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Abstract 
Objective: The main technical objective of the Former Spencer Artillery Range demonstration is 
to validate and substantially automate the SIG learning process using next-generation 
electromagnetic induction (EMI) sensor data for discriminating targets-of-interest.  This process 
includes three major components: feature extraction, site learning and excavation.  The end result 
of the discrimination is a list of classifications for all anomalies at a site.  Discrimination 
performance is increased by maximizing the number of unexploded ordnance (UXO) correctly 
identified, maximizing the number of non-UXO anomalies correctly identified, specifying an 
appropriate dig no-dig boundary, and minimizing the number of anomalies that cannot be 
analyzed.  Discriminations performed at Camp Spencer explored an adaptive approach to site 
learning that varies the discrimination approach and amount of training data depending on the 
expected difficulty of discriminating the site.  SIG also proposes a metric for determination of 
site complexity to determine the correct approach to use based on the complexity of the site.   
More complicated sites require more aggressive discrimination methods and more training data 
to minimize the potential for missed UXO.   
Technical Approach: SIG performed discriminations on datasets from two companies across 
two sites: Open and Dynamic.  Both companies, NAEVA and URS, used the MetalMapper 
sensor.  For each company and site a set of three discrimination methods.  These discrimination 
methods were designed to accommodate sites that had differing levels of intrinsic complexity 
and available information about the types of UXO present.  These methods, labeled aggressive, 
intermediate and conservative, varied the amount of training data requested from 0 to around 50 
labels.  Classification for the conservative method utilized a generative Bayesian classifier while 
the intermediate and aggressive methods used a semi-supervised, parametric Bayesian classifier.  
To compliment these discrimination methods a complexity metric was developed that allows for 
a priori selection among the three modeling approaches for a new site. 
Results: Summarized by modeling approach. 
Aggressive: The aggressive approach acquired UXO with the fewest clutter dug, but tended to 
miss UXO types that had no examples in the test pit data.  No training data were acquired, and 
only test pit data were used for generative model.  None of the 23 UXO were missed in the 
Dynamic area with approximately 60 digs for the NAEVA and URS datasets.  Three of the 86 
UXO were missed in the Open area with the NAEVA data and two UXO were missed with URS 
data having 213 and 300 digs, respectively.  All the missed UXO were due to either selecting a 
one-anomaly inversion model where a two-anomaly inversion was appropriate or was of a UXO 
type not present in the test pit data. 
Intermediate: This approach required the most digs to capture UXO, primarily because the stop-
dig threshold had to be altered significantly in order to capture missed QC seeds which were fit 
to one-anomaly models, but were actually two-anomaly digs.  13 training labels and 3 training 
labels were acquired for the NAEVA and URS datasets, respectively.  No UXO were missed in 
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the Dynamic area with approximately 80 digs for the NAEVA and URS datasets.  One UXO was 
missed in the Open are for both the NAEVA and URS datasets out of and 387 and 363 digs. 
Conservative: This approach was the only one to capture all UXO in both the Open and Dynamic 
areas.  The NAEVA dataset and the URS dataset relied upon 42 and 47 actively learned training 
labels.  The NAEVA dataset missed 12 QC seeds, while the URS dataset missed only 2.  The 
final NAEVA classification missed no UXO with 369 digs, while the URS classification missed 
one UXO with 291 digs. 
Complexity analysis of former sites Pole Mountain, Camp Spencer and Camp Beale along with 
the current site suggest that Camp Spencer would be best discriminated using the intermediate or 
conservative approaches.  Results bear this out in that fewer UXO were missed with the 
intermediate and conservative approaches, than the aggressive approach. 
Benefits:  
The SIG discrimination process has proven effective at providing efficient site discrimination 
with minimal training data.  Former Spencer Artillery Range provides another example of this.  
The addition of adaptive modeling approaches that use an a priori metric of site complexity has 
increased effectiveness of this approach.   
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Objective 
The main technical objective of the SIG Former Spencer Artillery Range (Spencer) UXO 
discrimination demonstration is to validate and substantially automate the SIG learning process 
using next-generation electromagnetic induction (EMI) sensor data for discriminating targets-of-
interest.  All elements of human interpretation and intuition are being incrementally constrained 
or removed from the process, resulting in an automated process, where all algorithm parameters 
and thresholds will either be determined by specified site parameters (i.e., expected or inferred 
munitions types) or by data-driven inferences (i.e., cross-validated operating threshold).  SIG 
applied and matured each of the three key process phases that constitutes the SIG statistical 
learning approach to UXO discrimination.  The three phases of discrimination process include: 
Phase I - feature extraction, Phase II – site learning, and Phase III – excavation. Each of the 
phases is described in detail below.  Validation of discrimination process entails meeting all of 
the discrimination performance objectives defined by the program office for each of the sites 
considered (Table 1).  In particular Phase II has been examined in-depth at Camp Spencer.  A 

Performance 
Objective Metric Data Required Success Criteria 

Analysis and Classification Objectives 

Maximize correct 
classification of 
targets of interest 

Number of targets-of-
interest retained. 

• Prioritized anomaly 
lists 

• Scoring reports 
from the Institute 
for Defense 
Analyses (IDA) 

Approach correctly 
classifies all targets-
of-interest 

Maximize correct 
classification of non-
target of interest 
(UXO) 

Number of false 
alarms eliminated. 

• Prioritized anomaly 
lists 

• Scoring reports 
from IDA 

Reduction of false 
alarms by > 65% 
while retaining all 
targets of interest 

Specification of no-
dig threshold 

Probability of correct 
classification and 
number of false 
alarms at 
demonstrator 
operating point. 

• Demonstrator -
specified threshold 

• Scoring reports 
from IDA 

Threshold specified 
by the demonstrator to 
achieve criteria above 

Minimize number of 
anomalies that cannot 
be analyzed 

Number of anomalies 
that must be classified 
as “Unable to 
Analyze.” 

• Demonstrator target 
parameters 

Reliable target 
parameters can be 
estimated for > 98% 
of anomalies on each 
sensor’s detection list. 

