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Abstract 

 

Qualitative accelerated test methods improve system reliability by identifying and 

removing initial design flaws.  However, schedule and cost constraints often preclude 

sufficient testing to generate a meaningful reliability estimate from the data obtained in 

these tests.  In this dissertation a modified accelerated life test is proposed to assess the 

likelihood of attaining a reliability requirement based on tests of early system prototypes.  

Assuming each prototype contains an unknown number of independent competing failure 

modes whose respective times to occurrence are governed by a distinct Weibull law, the 

observed failure data from this qualitative test are shown to follow a poly-Weibull 

distribution.   

However, using an agent-based Monte Carlo simulation, it is shown that for typical 

products subjected to qualitative testing, the failure observations result from a 

homogenous subset of the total number of latent failure modes and the failure data can be 

adequately modeled with a Weibull distribution.  Thus, the projected system reliability 

after implementing corrective action to remove one or more failure modes can be 

estimated using established quantitative accelerated test data analysis methods.   Our 

results suggest that a significant cost and time savings may be realized using the proposed 

method to signal the need to reassess a product’s design or reallocate test resources to 

avoid unnecessary maintenance or redesigns.  Further, the proposed approach allows a 

significant reduction in the test time and sample size required to estimate the risk of 

meeting a reliability requirement over current quantitative accelerated life test techniques.  
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Additional contributions include a numerical and analytical procedure for obtaining the 

maximum likelihood parameter estimates and observed Fisher information matrix 

components for the generalized poly-Weibull distribution.  Using this procedure, we show 

that the poly-Weibull distribution outperforms the best-fit modified Weibull alternatives in 

the literature with respect to their fit of reference data sets for which the hazard rate 

functions are non-monotone. 
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MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING 
 
 
 

I. Introduction 
 

“Our record of predicting where we will use military force since Vietnam is 

perfect – we have never once gotten it right, there isn’t a single instance: 

Grenada, Panama, the first Gulf War, the Balkans, Haiti, you can just keep going 

through the list, where we knew and planned for such a conflict six months in 

advance.” 

 

- Secretary of Defense Robert Gates, May 24, 2011 

 

Background 

Recapitalizing an aging Air Force inventory requires a balanced approach in 

which neither major combat operations against near-peer technology nor 

operations such as those employed in Afghanistan and Iraq are over-emphasized 

[1].  With this in mind, then Secretary of Defense, Robert Gates [2], unveiled seven 

strategic priorities to focus future science and technology investments and guide the 

development of next generation of systems engineering tools and processes.  

According to Neches [3], the Secretary’s second priority, Engineered Resilient 

Systems (ERS), comprises efforts to “efficiently create, field and evolve systems 

which can readily adapt to the inevitable changes in threat, technology and mission 

environments.”  Under the ERS construct, future systems must be robust to a wide 

range of possible operational environments, not just a single known scenario.  An 

implication of this strategy is the need for critical components capable of “plug and 

play” operations across platforms and operating environments. 
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 Recent history, however, indicates that US defense systems do not satisfy their 

operational suitability requirements sufficiently often [4].  Consequently, the 

Department of Defense spends too much for system redesigns, spares management, 

and maintenance.  Reports commissioned to investigate the root causes of these 

reliability and suitability shortfalls [5, 6] identified a lack of appropriate systems 

engineering processes, specifically a robust reliability growth strategy beginning 

early in the development cycle as a primary contributor.  In response to these 

reports, the Reliability Improvement Working Group adopted [7, 8] to align 

Department of Defense policy with the best practices of reliability management, and 

to provide the most value with the least risk in terms of fielding reliable products.  

These standards specify a scientific approach to design and build reliability into 

products early-on and institutionalize the creation of a comprehensive reliability 

growth strategy throughout the acquisition cycle.  As result of their implementation 

a greater burden is placed on verifying the maturity of early designs, thereby 

minimizing the expenditure of test resources in subsequent development phases. 

Reliability growth is the positive improvement in a product’s reliability 

distribution parameter over a period of time due to changes in product design or 

manufacturing processes [9].  Reliability growth modeling has historically played a 

role in determining whether major development efforts, such as military weapon 

systems, are likely to meet reliability requirements in time for graduation to the 

next development phase, and eventually to operational testing.  To assess product 

reliability, prototypes are subjected to a series of tests which exercise the system 
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using a selected subset of inputs from the overall set of possible inputs that may be 

encountered during the product’s lifetime.  Inputs may represent the expected 

usage environment or comprise a specific stress profile directed by the customer. 

Introducing a complex product often requires a lengthy development process 

during which it is expected that the reliability will steadily improve based on testing, 

failure mode discovery, root-cause analysis and design changes or component 

substitutions.  Testing may be composed of many different types of tests, each with 

its own objectives.  Developmental tests identify the technical capabilities and 

limitations of proposed designs and ensure sufficient design maturity is achieved 

prior to operational testing.  In operational testing the focus is on demonstrating 

that the design is suitable for its intended use in a realistic operational environment.  

Entering operational test with an immature design often results in continued 

debugging into the early life of the product after it has been released to the market, 

usually at much greater cost than if the fault were discovered in developmental 

testing.  Therefore it is desirable to model the improvement in reliability over time 

to (1) forecast the length of the development process, (2) ensure proper allocation 

of testing resources and (3) estimate the reliability upon entry into market. 

Ideally, the assessment of reliability growth should begin soon after program 

initiation with the development of an idealized reliability growth planning curve 

(Figure 1).  Once testing begins, progress can be gauged by comparing quantitative 

assessments of system reliability against the idealized curve.  Close agreement 

between the planned and demonstrated reliability is indicative of a successful 
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reliability growth program.  Assessments below the idealized curve indicate that 

reliability is lagging and may signal the need to reallocate test resources or 

reevaluate the testing strategy. 

 

Figure 1 – Illustration of idealized reliability growth planning curves plotted along 
with assessed growth across three test phases 

Many defense acquisition programs, however, fail to get on their reliability 

growth planning curves due to the existence of too many failure modes [4] at the 

start of developmental testing.  Prior to formal testing it is assumed that few failure 

modes remain in the system for which the root cause has not been identified and 

understood.  Mil-HDBK-189 [9] indicates that a key predictor of program success 

with respect to meeting the reliability goal through growth testing is that the initial 

system reliability be at least 30% of the required reliability.  Achieving this level of 

initial reliability requires conducting design for reliability (DfR) activities to 

discover and remove both functional and operational failure modes [10] from early 

system prototypes.  Functional failures occur when a latent design flaw activates to 

become a failure during normal operation.  Operational failures result when the 
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operating environment to which the system is exposed falls outside of the expected 

normal range.  With the availability of specialized materials and sophisticated 

manufacturing processes, functional failures have become rare for all but the most 

complex systems.  Operational failures, however, are more difficult to predict and 

can result from poorly defined requirements, uncertain operating conditions and 

complex multi-stress interactions.   

Qualitative accelerated stress testing (QAST) was developed to address both 

functional and operational failures by exposing products to elevated stresses and 

accelerate the identification and removal of these failure modes.   QAST techniques, 

such as [11, 12, 13], employ a test-fix-test reliability improvement strategy to 

expand a product’s operating limits and thereby ensure the highest reliability in the 

designed environment while potentially enabling usage in unplanned environments.   

Problem Statement, Objectives and Scope 

The most well-known QAST technique, highly accelerated life testing (HALT), 

utilizes a step-increasing stress profile to discover failure modes quickly.  While 

published case-studies [14, 15, 16] demonstrate the effectiveness of HALT to 

improve product reliability, no published models exist to quantify the reliability 

improvement gained as a result of its use.  Meeker [17] questions whether sufficient 

data are produced during HALT to construct a meaningful estimate of a system’s 

reliability improvement.  Typically, qualitative tests are conducted on very small 

samples of early system prototypes (typically 4 – 10) to iteratively find and remove 

failure modes at elevated stresses resulting in successively more mature designs.  
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The product improvement process used in HALT closely resembles a test-fix-test 

reliability growth test, therefore it is hypothesized that an early estimate of system 

reliability can be derived by modeling HALT as a reliability growth test.   

In this dissertation a reliability growth projection model is developed to 

estimate system reliability as a result of implementing corrective actions to remove 

failure modes exposed in accelerated stress environments.  The projection model is 

the first to utilize failure data obtained from qualitative accelerated tests and 

provides a statistically rigorous and defensible measure of the likelihood that a 

complex system or subsystem can attain its reliability requirement within an 

allocated test time.  As a result of incorporating failure data obtained at elevated 

stresses into growth testing, the projection model enables a significant reduction in 

the number samples and the total test time required to estimate the reliability of the 

improved system.  This ensures that the Department of Defense (DoD) resources 

allocated for testing can be used to address problems that may pose a significant 

risk to system performance after fielding.  As consequence, the cost of implementing 

redesigns for fielded systems may also be avoided.  This is especially important as 

DoD resources are likely to be reduced in the future. 

Dissertation Outline and Research Impacts 

This dissertation follows the scholarly article format where Chapters III, IV and V 

represent stand-alone papers that have either already been submitted for 

publication or will be submitted after graduation.  These Chapters sequentially 
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develop the proposed model for assessing the reliability growth of a product with 

independent competing failure modes exposed to accelerated stresses.   

The main contribution of this dissertation is the first model to assess the 

likelihood of attaining a reliability requirement through reliability growth testing 

where the test environment is not representative of the anticipated field operating 

conditions.  A consequence of merging the accelerated testing and reliability growth 

methodologies is that one or more of the implicit assumptions associated with each 

individual methodology is violated.  Chapter III, therefore, outlines several 

accelerated test data analysis techniques currently in use and illustrates why these 

techniques are insufficient to model data obtained from a qualitative accelerated 

stress test.  A framework to guide future research efforts is then presented along 

with specific next steps detailing ways in which data from these qualitative tests 

may be incorporated into a reliability estimate for a complex system. 

  In Chapter IV, it is shown that for systems with independent competing failure 

modes whose respective times to occurrence are each governed by a distinct 

Weibull law, the observed system failure times follow a poly-Weibull distribution 

with vector valued parameters 𝜶 and 𝜷.  A numerical and analytical procedure is 

derived for obtaining the maximum likelihood parameter estimates and standard 

errors for the generalized poly-Weibull distribution with an arbitrary number of 

terms.  The procedure is then used to show that the poly-Weibull distribution is 

capable of fitting data generated from complex failure processes with bathtub-
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shaped hazard functions better than the best-fit modified Weibull alternatives in the 

literature. 

Chapter V presents the testing methodology and associated reliability growth 

projection model used to estimate the likelihood of achieving a reliability 

requirement as result of qualitative accelerated stress testing.  It is demonstrated, 

using published accelerated test data, that the proposed model can assess the 

reliability risk associated with critical systems or subsystems but with less than half 

of the samples and total test time required by current practices.    

To frame the argument of accelerated reliability growth modeling, Chapter II 

presents an expanded literature review introducing significant concepts necessary 

for this research that may be unfamiliar to the reader.  Topics discussed in this 

Chapter include reliability growth modeling, competing risks analysis, highly 

accelerated life testing and the analysis of step-stress accelerated life test data.   

Chapter VI concludes the dissertation, providing recommendations for further 

implementation of the model in design for reliability contexts and outlines future 

areas of research to improve the accuracy and robustness of the model.  
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II. Literature Review 

 

“Six months in the lab will easily save you a half-day in the library.” 

         -  Ron Kerans 

 

  

Introduction 

To frame the argument of accelerated reliability growth modeling, this Chapter 

presents an expanded literature review introducing several major components 

pertaining to the research that may be unfamiliar to the reader.  The first section 

provides an in-depth discussion on the analysis of time to event data when 

competing risks are present.  Next, reliability growth modeling is discussed along 

with several concepts necessary to link traditional reliability growth modeling and 

accelerated testing to introduce accelerated reliability growth modeling.  Then, an 

overview of highly accelerated life testing (HALT) is presented, with particular 

emphasis on how the test is conducted, the purpose of the test and how HALT 

differs from other well-known reliability testing techniques.  Finally, current 

approaches to modeling time to failure in step-stress accelerated life testing are 

discussed specifically the cumulative damage model [18] and the tampered failure 

rate model [19]. 
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Competing Risks Analysis 

Overview 

A competing risk is an event whose occurrence fundamentally alters or 

altogether eliminates the probability of observing an event of interest [20].  As an 

example, the probability of a woman developing breast cancer may become zero if 

she dies from another risk factor such as a heart attack or a stroke.  Alternatively, 

the breast cancer risk for the same individual may be altered, positively or 

negatively, after receiving a diagnosis of lung cancer as the prescribed medical 

treatment could affect the mechanisms by which both types of cancer cells are 

created.  Under the general competing risks assumption a system or individual is 

considered to be at risk of “failure” from  𝐽 risks.  The risks may be mutually 

independent or have some level of interdependence.  David and Moeschberger [21] 

note, however, that where modeling the dependence among the risks was necessary, 

authors often grouped the risks into categories where independence among the 

categories could be assumed.  Thus the assumption of mutual independence among 

the risks has dominated much of the competing risks literature. 

Under a given set of conditions, each risk competes to be the cause of the failure, 

thus the term risk is reserved for an event yet to occur, while cause describes the 

particular risk from which the system actually failed.  Furthermore, it is also 

assumed that systems subject to competing risks can fail from only one risk and can 

fail only once.  It is tempting to consider the survival times for the remaining 𝐽 − 1 

risks that were not the cause of failure as randomly right-censored, however this 
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type of non-informative censoring scheme is not the correct approach in the 

presence of competing risks.   In non-informative censoring, the only assumption 

made about the eventual occurrence of an event of interest is that there is some 

positive probability that the event will occur after the censoring event is observed.  

But in a competing risks framework once the system has failed due to risk 𝑗 = 1,… , 𝐽 

the probability of observing the system fail due to any of the remaining 𝐽 − 1 risks is 

altered, and an informative censoring scheme is required.  Putter et al. [22] analyzed 

competing risks data under both informative and non-informative censoring 

mechanisms, and showed that a non-informative analysis overestimates the true 

failure probability.  Siannis et al. [23] developed a sensitivity model to measure the 

dependence between the lifetime of an individual and the censoring mechanism.  

Their results showed that the bias introduced by a small degree of dependence 

between the risks can have a noticeable effect on the analysis. 

Statistical Notions and Notation 

In the competing risks literature, two statistical notions, represented by David 

and Moeschberger [21] and Crowder [24] dominate the analytical methodology.  

Under the David and Moeschberger notion an increasing sequence of latent failure 

times is envisioned for each risk 𝑗 = 1,… , 𝐽 assuming that 𝑗 is the only risk to which 

the system is exposed (Figure. 2).  
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Figure 2 – Depiction of competing failure modes and occurrence times using 
the David and Moeschberger notion 

 

The notation of competing risks data according to David and Moeschberger is 

represented by the random variables, 𝐶𝑗  and 𝑍, where 𝐶𝑗 is an indicator representing 

the risk which caused the failure and 𝑍 = min(𝑇1, 𝑇2, … , 𝑇𝑗), where 𝑇𝑗  is the system’s 

theoretical lifetime assuming 𝑗 is the only risk present.  If 𝑍 > 𝑡, then  

 𝑃{𝑍 > 𝑡} = 𝑃{𝑇1 > 𝑡, 𝑇2 > 𝑡,… , 𝑇𝑗 > 𝑡} = 𝑅𝑍(𝑡) = 1 − 𝐹𝑍(𝑡) (1) 

is the system reliability function.  When mutual independence among the risks can 

be assumed, (1) becomes 

 𝑅𝑍(𝑡) = ∏𝑅𝑗(𝑡)

𝐽

𝑖=1

 (2) 

where 𝑅𝑗(𝑡) is the risk-specific reliability function for risk 𝑗 = 1,… , 𝐽.  Likewise, the 

system hazard rate function for mutually independent risks is 

 ℎ𝑍(𝑡) =
𝑓𝑍(𝑡)

𝑅𝑍(𝑡)
 = ∑ℎ𝑗(𝑡)

𝐽

𝑖=1

 (3) 

where ℎ𝑗(𝑡) is known as the cause-specific hazard rate function for risk 𝑗 = 1,… , 𝐽 in 

the presence of competing risks.  David and Moeschberger [21] further derive three 
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additional statistics commonly used in the field of demographics analysis that may 

have value in a reliability growth context.  The net probaility of failure 

 𝑞𝑗(𝑡1, 𝑡2) = 1 − exp [−∫ 𝑟𝑗(𝑡)𝑑𝑡 
𝑡2

𝑡1

] (4) 

measures the probability of failure for risk 𝑗 assuming it is the only risk present.  

The crude probability of failure 

 𝑄𝑗(𝑡1, 𝑡2) = ∫ 𝑔𝑗(𝑥) exp [−∫ 𝑟𝑧(𝑡)𝑑𝑡
𝑡

𝑡1

] 𝑑𝑥 
𝑡2

𝑡1

 (5) 

measures the probability of failure for risk 𝑗 in the presence of other competing 

risks.  Finally, the partial crude probability of failure   

 
𝑄𝑗𝑘(𝑡1, 𝑡2) = ∫ 𝑔𝑗

−𝑘(𝑥) exp [−∫ 𝑟𝑧
−𝑘(𝑡)𝑑𝑡 

𝑡

𝑡1

] 𝑑𝑥 
𝑡2

𝑡1

 (6) 

is the probability of failure for risk 𝑗 assuming some of the competing risks have 

been eliminated where 𝑔𝑗
−𝑘(𝑡)𝑑𝑡 and 𝑟𝑧

−𝑘(𝑡) are the conditional failure probability 

and hazard rate for cause 𝑗 in the absence of cause 𝑘.  Equations (4) – (6) are not 

limited to the assumption of independent risks, although when independence is 

assumed the equations can be simplified by replacing 𝑔𝑗(𝑡) with 𝑟𝑗(𝑡).    

An alternative notion of competing risks it that of Crowder [24], who modeled 

competing risks data as a bivariate distribution of the time to failure, 𝑍, and an 

indicator variable, 𝐶, representing the cause of failure.  Crowder specifies the joint 

model in terms of the sub-distribution function 𝐹(𝑗, 𝑡)  = 𝑃(𝐶 = 𝑗, 𝑇 ≤ 𝑡) or  sub-

survivor functions 𝑅(𝑗, 𝑡) = 𝑃(𝐶 = 𝑗, 𝑇 > 𝑡) developed by Cox [25] where 

 𝐹(𝑗, 𝑡) + 𝑅(𝑗, 𝑡) = 𝑞𝑗 . (7) 
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The sub-distribution function is not a proper distribution function as 

lim
𝑡→∞

𝐹(𝑗, 𝑡) = 𝑞𝑗 rather than unity.  Similarly, the sub-survivor function is not a 

proper reliability function in that 𝑅(𝑗, 𝑡) ≠ 𝑃(𝑇 > 𝑡|𝐶 = 𝑗).  The proper reliability 

function is instead given by 𝑅(𝑗, 𝑡)/𝑞𝑗  where the proportion 𝑞𝑗 > 0, 𝑗 ∈ 1,… , 𝐽 

represents the marginal probability of the random variable 𝐶.  Thus 𝑞𝑗 =

𝑃(𝐶 = 𝑗) = 𝐹(𝑗,∞) = 𝑅(𝑗, 0), subject to the constraint ∑ 𝑞𝑗
𝐽
𝑗=1 = 1.  It follows that 

for failure times represented by the continuous random variable 𝑇 the sub-density 

function, 𝑓(𝑗, 𝑡) = −𝑑𝑅(𝑗, 𝑡) 𝑑𝑡⁄  and the respective marginal reliability and density 

functions are then 𝑅(𝑡) = ∑ 𝑅(𝐽
𝑗=1 𝑗, 𝑡) and 𝑓(𝑡) = ∑ 𝑓(𝑗, 𝑡)𝐽

𝑗=1 .  Finally, the sub-

hazard function is expressed as ℎ(𝑡, 𝑗) = 𝑓(𝑡, 𝑗) 𝑅(𝑡)⁄  and the overall system hazard 

function is ℎ(𝑡) = ∑ ℎ(𝑡, 𝑗)𝐽
𝑗=1 .  

Equations similar to (4) –(6) have also been developed using the Crowder 

notation.  Similar to, 𝑞(𝑡1, 𝑡2), the net probability of failure, Crowder represents the 

distribution of failure times caused by risk 𝑗 as 

 𝑈(𝑡, 𝑗) = 𝑃(𝑇 = 𝑡|𝐶 = 𝑗) = 𝑓(𝑗, 𝑡) 𝑞𝑗⁄ . (8) 

 Alternatively, the distribution of risks at a given age 𝑡 is represented by  

 𝑉(𝑗, 𝑡) = (𝐶 = 𝑗|𝑇 = 𝑡) = 𝑓(𝑗, 𝑡) 𝑓(𝑡)⁄ . (9) 

Although 𝑉(𝑗, 𝑡) appears very different from the crude failure probability shown in 

(6), both functions serve similar functions.  Ma and Krings [26] provided an 

excellent comparison of the David and Moeschberger [21] and Crowder [24] 

notions, and illustrated the conditions under which both are equivalent.   
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Parametric Competing Risks Analysis 

When prior knowledge exists on either the risk-specific system lifetime 

distributions or the underlying failure time process, parametric approaches to 

competing risk analysis may be used.  These techniques can reduce the analysis to 

exercises in multivariate statistics wherein the parameter values may be estimated 

using maximum likelihood or Bayesian estimation techniques.  When no prior 

knowledge exists on the risk-specific distributions a nonparametric approach is 

required.  These nonparametric approaches are discussed in the next section.  

In reality, the risk-specific distributions are rarely known, thus much of 

parametric competing risks analysis is predicated on the concept of theoretical or 

latent failure times.  As was described above, the latent failure times parametric 

approach presented by David and Moeschberger assumes that there exists an 

unobservable sequence of ordered failure times represented by the multivariate 

random variable 𝑌 = {𝑌11 …𝑌1𝑛, … , 𝑌𝐽1 …𝑌𝐽𝑛}.  For each failure mode 𝑗, the sequence 

{𝑌𝑗1 …𝑌𝑗𝑛}  indicates the failure times that would be observed if 𝑗 were the only 

mode in the system.  In the presence of competing risks, the observable quantities 

are the minimum failure time 𝑍𝑖 = min[𝑌11, 𝑌21, … 𝑌𝑗1] and the failure cause 

indicator 𝐶𝑖.  Summarizing these quantities, the observed system lifetime 

conditioned on knowing the cause of failure is 𝑋𝑖𝑗 = (𝑌𝑖|𝑌𝑖 = min
𝑗

(𝑌𝑗)).  Assuming 

independence among the risks, the pdf is then 
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 𝑓(𝑥𝑖) =
1

𝑃 {𝑌𝑖 = min
𝑗

𝑌𝑗}
 ∙  [𝑓𝑌𝑖

(𝑥)]   ∙ ∏ 𝑆𝑗(𝑥)

𝐽

𝑗=1,𝑗≠𝑖

. (10) 

Assuming that the number of items failed due to cause 𝑗 is a random variable whose 

value can be represented by the multinomial distribution function  𝑓(𝑛1, … 𝑛𝑘) =

𝑛!

∏ 𝑛𝑖!
𝑘
𝑖=1

∏ (𝑃 {𝑌𝑖 = min
j

𝑌𝑗})
𝑛𝑖

 𝑘
𝑖=1 , the likelihood function is then 

 𝐿 =
𝑛!

∏ 𝑛𝑖!
𝑘
𝑖

 ∙  ∏[∏𝑝𝑖(𝑥𝑖𝑗)

𝑛

𝑗=1

 ∙  ∏ 𝑅𝑙(𝑋𝑖𝑗)

𝑘

𝑙=1,𝑙≠𝑖

]

𝑘

𝑖=1

. (11) 

Defining the bracketed term as 𝐿𝑖 , equation (12) simplifies to   

 
𝐿 =

𝑛!

∏ 𝑛𝑖!
𝑘
𝑖

∏𝐿𝑖

𝑘

𝑖=1

. (12) 

Equations (11) and (12) show that if the latent failure times for each risk follow a 

different distribution, parameter estimation is accomplished by maximizing each 𝐿𝑖  

term individually.  

Identifiability Paradox 

A disturbing complication exists in the latent failure times approach leading to a 

source of ongoing controversy in competing risks analysis known as the 

identifiability paradox.  Cox [27] first noted the flaw in the parametric competing 

risks approach while discussing various models of failure times with two dependent 

risks.  Tsiatis [28] later generalized the issue to 𝑝 dependent risks, leading Crowder 

[24] to rename the issue as the Cox-Tsiatis Impasse – the issue is described as 

follows.  As discussed in the beginning of this section, parametric competing risks 
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assumes a distribution of the latent failure times {𝑌1𝑗, 𝑌2𝑗 …𝑌𝑛𝑗} for each failure 

mode 𝑗 under the assumption that it is the only mode to which the system is 

subjected.  However, since only the minimum failure times, 𝑍 = min[𝑌11, 𝑌12, …𝑌1𝑗] 

are actually observed, the true distributions of the latent failure times are unknown.  

Further, the distribution of observed lifetimes 𝑍𝑖 , 𝑖 = 1, 2, … , 𝐼  is completely 

determined by the joint distribution of the latent failure times 𝑌𝑖𝑗 , however, the 

inverse is not necessarily true.  Tsiatis [28] showed that for any joint reliability 

function with arbitrary dependence between the risks there exists another joint 

reliability function with independent risks that produces the exact same sub-density 

function 𝑓(𝑗, 𝑡).  Therefore it is impossible to determine which model is correct as 

both will fit the data equally well.  If the risks are independent no issue exists, 

otherwise, the statistical results may mislead the entire analysis.  

Consider an example in which two dependent random variables 𝑌1 and 𝑌2 exist 

and represent the failure times for failure modes 1 and 2, respectively.  Upon 

observing an i.i.d. sample  (𝑍, 𝐶𝑗)𝑗=1,…,𝐽
 Tsiatis [28] proved that for any distribution 

of (𝑍, 𝐶), there exist independent random variables 𝑄1 and 𝑄2 that provide the same 

distribution.  This impasse has led subsequent research to focus on observable 

quantities rather than the joint distributions, thereby estimating the specific or 

“crude” hazard rate �̃�𝑗(𝑡) = lim
Δ𝑡→0

1

Δ𝑡
𝑃(𝑍𝑗 ∈ [𝑡, 𝑡 + Δ𝑡], 𝐶𝑗 = 1|𝑌 > 𝑡), rather than the 

overall or latent hazard rate 𝜆𝑗(𝑡) = lim
Δ𝑡→0

1

Δ𝑡
𝑃(𝑍𝑗 ∈ [𝑡, 𝑡 + Δ𝑡]|𝑍𝑗 > 𝑡).  
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Nonparametric Competing Risks 

Caplan et al. [29] broadly classifies failure events as either true or cause-specific 

failures with each classification having its own statistical methods that are not 

necessarily valid for the other.  For true failures, the statistical methods are based 

on the fundamental assumption that all of the units under test would ultimately fail 

due to the failure mode of interest were the study allowed to continue for a 

sufficient amount of time.  Methods developed to analyze such data assume the 

underlying cause for censoring observations is independent of the mechanism for 

the events occurrence.  In other words, the survival time of an individual (or the 

time at which a subject experiences an event) is assumed to be independent of the 

mechanism that would cause the study to be censored.  In theory, individuals for 

whom the observations are censored have an equal risk of event of interest 

compared to those still under study but have not yet observed the event.  This is 

commonly referred to as non-informative censoring and is the basis of 

differentiation between the two commonly used non-parametric estimation 

techniques in competing risks analysis:  the complement to the Kaplan-Meier 

estimator (1 − 𝐾𝑀) and the Cumulative Incidence Function (CIF).   

Nonparametric time-to-event curves are routinely presented in the literature 

with the Kaplan-Meier (𝐾𝑀) product limit estimator [30] being the most widely 

used.  But this approach may not be appropriate when the analysis is focused on 

time-to-first event in scenarios where there are competing events.  When there are 

no competing risks, the CIF and the 1 − 𝐾𝑀 estimators produce the same result. In 
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situations with competing risks, the cumulative incidence function is more 

appropriate.  Cheng et al. [31] notes that in the literature the CIF has been referred 

to as the cause-specific risk, the crude incidence curve and the cause-specific failure 

probability.  Additional references to CIF described below are consistent with the 

notation of Kalbfleisch and Prentice [32]. 

