
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - i -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-084

^`nrfpfqflk=obpb^o`e=moldo^j=
pmlkploba=obmloq=pbofbp=

Computer-Aided Process and Tools for Mobile Software
Acquisition

30 July 2013

LT Christopher Bonine, USN,

Dr. Man-Tak Shing, Associate Professor, and

Dr. Thomas W. Otani, Associate Professor

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 JUL 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Computer-Aided Process and Tools for Mobile Software Acquisition

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Graduate School of Business & Public
Policy,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Mobile devices have, in many ways, replaced traditional desktops in usability usefulness, and availability.
Many companies are scrambling to develop enterprise strategies to provide mobile devices and application
support for their employees and the Department of Defense (DoD) is taking the point in the federal
government?s campaign to deploy mobile devices. A successful DoD mobile software acquisition program
requires efficient and effective means to ensure the proper functioning of the applications. As the majority
of future mobile apps will be developed by small companies (or crowdsourcing individuals) and have
relatively short development cycles, the traditional software verification process that relies on testing of
source code is not effective for vetting mobile apps. This paper presents a new approach for vetting mobile
software. It allows subject-matter experts to specify desirable and undesirable behaviors of the mobile apps
as executable statecharts and verify the target software by running the automatically generated statechart
code against the execution trace of the mobile apps using logfile-based runtime verification. A case study of
formally specifying, validating, and verifying a set of requirements for an iPhone application that tracks
the movement of the iPhone user is used to demonstrate the new approach.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

45

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Abstract

Mobile devices have, in many ways, replaced traditional desktops in usability,
usefulness, and availability. Many companies are scrambling to develop enterprise
strategies to provide mobile devices and application support for their employees,
and the Department of Defense (DoD) is taking the point in the federal government’s
campaign to deploy mobile devices. A successful DoD mobile software acquisition
program requires efficient and effective means to ensure the proper functioning of
the applications. As the majority of future mobile apps will be developed by small
companies (or crowdsourcing individuals) and have relatively short development
cycles, the traditional software verification process that relies on testing of source
code is not effective for vetting mobile apps. This paper presents a new approach for
vetting mobile software. It allows subject-matter experts to specify desirable and
undesirable behaviors of the mobile apps as executable statecharts and verify the
target software by running the automatically generated statechart code against the
execution trace of the mobile apps using logfile-based runtime verification. A case
study of formally specifying, validating, and verifying a set of requirements for an
iPhone application that tracks the movement of the iPhone user is used to
demonstrate the new approach.

Keywords: Mobile apps, formal specification, statechart assertion,
requirements validation, logfile-based runtime verification

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iv -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - v -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

About the Authors

Christopher Bonine is a lieutenant in the United States Navy. He is currently
assigned to the Navy Cyber Defense Operations Command in Norfolk, VA. He has
served as information warfare officer onboard the USS Sampson and as N51
division officer at the Navy Cyber Warfare Development Group. His current interests
are in development and implementation of cyber security policy. Bonine has a
master’s in computer science from the Naval Postgraduate School.

Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943-5000
Fax: (831) 656-3407
E-mail: cbbonine@nps.edu

Dr. Man-Tak Shing is an associate professor at the Naval Postgraduate School. His
research interests include the engineering of software intensive systems. He is on
the program committees of several software engineering conferences. He was the
program co-chair of the Rapid System Prototyping Workshop in 2004 prior to being
the general co-chair for the symposium in 2008. He also served as the program co-
chair of the IEEE System of Systems Engineering Conference in 2010 and 2011. He
received his PhD in computer science from the University of California–San Diego
and is a senior member of IEEE.

Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943-5000
Tel: (831) 656-2634
Fax: (831) 656-3407
E-mail: shing@nps.edu

Dr. Thomas W. Otani is an associate professor of computer science at the Naval
Postgraduate School. His main research interests include object-oriented
programming, mobile and web application development, and database design. He
received his PhD in computer science from the University of California–San Diego in
1983.

Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943-5000
Tel: (831) 656-3391
Fax: (831) 656-3407
E-mail: twotani@nps.edu

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vi -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-084

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
péçåëçêÉÇ=oÉéçêí=pÉêáÉë=

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Computer-Aided Process and Tools for Mobile Software
Acquisition

30 July 2013

LT Christopher Bonine, USN,

Dr. Man-Tak Shing, Associate Professor, and

Dr. Thomas W. Otani, Associate Professor

Graduate School of Business and Public Policy

Naval Postgraduate School

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - viii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ix -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Table of Contents

Introduction .. 1

The V&V of Mobile Apps .. 2

Difficulties in Testing Mobile Apps .. 2

Current Solutions to V&V of Mobile Apps ... 3

Formal Specification and Validation of Mobile Apps .. 5

Statechart Assertions ... 7

Validation of Statechart Assertions ... 9

Logfile-Based Runtime Verification of Mobile Apps .. 11

Computer-Aided Process for the V&V of Mobile Apps ... 12

Case Study .. 13

The GPSTracker Application .. 13

The StateRover Specification, Validation, and Verification Environment 15

Specification and Validation of the Statechart Assertions 18

Log File Preprocessing and Runtime Verification ... 23

Conclusion ... 27

References .. 29

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - x -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xi -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

List of Figures

Figure 1. Example of Requirements Ambiguity ... 6

Figure 2. Iterative Process for Assertion Validation (Based on Drusinsky et
al., 2007) .. 7

Figure 3. A Statechart Assertion for Requirement R1 8

Figure 4. An Exception Test Scenario for Statechart Assertion R1 9

Figure 5. Validating Statechart Assertion via Scenario-Based Testing.......... 10

Figure 6. Test Scenarios for Statechart Assertion R1 10

Figure 7. An End-to-End V&V Process .. 12

Figure 8. Simplified Class Dependency Diagram for the GPSTracker
Application .. 14

