing a text-based description of your gun
system. This speci�cation �le is a Python �le with a .py extension. Also, the description
of the propellant grain(s) appears in a separate Python �le. By using a separate �le
for the propellant description, you can build up a library of propellant types and re-use
the speci�cations without the errors of �copying-and-pasting� from one simulation �le to
another. Having prepared a problem speci�cation �le and propellant description �le, the
general steps for a simulation are as follows:

1. Prepare the propellant data �le with the command
> prepare_propellant.py propellant.py propellant.dat

where propellant.py is the propellant description �le prepared by hand and
propellant.dat is the machine-generated output �le in INI format that is used by
the main simulation program. The instructions for preparing a propellant description
�le are detailed in Section 3.2.

2. Prepare the main simulation �les with the command
> casbar_prep.py �job=job

The italics word job should be replaced by the chosen name for your job. The
command does not require that you type the .py extension. In this case it would
look for a �le named job.py in the working directory.

The preparation program writes out various text �les for use as input for the main
simulation program:

• .p �le: This is the parameter �le written in INI format. Normally, you would
not need to create one of these parameter �les manually. It is handy though to
edit one or two parameters in the �le without rerunning the simulation program.

2 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

For example, you may wish to change the CFL number or edit how frequently
the program writes out complete �eld solutions.

• .g �le: This �le speci�es the vertices which comprise the grid. Each of the
blocks is listed sequentially in this �le. Do not attempt to hand edit this �le.

• .s0 �le: This �le speci�es the inital solution (�ow �eld) for the simulation. It
has a structured format which lists the conditions in every cell. Do not attempt
to hand edit this �le.

• .projectile0 �le: The initial conditions for the projectile(s) if present are listed
in this �le.

Additionally some data �les relating to the gas properties and possibly a look-up
table for an igniter �ux boundary condition may be created depending on what was
requested in the problem speci�cation.

3. The main simulation routine is run using the C++ program casbar_main.x.
> casbar_main.x �job=job

4. The postprocessing step is somewhat speci�c based on what is desired. This step is
documented in Section 4.

3 Constructing input �les

As mentioned earlier, there are two Python �les and one Lua �le that the user needs
to construct (with a text editor): (1) the problem speci�cation �le (Python), (2) the
propellant(s) description �le (Python) and (3) the gas description �le (Lua). All of the other
input �les are created based on the instructions in these three user input �les. Commonly
we refer to user input in these Python �les as �Python-level� input. The actual simulation

UNCLASSIFIED 3

DSTO�GD�0746 UNCLASSIFIED

routine casbar_main.x parses INI-style �les for input � these INI �les are created by the
preparation programs.

3.1 Problem speci�cation �le

The problem speci�cation �le is a Python �le that is used to de�ne the gun problem of
interest. The input �le is loaded by another Python program, casbar_prep.py. The con-
trolling program, casbar_prep.py, begins by setting up some default global data (default
timestep, default CFL, for example) and then executes the user's input �le to get the
speci�c parameters for the job. Thus a user's script can override the defaults provided
by casbar_prep.py. In addition, casbar_prep.py is expecting that the user's script also
provides details about the �ow conditions, �ow domain and other details of the simulation.
In general, the order of declarations is unimportant in the user's script though there are
some constraints:

• A gas model, grain burning model and intergranualar stress model must be set before
a �ow condition.

• A �ow condition must be set before a block de�nition.

• Geometric entities are required to construct a block and so must be set before the
block de�nitons.

With that in mind, a recommended order of problem speci�cation is:

1. Simulation control parameters such as timestep, frequency of solution writing and
maximum simulation time.

2. Gas model.

3. Heat transfer model.

4. Grain ignition model.

5. Grain burning model.

6. Intergranular stress model.

7. Interphase drag model.

8. Flow conditions.

9. Flow domain: geometry and block de�nition.

10. Projectile speci�cation.

11. Igniter zone speci�cation (optional).

12. History locations for data recording (optional).

In the next sections, each of these items is described in detail. It may be helpful to
�ick forward to page 31 to view an example input �le in order to give some context to the
following discussion.

4 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

3.1.1 Simulation control parameters

The simulation control parameters which a�ect global aspects of the simulation are stored
in an object called gdata1. Upon entry to the user's script the gdata object is already
initialised and certain defaults are set. The user can then override the defaults by setting
the appropriate object attribute. The user sets an attribute by using a simple assignment
statement. For example, to set the simulation title and initial timestep, the following two
statements would be used:

gdata.title = "My gun simulation"

gdata.dt = 1.0e-5

A list of the most commonly used control parameters are given in Table 1. This table
gives the name of the attribute, the type of value and the available options pertaining to
that attribute. Each parameter listed in Table 1 is set the in the user's script with an
assignment of the form:

gdata.param = value

The table also lists the default values for the various parameters where applicable. If a
parameter is missing from the input script it will receive this default value.

1The gdata object is an instance of the TwoPhaseGlobalData2D class which is de�ned in casbar_prep.py.

UNCLASSIFIED 5

DSTO�GD�0746 UNCLASSIFIED

Table 1: Description of simulation control parameters.

Parameter Type Description

title string The title string may be used to give a unique iden-
ti�er to the simulation. This string is picked up in
a number of places in the simulations routines.

problem_type string This is used to set which set of physical processes
that Casbar will consider. The available options
are:

"interior_ballistics" (default) This problem
type solves the complete interior ballistitics
problem including processes such as gas and
particulate transport, grain combustion and
ignition modelling.

"gas_transport" Casbar can actually be used as
single-phase code for compressible �ow prob-
lems by selecting this problem type.

"particulate_transport" This problem type is
used to test the transport of the particulate
phase.

"two_phase_shock_problem" This problem type
is for veri�cation puposes and does not solve a
�ow problem of practical interest for the user.

"closed_vessel" This problem type simulates a
closed vessel with no �ow processes; only
grain combustion occurs. This problem type
is used during code testing and provides a
convenient means to exercise the grain com-
bustion module.

"drag_only" When �drag only� is selected, the
two-phase �ow problem with drag interaction
is computed. None of the other physical pro-
cesses of the interior ballistics process are con-
sidered.

"piston_solver" This solves a single-phase (gas
�ow) problem with piston motion included.

6 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

Parameter Type Description

two_phase_system string This option relates to the governing equa-
tions used to solve the problem. There is
a subtle distinction between problem_type and
two_phase_system. The problem_type parameter
selects which physical processes are simulated. The
two_phase_system selects the set of conserved vari-
ables. Presently there is only one option: "Gough"
(default), and as such it may be omitted. This pa-
rameter is present so that in future versions di�er-
ent sets of governing systems may be easily selected.

axisymmetric_flag integer There are two options:

1 (default) axisymmetric geometries, y = 0 is taken
as the symmetry line.

0 for planar geometries.

gas_flux_calc string There are two �ux calculators implemented for the
gas phase transport problem:

"ausmdv" (default) Recommended.

"ausm"

particulate_flux_calc string There are two �ux calculators implemented for the
particulate phase transport problem which parallel
the gas phase �ux calculators:

"ausmdv-p" (default) Recommended.

"ausm-p"

x_order integer This parameter controls the order of accuracy used
by the spatial reconstruction:

1 Low-order reconstruction. Cell-centred values
are taken as interface values.

2 (default) Higher-order reconstruction. A piece-
wise parabolic segment is used to reconstruct
interface values and a limiter is applied.

UNCLASSIFIED 7

DSTO�GD�0746 UNCLASSIFIED

Parameter Type Description

t_order integer This parameter controls the order of time integra-
tion accuracy:

1 Euler method of update (�rst order).

2 (default) Predictor-corrector method (second or-
der).

cfl �oat This value sets the Courant-Friedrichs-Lewy (CFL)
number for the numerical methods. The default
value is 0.5.

dt �oat This is the initial time step used. The default value
is 1.0e-6 s. The time step will change during the
simulation based on the CFL criterion. If the simu-
lation fails very early, it might be helpful to reduce
this initial timestep by an order of magnitude.

dt_plot �oat This parameter governs how frequently a complete
�ow �eld solution is recorded. It is a value in sec-
onds in simulation time. Be careful not to select
a value that is too frequent as it is possible to �ll
your hard disk by writing out too many snapshots
of the �ow �eld.

dt_history �oat This parameter controls how often the data in his-
tory cells and projectile state are written to �le.
This value is often smaller then dt_plot as it does
not take much disk space to record information at
a few selected cells.

max_time �oat This is the maximum simulated �ow time that the
simulation should run for.

max_steps integer This is the maximum number of steps that the sim-
ulation should take. This value is set in case the
�ow simulation runs into trouble and starts taking
very small time steps.