Gooley et al. [20] and Putter et al. [22] show that utilizing the 1 − 𝐾𝑀 

estimator in the presence of competing risks tends to overestimate occurrence rate 

of each event.  The discussion below compares the two methods, presupposing that 

a population of items is at risk of failure from two distinct failure modes, denoted 

below as mode 1 and mode 2.  Further, the interest is in estimating the probability 

of failure due to failure mode 1, vice mode 2.  Thus, competing risks are present, i.e. 

the hazard rate functions for both modes of failure exist and the number of failures 

from the competing risk will influence both the number of failures and the 

probability of failure due to the mode of interest.  The hazard rate function 

 ℎ(𝑡) = 𝑙𝑖𝑚
𝛥𝑡→0

𝑅(𝑡) − 𝑅(𝑡 + 𝛥𝑡)

𝛥𝑡 × 𝑅(𝑡)
 (13) 

is a fundamental relation in the analysis of any time-to-event data.  At time 𝑡 the 

hazard rate is conditioned on the number of units at risk of failure, thus an 

estimator of ℎ(𝑡) should be consistent with the simple ratio of the number of 

failures divided by the number of overall units under study.  Recall that the Kaplan-

Meier product limit estimator (𝐾𝑀) is a nonparametric maximum likelihood 

estimate of the reliability function 𝑅(𝑡).  Conversely the complement to the Kaplan-
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Meier estimator 1 − 𝐾𝑀 is a nonparametric estimate of the CDF.  Using the notation 

of Kalbfleisch and Prentice [32] we define:  

𝑛 ≡ the initial number of items at risk 
𝑓i ≡ the number of items failed from the event of interest prior to time 𝑡𝑖 
𝑟𝑖 ≡ 𝑡ℎ𝑒 number of items failed from the competing risk prior to time 𝑡𝑖  
𝑛𝑖 ≡ the number of items at risk after time 𝑡𝑖, 
 
and the total number of units at risk of failure at any time 𝑡 is expressed as 𝑛𝑖 = 𝑛 −

∑ (𝑓𝑖 + 𝑟𝑖)𝑡𝑖<𝑡 .  It follows that the respective Kaplan-Meier estimators for failure 

modes 1 and 2 are  

 𝐾𝑀1(𝑡) = ∏(1 −
𝑓𝑖
𝑛𝑖

)

𝑡𝑖<𝑡

       and       𝐾𝑀2(𝑡) = ∏(1 −
𝑟𝑖
𝑛𝑖

)

𝑡𝑖<𝑡

. (14) 

which shows clearly that 𝐾𝑀1 is directly related to the hazard rate of the failure 

mode of interest but is independent of the competing failure mode.  Thus, 𝐾𝑀1(𝑡) is 

not interpretable as the true probability of failure mode 1 when in the presence of 

failure mode 2.   

Alternatively, the cumulative incidence function (CIF) estimator is a function of 

the hazard rates for both modes making CIF the preferred method of estimating the 

failure probability when competing risks are present.  Kalbfleisch and Prentice [32] 

develop a cumulative incidence function from the overall Kaplan-Meier survivor 

function 𝐾𝑀12(𝑡) = 𝐾𝑀1(𝑡) × 𝐾𝑀2(𝑡) expressed as 

 𝐶𝐼𝐹(𝑡) = ∑
𝑓𝑖

𝑛𝑖 − 1

𝑠

𝑖=1

× 𝐾𝑀12(𝑡𝑖) (15) 

where 𝑠 is the largest 𝑖 such that 𝑡𝑖 < 𝑡.  Gooley et al. [20] notes that both 1 − 𝐾𝑀1 

and the cumulative incidence estimator in (15) are marginal estimates of the 
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probability of failure.  Thus, both estimators will “jump” by an amount equal to 𝑛−1 

after each occurrence of failure mode 1, until the first occurrence of  failure mode 2.  

When failure mode 1 follows failure mode 2 

 Δ1−𝐾𝑀1
= Δ𝐶𝐼𝐹 × (𝑟𝑖 𝑛𝑖⁄ ). (16) 

For each subsequent occurrence of failure mode 2 the difference between the 

estimators continues to expand by 𝑟𝑖 𝑛𝑖⁄ . 

Reliability Growth with Competing Risks 

Competing risks occur frequently in survivability and reliability analysis and a 

number of methods have been proposed for the analysis of this type of data.  

However, Ma and Krings [26] note that the interaction between competing risks 

analysis and reliability gradually withered during the period when significant 

advances were made in competing risks analysis.  Consequently, the application of 

competing risks analysis in engineering reliability has fallen behind the theory of 

competing risks analysis.   

Corcoran et al. [33] developed the first reliability growth projection model for 

estimating reliability after implementing corrective action in the final stage of 

development of an “expensive item.”  The Corcoran [33] reliability projection model 

is suitable for use in cases where corrective actions are installed at the conclusion of 

a single test phase consisting of N independent trials where the number of trial 

outcomes of interest is a multinomial random variable with parameters N (total 

number of trials), 𝑝0 (unknown initial reliability), and 𝑞𝑖 (unknown failure 

probability for failure mode 𝑖 = 1,… , 𝑘).  Since a multinomial model is used, the 
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equality 𝑝0 + ∑ 𝑞𝑖
𝑘
𝑖=1 = 1 must be satisfied, which imposes the restriction that at 

most one failure mode can occur per trial.  In addition to deriving an exact 

expression for system reliability under the conditions above, seven different 

estimators are developed and evaluated for point estimation.  These estimators 

were studied for bias, consistency, conservatism, etc. and ultimately it was shown 

that an unbiased estimate of the corrected system could not be obtained.  The 

authors were the first to advance the idea of reducing initial failure probabilities by 

a fractional amount with consideration to fix effectiveness.  Under their model, the 

expected reliability (under competing risks) at the end of the current test phase is 

given by 

 𝑅(𝑁|𝑞𝑖) = 𝑅𝐼 + ∑𝜌𝑖𝑞𝑖

𝑘

𝑖

−
1

𝑁
∑𝜌𝑖[1 − (1 − 𝑞𝑖)

𝑁]

𝑘

𝑖

 (17) 

where N is the total number of failures, 𝑞𝑖 is the failure probability of failure mode 𝑖, 

𝑅𝐼 is the initial reliability, and 𝜌𝑖  is the fix effectiveness factor (FEF) for failure mode 

𝑖.  Dahiya [34] showed that six of the seven estimators initially considered by 

Corcoran et al. [33] possess the same limiting normal distribution allowing direct 

confidence interval and goodness of fit procedures for large samples.  Olsen [35] 

showed how some of the estimators could be utilized under a multi-stage test 

program and developed a suitable variant of the Corcoran model. 
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Reliability Growth Modeling 

Non-Accelerated Reliability Growth 

 

Introducing a complex product often requires a lengthy development process 

during which it is expected that the reliability will steadily improve based on testing, 

failure mode discovery, root-cause analysis and design changes or component 

substitutions.  Testing may be composed of many different types of tests, each with 

its own objectives.  Developmental tests identify the technical capabilities and 

limitations of proposed designs and ensure sufficient design maturity is achieved 

prior to operational testing.  In operational testing the focus is on demonstrating 

that the design is suitable for its intended use in a realistic operational environment.  

Entering operational test with an immature design often results in continued 

debugging into the early life of the product after it has been released to the market, 

usually at much greater cost than if the fault were discovered in developmental 

testing.  Therefore, it is desirable to model the improvement in reliability over time 

to (1) forecast the length of the development process, (2) ensure proper allocation 

of testing resources and (3) estimate the reliability upon entry into market.  

The initial product of a reliability growth model is the idealized reliability 

growth planning curve (Figure 3).  Created early in the development process, the 

idealized curve is a roadmap to baseline the reliability growth progress within a 

single test phase.  When testing continues across test phases, multiple idealized 

curves are developed.  An indication that the reliability is lagging (assessments 

below the idealized curve) may signal the need to reallocate test resources or 
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reevaluate the testing strategy to ensure the reliability achieves the requirement 

with a specified level of confidence.  Many models plot reliability growth as an 

increase in mean time between failures (𝑀𝑇𝐵𝐹), or a decrease in the failure rate 

(𝑀𝑇𝐵𝐹−1) against cumulative test time across all units at risk [36].   

 

 

Figure 3 – Idealized reliability growth planning curves for three test phases showing 
the difference in planned and assessed reliability (Source: MIL-HDBK-189C, p. 11) 

 

When many modular tests and debugging efforts are proceeding in parallel, 

growth may be measured as the rate at which defects are found and corrected in a 

testing interval.  In principle, reliability growth models may also allow for decreases 

in reliability.  For example, a product’s reliability may be adversely affected as a 

result of substituting a cheaper but less reliable component.  Our focus here, though, 

is on positive reliability growth which improves product reliability.   

According to Ebeling [37] the earliest developed and most frequently used 

reliability growth model is that of Duane [38] who postulated from his empirical 

observations that for products under development, plots of cumulative failure rate 

     Test Phase 1                                 Test Phase 2                   Test Phase 3 

Reliability 

  Planned Growth 

  Assessed Growth 
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versus cumulative operating hours on a log-log scale were approximately linear 

with negative slope.  Crow [39] derived the stochastic basis for the Duane model, 

referred to in the literature as a power law process (PLP) or informally as a Weibull 

process.  The Crow [39] model is a type of nonhomogeneous Poisson process 

(NHPP) with a Weibull hazard intensity function ℎ(𝑡) = 𝜆𝛽𝑡𝛽−1 where 𝜆 >

0 and 𝛽 > 0 are interpreted, in the Crow model context, as the initial reliability of 

the system and the growth parameter, respectively.  For 𝛽 < 1, the hazard is 

decreasing (reliability is increasing) while 𝛽 > 1 implies an increasing hazard and 

𝛽 = 1 means that both the reliability and the hazard rate are unchanged.   Duane 

[38] observed 𝛽 values in the neighborhood of 0.50 while the Army Materiel 

Sustainment Analysis Activity (AMSAA) [9] suggests values in the range (0.30, 0.75), 

depending on the level of commitment to reliability improvement and the type of 

system under development.  The rigorous development of the PLP allows estimation 

and prediction in both the maximum likelihood estimation (MLE) and Bayesian 

contexts and has made the approach popular in the literature.   

However, the PLP and other models based on the Duane postulate are an 

idealization of the true underlying Test-Analyze-And-Fix (TAAF) failure process.  

Sen [40] notes that these models estimate the improvement in reliability based on 

the number of failure modes discovered without accounting for fixes or design 

changes.  Various reliability growth models have been developed since the Duane 

Postulate to plan, track, and project the reliability improvement of a system 

throughout the development process.  Planning models are used to develop the 
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idealized and planned growth curves to address program schedules, required 

testing resources and the realism of achieving the reliability requirement with a 

desired level of confidence within the allocated test program.  Tracking models 

gauge the progress of the reliability effort based on test results.  Projection models 

indicate the anticipated reliability at some future time based on achievement to date 

and engineering assessments.  Hall [10] provides one of the most detailed and 

comprehensive reviews of reliability growth planning, tracking and projection 

models for both continuous use and discrete use systems found anywhere in the 

literature.  The review comprises a synopsis of over 80 papers covering planning 

models, tracking and projection models.  Further, numerous reliability growth 

surveys/handbooks and thirty-six other papers covering theoretical results, 

simulation studies, real-world applications, personal perspectives, international 

standards, or related statistical procedures are also included.     

Accelerated Reliability Growth 

As opposed to the reliability growth models discussed by Hall [41] in which 

growth is based on a decreasing rate of failure mode discovery in successive test 

intervals, step-stress testing results in an increasing number of failure modes as 

testing progresses to higher stresses.  Further, step-stress testing is a continuous 

process with no discernible intervals and the removal of each failure mode 

discovered does not yield the same growth at the non-accelerated use stress.  

Therefore, it is claimed that an improved estimate of the system’s field reliability 

can be obtained by analyzing HALT failure data as a test-fix-test process and 
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distinguishing between the modes of failure that occur in a test through the 

incorporation of competing risks in the analysis.   

Upon starting a traditional reliability growth test, it is assumed that few failure 

modes remain in the system for which the root cause has not been identified and 

understood.  However, even when this assumption is met it is not uncommon for 

growth testing to require several months to attain the reliability goal with the 

required confidence level.  Thus, accelerated test methods are increasingly utilized 

as part of a reliability growth strategy to reduce the overall test duration.  Several 

widely used design improvement techniques [12, 42, 11, 13, 43] expose early 

product designs to accelerated environmental and repetitive use stresses to quickly 

force latent defects to manifest themselves thereby ensuring a highly reliable 

product is fielded quickly.  The defining characteristic of these tests lies in the 

underlying assumption that simply meeting the validation requirement is 

insufficient for ensuring high field reliability as the requirement rarely encompasses 

the full stress envelope a product will actually encounter over its service life.  Thus, 

in many instances failure modes exposed by these techniques are not representative 

of field experience, but reflect brief high-level stress states often not considered.  

In a reliability growth test it is assumed that (1) a set of latent failure modes 

exists in each system under test, (2) the test profile will activate a sufficient number 

of these latent modes during the allocated test time and (3) corrective action 

removes a fraction of each discovered mode’s failure intensity.  In other words, if the 

mode specific failure rate due to mode 𝑖 is represented by 𝜆𝑖, the overall system 
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failure rate is ∑ 𝜆𝑖𝑖 .  If each failure mode receives corrective action that reduces 𝜆𝑖 by 

the proportion 𝜌, one would conclude that fixing any failure mode reduces the 

overall system failure rate by 𝜆𝑖(1 − 𝜌).   

Often the test profile involves the application of constant stresses chosen to 

represent field conditions.  Thus the proper selection of stressors and stress levels is 

critical to achieving adequate reliability growth.  If the stress profile is a function of 

time, however, consideration must be given to the stress level at which a failure 

mode is discovered.  Under progressive stress or step-stress profiles it is possible to 

discover failure modes at high stress levels that would never be activated at the use 

stress level regardless of the exposure time.  Thus, implementing corrective action 

on these failure modes may produce little to no actual reliability growth.   

Highly Accelerated Life Testing (HALT) 

Highly accelerated life testing originated in the electronics industry when Hobbs 

began to use the term in 1988 [44].  Though the mindset and process of HALT goes 

back several decades, Hobbs coined the term to describe a sequential testing 

process wherein products are subjected to a variety of stresses to identify the weak 

links in the design.  More formally, HALT involves the application of individual or 

simultaneous stressors at levels elevated beyond those experienced in either the use 

environment or in traditional accelerated life tests.  During testing, failure modes 

are discovered and removed from the design through corrective action in an 

iterative process which expands the product’s operating margin.  Once the test is 

complete, the product will have reduced random-failure probabilities and longer 
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lifetimes for wear-out in the designed usage environment.  It should be noted, 

however that HALT does not specifically address wear-out failure modes.   

According to McLean [12], HALT proceeds by first applying individual stressors 

that are increased step-wise at periodic intervals until a failure event occurs (i.e. no 

censoring).  No standard exists to direct what stressors should be included for a 

given product type.  However, McLean notes that experience has led practitioners to 

adopt an ordered set of stressors (Table 1) as standard to HALT which represents 

what is used in the majority of tests conducted to date.  As the goal of HALT is to 

remove as many failure modes as possible, practitioners are not limited to the 

stressors listed in Table 1 nor are they required to ensure that each stressor is 

included.  Product specific stresses are often included either independently or in 

combination with another test. 

Table 1 – HALT stress sequence 

Stressor Notes 
% Total Failure 

Modes 

           

Cold Step Stress     14% 

Hot Step Stress     17% 

Rapid Thermal Transitions  ≥ 60 C0 minute⁄  4% 

Vibration Step Stresses 6 DoF random vibrations 45% 

Rapid Thermal/Vibration     20% 

 

When a failure event occurs in HALT, a key distinction is made in identifying the 

event as either a hard failure, an operating limit failure or a destruct limit failure.  

This distinction guides the HALT process, indicating whether testing should proceed 
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at higher levels of stress or if sufficient progress has been made and the test should 

be stopped.  Hard failures result from damage to the system’s physical architecture 

requiring corrective action to restore performance to specification levels.  Operating 

limit (OL) failures occur when one or more performance specifications aren’t being 

met and cannot be brought back to within specification levels without reducing the 

stress level.  It should be noted that the occurrence of an OL failure does not 

necessarily imply the occurrence of a hard failure.  Destruct limit (DL) failures, also 

known as the fundamental limit of the technology (FLT), describe the occurrence of 

unavoidable failure modes due to the physical, chemical or structural limits of an 

item.  Removing these failure modes typically requires a material substitution or 

significant structural change that is either physically impossible or financially 

infeasible.  Examples of DL failures include the melting or phase change of a 

material, catastrophic mechanical failure due to vibrational stresses and dielectric 

breakdown due to voltage overstress.  DL failures modes would not be considered 

representative of field experience and are useful only for driving system 

performance to the highest levels possible.   

A product’s operating margin is the stress range in which the system can operate 

for a specified mission duration without experiencing an operational limit failure.  

Figure 4 illustrates the relationship between a product’s specification and its 

operating and destruct limits before and after a HALT.  Comparing the top and 

bottom graphics in Figure 4 illustrates clearly the outward shift in the product’s 

operating margin after the HALT.  Additionally, Figure 4 suggests that the upper and 
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lower operating and destruct limits of a system are random quantities whose values 

can be represented by normal distributions with respective mean 𝜇 and variance 𝜎.  

These parameters could then be estimated by the sample means �̂�𝑖 =
∑ max𝑆𝑖

𝑛
𝑗=1

𝑛
 and 

sample variances �̂�𝑖 =
∑ [max𝑆𝑖−�̂�]𝑛

𝑗

𝑛−1
 of the resulting maximum operating limit stress 

levels attained in testing each of the samples.  

 

Figure 4 – Illustration of product specification, operating and destruct limits before 
and after highly accelerated life testing 

Despite superficial similarities in terminology, HALT is disjoint from accelerated 

life testing (ALT) in several key areas.  Whereas physical models have been 

developed [45] to compute acceleration factors that allow the inclusion of ALT test 

results into a reliability calculation, no such models exist for the inclusion of HALT 

test data due (1) to their inability to generalize across larger stress extrapolations, 

(2) the potential for complex stress profiles and (3) changes in the product’s design 
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configuration.  Nevertheless, practitioners have sought ways to predict field 

reliability from the results of HALT.  Silverman [46] discussed the difficulties in 

analyzing HALT data using physics of failure models and acceleration factor 

calculations due primarily to limited data sharing across product categories 

allowing for more generalized approaches.  Meeker [17] expressed concerns  with 

the complexity of HALT stress profiles, advising practitioners to avoid analyzing 

HALT data using techniques derived from  ALT.  However, Meeker’s discussion 

targeted tests in which multiple stresses were applied simultaneously and did not 

address simpler single stress test designs which are more common.    

Sequential test procedures have been developed to utilize the results of HALT as 

a guide for follow-on tests to reduce the error involved in extrapolations across 

stress levels.  Edson [47] introduced Calibrated Accelerated Life Testing (CALT) as a 

General Motors corporate standard to evaluate the reliability of products subject to 

HALT by adding test samples at key stress levels.  The choice of the number of 

additional samples and stress levels to be tested in CALT are based on the maximum 

stress derived from the HALT.  Bhote and Bhote [11] developed a nine-step life 

prediction modeling process known as multi-environment over-stress testing 

(MEOST).  This method bypasses the independent stress tests and applies all of the 

stresses at once.  Reliability estimation with MEOST is accomplished after observing 

a full year of service life to produce a useful estimate of the product’s reliability 

Brand and McLean were awarded three patents [48, 49, 50] comprising the 

proprietary HALT AFR Calculator® (AFR) model currently managed by the testing 
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firm Ops A La Carte®.  The HALT AFR Calculator® is the most prominent HALT 

analysis model to-date utilizing linear, quadratic and exponential time acceleration 

techniques to estimate a product’s relative life expressed as 

 𝑅 =
𝑀𝑇𝐵𝐹2

𝑀𝑇𝐵𝐹1
 (18) 

where 𝑀𝑇𝐵𝐹1 is the field use reliability for the original unit subjected to an initial 

HALT and 𝑀𝑇𝐵𝐹2 is the field reliability for the unit subjected to a second HALT after 

implementing corrective action to remove the failure discovered during the first 

HALT.  To utilize the HALT AFR Calculator it is assumed that 1) an estimate of the 

system’s initial field reliability is known prior to testing, 2) that two rounds of HALT 

comprised of 𝑘 independent stress tests have been performed and 3) the stress 

limits for both rounds of HALT are identical.  Applying only the individual tests 

listed in Table 1, the AFR estimates relative life as a function the ratio of the times to 

first failure in HALT1 and HALT2 as 

 �̂� =
𝑓(𝑡𝐴1) 

𝑓(𝑡𝐴2)
 (19) 

where 𝑡𝐴1 and 𝑡𝐴2 are assumed to be realizations of independent exponential 

distributions and 𝑓( ) implies either a linear, quadratic or exponential function of 

the failure times, depending on which of the three patents is considered.  Applying 

an appropriate acceleration factor (i.e. Arrhenius, Inverse Power Law, Eyring, etc.) 

gives the ratio of times to first failure in the un-accelerated time scale 

 �̂� = 𝐴𝐹 ∙
𝑓(𝑡𝐴1)

𝑓(𝑡𝐴2)
=

𝑓(𝑡𝐹1)

𝑓(𝑡𝐹2)
. (20) 
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Taking ln[�̂�] gives �̂�∗ = 𝑓(tF1
− 𝑡𝐹2

) = 𝑓(Δ𝑡𝐹), for each of the k individual stressor 

tests, an independent �̂�𝑘
∗  is obtained.  The point estimate for the relative life 𝑅 is 

then found from the simple average of these values and confidence limits are 

derived assuming that each �̂�𝑘
∗  is approximately normally distributed. 

Though McLean [51] has presented the results of the AFR Calculator to the 

accelerated test and reliability community, the manner in which the linear, 

quadratic and exponential acceleration techniques are utilized are unpublished. 

Step Stress Accelerated Life Testing Data Analysis 

Step-stress accelerated life testing (SSALT) involves testing items under 

successively higher levels of stress to drive failures quickly and reduce the overall 

testing time.  The SSALT strategy avoids the problem inherent to constant stress 

accelerated life testing of selecting the stress levels to generate a sufficient number 

of failures to enable statistical inference.  In SSALT, an initial load is applied at time 

𝑡 = 0, for a specified duration, after which the load is increased step-wise as time 

thresholds are reached.  Testing stops when (1) a sufficient number of items on test 

have failed, (2) a limit stress has been reached or (3) the total time available for 

testing has been exhausted.  The time duration that the units dwell at a given stress 

level may be based on the time required to conduct system diagnostics or on some 

optimality criterion.  Bai [52] derived the optimal step time based on minimizing the 

asymptotic variance of the maximum-likelihood estimator of the mean life at a 

design stress.  Laio [53] used the asymptotic variance of the estimated 100𝑝𝑡ℎ 

percentile of the product's lifetime distribution.  In a HALT, equivalent time 
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increments are used and the length of each interval is based on the time required to 

conduct the necessary system performance diagnostics at each stress.   

Estimating the lifetime of products at a use stress is substantially more difficult 

in products exposed to SSALT as the cumulative exposure at each stress level must 

be accounted for simultaneously.   Two models commonly used for this purpose are 

the cumulative hazards model by Nelson [54] and the tampered failure rate model 

by Bhattacharyya and Soejoeti [19].  Some variations and generalizations of these 

models are presented by Kececioglu [55] and Zhao et al. [56].  In this literature 

review, only the Cumulative hazards model is discussed.  It should be noted, 

however, that when the baseline failure distribution is exponential, the results 

obtained by both models coincide. 

Cumulative Hazards Model 

Consider the ordered sequence of increasing stresses 𝑠𝑖  (𝑖 = 1, 2, … ) where the 

ratio 𝑠𝑖+1 𝑠𝑖⁄  is constant with respect to time and the product’s underlying life 

distribution at use stress 𝑠0 is Weibull.   If an accelerated stress 𝑠1 is applied, the 

fraction of units failing up to time 𝑡 is given by 

 𝐹1(𝑡; 𝑠1) = 1 − exp{−(𝐾𝑠1
𝑛𝑡)𝛽} . (21) 

where the Weibull scale parameter 𝛼 = 𝐾𝑠1
−𝑛  reflects an inverse power law life-

stress relationship with parameters 𝐾 and 𝑛.  If the stress level is changed to 𝑠2 (21) 

is no longer appropriate to model system lifetime as it does not incorporate the 

cumulative exposure at both stress levels.  Thus, to analyze the data from a step-

stress test perspective, a cumulative exposure model is needed.   
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The cumulative hazards model [18] relates the life distribution of units under 

test at one stress level to the life distribution at another stress level.  It is assumed 

that the remaining life of the test units depends only on the cumulative exposure the 

units have experienced up to the current time and is independent of how the 

exposure was accumulated.  Moreover, since the units are held at a constant stress 

at each step, the surviving units will fail according to the distribution at the current 

step, but with a starting age corresponding to the total time accumulated prior to 

the beginning the current step.  Thus, the probability of units failing during the time 

interval (0, 𝑡1) under stress 𝑠1 not having experienced any other stresses may be 

described by (21).  After time 𝑡1the probability that the surviving units will fail 

during (𝑡1, 𝑡2), while exposed to stress level 𝑠2 is equivalent to the probability that 

the units would fail while at 𝑠2 after accumulating 𝑡 − 𝑡1 plus an equivalent age 𝜖1 to 

account for the exposure at 𝑠1 expressed as 

 𝐹2(𝑡; 𝑠2) = 1 − exp [− (𝐾𝑠2
𝑛((𝑡 − 𝑡1) + 𝜖1))

𝛽

]. (22) 

The equivalent age 𝜖1 is the time at which the CDF for 𝑠2 is equal to the CDF for 

𝑠1 after an exposure of 𝑡1, or 

 

𝐹(𝑡1; 𝑠1) = 𝐹(𝜖1; 𝑠2) 

1 − exp{−(𝐾𝑠1
𝑛𝑡1)

𝛽} = 1 − exp{−(𝐾𝑠2
𝑛𝜖1)

𝛽} 

𝑠1
𝑛𝑡1 = 𝑠2

𝑛𝜖1 

𝜖1 = 𝑡1 (
𝑠1

𝑠2
)
𝑛

. 

(23) 
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This process may be used recursively to for an arbitrary number of stress levels 

where, in general the equivalent age is expressed as 

  
𝜖𝑖 = 𝑡𝑖 (

𝑠𝑖

𝑠𝑖+1
)
𝑛

+ 𝜖𝑖−1. 
(24) 

Conclusion 

 This literature review has provided a framework for merging accelerated 

testing techniques with reliability growth methods by introducing several major 

components pertaining to the research that may have been unfamiliar to the reader.  

The Chapter has provided a synopsis of the research accomplished in the fields of 

reliability growth for complex systems, competing risks analysis and accelerated life 

testing data analysis.  The parametric and nonparametric analysis of time to event 

data when competing risks are present was first discussed.   Two statistical notions 

were presented as was the non-identifiability problems that can result when the 

risks cannot be assumed to be mutually independent.  Reliability growth modeling 

was then discussed as were several concepts necessary to link traditional reliability 

growth modeling and accelerated testing to introduce accelerated reliability growth 

modeling.  Finally, the cumulative damage model [18] was discussed as an approach 

to model time to failure in step-stress accelerated life testing.  In the following 

Chapters, much of the information presented in this literature review is utilized to 

develop the reliability growth projection model to translate failure data obtained 

from a qualitative accelerated life test into to an estimate of system reliability after 

implementing corrective action. 
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   Abstract – Test planners have long sought the ability to incorporate the results of highly 
accelerated life testing (HALT) into an early estimate of system reliability.  While case-studies 
attest to the effectiveness of HALT in producing reliable products, the capability to translate 
the test’s limited failure data into a meaningful measure of reliability improvement remains 
elusive.  Further, a review of quality and reliability literature indicates that confusion exists 
over what defines a highly accelerated life test and how HALT differs from quantitative 
accelerated life testing (QALT) methods.  Despite many authors making a clear distinction 
between qualitative and quantitative accelerated life tests, an explanation as to why this 
delineation exists cannot be found.  In this paper, we consider an exemplary HALT composed 
of a single stressor to show that the HALT philosophy precludes the estimation of a system’s 
hazard rate function parameters due to the test’s fix implementation strategy.  Four common 
accelerated failure data analysis methods are highlighted to show their limitations with 
respect to estimating reliability from HALT data.  Finally, a way forward for future research 
is provided for improving the parameter estimation in follow-on testing. 

Index Terms – competing risks, highly accelerated life testing, reliability growth, step-
stress accelerated life testing 

 

Introduction 

Test planners have long sought the ability to incorporate the results of highly 

accelerated life testing (HALT) into an early estimate of system reliability.  While 

case-studies [15, 16, 14] attest to the effectiveness of HALT in producing reliable 

products, the capability to translate the test’s limited failure data into a meaningful 

measure of reliability improvement remains elusive.  Further, a review of quality 

and reliability literature indicates that confusion exists over what defines a highly 

accelerated life test and how HALT differs from quantitative accelerated life test 

(QALT) methods.  Despite authors making distinctions between qualitative and 
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quantitative accelerated life tests, a clear explanation as to why this delineation 

exists cannot be found in the literature.   

The current paper introduces the purpose and process of a HALT before 

presenting an exemplary single-stressor highly accelerated life test to discuss the 

test’s data structure.  Then, approaches for characterizing product reliability are 

examined to highlight their limitations with respect to parameter estimation from 

HALT data.  Finally, avenues for future research to utilize HALT data in follow-on 

testing are then suggested. 