Table 1.  Program Office Performance Objectives for Discrimination Analysis 
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site adaptive discrimination approach was developed and tested.  This approach uses one of three 
models labeled: aggressive, intermediate and conservative.  The choice of model depends on an a 
priori measure of site complexity.  Each of the three modeling approaches was applied to Camp 
Spencer and then the results were interpreted in light of the calculated complexity of the site. 
 

Background 
Using next-generation cued sensors, discrimination performance on real sites has shown the 
feasibility of advanced statistical analyses for distinguishing unexploded ordnance (UXO) from 
clutter. Signal Innovations Group, Inc. (SIG) has demonstrated the effectiveness of site-specific 
statistical learning for smartly selecting labeled training data to maximize target discrimination. 
This technology has been developed and validated under previous SERDP efforts by SIG and 
Duke University and was ready for application to ESTCP site demonstration at Former Spencer 
Artillery Range. 
Many current analysis approaches rely on expert scientists to make educated decisions at 
multiple points in the discrimination analysis process. This situation is not scalable, transferable, 
or cost effective. The SIG approach standardizes the options and creates a documented process 
flow that can be explicitly followed.  Key statistical technologies that were validated and 
automated during this effort include: physics-based target/sensor models, subspace denoising, 
automated and efficient feature extraction, data selection for classifier training. These techniques 
represent the state of the art in digital geophysics. 
SIG Discrimination Process Overview 
The SIG discrimination process laid out in [5] can be summarized in the following ‘recipe’ 
(Figure 5):  

• Data Conditioning - First, raw, unlabeled anomaly data are received.  Then, quality 
control checks are performed. These include ensuring that the background subtractions 
are complete and determining if the raw sensor inputs need any scaling in order to be 
appropriate for the feature extraction software. 

• Subspace Denoising - The anomaly data is denoised to ensure robust performance for 
discriminating late time-gate features.   

• Feature Extraction - A robust multi-anomaly dipole model is fitted to the data.  The 
polarizability parameters from this fitting become the set from which features are drawn 
for classifier training.  In addition to the time-domain polarizabilities, a set of 9 ‘rate’ 
features were calculated.  These features were the calculated by fitting the time-domain 
polarizabilities of each axis to an exponential-decay model: 

𝑝𝑖 = 𝑟1𝑖 + 𝑟2𝑖𝑒
−𝑡
𝑟3𝑖 

where 𝑖 ∈ {𝑥,𝑦, 𝑧} is the current axis, 𝑝 is the polarizability, 𝑡 is time and {𝑟1, 𝑟2, 𝑟3} are 
the fitted rate parameters.  Though 𝑟1𝑖 is unphysical, it is useful for adjusting for noise at 
late time gates and where odd responses would make the optimization difficult.  The 
optimized values of the rate parameters were found using non-linear least squares. 
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• Basis Selection - A few of the many possible features are selected based on their physical 
interpretation as they relate to the anomaly, and, using these features, the most 
informative set of anomalies are selected via an information metric to begin classifier 
training.   

• Feature Set Augmentation - The feature set is then augmented by adding early, mid and 
late time polarizabilities values.   

• Automated Feature Selection - For the now larger feature set, the most relevant set of 
features is selected using BENet.  

• Semi-supervised PNBC Training (STL or MTL) - When the PNBC is trained only 
using data from the current site of interest, it is called Single Task Learning (STL).   
When the PNBC is trained for multiple sites simultaneously it is called multi-task 
learning (MTL).  

• Non-myopic Active Learning - Based on the estimates made with the PNBC classifier, a 
new set of anomalies will be selected for labeling using NMAL.  The goal at this step is 
to maximize the information gain from new labels requested from the set of unlabeled 
anomalies.  The process is repeated as the PNBC classifier adequately learns data 
manifold.   The stopping criteria for the learning process is apparent when the remaining 
unlabeled data points have approximately equal information for improving the classifier.  
At which point, labeling any one-anomaly is no better than any other.    

• Excavation Adapted Threshold Selection - At this point, the highest probability UXO 
are selected for excavation and labels.  The classifier continues to be retrained when new 
labels are revealed.  This process continues until the highest probability UXO items 
excavated are all found to be clutter at which point digging stops.   

The process outlined above falls into 3 broad phases: Feature Extraction, Site Learning, and 
Excavation.  Details on each phase are given in the next subsections.  The SIG Discrimination 
process is relatively linear save for two feedback steps.  The first feedback is in training the 
semi-supervised classifier, where additional anomaly labels are requested until the classifier 
reaches sufficient stability.  The second feedback is during the excavation of anomalies, where 
the classifier is retrained with additional labeled anomalies until either the UXO/clutter 
predictions become highly separable or until high probability anomalies are substantially 
revealed to be clutter upon excavation. 
For the Camp Spencer discrimination the second feedback was eliminated in the current analysis 
to focus on the first feedback.  Thus differences in performance among the different modeling 
approaches (aggressive, intermediate, conservative) relied solely on the differences in training 
data acquired during the site learning phase. 
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Figure 1. Flow diagram of the SIG discrimination process. 

Materials and Methods 
SIG applied the discrimination process at Camp Spencer for the MetalMapper sensor data 
collected by NAEVA and URS in the ‘Open’ and ‘Dynamic’ sites.  For the purposes of training, 
the ‘Open’ and ‘Dynamic’ sites were treated jointly.  The process for each dataset involved the 
following key technologies, including: parametric target/sensor modeling, robust feature 
extraction and selection, semi-supervised classifier training using active selection of labeled data 
and multi-task learning incorporating past demonstration site data. To assess the impact of 
various intensities of training, discrimination models were created that relied upon no training 
data, fewer than 20 training data points, and more than 20 training data points.  These were 
labeled the aggressive, intermediate, and conservative approaches, respectively.  Each of the 
aforementioned technologies is described briefly in the following subsections.   
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EMI Multi-Dipole Model and Feature Extraction 
SIG extracted features by fitting raw sensor data to a physics-based parametric model [1], [2] that 
was developed under SERDP support and has been successfully demonstrated and validated in 
Camp Sibert, Camp San Luis Obispo (SLO), and Camp Butner analyses. It has been shown [3], 
[4] that the induction response of simple targets can be efficiently represented in terms of one or 
more time/frequency-dependent magnetic dipoles. In particular, the magnetic dipole moment 𝑚 
of a target is represented as 𝑚 = 𝑀 ∙ 𝐻𝑖𝑛𝑐, where 𝐻𝑖𝑛𝑐 represents the incident (excitation) 
magnetic field and 𝑀 is a tensor that relates 𝐻𝑖𝑛𝑐 to 𝑚. Using reciprocity in wave propagation, 
the total magnetic field observed at the receiver coil, 𝐻𝑟𝑒𝑐, can represented as 