Figure 9. Screenshots of the Three Views of the GPS Tracker Application .. 15

Figure 10. Eclipse Version Indigo on Windows 7 .. 16

Figure 11. StateRover Installation Into Eclipse .. 17

Figure 12. Statechart Assertion for Speed Less Than or Equal to Two Meters
per Second ... 20

Figure 13. Statechart Assertion for Speeds Between Two and Five Meters per
Second ... 20

Figure 14. Statechart Assertion for Speeds Greater Than Five Meters per
Second ... 21

Figure 15. Statechart Assertion for WiFi-Only Transmission 21

Figure 16. Statechart Assertion Limiting Log File Transmission Time to 30
Seconds ... 22

Figure 17. Five Seconds to Notify User of Transmission Failure 22

Figure 18. One Hour Time Out Between Successive Log File Transmission .. 23

Figure 19. GPS Application Generated Data Format 23

Figure 20. StateRover Required Log File Format .. 23

Figure 21. Namespace Mapping for Runtime Verification 25

Figure 22. Test Result With Zero Failure ... 25

Figure 23. Sample Log File Containing Erroneous Events 26

Figure 24. Failures After Using the Log File .. 27

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xiii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

List of Tables

Table 1. Speed-Based Requirements .. 19

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xiv -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 1 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Computer-Aided Process and Tools for
Mobile Software Acquisition1

Introduction
In an April 23, 2012, blog post, analyst Frank E. Gillett of Forrester Research

predicted that “tablets will become our primary computing device” in the near future,
with “global tablet sales to reach 375 million units, with one-third purchased by
businesses and two-fifths (or 40 percent) by emerging markets” by 2016. Many
companies are scrambling to develop enterprise strategies to provide mobile devices
and application support for their employees, and the Department of Defense (DoD)
“is taking the point in the federal government’s campaign to deploy mobile devices”
(Kenyon, 2012a). The Defense Information Systems Agency (DISA) has opened a
program office and issued a request for information to solicit ideas from industry for
ways to provide the mobile device management (MDM) services and to run an
applications store (Kenyon 2012b), and the Army has established the Army Software
Marketplace, a prototype online storefront for Army-wide distribution of mobile
software.

As the DoD is charging forward with its mobile programs, it must find ways to
address its concerns in security, authentication, and the logistics in managing and
deploying the rapidly growing number of mobile applications and devices with
varying degrees of access across the DoD enterprise. The Space and Naval
Warfare (SPAWAR) Atlantic System Center is working with the DISA and the
National Institute of Standards and Technology (NIST) to provide warfighters with
access to unclassified information from their handheld devices via the cloud-based
mobility-as-a-service, and the adoption of a hardened kernel for the Android mobile
operating system is another major step towards providing a secure base for the
development of trustworthy mobile software. Moreover, the DoD needs an efficient
and effective process to ensure the proper functioning of the mobile software
(commonly referred to as mobile apps) and to ensure that the software do what it
promises to do without hidden or emergent malicious behaviors.

Mobile apps shrink the software programs that were once only available on a
desktop computer, making them usable on smart phones and mobile devices. The
app market has been growing at an unprecedented rate. The app world, which
consisted of 8,000 Apple titles in 2008, has reached 1 million titles in 2011

1 This work was supported in part by the NPS Acquisition Research Program—OUSD_13 (Project
#:F13-010, JON: R8G59). The views and conclusions in this paper are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S. government.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 2 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

(Freierman, 2011). As the majority of mobile apps is developed by small companies
(or crowdsourcing individuals) and has relatively short development cycles, the
traditional software verification process that relies on testing of source code is not
effective for vetting mobile software. The DoD needs better means to ensure proper
functioning of mobile apps without source code or other detailed information about
the software’s implementation.

This paper presents a new approach for vetting mobile software. It allows
subject-matter experts to specify desirable and undesirable behaviors of the mobile
apps as executable statecharts and to verify the target software by running the
automatically generated statechart code against the execution trace of the mobile
apps using logfile-based runtime verification.

The rest of the paper is organized as follows. The section titled The V&V of
Mobile Apps provides a summary of the current state of verification and validation
(V&V) of mobile apps. The Formal Specification and Validation of Mobile Apps
section presents an overview of statechart assertions, the formal specification
language of choice, and the proposed computer-aided process for the V&V of mobile
apps. The Case Study section presents a case study involving the formal
specification, validation, and verification of a set of requirements for an iPhone
application that tracks the movement of the iPhone user. The final section provides a
summary and draws some conclusions.

The V&V of Mobile Apps
V&V is a software evaluation process that ensures proper and expected

operation. As stated by Michael, Drusinsky, Otani, and Shing (2011),

verification refers to activities that ensure the product is built correctly by
assessing whether it meets its specifications. Validation refers to activities
that ensure the right product is built by determining whether it meets customer
expectations and fulfills specific user-defined intended purposes. (pp. 86–87)

Simply stated, the purpose of V&V is to ensure the software does what it is
required to do, and nothing more.

Difficulties in Testing Mobile Apps
New mobile devices, especially phones, have such short development times

that the devices have been on the market barely long enough to work out existing
bugs before a new device with new software is ready to be released. As an example,
Apple releases a new iPhone model every year and has developed six generations
of iOS. The Android operating system had eight versions in three years. This high
turnover of mobile devices is created not only by demand and competition, but also
by capability increases of computing power, battery life, and screen size. As new

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 3 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

capabilities are added to the devices and applications in each development cycle,
new automated V&V techniques are needed to keep up with the fast pace of mobile
application development.

Additional difficulties in testing mobile applications are due to the limitations of
the hardware. At this time, other than operating system tasks, iPhone can run only a
single application at a single point in time. The purpose is to conserve the limited
computing power of the device as well as reduce power consumption. The negative
aspect is that there is little or no application interaction on a single device. This
prevents useful testing applications from running on mobile devices to analyze the
real-time behavior of application. Even if such ability were possible, the small screen
size would create difficulties in analyzing the data while on the device. Android
devices have the ability for third party developers to create multiprocessing
applications, which could allow analytics to be conducted directly on the device, but
the same screen size limitation would impede analysis of the data. (Readers can
refer to Muccini, Francesco, and Esposito [2012] for a detailed discussion of the
challenges in testing mobile apps.)

