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1 Summary of project goals

The specific challenge tackled in this project is detection, localization and recovery of weak and
distributed patterns of activation in a network. Weak patterns of activation in a network arise in
myriad problems including identification of incipient contamination or seismic activity monitored
by a sensor network, onset of a virus in the Internet, covert signals in communication networks,
or anomalous social activity. Moreover, the distributed nature of these patterns implies that they
are undetectable in local signatures of individual nodes, as well as in network-wide aggregates.
As a result, the solution to this problem hinges on the development of novel data fusion methods
that leverage the structure of the underlying network. Since the number of possible activation
patterns can grow exponentially with network size, conventional estimators and detectors such
as scan statistic or generalized likelihood ratio that scan over all patterns are computationally
intractable. On the other hand, attempts to develop feasible detectors such as fast subset scanning
or averaging/thresholding require high Signal-to-Noise Ratios (SNRs). Furthermore, there are
constraints on resources such as limits on storage, sensing, communication energy or bandwidth.

The goals of this project were to address the following problems:

1. Determine theoretical limits of detection, localization and recovery of weak distributed acti-
vations in large-scale networked systems.

2. Develop practical computationally efficient algorithms that require minimal SNR and mea-
surement resources to identify weak and distributed patterns of network activity.

2 Significant work accomplished

This section summarizes the theory and methods developed in this project for the problems of
detecting, localizing and estimating weak and distributed graph-structured patterns under 1) a
direct measurement model and 2) a compressive and adaptive measurement model.

2.1 Direct measurement model

Under this model, the observations correspond to a single measurement at each node of a known
network graph G = (V,E), i.e.,

yi = xi + εi i = 1, . . . , |V |

where xi is the true underlying activation at node i that is corrupted by additive white Gaussian

noise εi
i.i.d.∼ N (0, σ2).

I. Detection: The goal of detection is to distinguish between the two hypothesis:

H0 : x = 0

H1 : x = µ1C

Here x = {xi}i∈V and C ∈ Cc,ρ := {C ⊆ V : |C| = c, |∂C| ≤ ρ} denotes the set of (possibly
disconnected) activated vertices with size |C| = c and cut-size |∂C| := |(i, j) ∈ E : i ∈
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C, j 6∈ C| less than or equal to a constant ρ > 0. 1 For a given sparsity level c, smaller
values of ρ imply that the set of activated nodes are localized on the graph. The goal is to
develop computationally efficient detectors that can distinguish between H0 and H1 at very
low signal-to-noise ratios (SNRs) µ/σ.

The Generalized Likelihood Ratio Test (GLRT) statistic, also known as combinatorial scan
statistic, for this hypothesis testing problem is given as:

max
C∈Cc,ρ

1>Cy

While the GLRT or a scan over an ε-net of the class Cc,ρ is optimal in many cases [1, 2, 3],
it is computationally intractable. While there has been some work on developing fast graph
subset scanning methods [4], these greedy methods sacrifice statistical power. This project
developed detectors for weak graph-structured patterns by borrowing tools from graph theory,
optimization and machine learning. These detectors are computationally efficient, applicable
to graphs and patterns with general structures and come with precise theoretical guarantees,
often achieving near-optimal statistical performance.

• The spectral scan statistic (SSS) developed in [5] is obtained by a convex spectral
relaxation of the combinatorial scan statistic, inspired by the relaxation used in spectral
clustering algorithm in machine learning. This involves relaxing the cut size constraint
using the graph Laplacian matrix ∆ = D−A where A denotes the adjacency matrix of the
graph and D is a diagonal matrix with vertex degrees on the diagonal i.e. Dii =

∑
j Aij .

The cut size can be written as |∂C| = 1>C∆1C , suggesting that the domain of the GLRT
can be relaxed to z>∆z where z ∈ R|V | relaxes the vector 1C . The resulting spectral
scan statistic is defined as follows where ỹ = y − 1Ty/|V |

ŝ = sup
z∈R|V |

(z>ỹ)2 s.t. z>∆z ≤ ρ, ‖z‖ ≤ 1, z>1 = 0.

As shown in [5], the convex spectral scan statistic can be solved efficiently in the dual
domain by first-order interior point methods. The SNR required by the SSS is charac-
terized as follows. Here a = ω(b) denotes that a/b→∞.

Theorem 1. [5] The spectral scan statistic asymptotically distinguishes H0 from H1 if

µ

σ
= ω


√√√√1

c

|V |∑
i=2

min

(
1,

ρ

cλi

)
where λi are the eigenvalues of the graph Laplacian matrix ∆ sorted in ascending order.