𝐻𝑟𝑒𝑐(𝜔) ∝ 𝑟𝑠𝑡 ∙ 𝑈𝑡 ∙ 𝑀 ∙ 𝑈 ∙ 𝑟𝑠𝑡  

where 𝑟𝑠𝑡 is a unit vector directed from the source to the target and the 3 × 3 unitary matrix 𝑈 
(that contains information about the target orientation) rotates the fields from the coordinate 
system of the sensor to the coordinate system of the target. To simplify the above expression, an 

assumption is made that the source responsible 
for the incident field 𝐻𝑖𝑛𝑐 can be characterized 
by a dipole. This assumption is valid if the 
dimension of the transmitter coil is much 
smaller than its distance from any buried 
anomaly. While this may be appropriate for 
many sensors, it is not appropriate for the multi-
coil multi-axis sensors (e.g. MetalMapper). SIG 
has developed a model to synthesize 𝐻𝑖𝑛𝑐 for 
these sy stems; wherein the physical 
sizes/shapes of the transmitter and receiver coils 
are accounted for explicitly (this is done with a 

rigorous Biot-Savart analysis). This model 
has already been validated on MetalMapper 
data (under SERDP contract MR-1708). 
Based on the generalized forward model 
described above, the three principal 

polarization terms in the magnetic polarization dyadic, the orientation angles in the rotation 
matrix, as well as the position of the object can be extracted directly from the field data by using 
a nonlinear least-square solver (Figure 1). It is well known that the trigonometric functions in the 
rotation matrix are nonlinear multi-valued functions that result in many local solutions. However, 
the tensor is a symmetric matrix, having only six independent elements (parameters), and the 
general magnetic polarization dyadic is a linear function of the measured field data. This fact is 
exploited by extracting the six parameters directly from the measured data (using least-square 
inversion), rather than extracting the three principal polarization components and three rotation 
angles directly. The number of non-linear parameters in the model is greatly reduced in this 
implementation, and the problem of local solutions is significantly relieved, resulting in reliable 

Figure 2:  Example plot of the polarizability of a UXO as 
a function of time in seconds. Both axes are log scaled. 
The inset image is the UXO with the polarizability axes 
shown.  Because of the distinctive shape of UXO, at least 
of two of the polarizability axes will be coincident; in this 
case M2 (green) and M3 (red) are coincident. 

M
 

M M
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convergence of the feature inversion. This procedure is also capable of performing simultaneous 
feature inversion for multiple co-located (or nearby) anomalies, which was validated during the 
SIG SLO demonstration. 
Feature Selection with BENet 
Adaptive learning of a classifier in situ benefits from refining the appropriate set of extracted 
features for the targets under test.   This occurs because of the ‘curse of dimensionality’ where 
the number of data points required to cover the breadth of a features space grows exponentially 
with the number of features considered.  If the amount of training data does not sufficiently 
sample the feature space, then the learned classifier will lack statistical support and class 
estimate uncertainty is large.  At SLO in particular, feature selection played a key role in 
classifier performance (Figure 3). Bayesian classification models perform feature selection by 

placing a sparseness prior on the inferred feature 
weights. The Bayesian elastic net (BENet) 
regression model used for feature selection 
employs a sparseness prior equivalent to a convex 
combination of L1-norm and L2-norm penalties in 
a least squares optimization formulation [5], [2].  
The sparseness prior of the BENet model jointly 
infers the essential subset of relevant features, 
including correlated features, for a given 
classification task. Rather than encouraging the 
selection of a single feature in a set of correlated 
important features (like similar approaches such as 
RVM), the BENet model encourages the selection 
of all correlated important features. By performing 
sparse and grouped feature selection, the BENet 
algorithm provides a more robust approach to 

feature adaptability and the interpretation of important features, ultimately requiring fewer 
training data samples to achieve robust statistical support. 
Site-Adaptive Model Complexity 
A key result from previous discriminations at Pole Mountain, Camp Beale, Camp Butner, and 
Camp San Louis Obispo, is that sites vary in the quality of features extracted from anomalies.  
This may be due to differences among sensor technologies, differences in soil types, or 
differences in data collection methods.  As a result, it is ‘easier’ to discriminate UXO from 
clutter at some sites than others.  At easy sites simple models, such as a library matching 
approach, are effective and dig all UXO with very few clutter.  More difficult sites may require a 
more complex model to account for increased uncertainty in the feature responses.  The SIG 
approach to discrimination seeks to adaptively vary model complexity based on intrinsic 
properties of the unlabeled site data.  This complexity can be measured a priori and the 
appropriate modeling approach selected before training begins. 

Figure 3. Receiver operating characteristic (ROC) 
curves for UXO classifier at SLO site with features 
selection using the BENet algorithm (red line) and 
without feature selection (blue line). The number 
of false alarms (nFA) is lower for the classifier 
where feature selection was used. 
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Complexity of a site is measured using an information theoretic metric applied to the distribution 
of unlabeled polarizability features.  Complexity of a data generating process, 𝐶(𝑃), is dependent 
on two factors: the information stored in the system, 𝐻(𝑃), and the disequilibrium of the system, 
𝐷(𝑃) (i.e. the distance of the underlying process generating the observed data and a uniform 
distribution) [6] so that, 

𝐶(𝑃) = 𝐻(𝑃) × 𝐷(𝑃)  
The system information is measured as the ratio of differential entropy,𝐼, of the data to the 
entropy of a similarly sized uniform distribution, 𝐼𝑚𝑎𝑥: 𝐻 = 𝐼 𝐼𝑚𝑎𝑥⁄ .  Disequilibrium is measured 
as the Kullback-Leibler divergence between the observed distribution and a uniform distribution 
with a similar range of features: 𝐷 = (𝐼𝑚𝑎𝑥 − 𝐼)/𝐼𝑚𝑎𝑥.. Each feature in the observed data is 
transformed to a standard Gaussian distribution so that the differential entropy is defined for the 
observed data as: 