Highly Accelerated Life Testing 

HALT originated in the electronics industry when Hobbs [44] began to use the 

term to describe a sequential testing process capable of quickly identifying the weak 

links in a product’s design.  More formally, HALT is an iterative test-fix-test [57] 

reliability growth process (Figure 5) wherein failure modes are discovered and 

removed as result of applying one or more stressors beyond the levels experienced 

in either the use environment or traditional accelerated life tests [12].  By subjecting 

products to such extreme environments many hard-to-find failure modes that 

would otherwise go undetected in traditional reliability tests, can be discovered and 

removed quickly.  The HALT methodology is motivated by the tendency of nearly all 

products to experience one or more excursions outside of the expected usage 

environment over its lifetime.  Such excursions can occur if the total stress exposure 

is not anticipated in product design (e.g. transportation stresses) or if the product is 

misused after fielding.   
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Figure 5 – Four-step highly accelerated life testing process 

HALT improves a product’s reliability by expanding its operating margin (Figure 6) 

as failure modes are discovered and removed, creating a “safety net” to withstand 

these excursions. 

 

Figure 6 – Relationship between product operating and destruct limits 

No formal specification exists to describe how HALT should be conducted, but a 

procedure described by Mclean [12] and used in industry is considered common 

practice [58, 59].  In this procedure, four to eight prototypes are exposed to an 

ordered stress regimen (Table 2).  However, since the goal of HALT is to discover as 
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many latent failure modes as possible, test plans are neither limited to these 

stressors nor are they required to ensure that each stressor is included.  Often 

product specific stresses (e.g. voltage/frequency margining) are added to or 

combined with these “standard” tests. 

Table 2 – McLean HALT stress regimen 

Stress Order Stressor Type Application Notes 

1 Cold Step Stress   

2 Hot Step Stress   

3 
Rapid Thermal 

Transitions 
≥ 60Co/minute rate of 
temperature change  

4 Vibration Step Stresses 
Simultaneous six degree of 
freedom random vibrations 

5 
Combined Rapid Thermal 

Transitions/Vibration 
Vibration applied at thermal 

limits identified in Steps 1 and 2 

 

During HALT, prototypes are electronically monitored to detect any degradation 

in performance or loss of function.  When a failure occurs or a performance measure 

cannot be brought back within specification limits via stress reduction, corrective 

action is required to alter the system’s architecture and remove the design 

weakness.  As a result, the improved system can withstand higher stress levels prior 

to failure.  This test-fix-test process continues iteratively as newer designs are 

stressed up to the physical or chemical limits of the unit (e.g. melting, dielectric 

breakdown).  At this fundamental limit, corrective action requires a financially 

prohibitive design change, thereby concluding the test and finalizing the design.  

Upon release, the updated product will have reduced infant mortality and random 



 

42 
 

failure probabilities along with longer lifetimes with respect to wear-out in the 

designed usage environment as shown in Figure 7. 

 

Figure 7 – Effect of highly accelerated life testing on bathtub curve 

Example HALT Scenario and Data Structure 

Meeker et al. [17] discuss the potential pitfalls of interpreting failure data 

produced from accelerated tests with complex stress profiles and multiple stressors.  

Here, an exemplary HALT composed of a single stressor is posited to illustrate that 

the HALT process, not the stress profile, precludes estimating a system’s hazard rate 

function parameters.  Consider a stress profile where HALT testing begins with the 

application of an initial stress level 𝑠0 and increases step-wise (Figure 8) according 

to the piece-wise right-continuous function 

where 𝑙(𝑡) = 𝑚𝑎𝑥{𝑖: 𝜏𝑖 ≤ 𝑡, 𝑖 = 0, 1, … ,𝑀}, 𝛿 is the fixed step-up stress increment, 

and [𝜏𝑖, 𝜏𝑖+1) represents the time interval in which the 𝑖𝑡ℎ stress level, 𝑠𝑖 , is applied.  

 𝑠(𝑡) = 𝑠0 + 𝛿 ∙ 𝑙(𝑡) (25) 
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The sample set of units at risk in this exemplary HALT is comprised of 𝑚 identical 

prototypes, sharing an initial design configuration 𝑐𝑗 = 𝑐0.  Like most developed 

products, the prototypes are at risk of failure from multiple causes where each 

cause is itself the result of a flaw in the design activating in response to a given 

input.  Some of these flaws may be found easily in that the range of stress inputs 

which are likely to expose them is large.  However, many more flaws will be 

relatively difficult to find since only a small number of stress inputs will reveal their 

presence.   

 

Figure 8 – Example step-stress profile 

During [𝜏𝑖, 𝜏𝑖+1), 𝑖 = 1, 2… ,𝑀 an unknown number of latent failure modes, denoted 

by 𝑁, compete to be the cause of failure.  Not all of the 𝑁 overall modes are likely to 

be discovered as result of exposure to a single stressor (Figure 9), thus for the 

single-stressor HALT considered here we define 𝐽 ≤ 𝑁 as the number of failure 

modes ultimately discovered during the test.   
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Figure 9 – Fraction of failures discovered by common HALT stressors (McLean, 2008) 

This framework is akin to a serial arrangement of the failure modes where the 

occurrence of mode 𝑗 ∈ 1, … , 𝐽 at stress level 𝑠𝑖 causes overall system failure and 

interrupts the test at clock time 𝑡𝑗  where 𝜏𝑖 ≤ 𝑡𝑗 ≤ 𝜏𝑖+1.  Implementing corrective 

action results in a new design configuration wherein failure mode 𝑗 no longer exists, 

but additional failure modes not contained in the previous design, may have been 

created.  Testing resumes on the updated design at stress 𝑠𝑖 once the corrective 

action has been implemented on the unit under test as well as any remaining 

untested units.  Consequently, the HALT test-fix-test strategy allows for a single 

observation of failure mode 𝑗 prior to testing the new design and the data produced 

by each observed failure is comprised of the 4-tuple 

 [𝑗,  𝑡𝑗 ,  𝑠𝑖(𝑡𝑗), 𝑐𝑗] (26) 

representing the mode, time, stress level, and design configuration of the failure. 

In the following section, four approaches cited in the literature for analyzing 

accelerated failure time data are discussed.   The limitations of each approach are 

highlighted with regard to estimating the parameters of a product’s reliability 
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function when the observed data is of the form shown in (26).  The first and second 

subsections describe techniques commonly used for estimating the parameters of a 

product’s reliability function where a specific failure mode of interest has been 

identified prior to testing.  The third subsection describes an approach to extend 

traditional reliability growth models to incorporate data obtained at stress levels 

that are not representative of the end use environment.  The fourth subsection 

discusses a commercial database used to predict system life by correlating the HALT 

results of multiple products with their subsequent field reliability.  Finally, the fifth 

subsection suggests a direction for utilizing data of the form shown in (26) to 

improve system reliability estimation in follow-on testing. 

Modeling Approaches 

Quantitative Accelerated Life Testing Model 

Quantitative accelerated life testing (QALT) [45] is widely used to expedite 

failures and quickly acquire information regarding a product’s time to failure 

distribution.  Test planners choose the type and levels of an accelerating variable 

along with the fraction of samples to be tested at each level to minimize the 

prediction variance of product life with respect to the use-level stress (V-optimality) 

[60].  The focus of QALT is typically on assessing the probability of failure due to 

specific wearout modes since a majority of infant mortality failures are removed 

prior to QALT through product ruggedization.  For these wearout modes, knowledge 

of the relationship between the failure mechanism and the applied stress is required 

and may be available through an understanding of the chemical or physical 
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dynamics causing failure or through previous experience with similar systems.  

Using this prior information enables the selection of an appropriate life-stress 

model to quantify the manner in which the time to failure distribution changes with 

increased stress. 

 Analyzing the data of the form shown in (26) using QALT models requires 

coupling an appropriate underlying life distribution with a life-stress relationship 

[45] based on the physical/chemical dynamics causing failure [54].  Any distribution 

with a [0,∞) support region can serve as the underlying life distribution, however 

selection should be based on the distribution’s ability to accurately describe the 

data as shown through goodness of fit testing [61].  For the example HALT described 

above, assume that the underlying life distribution relative to the use-level stress 

and failure mode 𝑗 is 𝑊𝐸𝐼𝐵(𝛼𝑗 , 𝛽𝑗) with CDF 

 𝐹(𝑡; 𝛼𝑗 , 𝛽𝑗) = 𝑃(𝑇 ≤ 𝑡|𝛼𝑗 , 𝛽𝑗) = 1 − 𝑒
−(

𝑡
𝛼𝑗

)
𝛽𝑗

 (27) 

where the value of the shape parameter 𝛽𝑗  depends only on the failure mode 𝑗 [62].  

The true relationship between an accelerating variable and the failure mechanism 

can often be quite complicated, thus the selection of a life-stress relationship to 

model a failure process assumes a particular failure mode of interest has been 

identified prior to testing.  Here, we assume an Inverse Power-Law stress-life 

relationship [63, 64] with parameters, 𝐾, 𝑛 > 0 [55] reflected in the scale parameter 

𝛼𝑗 .  Thus, under any constant stress 𝑠𝑖 the fraction of units failing due to mode 𝑗 

prior to time 𝑡 is 
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𝐹𝑗(𝑡; 𝑠𝑖) = 1 − exp {−(𝐾𝑗𝑠𝑖

𝑛𝑗𝑡)
𝛽𝑗

}. 
(28)  

However, in a step-stress scenario (28) does not incorporate the exposure across 

multiple stress levels prior to failure and more complex techniques [19, 65, 54] are 

required.  Nelson [18] introduced maximum likelihood estimation to step-stress 

QALT, suggesting a Weibull-Inverse Power Law likelihood function 

 𝐿 = ∏ [{𝛽𝑗𝐾𝑗𝑠𝑖

𝑛𝑗
(𝐾𝑗𝑠𝑖

𝑛𝑗
𝑡)

𝛽𝑗−1
𝑒

−(𝐾𝑗𝑠𝑖

𝑛𝑗
((𝑡−𝜏𝑖)+𝜖𝑖))

𝛽𝑗

}

𝐼𝑖

×  {𝑒
−(𝐾𝑗𝑠𝑖

𝑛𝑗
((𝑡−𝜏𝑖)+𝜖𝑖))

𝛽𝑗

}

1−𝐼𝑖

]

𝑖

 (29) 

where 𝐼 is an indicator function taking on a value of one if the observed value is a 

failure and zero it is a censored observation and 𝜖𝑖 incorporates the cumulative 

stress exposure prior to 𝑠𝑖.  Relating failure times observed at elevated stresses to 

an equivalent use-stress exposure requires at least three observations of mode 𝑗 

before corrective action to estimate 𝛽𝑗 , 𝐾𝑗  and 𝑛𝑗 .  But this requirement violates the 

iterative test-fix-test nature of HALT which only allows for one observation for each 

mode prior to corrective action.  Thus, without altering the HALT philosophy, the 

data shown in (26) is insufficient for estimating more than a single parameter using 

any life stress model or underlying life distribution.  

Physics of Failure Analysis 

Physics of Failure (PoF), or reliability physics, refers to a scientific approach 

wherein modeling and simulation are used to understand a product’s reaction to 

external stressors and address its fitness for use with respect to the expected use 

conditions [66, 67].  The intent is to design-in reliability by investigating the 
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relationship between specific failure modes and accelerating variables and 

proactively eliminating the root causes of failure.  The PoF approach provides the 

strongest characterization of system reliability [68], incorporating a diverse set of 

engineering disciplines along with physics, chemistry, metallurgy, mathematical 

statistics, and probability.  PoF has gained wide acceptance among military and 

commercial sectors, showing significant time and cost [69] savings while allowing 

more information to be obtained during formal testing.   

Pecht et al. [70] advocated for the use of PoF in reliability assessment in lieu of 

the popular parts count technique of Mil HDBK-217 [71].  Cushing et al. [72] 

identified several limitations of the parts count technique that could be addressed 

with PoF and presented procedures for implementing the approach (Table 3).  

Mendel [73] introduced probabilistic physics of failure (PPoF) as a technique to 

derive the statistical lifetime distribution and presented a case for applying PPoF in 

a design for reliability process.  Modarres et al. [68] further emphasized that failure 

prediction is a probabilistic problem due to uncertainties associated with model 

parameters and failure-inducing agents that can result from changes in 

environmental, operating, and use conditions.   

Alternatively, Snook et al. [74] identifies several limitations of PoF, most notably 

that for immature systems or those with multiple usage environments PoF analysis 

can be overly complex and burdensome.  As case in point, Qi [75] presents a case 

study evaluating the fatigue life of printed circuit boards under thermal cycling.   
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Table 3 – Physics of failure process 

Step Process 

1 Define realistic requirements 

2 
Define the expected mechanical, thermal, electrical and chemical usage 
environment experienced during manufacture, test, operation, storage, and 
repair 

3 
Identify potential failure mechanisms and the associated degradation processes 
(chemical, electrical, physical, mechanical, or thermal) 

4 
Define appropriate failure models and input parameters relative to the material 
characteristics, damage properties, relevant geometry, and operating 
environment 

5 
Compute the variability for each design parameter and the effective reliability 
function. 

6 
Design to the usage environment incorporating design stress spectra, part test 
spectra, and full-scale test spectra based on the anticipated life-cycle 

7 Accept the design 

 

Thirty thousand ball gate array (BGA) interconnections, arranged in 154 packages, 

were investigated to identify which were likely to cause the circuit boards to fall 

short of their 15-year lifetime requirement.  To assess the likelihood of failure, 

three-dimensional finite element models, representing each distinct BGA package, 

were exposed to fifteen years of simulated field usage.  The number of cycles to 

failure predicted by the Engelmaier-Wild solder creep-fatigue model [76] indicated 

that multiple BGA packages could not meet the fifteen year requirement.   

Qi does not specify what corrective action was implemented subsequent to the 

investigation, but the case study illustrates that the level of effort required for PoF 

necessitates a mature design and a narrowly defined failure criteria.  Physics of 

failure simulations are tailored to replicate specific product responses under a 

specific set of usage conditions and must be validated against demonstrated 
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performance.  Had the circuit boards contained undiscovered failure modes, the 

value of the simulation data could be negated if corrective action alters the product’s 

response to the applied stress.  Identifying these latent modes through simulation 

involves replicating product responses under multiple stress environments where 

validation may be impossible with current physical models.  Thus infant mortality 

failures must be removed to the fullest extent possible through a product 

ruggedization test such as HALT, prior to starting a PoF analysis.   

Accelerated Reliability Growth 

Reliability Growth is the positive improvement in a product’s reliability over 

time due to design changes or manufacturing process improvements [9].  According 

to Ebeling [37], the earliest developed and most frequently used reliability growth 

model is that of Duane [38] who postulated from his empirical observations that for 

products under development, plots of cumulative failure rate versus cumulative 

operating hours on a log-log scale were approximately linear with negative slope.  

Crow [39] derived the stochastic basis for the Duane model, referred to in the 

literature as a power law process (PLP) or informally as a Weibull process – a type 

of nonhomogeneous Poisson process (NHPP) with a Weibull hazard intensity 

function ℎ(𝑡) = 𝜆𝛽𝑡𝛽−1 where 𝜆 > 0 and 𝛽 > 0  are interpreted as the initial 

reliability of the system and the growth rate parameter, respectively.  The rigorous 

statistical development of the PLP allows estimation and prediction in both 

maximum likelihood and Bayesian contexts and has made the approach popular in 

the literature [6, 37].   
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Reliability growth testing has historically existed within the purview of large, 

complex development efforts, such as military weapon systems [77].  In these 

programs the stress profiles used in testing are assumed to reflect the field-use 

environment.  Under these lower stress levels testing can extend several months 

and reliability growth planning curves (Figure 10) are used to ensure adequate test-

time is made available to discover failures and subsequently attain the reliability 

requirement with some level of confidence.  Testing exposes several distinct failure 

modes, thus traditional reliability growth models track only the overall number of 

failure events occurring in a test phase.  Reliability improvement is therefore shown 

as a decrease in the rate of failure events across test phases (assessed growth).  An 

indication that the reliability growth is lagging (assessments falling below the 

planning curve) may signal the need to reallocate test resources or reevaluate the 

testing strategy. 

 

Figure 10 – Idealized reliability growth planning curves developed across three test 
phases showing the difference in planned and assessed reliability (Source: MIL-

HDBK-189C, p. 11) 

 

     Test Phase 1                             Test Phase 2                           Test Phase 3 

Reliability 

(MTBF) 

  Planned Growth 

  Assessed Growth 
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In commercial environments several products types may be under development 

simultaneously, thus little time may exist to ruggedize and quantify the reliability of 

a particular product.  In these situations, accelerated testing methods such as HALT 

may be utilized as part of the reliability improvement process prior to market 

introduction.  Like traditional growth testing, several distinct failure modes are 

observed, but many of these observations will only be realized at elevated stress 

levels.  The Army Materiel Sustainment and Analysis Activity (AMSAA) [9] notes that 

traditional reliability growth models produce inaccurate results when the stress 

profile is not operationally relevant.  Strunz and Herrmann [78] address planning, 

tracking and projecting reliability growth of liquid rocket engines where the test 

profile does not reflect the operational use environment.  Concluding that the 

traditional modeling approaches are insufficient, the authors derive a Bayesian 

estimation method that accounts for the characteristics of the test profile and 

aggregates component, subsystem and system data.   

Feinberg [77] introduced accelerated reliability growth testing (ARGT) by 

modifying the AMSAA [9] reliability growth planning model equations to include a 

system-level acceleration factor.  The approach is based on the assumption of a 

linear correspondence between the reliability growth attained under an accelerated 

stress and that which would have occurred using only the use-level stress.  Feinberg 

does not qualify this assumption, implying he expects it to hold regardless of the 

intensity of the accelerated stress and the level of extrapolation considered.  

Intuitively, as stress increases the time to failure for a given mode decreases.  
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However, as noted by [45] the time compression is not equivalent for each failure 

mode in the system.  While Feinberg indicates that acceleration factor models are 

mode specific, he assumes a system-level acceleration factor can be derived, but 

leaves this task to the reader. 

With respect to estimating product reliability from the data in (2), reliability 

growth models improve upon QALT and PoF in that design changes can be 

accommodated.  However, traditional models assume growth a priori via a fix 

effectiveness value applied across each corrective action.  In an accelerated test, this 

assumption is invalid as failures may be discovered far from the use stress.  Clearly, 

the reliability growth attained through corrective action depends on the likelihood 

of the failure actually occurring in operation [54, 79, 17].  Nelson [54] discusses this 

phenomenon, describing a costly effort to remove a failure mode which never would 

have occurred in actual use, resulting in wasted resources and no actual reliability 

improvement.  Moreover, relating growth to a decrease in failure events is also 

invalid as the rate of failures may rise with increased stress even though reliability 

is improving. 

McLean’s AFR Estimator Model 

After collecting HALT data from more than fifty products across twenty 

industries McLean [80] developed the Actual field Failure Rate (AFR) Estimator to 

correlate a product’s HALT results with its subsequent field failure history.  When 

furnished with the appropriate HALT data and product information (Table 4) the 
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model provides the field failure rate for the improved design with confidence limits 

based on 𝜒2 estimates derived from the SEMI E10 standard [81]. 

Table 4 – AFR Estimator Inputs 
 

A Initial MTBF estimate (early testing, reliability prediction standards) 

B HALT Hot operating limit as measured on the product 

C HALT Cold operating limit as measured on the product 

D HALT Vibration operating limit as measured on the product  

E Published thermal operating specifications (in degrees Celsius) 

F Sample size used in the final HALT 

G Field duty cycle 
 

The AFR Estimator utilizes linear, quadratic and exponential time acceleration 

techniques to estimate a product’s relative life,  

 𝑅 =
𝑀𝑇𝐵𝐹𝑟𝑒𝑑𝑒𝑠𝑖𝑔𝑛

𝑀𝑇𝐵𝐹𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (30) 

representing the proportional improvement in the mean time between failures of 

the redesigned unit over that of the original design.  The model also provides 

recommended minimum HALT stress levels to ensure sufficient test coverage in 

each environment and to assure the product will exceed customer expectations.  

Notwithstanding these advantages, the failure rate predictions can only be made on 

the basis of the temperature and vibration tests.  Further, the model can't estimate 

wear-out mechanisms which must be addressed using QALT techniques.  Although 

McLean has presented results [51] of the AFR Estimator, the model remains 

unpublished and is proprietary to Ops A La Carte® LLC.  Thus, the mechanics of how 
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the linear, quadratic and exponential acceleration techniques are utilized is unclear.  

Interestingly, Brand and McLean own three patents [48, 49, 50] outlining models for 

reliability estimation after a HALT using linear, quadratic and exponential 

acceleration techniques.   However, correspondence with the author indicates that 

the AFR Estimator is distinct from the models described in these patents.  

Future Research Avenues 

Current accelerated reliability techniques investigate the response of a known 

failure mode in the presence of one or more accelerating variables assuming the 

system is mature.  Estimating reliability from data obtained from qualitative 

accelerated life tests [11, 42, 13] depends on identifying a relationship to interpret 

the observations made on early configurations to those of the final design.  This 

relationship should naturally be a function of the original degradation process, but 

must also incorporate changes resulting from corrective actions.  However, for even 

a single failure mode-stressor combination, this relationship can be extremely 

complex as each corrective action can result in a new degradation process with 

unfamiliar failure states.  Although reliability physics models continue to improve, 

the push for testing chambers that can produce harsher environments, find failures 

more quickly, and test more complex products outpaces the capacity to derive tools 

that can accurately describe product behavior in these environments.  

Consequently, HALT data is difficult to obtain as few entities have the equipment 

necessary to conduct the test and the failure information is often considered 

competition sensitive to both the item’s manufacturer and the testing organization. 
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In the absence of sufficient physical models and available data, progress in this 

area will likely be confined to scanning the multi-dimensional stress space bound by 

the HALT destruct limits or developing novel competing risk models based on 

reasonable, but unverifiable, assumptions on the form of the data and model 

propriety at the highest stresses.  Escobar and Meeker [60] investigated optimal 

accelerated test designs when two or more independent accelerating variables are 

present.  Gao et al. [82] compared the Escobar-Meeker approach to orthogonal and 

uniform designs in computer experiments under V-optimality.  Their results showed 

that the Escobar-Meeker approach performed best in estimating the parameters and 

the 𝑝𝑡ℎ quantile of the life distribution under normal stress.   

Assuming independent experimental factors may be reasonable in the 

neighborhood of the design stress.  But at limit stress failure depends on the total 

energy put into the system.  In this circumstance the design space is non-

quadrangular with an outer surface representing the zero-sum relationship 

between the factors.  Although this relationship is unknown for many combinations 

of experimental factors, comparing the Escobar–Meeker, orthogonal and uniform 

designs under arbitrary design spaces and dependence relationships would be a 

valuable contribution.   Additionally, extending methods such as Calibrated 

Accelerated Life Testing (CALT) [47] to multiple dimensions may prove beneficial. 

Conclusion 

Maintaining market share compels manufacturers to provide evolutionary and 

revolutionary capabilities under aggressive development schedules while ensuring 
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a high reliability in complex stress environments.  Successfully attaining reliability 

requirements for these products requires setting and achieving reliability targets 

throughout the various stages of the development process.  However, schedule and 

cost constraints often preclude sufficient testing on early prototypes to generate 

meaningful reliability estimates.  Under these constraints, incorporating data 

obtained throughout a development effort can result in improved reliability 

estimation prior to fielding.  Qualitative accelerated tests are often used to quickly 

improve system reliability by identifying and removing initial design flaws.  

Generally, no attempt is made to produce a reliability measure from the limited data 

obtained in these qualitative tests as relevant approaches require more data.  The 

delineation between qualitative accelerated life tests and QALT exists due to the 

philosophy of removing the root cause of each failure through corrective action.  

However, the output of qualitative testing can be used to improve reliability 

distribution parameter estimation and explore the outer surface of the enlarged 

design space to guide follow-on tests. 
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ABSTRACT 

The Weibull distribution has long been a popular choice for modeling lifetime data 
of various mechanical and biological phenomena when the associated hazard rate 
function is constant or monotone increasing or decreasing.  However, non-monotone 
hazard functions are common in reliability and survivability contexts where a system 
may undergo an initial “burn-in” prior to periods of useful life and eventual wearout.  
In these scenarios, the standard Weibull can only model a portion of the “bathtub” 
curve but is incapable of adequately modeling the entire failure process.  Several 
modifications to the standard two-parameter Weibull distribution have therefore 
been introduced in the literature to effectively model and analyze lifetime data where 
the hazard rate function is bathtub shaped.  The performance of each modified 
distribution is typically assessed by its ability to fit reference data sets that are known 
to have a bathtub shaped hazard rate function.  The current paper compares the 
performance of two recent contributions in this area to that of the poly-Weibull 
distribution with respect to several goodness of fit measures.  In addition, numerical 
and analytical procedures are developed for obtaining the maximum likelihood 
parameter estimates and standard errors for the generalized poly-Weibull 
distribution with arbitrary number of terms.  Our results show that both the bi-
Weibull and tri-Weibull distributions fit the reference data sets better that either of 
the current best-fit models. 
 

Introduction 

The Weibull distribution has long been a popular choice for modeling lifetime 

data of various mechanical and biological phenomena when the associated hazard 

rate function is either constant or monotone increasing or decreasing.  However, 

non-monotone hazard functions are common in reliability and survivability contexts 

where a system may undergo an initial “burn-in” prior to periods of useful life and 

eventual wearout.  In these scenarios, the standard Weibull distribution can model a 

portion of the “bathtub” hazard curve but is incapable of describing the entire 



 

59 
 

failure process.  Several modifications to the standard two-parameter Weibull 

distribution have therefore been introduced in the literature to effectively model 

lifetime data where the hazard rate function is bathtub shaped.  The performance of 

each modification is assessed by comparing its goodness of fit to data sets published 

by Aarset [83] and Meeker [84], known to have bathtub shaped hazard functions.   

Bathtub-shaped hazard functions arise from the existence of multiple competing 

failure modes which dominate at different epochs in the life of a system.  The poly-

Weibull [85] distribution arises naturally in scenarios of competing risks as it 

describes the minimum of several independent random variables where each 

follows a distinct Weibull law.  The current paper compares the goodness of fit of 

the poly-Weibull to two recently proposed Weibull modifications, the new modified 

Weibull distribution [86] and the exponentiated modified Weibull extension 

distribution [87].  Our results show that the poly-Weibull fits both data sets better 

than either of these modifications. 

Almalki and Yuan [86] introduced the new modified Weibull (NMW) distribution 

 𝐹𝑁𝑀𝑊(𝑡; 𝛼, 𝜃, 𝛽, 𝛾, 𝜆 ) = 1 − 𝑒−𝛼𝑡𝜃−𝛽𝑡𝛾𝑒𝜆𝑡
     𝛼, 𝜃, 𝛽, 𝛾, 𝜆 ≥ 0,     𝑡 ≥ 0    (31) 

by considering a two-component serial arrangement in which one component 

follows a standard two-parameter Weibull model and the other follows a modified 

Weibull (MW) distribution [88].  The authors show that the goodness of fit of the 

NMW is superior to that of other four and five parameter Weibull modifications 

including the additive Weibull distribution [89], the modified Weibull distribution 
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[90] and the beta modified Weibull distribution [91].  Likewise, Sarhan and Apaloo 

[87] showed that the exponentiated modified Weibull extension (EWME) model 

 𝐹𝐸𝑊𝑀𝐸(𝑡; 𝜆, 𝛼, 𝛽, 𝛾 ) = [1 − 𝑒
𝜆𝛼(1−𝑒(𝑡 𝛼⁄ )𝛽)

]
𝛾

    𝜆, 𝛼, 𝛽, 𝛾 ≥ 0,     𝑡 ≥ 0    (32) 

fit the reference data better than the exponentiated Weibull [92], the exponentiated 

Gompertz [93] and the modified Weibull extension distributions [94].   

The Poly-Weibull Distribution 

  The CDF of the poly-Weibull distribution is expressed as: 

 𝐹𝑃𝑊(𝑡; 𝜶, 𝜷) = 1 − {exp [−∑(
𝑡

𝛼𝑗
)

𝛽𝑗
𝐽

𝑗=1

]}    𝛼𝑗 , 𝛽𝑗 > 0,    𝑡 ≥ 0 (33) 

where 𝛼𝑗 , 𝛽𝑗  represent the scale and shape parameters associated with the Weibull 

model describing risk 𝑗 = 1,… , 𝐽.  Accordingly, the poly-Weibull density function is  

 𝑓𝑃𝑊(𝑡|𝜶,𝜷) = 𝑅(𝑡)ℎ(𝑡) = {exp [−∑(
𝑡

𝛼𝑗
)

𝛽𝑗
𝐽

𝑗=1

]} ∗ ∑
𝛽𝑗𝑡

𝛽𝑗−1

𝛼
𝑗

𝛽𝑗

𝐽

𝑗=1

 . (34) 

When 𝐽 = 2, equations (33) and (34) are the CDF and pdf of the bi-Weibull 

distribution, and when 𝐽 = 3 the model is naturally known as the tri-Weibull 

distribution.  Considering the poly-Weibull was introduced over twenty years ago 

[85], the body of literature studying its properties is quite limited.  Within this body, 

the predominant focus has been on Bayesian estimation of the bi-Weibull model 

parameters.  Berger and Sun [85] studied the bi-Weibull distribution using a Gibbs 

sampling algorithm with informative and non-informative priors.  The authors 

computed the posterior density and predictive reliability when the shape 

parameters are either known or unknown.  Their simulation results compared 
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favorably with a closed-form exact solution, but were shown to be computationally 

expensive for small sample sizes.  Davison and Louzada-Neto [95] also explored the 

bi-Weibull model, however, they assert that Markov chain simulation is not 

necessary for obtaining posterior probabilities.  Using real and generated data, the 

authors illustrate, that either Laplace’s method [96] or the Bayesian bootstrap [97] 

are sufficient and can reduce the computational burden.  