3.1.2 Gas model

The gas model is selected by calling the "set_gas_model" method of the gdata object.
The format for that call is:

gdata.set_gas_model(fname = "gas_input_file.lua")

where "gas_input_file" is a string specifying a Lua �le name which contains the accom-
panying data for the gas model. Within the Lua "gas_input_file", parameters of the
gas model are set, such as model type, equation of state and speci�c gas properties. There
are numerous gas models available but listed here are those of most interest for the interior
ballistics problem:

8 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

"Noble_Abel_gas" A mixture of the gases where each component is described as Nobel-
Abel gas.

"ideal_gas_mix" A mixture of gases where each component is described with calori�cally
perfect behaviour.

The second aspect of the gas model speci�cation is the speci�c gas data for the indi-
vidual species. Each gas specie is de�ned in the single Lua �le, with properties such as
molecular mass, ratio of speci�c heats and co-volume all speci�ed within. The keyword
arguments are (default values are in the function signature):

• M: molecular mass in kg/mol

• gamma: ratio of speci�c heats

• name: a label for the gas (of no real importance just for user's convenience)

• b: co-volume for gas in m3/kg

• d: hard sphere diameter in m

• ezero: reference energy in J/kg

• q: heat release in J/kg

Additionally a number of models (and associated input parameters) can be selected for the
gas viscosity and thermal conductivity in this �le. See Chapter 5 for an example of the
gas input �le.

3.1.3 Grain ignition model

The grain ignition model describes the ignition behaviour of the various propellant grains.
Three ignition models are currently available to Casbar, whose development are described
in more detail in Harrland and Johnston, "Review of Solid Propellant Models Relative to
the Interior Ballistics Modelling of Gun Systems," DSTO-TR-2735. The ignition models
available are no ignition, simple ignition and a propellant surface temperature model based
on heat transfer to the grain. The ignition model is declared using:

gdata.set_ignition_model("simple_ignition_model")

where simple_ignition_model is a string denoting the chosen ignition model. The ignition
models, and their corresponding call string are:

• "no_ignition_model" - Grains will not combust, �ow is modelled as a two-phase
unreacting mixture

• "simple_ignition_model" - Grains will combust when the local gas temperature
exceeds the ignition temperature of the grain.

• "cubic_profile_ignition_model" - Grains will combust when the surface temper-
ature of the propellant grain exceeds the ignition temperature.

UNCLASSIFIED 9

DSTO�GD�0746 UNCLASSIFIED

3.1.4 Interphase heat transfer model

The interphase heat transfer model describes the heat transfer behaviour between the
various propellant grains and the gas phase. Hot gas will transfer energy to the cooler
grains, which is released back into the gas phase when the solid combusts. Two heat
transfer options are currently available to Casbar: no heat transfer, and an empirical
conduction and radiation relation based on �uidized bed heat transfer outlined by Gough;
"The XNOVAKTC Code", BRL Contractor Report BRL-CR-627. The heat transfer model
is declared using:

gdata.set_heat_transfer_model("Gough_heat_transfer_model")

where "Gough_heat_transfer_model" is a string denoting the chosen heat transfer model.
No interphase heat transfer is called with "no_heat_transfer_model".

3.1.5 Grain burning model

The grain burning model describes the combustion properties of the various types of
propellant grains. The speci�cation of grains can become quite complex as the input
allows for multiple grain types and multiple layering of solid types within grains. For
this reason, the grain input �le is prepared from a stand-alone script with the program
prepare_propellant.py. This procedure is described fully in Section 3.2. In the sim-
ulation input script, the user only needs to specify the name of the grain input �le. So
assuming the grain input �le has been previously created with prepare_propellant.py,
the grain burning model is declared using:

gdata.set_grain_model(grain_file)

where grain_file is a string denoting the name of the grain input �le.

3.1.6 Intergranular stress model

The intergranular stress model is set per grain type and the grains are numbered from
0 . . . N − 1 where N is the number of grain types.2 Thus a declaration using the
set_igs_model() method of the gdata object should appear for each grain type.

gdata.set_igs_model(index, igs_model, igs_input_file)

where index is an integer identifying the grain type, igs_model is a string giving the
intergranular stress model name and igs_input_file is a string giving the name of the
input �le for the speci�ed stress model. The currently available intergranular stress models
are:

• "Gough_stress_model"

2In common with Python and C/C++ conventions, numbering begins from zero. This is consistent
throughout Casbar ; blocks, cells, species, and so on, are always numbered from zero.

10 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

• "Koo_Kuo_model"

• "Kuo_Summerfield_model"

Each of these models requires an accompanying input �le to completely specify the
model. Similar to the gas model input, there are certain convenience functions available
to create the input �les. They are:

• create_Gough_stress_model_input()

• create_Koo_Kuo_stress_model_input()

• create_Kuo_Summerfield_stress_model_input()

Thus the usual sequence of calls in the user script is to use one of these convenience
functions to create an input �le, and then declare the intergranular stress model with
gdata.set_igs_model().

create_Gough_stress_model_input():

In the rheological model proposed by Gough for the intergranular stress, there are a number
of parameters which are dependent on the grain. The equations for stress and associated
granular wave speed are:

R = ρpa2
1ε2

0

(
1
εg

− 1
ε0

)
(1)

and

ap =


a1(ε0/εg) εg 6 ε0

a1 exp[−κ(ε − ε0)] ε0 < εg < ε∗

0 εg > ε∗

(2)

where a1, ε0, κ and ε∗ are empirical constants based on the properties of the granular bed.

The user may set each of these parameters by using the following function

create_Gough_stress_model_input(eps0, eps_star, a1, kappa,

const_wave_speed, filename)

where

• eps0 is the settling porosity (often taken as the initial porosity), ε0 (�oat)

• eps_star is the model parameter ε∗ (�oat)

• a1 is the model parameter a1 in m/s (�oat)

• kappa is the model parameter κ (�oat)

• const_wave_speed is a Boolean (True or False) indicating whether a constant wave
speed assumption should be used. If it is set true, the value given as a1 is used as
the granular wave speed, otherwise wave speed is computed using Equation 2.

• filename is a string for the data �le into which the model parameters will be written.

UNCLASSIFIED 11

DSTO�GD�0746 UNCLASSIFIED

create_Koo_Kuo_stress_model_input():

The Koo and Kuo stress model calculates intergranular stress and wave speed from:

R =

{
−ρpC2 εg

εc

(
εc−εg
1−εg

)
εg 6 εc

0 εg > εc
(3)

and
ap = Cref

εc

ε
. (4)

The user is required to supply the model parameters Cref and εc. This may be done by
calling the following function:

create_Koo_Kuo_stress_model_input(C_ref, eps_c, filename)

Following the established pattern, filename is the name of the �le into which the model
parameters are written.

create_Kuo_Summerfield_stress_model_input():

In the Kuo and Summer�eld model, integranular stress is calculated as:

R =


κ
[

1
1−εc −

1
1−εg

]
1−εg

εg < εc

0 εg > εc

(5)

The user needs to select the model parameters εc and κ. The wave speed calculation is the
same as the Koo and Kuo model and as such the user speci�es a value for Cref. Thus an
input �le for the Kuo and Summer�eld intergranular stress model is created using:

create_Kuo_Summerfield_stress_model_input(C_ref, eps_c, kappa, filename)

3.1.7 Interphase drag model

The interphase drag model is presently implemented as a global model to calculate the
exchange of momentum between the gas phase and particulate phase due to drag. If there
are multiple grain types present, the momentum is shared between various grain types
based on their relative volumes in a given �nite-volume cell. The interphase drag model is
declared by calling the method set_drag_model() of the object gdata:

gdata.set_drag_model(drag_model, drag_input_file)

where drag_model is the name of a speci�c model for the interphase drag and
drag_input_file is an input �le for the model. Presently there are two options for inter-
phase drag model:

• "Ergun_drag_model"

• "zero_drag" � not really a model but may be used to �turn o�� interphase drag
terms.