𝐼 =
1
2
𝑙𝑛�(2𝜋𝑒𝑘)|Σ|� 

where and Σ is the sample covariance matrix with k features.  The resulting complexity is 
distributed (0, 1) with high values representing high complexity, and low values representing low 
complexity. 
When 𝐶 is high for a given site, the expectation is that the site would be difficult to discriminate.  
A classification approach requiring more training data would be used (i.e. the ‘complex’ 
approach defined here).   When 𝐶 is low for a given site, the site should be relatively easy to 
discriminate and the ‘aggressive’ approach would be used.  These relations describe the relative 

values of 𝐶 for a given modeling approach.  
The best modeling approach for a specific 
value of 𝐶 must be estimated from a set of 
sites where all three classification approaches 
(‘complex’, ‘intermediate’, or ‘aggressive’) 
are applied.  To facilitate this all three 
modeling approached have been applied for 
the Camp Spencer datasets.   
Semi-Supervised Classification 
Semi-supervised learning is applicable to any 
sensing problem for which all of the labeled 
and unlabeled data are available at the same 
time, and therefore, particularly for the 
current demonstration study. Semi-supervised 
classification was employed in the 
intermediate and complex modeling 
approaches.  In most practical applications 
(including the recent demonstration at Camp 

Figure 4:  A comparison between supervised and semi-
supervised classifiers for a two-feature dataset. Labeled 
data from both classes (red and green circles) are shown, 
along with unlabeled data (black dots). The supervised 
classifier is trained on only the labeled data and the 
decision boundary is shown (dotted line).  The semi-
supervised classifier is trained on both the labeled and 
unlabeled data and the decision boundary (solid line) 
makes the two classes linearly separable. 
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Butner), semi-supervised learning has been found to yield superior performance relative to 
widely applied supervised algorithms. Figure 4 depicts the advantage of a semi-supervised 
approach to classification over its supervised counterpart. A classifier trained purely on labeled 
data (depicted as red and green circles) is shown as a purple dashed line and generates 
classification errors. In contrast, a semi-supervised classifier trained on both labeled and 
unlabeled data will generate perfect classification (depicted by the blue line). Note that the 
context provided by the unlabeled data was crucial in improving the classification performance 
in this case, since the labeled data were not representative of the two class distributions. As the 
number of training samples increases, the supervised classifier should approximate the semi-
supervised classifier.  Semi-supervised formulation treats the dataset (labeled and unlabeled) as a 
set of connected nodes, where the affinity 𝑤𝑖𝑗 between any two feature vectors (nodes) 𝒇𝒊 and 𝒇𝑗 
is defined in terms of a radial basis function [7].  Based on the above formulation, one can design 
a Markov transition matrix 𝑨 =  �𝑎𝑖𝑗�𝑁×𝑁

 that represents the probability of transitioning from 
node 𝒇𝑖 to 𝒇𝒋. Assuming ℒ ⊆ {1,2, … ,𝑁𝐿} represents the set of labeled data indices, the 
likelihood functional can be written as 

({𝑦𝑖, 𝑖 ∈ ℒ}|𝒩(𝒇𝑖),𝜽) = �𝑝(𝑦𝑖|𝒩(𝒇𝑖),𝜽) = ��𝑎𝑖𝑗𝑝�𝑦𝑖�𝒇𝑗 ,𝜽�
𝑁𝑖

𝑗=1𝑖∈ℒ𝑖∈ℒ

 

where 𝒩(𝒇) defines the neighborhood of 𝒇. Estimation of classifier parameters 𝜽 can be 
achieved by maximizing the log-likelihood via an Expectation-Maximization algorithm [8]. To 
enforce sparseness of 𝜽 (enforcing most of the components of the parameter vector 𝜽 to be zero), 
one may impose a zero- mean Gaussian prior on 𝜽. A zero-mean Gaussian prior with appropriate 
variance can strongly bias the algorithm in choosing parameter weights that are most likely very 
small (close to zero).  This technique is known as a parameterized neighborhood-based classifier 
(PNBC). 
Non-Myopic Active Learning 
Given that available training data labels at the beginning of a demonstration are not available and 
that excavations must be performed to reveal training data labels, one may ask in which order 
anomalies should be excavated to maximally improve the performance of the classifier 
algorithm.  One useful criterion is to use the confidence on the estimated identity of the 
anomalies that are yet to be excavated. Specifically, one may ask which unlabeled anomaly label 
would be most informative to improve classifier performance if the associated label could be 
made available. It has been shown [9] that this question can be answered in a quantitative 
information-theoretic manner. 
For active label selection, posterior distribution of the classifier is approximated as a Gaussian 
distribution centered on the maximum a posteriori (MAP) estimate. The uncertainty of the 
classifier is quantified in terms of the posterior precision matrix. The objective of AL is to choose 
a feature vector for labeling that maximizes the mutual information (𝐼) between the classifier 𝜽 
and the new data point to be labeled. The mutual information can be quantified as the expected 
decrease of the entropy of 𝜽 after new sample 𝒇𝑖∗ and its label 𝑦𝑖∗ are observed. 
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𝐼 =
1
2

log
|𝐻′|
|𝐻| =

1
2

log{1 + 𝑝(𝑦𝑖∗|𝒇𝑖∗,𝜽) × [1 − 𝑝(𝑦𝑖∗|𝒇𝑖∗,𝜽)]𝒇𝑖∗𝑇 𝐻−1𝒇𝑖∗} 

It is important to note that the mutual information 𝐼 is large when 𝑝(𝑦𝑖∗|𝒙𝑖∗,𝜽) ≈ 0.5. Hence, the 
AL prefers to acquire labels on those unlabeled samples for which the current classifier is most 
confused or uncertain. In this fashion the classifier learns quickly by not excavating anomalies 
that reveal redundant information.  The process continues as new labels are revealed until the 
expected information gain for the remaining anomalies is approximately uniformly low. At that 
point the classifier is adequately trained and target inference on the remaining unlabeled 
anomalies can be reliably performed.  By invoking the principle of submodularity in the 
algorithm optimization, the approach has been adapted to allow for the selection of multiple 
simultaneous labels at one time, making the technique operationally practical.   