These limitations make testing done off the device more amenable. There are
two possible options: use device-specific emulators, or use specially altered
software code to allow offloading of real data from the device onto a computer for
analysis. Although the emulators do a good job of creating a proper environment to
test an application, that method has the limitation of being stuck in place and does
not recreate the ever-changing environment where mobile devices exist. The other
method could potentially include such a robust environment. However, currently
existing techniques require tethering the mobile device to an immobile computer with
a cable connection, thus significantly reducing the mobility of the device under test.

Current Solutions to V&V of Mobile Apps
Monkeyrunner enables the writing of unit tests to test software at a functional

level (“Monkeyrunner Tool,” n.d.). Monkeyrunner uses Python to run testing code on
one or more devices, or an emulator. It can send commands and keystrokes, and
record screenshots. Monkeyrunner allows for repetition of test results, but element
location in the recorded screenshots is the basis for comparing two test results, thus
limiting comparisons to a single screen size.

Android Robotium is a Java-based tool for writing unit tests (“User Scenario
Testing for Android,” n.d.). Similar to Monkeyrunner, it is designed to run as a black-
box testing tool and can run as an emulator as well as run on the actual device,
although it is limited to a single device. Robotium allows for testing of pre-install
software as well. The big difference between Robotium and Monkeyrunner is that
Robotium has a more robust test result comparison. Rather than using a location-

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 4 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

based method, Robotium uses identifiers to recognize elements, which allows
devices of different types and sizes to be compared to ensure consistency.

Lesspainful.com provides a way for customers to run software and unit tests
on physical devices without the cost of owning the devices (“Lesspainful Device
Lab,” n.d.). The customers use the programming language Cucumber to write an
English description of the test they would like to run on their software. Once the
devices to be tested on are chosen, the tests are automated in a cloud-like system
with results from each mobile device presented to the customer to allow for easy
comparison.

Testquest 10 is a software suite, created by BSquare, which enables unit
tests in a device emulator and enables collaboration of geographically dispersed
teams (“Testquest Automated Testing,” 2003). It utilizes extensive use of image
recognition to determine device state as well as the location of applications and
features on the screen. An interesting feature is that if the graphical user interface
(GUI) design is changed and an application or feature is moved from one location to
another, then this suite is able to locate and use the feature.

Bo, Xiang, and Xiaopeng (2007) introduced an approach for testing a device
and software by using what they called sensitive-events. Their approach reduces the
need for screenshot comparisons by capturing these events, such as inbox full, to
determine state change. The software then evaluates these state changes, and if the
events indicate the desired conditions, then the tests continue.

All of the aforementioned software tools are for testing an application to
ensure proper functionality and operations. What they are missing is the ability to
map the operation of the phone directly to a set of requirements. The above tools all
require some form of script writing, which can lead to missing software test cases;
when writing scripts to cover unit tests, the programmer must understand the
requirements and determine boundary (edge) cases in order to properly test for
them. The tools are also limited in their ability to handle context-aware features.
Another limitation is that, due to the limitation of the hardware and the software
testing suites, only one application at a time can be tested.

Delamaro, Vincenzi, and Maldonado (2006) introduced JaBUTi/ME, which
extends the Java byte code analysis tool JaBUTi by adding the ability to run
instrumented code on a mobile device to create trace data and then pass the trace
data to a desktop computer for analysis. By using a method of creating trace data,
this solution is conceptually similar to the idea presented in this paper. However, this
method still requires test cases to be manually written to evaluate the resulting trace
file. Additionally, as the authors stated, the code instrumentation would vary based
on the hardware device the code is being tested on, due to the potential differences

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 5 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

in network connectivity needed to transmit the trace data back to the desktop
computer.

Formal Specification and Validation of Mobile Apps
Michael et al. (2011) pointed out that

software engineers have become competent at verification: we can build
portions of systems to their applicable specifications with relative success.
However, we still build systems that don’t meet customers’ expectations and
requirements. This is because people mistakenly combine V&V into one
element, treating validation as the user’s operational evaluation of the system,
resulting in the discovery of requirement errors late in the development
process, when it’s costly, if not impossible, to fix those errors and produce the
right product. (p. 87)

Hence, first and for most, we need a means for analysts to describe the
desirable and undesirable behaviors of the mobile apps. Typically, the requirements-
discovery process begins with constructing scenarios involving the system and its
environment. From these scenarios, analysts informally express their understanding
of the system’s expected behavior or properties using natural language and then
translate them into a specification. Specifications based on natural language
statements can be ambiguous. For example, consider the following requirement for
a project management software: The software shall generate a project status report
once every month. Will the software meet the customer’s expectation if it generates
one report each calendar month? Does it matter if the software generates one report
in the last week of May and another in the first week of June? What happens if a
project ends before the report generation day? Does the software have to generate
a report for such a project?