12 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

The Ergun drag model only requires a single parameter: a critical porosity, a value
which allows the calculation to vary between modelling a packed bed or a �uidized bed. It
may seem like overkill to create an input �le just to specify one parameter. The justi�cation
is that future implementations may include more compilcated drag models which require
more input parameters. So by using a �le based input for this simple Ergun drag model
the input will remain consistent when more complicated models become available. The
function call to create the Ergun model input �le is:

create_Ergun_drag_model_input(eps0, filename)

where eps0 is the critical porosity mentioned earlier.

3.1.8 Flow conditions

A �ow condition is a complete speci�cation of the �ow state at some point in time and
space � thermodynamic state of the gas; gas phase velocity; stress state of the grains
(loading density); and velocity of component grain types. A �ow condition, built from a
FlowCondition object, is often used to set initial conditions in the domain and boundary
conditions at the edge of the domain such as a speci�ed �ux boundary condition.

First we describe the ParticulateCondition object which is used to specify the state
of a single grain type. The FlowCondition object is composed of ParticulateCondition
objects for each grain type as well as gas phase information.

A ParticulateCondition may be intialised as:

initial_loading = ParticulateCondition(index, u=0.0, v=0.0, ld=1000.0, r=0.0)

where

• index: is an integer specifying which grain this condition applies to

• u: is the x-velocity (axial) in m/s

• v: is the y-velocity (radial) in m/s

• ld: is the loading density of the grain type in kg/m3

• r: is the regression distance of a single grain of the given grain type in m. Usually
this value is 0.0 for unburnt grains, however, a positive value may be speci�ed to
simulate already partially burnt grains.3

Given that some ParticulateCondition objects have been instantiated, you can de-
clare a �ow condition using:

initial = FlowCondition(p=None, T=None, rho=None, u=0.0, v=0.0, mf=[1.0,],

particulate_conditions=[None])

3This might be useful for patching the solution of one simulation into a larger domain.

UNCLASSIFIED 13

DSTO�GD�0746 UNCLASSIFIED

where

• p: is the gas pressure in Pa

• T: is the gas temperature in K

• rho: is the gas density in kg/m3

• u: is x-velocity of the gas in m/s

• v: is y-velocity of the gas in m/s

• mf: is a list of component mass fractions. The values in this list should sum to 1.0.

• particulate_conditions: this is list of previously named ParticulateCondition

objects. If a grain type is non-existent in a certain region (for example, intially ahead
of the projectile), the Python keyword None may be given in the list. You must still
list a condition for each grain type even if that condition is None. When the program
receives None it will put zero mass of that grain type in the �ow condition.

Note only two state variables for the gas should be speci�ed: that is, choose only two
out of pressure, temperature and density. If you specify all three, one of the values will be
ignored and the thermodynamic state will be computed based on only two of the values.
The code attempts to compute the state based on what values it �nds and it tries, in order,
to use (1) pressure and temperature; followed by (2) pressure and density; and �nally (3)
temperature and density.

3.1.9 Block de�nition of the �ow domain

Most of the e�ort required to set up a simulation goes into de�ning the �body-�tted� grid
of �nite-volume cells that completely �lls the �ow domain. This grid is block structured,
with each block de�ned by four edges (NORTH, EAST, SOUTH and WEST) �tted to the
actual edges of the �ow domain.

To de�ne a block in your input script, create a Block2D object as:

my_block = Block2D(parametric_surface, nni, nnj,

cf_list, bc_list, fill_condition,

hcell_list, label)

where

• parametric_surface: is a region of 2D space bounded by four edges. See Sec-
tion 3.1.9.3 for a guide to constructing a surface.

• nni: is the number of �nite-volume cells in the i-direction. Note that, when placing
one block against another, the blocks must conform in

� the number of cells along corresponding edges

14 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

� the clustering of those cells along the edges

� the path de�ning the corresponding edges.

• nnj: is the number of �nite-volume cells in the j-index direction.

• cf_list: which stands for cluster functions list is a list of Function objects that
specify a (possibly) nonuniform distribution of cells along a particular edge of the
parametric_surface. The order that the edges are listed in is NORTH, EAST,
SOUTH, WEST. If this option is omitted, all edges receive a uniform distribution of
cells.

• bc_list: is a list of boundary conditions that are applied to the edges in the order
NORTH, EAST, SOUTH, WEST. If this option is omitted, all boundaries are treated
as walls4. The available boundary conditions are described in Section 3.1.9.2.

• fill_condition: accepts either a FlowCondition object with which to de�ne the
initial �ow state within the block volume or a user-de�ned function that varies in
space to de�ne the �ow state. See Section 3.1.8 for de�ning a suitable FlowCondition.
A discussion about user-de�ned �ll functions follows this list.

• hcell_list: is a list of (i, j)-tuples specifying which cells should be monitored at
simulation time. Data from the speci�ed cells will be written to a �history� �le for
the simulation and may be used at the postprocessing stage to provide �ow data as
if there was a sensor located in the cell. As always, cell numbering begins from zero.

• label: is an optional text label for the block. This label will be embedded in the
block de�nition and some of the postprocessing programs may use it.

If using multiple blocks, the block connections need to be speci�ed. This is most
easily achieved by calling the automated identify_block_connections() function after
declaring the blocks.

3.1.9.1 User-de�ned �ll functions A user may de�ne a Python function that speci�es
how a block should be �lled based on spatial variations. This can be used to initialise non-
uniform �ow �elds (like propellant loading at one end only) or to transfer an old solution
onto the new grid. The rules for the function are simple:

1. The function accepts two parameters, x and y, in that order which represent the x
and y spatial positions (in physical coordinates) in the �ow �eld.

2. The function returns an object of type FlowCondition.

Note when returning the FlowCondition object it is useful to use the keyword argu-
ment add_to_list=False. This prevents the program from storing all of the temporary
�ow conditions created by the function call from being recorded in the global list of �ow
conditions.

4Certain boundaries may later be converted to connection boundaries if, after all the blocks have been
speci�ed, the identify_block_connections() function is called.

UNCLASSIFIED 15

DSTO�GD�0746 UNCLASSIFIED

An example of a user-de�ned �ll function is given here. It simply initialises a propellant
bed in the left-end of the domain, the chamber, below x = 0.0. In the right-end, the barrel,
ambient air conditions are given. Note the function MUST accept x and y even if it only
varies in one spatial dimension.

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

def fill_function(x, r):

if x < 0.0:

return FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[propellantloaded],

add_to_list=False)

else:

return FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[None],

add_to_list=False)

Alternatively, we could have named the two �ow conditions earlier in the script and
avoided needing to use the add_to_list=False argument. This is shown here.

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

propellantIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[propellantloaded])

barrelIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0,

mf=[0.0, 1.0, 0.0],

particulate_conditions=[None])

def fill_function(x, r):

if x <= 0.0:

return propellantIC

else:

return barrelIC

These two examples give the equivalent initial �ow �eld in the block.

3.1.9.2 Boundary conditions The boundary conditions for blocks may be set in the block
de�nition as a list of conditions (bc_list) or they may be set after a block de�nition using:

my_block.set_BC(EAST, Extrapolate_boundary_condition())

In this method, the �rst argument speci�es which boundary (NORTH, EAST, SOUTH or
WEST) and the second argument is the boundary condition to apply.

The boundary conditions are all derived types of the abstract C++ class
Boundary_condition. The constructors are made available at the Python-level input via
SWIG. The available boundary conditions are:

16 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

• Wall_boundary_condition() (default) is a re�ecting wall boundary condition.

• Extrapolate_boundary_condition() assumed supersonic out�ow where the ghost-
cell �ow properties are simply copies of the adjacent interior cell properties.

• Common_boundary_condition() this is used to specify that an edge has an internal
connection to another block. Normally the user doen't need to specify this as the
identify_block_connections() will take care of applying
Common_boundary_conditions in the right places.