This result suggests that the SNR required by SSS scales with the complexity of the
pattern class (cut-size to size ratio ρ/c, or equivalently the surface to volume ratio,
of the activated vertices), as well as the complexity of the graph (decay of Laplacian
eigenvalues). The graph spectrum and this bound is evaluated for specific low-cut and

1Some of the methods developed apply to more general composite null hypotheses that allow for piece-wise constant
activations, but for simplicity we focus on this setup in the report.
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sparse patterns on specific graphs (e.g. subtrees of activation in a tree graph, squares of
activation in a 2-dimensional torus or multi-resolution groups in Kronecker graphs) in
[5]. An extension of this work, the Graph Ellipsoid Scan Statistic (GESS), was recently
developed which upper and lower bounds the SSS, and enables tighter performance
bounds. Work on GESS is currently in preparation for submission [6].

Some information-theoretic lower bounds for this problem are also derived in [5, 7] which
reveal that while the SSS and GESS are nearly-optimal for non-sparse activations (large
c), their performance is suboptimal for sparse patterns, except for very specific graphs.
The remaining two detectors described below overcome this drawback and perform better
with a small set of activated vertices.

• The Lovász extended scan statistic (LESS) [8] is another relaxation of the GLRT
obtained as follows. The GLRT can be written in terms of the binary vector z = 1C ∈
{0, 1}|V | as

max
z∈{0,1}|V |

z>y√
c

s.t.
∑

(i,j)∈E

I{zi 6= zj} ≤ ρ,1>z = c

Submodularity is the combinatorial analogue of convexity, and it turns out that the
cut size (|∂C|) is submodular. For every submodular function there exists a convex
relaxation, called the Lovász extension. The Lovász extension of |∂C| =

∑
(i,j)∈E I{zi 6=

zj} is the total variation
∑

(i,j)∈E |zi − zj |. Thus, it is natural to relax the GLRT as
follows

l̂ = max
z∈[0,1]|V |

z>y√
c

s.t.
∑

(i,j)∈E

|zi − zj | ≤ ρ,1>z = c (1)

which is called the LESS. In [8], convex analysis has been used to derive the dual program
to the LESS, and it is shown that LESS can be solved efficiently using methods for finding
graph cuts. The SNR required by LESS depends on rmax the maximum effective resis-
tance of the graph cut induced by a pattern in Cc,ρ. Formally, rmax = maxC∈Cc,ρ

∑
e∈∂C re

where re is the effective resistance of the edge e.

Theorem 2. [8] The Lovász extended scan statistic asymptotically distinguishes H0 from
H1 if

µ

σ
= ω

(√
max(rmax, log(|V |)) log(|V |)

c

)
By Foster’s theorem, the effective resistance of a cut is ≈ ρ/d where d is the average
degree of a vertex. This intuition can be formalized for specific graphs such as edge
transitive graphs (including the lattice and complete graphs) and random geometric
graphs (such as k-nearest neighbor and ε-nearest neighbor graphs). For these cases,
a comparison with information-theoretic lower bounds suggests that LESS is nearly
optimal 2. If rmax ≈ ρ/d � c, the active nodes are localized on the graph and the
detector takes advantage of structured sparsity. On the other hand, if rmax ≈ ρ/d ≈ c
the pattern is not localized and the SNR requirement degrades gracefully to

√
log |V |

(up to log factors), which is characteristic of unstructured tests (that do not leverage
knowledge of the graph) such as the max statistic or Higher Criticism [9].

2The necessary SNR for sparse patterns essentially scales like
√

(ρ/dmaxc) log |V | [7]
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Algorithm 1 FormWavelets

Require: S = {Ti}dvi=1

(1) Let T1 = ∪i≤|S|/2Ti and T2 = ∪i>|S|/2Ti.
(2) Form the following basis element and add it to B:

b =

√
|T1||T2|√
|T1|+ |T2|

[
1

|T1|
1T1 −

1

|T2|
1T2

]

(3) Recurse at (1) with S ← {Ti}i≤|S|/2 and S ← {Ti}i>|S|/2 separately.