Research has shown that formal specifications and methods help improve the
clarity and precision of requirements specifications (Easterbrook, Lutz, Covington,
Ampo, & Hamilton, 1998). However, formal specifications are useful only if they
match the true intent of the customer’s requirements. Because only the subject-
matter expert who supplied the requirements can answer these questions, the
analyst must validate his or her own cognitive understanding of the requirements
with the subject-matter expert to ensure that the specification is correct. For
example, consider the security requirement R1: If there are more than two invalid
login attempts within any 15-second interval, then the mobile device will remain
unavailable for 10 minutes. Whether the scenario shown in Figure 1 violates R1
depends on the interpretation of the starting time of the 10-minute timeout interval.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 6 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 1. Example of Requirements Ambiguity

The best way to validate and disambiguate complex behavioral requirements
is to walk through the different scenarios with the stakeholders and ask them to
confirm or clarify the analyst’s cognitive understanding of the natural language
requirements. Drusinsky, Shing, and Demir (2007) proposed the iterative process for
assertion validation shown in Figure 2. This process encodes requirements as
unified modeling language (UML) statecharts augmented with Java action
statements and validates the assertions by executing a series of scenarios against
the statechart-generated executable code to determine whether the specification
captures the intended behavior.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 7 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 2. Iterative Process for Assertion Validation
(Based on Drusinsky et al., 2007)

Statechart Assertions
A statechart assertion is a UML statechart-based formal specification for use

in prototyping, runtime monitoring, and execution-based model checking (Drusinsky,
2011). It extends the Harel (1987) statechart formalism and is supported by
StateRover, a plug-in for the Eclipse integrated development environment (IDE).
StateRover provides support for design entry, code generation, and visual debug
animation for UML statecharts combined with flowcharts.

The statechart assertion extends Harel statecharts by adding a bSuccess
Boolean flag and by enabling non-determinism. Statechart assertions are formulated
from an external observer’s perspective. Though the bSuccess Boolean is a simple
mechanism, it is instrumental in determining whether an assertion ever fails. The
Boolean indicates whether the assertion was violated by the system being analyzed.
A statechart assertion assumes the requirement that it is based on is met (bSuccess
= true), and it will retain that assumption unless a sequence of events leading to the
violation of the requirement specified by the statechart assertion is observed. Once
an assertion fails (i.e., reaches an error state), bSuccess becomes false and will stay
false for the remainder of the execution. Because the statecharts are simple, it is
easy to identify the assertion that failed and the cause.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 8 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 3. A Statechart Assertion for Requirement R1

Figure 3 shows a statechart assertion for the requirement R1, where the 10-
minute interval starts immediately at the detection of the third invalidLogin event
within a 15-second interval, according to the analyst’s interpretation of the natural
language requirement. The statechart is written from the standpoint of an observer,
who is interested in the proper sequencing of two system events: invalidLogin and
deviceUnlock. It uses two timers to keep track of the timing constraints in R1.
Starting out in the Init state, the statechart transitions to the flowchart-action box
StartTimer when it observes an invalidLogin event. It increments the counter nCnt
and starts the 15-second timer, and then it checks to see whether the counter nCnt
exceeds 2. If nCnt  2, it enters the Count state. Whenever the statechart observes
an invalidLogin event in the Count state, it increments the counter nCnt and then
checks to see whether the counter nCnt exceeds 2. The statechart remains in the
Count state until either the 15-second timer expires or until nCnt > 2. If nCnt > 2, the
statechart enters the LockDevice state and starts the 10-minute timer. The
statechart remains in the LockDevice state until either the 10-minute timer expires or
until it observes a deviceUnlock event. If the statechart observes a deviceUnlock
event in the LockDevice state, then it enters the Error state. The entry action for the
Error state sets bSuccess to false, meaning that the requirement R1 has been
violated.

The StateRover supports the specification of complex requirements using
non-deterministic statecharts. Although deterministic statechart assertions suffice for
the specification of many requirements, theoretical results show that non-
deterministic statecharts are exponentially more succinct than deterministic Harel
statecharts (Drusinsky & Harel, 1994). Non-deterministic statechart assertions
provide a very intuitive way for designers to specify behaviors involving a sliding time

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 9 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

window. In the statechart assertion shown in Figure 3, there is an apparent next-
state conflict when an event invalidLogin is observed in the Init state. StateRover
uses a special code generator to create a plurality of state-configuration objects for
non-deterministic statechart assertions, one per possible computation in the
assertion statechart. Non-deterministic statechart assertions use an existential
definition of the isSuccess method, where if there exists at least one state-
configuration that detects an error (assigns bSuccess=false), then the isSuccess
method for the entire non-deterministic assertion returns false. Likewise, terminal
state behavior is existential: If at least one state configuration is in a terminal state,
then the non-deterministic statechart assertion wrapper considers itself to be in a
terminal state.

For example, the statechart assertion in Figure 3 generates four state-
configuration objects for the test scenario shown in Figure 4 at runtime, one for each
invalidLogin event. The state-configuration object that starts with the second
invalidLogin event ends up in the Error state, causing the isSuccess method to
return false to the test driver.

Figure 4. An Exception Test Scenario for Statechart Assertion R1

Validation of Statechart Assertions
StateRover’s code generator generates a Java class R1 for the statechart

assertion file. The generated code is designed to work with the JUnit Java testing
framework (Beck & Gamma, 1998), as illustrated in Figure 5.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 10 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 5. Validating Statechart Assertion via Scenario-Based Testing

To ensure that the statechart assertion works as specified in R1, we test its
behavior using the JUnit test cases corresponding to the different scenarios shown
in Figure 6 and the one shown in Figure 4.

Figure 6. Test Scenarios for Statechart Assertion R1

Test scenarios 1 and 2 in Figure 6 represent two typical “happy” scenarios.
Test scenario 1 expects the system to detect the three invalidLogin events within a
15-second interval and then lock the device for 10 minutes. Test scenario 2 expects

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 11 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

the system to keep the device open because it observes only two invalidLogin
events within a 15-second interval. Test scenario 3 in Figure 6 and the test scenario
in Figure 4 represent two exception scenarios, where the system allows the device
to be unlocked too early, causing the statechart assertion to enter the Error state,
thereby signaling that the assertion detected a requirement violation.