• Igniter_flux_boundary_condition(filename) speci�es a spatially and temporally
varying �ux boundary condition. The speci�ed �ux is intended to mimic the e�ect of
igniter material discharge. The spatially and temporally varying nature of the �ux
boundary is handled through a look-up table given as the argument filename. This
look-up table is most easily created using the
create_igniter_lut_bc_file() convenience function which is documented in Sec-
tion 3.1.11.2. The spatial variation along a boundary is only treated in one-dimenion.
The following are the dimension of interest for each of the edges:

� NORTH: x-dimension varies

� EAST: y-dimension varies

� SOUTH: x-dimension varies

� WEST: y-dimension varies

For example, when treating a SOUTH boundary condition with an igniter �ux, the
x position of the cell-centres along the SOUTH boundary are used to �look-up� the
appropriate �ux at that point.

3.1.9.3 Constructing surfaces: geometry The top-level geometry description given to
the grid generator is in terms of �parametric surfaces�. These are regions of 2D space
that may be traversed by a set of parametric coordinates 0 ≤ r < 1 and 0 ≤ s < 1.
These surfaces can be constructed as a �boundary representation� from lower-dimensional
geometric entities: paths and points.

The most fundamental class of geometric object is the Vector (or Vector3 as it is
de�ned in the C++ module libgeom2). A Vector represents a point in 3D space and
has the usual behaviour of a geometric vector (as opposed to the vector collection class
in C++). If you want a point to be rendered with a label, you can de�ne it as a Node.
Examples of use include: a = Vector(x, y) and b = Node(x, y, label='B').

The next level of dimensionality is the Path class. A path object is a parametric curve
along which points can be speci�ed via the single parameter 0 ≤ t < 1. Types of paths
that are available include:

• Line(a,b): a straight line between points a and b.

• Arc(a,b,c): a circular arc from a to b around centre, c.

• Arc3(a,b,c): a circular arc from a through b to c. All three points lie on the arc.

UNCLASSIFIED 17

DSTO�GD�0746 UNCLASSIFIED

• Bezier([b0, b1, ..., bn]): a Bezier curve from b0 to bn.

• Polyline([p0, p1, ..., pn]): a composite path made up of the segments p0, through
pn. The individual segments are reparameterised, based on arc length, so that the
composite curve parameter is 0 ≤ t < 1.

• Polyline2(.. arbitrary list of Vectors and Paths ..): a composite path made by
joining points and paths with straight lines in the sequence listed. Note: The user's
script will need to import this special object if needed. Before using, add the line:
from cfpylib.geom.path import Polyline2

• Spline([b0, b1, ..., bn]): a cubic spline from b0 through b1, to bn. A Spline is actually
a specialized Polyline.

The user may construct a ParametricSurface which uses trans�nite interpolation from
four paths which represent the NORTH, EAST, SOUTH and WEST boundaries of a sur-
face. The function to construct this is make_patch and it accepts four path objects in
the order of NORTH, EAST, SOUTH and WEST. The ends of paths should coincide at
the approriate corners otherwise the grid generator will complain. This function returns a
ParametricSurface suitable for the the Block2D object to construct a grid. The function
call is:

make_patch(north, east, south, west)

3.1.10 Projectile speci�cation

Projectiles may be speci�ed using the Projectile object. You can initialise a projectile
by calling the initialiser with the following options:

Projectile(m, D, xL0, xR0,

v0=0.0, rifling_twist=0.0, rog=0.0,

bore_resistance_x=[0.0,],

bore_resistance_p=[0.0,],

constant_velocity=False,

positive_velocity=False,

vanish_at_x=VERY_LARGE_X,

name="")

Note that the initialisation of a Projectile requires four mandatory arguments: m, D, xL0
and xR0. The rest of the arguments are keyword arguments � if not speci�ed the defaults
are applied as shown. The parameters for the Projectile object are:

• m: is the mass of the projectile in kg

• D: is the diameter of the projectile in m

• xL0: is the starting position of the projectile (WEST face of projectile) in the x-
direction (axial) in m

18 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

• xR0: is the �ninishing position position of the projectile (EAST face of the projectile)
in the x-direction (axial) in m

• v0: is an initial x-velocity of the projectile in m/s

• rifling_twist: is the number of turns per calibre. If set to zero, a smooth bore is
simulated.

• rog: is the radius of gyration in m

• bore_resistance_x: is a list of x-ordinates (in m) which specify break points for
the interpolation of bore resistance as a function of axial position. If the list only
has one value then there is nothing to use for interpolation and so a constant value
of bore resistance is applied everywhere.

• bore_resistance_p: is a list used in conjunction with bore_resistance_x list to
specify the variation of bore resistance as a function of axial distance. This list
contains the value of resistance in pressure, Pa, at the locations corresponding to the
bore_resistance_x list. The number of entries in bore_resistance_x and
bore_resistance_p must match or an error will be raised.

• constant_velocity: is a Boolean which will set the projectile's motion at constant
x-velocity, v0, if set to true. When set to false (default), the projectile moves under
the in�uence of the pressure forces acting on its faces.

• positive_velocity: is a Boolean value (True ot False). If true, the projectile will
only be allowed to have positive velocities. If a negative velocity is computed based
on �ow conditions, the projectile velocity will be set to zero. If set to false (default),
the projectile update proceeds as normal.

• vanish_at_x: is an x-ordinate in m which speci�es at position at which the projectile
is removed (or �vanishes�) from the simulation. Its intent is to allow for the removal
of the projectile at some point in the far �eld.

• name: is an optional name for the projectile.

3.1.11 Igniter modelling

There are two ways to directly model the in�uence of energy deposition from an igniter
(without actually modelling the energetic) in the code: (1) as a volume of in�uence, and (2)
as �ux at a boundary. The two methods are not mutually exclusive in a given simulation.

3.1.11.1 Ignition zone An IgnitionZone object may be used to specify a region in the
�ow where some mass and energy are added to the gas in order to mimic the e�ect of
ignition. The declaration of an IgnitionZone has the following signature:

IgnitionZone(point0, point1,

rdot, chem_energy, mf,

t_start, t_end, label="")

UNCLASSIFIED 19

DSTO�GD�0746 UNCLASSIFIED

where

• point0: is a Vector3 object which locates the bottom left corner of the ignition
zone.

• point1: is a Vector3 object which locates the upper right corner of the ignition
zone.

• rdot: is the rate of mass addition per unit volume of physical space, ρ̇, in kg/m3/s.
Note this is per total volume available, not only that available to the gas.

• chem_energy: is the chemical energy the injected gas is created with in J/kg.

• mf: is a list of mass fractions which identi�es which gaseous species the injection of
mass goes into. The values in this list should sum to 1.0.

• t_start: is the starting time for the ignition zone to take e�ect in s.

• t_end: is the �nishing time for the ignition zone's in�uence in s. After this simulation
time is exceeded the ignition zone no longer has any e�ect.

• label: an optional label.

You may specify multiple igniton zones. The implementation is quite naïve about the
interacting ignition zones. The criteria for applying the e�ects of ignition are simply this:

1. Does the cell-centre of a �nite-volume cell lie within the bounding box (point0,
point1)? and

2. Is the current simulation time between t_start and t_end?

If these two criteria are satis�ed, then the cell with have mass and enegy added at the rate
dictated by rdot and chem_energy. If a given cell satis�es this criteria for more than one
IgnitionZone then the e�ect will be accumulative.

If you wanted to mimic the e�ect of varying ignition rates in a given region, you could
declare multiple IgnitionZone objects that acted over di�erent times by using di�erent
values for t_start and t_end in each of the declarations.

3.1.11.2 Igniter �ux at a boundary We saw earlier that speci�ying an igniter �ux bound-
ary condition involved setting the boundary condition to
Igniter_flux_boundary_condition(filename) where filename is a look-up table de-
scribing how the �ux varies in space and time. Now we discuss how to construct a look-up
table through the use of some supplied convenience functions.

A look-up table �le for the igniter �ux boundary condition is created using:

create_igniter_lut_bc_file(flux_function, s_locations,

t_locations, filename)

20 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

where

• flux_function: is a user-de�ned Python function that accepts s and t which are
spatial and temporal values respectively, and returns the fraction exposed fe and a
FlowCondition object. This function is exlained in more detail below, but essentially
describes how the �ux at the boundary varies spatially and temporally.

• s_locations: is a list of spatial locations which will be used when constructing the
look-up table. For a SOUTH boundary this would be a list of x-ordinate values, for
an EAST boundary this would be a list of y-ordinate values, and so on. The user
chooses how �ne or coarse the look-up table is by the number and distribution of
values in the list. The values should sequentially increase.