Figures 11 and 12 illustrate several bathtub shapes modeled with the bi-Weibull 

and tri-Weibull distributions with parameter vector 𝜃 = [𝛽1, … , 𝛽𝐽, 𝛼1, … , 𝛼𝐽]. 

 
Figure 11 – Example bi-Weibull density (top) and hazard (bottom) functions 
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Comparing the center sections of each figure, the reader will note the ability of the 

tri-Weibull to model complex failure processes for which the “useful life” portion of 

the hazard function is not constant and thus does not follow an exponential model.   

 

 

 
Figure 12 – Example tri-Weibull density (top) and hazard (bottom) functions  

An advantage of the poly-Weibull model is that the parameter values have the same 

relationship to the mean and variance of the failure process as does the standard 

two-parameter Weibull model.  Thus 𝛽𝑗 < 1 implies a failure process with a large 

coefficient of variation and decreasing hazard rate indicative of infant mortality.  
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Conversely, 𝛽𝑗 > 1 portends a wear-out failure mechanism with an increasing 

hazard rate function reflective of a lower coefficient of variation.  The poly-Weibull 

distribution is therefore capable of generating bathtub shaped hazard functions by 

modeling multiple failure processes simultaneously as Figures 11 and 12 illustrate. 

Parameter Estimation 

Consider a random sample of observations 𝑡1, … , 𝑡𝑛 from a poly-Weibull(𝜶, 𝜷) 

distribution with unknown parameter vector 𝜃 = (𝛼1, … , 𝛼𝐽, 𝛽1, … , 𝛽𝐽), and indicator 

variable 𝛿𝑖 where 𝛿𝑖 = 1 if 𝑡𝑖 is a failure time and 𝛿𝑖 = 0 if 𝑡𝑖 is a censoring time.  The 

log-likelihood function ℒ(𝜃) based on data (𝑡1, 𝛿1), … , (𝑡𝑛, 𝛿𝑛) is  

 ℒ(𝜃) = ∑[𝛿𝑖 log∑(𝛽𝑗𝑡
𝛽𝑗−1𝛼

𝑗

−𝛽𝑗)

𝐽

𝑗=1

− ∑(
𝑡𝑖
𝜃𝑗

)

𝛽𝑗
𝐽

𝑗=1

]

𝑛

𝑖=1

. (35) 

Davison and Louzada-Neto [95] initially presented the system of 2𝐽 nonlinear 

equations, which when solved would provide the maximum likelihood estimates for 

𝛼𝑗  and 𝛽𝒋, 𝑗 = 1,… , 𝐽.  However, these equations contained an error – omitting 𝛽𝑗  

from the denominator of 𝜕ℒ 𝜕𝛼𝑗⁄ .  The corrected equations for obtaining the poly-

Weibull MLE’s, which have been verified both analytically and numerically, are 

therefore 

 

                                            
𝜕ℒ

𝜕𝛼𝑗
= ∑(

𝑡𝑖
𝛽𝑗

−
𝛿𝑖

ℎ(𝑡𝑖)
) (

𝛽𝑗

𝛼𝑗
)ℎ𝑗(𝑡𝑖) = 0

𝑀

𝑖=1

       𝑗 = 1,… , 𝐽 

𝜕ℒ

𝜕𝛽𝑗
= ∑[𝛿𝑖

ℎ𝑗(𝑡𝑖)

ℎ(𝑡𝑖)
{𝛽𝑗

−1 + log(
𝑡𝑖
𝛼𝑗

)} −
𝑡𝑖
𝛽𝑗

ℎ𝑗(𝑡𝑖) log (
𝑡𝑖
𝛼𝑗

)] = 0

𝑀

𝑖

      𝑗 = 1,… , 𝐽 

(36) 
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where ℎ𝑗(𝑡𝑖) = 𝛽𝑗𝑡
𝛽𝑗−1𝛼𝑗

−𝛽𝑗
 and ℎ(𝑡𝑖) = ∑ (𝛽𝑗𝑡

𝛽𝑗−1𝛼𝑗

−𝛽𝑗
)

𝐽
𝑗=1 .  Solving this system of non-

linear equations cannot be accomplished analytically and the use of Newtonian or 

quasi-Newtonian numerical optimization techniques can be tedious as finding a 

solution is highly sensitive on the starting values for the parameters in each 

equation.  We find it simpler to obtain accurate parameter estimates by maximizing 

the log-likelihood function directly using a quasi-Newtonian algorithm [98].  

However, for asymptotic interval estimation, the optimization algorithm can 

produce inaccurate Hessian matrices leading to negative values along the diagonal 

of the covariance matrix.  Thus for finding the standard errors of the poly-Weibull 

model parameters the components of the observed Fisher information matrix 

ℐ(𝜃∗) = −∇∇Tℒ(𝜃)|𝜃=𝜃∗  have been derived analytically and are presented in 

appendix A. 

Application 

In this section the Aarset [83] and Meeker [84] data sets are analyzed and the 

goodness of fits for the bi-Weibull and tri-Weibull distributions are compared to 

those of the NMW [86] and the EMWE [87].  In keeping with the established 

precedent, the goodness of fit comparison in this paper is based on the values of the 

Kolmogorov-Smirnov (K-S) test statistic, the Akaike information criterion (AIC) and 

the log-likelihood function for each model computed at their respective MLE’s.  In 

addition, the fit of each distribution is assessed graphically as the reliability, density 

and hazard functions are plotted against their nonparametric counterparts.  
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Aarset data 

The Aarset [83] data set (Table 5) represents the lifetimes of 50 devices and 

contains no censored observations.   

Table 5 – The Aarset data set 

0.1 0.2 1 1 1 1 1 2 3 6 
7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 
67 67 67 67 72 75 79 82 82 83 
84 84 84 85 85 85 85 85 86 86 

Table 6 shows the MLE’s and standard errors for the parameters of each of the four 

models considered while Table 7 displays a comparison of each model’s goodness of 

fit measures. The data in Table 7 indicates that the null hypothesis of the two-

sample K-S test cannot be rejected for any of the four models at a significance level 

below 0.8.  However, the data also shows that the tri-Weibull and bi-Weibull fit the 

data better than either the NMW or the EMWE as both have larger likelihoods as 

well as smaller K-S statistics and AIC values.  Further, the superior performances of 

the poly-Weibull models are immediately clear upon observing Figure 13.  In the top 

plot, the reliability function of each model is plotted against the Kaplan-Meier [30] 

nonparametric estimate of the reliability function for the data.   

 

 

 



 

66 
 

Table 6 – Maximum likelihood estimates (standard errors) for the Aarset data 

Model MLE of the Parameters 

Tri-Weibull 
�̂�1 �̂�2 �̂�3 �̂�1 �̂�2 �̂�3 

98.152  0.524  4.215  85.091  122.478  92.299  
(32.762) (0.056) (0.937) (0.339) (52.740) (8.870) 

Bi-Weibull 
�̂�1 �̂�2 �̂�1 �̂�2   

82.334  0.702  84.907  61.663    
(22.602) (0.075) (0.328) (14.538)   

EMWE 
�̂� �̂� �̂� �̂�   

49.050  7.18 x 10-5 3.148  0.145    
* * * *   

NMW 
�̂� �̂� �̂� �̂� 𝜃  

0.071  0.197  7.015 x 10-8 0.016  0.595   
(0.031) (0.184) (1.501 x 10-7) (3.602) (0.128)  

The NMW and EWME fit the central portion of the data better that the bi-Weibull 

while both the bi-Weibull and tri-Weibull more closely fit the upper and lower tails 

of the data where the majority of observations are concentrated.  However, the tri-

Weibull is clearly the best fit throughout the entire range of the observations.   

Table 7 – Performance measures for the Aarset data set 

Model Params Log-Lik K-S p-value AIC 
Tri-Weibull 6 -202.51 0.063 0.998 417.01 
Bi-Weibull 4 -206.09 0.100 0.925 420.20 

EMWE 4 -213.86 0.101 0.646 435.72 
NMW 5 -212.90 0.088 0.803 435.80 

In the middle plot, each model’s density function is plotted against a histogram of 

the data.  Note that the poly-Weibull models indicate that the probability of failure 

after the final observation is near zero, as would be expected for a system with a 

true bathtub–shaped hazard, while the NMW and EMWE do not reflect this.  This is 

also clearly evident in the bottom plot where the hazard functions are plotted 

against the empirical hazard plot [99].  
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Figure 13 – Triple plot illustrating the fit of the bi-Weibull, tri-Weibull NMW 
and EMWE models to the Aarset data 
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Meeker data - Uncensored 

The Meeker [84] data set (Table 8) represents the observed lifetimes of 30 

devices and includes eight censored observations.  The data set only has a bathtub 

shaped hazard function if the censored observations are treated as failures.  Thus, 

the subsequent analysis follows this precedent established in the literature.  In the 

following subsection the Meeker data is analyzed again, correctly treating the final 

observations as censored.  

Table 8 – The Meeker data set 

2 10 13 23 23 28 30 65 80 88 
106 143 147 173 181 212 245 247 261 266 
275 293 300+ 300+ 300+ 300+ 300+ 300+ 300+ 300+ 

Maximum likelihood parameter estimates and standard errors are displayed in 

Table 9.  Note the large standard errors associated with the bi-Weibull and tri-

Weibull shape parameter 𝛽𝑗=1.  As a result of treating the censored observations in 

the Meeker data set as failures we have enforced a deterministic failure at 300 hours 

such that  

 𝑃(𝑇 > 300|𝑇 = 300) = 0. (37) 

Thus, the optimization procedure attempts to fit bi-Weibull and tri-Weibull 

distributions to the uncensored Meeker data with shape parameter 𝛽1 → ∞.  The 

large standard errors therefore reflect the difference between the true distribution 

governing the failure process and the distribution that can be numerically obtained.  

Observing the density curves in the center plot of Figure 14, shows that the poly-
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Weibull accurately portrays a deterministic failure at 300 hours while the NMW and 

EWME curves incorrectly show that failures beyond 300 hours are possible.   

Table 9 – Maximum likelihood estimates (standard errors) for the uncensored 
Meeker data set 

Model MLE of the Parameters 

Tri-Weibull 
�̂�1 �̂�2 �̂�3 �̂�1 �̂�2 �̂�3 

124.000  5.591  0.738  299.850  356.022  352.185  
(188.557) (1.907) (0.102) (1.825) (46.686) (136.733) 

Bi-Weibull 
�̂�1 �̂�2 �̂�1 �̂�2   

124.000  0.892  299.780  253.940    
(98.228) (0.122) (1.117) (62.099)   

EMWE 
�̂� �̂� �̂� �̂�   

197.210  5.468 x 10-6 4.482  0.129    
* * * *   

NMW 
�̂� �̂� �̂� �̂� 𝜃  

0.024  0.056  5.991 x 10-8 0.012  0.629   
(0.019) (0.024) (8.164 x 10-8) (1.290) (0.158)  

 

Regardless, the goodness of fit measures in Table 10 indicate that bi- and tri-Weibull 

remain the preferred models when compared to the NMW and EMWE for fitting the 

data.  With additional computing power this fit can be improved.  

Table 10 – Performance measures for the uncensored Meeker data set 

Model Params Log-Lik K-S p-value AIC 
Bi-Weibull 4 -156.14 0.105 1.000 320.30 

Tri- Weibull 6 -154.65 0.097 1.000 321.30 
EMWE 4 -166.35 0.131 0.632 340.71 
NMW 5 -166.18 0.148 0.482 344.40 

The graphical fit, as shown in Figure 14, again indicates that both the tri-Weibull 

and the bi-Weibull outperform the NMW and EMWE.  However, because the bathtub 

shape is less marked for the uncensored Meeker data, the difference between the bi- 

and tri-Weibull is insufficient to overcome the penalty of two additional parameters.  
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Figure 14 – Triple plot illustrating the fit of the bi-Weibull, tri-Weibull NMW 
and EMWE models to the uncensored Meeker data 
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Meeker data - Censored 

The Meeker [84] data set is analyzed again, this time treating the final eight 

observations as right censored.  As the respective authors do not present results for 

the NMW and EMWE in this scenario, the results presented below were obtained 

using the numerical procedure discussed above for the poly-Weibull distribution.  

The maximum likelihood parameter estimates are shown in Table 11. 

Table 11 – Maximum likelihood estimates for the censored Meeker data set 

Model MLE of the Parameters 

Tri-Weibull 
�̂�1 �̂�2 �̂�3 �̂�1 �̂�2 �̂�3 

6.795 0.742 22.125 338.686 346.727 974.718 

Bi-Weibull 
�̂�1 �̂�2 �̂�1 �̂�2     

6.795 0.742 338.686 346.727     

EMWE 
�̂� �̂� �̂� �̂�     

93.100 2.2 x 10-3 0.633 0.625     

NMW 
�̂� �̂� �̂� �̂� 𝜃  

0.0142 0.0346 0.6939 0.3015 0.0117   

Here, �̂�1, �̂�2, �̂�1, �̂�2 are equivalent for the bi-Weibull and tri-Weibull distributions as 

�̂�3 and �̂�3 provide no additional information, resulting in a singular Hessian for the 

tri-Weibull.  Thus, the goodness of fit measures displayed in Table 12 show that bi-

Weibull is the preferred model. 

Table 12 – Performance measures for the censored Meeker data set 

Model Params Log-Lik K-S p-value AIC 
Bi-Weibull 4 -140.95 0.1304 0.9924 289.9 

NMW 5 -141.16 0.1304 0.9924 292.5 
Tri-Weibull 6 -140.95 0.1304 0.9924 293.9 

EMWE 4 -151.43 0.2609 0.4218 310.9 

Figure 15 shows that the poly-Weibull and NMW fit the data equally well, while the 

performance of the EMWE reflects convergence problems associated with the 

model.  Note that in each plot the bi- and tri-Weibull curves are coincident.  
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Figure 15 – Triple plot illustrating the fit of the bi-Weibull, tri-Weibull NMW 

and EMWE models to the censored Meeker data 
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Conclusion 

The poly-Weibull distribution was presented as an attractive alternative to the 

standard two-parameter Weibull for fitting data sets where the hazard function is 

monotone, non-monotone or even bathtub shaped.  Numerical and analytical 

procedures for obtaining the poly-Weibull maximum likelihood parameter 

estimates and asymptotic standard errors are presented.  It was shown that the 

equations for obtaining the poly-Weibull maximum likelihood parameter estimates 

initially derived and presented by Davison and Louzada-Neto contained an error.  

The corrected equations were therefore derived and verified along with the 

components of the observed Fisher Information matrix for the generalized poly-

Weibull distribution.  The goodness of fit for two forms of the poly-Weibull 

distribution, the bi-Weibull and tri-Weibull, was then assessed for two reference 

data sets using the Akaike information criterion and Kolmogorov-Smirnov test 

statistic.   Our results show that the bi-Weibull and the tri-Weibull outperform two 

other modified Weibull distributions with respect to their fit of data for which the 

hazard rate function is bathtub shaped.  Further, the tri-Weibull dominates the other 

models when the bathtub shape is prominent.  However, this advantage is overcome 

by the penalty incurred in the AIC from additional parameters when the bathtub 

shape is less apparent.  Thus it is our recommendation that the tri-Weibull 

distribution be considered when one needs to model data with a pronounced 

bathtub shaped hazard function.  When the data does not reflect a prominent 

bathtub shape the bi-Weibull distribution is an excellent choice.  
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ABSTRACT 

A successful reliability growth program requires setting and achieving reliability 
targets throughout the various stages of a system’s development process.  However, 
schedule and cost constraints often preclude sufficient testing on early prototypes to 
generate meaningful reliability estimates.  While qualitative accelerated test methods 
quickly improve system reliability by identifying and removing initial design flaws, 
no attempt is made at quantifying the reliability.  In the current paper a modified 
accelerated life test is proposed whereby the projected system reliability can be 
estimated after implementing corrective action.  Assuming the system contains an 
unknown number of independent competing failure modes whose respective time to 
occurrence is governed by a distinct Weibull law, the observed failure times are 
modeled with the poly-Weibull distribution.  We show that under a qualitative 
accelerated life test scenario the poly-Weibull failure process can be modeled with a 
Weibull distribution for various sample sizes and system types.  Thus, the proposed 
model utilizes the Weibull distribution to estimate system reliability after one or 
more failure modes have been discovered and removed.  To our knowledge the 
proposed model is the first attempt to incorporate physical acceleration models into 
reliability growth planning and is intended to serve as a prototype upon which 
refinements in reliability growth modeling can be incorporated.   
 

Introduction 

Reliability growth testing has typically existed within the purview of large 

development efforts, such as military weapon systems [77] where failures may not 

be observed until the system is inspected at the end of a testing phase.  In this 

context, the metric of interest for many reliability growth models, such as those 

based on the power law process (PLP) [39], is the cumulative mean time between 

failures within a given phase [9].  Accordingly, these models express reliability 

growth as a change in the rate of occurrence of failures (ROCOF) across subsequent 
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test phases.  But reliability growth testing can take several months or longer to 

reach a reliability goal with a specified level of confidence as PLP-based models 

assume the test conditions reflect the intended usage environment.  Consequently, 

accelerated testing methods have been viewed as a means to reduce the duration of 

a reliability growth test.   

Introducing accelerated stresses in a reliability growth test can increase the 

ROCOF as the energy put into the system is sufficient to activate failure modes that 

would otherwise remain dormant under use-level stress.  However, no model exists 

to describe how changes in the level of an accelerating variable affect the ROCOF.  

Moreover, when multiple failure modes are exposed in a test, separate models are 

required to characterize the life-stress relationship for each mode [54] as models 

describing the behavior of entire systems under accelerated stress also do not exist.  

One particular testing strategy, qualitative accelerated reliability testing [12, 11, 

13], exposes early product designs to elevated environmental and repetitive use 

stresses to force latent defects to become manifest thereby ensuring that with 

appropriate mitigation a reliable product is fielded quickly.  However, qualitative 

test methods are designed to discover and remove failure modes quickly, without 

regard for reliability estimation and many tests employ a test-fix-test strategy 

where only a single observation of each failure mode is obtained prior to its removal 

through corrective action.  Test planners have long sought a way to incorporate the 

results of qualitative accelerated testing into an estimate of system reliability in the 

early design and development phases.  While case-studies [15, 16, 14] attest to the 
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effectiveness of qualitative testing for producing reliable products, translating the 

limited failure data into a meaningful measure of reliability growth has remained 

elusive.  Unlike qualitative testing which discovers previously unknown failure 

modes for which little information on the mode-specific time to failure distributions 

may be available, quantitative accelerated life tests (QALT) investigates the 

probability of failure due to a few known failure modes.   

In a quantitative test, prior knowledge of the relationship between the failure 

mechanism and the accelerating variable is required to identify an appropriate life-

stress model used to describe how the time to failure distribution changes with 

increased stress [54, 45].  For qualitative tests, prior knowledge is unavailable since 

the failure modes may be unknown prior to their occurrence and the stresses used 

to discover the failures often follow complex profiles [17].  Further, corrective 

action alters the system design configuration by eliminating the flaws causing 

failure.  Since subsequent configurations represent different systems, their 

respective failure data cannot be combined in a meaningful way.  To address this 

issue the current paper proposes a modified qualitative test and an associated 

model whereby observations obtained in an accelerated test can be used to estimate 

the projected system reliability after corrective action.   

Testing Framework 

In the proposed testing scenario a sample of 𝑛 prototypes, sharing a common 

initial design configuration are exposed to a constant elevated stress state until 

failure (i.e., there is no censoring).  The stress state may be comprised of one or 



 

77 
 

more stressors, but the levels of each stressor must remain constant throughout the 

test sequence until all 𝑛 prototypes have failed.  Once the test is complete, corrective 

action is implemented on all of the prototypes in the sample set to remove each 

distinct failure mode discovered thereby restoring the prototypes to common 

design configuration.  In subsequent tests, the levels of one or more stressors may 

be changed to create a more extreme stress state capable of generating additional 

failures.  This process continues until a failure occurs that is deemed too cost 

prohibitive to remove at which point the test is concluded and the design 

configuration is frozen.  In the next section we introduce the model, first discussing 

the analysis of data from an accelerated test in which each system contains a single 

failure mode and no corrective action is implemented.  Next, the data are re-

analyzed assuming that corrective action is implemented after the test.  Finally, we 

consider the general case where multiple failure modes exist in each system and 

corrective action is implemented. 

Model 

Single Failure Mode Case – No Corrective Action 

In the simplest case, only one failure mode exists in each system.  For this case 

the 𝑛 times-to-failure can be modeled by the distribution function 𝐹(𝑡; 𝜃) where the 

parameter vector is a function of stress, 𝜃(𝑠).  In the analysis of accelerated test data 

it is often assumed that the relative standard deviation (𝜎 ∙ 𝜇−1) of the failure 

observations is unaffected by changes in the applied stress [100].  For shape-scale 

distributions such as the Weibull(𝛼, 𝛽), gamma(𝛼, 𝛽), and log-normal(𝑒𝜇, 𝜎2) this 
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implies that the functional relationship between a product’s lifetime distribution 

and the applied stress is reflected in the scale parameter only, while the shape 

parameter is independent of stress. 

When the failures from an accelerated life test are due to a single failure mode 

the observations can be rank ordered from smallest to largest and plotted against 

their corresponding quantiles as derived from a nonparametric estimate of the 

cumulative distribution function, �̂�(𝑡).   This nonparametric estimate can be found 

using a number of plotting position models [101, pp. 6-8], such as the median 

plotting position 

 �̂�(𝑡𝑖) = 100 ∙ (
𝑖 − 0.3

𝑛 + 0.4
 ) (38) 

where 𝑖 denotes the 𝑖𝑡ℎ ordered failure and 𝑛 represents the total number of 

observations. To determine if the data follow a specific candidate distribution, the 

plotting coordinate values and failure times are substituted into the “linearized” 

distribution function.  If the data are derived from the candidate model the 

transformed observations should closely trace a line.  Using the Weibull(𝛼, 𝛽) 

distribution as an example, the linearized distribution function is found by rewriting 

the CDF as 

 log10 [ln (
1

1 − �̂�(𝑡𝑖)
)] = 𝛽 log10(𝑡𝑖) − 𝛽 log10(𝛼). (39) 

If the data are consistent with the Weibull model, the resulting plot of 

− ln (1 − �̂�(𝑡𝑖)) versus 𝑡𝑖 will be nearly linear with slope 𝛽 when plotted on a log-

log scale (Figure 16).  Alternatively, one may also use specially designed plotting 
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papers that have been developed for several distributions where the axes have been 

transformed such that the untransformed failure times and non-parametric 

probability estimates �̂�(𝑡𝑖) may be plotted directly.  If Weibull plotting paper is used 

𝛼 and 𝛽 may be estimated graphically, observing where the fit line crosses the line 

designating the 0.632 quantile and the slope of the plot.   Figure 16 displays the raw 

data and linear fits from an accelerated life test discussed in [54, p. 115] where the 

results are hours to failure obtained at three levels of temperature.  Because 𝛽220 =

𝛽240 = 𝛽260 = 𝛽 was assumed, the fit lines should be nearly parallel.   Kececioglu 

[55] notes that for small data sets (𝑖. 𝑒. , those where n < 10 samples) the slope of 

the distribution fit lines can vary widely from their true values.  Nelson [54] 

suggests that unless the line slopes change systematically with stress or the slope 

for one stress level is dramatically different than the others, the lines may be 

redrawn parallel to fit with the constant 𝛽 assumption.  From Figure 16 it is clear 

that the slopes of the observations obtained at 220𝑜𝐶 and 240𝑜𝐶 are nearly parallel 

and the slope of the 260𝑜  data is not dramatically different.  Thus the 260𝑜𝐶 fit line 

is redrawn such that all three fit lines are parallel and the median time to failure is 

unchanged as shown in Figure 17.  From these adjusted plots it is determined that 

𝛽 = 6 and 𝛼220 = 2850, 𝛼240 = 1700, 𝛼260 = 1040. 
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         Figure 16 – Weibull plot of failure times observed at three levels of 
temperature in an example accelerated life test [18] 

 

 

Figure 17 – Weibull plot of example failure data [18] redrawn parallel under 
the assumption that the shape parameter is independent of stress 
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The purpose of the test discussed in [54] was to determine if the design 

requirement of a 20,000 hour median life at the design temperature (1800𝐶) could 

be met.  To make this determination, the median life at each temperature is found by 

noting where the black vertical lines in Figures 16 and 17, denoting the median 

failure probability, crosses each fit line.  These median values are used to construct a 

relationship plot (Figure 18) showing how the median life changes with increasing 

temperature.  Because temperature is the accelerating variable, the Arrhenius 

reaction rate [45] equation was used to model the life-temperature relationship.   

The Arrhenius life-stress model is given by 

 𝐿(𝑇) = 𝐶 exp(𝐴𝑇−1) (40) 

where 𝐿(𝑇) represents a quantifiable life measure such as characteristic life or 

median life, 𝐴 and 𝐶 are model parameters to be determined, and 𝑇 is the absolute 

temperature in degrees Kelvin.  The parameter 𝐶 is related to the specimen 

geometry and testing methodology, while 𝐴 is a function of the activation energy 

required for a reaction to proceed [54].  To determine if the Arrhenius model 

accurately describes the life-temperature relationship exhibited by the data, a 

process similar to what was described for fitting candidate distributions to the raw 

data at each temperature can be employed.  The Arrhenius model is first “linearized” 

to obtain  

  ln[𝐿(𝑇)] = 𝐴(𝑇−1) + ln(𝐶). (41) 

If the Arrhenius model is correct, the ln[𝐿(𝑇)] values plotted against the reciprocal 

of the absolute temperature on standard plotting paper will approximately fall on a 
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line with slope 𝐴 and intercept ln(𝐶) for each set of temperature data. Upon 

analyzing the data, the Arrhenius parameter values for the plot in Figure 18 were 

estimated to be �̂� = 6640.1 and �̂� = 4.055 ∙ 10−3.   

 

Figure 18 – Arrhenius relationship plot of the example data  

Alternatively, the data may be presented with respect to temperature, rather that 

reciprocal temperature as shown in Figure 19.  In this figure the median times to 

failure (solid line) are plotted along with the 0.1 and 0.9 quantile times to failure 

against the temperature in degrees Celsius.  Extrapolating the solid line in this figure 

back to the use temperature of 180𝑜𝐶 clearly shows that the current median life of 

9000 hours falls well short of the 20,000 hour design requirement. 

In the next section we revisit this example, utilizing the proposed approach in 

which corrective action is implemented after testing is performed at each 
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temperature level.  The impact of implementing corrective action is investigated 

assuming the times to failure observed at 220𝑜𝐶 in this second iteration are 

identical to the results discussed above.  A benefit of the proposed approach is that 

the number of required samples can be reduced since corrective action will allow 

the samples to be reused at each temperature level. 

 

Figure 19 – Adjusted Arrhenius relationship plot of example data versus 
temperature 

 

Single Failure Mode Case – With Corrective Action 

After a test, each failure is investigated to determine its root cause and an 

appropriate corrective action strategy is then designed to eliminate the failure in 

subsequent tests.  However, corrective action rarely eliminates a failure mode 



 

84 
 

completely.  It is common in the reliability growth literature [9] to characterize the 

impact of a corrective action by modeling the reduction in a failure mode’s hazard 

rate by a proportional amount 𝜌 ∈ (0,1) known as the fix effectiveness factor (FEF).  

The FEF varies for each failure mode, but [9, p. 29] reports that the typical range of 

values for many government and industry systems is (0.55, 0.85) with a typical 

value of 0.70.  The FEF value for a failure mode is often subjectively estimated after 

an extensive scoring process in which design engineers and failure analysis experts 

consider various corrective action alternatives.  As a result of implementing 

corrective action the system reliability improvement can be expressed as 

 
ℎ′(𝑡)

ℎ(𝑡)
= 1 − 𝜌   (42) 

where ℎ′(𝑡) and ℎ(𝑡) denote the hazard rate functions of the corrected and 

uncorrected systems, respectively.  For failure modes with Weibull distributed 

times to occurrence, the reduction in hazard rate resulting from corrective action 

with fix effectiveness factor 𝜌 can be represented as 

 1 − 𝜌 =
ℎ′(𝑡)

ℎ(𝑡)
=

𝛽𝑡𝛽−1

(𝛼′)𝛽
(
𝛽𝑡𝛽−1

(𝛼)𝛽
)

−1

= (
𝛼

𝛼′
)
𝛽

. (43) 

Substituting the Arrhenius model for the Weibull scale parameter in (47) results in 

 1 − 𝜌 = (𝐶𝑒𝐴 𝐶𝑒𝐴′
⁄ )

𝛽
𝑇 = [exp(𝐴 − 𝐴′)]

𝛽
𝑇 . (44) 

The simplification in (44) is made under the assumption that the parameter C is 

unchanged with corrective action.  Thus, the reduction in failure rate resulting from 

a corrective action with fix effectiveness 𝜌 can be attributed to an increase in the 
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activation energy required to initiate the failure process, where the increased 

activation energy is expressed as 

 𝐴′ = 𝐴 − (
𝑇

𝛽
) ln[1 − 𝜌]. (45) 

However, (45) implies that the value of 𝐴′ resulting from corrective action depends 

on the temperature at which the failure was discovered.  While increased 

temperatures allow failures to be observed more quickly, the strategy to remove the 

failures is independent of temperature, thus there exists a unique value of 𝐴′ for 

each corrective action.  In traditional reliability growth models, the estimated value 

of 𝜌 is based on an assumed mission profile of the fielded system [9, p. 2].  