Logfile-Based Runtime Verification of Mobile Apps
Alves. Drusinksy, Michael, and Shing (2011) presented an end-to-end

process that begins with a system requirement as a natural language specification,
followed by the creation and computer-aided validation of UML statechart-formal
specification assertions, and ends with the logfile-based runtime verification of target
system (see Figure 7). The log files collected from the system execution were
converted into JUnit tests and were run against the assertions in the assertion
repository. If the results of the JUnit tests are positive, then the software application
satisfies the requirements specified by the statechart assertions. If not, the software
application has violated one or more requirements specified by the state assertions.
There can be one or more possible causes of the problem. A detailed analysis of the
execution trace using the StateRover’s animation debug tool is needed to determine
whether the cause of the violation was software errors due to incorrect
implementation of the software or incorrect statechart assertions due to unexpected
operating conditions and scenarios. Actions are then taken to correct the problems,
and the verification cycle is run again.

Alves et al. (2011) applied the process to the specification, validation, and
verification of the critical time-constrained requirements of the Brazilian Satellite
Launcher flight software, and uncovered several inaccuracies in the requirements
understanding and implementation.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 12 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 7. An End-to-End V&V Process

Computer-Aided Process for the V&V of Mobile Apps
We shall apply a similar process to the V&V of mobile apps, which consists of

the following steps:

1. Subject-matter experts determine the properties of interest and the
metrics to verify/measure those properties in the lab.

2. The properties are then expressed precisely as statechart assertions,
whose correctness is validated via runtime verification.

3. The mobile devices and applications are then instrumented, if needed,
for data collection and log file generation.

4. The instrumented codes are deployed to the field via mobile apps
downloads. Metric data are collected in log files while the mobile
devices are being used in the tactical environment, and the log files are
uploaded back to the lab while the mobile devices are being
recharged.

5. The log files are then converted into JUnit tests, and the tests are run
against the statechart assertions in the lab. The test results are
analyzed and reported.

Using log files produced by mobile apps brings two benefits: (1) it captures
the behavior of the application on an actual, physical device; and (2) the data
generated from the execution of the application on a device that is fully mobile is
representative of expected normal operation of the application. Therefore, we can

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 13 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

analyze the log files to determine whether the behavior was correct based on the
requirements. As demonstrated in the next section, we do not need to instrument the
mobile device or its software if the events of interest are derivable from the output
data of the mobile apps.

Case Study
The case study involves a smartphone application that uses a global

positioning system (GPS) to track the location and speed of a person in motion. A
log of the collected GPS data must be kept in the smartphone until it can be
uploaded to a server via Wi-Fi connection. GPS applications can consume a lot of
power and storage space and since mobile devices have limited amounts of both,
minimizing the consumption of both is important.

Due to the limited available storage space on the mobile device we must
minimize the amount of GPS data stored. The method chosen to accomplish this is
to adjust the rate at which the GPS updates occur to be based on the speed at
which the user is traveling. An additional requirement is that the log file must be able
to be transmitted from the device to a server by a Wi-Fi connection only, since many
of the users will not have wired connectors for the devices. If at any point Wi-Fi
connectivity is lost and there is an active transmission, it must be terminated. The
application has a limit of 30 seconds to transmit the log file, after which, if not
successful, the user must be notified of the failed transmission within five seconds.
Additionally, a log file must not be transmitted within one hour of a previous log
transmission. Both the use of a time-limited transmission window for the log file as
well as an infrequent upload of the log file will aid in reducing the amount of power
and bandwidth the application consumes.

The GPSTracker Application
The GPSTracker application is implemented as an iOS app. As such there

are several iOS framework classes included in this app. These framework classes
are generic and particular to iOS apps. Because they are not relevant to the
understanding of the domain-specific logic, no framework classes are included in
Figure 8 (except the UIWindow class, displayed in brown in the diagram).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 14 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 8. Simplified Class Dependency Diagram for the GPSTracker
Application

The GPSTracker software consists of the following seven classes:

 AppDelegate—This is the top-level “main” class of the application.

 UIWindow—This is a framework class for managing the window on the
screen. Each application has exactly one window. The content of the
window is called a view. An application is built from one or more views.
Each view is managed by a view controller. In this application, we have
three views: main, location list, and configuration (see Figure 9).

 MainViewController—This is a controller for managing the main view.
The main view consists of a single toggle button for starting and
stopping the tracking. It also contains two small icons at the bottom of
the view to access the location list and the configuration views.

 LocationListController—This is a controller for displaying the GPS
locations tracked so far. The user has the option of clearing the list.

 ConfigurationController—This is the third controller in the application.
The user enters the necessary information of the server to which the
GPS tracking data are uploaded. The current implementation requires
the host server IP address, the user account, and the password.

 FTPConnection—This a service class for managing the file transfer
protocol (FTP) connection for uploading the data to the FTP server.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 15 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

 Reachability—This service class is for keeping track of the network
connectivity. Information such as the availability of Wi-Fi connectivity is
managed.

Figure 9. Screenshots of the Three Views of the GPS Tracker Application

The StateRover Specification, Validation, and Verification
Environment

The case study uses the StateRover tool that runs on the Microsoft Windows
7 Professional operating system and the Eclipse (version Indigo) software
development environment to create and evaluate the statechart assertions for the
GPSTracker application.

After downloading and starting Eclipse, the standard setup for Eclipse will be
shown. To install the StateRover tool, select “Install New Software” under the Help
menu in Eclipse. The location of the menu is shown in Figure 10.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 16 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 10. Eclipse Version Indigo on Windows 7

Select the “Add” button, and enter the address http://www.time-rover.com/
updates/staterover_Team_3_6 along with a name for the site. A user name and log-
in is necessary to download the files. Make sure to deselect the “Group Items by
Category” check box. Select all six files that appear and select “Next.” Figure 11
shows the files that need to be downloaded. Ensure that there are no errors on the
next screen, and select “Finish.” Once installed, the user can refer to the
“StateRover User Guide” in the Help Contents/Time-Rover folder under the Help
menu in Eclipse for more details of StateRover set-up and usage.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 17 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 11. StateRover Installation Into Eclipse

Next, create a new project for the case study. Select “New” under the File
menu in Eclipse, and then select “Project.” Select the folder “Java” and then “Java
Project.” Eclipse will ask for a project name. Enter a unique name for the project and
click the “Finish” button.