• t_locations: is list of time values which will be used when constructing the look-
up table. Similarly to s_locations, the user chooses the granularity of the look-up
table interpolation by choosing the distribution of t_locations.

• filename: is the name of the �le in which the look-up table will be created. This �le
is later handed to the boundary condition during speci�cation. It is usual to name
this �le with a .gz extension because this function creates a gzipped text�le.5

The user-de�ned function has some minimal stipulations:

1. It must accept a spatial and temporal variable in that order: def f(s, t)

2. It must return a tuple which contains the fraction of area exposed at that point and
the �ow condition: return (fe, FlowCondition).

The �ux is calculated based on the area through which the FlowCondition is applied and
the actual condition itself. The FlowCondition is speci�ed in the global frame of reference,
so a v-velocity for gas �ow will move in the radial direction. Also, the interface area is
set by the boundary along which the �ux condition is supplied. If you set the boundary
condition on a y = 0.0 boundary in an axisymmetric simulation you will not get any �ux
at all because the interface area on the y = 0.0 line is zero.

We now look at an example to see it all in action. In this example, the igniter �ux is
modelled along a length of 25 cm beginning from x = −1.0m. The �ux begins at t = 0.0
and �nishes when t = 2.5ms. In that region the available surface area for material �ux is
only 50%. The code in our script would be as follows.

--

1. Define the function which represents the flux

--

def flux_function(x, t):

First test within time constraint

if t > 2.5e-3:

Flow condition is arbitrarily at atm conditions

5The zlib library is used to create the �le.

UNCLASSIFIED 21

DSTO�GD�0746 UNCLASSIFIED

because the fraction exposed is 0.0

return (0.0, FlowCondition(p=1.0e5, T=300.0,

u=0.0, v=0.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False))

Next test if outside x range

if (x < -1.0) or (x > -0.75):

Again return an arbitrary flow condition with the

fraction exposed equal to 0.0

return (0.0, FlowCondition(p=1.0e5, T=300.0,

u=0.0, v=0.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False))

So, therefore, we are in the 25cm of igniter region

and in the time period of interest

return (0.5, FlowCondition(p=1.0e6, T=1000.0,

u=0.0, v=100.0, mf=[1.0],

particulate_conditions=[None],

add_to_list=False)

--

2. Specify the points in the look-up table in x and t

--

x_locations = [-1.0 + i*2.5e-3 for i in range(11)]

t_locations = [0.0 + i*2.5e-4 for i in range(12)]

--

3. Construct the look-up table

--

create_igniter_lut_bc_file(flux_function, x_locations,

t_locations, "lut_bc.dat.gz")

--

4. Use on the SOUTH boundary of my_block

--

my_block.setBC(SOUTH, Igniter_flux_boundary_condition("lut_bc.dat.gz"))

The internal implementation uses bi-linear interpolation (between space and time) to
compute the appropriate �ux based on cell-centre positions in the boundary condition
calculation. The user should take care at the edges of their look-up table: constant extrap-
olation is used at the edges of the table, ie. the closest edge value is taken as the value.
The rami�cations are that in this example we ensured there was a time interpolant point
in the �ux equals zero regime. If this had not been the case, the last point may have left
the �ux �turned on� for all time after t = 2.5ms.

We'll repeat the warning in another way. Just because the user-de�ned function turns
�uxes on and o� in the appropriate way at the appropriate times does not mean that
the internal e�ect is guaranteed. The selection of spatial and temporal locations for the

22 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

interpolation points also in�uences the behaviour. The easiest way to avoid any surprises
is to place interpolation points close to, but either side of any intended boundaries in your
�ux function.

3.1.12 Specifying history locations

When constructing a Block2D, you may optionally speci�y a hcell_list which allows you
nominate speci�c cells at which the history of �ow data should be recorded. It is often
more convenient so specify (x, y) coordinates rather than the (i, j) index values which are
grid speci�c. The HistoryLocation object allows you to use physical coordinates and may
be declared using:

HistoryLocation(x, y, label="")

where x is the x ordinate, y is the y ordinate and label is an optional label. The label is
used to help you identify the cell in the casbar_history_cells.list �le. If you declare
one or more HistoryLocation objects, a �le, casbar_history_cells.list, is created
listing the information about the located cell: block number and (i, j) indices.

The searching algorithm will locate the nearest cell-centre to the chosen (x, y) values.
The searching algorithm has no knowledge about the extents of the actual �ow domain.
Therefore, it is possible to requrest a location beyond the edge of the domain � the
returned value will simply be the closest cell to that location. The history �le indicates
the actual location of the history cell in the columns x_found and y_found.

3.1.13 Summary: simulation checklist

In this section we again review the list presented in Section 3.1, which detailed a recom-
mended sequence of declarations in the input �le. However, we now present it as a checklist
and indicate the appropriate objects to initialise and functions to call.

� Declare simulation control parameters such as �ux calculators and initial timestep.
Each declaration has the form: gdata.param = value.

� Select the gas model. After creating an appropriate input �le, declare the gas model
by calling the method: gdata.set_gas_model(model_name, input_file).

� Specify the grain ignition model using the member method:
gdata.set_ignition_model(model_name).

� Specify the interphase heat transfer model using the member method:
gdata.set_heat_transfer_model(model_name).

� Specify the grain burning model. Given that a grain input �le has been prepared
(see Section 3.2), use the method: gdata.set_grain_model(input_file).

� Select the intergranuluar stress model (for each grain type) and the set the appro-
priate model parameters. First create an input �le using one of the convenience
functions, then use the member method:
gdata.set_igs_model(index, model_name, input_file).

UNCLASSIFIED 23

DSTO�GD�0746 UNCLASSIFIED

� Set the interphase drag model. An input �le may be created using a con-
venience function and then the model is declared by calling the method:
gdata.set_drag_model(model_name, input_file).

� Set �ow conditions using the FlowCondition construct. This is only necessary if
you are using �ow conditions which �ll entire regions. If you elect to use a block �ll
function, you might defer speci�cation of those �ow conditions to that function.

� Specify geometry and build blocks. Declare Nodes. Construct Paths built from
those Nodes. Create surface patches based on the Paths. Finally, construct blocks
(Block2D objects) which de�ne the �ow domain.

� Optionally, declare a number of Projectile objects.

� Optionally, declare a number of IgnitionZone objects.

� Optionally, declare a number of HistoryLocation objects.

3.2 Propellant grain description �le

The propellant grain description �le propellant.py is a Python �le that is used to de�ne
the propellants of interest. The propellant grain description �le is processed by another
Python program, prepare_propellant.py, which subsequently generates an INI format
data �le suitable for loading by Casbar itself. As noted in Section 2, the following com-
mand line processes the propellant.py input �le into the machine-generated output �le
propellant.dat which can be read by Casbar :

> prepare_propellant.py propellant.py propellant.dat

In practice, the user may choose to automate this step by including it within the main
Python job.py job �le:

os.system("prepare_propellant.py propellant.py propellant.dat")

Irrespective of how propellant.dat is generated, an instruction needs to be included in
job.py to tell Casbar to load it:

gdata.set_grain_model("propellant.dat")

In this example we have used the �lenames propellant.py and propellant.dat, however
the user is free to choose any legal �lename which might better suit their needs.

De�nition of the propellants in the propellant.py propellant grain description �le is
achieved in two parts:

• First, a set of solids are de�ned to represent each distinct energetic material formu-
lation in the simulation.

• Second, each propellant grain type is de�ned in terms of its geometry and its com-
position of one or more layers. Each layer is composed of one�or a mixture�of the
declared solid types.

24 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

3.2.1 De�nition of the energetic material solid types

Each distinct energetic material is de�ned in the manner of the following example:

example_solid = Solid("my_example_solid_propellant_material",

density=1578.0,

flame_temperature=2585.0,

combustion_energy=3.7369e6,

gas_massf=[1.0, 0.0, 0.0],

burn_rate_min_p=[0.0, 200.0e6,],

burn_rate_param_a=[0.00078385,0.001,],

burn_rate_param_b=[0.0, 0.0,],

burn_rate_param_n=[0.9, 1.0,])

The initial arguments are

• the name of the solid.

• density: True density of the solid in kg/m3.

• flame_temperature: Flame temperature of the solid in K.

• combustion_energy: The intensive internal energy e of the solid's combustion prod-
ucts, in J/kg.