Results and Discussion 
A main objective of the Camp Spencer discrimination was to differentiate between SIG’s 
aggressive, intermediate and conservative approaches.  These approaches differ in the amount of 
training data they required.  Some of the initial dig lists based on these approaches missed 
quality control (QC) seeds, which were subsequently included in the dig lists as training data.  To 
keep the amount of training data consistent between the different modeling approaches, however, 
the missed QC were not included in any of SIG’s predictive models. Instead, the stop-dig 
thresholds were adjusted to capture the QC seeds. 
The final dig list for every modeling approach and every sensor captured all UXO in the 
Dynamic area.  Some approach/sensor combinations missed UXO in the Open area.  The specific 
results for each modeling approach are presented below. 
Aggressive Approach 
In the aggressive approach, anomalies were classified without any training data save for the test 
pit data.  A model was built for each UXO type in the test pit data for Camp Spencer by sensor.  
So, the NAEVA models were built on the NAEVA test pit data and the URS models were built 
on the URS test pit data.  The features for these models were selected based on sparse Bayesian 
classifiers for previous sites.  Given these features a generative model was created for each UXO 
type.  This generative model provided probabilities of being a particular UXO type for each 
anomaly in the dataset.  A stop-dig threshold was based on the minimum resubstituted 
probability of the test pit data and the mode of the predicted probability of the unlabeled 
anomalies.   
NAEVA MetalMapper – Open and Dynamic Areas 
The test pit data for the NAEVA dataset included UXO Types 105mm, 75mm, stokes mortar, 
medium Industry Standard Object (ISO), 37mm and small ISO.  The small ISO in the test pit was 
apparently schedule 40 pipe with a diameter of 31mm.  These were different that the small ISO 
labeled in the test data which were schedule 80 pipe with a diameter of 38mm.  The features 
selected for each UXO type model were distinct and based on ground-truth from previous sites.  
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Given the set of appropriate features for a UXO type, a generative model was created based on 
the test pit responses only. 
The initial dig list contained 213 digs for the Open site and 44 digs for the Dynamic site.  These 
initial dig lists missed two Q.C. seeds (SR-1676, SR-1729) which were a small ISO (schedule 80 
pipe) and a 37mm projectile.  The small ISO was missed because there were no ISOs of that type 
in the test pit data.  The aggressive approach is dependent upon representatives of the UXO 
types.  The model based on the medium ISO test pit data, however, did allow for some match the 
schedule 80 pipe.  So, there were fewer QC small ISOs missed in the NAEVA data than the URS 
data which did not have medium ISO test pit data.  The 37mm projectile was missed because it 
should have been classified as a two-anomaly model, though the one-anomaly inversion model 
fit error was less than the cutoff SIG has used in the past to delineate one and two-anomaly 
models (0.05). 
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Having adjusted the stop-dig threshold to accommodate the missed QC seeds, the final di g list 
for the Dynamic area captured all UXOs with 59 digs and the final dig list for the Open area 
remained 213 digs but missed 3 UXO (Figure 5, SR-181, SR-383, SR-710).  Further details on 
the missed UXO are presented the ‘Missed UXO’ subsection. 
URS MetalMapper – Open and Dynamic Areas 
The test pit data for the URS dataset included UXO Types: 75mm, 37mm and small ISO.  The 
small ISO in the test pit was apparently schedule 40 pipe with a diameter of 31mm.  As with the 
NAEVA test pit data, these small ISO were different that the small ISO labeled in the field which 
were schedule 80 pipe with a diameter of 38mm.  Building of the generative model followed 
similarly to the aggressive approach for the NAEVA dataset. 
The initial dig list contained 220 digs for the Open site and 55 digs for the Dynamic site.  These 
initial dig lists missed five Q.C. seeds (SR-199, SR-837, SR-873, SR-1502, SR-1676).  All of the 

Figure 5. ROC curves for the Aggressive approach.  NAEVA and URS sensors (top,bottom),  Open and Dynamic areas 
(left, right) 
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missed seeds were attributable to either multi-anomaly responses that had good one-anomaly fits 
in SIGs inversion model, or were small ISOs that were not represented in the test pit data. 
Having adjusted the stop-dig threshold to accommodate the missed QC seeds, the final di g list 
for the Dynamic area captured all UXOs with 71 digs and the final dig list for the Open area 
increased to 300 digs missing two UXO (Figure 5, SR-194, SR-633).  Both of the missed 
anomalies were of the small ISO type not represented in the test pit data. 
Intermediate Approach 
The intermediate approach began from the same starting point as the aggressive one.  That is, a 
set of generative models for each UXO type in the test pit data.  But, the intermediate approach 
collected some training data based on these models.  The active learning technique for acquiring 
training data was based on the minimum resubstituted probability of the test pit data. In short, a 
single training point was selected for each UXO type that was near this minimum resubstituted 
probability.  If the revealed training label was UXO, this anomaly became the new minimum 
threshold and an additional training label was selected.  If the revealed training label was clutter, 
digging stopped for that UXO type.  Once a single clutter had been dug for all UXO types, 
training was completed.  Discrimination was then performed as in the conservative approach 
using the PNBC. 
NAEVA MetalMapper – Open and Dynamic Areas 
   