Add the two libraries to the project build path. Select “Properties” under the
File menu in Eclipse. Select “Java Build Path” in the left panel of the pop-up menu
and the “Libraries” tab in the right panel, and then select the “Add External Jars”
button. For our setup, the files are located in the C:/eclipse/plugins/
com.timerover.assertionrepositoryjars_1.0.2.201205162118/ folder. Add both the
TReclipseAnimation.jar and stateroverifacesrc.jar files. After adding them, select the
“Add Library” button. This will allow the addition of JUNIT4 test suite. Select “JUNIT”

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 18 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

and then the “Next” button. In the dropdown menu, select “JUNIT 4” and click
“Finish.”

A small amount of configuration needs to be performed, and an assertion
repository must be created before building statecharts. The assertion repository
allows several statechart assertions to be evaluated concurrently for each log file.
Right click on the new project name in the Package Explorer and select “Toggle
Assertion Repository.” To make the Java code create automatically for your project,
right click on the project name again and select “Enable Statechart Code
Generation.” A quick tip is that when creating a new project, the “Enable Statechart
Code Generation” may appear to be already checked, but it is not. We suggest the
that user uncheck and then re-check it again to ensure that it is actually checked.

Generally, Eclipse will ask if the user would like to view the “Statechart
Diagram Perspective.” A perspective configures the user’s view for the particular
type of coding he/she is doing. This will allow the user to see the properties of
statechart elements. Select “Yes.” If the user was not asked, the perspective can be
selected manually. In the upper right, the user can see the perspective selector
buttons. “Statechart Diagram Perspective” should be available and should be
selected.

Next, add a package for each assertion diagram to the project folder. A
package is Java’s way of organizing the files needed to create a software program
under development. Right click on the project name in the Package Explorer and
select “New,” and then select “Package.” A window will open to ask for a name for
the package. Enter a unique name for the package and click the “Finish” button. To
create a statechart assertion in the package, right click on the package name in the
Package Explorer and select “New,” and then select “Statechart Assertion Diagram”
under the Other/TimeRover folder. A window will open to ask for a name for the
statechart assertion. Enter a unique name for the statechart assertion. Ensure that
the name ends with “.statechart_diagram.” Click “Next” and then “Finish.” Edit the
details of the statechart assertion in the drawing pane. The user may add as many
packages in the same manner as needed.

Specification and Validation of the Statechart Assertions
When a user is traveling at a slow speed like walking, frequent updates are

unnecessary because significant distance changes do not happen quickly. If the
user is traveling at a faster pace, then more updates allow for more consistent
tracking. When the user is traveling at less than or equal to two meters per second,
the application should average five seconds or more per update. This is
approximately the walking speed of a human (Cary, 2005). If the user is traveling at
greater than two meters per second but less than or equal to five meters per second,

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 19 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

then there must be an average of between two and five seconds between updates.
This will be considered the running speed. If traveling greater than five meters per
second, then there must be an average of less than two seconds between updates.
This will be the driving speed.

We decided to use an average time interval (in seconds) between updates
due to the typically less-than-accurate GPS data provided by mobile devices. A
requirement for an average over a minimum of five GPS update events will be
included to reduce the effects of any lack of precision in the GPS data from the
mobile device. Table 1 lists the requirements.

Table 1. Speed-Based Requirements

Drusinsky, Michael, and Shing (2007) stated that a model-based specification
that uses a single, intertwined representation of the software requirements (e.g., as
a single statechart) can become complex and difficult to understand due to the
interaction of each requirement with others. They advocate the use of assertion-
based specification, which allows the requirements to be decomposed into their
simplest forms, and then create a formal representation (e.g., a statechart assertion)
for each requirement. This decomposition allows a one-to-one connection between a
statechart assertion and a customer requirement. A significant benefit of this
connection is that it simplifies the development, analysis, and testing of the
statechart assertions. Other benefits include the following:

1. There is a reduction of the statechart assertion complexity. Because
the complexity of the statechart assertions is minimized, the statechart
assertions are much easier to test for correctness.

2. The one-to-one connection between a statechart assertion and a
customer requirement simplify the changes that need to be made to
the assertions when the requirements change.

3. Statechart assertions can be made to represent a test for both
negative and positive behaviors where as a model-based specification
usually only captures positive behaviors.

4. Tracing unexpected behaviors to the one or more requirements that
they violate is simpler because there is a one-to-one mapping.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 20 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Hence, we refined the speed-based GPS Update requirement into three
requirements. Using the StateRover tool, we created the three statechart assertions
shown in Figures 12, 13, and 14, one for each of the three speed categories of the
speed-based GPS Update requirement.

Figure 12. Statechart Assertion for Speed Less Than or Equal to Two Meters
per Second

Figure 13. Statechart Assertion for Speeds Between Two and Five Meters
per Second

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 21 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 14. Statechart Assertion for Speeds Greater Than Five Meters per
Second

Figure 15 shows the statechart assertion for the requirement that a log file
can be transmitted only when the device is connected to a Wi-Fi access point. Note
that this statechart assertion covers only the requirement that a transmission cannot
start when not connected to Wi-Fi, but it does not capture the requirements that log
files cannot be transmitted within an hour of each other, nor does it cover what
needs to be done when the Wi-Fi connection is lost during a transmission. We chose
to capture the latter with three other statechart assertions (Figures 16, 17, and 18),
thus simplifying the complexity of each statechart assertion.

Figure 15. Statechart Assertion for WiFi-Only Transmission

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 22 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 16. Statechart Assertion Limiting Log File Transmission Time to 30
Seconds

Figure 17. Five Seconds to Notify User of Transmission Failure

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 23 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 18. One Hour Time Out Between Successive Log File Transmission

We tested each of the above statecharts with different scenarios to ensure
that they correctly capture the intent of the natural language requirements.

Log File Preprocessing and Runtime Verification
The GPS application generates log file with the data format shown in Figure

19, which is different from those required by StateRover, like those shown in Figure
20.