• gas_massf: An array of mass fractions, de�ning the gaseous products produced by
combustion of the solid. The species order re�ects the order of de�nition described
in Section 3.1.2, and the sum of the mass fractions should equal unity.

The subsequent arguments de�ne the linear burn rate of the solid material. The linear
burn rate r (in m/s) is de�ned by Vielle's law, r = aPn + b. Multiple sets of coe�cients
and exponents, corresponding to di�erent pressure ranges, may be used to obtain a higher
�delity burn rate model if desired.

• burn_rate_min_p: An array of minimum pressures for which each set of burn rate
parameters is valid, in Pa.

• burn_rate_param_a: An array of Vielle's law coe�cients for each pressure range, in
MPa−n m/s.

• burn_rate_param_n: An array of Vielle's law exponents for each pressure range.

• burn_rate_param_b: An array of Vielle's law parameters for each pressure range, in
m/s.

The user can alternatively de�ne blocks of constant burn rate by specifying a = 0 and
de�ning b as desired for each pressure range. It is important to note that, unlike all other
Casbar inputs, the units of a above are not base SI. This is to re�ect that most published
burn rate coe�cients for Vielle's law correspond to P in MPa.

UNCLASSIFIED 25

DSTO�GD�0746 UNCLASSIFIED

Where a simulation is to incorporate a deterred propellant solid, the user should de�ne
an additional unique solid with burn rate properties modi�ed to match that of the deterred
material.

Once all solids are de�ned, they are declared using:

declare_solids([example_solid])

3.2.2 De�nition of the propellant grain types

The actual propellant grain types are de�ned in terms of their geometry, the solid ener-
getic materials they contain, and the grain ignition temperature. Initially, the propellant
geometry and ignition temperature is de�ned in the manner of the following example:

example_grain = Grain("my_example_propellant_grain",

geom_type="GRAIN7PERFCYL",

outer_diameter=11.43e-3,

perforation_diameter=1.143e-3,

length=25.4e-3,

ignition_temperature=444.0,

initial_temperature=294,

specific_heat=1550.0,

thermal_conductivity=0.31)

The ignition_temperature is expressed in K, and represents the local gas or propellant
surface temperature (depending on ignition model chosen) that would cause the grain to
ignite. initial_temperature, specific_heat and thermal_conductivity are parame-
ters required for the propellant surface temperature ignition model. They can be ignored
in an simulation if the local gas temperature model is being employed. Casbar supports a
number of grain geometries. The currently available geom_type keywords, and the required
input dimensions for each, are now described.

• GRAINCYLINDER: A solid cylinder or cord. Specify outer_diameter of the cord and
cord length.

• GRAINSLAB: A solid rectangluar slab. Specify the width and height of the slab and
slab length.

• GRAIN1PERFCYL: A single-perforated cylindrical grain. Specify outer_diameter of
the cylinder, perforation_diameter and length.

• GRAINSLOTTEDCYL: A single-perforated cylindrical grain with slot. Specify
outer_diameter of the cylinder, perforation_diameter, length and slot_width.

• GRAIN7PERFCYL: A seven-perforated cylindrical grain. Specify outer_diameter of
the cylinder, perforation_diameter and length. Webs are assumed to be of equal
size.

26 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

• GRAIN19PERFCYL: A nineteen-perforated cylindrical grain. Specify outer_diameter

of the cylinder, perforation_diameter and length. Webs are assumed to be of
equal size.

• GRAINSPHERE: A solid ball. Specify outer_diameter of the sphere.

Each grain type may contain one or more solid energetic materials. The solids (or
mixtures of solids) are arranged in layers, where each layer is de�ned by its depth from
a free surface where combustion occurs. In the case of perforated grains, the perforation
surfaces are also treated as free surfaces. The following example shows the de�nition of a
grain comprised wholly of a single solid, and thus containing a single layer:

example_grain.add_layer(solid_massf=[1.0],

layer_start=0.0)

The array solid_massf denotes the mass fractions of solid materials in that layer, in the
order de�ned in Section 3.2.1. The keyword layer_start de�nes the start of the layer,
expressed as depth from the initially unburnt free-surfaces of the grain. Multiple layers
with varying mass fractions can be de�ned, for example, to approximate impregnation of
one solid material through another.

Finally, the propellant grains must be declared to Casbar using

declare_grains([example_grain])

4 Postprocessing tools

4.1 Extracting �eld data: casbar_post.py

The postprocessing program casbar_post.py may be used at the command line to extract
�eld data from the simulation domain. The command-line options are explained here.

> casbar_post.py --job=JOBNAME --format=FORMAT --output=OUTPUT

[--time=TIME|--initial|--final|--all]

�job=JOBNAME
JOBNAME is the base �le name that is used for your simulation. The program will
look for .s and .p �les based on this name.

�format=FORMAT
FORMAT is one of: save, vtk or tecplot.

�output=OUTPUT
OUTPUT is the base part of the output �le name. The program will add the appro-
priate extension based on the format and time option.

UNCLASSIFIED 27

DSTO�GD�0746 UNCLASSIFIED

One only of the following options must be speci�ed:

�time=TIME
TIME is the time in seconds at which the �eld is desired. The program will select
the �rst �eld solution that is greater than the speci�ed time value.

�initial

The initial �ow �eld is extracted and written to a �le OUTPUT-initial plus ap-
propriate extension. The .s0 �le is used as the data.

�final

The solution �le (.s) is scanned for the �nal solution and this is written to OUT-
PUT-final plus appropriate extension.

�all

All available �eld solutions are written out in sequence. This may be useful for
creating animations.

4.2 Extracting history data: casbar_history.x

The history cell data is recorded in the .h �le for all history cells in the �ow �eld. The
casbar_history.x program may be used to extract the data for a speci�c history cell and
write the data in a form suitable for plotting. It is important that the user is aware how
many history cells are in the simulation because the history extraction program needs this
value in order to correctly pull out the data.

> casbar_history.x --parameter-file JOBNAME.p --input JOBNAME.h

--output OUTPUT --ncell <1> --cell <0>

�parameter-file JOBNAME.p
This option indicates the appropriate parameter �le.

�input JOBNAME.h
This option is used to specify the history �le.

�output OUTPUT
This is the name of the �le, chosen by the user, into which the history data for the
selected cell will be written.

�ncell ncells
ncells is the number of history cells which appear in the �le JOBNAME.h The default
value is 1.

�cell cell_no
cell_no is the number of the speci�c history cell for which the data is required. The
numbering of cells is from 0 . . . ncells − 1. The default value is 0.

28 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

4.3 Extracting pro�le data: casbar_prof.py

The user may extract a line of data from the �ow �eld using the casbar_prof.py tool. The
line follows a constant i or j index through the grid and so does not necessarily correspond
to line of constant x or y value. The resulting output �le is in a form ready for plotting.
The data in each of the columns is identi�ed by the �elds in the �rst line of the output �le.

casbar_prof.py --job=JOBNAME --output=OUTPUT

[--i-line=<i_index>|--j-line=<j_index>]

[--block-list=<BLK_LIST>]

[--time=TIME|--initial|--final|--all]

�job=JOBNAME
JOBNMAE is the base �le name that is used for your simulation. The program will
look for .s and .p �les based on this name.

�output=OUTPUT
OUTPUT is the base part of the output �le name. The program will append the
extension .prof to this name.

The user must select either an �i-line or a �j-line:

�i-line=i_index
i_index is the integer value of constant i-index along which the pro�le is extracted.
This would usually be used to select a vertical line throughout the grid.

�j-line=j_index
j_index is the integer value of constant j-index along which the pro�le is extracted.
This would usually be used to select a horizontal line throughout the grid.

Additionally, the user must select one of the following time options:

�time=TIME
TIME is the time in seconds at which the pro�le is desired. The program will select
the �rst solution that is greater than the speci�ed time value.

�initial

The pro�le is extracted from the initial �ow �eld and written to a �le OUT-
PUT-initial.prof. The .s0 �le is used as the data.

�final

The solution �le (.s) is scanned for the �nal solution and the extracted pro�le is
written to OUTPUT-final.prof.

�all

All available �eld solutions are processed and the appropriate pro�le is written out
to �les in sequence. Useful for creating animations.