The initial dig list contained 251 digs for the Open site and 82 digs for the Dynamic site.  Of 
those initial digs, 13 were training.  These initial dig lists missed nine Q.C. seeds (SR-572, SR-
648, SR-790, SR-837, SR-873, SR-978, SR-1502, SR-1609, SR-1729).  Half of the missed seeds 
were two-anomaly responses whose one-anomaly response had a low fit error so that the two-
anomaly response was not selected.  Upon learning that the missed QC seeds were in fact, two-
anomaly, there were two options for how to proceed.  The first option was to use the two 
anomaly model for the missed QC seeds and risk missing other two-anomaly UXO in the 
unlabeled data whose one-anomaly fits were also good.  The second option was to try to capture 
any remaining two-anomaly UXO with good one-anomaly fits by training on the missed QC 
using their original one anomaly model.  The latter option was chosen as it represented the more 
conservative of the two approaches and was consistent with the SIG model selection heuristic 
which favors selecting the one-anomaly model if its fit was good.  The other missed QC seeds 
were near a clutter that was dug during training in feature space.  Since there were so few 
training point, and a discriminative classifier was being used, these clutter had undue weight 
placed on them.  The solution for such cases was to increase the variance of the non-linear 
kernels used for classification so that the bulk of the test pit data and training UXO obtained 
more influence than the single clutter dug in that area of feature space. 
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Having adjusted the stop-dig threshold to accommodate the missed QC seeds that should have 
modeled as two anomalies and having increased the width of the non-linear kernels, the final di g 
list for the Dynamic area captured all UXOs with 82 digs.  The final dig list for the Open area 
increased to 387 digs missing one UXO (Figure 6, SR-181).  Clutter was dug in the Dynamic 
area well beyond the last UXO.  This was due to the fact that the stop-dig threshold had to be 
adjusted to accommodate the two-anomaly missed seeds. 
URS MetalMapper – Open and Dynamic Areas  
The initial dig list contained 233 digs for the Open site and 55 digs for the Dynamic site.  These 
initial dig lists missed eight Q.C. seeds (SR-190, SR-199, SR-837, SR-873, SR-886, SR-1502, 
SR-1609, SR-1676).  As with the NAEVA datasets, most of the missed seeds were attributable to 
either multi-anomaly responses that had good one-anomaly fits in SIGs inversion model, or were 
small ISO that were not represented in the test pit data.  SR-1502- and SR-1609, however, should 
have been labeled as ‘can’t extract reliable features’.  As a result, the error threshold of the 

Figure 6.  ROC curves for the Intermediate approach, NAEVA and URS sensors(top, bottom), Open and Dynamic areas 
(left, right). 
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inversion model which determines whether or not an anomaly is deemed to have good features 
had to be adjusted.  Thus, the final dig lists for all modeling method that used the URS data 
included a few extra anomalies labeled ‘can’t extract reliable features’.  The final dig lists for the 
intermediate approach on the URS dataset had 363 digs for the Open site and 86 digs for the 
Dynamic site.  One UXO, SR-194, was missed in the Open Area. 
Conservative Approach 
The conservative approach matches the previous classification methods that were performed by 
SIG at sites such as Camp Beale and Camp Butner.  More training data were collected using the 
conservative method than either the intermediate or aggressive approaches.  Training began with 
a selection of 10 anomalies based on their cumulative Fisher Information.  From this set, a PNBC 
classifier was trained, and active learning was applied to generate a candidate list of new training 
anomalies.  Feature selection for this and subsequent classifiers was performed using the BENet.  
The feature set converged for all conservative classifier relatively quickly to include the 
magnitude and decay rates of the first polarizability axis, a measure of symmetry between the 2nd 
and 3rd axes, and eccentricity.  Once additional training labels were acquired, the process was 
repeated.  Training stopped when the information gain of new training points was small relative 
to information contained in all the previously acquired points.  A dig list based on the training 
data was then generated. 
NAEVA MetalMapper – Open and Dynamic Areas 
Three rounds of training were performed for a total of 37 labels acquired between the Open and 
Dynamic Areas.  The initial dig list contained 249 digs for the Open site and 56 digs for the 
Dynamic site.  These initial dig lists missed eight QC seeds (SR-490, SR-572, SR-648, SR-790, 
SR-873, SR-978, SR-1502, SR-1609).  All of the missed seed were attributable to either multi-
anomaly responses that had good one-anomaly fits in SIGs inversion model, or a maladjustment 
of the threshold for determining whether anomalies had reliable features or not.  The former 
issue was addressed by changing the stop-dig threshold, and the latter was addressed by labeling 
more anomalies as ‘can’t extract reliable features’. 
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Having adjusted the stop-dig threshold to accommodate the missed QC seeds that were two 

Figure 7.  ROC curves for the Conservative approach,  NAEVA and URS sensors(top, bottom), Open and Dynamic areas 
(left, right). 



18 
 

anomalies and having increased the number of labels for ‘cant’ extract reliable features’, the final 
di g list for the Dynamic area captured all UXOs with 100 digs and the final dig list for the Open 
area increased to 369 digs capturing all UXO (Figure 7).  Clutter was dug in the Dynamic area 
well beyond the last UXO.  As with the intermediate approach, this was due to the fact that the 
stop-dig threshold had to be adjusted to accommodate the two-anomaly missed seeds. 
URS MetalMapper – Open and Dynamic Areas 
Three rounds of training were performed for a total of 37 labels acquired between the Open and 
Dynamic areas.  The initial dig list contained 249 digs for the Open site and 56 digs for the 
Dynamic site.  These initial dig lists missed two QC seeds (SR-1502, SR-1609).  As with the 
NAEVA dataset all of the missed seed were attributable to either multi-anomaly responses that 
had good one-anomaly fits in SIGs inversion model, or a maladjustment of the threshold for 
determining whether anomalies had reliable features or not.  The former issue was addressed by 
changing the stop-dig threshold, and the latter was addressed by labeling more anomalies as 
‘can’t extract reliable features’. 
Having adjusted the stop-dig threshold to accommodate the missed QC seeds that were two 
anomalies and having increased the number of labels for ‘cant’ extract reliable features’, the final 
di g list for the Dynamic area captured all UXOs with 86 digs and the final dig list for the Open 
area increased to 284 digs missing one-anomaly (Figure 7, SR-194).  Both of the missed 
anomalies were of the Small ISO type not represented in the test pit data.  Clutter was dug in the 
Dynamic area well beyond the last UXO.  As with the intermediate approach, this was due to the 
fact that the stop-dig threshold had to be adjusted to accommodate the two-anomaly missed 
seeds. 
UXO Type Assignment 
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Assigning UXO type to anomalies predicted to be 
UXO was a new requirement for the dig lists. Some 
of SIGs modeling approaches (intermediate and 
conservative) treated all UXO as a single type.  As 
a result a single model was used to assign UXO 
type from a library of UXO responses from 
previous sites.  The features for this model were the 
first time gate response and the fitted magnitude of 
axes 2 and 3. So, UXO Type was identical for each 
dig lists.  For the Dynamic Area a single UXO was 
given an inappropriate classification (Figure 9, 
i.e.one where the actual diameter was much larger 
than the predicted diameter).  3 were given 
inappropriate classifications in the Open site 
(Figure 8). 
Missed UXO 
The final number of SIG dig lists was six for the Dynamic are and six for the Open area.  No 
anomalies were missed in the Dynamic area dig list, and in fact many of the dig list dug clutter 
were beyond the last UXO.  Five UXO were missed in the Open dig lists.  These five can be 
separated by sensor.  Three were unique to the NAEVA dataset, and two were unique to the URS 
dataset.  All these missed UXO can be attributed to poor features for the dataset in question.  So, 
for the NAEVA missed UXO, the URS features of the same anomalies were easily discriminated 
as UXO.  The same is true for the URS data. 