• The graph wavelet statistic [10, 7] can be obtained by constructing an orthonormal
wavelet basis B = [b1, . . . ,b|V |] for the graph with the property that every pattern in
Cc,ρ has a sparse representation in terms of the basis coefficients. Projecting the node
observations onto such a basis would concentrate the signal energy in a few coefficients
while the noise distribution remains the same, thus boosting the SNR. This leads to
natural detectors based on thresholding the maximum wavelet coefficient

max
b∈B

bTy

which is equivalent to scanning over an epsilon-net of Cc,ρ.
For hierarchically-structured network patterns characterized by a latent tree graph, such
an orthonormal unbalanced Haar wavelet basis was developed [10]. This construction was
then extended to low-cut activation patterns on general graph structures by leveraging
the spanning tree of a graph to correspond to the latent tree [7]. Specifically, for general
graphs, the graph wavelet construction relies on the uniform spanning tree (UST) which
can be constructed in time nearly linear in the number of vertices for most graphs
using the Aldous-Broder algorithm [11]. Given a UST, the wavelet construction iterates
the following steps: finding a balancing vertex, removing it from the uniform spanning
tree, forming a basis that spans the resulting connected components, and recursing on
the remaining subtrees. A balancing vertex is one such that the remaining connected
components, after its removal from the tree, are at most half the size of the graph. A
simple algorithm that travels in the direction of the largest subtree at a vertex can be
used to find this in nearly O(|V |) time. The wavelet construction is summarized in
Algorithm 1, which takes as input the connected subtrees S = {Ti}dvi=1 after the removal
of the balancing vertex v, where dv is the degree of vertex v. The SNR required by the
UST wavelet detector is given as follows.

Theorem 3. [7] The uniform spanning tree wavelet statistic asymptotically distinguishes
H0 from H1 if

µ

σ
= ω

√rmax log(dmax) log2(|V |)
c


where dmax is the maximum degree of the graph G.

This performance bound is similar to that of LESS, and similar to LESS the UST wavelet
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Figure 1: (a) ROC curves for spectral scan statistic (SSS), uniform spanning tree wavelet statistic
(Wavelet), the maximum statistic, maxi |yi|, (Max), and Lovász extended scan statistic (LESS). The
graphs used are square 2D Torus (top), and ε-NN graph (bottom) with ε ≈ |V |−1/3; with µ = 4, 3
respectively, |V | = 225, and c ≈ |V |1/2. (b) Comparison of wavelet detector with maximum and
aggregate statistic on a torus with increasing size of activated cluster, for a fixed cut size.

detector is nearly optimal for many graphs and pattern classes. It also takes advantage
of structured sparsity and degrades gracefully for unstructured settings.

A comparison of the three detectors will appear in [12] for graph-structured patterns simulated
over a 2-dimensional torus and ε-NN random graph. Fig. 1(a) reports the true positive rate
versus the false positive rate as the threshold varies (also known as the receiver operating
curve or ROC.) The LESS provides a tight relaxation and hence performs better than SSS.
The wavelet detector, though theoretically optimal, suffers from additional log factors which
make its performance slightly inferior to LESS. For each graph, all of the developed detectors
dominate the max statistic, indicating that one cannot ignore graph structure and hope to
detect at optimal SNRs.

To demonstrate that the proposed detectors degrade gracefully when the cut size to cluster
size becomes large, the wavelet detector is compared to two unstructured detectors based
on the maximum and global average of all observations. The global aggregate statistic is
expected to work well when the cluster size is very large. Fig. 1(b) shows that, for a fixed cut
size, the wavelet detector degrades to the aggregate and maximum tests for very large and
very small cluster sizes respectively, but outperforms them when the pattern is localized on
the graph (not globally spread or too sparse such that graph structure cannot be leveraged).

II. Estimation: The goal of estimation is to de-noise the node observations and recover the
underlying activation pattern x accurately in mean-square-error (MSE). In this problem, x
does not necessarily correspond to a binary activation. Instead, we focus on the class of
activations that are smooth with respect to the graph G, i.e. if two nodes are connected
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by an edge, their activations are similar. This can be formalized by considering the class of
patterns

Xρ = {x : x>∆x =
∑

(i,j)∈E

|xi − xj | ≤ ρ}

where ∆ denotes the graph Laplacian, as before. Such activation patterns (with a specific ρ)
also arise with high probability when sampled from a Gaussian Graphical model or an Ising
model [13].

Patterns that are smooth over a known graph can be denoised by projection onto the Graph
Laplacian Eigenbasis. Consider the spectral decomposition of the Graph Laplacian ∆ =
UΛU>, and denote the first k eigenvectors (corresponding to the smallest eigenvalues) of ∆
by U[k]. Define the estimator

x̂k = U[k]U
>
[k]y

which is a hard thresholding of the projection of node measurements onto the graph Laplacian
eigenbasis. This estimator reduces to some well-known estimators for specific graphs, e.g. for
regular grids aka lattice graphs, the Laplacian eigenbasis correspond to Fourier basis and for
hierarchical graphs, the Laplacian eigenbasis correspond to the Wavelet basis. The following
theorem bounds the MSE of this estimator.