UNCLASSIFIED 29

DSTO�GD�0746 UNCLASSIFIED

4.4 Separating the data for multiple projectiles

The Casbar program stores the information for all projectiles in the .projectile �le.
Each line begins with an index indicating which projectile that line of data applies to. In
the case of a single projectile, it is easy to use the .projectile �le directly for plotting.
When you have multiple projectiles you may wish to separate the data into separate �les.
A trivial awk6 program as shown below may be used from the command line:

awk -v proj=1 '$1 == proj { for (i=2; i<=NF; i++) \

printf "%s ", $i; printf "\n"; }' \

< jobname.projectile > output

In this example, the data for the second projectile (index = 1, therefore proj=1) is extracted
from the input �le jobname.projectile and the data is written to a �le named output.

6The awk programming language is available on most linux distributions.

30 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

Appendix A Example: The AGARD gun

A.1 AGARD gun description

The �AGARD gun� is a synthetic test case, which has previously been used for performing
code-to-code comparisons in several TTCP e�orts, including KTA 4-13 and KTA 4-38. See,
for example, Woodley, Modelling the ignition of 40mm gun charges, 22nd International
Symposium on Ballistics, Vancouver, 2005.

The gun chamber diameter and bore diameter are constant at 132 mm, and the bore
resistance is a constant 13.79 MPa. The projectile base is initially located 762 mm down-
stream from the breech. In this example, the igniter is assumed to vent uniformly through-
out the full chamber diameter, in the region between the breech and 127mm downstream
of the breech. Heat loss to the barrel is neglected. The propellant consists of cylindri-
cal 7-perforated grains. Thermal properties of the propellant and other relevant data are
prescribed and shown at Table A1.

A.2 Listing of agard_propellant.py

The following listing shows the Casbar propellant description �le used to de�ne the
AGARD gun propellant properties and geometry. Note that we specify that the propellant
produces only one product gas, with the corresponding properties of that gas described
in the "agard_gas.lua" �le. Each propellant grain is associated with its corresponding
gas via the "gas_massf" assignment. While in reality the propellant combustion would
produce multiple species, for simplicity we simply use an homogenous product gas with
properties matching that of the mixture of those species.

#

A python description file for

agard propellant.

#

First prepared by...

Ian Johnston

#

Fiddled with by...

Rowan Gollan

21-Jun-2007

#

Updated to reflect code changes by...

Alan Harrland

March 2013

#

This input file is for the case with ideal igniton.

- only one propellant type (no primer)

- low ignition temperature to mimic perfect igntion

agard_solid_propellant = Solid("agard_solid_propellant",

density=1578.0,

flame_temperature=2585.0,

combustion_energy=3.7369e6,

gas_massf=[1.0, 0.0], # [prop gas, air]

UNCLASSIFIED 31

DSTO�GD�0746 UNCLASSIFIED

Table A1: AGARD Gun Data (Woodley, 2005)

Gun calibre (mm) 132 (constant)

Initial position of projectile from breech face (mm) 762

Travel of projectile (mm) 4318

Distance from breech face to muzzle (mm) 5080

Bore resistance (MPa) 13.79 (constant)

Projectile mass (kg), �at base 45.359

Propellant mass (kg) 9.5255

Propellant solid density (g/cc) 1.578

Propellant geometry cylindrical 7-hole

Propellant grain length (mm) 25.4

Propellant grain diameter (mm) 11.43

Propellant perforation diameter (mm) 1.143

Propellant burn rate coe�cient (cm/s/MPan) 0.078385

Propellant burn rate pressure index (n) 0.9

Propellant adiabatic �ame temperature (K) 2585

Propellant ignition temperature (K) 444

Propellant thermal conductivity (W/s/K) 0.2218

Propellant thermal di�usivity (mm2/s) 0.08677

Propellant emissivity (-) 0

Propellant chemical energy (MJ/kg) 3.7369

Propellant molecular weight (g/mol) 21.3

Propellant speci�c heat ratio (-) 1.27

Propellant impetus (MJ/kg) 1.009

Propellant co-volume (cc/g) 1.0838

Propellant intergranular wave speed (m/s) 254

Igniter mass (kg) 0.2268

Igniter density (g/cc) 1.799

Igniter chemical energy (MJ/kg) 1.5702

Igniter molecular weight (g/mol) 36.13

Igniter speci�c heat ratio (-) 1.25

Igniter impetus (MJ/kg) 0.3926

Igniter adiabatic �ame temperature (K) 1706

Initial temperature in chamber (K) 294

Initial pressure atmospheric

Molecular weight of ambient air (g/mol) 29

Speci�c heat ratio of ambient air (-) 1.4

32 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

burn_rate_min_p=[0.0,],

burn_rate_param_a=[0.00078385,],

burn_rate_param_b=[0.0,],

burn_rate_param_n=[0.9,])

declare_solids([agard_solid_propellant])

agard_propellant_grain = Grain("agard_propellant",

geom_type="GRAIN7PERFCYL",

outer_diameter=11.43e-3,

perforation_diameter=1.143e-3,

length=25.4e-3,

ignition_temperature=200.0,

initial_temperature=294,

specific_heat=1550.0,

thermal_conductivity=0.31)

agard_propellant_grain.add_layer(solid_massf=[1.0],

layer_start=0.0)

declare_grains([agard_propellant_grain])

A.3 Listing of agard_air.lua

The following listing shows the Casbar gas description �le used to de�ne the AGARD gas
properties. Each gas is de�ned individually.

-- AGARD Interior ballistic code validation

--

-- AGARD propellant

--

-- Prepared by...

-- Alan Harrland

-- March-2013

--

model = 'composite gas'

equation_of_state = 'Noble-Abel gas'

thermal_behaviour = 'constant specific heats'

mixing_rule = 'Wilke'

diffusion_coefficients = 'hard sphere'

sound_speed = 'equilibrium'

ignore_mole_fraction = 1.0e-15

species = {'propellant', 'air'}

propellant = {}

propellant.M = {

value = 0.0213,

reference = "from AGARD test case",

description = "molecular mass",

units = "kg/mol",

}

propellant.gamma = {

UNCLASSIFIED 33

DSTO�GD�0746 UNCLASSIFIED

value = 1.27,

reference = "from AGARD test case",

description = "(ideal) ratio of specific heats at room temperature",

units = "non-dimensional",

}

propellant.b = {

value = 0.0010838,

reference = "from AGARD test case",

description = "co-volume",

units = "m**3/kg",

}

propellant.d = {

value = 3.617e-10,

reference = "Air value from Bird, Stewart and Lightfoot (2001), p. 864",

description = "equivalent hard-sphere diameter, sigma from L-J parameters",

units = "m",

}

propellant.e_zero = {

value = 0,

description = "reference energy",

units = "J/kg",

}

propellant.q = {

value = 0,

description = "heat release",

units = "J/kg",

}

propellant.viscosity = {

parameters = {

T_ref = 273,

ref = "Air value from Table 1-2, White (2006)",

S = 111,

mu_ref = 1.716e-05,

},

model = "Sutherland",

}

propellant.thermal_conductivity = {

parameters = {

S = 194,

ref = "Air value from Table 1-3, White (2006)",

k_ref = 0.0241,

T_ref = 273,

},

model = "Sutherland",

}

air = {}

air.M = {

value = 0.02897,

reference = "for R=287 J/(kg.K)",

description = "molecular mass",

units = "kg/mol",

}

air.gamma = {

value = 1.4,

reference = "the usual value for air",

description = "(ideal) ratio of specific heats at room temperature",

units = "non-dimensional",

34 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

}

air.b = {

value = 0.001,

reference = "to match the original casbar example",

description = "co-volume",

units = "m**3/kg",

}

air.d = {

value = 3.617e-10,

reference = "Air value from Bird, Stewart and Lightfoot (2001), p. 864",

description = "equivalent hard-sphere diameter, sigma from L-J parameters",

units = "m",

}

air.e_zero = {

value = 0,

description = "reference energy",

units = "J/kg",

}

air.q = {

value = 0,

description = "heat release",

units = "J/kg",

}

air.viscosity = {

parameters = {

T_ref = 273,

ref = "Air value from Table 1-2, White (2006)",

S = 111,

mu_ref = 1.716e-05,

},

model = "Sutherland",

}

air.thermal_conductivity = {

parameters = {

S = 194,

ref = "Air value from Table 1-3, White (2006)",

k_ref = 0.0241,

T_ref = 273,

},

model = "Sutherland",

}

A.4 Listing of agard.py

The following listing shows the Casbar propellant job �le used to de�ne the AGARD gun
simulation. The listing contains explanatory commenting throughout, preceded by the
Python commenting # symbol. In addition, note that:

• The import os command is required in order to e�ect the processing of the propellant
description �le from within this Python job �le.