0 37 38 48 57 60 61 75 105 155
0 716 207 14 0 1 2 0 10 2 0
37 0 11 11 0 0 1 0 1 0 0
38 0 0 0 0 0 0 0 0 0 0
48 0 1 21 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 0 0
60 0 0 3 0 0 1 0 0 0 0
61 0 0 0 0 0 2 0 1 0 0
75 0 0 0 0 0 0 0 14 0 0

105 0 0 0 0 0 0 0 0 0 0
155 0 0 0 0 0 0 0 0 1 0

Figure 9. UXO type cross-tabulation for the Dynamic site. 

Figure 8. UXO type cross-tabulation for the Open site. 
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Flagged anomalies SR-181, SR-383, and SR-710 were missed in the NAEVA dataset, aggressive 
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Figure 10.  Polarizabilities for missed UXO in the NAEVA dig lists.  Responses for NAEVA (left) and URS (right) are 
both shown. 
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approach (Figure 10).  SR-181 was missed in the NAEVA dataset, intermediate approach, and no 
UXO were missed in the NAEVA dataset, conservative approach.  The inversion model for SR-
181 had the 2nd and 3rd axes confused.  So, the decay rate of the 2nd axis was much lower than 
expected for a UXO.  Since the decay rate of the 2nd axis was is selected as an important feature 
by the NAEVA intermediate and aggressive classifiers, this switch of axes had a significant 
impact on the probability of UXO for SR-181. The magnitude of all axes for SR-383 was greater 
than expected for that UXO, a small ISO.  Additionally, it was missed in the aggressive approach 
for which there were no training data of that UXO type.  SR-710 was another case like SR-181 
where the 2nd and 3rd polarizability axes were reversed relative to what they should have been.  It 
should be noted these anomalies are clearly symmetric in the 2nd and 3rd axes in the NAEVA 
data, yet they were missed.  Symmetry in SIG’s methodology is calculated as the sum of squared 
differences between the log polarizabilities of the 2nd and 3rd axes.  The learned weight of the 
symmetry feature for the NAEVA aggressive approach and intermediate approaches was small 
relative to the weights placed on to the magnitude and decay rate of the 2nd axis.  In the case of 
the missed anomalies, the magnitude of the 2nd axis did not match anything in our training sets 
for the intermediate and aggressive approaches.  Therefore they were not classified as UXO.   
Additionally, symmetry is calculated on log-polarizabilities.  So, it is sensitive to noise in the late 
time gates.  This is good, in general, for discriminating UXO from clutter since UXO typically 
have less noise in the later time gates than clutter.  In the case of the missed anomalies from 
Figure 10, however, this sensitivity was a detriment since the NAEVA data was noisier at later 
times than the URS data. 
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UXOs SR-194 and SR-633 were missed in the aggressive, URS, Open area dig list (Figure 11).  
SR-194 was missed in the intermediate and conservative approaches. This UXO was another 
example, along with many of the missed QC seeds where the one-anomaly model fit was 
extremely low, suggesting that this anomaly was a one-anomaly clutter.  But, in fact, it is a two-
anomaly UXO.  The stop-dig threshold was changed to accommodate these cases for the QC 
seeds, but not enough to capture SR-194.  SR-633 was a small ISO. It was missed in the 
aggressive approach primarily because there were no examples of these in the test pit data on 
which the aggressive approach was based. 
Comparison between aggressive, intermediate and conservative approaches. 
Table 2 summarizes the performance results between the three different approaches: aggressive, 
intermediate and conservative.  The aggressive approach had the fewest digs overall, but also 
missed the most UXO.  The UXO that were missed, however, tended either be poor inversions or 
more importantly were of UXO types that were not present in the test pit data.  This was true for 
both the missed QC seeds and the UXO missed in the final dig lists.  In particular, the UXO 
labeled small ISO (which was schedule 80 pipe) SIG had no representative in any of the previous 
sites for the small ISO present in the test data. This result confirms expectations that the 
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Figure 11.  Polarizabilities for missed UXO in the URS dig lists.  Responses for NAEVA (left) and URS (right) are both 
shown. 
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aggressive approach should work well when two conditions are met.  The first condition is that 
sites have relatively low feature complexity.  Camp Spencer was intermediately complex (See 
‘Evaluation of site complexity’) so expectations on the aggressive approach were low.  The 
second condition for the aggressive approach is that a generative model exists for each UXO 
type in the test data.  There was no representative for the small ISO.  Further, the URS dataset 
had only 3 UXO types in its test pit data, while the NAEVA data had 6.  A consequence of the 
increased diversity of test pit data was that classification on the NAEVA dataset dug UXO with 
fewer false alarms than classifications of the URS data.  This highlights both the strengths and 
weakness of generative models and the similar library matching approach.  UXO can be dug with 
very few false alarms, but these models are poor at exploring the feature space for UXO that are 
not part of the library. 
The intermediate approach required more digs than any other approach.  But, it was also more 
strongly affected by the misclassification of two-anomaly responses.  There were few training 
labels, and by design all of them were near the boundary between UXO and clutter in feature 
space.  In the context of a non-linear classifier, this meant that each clutter dug had a large 
relative importance.  The two-anomaly missed QC seeds were far away from the classifier 
boundary defined by the training points.  So, when the stop-dig threshold was adjusted to 
accommodate the two-anomaly missed QC seeds, many more clutter dug.  There just were not 
enough training labels in the area near the missed QC seeds to differentiate any additional 
misclassified two-anomaly responses or to reduce the uncertainty between UXO and clutter in 
that area of feature space. 
The conservative approach was the only approach to capture all UXO in both sites using the 
NAEVA dataset.  However, this list also had the largest number of false positives and the largest 
number of missed QC seeds.  The conservative approach applied to the URS dataset had many 
fewer false positives or missed QC seeds than the NAEVA dataset.  This classification did, 
however, miss a single UXO.  The performance was equivalent to the intermediate approach 
with approximately 30% fewer false positives.  The NAEVA discrimination benefitted from 
having twice as many of the misclassified two-anomaly responses present in the training dataset.  
This illustrates the benefit of using the active learning of the conservative approach in cases 
where little is known about at site in terms of the types of UXO present.  Though some the two-
anomaly responses were ‘misclassified’ as one-anomaly responses, the conservative approach 