Theorem 4. [13] The maximum MSE of the Projected Graph Laplacian estimator can be
bounded as

sup
x∈Xρ

E[‖x̂− x‖2] ≤ min(|V |, ρ/λk+1) + kσ2

where λ1 ≤ λ2 ≤ . . . are the ordered eigenvalues of ∆.

The two terms in the bound indicate a tradeoff between the amount of signal discarded (first
term) and the amount of noise retained (second term) by projecting onto the first k Laplacian
eigenbasis. By evaluating the eigenspectrum of various graphs, it is possible to establish an
appropriate scaling of k with graph size |V | and the amount of noise that can be tolerated
while ensuring MSE consistent recovery i.e. MSE → 0 as the graph size |V | → ∞. For
many example graphs, it is observed that the tolerable noise level scales as σ2 = o(pγ), where
γ ∈ (0, 1) characterizes the strength of network interactions [13]. For example, for lattice
graphs the noise tolerance results if the node degrees scale as γ log |V | (higher γ implying
more neighbors per node), for hierarchical graphs this requires that the non-zero interactions
exist until level γ log |V | going bottom-up (higher γ implying interactions between nodes
at coarse scales in the hierarchy), and for Erdos-Renyi graphs the noise tolerance results if
probability of an edge scales as |V |(γ−1) (higher γ implying more connectivity).

III. Localization: The goal of localization is to identify the set of edges across which the true
underlying activation differs, i.e.

∂C = {(i, j) ∈ E : xi 6= xj}

based on noisy observations {yi}|V |i=1.
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This problem can be solved via the “edge lasso” which arises as a special case of the generalized
fused lasso optimization as described in literature [14]

min
x̂

1

2
‖y − x̂‖2 + λ‖Dx̂‖1

where the matrix D ∈ R|E|×|V | specifies the constraints imposed by the graph structure.
Specifically, each row of the matrix D corresponds to an edge (i, j) ∈ E and the entries are
zero except for a +1 for node i and −1 for node j. Thus, the optimization seeks to find a
least square fit to the noisy observations while penalizing the `1 norm of the differences of
measurements across edges in G. This project investigated conditions under which the edge
lasso is sparsistent i.e. the edges over which x̂ differs agree exactly with the edge set ∂C,
asymptotically for large graph sizes |V | → ∞.

Theorem 5. [15] Let A denote the maximally connected components of C. For each A,
consider the following notion of degree of connectivity:

ρ(A) := max
W⊂A

|∂W̄ ∩ ∂A|
|∂W ∩ ∂W̄ |

|W |
|A|

Also let ∂C denote the set of edges that are not in ∂C and ∆† denotes the pseudo-inverse of
the graph Laplacian. If for each A, ρ(A) = o(1),

µ

σ
= ω

(
|∂A|
|A|
|||D∂C ∆†

∂C
|||2,∞

√
log(|∂C|)

)
and

µ

σ
= ω

(
1√
|A|

)
then the edge lasso is sparsistent.

The theorem provides general conditions for the success of edge lasso.
While these conditions are hard to comprehend directly, evaluating
them for specific graphs provides useful insights. As shown in [15],
for 1-d and 2-d lattice graphs, the conditions imply that edge lasso
succeeds at the same SNR (up to log factors) as thresholding the
difference of observations at nodes connected by an edge. On the
other hand, for more structured graphs such as the nested complete
graph (c.f. [15]) if the activated vertices have low connectivity as
per ρ(A) (e.g. see Fig. 2), then edge lasso can localize the activated
vertices at much lower SNR.

Figure 2: A nested
complete graph
with a low con-
nectivity activated
subgraph.