Introducing accelerated stresses to a reliability growth test does not effect this 

interpretation of 𝜌 and the improved activation energy is expressed as  

 𝐴′ = 𝐴 − (
𝑇𝑢𝑠𝑒

𝛽
) ln[1 − 𝜌]. (46) 

Table 13 displays the projected reliability measures at the use stress of 180𝑜𝐶 that 

result from implementing three levels of corrective action after the first test 

sequence. 

Table 13 – Projected reliability measures at 𝟏𝟖𝟎𝒐𝑪 after corrective action 

𝐹𝐸𝐹 (𝜌) 𝛼′ 𝑡𝑚𝑒𝑑
′  𝐴′ −  𝐴 

0.85 12855.95 12094.14 143.28 

0.70 11453.35 10774.65 90.93 

0.55 10704.93 10070.59 60.31 

Figure 20 displays the Arrhenius plots corresponding to the projected reliability 

measures in Table 13 along with the original plot of the uncorrected system. Each 



 

86 
 

plot in the figure has common intercept ln[𝐶] and slope increased by 𝐴′ − 𝐴 over the 

uncorrected system.  The vertical line in the figure denotes the use temperature 

180𝑜𝐶.  The ordinate of this line is marked to indicate the 20,000 hour requirement.  

It can be seen in Figure 20 that none of the projected Arrhenius plots corresponding 

to the three FEF values will enable the system to meet the 20,000 hour requirement.   

 

Figure 20 – Updated Arrhenius plot of example data after corrective action 

This same conclusion could also be drawn by observing the projected failure 

distributions associated with each of the three levels of fix effectiveness 𝜌 as shown 

in Figure 21.  The projected distribution function 𝑊𝐸𝐼𝐵(𝛼′𝛽) resulting from 

corrective action is expressed as 



 

87 
 

 𝑃(𝑋 ≤ 𝑥; 𝑇) = 1 − exp

(

 
 𝑥

𝐶 exp [(ln [(1 − 𝜌)
−

𝑇𝑢𝑠𝑒
𝛽 ] + 𝐴)𝑇−1]

)

 
 

𝛽

. (47) 

where 𝑇 represents any temperature of interest.  Figure 21 presents the density and 

reliability functions for the uncorrected system at 180𝑜𝐶 along with the projected 

density and reliability functions after corrective action.  The vertical lines spanning 

both plots in the figure represent the median values for each distribution.  Again, it 

is clear that a single corrective action is insufficient to achieve the requirement as 

the maximum projected median life is just over 12,000 hours.   

 

Figure 21 – Joint plot of density and reliability functions at 𝟏𝟖𝟎𝒐𝑪 with 
corrective action 
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Assuming corrective action had been implemented to reduce the intensity of the 

failure mode discovered during the 220𝑜𝐶 test, the improved system would be less 

sensitive to elevated temperatures.  Quickly discovering additional failures in the 

improved system would therefore require the application of a more severe 

environment than was used to identify the failure mode initially.  For systems with a 

single failure mode, the fix effectiveness of a second corrective action may be far 

lower than that of the initial corrective action.  Assuming 𝑘 corrective actions are 

feasible system reliability can be projected recursively and the Arrhenius line slope 

after the 𝑘𝑡ℎ corrective action becomes 

 𝐴(𝑘) = ∑ (ln [(1 − 𝜌(𝑘))
−

𝑇
𝛽]) + 𝐴

𝐾

𝑘=1

  (48) 

and the projected distribution function of system life at 𝑇𝑢𝑠𝑒 is expressed as  

 𝑃(𝑋 ≤ 𝑥; 𝑇) = 1 − exp

(

 
 𝑥

𝐶 exp [(∑ (ln [(1 − 𝜌𝑘)
−

𝑇𝑢𝑠𝑒
𝛽 ])𝐾

𝑘 + 𝐴)𝑇𝑢𝑠𝑒
−1 ]

)

 
 

𝛽

. (49) 

A final analysis of the test scenario discussed in [54] revealed that attaining the 

20,000 hour median failure time at the use stress of 1800𝐶 would require a 97% 

reduction in the initial hazard rate.  A reduction of this magnitude would correspond 

to implementing three corrective actions with each corrective action having a very 

high fix effectiveness factor of 0.85.  This unlikely event confirms the additional 

commentary provided by Nelson [54, p. 403] where further testing on a subsequent 

design indicated that it was still insufficient to attain the requirement and the 

project was abandoned.  Using the proposed model would have provided an 



 

89 
 

indication of the risk in attaining the required reliability while utilizing less than half 

of the specimens. 

Design of Accelerated Reliability Growth Tests 

The typical objectives in designing an accelerated reliability growth test are to 

minimize the total test time, the number of required samples and the prediction 

variance of the estimate of system life in the usage environment.  Because 

qualitative testing is conducted during the early phases of product development, the 

number of prototypes available for testing is already severely limited due to the cost 

of production.  Thus, identifying a best qualitative test design is reduced to selecting 

the stress levels at which the accelerated test will be performed and how the 

available samples will be allocated to those stresses.   

To model lifetime data from an accelerated test, it is generally assumed that the 

log of the failure times observed at each stress level follow a location-scale 

distribution  

 𝑃(𝑌 ≤ 𝑦) = Φ(
𝑦 − 𝜇

𝜎
) (50) 

where 𝜇 and 𝜎 are the true but unknown location and scale parameters and Φ( ∙ ) 

denotes the standard form of the location-scale distribution.  Further, it is assumed 

that the value of the scale parameter 𝜎 is independent of stress while the mean log-

failure time is represented as a linear function of the coded stress level 𝑥𝑗  expressed 

as 

 𝜇(𝑥𝑗) = 𝑐𝑜 + 𝑐1𝑥𝑗 . (51) 
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For the Arrhenius relationship, the coded stress level is 𝑥𝑗 = 𝐵/𝑇𝑗  where 𝐵 is 

Boltzmann’s constant and 𝑇𝑗  refers to the temperature in an absolute scale such as 

Kelvin or Rankine.  The variance of the estimate of system life at the use-level stress 

level 𝑥0 as result of observing failures at stress level 𝑥𝑖, 𝑖 = 1, 2, … , 𝐼  is expressed as   

 𝑉𝑎𝑟[𝑚(𝑥0)] = {1 + (𝑥0 − �̅�)2 [
𝑛

∑(𝑥𝑖 − �̅�)2
]} (

𝜎2

𝑛
) (52) 

where 𝑚( ) denotes the life measure of interest, such as the mean or median, and 𝑛 

is the number of specimens in the sample.  The variance in (52) is minimized by 

allocating the 𝑛 specimens to two stress levels, a high stress level 𝑥𝐻  and a low 

stress level 𝑥𝐿 where the high stress level is defined as the upper limit stress level 

that a specimen can withstand such that the failure modes are representative of the 

type of failures expected to occur in the usage environment.  The use stress level 𝑥0 

and high stress level 𝑥𝐻  establish the bounds for the design region while the low 

stress level 𝑥𝐿 is chosen to minimize the variance in (52).  To determine the optimal 

value for 𝑥𝐿 in a general design region Nelson [54] defines the extrapolation factor 𝜉𝑖 

 𝜉𝑖 ≡
𝑥𝐻 − 𝑥𝑖

𝑥𝐻 − 𝑥𝐿
. (53) 

At the use stress level 𝑥0, 𝜉0 represents the ratio of the allowable design range 𝑥𝐻 −

𝑥0 to 𝑥𝐻 − 𝑥0 the design region selected for the accelerated test.  It can be shown 

that the variance expression in (52) can be simplified as  

 𝑉𝑎𝑟[𝑚(𝑥0)] = [1 +
(𝜉0 − 𝑝)2

𝑝(1 − 𝑝)
 ] (

𝜎2

𝑛
) (54) 

when two test stresses are chosen that lie at the extremes of the design region, that 

is 𝑥𝐻  and 𝑥𝐿 , where 𝑝 denotes the proportion of specimens allocated to the low 



 

91 
 

stress level 𝑥𝐿 .  Further, the optimal allocation of specimens which minimizes the 

variance in (54) for a general design region is denoted by 𝑝∗ and expressed as 

 𝑝∗ =
𝜉0

2𝜉0 − 1
 . (55) 

Substituting 𝑝∗ into (54) results in the minimum prediction variance of the estimate 

of system life solely as a function of the extrapolation factor 

 𝑉𝑎𝑟∗[𝑚(𝑥0)] = 1 + 4𝜉0(𝜉0 − 1) (
𝜎2

𝑛
). (56) 

In the extreme case of 𝑥𝐿 = 𝑥0, both 𝜉0 and 𝑝∗ equal one regardless of the value of 𝑥𝐻  

indicating that the variance is minimized when all 𝑛 tests are conducted at 𝑥0.  

However, such a design would also result in the maximum possible test duration.  As 

𝑥𝐿 increases, the optimal allocation of samples at the use stress, 𝑝∗, decreases and 

reaches a minimum value of 0.5 as 𝜉0 → ∞.  Clearly, the total test time is minimized 

by raising 𝑥𝐿 and 𝑥𝐻  to their highest possible levels.  As 𝑥𝐻  and 𝑥0 converge, 

however, achieving a significant reduction in test time requires pushing 𝑥𝐻  closer to 

the destruct limit.  Thus care must be taken to ensure that the failures observed at 

the high stress are representative of the type of failures that may be observed in the 

use environment.  For this reason the two-stress test design may not be robust to 

the modeling assumptions and the addition of a third stress level may be beneficial. 

Figure 22 plots the log variance as a function of the extrapolation factor 𝜉0 for the 

optimal two-stress test design along with the two- and three-stress level designs 

with an equal allocation of samples at each stress level. 
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Figure 22 – Variance comparison of the two– and three–stress accelerated test 

designs with equal allocation against the optimal two-stress test design 

When the allowable design region 𝑥𝐻 − 𝑥0 is large, greater freedom exists to select 

𝑥𝐿 such that 𝑉𝑎𝑟[𝑚(𝑥0)] can be minimized while simultaneously reducing the total 

test time.  Figure 23 shows plots of the total test time against the 𝑥𝐻/𝑥0 ratio for 

four values of 𝜉0.  For each plot, 𝑥0 = 180𝑜𝐶, as was the case in the example test 

scenario previously described.  In each plot the low stress level 𝑥𝐿 increases or 

decreases commensurate with 𝑥𝐻 , such that an increase in 𝑥𝐻  reduces the time to 

failure for all 𝑛 units in the sample.  
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Figure 23 – Comparison of the reduction in total test time for the two-stress 
equal apportionment design the two-stress optimal design and the three-

stress equal apportionment design for various levels of extrapolation factor 

Identifying a best design for a given test scenario with inputs 𝑥0 and 𝑥𝐻  could be 

determined through multicriteria optimization where the objective is to 

simultaneously minimize 𝑉𝑎𝑟[𝑚(𝑥0)] and the total test time subject to the 

constraint that the proportions of samples tested at each stress level sum to one.  

Figures 22 and 23, indicate that the three stress level design is optimal with respect 

to minimizing the total test time but sub-optimal for minimizing the variance 

compared to the two-stress level designs for all values of 𝜉0.  Alternatively, an 

optimal design minimizes the asymptotic variance, but maximizes the total time on 
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test.  Therefore, the two-stress equal apportionment design is recommended as a 

tradeoff between the two-stress optimal design and the three-stress equal 

apportionment design. 

Multiple Failure Modes Case – With Corrective Action 

For systems containing multiple independent failure modes, estimating system 

reliability from accelerated test data requires sufficient samples to observe each 

failure mode at multiple stress levels [54].  Separate models, similar to those 

discussed for the single failure mode case, may then be developed for each distinct 

failure mode and the exact reliability for the overall system can then be determined 

as   

 𝑅(𝑡) = ∏𝑅𝑗(𝑡)

𝐽

𝑗=1

,     𝑗 = 1, 2, … , 𝐽. (57) 

In qualitative testing, however, it is rare that a sufficient number of prototypes can 

be made available to account for all of the failure modes that have yet to be 

discovered in early system testing.  For tests conducted with limited sample sizes, 

an estimate of system reliability may be obtained by combining the observations of 

multiple failure modes to form a single distribution plot as was shown above for 

systems with only one failure mode.  In this scenario a possibly unknown number of 

independent flaws, denoted by 𝐽, compete to be the cause of system failure (Figure 

24).  The observed lifetime for prototype 𝑖 is therefore represented as the minimum 

occurrence time among the 𝐽 modes in the system. 
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Figure 24 – Serial arrangement of flaws within the prototypes subjected to 
qualitative accelerated reliability test.  The arrangement demonstrates the 

competing risk assumption in the model where the time to failure for 
prototype 𝒊 is the minimum activation time among the 𝑱 flaws. 

With respect to flaw 𝑗 ∈ {1,… , 𝐽} the probability of survival up to time 𝑡 is 

represented by the random variable 𝑇𝑗  with sub-survivor function 𝑆(𝑗, 𝑡) =

Pr(𝐶𝑎𝑢𝑠𝑒 = 𝑗, 𝑇𝑖𝑚𝑒 > 𝑡).  The sub-survivor function is not a proper reliability 

function in that 𝑆(𝑗, 𝑡) ≠ 𝑃(𝑇 > 𝑡|𝐶 = 𝑗).  Instead the true reliability function 

specific to mode 𝑗 is expressed as 

 𝑅(𝑗, 𝑡) =
𝑆(𝑗, 𝑡)

𝑞𝑗
 (58) 

where 𝑞𝑗 = 𝑃(𝐶 = 𝑗) = 𝐹(𝑗,∞) = 𝑅(𝑗, 0) subject to the constraint ∑ 𝑞𝑗
𝐽
𝑗=1 = 1.   

The form of R(𝑗, 𝑡) in (58) may be unknown prior to testing and is often assumed 

based on the testing scenario or prior knowledge.  McLean [80] assumed 

exponentially distributed occurrence times for each failure mode on the basis of 

mathematical simplicity.  A more general assumption, suggested for the proposed 

model, is 𝑅(𝑗, 𝑡) ~ 𝑊𝐸𝐼𝐵 (𝛼𝑗 , 𝛽𝑗).  For such cases where 𝐽 ≥ 2, the observed failure 

time 𝑋𝑖 = min[𝑇𝑗] follows a poly-Weibull [85] distribution with vector-valued 

parameters 𝜶 and, 𝜷 and density function expressed as 
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 𝑓𝑃𝑊(𝑡|𝜶, 𝜷) = ℎ(𝑡)𝑅(𝑡) = {exp [−∑(
𝑡

𝛼𝑗
)

𝛽𝑗
𝐽

𝑗=1

]}∑
𝛽𝑗𝑡

𝛽𝑗−1

𝛼
𝑗

𝛽𝑗

𝐽

𝑗=1

 . (59) 

The poly-Weibull distribution arises naturally in scenarios of competing risks as it 

describes the minimum of several independent random variables when each follows 

a distinct Weibull law.  When only two flaws exist (𝐽 = 2), the distribution is known 

as the bi-Weibull, and 𝐽 = 3 model is naturally called the tri-Weibull distribution.   

An advantage of the poly-Weibull distribution lies in its capacity for modeling 

not only increasing, constant and decreasing hazard functions but also non-

monotone hazard functions [95] such as the bathtub curve (Figure 25).  This 

property is important as non-monotone hazard functions are common in practice 

where a system may undergo an initial “burn-in” prior to periods of useful life and 

eventual wearout.   

 

Figure 25 – Example poly–Weibull hazard functions with various parameter 
values 
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If the shape parameters 𝛽1, … , 𝛽𝐽 are not sufficiently distinct the poly-Weibull 

may over-fit the data [27, 28].  For the extreme case where 𝛽1, … , 𝛽𝐽 = 𝛽, the poly-

Weibull converges to a Weibull distribution with density 𝑓(𝑡; 𝐴, 𝛽) = Α𝛽𝑡𝛽−1𝑒−Α𝑡𝛽
 

and scale parameter 

 Α = [∑αj
𝛽

𝐽

𝑗

] ∙ [∏αj
𝛽

𝐽

𝑗

]

−1

. (60) 

Our interest is not in estimating 𝛼𝑗 , 𝛽𝑗  for all  𝑗 ∈ {1, … , 𝐽}, as the data produced in 

qualitative testing is insufficient for this.  Moreover, the poly-Weibull CDF cannot be 

linearized, as was done for the Weibull distribution previously, due to the 

summation inside the logarithm operator.  Thus, the probability plotting procedures 

discussed above for the single failure mode case cannot be employed for the bi and 

tri-Weibull distributions.  Instead, we demonstrate through simulation that for 

scenarios specific to qualitative accelerated life testing the performance of Weibull 

distribution is sufficient for fitting data sets in which the observations represent the 

minimum time among several competing failure modes each having Weibull 

distributed occurrence times. 

Monte Carlo Simulation Procedure 

Prior to a qualitative reliability test, uncertainty exists regarding the number of 

latent failure modes embedded within each prototype and the expected time to 

occurrence for each mode.  To investigate the validity of the Weibull distribution in 

the multi-failure mode case, a Monte Carlo simulation study was conducted.  The 

simulation utilized a 5 × 4 × 3 full factorial design with three factors: system 
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complexity, sample size, and initial system quality as depicted in Figure 26.  System 

complexity is represented by the total number of latent failure modes competing to 

be the cause of failure in each identical system under test.  For this study, five level 

levels of system complexity (𝐽 = 5, 10, 20, 40, 50) were included.  Next, four levels of 

sample size (𝑛 = 10, 20, 40, 100) were utilized to illustrate how the performance of 

the Weibull distribution compares to the bi- and tri-Weibull as the number of failure 

observations increases.  Finally, the initial system quality is a categorical variable 

with three levels (low, middle, high).   

We suggest that products with high, middle and low levels of initial quality can 

have an identical number of embedded flaws caused by poor design or 

manufacturing defects.  However, in products with low initial quality a greater 

degree of variability exists in the severity of each flaw and the mean time until a 

flaw activates may be far lower in low quality products than for a similar flaw in 

products with higher levels of quality. 
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Figure 26 – Graphical depiction of process to simulate observed minimum 
failure times for systems with varied numbers of competing failure modes and 

levels of initial design quality   
 

To simulate the time to occurrence distribution for failure mode 𝑗 = 1,… , 𝐽 

embedded within each of the 𝑛 prototypes in the sample set, a 𝐽 × 2 matrix of mode-

specific Weibull parameter values was created for each sample.  The Monte Carlo 

approach used for creating these failure mode-specific parameters arises from 

noting that for random variable 𝑇𝑗  ~ 𝑊𝑒𝑖𝑏(𝛼𝑗 , 𝛽𝑗), the coefficient of variation (𝐶𝑜𝑉)  

 𝐶𝑜𝑉[𝑇𝑗] = [
𝑉𝑎𝑟[𝑇𝑗]

𝐸[𝑇𝑗]
2 ]

1
2⁄

= [
Γ(1 + 2 𝛽𝑗⁄ )

Γ(1 + 1 𝛽𝑗⁄ )
2 − 1]

1
2⁄

 (61) 

is solely a function of 𝛽𝑗  and is proportional to 1/𝛽𝑗  as shown in Figure 27.  Jin et al. 

[102] notes that for many electronic systems the 𝐶𝑜𝑉 tends to vary between 0.05 
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and 5.50.  Thus, an approach for obtaining the mode-specific Weibull shape 

parameter is to sample a 𝐶𝑜𝑉[𝑇𝑗] value from a distribution, substitute this value into 

(61), and solve for 𝛽𝑗 . 

 

Figure 27 – Relationship between the coefficient of variation and shape 
parameter 𝑩𝒋 for Weibull distributed random variables 

 

The support region for this sampling distribution should mirror the range defined 

by Jin et al. [102], so for this simulation study a four-parameter beta distribution 

[103] was used.  If 𝑋 ~ 𝐵𝐸𝑇𝐴(𝜆, 𝜃), 𝑥 ∈ [0,1] with shape parameters 𝜆 and 𝜃, the 

four-parameter beta results from the transformation 𝑌 = 𝑋(𝑑 − 𝑐) + 𝑐 where 𝑑 and 

𝑐 are the upper and lower limits of the desired support for the transformed variable 

𝑌.  Thus, 𝑌 ~ 𝐵𝐸𝑇𝐴(𝜆, 𝜃, 𝑐, 𝑑), 𝑦 ∈ [𝑐, 𝑑] with density function expressed as 

 𝑓(𝑌; 𝜆, 𝜃, 𝑐, 𝑑) =
1

Β(𝜆, 𝜃)
∙
(𝑌 − 𝑐)𝜆−1(𝑑 − 𝑌)𝜃−1

(𝑑 − 𝑐)𝜆+𝜃−1
. (62) 
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The combination of values for the shape parameters 𝜆 and 𝜃 can then be used to 

reflect the levels of design quality that a system may possess at the start of a test.  As 

illustrated in Figure 28, the combination of high variability 𝑉𝑎𝑟[𝑇𝑗] and low mean 

occurrence times 𝐸[𝑇𝑗] for failure modes in low quality systems, imply that the 

likelihood of 𝐶𝑜𝑉[𝑇𝑗] values at the upper end of the range defined by [102] is greater 

than in systems with higher quality levels. 

 

Figure 28 – Plots illustrating the distribution of the coefficient of variation 
values for multiple levels of initial design quality 

In this simulation study the sampling distribution for 𝐶𝑜𝑉[𝑇𝑗] in low quality 

products had shape parameters (𝜆, 𝜃) = (1.25, 2.5) to reflect an increased likelihood 

of an embedded failure mode causing infant mortality.   To model products with 

middle and high levels of initial quality, 𝜃 = 5 and 10, respectively, were used.  

These parameter values result in a sampling distribution for 𝐶𝑜𝑉[𝑇𝑗] that is more 
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positively skewed than that of low quality systems indicating a reduced likelihood of 

infant mortality failures. 

The Weibull shape parameter obtained from the sampling procedure outlined in 

the preceding paragraphs may then be used to find the Weibull scale parameter for 

failure mode 𝑗 by substituting 𝛽𝑗  into the expression 

 𝛼𝑗 = 𝐸[𝑇𝑗] × Γ(1 + 1 𝛽𝑗⁄ )
−1

. (63) 

As previously noted, higher coefficients of variation imply lower mean 

occurrence times, therefore the sampling distribution for 𝐸[𝑇𝑗] used in this study is 

conditioned on 𝐶𝑜𝑉[𝑇𝑗].  For this simulation 𝐸[𝑇𝑗] ~ 𝐵𝐸𝑇𝐴(𝛾, 𝛿, 3000, 0) where the 

support region (0, 3000) represents the average annual usage in hours of an 

electronic device.  The corresponding shape parameters 𝛾 and 𝛿 are determined as 

  

𝛾 = (1 +
𝐶𝑜𝑉𝑚𝑎𝑥 − 𝐶𝑜𝑉[𝑇𝑗]

𝐶𝑜𝑉𝑚𝑎𝑥 − 𝐶𝑜𝑉𝑚𝑖𝑛
)

2

 ∈ [1,  4] 

𝛿 = (1 +
𝐶𝑜𝑉[𝑇𝑗] − 𝐶𝑜𝑉𝑚𝑖𝑛

𝐶𝑜𝑉𝑚𝑎𝑥 − 𝐶𝑜𝑉𝑚𝑖𝑛
)

2

  ∈ [1,  4]. 

(64) 

Each run in the proposed Monte Carlo simulation can be parameterized by the 

vector [𝑛, 𝐽, 𝜆, 𝜃, 𝛾, 𝛿] designating the sample size, system complexity, and quality 

level associated with a given test scenario.  For each of the 60 scenarios the 

simulation was iterated 10,000 times.  During each iteration, the parameters 

𝛼𝑗  and 𝛽𝑗 , 𝑗 = 1,… , 𝐽 were generated and the 𝐽 Weibull distributions sampled to 

provide possible failure times.  From these 𝐽 values the minimum is chosen as the 
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observed failure time for prototype 𝑖.  This procedure was then repeated for each of 

the remaining prototypes in the sample. 

Using the 𝑛 failure observations generated in each sample, the relative 

performance of the Weibull distribution was compared to the bi and tri-Weibull 

using the corrected Akaike Information Criterion (𝐴𝐼𝐶𝑐) [104] expressed as 

 𝐴𝐼𝐶𝑐 = 2𝑘 − 2(ℒ) +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 (65) 

where 𝑘 denotes the number of parameters in each candidate model and ℒ is the 

value of the log-likelihood function evaluated at the maximum likelihood parameter 

estimates.  The MLE’s for the bi and tri-Weibull distributions, �̂�𝑀𝐿𝑬 and �̂�𝑀𝐿𝐸 , were 

obtained by solving the system of 2𝑉 nonlinear equations 

 

                                            
𝜕ℒ

𝜕𝛼𝑣
= ∑(

𝑡𝑖
𝛽𝑣

−
𝛿𝑖

ℎ(𝑡𝑖)
) (

𝛽𝑣

𝛼𝑣
) ℎ𝑣(𝑡𝑖) = 0

𝑛

𝑖=1

       𝑣 = 1,… , 𝑉 

𝜕ℒ

𝜕𝛽𝑣
= ∑[𝛿𝑖

ℎ𝑣(𝑡𝑖)

ℎ(𝑡𝑖)
{𝛽𝑣

−1 + log (
𝑡𝑖
𝛼𝑣

)} −
𝑡𝑖
𝛽𝑣

ℎ𝑣(𝑡𝑖) log (
𝑡𝑖
𝛼𝑣

)] = 0

𝑛

𝑖=1

      𝑣 = 1,… , 𝑉 

(66) 

where ℎ𝑣(𝑡𝑖) = 𝛽𝑣𝑡
𝛽𝑣−1𝛼𝑣

−𝛽𝑣  and ℎ(𝑡𝑖) = ∑ (𝛽𝑣𝑡
𝛽𝑣−1𝛼𝑣

−𝛽𝑣)𝑉
𝑣=1 .  Solving this system of 

equations cannot be accomplished analytically and numerical root-finding 

techniques can be tedious as finding a solution can be sensitive on the starting 

values for the parameters in each equation.  We found it simpler to obtain accurate 

parameter estimates by maximizing the log-likelihood function directly using a 

quasi-Newtonian method [98] and utilizing (66) to verify the solution.  For each 

simulated data set, the 𝐴𝐼𝐶𝑐 of one of the three candidate distributions has the 
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lowest value implying that the model corresponding to 𝐴𝐼𝐶𝑐𝑚𝑖𝑛 has the highest 

relative likelihood of minimizing the information loss expressed by 

 𝐿(𝑚𝑖|𝑑𝑎𝑡𝑎) = exp[0.5(𝐴𝐼𝐶𝑐𝑚𝑖𝑛 − 𝐴𝐼𝐶𝑐𝑖)]. (67) 

Appendix A displays histograms of these likelihood values for the Weibull, bi-

Weibull and tri-Weibull distributions for each of the sixty testing scenarios.   

Next, Anderson-Darling [105] goodness of fit tests were performed to determine 

the likelihood that each simulated data set could have been drawn from the 

𝑊𝐸𝐼𝐵(�̂�𝑀𝐿𝐸 , �̂�𝑀𝐿𝐸) distribution.  The unmodified Anderson-Darling test is 

performed using the test statistic  

   𝐴2 = ∑
1 − 2𝑖

𝑛
[ln(𝐹(𝑌𝑖) + ln(1 − 𝐹(𝑌𝑛+1−𝑖)] − 𝑛

𝑛

𝑖

. (68) 

where 𝐹( ) denotes the CDF of the distribution of interest.  Stephens [106] found 𝐴2 

to be one of the best empirical distribution function based test statistics for 

detecting departures from several continuous distributions, including the Weibull.  

Because the scale and shape parameters are estimated from the data generated in 

each iteration of the Monte Carlo simulation, the modified Anderson-Darling 

statistic [107] 𝐴∗ = 𝑀𝐴2 was used.  Stephens [107, p. 146] identified the functional 

form of 𝑀 for the cases where one or both of the Weibull parameters are estimated 

from the data.  Substituting the Weibull distribution function and 𝑀 = 1 + √2𝑛−1 

into (72) results in the Anderson-Darling test statistic used for this study 

   𝐴∗ = (1 +
√2

𝑛
) ∙ ∑

1 − 2𝑖

𝑛
[ln (1 − exp [− (

𝑡

�̂�𝑀𝐿𝐸

)
�̂�𝑀𝐿𝐸

]) − (
𝑡𝑖

�̂�𝑀𝐿𝐸

)
�̂�𝑀𝐿𝐸

] − 𝑛

𝑛

𝑖

. (69) 
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For each iteration, the observed significance level (p-value) of the Anderson-Darling 

test was found using the critical value tables in [107, p. 146].  To demonstrate how 

the Weibull fit the simulated data generated across the sixty test scenarios, each 

iteration of the model was considered a Bernoulli trial where success was defined as 

a test with a p-value equal to or greater than 0.05.  Figure 29 displays the results of 

the analysis.  The figure shows that the Anderson-Darling test fails to reject the 

Weibull for all regions of the design space with the exception of the low-quality, 

high-complexity and low-complexity, high-quality factor level combinations. 