• Various convenience variables (like Diameter) and functions can be de�ned to suit
the user.

UNCLASSIFIED 35

DSTO�GD�0746 UNCLASSIFIED

• The barrel is made longer than speci�ed in the case de�nition, by the length of the
projectile. This allows room for the projectile to fully exit the �real� muzzle location
before the simulation stops. Otherwise, the simulation would end when the projectile
nose reaches the end of the barrel.

• A medium resolution of 129 cell vertices in the x-direction, and 8 in the radial direc-
tion, is used.

• A Python function, fill_function, is used to provide the intial conditions for the
entire solution domain. It uses each cell's x-location to determine whether it is to be
�lled by air (upstream of the projectile) or propellant (between breech and projectile
base).

• The origin for coordinates has been chosen to correspond to the centre of the projectile
base. This x-origin is arbitrary, however, and any other convenient point along the
symmetry axis could have been used.

AGARD idealized gun test case

#

import os

Diameter = 132.0e-3

r = Diameter/2.0

job_title = "AGARD"

gdata.title = job_title

gdata.stringent_cfl = 1

gdata.two_phase_system = "Gough"

gdata.problem_type = "interior_ballistics"

gdata.ignition_model = "simple_ignition_model"

gdata.heat_transfer_model = "no_heat_transfer_model"

#

Drag model

#

settling_porosity = 0.42112

create_Ergun_drag_model_input(settling_porosity, "Ergun_drag_model.dat")

gdata.set_drag_model("Ergun_drag_model", "Ergun_drag_model.dat")

Gas model

2 gases: propellant gas and air

#

gdata.select_gas_model(fname ="AGARD_air.lua")

Grain

os.system("prepare_propellant.py agard_propellant.py agard_grain.dat")

gdata.set_grain_model("agard_grain.dat")

#

Stress model

#

eps_star = 0.55 # dummy value as we're using constant wave speed

kappa = 1.0 # dummy value as we're using constant wave speed

36 UNCLASSIFIED

UNCLASSIFIED DSTO�GD�0746

a1 = 254.0 # m/s as specified in AGARD case, in lieu of any better values...

const_wave_speed = True

create_Gough_stress_model_input(settling_porosity, eps_star, a1, kappa, const_wave_speed,

"Gough_stress_model.dat")

gdata.set_igs_model(0, "Gough_stress_model", "Gough_stress_model.dat")

Flow conditions

propellantloaded = ParticulateCondition(0, u=0.0, v=0.0, r=0.0, ld=913.47)

propellantIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0, mf=[0.0, 1.0],

particulate_conditions=[propellantloaded])

barrelIC = FlowCondition(p=0.1e6, u=0.0, v=0.0, T=294.0, mf=[0.0, 1.0],

particulate_conditions=[None])

Block Geometry

a = Node(-0.762, 0.000, label="a")

b = Node(4.318, 0.000, label="b")

c = Node(-0.762, r, label="c")

d = Node(4.318, r, label="d")

Breech Projectile Muzzle

Base (At Origin)

c pppppp d

a 0pppppp b

< 762mm >< 4318mm >

ab = Line(a, b)

cd = Line(c, d)

ac = Line(a, c)

bd = Line(b, d)

nx = 129

ny = 8

def fill_function(x, r):

if x <= 0.0:

return propellantIC

else:

return barrelIC

blk_0 = Block2D(make_patch(cd, bd, ab, ac),

nni=nx, nnj=ny,

fill_condition=fill_function,

hcell_list=[(0,0), (nx-1,0)],

label="blk_0")

blk_0.set_BC(EAST, Extrapolate_boundary_condition())

proj = Projectile(m=45.359, D=Diameter,

xL0=0.0, xR0=3.0*Diameter,

v0=0.0, bore_resistance_p=[13.79e6],

bore_resistance_x=[0.0],

name="bullet")

UNCLASSIFIED 37

DSTO�GD�0746 UNCLASSIFIED

gdata.axisymmetric_flag = 1

gdata.gas_flux_calc = "ausmdv"

gdata.particulate_flux_calc = "ausmdv-p"

gdata.max_time = 20.0e-3

gdata.max_step = 1000000

gdata.x_order = 2

gdata.t_order = 2

gdata.cfl = 0.25

gdata.dt = 1.0e-6

gdata.print_count = 20

gdata.dt_plot = gdata.max_time / 5.0

gdata.dt_history = 1.0e-4

A.5 Running the simulation

The following listing shows the operating system shell commands required to prepare and
run the simulation, and extract history data from the results.

> casbar_prep.py --job=agard

> casbar_main.x --job=agard

> casbar_history.x -p agard.p -i agard.h -o history-breechmid.data --ncell 3 --cell 0

> casbar_history.x -p agard.p -i agard.h -o history-wall10mm.data --ncell 3 --cell 1

> casbar_history.x -p agard.p -i agard.h -o history-wall750mm.data --ncell 3 --cell 2

38 UNCLASSIFIED

Page classi�cation: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Casbar User's Guide - Version 2

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Rowan J. Gollan, Brendan T. O'Flaherty, Peter A.
Jacobs, Ian A. Johnston and Alan Harrland

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO�GD�0746
6b. AR NUMBER

AR-015-619
6c. TYPE OF REPORT

General Document
7. DOCUMENT DATE

May, 2013

8. FILE NUMBER

2013/1091438/1
9. TASK NUMBER

LRR 07/370
10. TASK SPONSOR

CDS
11. No. OF PAGES

38
12. No. OF REFS

0

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Weapons Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,

EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Guns Internal Ballistics
Analysis Simulation Tools

19. ABSTRACT

The Collaborative Australian Ballistics Research code, Casbar , is a simulation tool for the analysis of the
interior ballistics of guns. The code solves a two-phase, axisymmetric form of the governing equations for
the �ow of gas and particulates in the gun, and accommodates multiple projectiles within the simulation.
Casbar is also suitable for investigating intermediate ballistics, and can alternatively be used as a general
compressible �ow solver. Casbar supports user-customized types of deterred or undeterred propellant
grain, �exible de�nition of initial conditions and ignition sources, and various constitutive submodels
for simulating interphase drag and heat transfer, intergranular stress and propellant ignition. This
document, the Casbar User's Guide - Version 2, explains the use of the code and available options, and
provides a worked example with corresponding input �les. It is an update to the previous document
Casbar User's Guide, DSTO�GD�0594, re�ecting recent updates performed to the numerical code.

Page classi�cation: UNCLASSIFIED

	ABSTRACT
	Contents
	Appendices
	1 Introduction
	2 Overview of the simulation procedure
	3 Constructing input files
	3.1 Problem specification file
	3.1.1 Simulation control parameters
	3.1.2 Gas model
	3.1.3 Grain ignition model
	3.1.4 Interphase heat transfer model
	3.1.5 Grain burning model
	3.1.6 Intergranular stress model
	3.1.7 Interphase drag model
	3.1.8 Flow conditions
	3.1.9 Block definition of the flow domain
	3.1.9.1 User-defined fill functions
	3.1.9.2 Boundary conditions
	3.1.9.3 Constructing surfaces: geometry

	3.1.10 Projectile specification
	3.1.11 Igniter modelling
	3.1.11.1 Ignition zone
	3.1.11.2 Igniter flux at a boundary

	3.1.12 Specifying history locations
	3.1.13 Summary: simulation checklist

	3.2 Propellant grain description file
	3.2.1 Definition of the energetic material solid types
	3.2.2 Definition of the propellant grain types

	4 Postprocessing tools
	4.1 Extracting field data: casbar_post.py
	4.2 Extracting history data: casbar_history.x
	4.3 Extracting profile data: casbar_prof.py
	4.4 Separating the data for multiple projectiles

	Appendix
A Example: The AGARD gun
	A.1 AGARD gun description
	A.2 Listing of agard_propellant.py
	A.3 Listing of agard_air.lua
	A.4 Listing of agard.py
	A.5 Running the simulation

	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