2.2 Compressive and adaptive measurement model

So far the focus has been on the direct measurement model. This project also explored the used
of compressive and adaptive measurements to minimize the resource budget needed for detection
and localization of graph-structured patterns. Under the compressive and adaptive measurement
model, each observation corresponds to a (random/passive or sequentially designed/active) linear
combination of the node measurements, i.e.

yi = a>i x + εi i = 1, . . . ,m

where the total sensing budget
∑

i ‖ai‖2 ≤ m.
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First, the specific case of a k1 × k2 block of activation in a n1 × n2 lattice graph structure was
considered, i.e. x = µ1C where C corresponds to a k1 × k2 contiguous block [16]. The precise
tradeos between the various problem parameters, SNR and the number of measurements required
to reliably detect and localize the block of activation were characterized. The sufficient conditions
are complemented with information theoretic lower bounds. A summary of known results for the
vector case and results of this project for the block-structured case are provided in Tables 1 and 2,
respectively. Contrary to results in compressed sensing of sparse vectors, where it has been shown
that neither adaptivity nor structure help reduce the SNR or number of measurements needed
[17, 18, 19, 20], results of this project shows that for reliable localization the minimum SNR
needed (or equivalently the number of compressive measurements needed) is strongly influenced by
both structure and the ability to choose measurements adaptively. However, for detection neither
adaptivity nor structure reduce the requirement on the SNR.

Table 1: Known results for a k-sparse length n vector

Detection Localization

Passive µ
σ �

√
n

mk2

µ
σ �

√
n logn
m , [21]

m � k log n

Active [17] µ
σ �

√
n
m [18, 19, 20]

Table 2: Findings for a k1 × k2 block of activation in a |V | = n1 × n2 lattice [16]

Detection Localization

Passive
µ
σ �

√
n1n2

mk21k
2
2

µ
σ �

√
n1n2

mmin(k1,k2)

Active
µ
σ � max

(√
n1n2

mk21k
2
2
,

These scalings are verified in Figure ?? where plotting the probability of successful localization
vs. SNRs rescaled with predicted scaling, aligns all the curves.
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Figure 3: Probability of successful localization of a sparse square block of activation in a square
lattice vs. SNRs rescaled with predicted scaling, for 100 passive compressive measurements (left)
and 500 adaptive compressive measurements (right), averaged over 100 simulation runs.
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The upper bound for the detection problem is achieved by a simple detector based on thresh-
olding the average of measurements obtained using passively designed, constant-valued linear mea-
surements with ai(j) = 1/

√
n1n2 for all i and j. The upper bound for passive localization is

obtained using a procedure that searches over all contiguous blocks of size k1× k2 and outputs the
one minimizing the squared error. Finally, the upper bound for active localization is attained by
a compressive binary search procedure on a collection of cyclically shifted non-overlapping blocks
that partition the lattice graph. Details of the procedure are available in [16].

While sequentially designed adaptive compressive measurements yield improvements for the
simple case of a block-structured activation in a lattice graph, it wasn’t clear whether similar im-
provements hold for general activation patterns and graph structures. This question was explored
in [22] for patterns with low cut-sizes on general graph structures. The results indicate that in
general no significant gains over unstructured settings are possible for localizing the activated ver-
tices, however if the activation pattern coincides with a dendrogram over the graph, then the graph
structure can be exploited to design adaptive compressive measurements that yield SNR improve-
ments, or equivalently savings in the number of measurements needed. Two methods are proposed
in [22] that perform modifications of a compressive binary search over the dendrogram. Compar-
ing these methods to sequentially designed compressed sensing algorithm (SDC) from [23] (which
does not exploit structure, but has near-optimal performance for localization of non-zero entries in
unstructured sparse vectors) indicates the importance of exploiting structure (see Figure 4).

Figure 4: Localization error for proposed Algorithms 1, 2, and SDC from [23] which does not exploit
structure. When the activation is very small k = 10 (left), all algorithms perform the same, but
when activation size k = 50, exploiting structure leads to significant improvement. Here G is a 512
node line graph and ρ = 2, resulting in one connected activated subgraph.

3 Conclusion

This project addressed the problems of detection, localization and estimation of weak and dis-
tributed patterns of activation in a large-scale network given access to direct, compressive and
adaptive noisy node measurements. Information-theoretic limits were identified for these prob-
lems, along with computationally efficient methods that nearly achieve the limits, for general graph
structures and classes of activation patterns. Development of such state-of-the-art methods that
are both computationally and statistically efficient is crucial to advance AFOSR’s ability to moni-
tor, understand and secure modern large-scale networks. The methods developed leveraged highly
inter-disciplinary tools, and resulted in publications including invited papers and oral presentations
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at NIPS, AISTATS, Asilomar and GlobalSIP, some of the most prominent conferences in machine
learning, statistics and signal processing.

4 People involved in various aspects of project

Graduate Students:

• James Sharpnack (PhD student, Machine Learning Department; now postdoc, University of
California - San Diego)

• Akshay Krishnamurthy (PhD student, Computer Science Department)

Faculty Collaborator:

• Alessandro Rinaldo (Assistant Professor (now Associate), Statistics Department)
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