 

Figure 29 – Results of the Anderson-Darling goodness of fit tests showing the 
fraction of tests with significance levels greater than 0.05 for each 

combination of quality level sample size and system complexity 
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In low-quality, high-complexity systems, many design defects or other potential 

causes of infant mortality failure are assumed to exist.  Thus, the simulated failure 

observations are concentrated in a time interval where failure occurs almost 

instantaneously.  Fitting data sets such as these with a Weibull distribution implies a 

shape parameter 𝛽 ≪ 1.  Observing the 𝐴𝐼𝐶𝑐 histograms in Appendix A for systems 

with these factor level combinations indicates that in a large majority of the 

simulated data sets the Weibull is preferred model.  Combining the results displayed 

in these histograms with those shown in Figure 29 suggests that the low quality 

level factor setting may be too low to represent a qualitative accelerated life test.  

For low-complexity, high-quality systems, histograms of the observations indicate 

that multimodal density functions result in a significant proportion of the generated 

data sets.  It is in this design region that non-monotone hazard rate functions such 

as the “bathtub” curve are observed.  In practice, qualitative accelerated life tests are 

typically performed on complex electromechanical devices where a moderate to 

high level of initial quality is expected.   

Observing Figure 29 it is evident that for systems with these characteristics the 

Weibull distribution is adequate to model an overwhelming majority of the 

simulated data sets.  This result implies that the procedure described above for 

projecting system reliability after corrective action in the single failure mode case 

may also be utilized in qualitative testing for systems with multiple mutually 

independent failure modes where each follows a separate Weibull law.   
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Computing the system FEF when multiple competing failure modes exist 

requires taking into account the number of distinct modes exposed during the test.  

The Weibull parameters associated with each failure mode are unknown as is the 

contribution each mode makes on the overall failure rate of the system.  The system 

failure rate function, ℎ(𝑡) = 𝛽𝑡𝛽𝛼−𝛽 , represents the sum of the unknown failure 

rates of each of the embedded modes in the system ℎ(𝑡) = ∑ ℎ𝑗(𝑡)
𝐽
𝑗 . Assuming each 

distinct failure mode discovered during the test contributes to the system failure 

rate equally, the system FEF, Ρ, can be expressed as  

   Ρ =
∑ 𝜌𝑚

𝑀
𝑚=1

𝑀
 (70) 

where 𝑀 denotes the number of distinct failure modes discovered during testing.  

For the example scenario used to describe the single failure mode case, temperature 

was the accelerating variable and the Arrhenius model was used to describe 

relationship between median life and temperature.  Expanding this functional 

relationship for the multiple failure mode case, the projected system reliability after 

corrective action, with respect to the change in activation energy is expressed as 

 𝐴 = ln [(1 −
∑ 𝜌

𝑚
𝑀
𝑚=1

𝑀
)

−
𝑇𝑢𝑠𝑒
𝛽

] + 𝐴. (71) 

And the projected probability density function of system life at 𝑇𝑢𝑠𝑒 after corrective 

action is expressed as 

 𝑃(𝑋 ≤ 𝑥; 𝑇) = 1 − exp

(

 
 𝑥

𝐶 exp [(ln [(1 − 𝑀−1 ∙ ∑ 𝜌
𝑚

𝑀
𝑚=1  )

−
𝑇𝑢𝑠𝑒
𝛽 ] + 𝐴)𝑇𝑢𝑠𝑒

−1 ]
)

 
 

𝛽

. (72) 
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Conclusions and Future Work 

A modified accelerated life test and data analysis procedure was presented.  The 

proposed approach is the first to integrate lifetime acceleration models with 

reliability growth planning to estimate reliability improvement after implementing 

corrective action.  The procedure was assessed by first considering the case where 

the systems under test contained a single dominant failure mode.  Utilizing the 

results from a published accelerated life test [18], it was demonstrated that the 

likelihood of attaining a reliability requirement could be estimated with the 

proposed procedure.  Further, it was shown that by using the proposed procedure, 

an indication that a system may fail to reach the reliability requirement could be 

obtained by testing fifty percent less samples than are required by traditional 

quantitative accelerated life test methods.  This result suggests that a significant 

reduction in the time and cost associated with system testing could be realized as 

the proposed method may be used to signal a need to reassess a product’s design or 

reallocate testing resources to avoid unnecessary maintenance costs or an 

expensive redesign after product release. 

The procedure was then extended to the case where each system under test 

contained multiple independent competing failure modes.  It was shown that if the 

time to occurrence distribution for each respective failure mode follows a distinct 

Weibull law, the observed system failure times follow a poly-Weibull distribution.  

However, as result of a Monte Carlo simulation it was shown that under certain 

testing scenarios, specific to qualitative accelerated life testing, the failure data 
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generated by systems with multiple independent competing failure modes can be 

modeled with a Weibull distribution.  Thus, the proposed model utilizes the Weibull 

distribution to estimate system reliability after one or more failure modes have 

been discovered and removed.   
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VI. Conclusions and Recommendations 
 

Dissertation Summary 

Merging reliability growth and accelerated life testing is a relatively new concept 

driven, in part, by the complexity and widespread use of modern electronic devices.  

In commercial environments, where several product types may be in development 

simultaneously, little time may exist to certify that the reliability of a particular 

product meets the reliability requirement.  Qualitative accelerated test methods are 

therefore often utilized to ensure a product’s readiness for market introduction and 

to avoid costly redesigns caused by critical failures that may not be discovered in 

traditional reliability testing.  While published case-studies attest to the 

effectiveness of qualitative life testing [15, 16, 14] in improving product reliabilty, 

the capability to translate the limited failure data into a meaningful measure of 

reliability improvement does not exist.  Thus a goal of this dissertation research was 

to bridge the gap between quantitative and qualitative accelerated reliability test 

methods.   

In Chapter III, several commonly used accelerated failure data analysis methods 

were highlighted to show their limitations with respect to estimating system 

reliability from the data obtained in a simple qualitative accelerated stress test.  It 

was shown that these methods either cannot incorporate design changes resulting 

from corrective action or over-simplify the reliability growth process to avoid 

estimating the parameters of the life-stress relationship.  It was demonstrated that 

any corrective action that improves a product’s reliability changes, by definition, the 
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way the product responds to stress and therefore also alters the acceleration factor.  

Further, the parameters of the stress life relationship must be estimated for each 

distinct failure mode discovered during the test.  Chapter III concluded with a 

discussion on several potential paths for future research with respect to improving 

the parameter estimation in follow-on testing.  

Because accelerated testing models correspond to individual failure modes, the 

proper approach for modeling reliability growth of a complex system in an 

accelerated test scenario requires an accounting of the failure rate changes for each 

mode separately and integrating these changes into a single measure of system 

reliability.  For each failure event, only one risk can be attributed as its cause, where 

a risk may be defined as either a single failure mode or the combination of multiple 

modes acting simultaneously.  It was shown in Chapter IV that if it can be assumed 

that the time to occurrence distribution for each competing mode follows a Weibull 

distribution with mode specific parameters 𝛼𝑗  and 𝛽𝑗, 𝑗 = 1,… , 𝐽, the system 

lifetime can be modeled with the poly-Weibull distribution with vector valued 

parameters 𝜶,𝜷.  The poly-Weibull was then presented as an alternative to the 

Weibull distribution for fitting data sets where the hazard function is monotone, 

non-monotone or even bathtub shaped.  A numerical and analytical procedure for 

obtaining the poly-Weibull maximum likelihood parameter estimates and 

asymptotic standard errors was presented which allows reliability engineers to 

draw conclusions about system lifetime with a stated degree of confidence.   
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It was also shown that the poly-Weibull distribution is capable of fitting 

reference data sets known to have bathtub-shaped hazard rate functions better than 

the best modified Weibull models in the literature.  The goodness of fits for two 

forms of the poly-Weibull distribution, the bi-Weibull and tri-Weibull, were 

assessed using the Akaike information criterion and Kolmogorov-Smirnov test 

statistic.  The results showed that the bi-Weibull and the tri-Weibull outperform 

other modified Weibull distributions with respect to their fit of data for which the 

hazard rate function is bathtub shaped. 

Lastly, a model was presented in Chapter V to characterize a product’s likelihood 

of attaining a reliability requirement after implementing corrective action to remove 

one or more embedded failure modes.  It was that shown under the assumptions of 

qualitative accelerated life testing the Weibull distribution may be used to model 

accelerated life test data when multiple independent failure modes are observed.  

An example test scenario [18] was discussed in which a reliability enhancement 

program was abandoned after multiple tests showed that the new design would not 

meet the required median life.  Our results indicated that had our proposed model 

been used to estimate the reliability risk, a significant cost and time savings could 

have been realized by using less than half of the samples required for the original 

test.  Further, in Chapter V it was shown that the projection model can be used to 

conduct trade off analyses as a basis for reviewing the reliability requirements.  

These are important contributions as the model allows reliability engineers to 

design better systems at less cost and in less time than would be possible otherwise. 
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Conclusions and Future Work 

Qualitative accelerated life test methods were initially developed with the intent 

of discovering and removing previously unknown failure modes from early system 

prototypes.  As opposed to quantitative accelerated life testing, these methods are 

not designed with life estimation or prediction in mind.  In a few of these tests, such 

as highly accelerated stress testing, extensive testing and data analysis has been 

presented in the literature to derive a life-stress relationship for specific 

combinations of stressors.  In general, however, the ability to devise ever-harsher 

test environments to discover more failure modes in less time will always outpace 

the rate at which mathematically sound tools can be generated to estimate or 

predict product reliability.   

The goal of this dissertation was to provide first step toward bridging the gap 

separating quantitative and qualitative accelerated life testing.  The most obvious 

next steps to be taken in further research to improve the reliability growth 

projection model involve extending the test scenario to multiple stressors and to 

include multiple corrective action periods to remove failure modes discovered in 

subsequent tests.  Both of these paths are discussed in the sections below. 

Extending the Model to Multiple Corrective Action Periods 

For systems with multiple failure modes, it is unlikely that a single test with a 

single corrective action period can uncover all of the failure modes that could occur 

in the use environment.  In reality, many corrective action periods may be required.  

Extending the projection model to testing scenarios with multiple corrective action 
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periods requires that the corrective actions to remove the failure modes discovered 

during the preceding tests are not cost prohibitive.  The reliability growth attained 

through corrective action in an accelerated test depends on the likelihood of the 

failure actually occurring in operation [54, 79, 17].  For the single failure mode case, 

it was shown in Chapter V that each corrective action increases the activation 

energy by 𝐴′ − 𝐴.   With each successive improvement, the energy required to 

activate a failure mode approaches the energy required for a non-representative 

failure to occur.  Nelson [54] describes an example in which a costly program was 

initiated to remove a failure mode that, it was later determined, would have never 

occurred in the use environment.  Thus, the end result of the program was a 

substantial amount of wasted resources and no actual reliability improvement. 

One possible way to address this is by introducing an adjusted FEF of the form 

 𝜌∗ = 𝜌 ∙ 𝑑(𝑆) (73) 

where 𝜌 is the estimated FEF value for a given failure mode and 𝑑(𝑆) ∈ (0,1) is a 

multiplicative factor that scales 𝜌 based on the level of stress 𝑆 at which the test is 

performed.  When the stress applied to the system is at or below the field-use stress, 

𝑆 ≤ 𝑆𝑢𝑠𝑒 , 𝑑(𝑆) is defined to be equal to unity.  Conversely, when the applied stress is 

above some limit stress 𝑆 ≥ 𝑆𝑙𝑖𝑚𝑖𝑡,where failure occurs almost immediately due to 

an unrecoverable failure, 𝑑(𝑆) ≡ 0.  Examples of unrecoverable failures include the 

melting or phase change of a material as result of elevated temperatures, 

catastrophic mechanical failure due to elevated vibrational stresses and dielectric 
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breakdown due to voltage overstress.  For 𝑆𝑢𝑠𝑒 < 𝑆 < 𝑆𝑙𝑖𝑚𝑖𝑡, a possible form of 𝑑(𝑆) 

is a monotone decreasing sigmoid function such as 

 
𝑑(𝑆) = 1 −

1

1 + exp [−(
𝑤

𝑆𝑙𝑖𝑚𝑖𝑡 − 𝑆𝑢𝑠𝑒
) (𝑆 −

(𝑆𝑢𝑠𝑒 + 𝑆𝑙𝑖𝑚𝑖𝑡)
2 )]

 
(74) 

where the functional form of (74) is derived by modifying the logistic function.  The 

parameter 𝑤 may be used to represent how quickly 𝑑(𝑆) approaches zero for a 

given system and testing scenario.  Figure 30 illustrates the shape of 𝑑(𝑆) for 

various values of 𝑆𝑙𝑖𝑚𝑖𝑡 and for 𝑤 = 10.  The true form of 𝑑(𝑆) is unknown, however 

the figure illustrates that accelerated reliability growth test implies a trade-off 

between the rate at which failures occur and the level of improvement made.  By 

introducing an adjusted FEF value to the model developed in Chapter V, test 

planners can balance the level of stress applied with the expected reliability 

improvement.  

 
Figure 30 – Sigmoid shape of 𝒅(𝑺) 
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Extending the Model to Multiple Stressor Tests  

Extending the reliability growth projection model developed in Chapter V to 

address stress states in which more than one stressor is used would require 

estimating the parameters of the life-stress relationship for each stress separately 

along with any interaction terms that may be significant.  Even, if it can be assumed 

that no interaction exists between the stressors (a very restrictive assumption) each 

stressor added to a design would bring two additional parameters that must be 

estimated.  Estimating these parameters would require multiple observations of 

each failure mode from tests performed at distinct design points.  By dividing an 

already small test sample across a greater number of design points would likely 

result in parameter estimates of the life-stress relationship that have large 

variances.  This would lead to confidence intervals that would be far too wide to be 

meaningful.  Unfortunately, financial realities limit the number of units that can be 

made available for early system testing and therefore constrain the decision space 

as to feasible testing options.  It is our hope that in spite of these constraints 

progress can be made to further bridge the gap between qualitative and quantitative 

accelerated life testing. 
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Appendix A: Poly–Weibull Observed Fisher Information Equations 

The observed Fisher information for the bi-Weibull and tri-Weibull distributions 

are expressed respectively as 

 ℐ𝐵𝑊(𝜶, 𝜷) = −∇∇Tℒ(𝜶, 𝜷) =
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The elements of these matrices are listed below, where 𝑗, 𝑘 = 1, 2, 3, … 
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Appendix B:  Histograms of Corrected Akaike Information Criterion Values 
(𝑨𝑰𝑪𝒄) for the Weibull, Bi-Weibull and Tri-Weibull Distributions  

Using the 𝑛 observations in each of the simulated samples described in 

Chapter V, the relative performance of the Weibull distribution was compared to the 

bi- and tri-Weibull using the Akaike Information Criterion corrected for sample size 

(𝐴𝐼𝐶𝑐) [104].  The corrected Akaike Information Criterion is 

 𝐴𝐼𝐶𝑐 = 2𝑘 − 2(ℒ) +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 (75) 

where 𝑘 denotes the number of parameters in each candidate model and ℒ is the 

value of the log-likelihood function evaluated at the maximum likelihood parameter 

estimates.  For each simulated data set, the 𝐴𝐼𝐶𝑐 of one of the three candidate 

distributions will have the lowest value.  The model corresponding to 𝐴𝐼𝐶𝑐𝑚𝑖𝑛 has 

the highest relative likelihood of minimizing the information loss.  This likelihood is  

 𝐿(𝑚𝑖|𝑑𝑎𝑡𝑎) = exp[0.5(𝐴𝐼𝐶𝑐𝑚𝑖𝑛 − 𝐴𝐼𝐶𝑐𝑖)] ∈ [0,1]. (76) 

This appendix displays histograms of the likelihood values obtained for the 

Weibull, bi-Weibull and tri-Weibull distributions for each of the sixty testing 

scenarios.  In each figure the histogram for the Weibull distribution is presented in 

the top plot while the bi-Weibull and tri-Weibull are shown in the middle and 

bottom plots, respectively.  The figures are organized, first according to the number 

of embedded failure modes, then by the number of systems in each sample and 

finally by the quality level of each system. 
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Figure 31 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions  ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 =  𝐥𝐨𝐰 ) 
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Figure 32 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions  ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 =  𝐥𝐨𝐰 ) 
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Figure 33 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions  ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 =  𝐥𝐨𝐰 ) 
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Figure 34 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions  ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 =  𝐥𝐨𝐰 ) 
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Figure 35 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 36 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 37 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 

6000 -

5000 

>-4000 
(.) 
c ::J 

~ 3000 ..0 

o- ~ Q) 
"'-

'+- 2000 ,--

1000 

0 

0.0 0.2 0.4 0.6 0.8 1.0 

2500 -
,--

2000 
i-

>-
::J g 1500 ..0 

Q) 

~ ::J 
o-
~ 1000 I 

'+- i-
CD 

500 -

0 In I 

0.0 0.2 0.4 0.6 0.8 1.0 

5000 

4000 
>- ::J (.) 
c ..0 
Q) 3000 ~ ::J 
o-
Q) I 

·;:: 
~ 2000 I-

1000 

0 

0.0 0.2 0.4 0.6 0.8 1.0 



 

137 
 

 

Figure 38 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 39 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 

8000 

6000 

~ 
c 
a> 
& 4000 
a> 
~ 

2000 

0 

8000 

6000 
>. 
(.) 
c 
a> 
& 4000 
a> 
1.... 

'+-

2000 

0 

8000 

6000 
>. 
(.) 
c 
a> 
& 4000 
a> 
1.... 

'+-

2000 

0 

0.0 0.2 

0.0 0.2 

0.0 0.2 

0.4 0.6 0.8 1.0 

::J 
.0 

~ 
I 

CD 

0.4 0.6 0.8 1.0 

0.4 0.6 0.8 1.0 



 

139 
 

 

Figure 40 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 41 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 42 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 43 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 44 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 45 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 46 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 47 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 48 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 49 – Histogram of 𝐀𝐈𝐂𝐜 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 50 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 51 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 52 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 53 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 54 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟏𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 55 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 56 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 57 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 58 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 59 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 60 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 61 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 62 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 63 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 64 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 65 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 66 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟐𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 67 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 68 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 69 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 70 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 71 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 72 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 73 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 74 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 75 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 76 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 77 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 78 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟒𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 

3000 

>-
0 
c ::J 
Q) 2000 ..0 
::J 

~ 0"" 
Q) .._ ...... 

1000 

0 

0.0 0.2 0.4 0.6 0.8 1.0 

6000 

5000 

~4000 ::J 
c ..0 
Q) 

~ E}3000 
Q) I .._ 

CD 
...... 2000 

1000 

0 

0.0 0.2 0.4 0.6 0.8 1.0 
4000 

3000 

>- ::J 0 
c ..0 

~ 2000 ~ 0"" 
Q) I 
.._ ·;::::: 

...... I-
1000 

0 

0.0 0.2 0.4 0.6 0.8 1.0 



 

178 
 

 

Figure 79 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 80 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 81 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 82 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐥𝐨𝐰 ) 
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Figure 83 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 84 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 85 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 86 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐦𝐢𝐝 ) 
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Figure 87 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 88 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟐𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 89 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟒𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Figure 90 – Histogram of 𝑨𝑰𝑪𝒄 values for the Weibull, bi-Weibull and tri-
Weibull distributions ( 𝑱 =  𝟓𝟎 𝐦𝐨𝐝𝐞𝐬, 𝒏 =  𝟏𝟎𝟎 𝐬𝐲𝐬𝐭𝐞𝐦𝐬, 𝐪𝐮𝐚𝐥𝐢𝐭𝐲 = 𝐡𝐢𝐠𝐡 ) 
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Appendix C: Computer Code Used to Compare the Fit of Various Distributions 
to the Aarset and Meeker Datasets as Discussed in Chapter IV 

##### Meeker Data set 
Meeker<-
sort(c(275,13,147,22.5,23.5,181,30,65,10,173,106,212,2,261,293,88,247,28,143,80,
245,266,300,300,300,300,300,300,300,300)) 
Meeker1<-
sort(c(275,13,147,22.5,23.5,181,30,65,10,173,106,212,2,261,293,88,247,28,143,80,
245,266))#300,300,300,300,300,300,300,300)) 
Meeker2<-c(300,300,300,300,300,300,300,300) 
 
Censor<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) 
eCDF<-
sort(c(275,13,147,22.5,23.5,181,30,65,10,173,106,212,2,261,293,88,247,28,143,80,
245,266,300)) 
RelFreq<-
c(0.03333,.06667,0.1,.13333,.16667,.2,.2333,.26667,.3,.3333,.36667,.4,.43333,.4666
7,.5,.53333,.56667,.6,.63333,.66667,.7,.73333,1) 
 
##### Aarset Data set 
Aarset<-
c(0.1,0.2,1,1,1,1,1,2,3,6,7,11,12,18,18,18,18,18,21,32,36,40,45,46,47,50,55,60,63,63,
67,67,67,67,72,75,79,82,82,83,84,84,84,85,85,85,85,85,86,86) 
Aarset2<-c(Aarset+rnorm(50, 0, 0.001)) 
RelFreq<-c(rep(1/length(Aarset2),length(Aarset2)))*c(1:length(Aarset2)) 
 
Red<-c(0.1, 0.2, 
1,2,3,6,7,11,12,18,21,32,36,40,45,46,47,50,55,60,63,67,72,75,79,82,83,84,85,86) 
RedAA<-
c(.02,.04,.14,.16,.18,.2,.22,.24,.26,.36,.38,.4,.42,.44,.46,.48,.5,.52,.54,.56,.6,.68,.7,.72,.74,
.78,.8,.86,.96,1) 
 
######### Compare Fit of Poly-Weibull/New Modified Weibull Reliability Against 
Meeker Data ########### 
 
######## New Modified Weibull Model ######################### 
B0<-matrix(NA, nrow=100, ncol=5, byrow=FALSE,); colnames(B0)<-
c("a","b","A","g","l") 
B0[,1]<-c(runif(100, 0.01,1)) #a 
B0[,2]<-c(runif(100, 0.01,1)) #b 
B0[,3]<-c(runif(100, 0.01,1)) #t 
B0[,4]<-c(runif(100, 0.01,1)) #g 
B0[,5]<-c(runif(100, 0.01,1)) #l 
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NMW<-function(x,y,d){ 
  a<-x[1] 
  b<-x[2] 
  t<-x[3] 
  g<-x[4] 
  l<-x[5] 
   
  n<-length(Meeker) 
   
  F<-c(rep(NA,1)) 
   
  F<-(sum(log(b*(g+l*y)*(y^(g-1))*exp(l*y)+a*t*y^(t-1))*d)-a*sum(y^t)-
b*sum((y^g)*exp(l*y)))  
   
  return(-F) 
} 
 
N<-matrix(NA, nrow=100, ncol=6, byrow=FALSE,); colnames(N)<-
c("a","b","t","g","l","Value") 
 
for (i in 1:100){ 
  N[i,]=0 
  N[i,1:5]<-optim(par=B0[i,], fn=NMW, y=c(Meeker),d=Censor, method="L-BFGS-B", 
lower=c(0.0001, 10^-9, 0.0001, 0.0001, 0.0001), upper=c(1, 1, 1, 1, 1)) $par  
  N[i,6]<-NMW(N[i,1:5],c(Meeker),d=Censor) 
} 
 
NM<-which.min(N[,6]) 
 
####New Modified Weibull PDF 
NMWPdf<-function(t){(N[NM,1]*N[NM,3]*t^(N[NM,3]-
1)+(N[NM,2]*(N[NM,4]+N[NM,5]*t)*t^(N[NM,4]-1)*exp(N[NM,5]*t)))*(exp(-
1*(N[NM,1]*t^N[NM,3]+N[NM,2]*t^N[NM,4]*exp(N[NM,5]*t))))} 
####New Modified Weibull Reliability function 
NMWeib<-function(t){exp(-
1*(N[NM,1]*t^N[NM,3]+N[NM,2]*t^N[NM,4]*exp(N[NM,5]*t)))} 
####New Modified Weibull Hazard Function 
NMWHaz<-function(t){(N[NM,1]*N[NM,3]*t^(N[NM,3]-
1)+(N[NM,2]*(N[NM,4]+N[NM,5]*t)*t^(N[NM,4]-1)*exp(N[NM,5]*t)))}  
 
#### New Modified Weibull CDF 
NMcdf<-function(x,y){ 
  a<-x[1] 
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  b<-x[2] 
  t<-x[3] 
  g<-x[4] 
  l<-x[5] 
   
  F<-c(rep(NA,1)) 
   
  F<-(1-exp((-a*y^t)-(b*y^g)*exp(l*y))) 
   
  return(F) 
   
} 
 
NMtest<-NMcdf(x=c(N[NM,1],N[NM,2],N[NM,3], N[NM,4],N[NM,5]),y=Meeker) 
 
 
###  Bi-Weibull Model ######################### 
p0<-matrix(NA, nrow=100, ncol=4, byrow=FALSE,); colnames(p0)<-
c("beta1","beta2","theta1","theta2") 
p0[,1]<-c(runif(100, 0.25,5 )) #beta1 
p0[,2]<-c(runif(100, 0.25,5 )) #beta2 
p0[,3]<-c(runif(100, min(Meeker),max(Meeker))) #theta1 
p0[,4]<-c(runif(100, min(Meeker),max(Meeker))) #theta2 
 
GG<-function(x,y,d){ 
  b1<-x[1] 
  b2<-x[2] 
  t1<-x[3] 
  t2<-x[4] 
   
  F<-c(rep(NA,1)) 
   
  F<-sum(log(((b1*(y^(b1-1))*(t1)^(-b1))+(b2*y^(b2-1))*((t2)^(-b2))))*d-
(((y)/t1)^(b1)+(y/t2)^(b2))) 
   
  return(-F) 
} 
 
P<-matrix(NA, nrow=100, ncol=5, byrow=FALSE,); colnames(P)<-
c("beta1","beta2","theta1","theta2", "Value") 
 
for (i in 1:100){ 
  P[i,]=0 
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  P[i,1:4]<-optim(par=p0[i,], fn=GG, y=c(Meeker),d=c(Censor), method="L-BFGS-B", 
lower=c(0.25, 0.25, 10, 10), upper=c(90, 90, 400, 400)) $par  
  P[i,5]<-GG(P[i,1:4],y=c(Meeker),d=c(Censor)) 
} 
 
PM<-which.min(P[,5]) 
P[PM,] 
 
#SEB<-optim(par=P[PM,1:4], fn=GG, y=c(Meeker),d=1, method="L-BFGS-B", 
lower=c(0.25, 0.25, 10, 10), upper=c(90, 90, 100, 100),hessian=TRUE) $hessian 
#seb<-sqrt(diag(solve(SEB))) 
 
####Bi-Weibull Reliability function 
BiWeib<-function(t){exp(-1*(((t/(P[PM,3]))^P[PM,1])+((t/(P[PM,4]))^P[PM,2])))} 
####Bi-Weibull Hazard function 
BiHaz<-function(t){(P[PM,1]*t^(P[PM,1]-
1))/(P[PM,3]^P[PM,1])+(P[PM,2]*t^(P[PM,2]-1))/(P[PM,4]^P[PM,2])} 
####Bi-Weibull pdf function 
Bipdf<-function(t){((P[PM,1]*t^(P[PM,1]-
1))/(P[PM,3]^P[PM,1])+(P[PM,2]*t^(P[PM,2]-1))/(P[PM,4]^P[PM,2]))*(exp(-
1*(((t/(P[PM,3]))^P[PM,1])+((t/(P[PM,4]))^P[PM,2]))))} 
 
####Bi-Weibull CDF 
BWcdf<-function(x,y){ 
  b1<-x[1] 
  b2<-x[2] 
  t1<-x[3] 
  t2<-x[4] 
   
  F<-c(rep(NA,1)) 
   
  F<-1-(exp(-1*(((y/t1)^b1)+((y/(t2))^b2)))) 
   
  return(F) 
   
} 
 
BWtest<-BWcdf(x=c(P[PM,1],P[PM,2],P[PM,3],P[PM,4]),y=Meeker) 
 
 
########################### Tri-Weibull Model 
######################### 
t0<-matrix(NA, nrow=100, ncol=6, byrow=FALSE,); colnames(t0)<-
c("beta1","beta2","beta3","theta1","theta2","theta3") 
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t0[,1]<-c(runif(100, 0.25,5 )) #beta1 
t0[,2]<-c(runif(100, 0.25,5 )) #beta2 
t0[,3]<-c(runif(100, 0.25,5 )) #beta3 
t0[,4]<-c(runif(100, min(Meeker),max(Meeker))) #theta1 
t0[,5]<-c(runif(100, min(Meeker),max(Meeker))) #theta2 
t0[,6]<-c(runif(100, min(Meeker),max(Meeker))) #theta3 
 