Figure 19. GPS Application Generated Data Format

Figure 20. StateRover Required Log File Format

In order to test the log file produced by the GPS application against the
statechart assertions, we need to convert the original log into a log that can be read
by the StateRover tool. We developed a Python script to convert the application log
file into what we call a StateRover log file.

<event>

<sig><![CDATA[wifiConn]]></sig>

<time lang=“c” unit=“sec” val=“1354309664” />

</event>

<event>

<sig><![CDATA[wifiDisconn]]></sig>

<time lang=“c” unit=“sec” val=“1354309665” />

</event>

WIFI_CONN @ 11/30/2012 01:07:44 PM

WIFI_DISCONNECT @ 11/30/2012 01:07:45 PM

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 24 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Because the timestamps in our log files are in seconds, we need to make
sure that StateRover interprets the time increment between two consecutive events
as seconds prior to importing the newly created StateRover log. Double click on the
file named “AssertionTime.properties” located in the package named
assertionrepository in the Package Explorer. There is only a single statement that
defaults the AssertionTime unit to “milli” in the AssertionTime.properties file. Replace
“milli” with “sec” and save the file.

Once that has been done, import the StateRover log. Right click on the
project name in the Package Explorer and select “Import.” A window will open to ask
for a type of file to be imported. Select “Import Log File and Convert into JUnit” under
the TimeRover folder, and then click “Next.” Find the log file to be imported and click
“Finish.” Once done, two files will be added to the project: the log file and an XML
file. The XML file is added to the LegalXmlLogs folder and will be the file used by the
StateRover to generate code. The StateRover’s logfile-to-JUnit converter converts
the StateRover log file into an equivalent JUnit Java class. This class contained the
logfile-based verification test for the statechart assertions.

The final step is to add the namespace map file to the project. This must be
done after importing the log file because it needs to reference the log file. To add the
file, right click on the project name in the Package Explorer and select “New.” Select
“Other” in the pop-up menu, scroll down to the TimeRover folder, and then select
“Namespace Map.” The map can be named to anything, but the default works fine.
The field titled “New Source Log-File” needs to be set to the XML file created in the
LegalXmlLogs folder during the import step. The field titled “New Target Assertion
Repository” needs to be set to the location of the project in which you are working.
Once entered, press the “Finish” button.

Using StateRover’s namespace mapping tool, we created a namespace
mapping that linked the JUnit Java class’s name space (events as defined in the log
files) to the assertion repository’s namespace (events of the Statechart assertions).
Double click on the namespace map file (with suffix “.namespace_map”) in the
Package Explorer to open the namespace map tool shown in Figure 21. The
StateRover’s namespace map in Figure 21 depicts on the left side tree (denoted the
source tree) events taken from a log file and, on the right side tree (denoted the
target tree) events from all assertions in the assertion repository. Connections
between the source and the target trees can be done manually using the user
interface, or automatically using a built-in matching algorithm.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 25 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 21. Namespace Mapping for Runtime Verification

Once this is complete, the test can be run by clicking the “Run” button in the
tool bar. Figure 22 shows the desired result after testing one or more statechart
assertions. If an assertion failure exists (i.e., a bSuccess variable in one of the
assertions was set to false), the statechart assertion where it occurs will be listed on
the left side under the header Statechart assertion failures.

Figure 22. Test Result With Zero Failure

To validate the correct operation of the statechart assertions, we manually
generated some log files containing errors. The log file in Figure 23 is an example
snippet of such log file.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 26 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 23. Sample Log File Containing Erroneous Events

The events in the snippet show that the application that would have produced
this would not have met the requirements. The device completed its log file
transmission even after the device lost the Wi-Fi signal, and there were too many
GPS updates while traveling at the walking speed. This is easy to see in a short log
file, but if this were a log file that was several kilobytes or megabytes in size, then
manually analyzing the file would be tedious and error-prone. Figure 24 shows the
results of running the log file in StateRover. The log file failed the assertion
statechart depicted in Figure 12 and Figure 16.

1.0959 mps @ 11/30/2012 12:11:20 AM
1.3764 mps @ 11/30/2012 12:11:21 AM
0.9190 mps @ 11/30/2012 12:11:22 AM
0.7197 mps @ 11/30/2012 12:11:23 AM
WIFI_CONN @ 11/30/2012 12:11:23 AM
TX_START @ 11/30/2012 12:11:23 AM
1.9180 mps @ 11/30/2012 12:11:24 AM
0.5781 mps @ 11/30/2012 12:11:25 AM
0.3186 mps @ 11/30/2012 12:11:26 AM
0.7450 mps @ 11/30/2012 12:11:27 AM
0.1642 mps @ 11/30/2012 12:11:28 AM
0.7080 mps @ 11/30/2012 12:11:29 AM
1.7338 mps @ 11/30/2012 12:11:30 AM
WIFI_DISCONNECT @ 11/30/2012 12:11:30 AM
1.3015 mps @ 11/30/2012 12:11:31 AM
1.5235 mps @ 11/30/2012 12:11:32 AM
WIFI_CONN @ 11/30/2012 12:11:32 AM
0.8866 mps @ 11/30/2012 12:11:33 AM
1.4841 mps @ 11/30/2012 12:11:34 AM
TX_DONE @ 11/30/2012 12:11:34 AM
3.0644 mps @ 11/30/2012 12:11:35 AM
4.0769 mps @ 11/30/2012 12:11:35 AM
3.2224 mps @ 11/30/2012 12:11:36 AM
3.5195 mps @ 11/30/2012 12:11:36 AM
2.0872 mps @ 11/30/2012 12:11:37 AM

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 27 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Figure 24. Failures After Using the Log File

Conclusion
This paper presented a method for performing V&V on a mobile application

using statechart assertion and logfile-based runtime verification. The environment in
which the DoD frequently operates is abnormal to say the least, and it is tough to
emulate when attempting to perform V&V in a lab environment. It is important that an
application is evaluated in the environment in which it is expected to operate,
especially because the programers are probably unfamiliar with that environment,
making it almost impossible to duplicate the environment in the laboratory. Log files
provide direct insight into the operation of the application and, when used in the
expected environment, can ensure a thorough and valid set of V&V tests. Combining
the use of application log files and statechart assertions allows testers to evaluate
the behavior of an application as it pertains to its adherence to the stated
requirements. Statechart assertions provide a mechanism to represent application
requirements into easy-to-follow diagrams that will be used by StateRover to
automatically produce executable evaluators to evaluate the application log files.
The modeling of the requirements independent of the implementation allows for
multiple applications to be evaluated against the same set of requirements.