can't analyze training dug missed UXO can't analyze training labeld missed UXO
Aggr. 3 0 (0) 210 3 0 0 (2) 57 0
Inter. 11 9 (6) 361 1 0 4 (3) 75 0
Cons. 11 32 (6) 320 0 0 10 (12) 88 0
Aggr. 19 0 (3) 278 2 7 0 (2) 62 0
Inter. 19 2 (5) 337 1 6 1 (3) 76 0
Cons. 1 37 (0) 253 1 6 10  (2) 68 0

Naeva

URS

Open Dynamic

Table 2.  Summary of the performance for the Aggressive (Aggr.), Intermediate (Inter.), and Conservative (Cons.) 
approaches.  Values are counts of flagged anomalies. For training data, missed seeds are shown in parentheses since they 
were required to be part of the training data but were not part of the training in the classification models. 
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was still able to capture them using active learning.  Further, once a single instance was captured, 
the active learning delineates an effective classifier boundary around these types of responses 
even though they were being treated as one-anomaly responses.  This confirms the expectation 
that the conservative approach works the best when the site is complex and little information is 
available about the types of UXO present in the test data. 
Evaluation of site complexity 
One goal of the Camp Spencer discrimination was to develop a method for determining a priori 
which of the three modeling approaches to use at a given site.  SIG computed a metric of site 
complexity for the Camp Spencer MetalMapper datasets as well as former sites Pole Mountain, 
Camp Butner, and Camp Beale MetalMapper datasets.  Retrospective analysis of these sites had 
suggested that the Pole Mountain Maneuver Area was easy to discriminate.  The aggressive 
approach applied to that site outperformed the 
conservative approach, capturing all the UXO with 
far fewer false positives.  Camp Beale and Camp 
Butner were more difficult.  In both these cases the 
conservative approach performed best.  Performance 
of the different modeling approaches at Camp 
Spencer would suggest that conservative or 
intermediate approaches should have performed 
best.  The intermediate approach, in particular 
should have performed much better had there been some representatives of the small ISO in the 
test pit data and if the two-anomaly responses had been classified better. 
The complexity metric calculated for all these sites is shown in Table 3.  It should be noted that 
while the support of the complexity metric is (0, 1) it is unlikely that the complexity of any site 
will approach 1.  A value near 1 would suggest there is little to no random variation associated 
with sensor, site, clutter properties or UXO properties and that the separation between UXO 
types and clutter spans the entire width of the feature space.  This scenario is unlikely, and such a 
site would not need to be discriminated using a statistical approach.  Thus, one must assess the 
relative complexity among sites not the value of the complexity metric as compared to its 
theoretical support. 
This complexity metric calculated at the different sites exhibits a strong correlation with the 
observed difficulty of the sites.  While there are too few sites to make a definite cutoff for the 
type of model to use given the complexity metric some general rules might be suggested.  Values 
near 0.2 should be conservative.  Values at or near below 0.17 should be aggressive.  But, as the 
Camp Spencer demonstration illustrates, the measure of site complexity must not be the only 
factor in choosing a particular model.  Confidence about the expected UXO types must also be 
considered. 

Site Complexity
Camp Spencer, URS 0.1927
Camp Spencer, Naeva 0.1931
Pole Mountain, MetalMapper 0.1705
Camp Beale, MetalMapper 0.2019
Camp Butner, MetalMapper 0.2075

Table 3. Complexity metric for the current site and 
three former sites.  Larger values suggest more 
intrinsic complexity and a more conservative 
modeling approach. 
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Conclusions and Implications for Future Research/Implementation 
The SIG discrimination process has proven effective at providing efficient site discrimination 
with minimal training data.  Former Spencer Artillery Range provides another example of this.  
The addition of adaptive modeling approaches that use an a priori metric of site complexity has 
increased effectiveness of this approach. The aggressive approach has the capacity to capture 
UXO with the least expense – if the site is of low complexity and there is a large diversity of 
UXO represented in the test pit data.  The conservative approach is best when little is known 
about a site or there are sources of noise such as high-iron soils that make the discrimination 
more complicated.  The intermediate approach can be used for sites where UXO types are well 
known, but the site itself is too complex for the aggressive approach. An area of improvement for 
the SIG discrimination process is defining a better method for deciding whether a given flag 
should have the one-anomaly applied or a multi-anomaly model applied.  Some of the missed 
QC seeds that were two-anomaly responses had one-anomaly fit errors that were lower than 95% 
of the other one-anomaly responses.  A more refined error metric or a method for simultaneously 
including both the one-anomaly responses and the two-anomaly responses should be examined. 
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Appendices 
Appendix A: Points of Contact 

POINT OF 
CONTACT 

Name 

ORGANIZATION 
Name 

Address 

Phone 
Fax 

E-mail 

Role in 
Project 

Lawrence Carin Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919 660-5270 
919-323-4811 

lcarin@ece.duke.edu 

Principal 
Investigator 

Levi Kennedy Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-3456 
919-287-2578 

lkennedy@siginnovations.com 

Project 
Management 

Todd Jobe Signal Innovations Group, Inc. 
4721 Emperor Blvd., Suite 330 

Durham, NC 27703 

919-323-4811 
919-287-2578 

tjobe@siginnovations.com 

Engineer 
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