 
TT<-function(x,y,d){ 
  b1<-x[1] 
  b2<-x[2] 
  b3<-x[3] 
  t1<-x[4] 
  t2<-x[5] 
  t3<-x[6] 
   
  F<-c(rep(NA,1)) 
   
  F<-sum(log((b1*(y^(b1-1))*(t1)^(-b1))+(b2*y^(b2-1))*((t2)^(-b2))+(b3*y^(b3-
1))*((t3)^(-b3)))*d-(((y)/t1)^(b1)+(y/t2)^(b2)+(y/t3)^(b3))) 
   
  return(-F) 
} 
 
Tr<-matrix(NA, nrow=100, ncol=7, byrow=FALSE,); colnames(Tr)<-
c("beta1","beta2","beta3","theta1","theta2","theta3","Value") 
 
for (i in 1:100){ 
  Tr[i,]=0 
  Tr[i,1:6]<-optim(par=t0[i,], fn=TT, y=c(Meeker),d=c(Censor), method="L-BFGS-B", 
lower=c(25, 0.25, 0.25, 10, 10, 10), upper=c(124, 90, 90, 1200, 400, 400)) $par  
  Tr[i,7]<-TT(Tr[i,1:6],y=c(Meeker),d=c(Censor)) 
} 
 
TM<-which.min(Tr[,7]) 
Tr[TM,] 
 
#SET<-optim(par=Tr[TM,1:6], fn=TT, y=c(Meeker),d=1, method="L-BFGS-B", 
lower=c(0.25, 0.25, 0.25, 10, 10, 10), upper=c(110, 90, 90, 100, 125, 
100),hessian=TRUE) $hessian 
#set<-sqrt(diag(solve(SET))) 
 
####Tri-Weibull Reliability function 



 

195 
 

TriWeib<-function(t){exp(-
1*(((t/(Tr[TM,4]))^Tr[TM,1])+((t/(Tr[TM,5]))^Tr[TM,2])+((t/(Tr[TM,6]))^Tr[TM,3
])))} 
####Tri-Weibull Hazard function 
TriHaz<-function(t){(Tr[TM,1]*t^(Tr[TM,1]-
1))/(Tr[TM,4]^Tr[TM,1])+(Tr[TM,2]*t^(Tr[TM,2]-
1))/(Tr[TM,5]^Tr[TM,2])+(Tr[TM,3]*t^(Tr[TM,3]-1))/(Tr[TM,6]^Tr[TM,3])} 
####Bi-Weibull pdf function 
Tripdf<-function(t){((Tr[TM,1]*t^(Tr[TM,1]-
1))/(Tr[TM,4]^Tr[TM,1])+(Tr[TM,2]*t^(Tr[TM,2]-
1))/(Tr[TM,5]^Tr[TM,2])+(Tr[TM,3]*t^(Tr[TM,3]-1))/(Tr[TM,6]^Tr[TM,3]))*(exp(-
1*(((t/(Tr[TM,4]))^Tr[TM,1])+((t/(Tr[TM,5]))^Tr[TM,2])+((t/(Tr[TM,6]))^Tr[TM,3
]))))} 
 
####Tri-Weibull CDF 
TWcdf<-function(x,y){ 
  b1<-x[1] 
  b2<-x[2] 
  b3<-x[3] 
  t1<-x[4] 
  t2<-x[5] 
  t3<-x[6] 
   
  F<-c(rep(NA,1)) 
   
  F<-1-(exp(-1*(((y/t1)^b1)+((y/(t2))^b2)+((y/(t3))^b3)))) 
   
  return(F) 
} 
 
TWtest<-
TWcdf(x=c(Tr[TM,1],Tr[TM,2],Tr[TM,3],Tr[TM,4],Tr[TM,5],Tr[TM,6]),y=Meeker) 
 
 
############# Quad-Weibull Model ######################### 
# q0<-matrix(NA, nrow=100, ncol=8, byrow=FALSE,); colnames(q0)<-
c("beta1","beta2","beta3","beta4","theta1","theta2","theta3","theta4") 
# q0[,1]<-c(runif(100, 0.25,5 )) #beta1 
# q0[,2]<-c(runif(100, 0.25,5 )) #beta2 
# q0[,3]<-c(runif(100, 0.25,5 )) #beta3 
# q0[,4]<-c(runif(100, 0.25,5 )) #beta4 
# q0[,5]<-c(runif(100, min(Meeker),max(Meeker))) #theta1 
# q0[,6]<-c(runif(100, min(Meeker),max(Meeker))) #theta2 
# q0[,7]<-c(runif(100, min(Meeker),max(Meeker))) #theta3 
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# q0[,8]<-c(runif(100, min(Meeker),max(Meeker))) #theta4 
#  
# QQ<-function(x,y,d){ 
#   b1<-x[1] 
#   b2<-x[2] 
#   b3<-x[3] 
#   b4<-x[4] 
#   t1<-x[5] 
#   t2<-x[6] 
#   t3<-x[7] 
#   t4<-x[8] 
#    
#   F<-c(rep(NA,1)) 
#    
#   F<-sum(log((b1*(y^(b1-1))*(t1)^(-b1))+(b2*y^(b2-1))*((t2)^(-b2))+(b3*y^(b3-
1))*((t3)^(-b3))+(b4*y^(b4-1))*((t4)^(-b4)))*d-
(((y)/t1)^(b1)+(y/t2)^(b2)+(y/t3)^(b3)+(y/t4)^(b4))) 
#    
#   return(-F) 
# } 
#  
# Q<-matrix(NA, nrow=100, ncol=9, byrow=FALSE,); colnames(Q)<-
c("beta1","beta2","beta3","beta4","theta1","theta2","theta3","theta4","Value") 
#  
# for (i in 1:100){ 
#   Q[i,]=0 
#   Q[i,1:8]<-optim(par=q0[i,], fn=QQ, y=c(Meeker),d=c(Censor), method="L-BFGS-
B", lower=c(0.25, 0.25, 0.25,0.25, 10, 10, 10, 10), upper=c(115, 115, 90, 90, 500, 500, 
400, 400)) $par  
#   Q[i,9]  <-optim(par=q0[i,], fn=QQ, y=c(Meeker),d=c(Censor), method="L-BFGS-
B", lower=c(0.25, 0.25, 0.25,0.25, 10, 10, 10, 10), upper=c(115, 115, 90, 90, 500, 500, 
400, 400)) $value   
# } 
#  
# QM<-which.min(Q[,9]) 
# Q[QM,] 
#  
# #SEQ<-optim(par=Q[QM,1:8], fn=QQ, y=c(Meeker),d=1, method="L-BFGS-B", 
lower=c(0.25, 0.25, 0.25,0.25, 10, 10, 10, 10), upper=c(110, 100, 90, 90, 100, 100, 
125, 100),hessian=TRUE) $hessian 
# #seq<-sqrt(diag(SEQ)) 
#  
# ####Quad-Weibull Reliability function 
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# QuadWeib<-function(t){exp(-
1*(((t/(Q[QM,5]))^Q[QM,1])+((t/(Q[QM,6]))^Q[QM,2])+((t/(Q[QM,7]))^Q[QM,3])+(
(t/(Q[QM,8]))^Q[QM,4])))} 
# ####Quad-Weibull Hazard function 
# QuadHaz<-function(t){(Q[QM,1]*t^(Q[QM,1]-
1))/(Q[QM,5]^Q[QM,1])+(Q[QM,2]*t^(Q[QM,2]-
1))/(Q[QM,6]^Q[QM,2])+(Q[QM,3]*t^(Q[QM,3]-
1))/(Q[QM,7]^Q[QM,3])+(Q[QM,4]*t^(Q[QM,4]-1))/(Q[QM,8]^Q[QM,4])} 
# ####Quad-Weibull pdf function 
# Quadpdf<-function(t){((Q[QM,1]*t^(Q[QM,1]-
1))/(Q[QM,5]^Q[QM,1])+(Q[QM,2]*t^(Q[QM,2]-
1))/(Q[QM,6]^Q[QM,2])+(Q[QM,3]*t^(Q[QM,3]-
1))/(Q[QM,7]^Q[QM,3])+(Q[QM,4]*t^(Q[QM,4]-1))/(Q[QM,8]^Q[QM,4]))*(exp(-
1*(((t/(Q[QM,5]))^Q[QM,1])+((t/(Q[QM,6]))^Q[QM,2])+((t/(Q[QM,7]))^Q[QM,3])+(
(t/(Q[QM,8]))^Q[QM,4]))))} 
#  
# ####Quad-Weibull CDF 
# QWcdf<-function(x,y){ 
#   b1<-x[1] 
#   b2<-x[2] 
#   b3<-x[3] 
#   b4<-x[4] 
#   t1<-x[5] 
#   t2<-x[6] 
#   t3<-x[7] 
#   t4<-x[8] 
#    
#   F<-c(rep(NA,1)) 
#    
#   F<-1-(exp(-1*(((y/t1)^b1)+((y/(t2))^b2)+((y/(t3))^b3)+((y/(t4))^b4)))) 
#    
#   return(F) 
# } 
#  
# QWtest<-
QWcdf(x=c(Q[QM,1],Q[QM,2],Q[QM,3],Q[QM,4],Q[QM,5],Q[QM,6],Q[QM,7],Q[QM,8]),
y=Meeker) 
 
############ Single Weibull Model ######################### 
Weib<-function(x,y,d){ 
  b1<-x[1] 
  t1<-x[2] 
  n<-length(Aarset2) 
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  F<-c(rep(NA,1)) 
   
  F<-(d*n*(log(b1)-b1*log(t1))+(d*(b1-1))*sum(log(y))-sum(((y)/t1)^b1)) 
   
  return(-F) 
} 
 
SW<-matrix(NA, nrow=100, ncol=3, byrow=FALSE,); colnames(SW)<-
c("beta","theta","Value") 
 
for (i in 1:100){ 
  SW[i,]=0 
  SW[i,1:2]<-optim(par=c(p0[i,1], p0[i,3]), fn=Weib, y=Meeker, d=Censor, 
method="L-BFGS-B", lower=c(0.25, 0.25, 10, 10), upper=c(5, 5, 1000, 1000)) $par 
  SW[i,3]<-Weib(SW[i,1:2],y=Meeker,d=Censor) 
} 
SM<-which.min(SW[,3]) 
 
####Single-Weibull Reliability function 
UniWeib<-function(t){exp(-1*(((t/(SW[SM,2]))^SW[SM,1])))} 
####Single-Weibull Hazard function 
UniHaz<-function(t){(SW[SM,1]*t^(SW[SM,1]-1))/(SW[SM,2]^SW[SM,1])} 
####Single-Weibull pdf function 
UniPdf<-function(t){(SW[SM,1]*t^(SW[SM,1]-1))/(SW[SM,2]^SW[SM,1])*exp(-
1*(((t/(SW[SM,2]))^SW[SM,1])))} 
 
####Single-Weibull CDF 
SWcdf<-function(x,y){ 
  b1<-x[1] 
  t1<-x[2] 
   
  F<-c(rep(NA,1)) 
   
  F<-1-exp(-1*(((t/(SW[SM,2]))^SW[SM,1]))) 
   
  return(F) 
} 
 
SWtest<-SWcdf(x=c(SW[SM,1],SW[SM,2]),y=Meeker) 
 
 
######### Exponentiated modified Weibull extension Model  
e0<-matrix(NA, nrow=100, ncol=4, byrow=FALSE,); colnames(p0)<-
c("alpha","lambda","beta","gamma") 
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e0[,1]<-c(runif(100, 40,100 )) #alpha 
e0[,2]<-c(runif(100, 10^-5,10^-2 )) #lambda 
e0[,3]<-c(runif(100, .01,.8)) #beta 
e0[,4]<-c(runif(100, 0.25,.625)) #gamma 
 
EE<-function(x,y,z,d){ 
  alp<-x[1] 
  lam<-x[2] 
  bet<-x[3] 
  gam<-x[4] 
   
  n<-length(Meeker1) 
   
  F<-c(rep(NA,1)) 
   
  F<-n*(alp*lam+(1-bet)*log(alp)+log(bet)+log(lam)+log(gam))-
alp*lam*(sum(exp((y/alp)^bet)))+1/(alp^bet)*(sum(y^bet))+(bet-
1)*(sum(log(y)))+(gam-1)*sum(1-exp(lam*alp*(1-exp((y/alp)^bet))))+log(prod(1-
(1-exp(lam*alp*(1-exp((z/alp)^bet)))^gam)))  
   
  return(-F) 
} 
 
E<-matrix(NA, nrow=100, ncol=5, byrow=FALSE,); colnames(P)<-
c("alpha","lamba","beta","gamma", "Value") 
 
for (i in 1:100){ 
  E[i,]=0 
  E[i,1:4]<-optim(par=e0[i,], fn=EE, y=c(Meeker1), z=c(Meeker2),d=1,method="L-
BFGS-B",lower=c(40, 10^-4, .01, 0.25), upper=c(100, 10^-2, .8, .625)) $par  
  E[i,5]<-EE(E[i,1:4],c(Meeker1),c(Meeker2),1) 
} 
 
EM<-which.min(E[,5]) 
E[EM,] 
 
####EMWE Reliability function 
EWeib<-function(t){1-(1-exp(E[EM,2]*E[EM,1]*(1-
exp((t/E[EM,1])^E[EM,3]))))^(E[EM,4])} 
####EMWE Hazard function 
EHaz<-function(t){(E[EM,2]*E[EM,3]*E[EM,4]*(t/E[EM,1])^(E[EM,3]-
1)*exp((t/E[EM,1])^E[EM,3]+E[EM,2]*E[EM,1]*(1-
exp((t/E[EM,1])^E[EM,3]))))/(((1-exp(E[EM,2]*E[EM,1]*(1-



 

200 
 

exp((t/E[EM,1])^E[EM,3]))))^(1-E[EM,4])+exp(E[EM,2]*E[EM,1]*(1-
exp((t/E[EM,1])^E[EM,3])))-1))} 
####EMWE pdf 
EPdf<-function(t){E[EM,2]*E[EM,3]*E[EM,4]*(t/E[EM,1])^(E[EM,3]-
1)*exp((t/E[EM,1])^E[EM,3]+E[EM,2]*E[EM,1]*(1-exp((t/E[EM,1])^E[EM,3])))*(1-
exp(E[EM,2]*E[EM,1]*(1-exp((t/E[EM,1])^E[EM,3]))))^(E[EM,4]-1)} 
####EMWE CDF 
Ecdf<-function(t){(1-exp(E[EM,2]*E[EM,1]*(1-
exp((t/E[EM,1])^E[EM,3]))))^(E[EM,4])} 
 
EMtest<-Ecdf(t=eCDF) 
 
########################### Plot Reliability Functions against K-M 
Estimate ######################### 
KMFit<-survfit(Surv(Meeker, Censor)~1) 
plot(KMFit, axes = FALSE, xlab = NA, ylab = NA, xaxs="r", yaxs="r", 
ylim=range(c(0,1))) 
par(new=TRUE) 
curve(NMWeib,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="red",lty=3,xaxs="r", yaxs="r", ylim=range(c(0,1))) 
par(new=TRUE) 
curve(BiWeib,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,xaxs="r", yaxs="r", ylim=range(c(0,1))) 
par(new=TRUE) 
curve(TriWeib,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="orange",xaxs="r", yaxs="r", ylim=range(c(0,1))) 
par(new=TRUE) 
curve(EWeib,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="green",lty=2,xaxs="r", yaxs="r", ylim=range(c(0,1))) 
box() 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "t", line = 2) 
mtext(side = 2, "R(t)", line = 2.5) 
legend("bottomleft", c("Bi-Weibull","Tri-Weibull","NMW", 
"EMWE"),lty=c(1,1,3,2),lwd=c(1.5,1.5),col=c("black","orange","red","green"),cex=0.7
5,bty="n",xjust=0.5) 
 
########################### Plot Density Functions against Censored 
Histogram ######################### 
barplot(c(0.004667,0.002,0.002,0.001333,0.002,0.002667),space=0,col="white", 
axes=FALSE, xpd=FALSE, xaxs="r",yaxs="r", ylim=range(c(0,0.005))) 
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par(new=TRUE) 
curve(NMWPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="red",lty=3,xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
par(new=TRUE) 
curve(BiPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
par(new=TRUE) 
curve(TriPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="orange",xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
# par(new=TRUE) 
# curve(EPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="blue",xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
par(new=TRUE) 
curve(EPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="green",lty=2,xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
# par(new=TRUE) 
# curve(UniPdf,from=0, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab = 
NA,col="Purple",xaxs="r", yaxs="r", ylim=range(c(0,0.005))) 
box() 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "t", line = 2) 
mtext(side = 2, "f(t)", line = 3) 
legend("top", c("Bi-Weibull","Tri-Weibull","NMW", 
"EMWE"),lty=c(1,1,3,2),lwd=c(1.5,1.5),col=c("black","orange","red","green"),cex=0.7
5,bty="n",xjust=0.5) 
 
barplot(c(.005283,.002791,.003243,.0025,.004444,.013333),space=0,col="white", 
axes=FALSE, xpd=FALSE, xaxs="i", ylim=range(c(0,0.015))) 
par(new=TRUE) 
curve(NMWHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, 
ylab = NA,col="red",lty=3,xaxs="i", yaxs="i", ylim=range(c(0,0.015))) 
par(new=TRUE) 
curve(BiHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab 
= NA,xaxs="i", yaxs="i", ylim=range(c(0,0.015))) 
par(new=TRUE) 
curve(TriHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, 
ylab = NA,col="orange",xaxs="i", yaxs="i",ylim=range(c(0,0.015))) 
# par(new=TRUE) 
# curve(QuadHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, 
ylab = NA,col="blue",xaxs="i", yaxs="i", ylim=range(c(0,0.015))) 
par(new=TRUE) 
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curve(EHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, ylab 
= NA,col="green",lty=2,xaxs="i", yaxs="i", ylim=range(c(0,0.015))) 
# par(new=TRUE) 
# curve(UniHaz,from=0.00002, to=max(Meeker),n=1000, axes = FALSE, xlab = NA, 
ylab = NA,col="Purple",xaxs="i", yaxs="i", ylim=range(c(0,0.015))) 
box() 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "t", line = 2) 
mtext(side = 2, "h(t)", line = 3) 
legend("top", c("Bi-Weibull","Tri-Weibull","NMW", 
"EMWE"),lty=c(1,1,3,2),lwd=c(1.5,1.5),col=c("black","orange","red","green"),cex=0.7
5,bty="n",xjust=0.5) 
 
N[NM,] 
P[PM,] 
 
######### Perform K-S Test for both models and compare Against Meeker ECDF  
 
ks.test(RelFreq, NMtest) 
ks.test(RelFreq, BWtest) 
ks.test(RelFreq, TWtest) 
ks.test(RelFreq, QWtest) 
ks.test(RelFreq, SWtest) 
ks.test(RelFreq, EMtest) 
 
######## Find standard errors for bi-Weibull parameter estimates 
 
h1<-((P[PM,1]*data^(P[PM,1]-1))/(P[PM,3]^(P[PM,1]))) 
h2<-((P[PM,2]*data^(P[PM,2]-1))/(P[PM,4]^(P[PM,2]))) 
r1<-(data/(P[PM,3]))^(P[PM,1])                                 
r2<-(data/(P[PM,4]))^(P[PM,2]) 
hh<-((P[PM,1]*data^(P[PM,1]-1))/(P[PM,3]^(P[PM,1])))+((P[PM,2]*data^(P[PM,2]-
1))/(P[PM,4]^(P[PM,2]))) 
 
likeb1ex<-sum(d*(h1/hh*(log(data/P[PM,3])+P[PM,1]^-1)))-
sum(r1*log(data/P[PM,3])) 
likeb2ex<-sum(d*(h2/hh*(log(data/P[PM,4])+P[PM,2]^-1)))-
sum(r2*log(data/P[PM,4])) 
liket1ex<-sum(-(P[PM,1]/P[PM,3]*d*h1/hh))+sum((P[PM,1]/P[PM,3])*r1) 
liket2ex<-sum(-(P[PM,2]/P[PM,4]*d*h2/hh))+sum((P[PM,2]/P[PM,4])*r2) 
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likeb1ex 
likeb2ex 
liket1ex 
liket2ex 
 
Hess<-matrix(NA,nrow=4, ncol=4,byrow=FALSE) 
 
Hess[1,1]<-sum((h1*(log(P[PM,3])-log(data))*(log(P[PM,3])-log(data)-
2/P[PM,1])*hh-(h1*(log(data)-log(P[PM,3]+P[PM,1]^-1)))^2)/(hh^2))-
sum(r1*(log(data/P[PM,3]))^2) 
Hess[1,2]<-sum((-(h1*(log(data)-log(P[PM,3])+P[PM,1]^-1)*h2*(log(data)-
log(P[PM,4])+P[PM,2]^-1)))/(hh^2)) 
Hess[1,3]<-sum(((P[PM,1]/P[PM,3])*(-hh*h1*(log(data)-log(P[PM,3])+2*P[PM,1]^-
1)+(P[PM,1]/P[PM,3])*h1^2*(log(data)-log(P[PM,3])+P[PM,1]^-
1)))/(hh^2))+sum((P[PM,1]/P[PM,3])*r1*(log(data/P[PM,3])+P[PM,1]^-1)) 
Hess[1,4]<-sum((h1*(log(data)-log(P[PM,3])+P[PM,1]^-1)*P[PM,2]*h2*P[PM,4]^-
1)/(hh^2)) 
Hess[2,1]<-sum((-(h2*(log(data)-log(P[PM,4])+P[PM,2]^-1)*h1*(log(data)-
log(P[PM,3])+P[PM,1]^-1)))/(hh^2)) 
Hess[2,2]<-sum((h2*(log(P[PM,4])-log(data))*(log(P[PM,4])-log(data)-
2/P[PM,2])*hh-(h2*(log(data)-log(P[PM,4]+P[PM,2]^-1)))^2)/(hh^2))-
sum(r2*(log(data/P[PM,4]))^2) 
Hess[2,3]<-sum((h2*(log(data)-log(P[PM,4])+P[PM,2]^-1)*P[PM,1]*h1*P[PM,3]^-
1)/(hh^2)) 
Hess[2,4]<-sum(((P[PM,2]/P[PM,4])*(-hh*h2*(log(data)-log(P[PM,4])+2*P[PM,2]^-
1)+(P[PM,2]/P[PM,4])*h2^2*(log(data)-log(P[PM,4])+P[PM,2]^-
1)))/(hh^2))+sum((P[PM,2]/P[PM,4])*r2*(log(data/P[PM,4])+P[PM,2]^-1)) 
Hess[3,1]<-sum(((P[PM,1]/P[PM,3])*(-hh*h1*(log(data)-log(P[PM,3])+2*P[PM,1]^-
1)+(P[PM,1]/P[PM,3])*h1^2*(log(data)-log(P[PM,3])+P[PM,1]^-
1)))/(hh^2))+sum((P[PM,1]/P[PM,3])*r1*(log(data/P[PM,3])+P[PM,1]^-1)) 
Hess[3,2]<-sum(((P[PM,1]/P[PM,3])*h1*h2*(log(data)-log(P[PM,4])+P[PM,2]^-
1))/(hh^2)) 
Hess[3,3]<-sum(((P[PM,1]/P[PM,3])*(P[PM,1]+1)*(P[PM,3]^-1)*h1*hh-(-
h1*(P[PM,1]/P[PM,3]))^2)/(hh^2))-sum(((P[PM,1]^2+P[PM,1])*r1)/(P[PM,3]^2)) 
Hess[3,4]<-sum(((-P[PM,1]/P[PM,3])*h1*(P[PM,2]/P[PM,4])*h2)/(hh^2)) 
Hess[4,1]<-sum(((P[PM,2]/P[PM,4])*h2*h1*(log(data)-log(P[PM,3])+P[PM,1]^-
1))/(hh^2)) 
Hess[4,2]<-sum(((P[PM,2]/P[PM,4])*(-hh*h2*(log(data)-log(P[PM,4])+2*P[PM,2]^-
1)+(P[PM,2]/P[PM,4])*h2^2*(log(data)-log(P[PM,4])+P[PM,2]^-
1)))/(hh^2))+sum((P[PM,2]/P[PM,4])*r2*(log(data/P[PM,4])+P[PM,2]^-1)) 
Hess[4,3]<-sum(((-P[PM,2]/P[PM,4])*h2*(P[PM,1]/P[PM,3])*h1)/(hh^2)) 
Hess[4,4]<-sum(((P[PM,2]/P[PM,4])*(P[PM,2]+1)*(P[PM,4]^-1)*h2*hh-(-
h2*(P[PM,2]/P[PM,4]))^2)/(hh^2))-sum(((P[PM,2]^2+P[PM,2])*r2)/(P[PM,4]^2)) 
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SE<-solve(-Hess) 
SE 
 
######## Find standard errors for tri-Weibull parameter estimates  
data<-c(PMin[S[z]:N[z],u]) 
 
h1<-((Tr[TM,1]*data^(Tr[TM,1]-1))/(Tr[TM,4]^(Tr[TM,1]))) 
h2<-((Tr[TM,2]*data^(Tr[TM,2]-1))/(Tr[TM,5]^(Tr[TM,2]))) 
h3<-((Tr[TM,3]*data^(Tr[TM,3]-1))/(Tr[TM,6]^(Tr[TM,3]))) 
r1<-(data/(Tr[TM,4]))^(Tr[TM,1])                                 
r2<-(data/(Tr[TM,5]))^(Tr[TM,2]) 
r3<-(data/(Tr[TM,6]))^(Tr[TM,3]) 
hh<-((Tr[TM,1]*data^(Tr[TM,1]-
1))/(Tr[TM,4]^(Tr[TM,1])))+((Tr[TM,2]*data^(Tr[TM,2]-
1))/(Tr[TM,5]^(Tr[TM,2])))+((Tr[TM,3]*data^(Tr[TM,3]-
1))/(Tr[TM,6]^(Tr[TM,3]))) 
 
likeb1ex<-sum((h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-1))/hh)-
sum(r1*log(data/Tr[TM,4])) 
likeb2ex<-sum((h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-1))/hh)-
sum(r2*log(data/Tr[TM,5])) 
likeb3ex<-sum((h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-1))/hh)-
sum(r3*log(data/Tr[TM,6])) 
liket1ex<-sum(-(Tr[TM,1]/Tr[TM,4]*h1/hh))+sum((Tr[TM,1]/Tr[TM,4])*r1) 
liket2ex<-sum(-(Tr[TM,2]/Tr[TM,5]*h2/hh))+sum((Tr[TM,2]/Tr[TM,5])*r2) 
liket3ex<-sum(-(Tr[TM,3]/Tr[TM,6]*h3/hh))+sum((Tr[TM,3]/Tr[TM,6])*r3) 
 
likeb1ex 
likeb2ex 
likeb3ex 
liket1ex 
liket2ex 
liket3ex 
 
Hess<-matrix(NA,nrow=6, ncol=6,byrow=FALSE) 
 