We demonstrated the method with a case study involving the V&V of a GPS
mobile app. There are two different services one can use to get the user’s current
location: the standard location service, and the significant-change location service.
The standard location service is a configurable, general-purpose solution and is
supported in all versions of iOS. The significant-change location service offers a low-
power location service that is available only in iOS 4.0 and later and can also wake
up an app that is suspended. Initially in our case study, we attempted to use the
significant-change location service to generate the log file, but this resulted in failure
of the statechart assertions for the speed-based GPS update requirements. After
switching to the standard location service with highest accuracy to generate the GPS
updates, we were able to produce a new log file that satisfies the statechart
assertions. It would be very labor intensive and difficult to manually determine

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 28 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

whether the new log file meets the requirements any better than the previous
version. The StateRover’s logfile-to-JUnit converter and the namespace mapping
tool significantly ease the task of checking test results; we can quickly see that the
new log file (and hence the new implementation) does indeed meet the requirements
once we have imported the log file into StateRover. The methods for testing mobile
apps, as discussed in The V&V of Mobile Apps section of this paper, all require
manual evaluation of test results. The method put forth in this paper not only
automates the checking of test results, it also allows testing of the application in the
expected environment of operation. The case study provides a non-trivial example of
how the use of log files and statechart assertions provides a significant improvement
in the V&V process of applications.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 29 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

References

Alves, M. C. B., Drusinsky, D., Michael, J. B., & Shing, M. (2011, June 27–30).
Formal validation and verification of space flight software using statechart-
assertions and runtime execution monitoring. In Proceedings: Sixth
International Conference on System of Systems Engineering (pp. 155–160).

Beck, K., & Gamma, E. (1998). Test infected: Programmers love writing tests. Java
Report, 3(7), 37–50.

Bo, J., Xiang, L., & Xiaopeng, G. (2007, March 20–26). Mobile test: A tool supporting
automatic black box test for software on smart mobile devices. In
Proceedings: Second International Workshop on Automation of Software Test
(p. 8).

Carey, N. (2005). Establishing pedestrian walking speeds (Draft). Retrieved from
http://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf

Delamaro, M. E., Vincenzi, A. M. R., & Maldonado, J. C. (2006, May 23). A strategy
to perform coverage testing of mobile applications. In Proceedings: 2006
International Workshop on Automation of Software Test (pp. 118–124).

Drusinsky, D. (2011). Practical UML-based specification, validation, and verification
of mission-critical software. Indianapolis, IN: Dog Ear Publishing.

Drusinsky, D., & Harel, D. (1994). On the power of bounded concurrency I: Finite
automata. Journal of the ACM, 41(3), 517–539.

Drusinsky, D., Michael, J. B., & Shing, M. (2007). The three dimensions of formal
validation and verification of reactive system behaviors (NPS-CS-07–008).
Monterey, CA: Naval Postgraduate School.

Drusinsky, D., Shing, M., & Demir, K. (2007). Creating and validating embedded
assertion statecharts. IEEE Distributed Systems Online, 8(5), 3.

Easterbrook, S., Lutz, R. L., Covington, J. K., Ampo, Y., & Hamilton, D. (1998).
Experiences using lightweight formal methods for requirements modeling.
IEEE Transactions on Software Engineering, 24(1), 4–11.

Freierman, S. (2011, December 12). One million mobile apps, and counting at a fast
pace. New York Times. Retrieved from
http://www.nytimes.com/2011/12/12/technology/one-million-apps-and-
counting.html

Gillett, F. (2012, April 23). Why tablets will become our primary computing device.
Retrieved June 12, 2012, from http://blogs.forrester.com/frank_gillett/12-04-
23-

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 30 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

why_tablets_will_become_our_primary_computing_device?cm_mmc=RSS-_-
IT-_-71-_-blog_154

Harel, D. (1987). Statecharts: A visual approach to complex systems. Science of
Computer Programming, 8(3), 231–274.

Kenyon, H. (2012a, January 11). Army sets tone for government’s mobile enterprise
with Android. Retrieved from
http://defensesystems.com/articles/2012/01/16/army-mobile-secure-android-
authentication.aspx

Kenyon, H. (2012b, January 27). DISA office to manage mobile devices, online app
store. Government Computer News. Retrieved from
http://gcn.com/articles/2012/01/27/disa-launches-program-office-to-manage-
mobile-devices.aspx

Lesspainful device lab. (n.d.). Retrieved from
https://www.lesspainful.com/documentation

Michael, J. B., Drusinsky, D., Otani, D. W., & Shing, M. (2011, November–
December). Verification and validation for trustworthy software systems. IEEE
Software, 28(6), 86–92.

Monkeyrunner tool. (n.d.). Retrieved from
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Muccini, H., Francesco, A. D., & Esposito, P. (2012, June 2–3). Software testing of
mobile applications: Challenges and future research directions. In
Proceedings: Seventh International Workshop on Automation of Software
Test (pp. 29–35).

TestQuest automated testing. (2003). Retrieved from
http://www.bsquare.com/products/testquest-automated-testing-platform

User scenario testing for Android. (n.d.). Retrieved from
http://code.google.com/p/robotium/

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