Hess[1,1]<-sum((h1*(log(Tr[TM,4])-log(data))*(log(Tr[TM,4])-log(data)-
2/Tr[TM,1])*hh-(h1*(log(data)-log(Tr[TM,4]+Tr[TM,1]^-1)))^2)/(hh^2))-
sum(r1*(log(data/Tr[TM,4]))^2) 
Hess[1,2]<-sum((-(h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-1)*h2*(log(data)-
log(Tr[TM,5])+Tr[TM,2]^-1)))/(hh^2)) 
Hess[1,3]<-sum((-(h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-1)*h3*(log(data)-
log(Tr[TM,6])+Tr[TM,3]^-1)))/(hh^2)) 
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Hess[1,4]<-sum(((Tr[TM,1]/Tr[TM,4])*(-hh*h1*(log(data)-
log(Tr[TM,4])+2*Tr[TM,1]^-1)+(Tr[TM,1]/Tr[TM,4])*h1^2*(log(data)-
log(Tr[TM,4])+Tr[TM,1]^-
1)))/(hh^2))+sum((Tr[TM,1]/Tr[TM,4])*r1*(log(data/Tr[TM,4])+Tr[TM,1]^-1)) 
Hess[1,5]<-sum((h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-
1)*Tr[TM,2]*h2*Tr[TM,5]^-1)/(hh^2)) 
Hess[1,6]<-sum((h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-
1)*Tr[TM,3]*h3*Tr[TM,6]^-1)/(hh^2)) 
Hess[2,1]<-sum((-(h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-1)*h1*(log(data)-
log(Tr[TM,4])+Tr[TM,1]^-1)))/(hh^2)) 
Hess[2,2]<-sum((h2*(log(Tr[TM,5])-log(data))*(log(Tr[TM,5])-log(data)-
2/Tr[TM,2])*hh-(h2*(log(data)-log(Tr[TM,5]+Tr[TM,2]^-1)))^2)/(hh^2))-
sum(r2*(log(data/Tr[TM,5]))^2) 
Hess[2,3]<-sum((-(h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-1)*h3*(log(data)-
log(Tr[TM,6])+Tr[TM,3]^-1)))/(hh^2)) 
Hess[2,4]<-sum((h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-
1)*Tr[TM,1]*h1*Tr[TM,4]^-1)/(hh^2)) 
Hess[2,5]<-sum(((Tr[TM,2]/Tr[TM,5])*(-hh*h2*(log(data)-
log(Tr[TM,5])+2*Tr[TM,2]^-1)+(Tr[TM,2]/Tr[TM,5])*h2^2*(log(data)-
log(Tr[TM,5])+Tr[TM,2]^-
1)))/(hh^2))+sum((Tr[TM,2]/Tr[TM,5])*r2*(log(data/Tr[TM,5])+Tr[TM,2]^-1)) 
Hess[2,6]<-sum((h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-
1)*Tr[TM,3]*h3*Tr[TM,6]^-1)/(hh^2)) 
Hess[3,1]<-sum((-(h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-1)*h1*(log(data)-
log(Tr[TM,4])+Tr[TM,1]^-1)))/(hh^2)) 
Hess[3,2]<-sum((-(h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-1)*h2*(log(data)-
log(Tr[TM,5])+Tr[TM,2]^-1)))/(hh^2)) 
Hess[3,3]<-sum((h3*(log(Tr[TM,6])-log(data))*(log(Tr[TM,6])-log(data)-
2/Tr[TM,3])*hh-(h3*(log(data)-log(Tr[TM,6]+Tr[TM,3]^-1)))^2)/(hh^2))-
sum(r3*(log(data/Tr[TM,6]))^2) 
Hess[3,4]<-sum((h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-
1)*Tr[TM,1]*h1*Tr[TM,4]^-1)/(hh^2)) 
Hess[3,5]<-sum((h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-
1)*Tr[TM,2]*h2*Tr[TM,5]^-1)/(hh^2)) 
Hess[3,6]<-sum(((Tr[TM,3]/Tr[TM,6])*(-hh*h3*(log(data)-
log(Tr[TM,6])+2*Tr[TM,3]^-1)+(Tr[TM,3]/Tr[TM,6])*h3^2*(log(data)-
log(Tr[TM,6])+Tr[TM,3]^-
1)))/(hh^2))+sum((Tr[TM,3]/Tr[TM,6])*r3*(log(data/Tr[TM,6])+Tr[TM,3]^-1)) 
Hess[4,1]<-sum(((Tr[TM,1]/Tr[TM,4])*(-hh*h1*(log(data)-
log(Tr[TM,4])+2*Tr[TM,1]^-1)+(Tr[TM,1]/Tr[TM,4])*h1^2*(log(data)-
log(Tr[TM,4])+Tr[TM,1]^-
1)))/(hh^2))+sum((Tr[TM,1]/Tr[TM,4])*r1*(log(data/Tr[TM,4])+Tr[TM,1]^-1)) 
Hess[4,2]<-sum(((Tr[TM,1]/Tr[TM,4])*h1*h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-
1))/(hh^2)) 
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Hess[4,3]<-sum(((Tr[TM,1]/Tr[TM,4])*h1*h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-
1))/(hh^2)) 
Hess[4,4]<-sum(((Tr[TM,1]/Tr[TM,4])*(Tr[TM,1]+1)*(Tr[TM,4]^-1)*h1*hh-(-
h1*(Tr[TM,1]/Tr[TM,4]))^2)/(hh^2))-
sum(((Tr[TM,1]^2+Tr[TM,1])*r1)/(Tr[TM,4]^2)) 
Hess[4,5]<-sum(((-Tr[TM,1]/Tr[TM,4])*h1*(Tr[TM,2]/Tr[TM,5])*h2)/(hh^2)) 
Hess[4,6]<-sum(((-Tr[TM,1]/Tr[TM,4])*h1*(Tr[TM,3]/Tr[TM,6])*h3)/(hh^2)) 
Hess[5,1]<-sum(((Tr[TM,2]/Tr[TM,5])*h2*h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-
1))/(hh^2)) 
Hess[5,2]<-sum(((Tr[TM,2]/Tr[TM,5])*(-hh*h2*(log(data)-
log(Tr[TM,5])+2*Tr[TM,2]^-1)+(Tr[TM,2]/Tr[TM,5])*h2^2*(log(data)-
log(Tr[TM,5])+Tr[TM,2]^-
1)))/(hh^2))+sum((Tr[TM,2]/Tr[TM,5])*r2*(log(data/Tr[TM,5])+Tr[TM,2]^-1)) 
Hess[5,3]<-sum(((Tr[TM,2]/Tr[TM,5])*h2*h3*(log(data)-log(Tr[TM,6])+Tr[TM,3]^-
1))/(hh^2)) 
Hess[5,4]<-sum(((-Tr[TM,2]/Tr[TM,5])*h2*(Tr[TM,1]/Tr[TM,4])*h1)/(hh^2)) 
Hess[5,5]<-sum(((Tr[TM,2]/Tr[TM,5])*(Tr[TM,2]+1)*(Tr[TM,5]^-1)*h2*hh-(-
h2*(Tr[TM,2]/Tr[TM,5]))^2)/(hh^2))-
sum(((Tr[TM,2]^2+Tr[TM,2])*r2)/(Tr[TM,5]^2)) 
Hess[5,6]<-sum(((-Tr[TM,2]/Tr[TM,5])*h2*(Tr[TM,3]/Tr[TM,6])*h3)/(hh^2)) 
Hess[6,1]<-sum(((Tr[TM,3]/Tr[TM,6])*h3*h1*(log(data)-log(Tr[TM,4])+Tr[TM,1]^-
1))/(hh^2)) 
Hess[6,2]<-sum(((Tr[TM,3]/Tr[TM,6])*h3*h2*(log(data)-log(Tr[TM,5])+Tr[TM,2]^-
1))/(hh^2)) 
Hess[6,3]<-sum(((Tr[TM,3]/Tr[TM,6])*(-hh*h3*(log(data)-
log(Tr[TM,6])+2*Tr[TM,3]^-1)+(Tr[TM,3]/Tr[TM,6])*h3^2*(log(data)-
log(Tr[TM,6])+Tr[TM,3]^-
1)))/(hh^2))+sum((Tr[TM,3]/Tr[TM,6])*r3*(log(data/Tr[TM,6])+Tr[TM,3]^-1)) 
Hess[6,4]<-sum(((-Tr[TM,3]/Tr[TM,6])*h3*(Tr[TM,1]/Tr[TM,4])*h1)/(hh^2)) 
Hess[6,5]<-sum(((-Tr[TM,3]/Tr[TM,6])*h3*(Tr[TM,2]/Tr[TM,5])*h2)/(hh^2)) 
Hess[6,6]<-sum(((Tr[TM,3]/Tr[TM,6])*(Tr[TM,3]+1)*(Tr[TM,6]^-1)*h3*hh-(-
h3*(Tr[TM,3]/Tr[TM,6]))^2)/(hh^2))-
sum(((Tr[TM,3]^2+Tr[TM,3])*r3)/(Tr[TM,6]^2)) 
   
SE<-solve(-Hess) 
SE 
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Appendix D: Computer Code Used to Simulate and Analyze Poly-Weibull 
Failure Observations as Discussed in Chapter V 

 
### set.seed(42) 
### This code generates observations from n independent, distinct Weibull          
### distributions denoting the n independent failure modes in each system.  The 
### minimum of these observations is kept as the actual system failure time.  n is 
### simulated as either 10,20, 40 or 100.  The failure data thus comes from a Poly-
### Weibull distribution.  The code captures this data into a matrix PMin for       
### various combinations of number of systems and number of failure modes    
 
######## CONTROL VARIABLES 
a<-5        ## Selects the ath element of vector z for the number of systems  
starts<-10  ## The number of starting points in the parameter space 
quality<-10 ## Value for the shape parameter theta 
f<-10000    ## The number of iterations 
 
z<-as.vector(c(10,20,40,100)) #Observations 
 
######## Initialize matrices of parameters values for each model 
SW<-matrix(NA, nrow=starts, ncol=3, byrow=FALSE,)  
P<-matrix(NA, nrow=starts, ncol=5, byrow=FALSE,) 
Tr<-matrix(NA, nrow=starts, ncol=7, byrow=FALSE,) 
PROBs <-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
PROBb <-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
PROBt <-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
OSLM  <-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
OSL5M <-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
OSL10M<-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
OSL20M<-matrix(NA, nrow=f, ncol=5, byrow=TRUE) 
MEAN<-matrix(NA, nrow=7, ncol=5, byrow=TRUE) 
 
colnames(P) <-c("beta1","beta2","theta1","theta2", "Value") 
colnames(SW)<-c("beta","theta","Value") 
colnames(Tr)<-c("beta1","beta2","beta3","theta1","theta2","theta3","Value") 
colnames(PROBb) <-c("5-modes","10-modes","20-modes","40-modes","50-modes") 
colnames(PROBs) <-c("5-modes","10-modes","20-modes","40-modes","50-modes") 
colnames(PROBt) <-c("5-modes","10-modes","20-modes","40-modes","50-modes") 
colnames(OSLM)<-c("5-modes","10-modes","20-modes","40-modes","50-modes") 
colnames(OSL5M)<-c("5-modes","10-modes","20-modes","40-modes","50-modes") 
colnames(OSL10M)<-c("5-modes","10-modes","20-modes","40-modes","50-
modes") 
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colnames(OSL20M)<-c("5-modes","10-modes","20-modes","40-modes","50-
modes") 
rownames(MEAN)<-c("Weibull", "bi-Weibull", "tri-Weibull","AD(p-
value)","OSL5","OSL10","OSL20") 
colnames(MEAN)<-c("5 modes","10 modes","20 modes","40 modes","50 modes") 
 
for (c in 1:f) { 
 
AIC<-matrix(NA, nrow=5, ncol=11, byrow=TRUE); colnames(AIC)<-c("Weib","Bi-
Weib","Tri-Weib","AIC","p-S","p-B","p-T","AD(p-value)", "OSL5","OSL10","OSL20") 
   
########################### Single Weibull Model 
######################### 
s0<-matrix(NA, nrow=starts, ncol=2, byrow=FALSE,); colnames(s0)<-c("a","b") 
s0[,1]<-c(runif(starts, .25,10)) #beta - shape parameter 
s0[,2]<-c(runif(starts, 1,1500)) #alpha - scale parameter 
 
########################### Bi-Weibull Model 
######################### 
p0<-matrix(NA, nrow=starts, ncol=4, byrow=FALSE,); colnames(p0)<-
c("beta1","beta2","theta1","theta2") 
p0[,1]<-c(runif(starts, .15,.9 )) #beta1 
p0[,2]<-c(runif(starts, 5.0,40 )) #beta2 
p0[,3]<-c(runif(starts, 2.5,1000)) #theta1 
p0[,4]<-c(runif(starts, 2.5,1000)) #theta2 
 
######## Tri-Weibull Model  
t0<-matrix(NA, nrow=starts, ncol=6, byrow=FALSE,) 
colnames(t0)<-c("beta1","beta2","beta3","theta1","theta2","theta3") 
 
t0[,1]<-c(runif(starts, .15,.9))  #beta1 
t0[,2]<-c(runif(starts, 5,30 )) #beta2 
t0[,3]<-c(runif(starts, 1.25,40 )) #beta3 
t0[,4]<-c(runif(starts, 2.5,1000)) #theta1 
t0[,5]<-c(runif(starts, 2.5,1000)) #theta2 
t0[,6]<-c(runif(starts, 2.5,1000)) #theta3 
 
j<-1 
i<-1 
 
###### INITIALIZE THE MATRIX THAT THE FAILURE OBSERVATIONS WILL BE 
WRITTEN TO 
PMin<-matrix(NA, nrow=z[a], ncol=5, byrow=FALSE,) 
colnames(PMin)<-c("5-Modes","10-Modes","20-Modes","40-Modes","50-Modes") 
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m<-as.vector(c(5, 10, 20, 40, 50)) 
for (j in 1:5) { # grab an element from the vector m 
     
####### Create Weibull shape and scale parameters for each failure mode  
CV<-matrix(NA, nrow=m[j], ncol=2, byrow=FALSE); colnames(CV)<-c("CoV", 
"Mean") 
NLM<-matrix(NA, nrow=m[j], ncol=2, byrow=FALSE); colnames(NLM)<-c("Betaj", 
"Alphaj") 
     
BetaP<-as.matrix(c(1.25,quality)) 
   
######### Simulate a coefficient of variation (COV) value  
CV[,1]<-c(rbeta(m[j], BetaP[1,], BetaP[2,])*(5.5-.05)+.05) 
######### Define Mean  
CV[,2]<-c(rbeta(m[j], (1+((5.5-CV[,1])/(5.5-.05)))^2, (1+((CV[,1]-.05)/(5.5-
.05)))^2)*3000) 
   
##############Functions############### 
COV<-function(x,y) {betaj<-x[1]   
                       
(((((gamma(1+2/betaj))/(gamma(1+1/betaj))^2)-1)^0.5)-y) 
  } 
   
######### Generate Solutions ############# 
for (i in 1:m[j]) { 
NLM[i,1]<-uniroot(COV, c(0.1, 65), y=c(CV[i,1])) $root 
NLM[i,2]<-CV[i,2]/(gamma(1+1/NLM[i,1])) 
  } 
   
b<-c(NLM[,1]) 
t<-c(NLM[,2])  
   
  for (i in 1:z[a]) { 
 
###Generate possible failure time for each failure mode and select the minimum 
value 
###as the observed system failure time  
     
    PMin[i,j]<-min(rweibull(m[j], b, t)) 
     
  } 
  data<-sort(PMin[,j]) 
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######### Compare Fit of the Weibull, Poly-Weibull and New Modified Weibull 
Models 
   
########################### Single Weibull Model 
######################### 
  Weib<-function(x,y){b1<-x[1]; t1<-x[2] 
                       
  F<-c(rep(NA,1)) 
                       
  F<-(z[a]*(log(b1)-b1*log(t1))+(b1-1)*sum(log(y))-sum(((y)/t1)^b1)) 
                       
  return(-F) 
  } 
  SW<-matrix(NA, nrow=starts, ncol=3, byrow=FALSE,); colnames(SW)<-
c("beta","theta","Value") 
     
  for (i in 1:starts){ 
    SW[i,]=0 
    SW[i,1:2]<-nlminb(c(s0[i,]), Weib, y=c(PMin[,j]), lower=c(.25,.5), 
upper=c(40,750)) $par 
    SW[i,3]<-Weib(SW[i,1:2],c(PMin[,j])) #value of the negative log likelihood 
function 
  } 
  SM<-which.min(SW[,3])### Select the minimum value of the 10 solutions  
   
###Perform the Anderson-Darling Goodness of Fit test for each data set    
AD<-matrix(NA, nrow=z[a], ncol=1, byrow=TRUE) 
for (i in 1:z[a]) { 
     
### Weibull Modified test statistic 
AD[i,1]<-(log(1-exp(-1*(data[i]/SW[SM,2])^(SW[SM,1])))-((data[z[a]+1-
i])/SW[SM,2])^(SW[SM,1]))*((1-2*i)/z[a]) 
} 
  ADstar<-(sum(AD[,1])-z[a])*(1+0.2/sqrt(z[a])) 
  OSL<-0 
  if(ADstar<.474) OSL<-.25 
  if(.474<=ADstar&&ADstar<= .637) OSL<-(.1-.25)/(.637-.474)*(ADstar-.474)+.25 
  if(.637<=ADstar&&ADstar<= .757) OSL<-(.05-.1)/(.757-.637)*(ADstar-.637)+.10 
  if(.757<=ADstar&&ADstar<= .877) OSL<-(.025-.05)/(.877-.757)*(ADstar-.757)+.05 
  if(.877<=ADstar&&ADstar<=1.038) OSL<-(.01-.025)/(1.038-.877)*(ADstar-
.877)+.025 
  if(ADstar>1.038) OSL<-.01 
     
####### Perform Bernoulli test for each data set  
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  OSL5 <-ifelse(OSL>0.05, 1, 0) 
  OSL10<-ifelse(OSL>0.10, 1, 0) 
  OSL20<-ifelse(OSL>0.20, 1, 0) 
       
####### Compute the corrected AIC value for the single Weibull 
AIC[j,1]<-2*2-2*(-SW[SM,3])+((2*2*(2+1))/(z[a]-2-1)) 
   
  ####### Bi-Weibull Model  
  GG<-function(x,y,d){ 
    b1<-x[1]; b2<-x[2]; t1<-x[3]; t2<-x[4] 
     
    F<-c(rep(NA,1)) 
     
    F<-sum(log(((b1*(y^(b1-1))*(t1)^(-b1))+(b2*y^(b2-1))*((t2)^(-b2))))*d-
(((y)/t1)^(b1)+(y/t2)^(b2))) 
    return(-F) 
  } 
   
  P<-matrix(NA, nrow=starts, ncol=5, byrow=FALSE,); colnames(P)<-
c("beta1","beta2","theta1","theta2", "Value") 
   
  for (i in 1:starts){ 
    P[i,]=0 
    P[i,1:4]<-nlminb(c(p0[i,1:4]), GG, y=c(PMin[,j]),d=1, lower=c(.25,.25,.5,.5), 
upper=c(70,100,1000,1000)) $par 
    P[i,5]<-GG(P[i,1:4],c(PMin[,j]),1) 
  } 
  PM<-which.min(P[,5]);P[PM,] 
     
  AIC[j,2]<-2*4-2*(-P[PM,5]) +((2*4*(4+1))/(z[a]-4-1)) 
   
  ########################### Tri-Weibull Model 
######################### 
  TT<-function(x,y,d){ 
    b1<-x[1]; b2<-x[2]; b3<-x[3]; t1<-x[4]; t2<-x[5]; t3<-x[6] 
     
    F<-c(rep(NA,1)) 
     
    F<-sum(log((b1*(y^(b1-1))*(t1)^(-b1))+(b2*y^(b2-1))*((t2)^(-b2))+(b3*y^(b3-
1))*((t3)^(-b3)))*d-(((y)/t1)^(b1)+(y/t2)^(b2)+(y/t3)^(b3))) 
     
    return(-F) 
} 
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  Tr<-matrix(NA, nrow=starts, ncol=7, byrow=FALSE,); colnames(Tr)<-
c("beta1","beta2","beta3","theta1","theta2","theta3","Value") 
     
  for (i in 1:starts){ 
    Tr[i,]=0 
    Tr[i,1:6]<-nlminb(c(t0[i,1:6]), TT,y=c(PMin[,j]),d=1, lower=c(.15,.15,.15,.5,.5,.5), 
upper=c(100,100,100,1000,1000,1000)) $par 
    Tr[i,7]<-TT(Tr[i,1:6],c(PMin[,j]),1) 
  }  
  TM<-which.min(Tr[,7]);Tr[TM,] 
   
  AIC[j,3] <-2*6-2*(-Tr[TM,7])+((2*6*(6+1))/(z[a]-6-1)) 
  AIC[j,4] <-which.min(AIC[j,1:3]) 
  AIC[j,5] <-exp((AIC[j,AIC[j,4]]-AIC[j,1])/2) 
  AIC[j,6] <-exp((AIC[j,AIC[j,4]]-AIC[j,2])/2) 
  AIC[j,7] <-exp((AIC[j,AIC[j,4]]-AIC[j,3])/2) 
  AIC[j,8] <-OSL 
  AIC[j,9] <-OSL5 
  AIC[j,10] <-OSL10 
  AIC[j,11] <-OSL20 
}   
   
  PROBs  [c,] <-AIC[,5 ] 
  PROBb  [c,] <-AIC[,6 ] 
  PROBt  [c,] <-AIC[,7 ] 
  OSLM   [c,] <-AIC[,8 ] 
  OSL5M  [c,] <-AIC[,9 ] 
  OSL10M [c,] <-AIC[,10] 
  OSL20M [c,] <-AIC[,11] 
}  
   
MEAN[1,]<-c(mean(PROBs [,1]),mean(PROBs  [,2]),mean(PROBs  [,3]),mean(PROBs  
[,4]),mean(PROBs  [,5])) 
MEAN[2,]<-c(mean(PROBb [,1]),mean(PROBb  [,2]),mean(PROBb  
[,3]),mean(PROBb  [,4]),mean(PROBb  [,5])) 
MEAN[3,]<-c(mean(PROBt [,1]),mean(PROBt  [,2]),mean(PROBt  [,3]),mean(PROBt  
[,4]),mean(PROBt  [,5])) 
MEAN[4,]<-c(mean(OSLM  [,1]),mean(OSLM   [,2]),mean(OSLM   [,3]),mean(OSLM   
[,4]),mean(OSLM   [,5])) 
MEAN[5,]<-c(sum(OSL5M  [,1])/f,sum(OSL5M [,2])/f,sum(OSL5M 
[,3])/f,sum(OSL5M [,4])/f,sum(OSL5M [,5])/f) 
MEAN[6,]<-c(sum(OSL10M 
[,1])/f,sum(OSL10M[,2])/f,sum(OSL10M[,3])/f,sum(OSL10M[,4])/f,sum(OSL10M[,5
])/f) 
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MEAN[7,]<-c(sum(OSL20M 
[,1])/f,sum(OSL20M[,2])/f,sum(OSL20M[,3])/f,sum(OSL20M[,4])/f,sum(OSL20M[,5
])/f) 
 
###Diagnostic plots to verify assess the code 
 
qqPlot(c(PMin[,j]), dist="weibull", shape=SW[SM,1], scale=SW[SM,2]) 
CCCC<-sort(c(PMin[,j])) 
Ppos<-pp(CCCC, a=0) 
quant<-(log(1/(1-Ppos))) 
plot(log10(c(CCCC))~log10(quant)) 
  
UniPdf<-function(t){(SW[SM,1]*t^(SW[SM,1]-1))/(SW[SM,2]^SW[SM,1])*exp(-
1*(((t/(SW[SM,2]))^SW[SM,1])))} 
 
BiPdf<-function(t){((P[PM,1]*t^(P[PM,1]-
1))/(P[PM,3]^P[PM,1])+(P[PM,2]*t^(P[PM,2]-1))/(P[PM,4]^P[PM,2]))*(exp(-
1*(((t/(P[PM,3]))^P[PM,1])+((t/(P[PM,4]))^P[PM,2]))))} 
 
TriPdf<-function(t){((Tr[TM,1]*t^(Tr[TM,1]-
1))/(Tr[TM,4]^Tr[TM,1])+(Tr[TM,2]*t^(Tr[TM,2]-
1))/(Tr[TM,5]^Tr[TM,2])+(Tr[TM,3]*t^(Tr[TM,3]-1))/(Tr[TM,6]^Tr[TM,3]))*(exp(-
1*(((t/(Tr[TM,4]))^Tr[TM,1])+((t/(Tr[TM,5]))^Tr[TM,2])+((t/(Tr[TM,6]))^Tr[TM,3
]))))} 
  
hist(c(PMin[,j]))#, breaks=z[a]/4) 
par(new=TRUE) 
curve(UniPdf, from=2.5-min(PMin[,j]),to=max(PMin[,j]), col="red",n=2000, xlab="", 
ylab="", axes=FALSE, xaxs="r", yaxs="r") 
par(new=TRUE) 
curve(BiPdf, from=2.5-min(PMin[,j]),to=max(PMin[,j]), col="blue",n=2000, xlab="", 
ylab="", axes=FALSE, xaxs="r", yaxs="r") 
par(new=TRUE) 
curve(TriPdf, from=2.5-min(PMin[,j]),to=max(PMin[,j]), col="green",n=2000, 
xlab="", ylab="", axes=FALSE, xaxs="r", yaxs="r") 
KMFit<-survfit(Surv(c(PMin[,j]), c(rep(1,z[a])))~1) 
 
#####Single-Weibull Reliability function 
UniWeib<-function(time){exp(-1*(((((time))/(SW[SM,2]))^SW[SM,1])))} 
 
#####Bi-Weibull Reliability function 
BiWeib<-function(time) 
{exp(-1*((((time)/(P[PM,3]))^P[PM,1])+(((time)/(P[PM,4]))^P[PM,2])))} 
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#####Tri-Weibull Reliability function 
TriWeib<-function(time) 
{exp(-1*((((time)/(Tr[TM,4]))^Tr[TM,1])+(((time)/(Tr[TM,5]))^Tr[TM,2])+ 
(((time)/(Tr[TM,6]))^Tr[TM,3])))} 
 
######## Plot Reliability Functions against K-M Estimate  
plot(KMFit, axes = FALSE, xlab = NA, ylab = NA, xaxs="r", yaxs="r", 
ylim=range(c(0,1))) 
par(new=TRUE) 
curve(UniWeib,from=0,to=max(PMin[,j]),n=100,axes=FALSE,xlab=NA,ylab=NA,col="
red",lty=3,xaxs="r",yaxs="r",ylim=range(c(0,1))) 
par(new=TRUE) 
curve(BiWeib,from=0,to=max(PMin[,j]),n=100,axes=FALSE,xlab=NA,ylab=NA,lty=1,
xaxs="r",yaxs="r", ylim=range(c(0,1))) 
par(new=TRUE) 
curve(TriWeib,from=0, to=max(PMin[,j]),n=100, axes = FALSE, xlab = NA, 
ylab=NA,col="orange",xaxs="r", yaxs="r", ylim=range(c(0,1))) 
 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1,"t", line = 2.0) 
mtext(side = 2, "R(t)", line = 2.5) 
 
 
## Generate Histograms  
g<-c(0,.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95,1) 
setwd("C:/Users/Jason/Desktop") 
# 
# 
tiff(filename = "5by100.tiff", 
     width = 1800, height = 2700, units = "px", pointsize = 12, 
     compression = c("none"),bg = "white", res = 300) 
 
par(mfrow = c(3,1),oma=rep(4, 4), mar=rep(1, 4) ) 
 
hist(PROBs[,1], col=rgb(1,0,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), ylim=c(0,f), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
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mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Weibull", line = .5) 
 
hist(PROBb[,1], col=rgb(0,1,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), ylim=c(0,f), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Bi-Weibull", line = .5) 
 
hist(PROBt[,1],col=rgb(0,0,1,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1),ylim=c(0,f), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Tri-Weibull", line = .5) 
 
mtext( expression("AIC"[corrected]*" (5,100,Low)" ), outer = TRUE) 
dev.off(2) 
# 
# 
tiff(filename = "10by100.tiff", 
     width = 1800, height = 2700, units = "px", pointsize = 12, 
     compression = c("none"),bg = "white", res = 300) 
 
par(mfrow = c(3,1),oma=rep(4, 4), mar=rep(1, 4) ) 
 
hist(PROBs[,2], col=rgb(1,0,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Weibull", line = .5) 
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hist(PROBb[,2], col=rgb(0,1,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Bi-Weibull", line = .5) 
 
hist(PROBt[,2], col=rgb(0,0,1,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Tri-Weibull", line = .5) 
 
mtext( expression("AIC"[corrected]*" (10,100,Low)" ), outer = TRUE) 
dev.off(2) 
# 
# 
tiff(filename = "20by100.tiff", 
     width = 1800, height = 2700, units = "px", pointsize = 12, 
     compression = c("none"),bg = "white", res = 300) 
 
par(mfrow = c(3,1),oma=rep(4, 4), mar=rep(1, 4) ) 
 
hist(PROBs[,3],col=rgb(1,0,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Weibull", line = .5) 
 
hist(PROBb[,3], col=rgb(0,1,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
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axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Bi-Weibull", line = .5) 
 
hist(PROBt[,3],col=rgb(0,0,1,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Tri-Weibull", line = .5) 
 
mtext( expression("AIC"[corrected]*" (20,100,Low)" ), outer = TRUE) 
dev.off(2) 
# 
# 
tiff(filename = "40by100.tiff", 
     width = 1800, height = 2700, units = "px", pointsize = 12, 
     compression = c("none"),bg = "white", res = 300) 
 
par(mfrow = c(3,1),oma=rep(4, 4), mar=rep(1, 4) ) 
 
hist(PROBs[,4],col=rgb(1,0,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Weibull", line = .5) 
 
hist(PROBb[,4], col=rgb(0,1,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
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mtext(side = 4, "Bi-Weibull", line = .5) 
 
hist(PROBt[,4], col=rgb(0,0,1,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Tri-Weibull", line = .5) 
 
mtext( expression("AIC"[corrected]*" (40,100,Low)" ), outer = TRUE) 
dev.off(2) 
# 
# 
tiff(filename = "50by100.tiff", 
     width = 1800, height = 2700, units = "px", pointsize = 12, 
     compression = c("none"),bg = "white", res = 300) 
 
par(mfrow = c(3,1),oma=rep(4, 4), mar=rep(1, 4) ) 
 
hist(PROBs[,5], col=rgb(1,0,0,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1),breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Weibull", line = .5) 
 
hist(PROBb[,5], col=rgb(0,1,0,.25),axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Bi-Weibull", line = .5) 
 
hist(PROBt[,5], col=rgb(0,0,1,.25), axes = FALSE,main="", xlab = NA, ylab = NA, 
xaxs="r", yaxs="r", xlim=c(0,1), breaks=g) 
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axis(side = 1, tck = -.015, labels = NA) 
axis(side = 2, tck = -.015, labels = NA) 
axis(side = 1, lwd = 0, line = -.6) 
axis(side = 2, lwd = 0, line = -.6, las = 1) 
mtext(side = 1, "", line = 2.0) 
mtext(side = 2, "frequency", line = 2.5) 
mtext(side = 4, "Tri-Weibull", line = .5) 
 
mtext( expression("AIC"[corrected]*" (50,100,Low)" ), outer = TRUE) 
dev.off(2) 
# 
# 
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