
AFRL-RV-PS- AFRL-RV-PS- 
TP-2013-0012 TP-2013-0012 
  
 

SPACECRAFT DEBRIS AVOIDANCE USING 
POSITIVELY INVARIANT CONSTRAINT 
ADMISSIBLE SETS (POSTPRINT) 
 
 
Morgan Baldwin, et al.  
 
 
Regents Of The University Of Michigan 
Division Of Research, Development and Administration 
503 Thompson St 
Ann Arbor, MI 48109-1340 
 
 
 
14 Aug 2013 
 
 
 
Conference Paper 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. 

 
 
 

 
AIR FORCE RESEARCH LABORATORY 
Space Vehicles Directorate 
3550 Aberdeen Ave SE 
AIR FORCE MATERIEL COMMAND 
KIRTLAND AIR FORCE BASE, NM 87117-5776 

 

  

sandoval
Typewritten Text



 

DTIC COPY 
NOTICE AND SIGNATURE PAGE 

 
Using Government drawings, specifications, or other data included in this document for  
any purpose other than Government procurement does not in any way obligate the U.S.  
Government. The fact that the Government formulated or supplied the drawings,  
specifications, or other data does not license the holder or any other person or corporation;  
or convey any rights or permission to manufacture, use, or sell any patented invention that  
may relate to them.  
 
 
 
 
 
 
This report was cleared for public release by the 377 ABW Public Affairs Office and is available to 
the general public, including foreign nationals. Copies may be obtained from the Defense Technical 
Information Center (DTIC) (http://www.dtic.mil).   
 
 
 
 
 
 
AFRL-RV-PS-TP-2013-0012 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
//SIGNED//     //SIGNED//     
MORGAN BALDWIN    PAUL HAUSGEN    
Program Manager    Technical Advisor, Spacecraft Component Technology Branch 
        
 
 
 
//SIGNED// 
BENJAMIN M. COOK, Lt Col, USAF 
Deputy Chief, Spacecraft Technology Division 
Space Vehicles Directorate 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  

sandoval
Typewritten Text
Approved for public release; distribution is unlimited. 



 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YY) 
14-08-2013 

2. REPORT TYPE
Conference Paper

3. DATES COVERED (From - To)
17 Jun 2013 – 17 Jun 2013 

4. TITLE AND SUBTITLE  
Spacecraft Debris Avoidance Using Positively Invariant Constraint Admissible Sets 
(Postprint) 

5a. CONTRACT NUMBER 
 
FA9453-12-1-0134 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
61102F 

6. AUTHOR(S)  
 

5d. PROJECT NUMBER 
2304 

Morgan Baldwin, R. Scott Erwin, Ilya Kolmanovsky, and Avishai Weiss 5e. TASK NUMBER 
PPM00011766 

 
 

5f. WORK UNIT NUMBER 
EF007890 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Regents Of The University Of Michigan 

8. PERFORMING ORGANIZATION REPORT   
   NUMBER

Division Of Research, Development and Administration
503 Thompson St 
Ann Arbor, MI 48109-1340 
 

  
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory   AFRL/RVSV 
Space Vehicles Directorate   

3550 Aberdeen Ave., SE  11. SPONSOR/MONITOR’S REPORT 

Kirtland AFB, NM 87117-5776        NUMBER(S) 
  AFRL-RV-PS-TP-2013-0012 
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited.  

13. SUPPLEMENTARY NOTES 
AAS/AIAA Space Flight Mechanics, M. Baldwin, A. Weiss, I. Kolmanovsky, and R. S. Erwin, “Spacecraft Debris Avoidance 
using Positively Invariant Constraint Admissible Sets,” AAS/AIAA Space Flight Mechanics Meeting, Charleston, SC, January 2012, AAS-
12-250.  Government Purpose Rights.  (Clearance # 377ABW-2012-0085, dtd 25 Jan 2012) 
14. ABSTRACT 
To cope with the growing amount of debris in the Earth orbit, spacecraft collision avoidance capabilities are necessary. In this paper, we 
propose an approach to debris avoidance maneuvering based on the use of safe positively invariant sets in order to steer the spacecraft, under 
closed-loop control, around a piece of debris. A connectivity graph of forced equilibria is computed based on the overlap of these 
invariant sets, and a graph search algorithm is then implmented in order to find the shortest path around the debris. Fast growth distance 
computation is employed for on-board real-time applicability. Simulation results are presented that illustrate this approach. 

15. SUBJECT TERMS  
Debris Representation; Static Debris Avoidance Approach; Growth Distance Computations; Connectivity Graph; Graph Search; Bounded 
Disturbances; Linear Time-Varying (LTV); Clohessy-Wiltshire-Hill (CWH) 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON
Morgan Baldwin 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE
Unclassified  Unlimited 20 

19b. TELEPHONE NUMBER (include area 
code) 
 

Standard Form 298 
(Rev. 8-98) 
Prescribed by ANSI Std. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(This page intentionally left blank) 

sandoval
Typewritten Text
Approved for public release; distribution is unlimited. 



(Preprint) AAS 12-250

SPACECRAFT DEBRIS AVOIDANCE USING POSITIVELY
INVARIANT CONSTRAINT ADMISSIBLE SETS

Morgan Baldwin∗, Avishai Weiss†, Ilya Kolmanovsky‡, R. Scott Erwin§

To cope with the growing amount of debris in the Earth orbit, spacecraft collision
avoidance capabilities are necessary. In this paper, we propose an approach to
debris avoidance maneuvering based on the use of safe positively invariant sets in
order to steer the spacecraft, under closed-loop control, around a piece of debris. A
connectivity graph of forced equilibria is computed based on the overlap of these
invariant sets, and a graph search algorithm is then implmented in order to find
the shortest path around the debris. Fast growth distance computation is employed
for on-board real-time applicability. Simulation results are presented that illustrate
this approach.

INTRODUCTION

More than 22,000 identifiable objects, mostly debris, are being tracked today in space and many
of them represent spacecraft collision risk. Motion planning problems with debris avoidance have
been studied in robotics applications1, 2 for many years. Related problems in spacecraft applica-
tions have several unique features. Firstly, the environment is relatively uncluttered as compared to
typical robotics applications. This gives an opportunity to perform fuel efficient debris avoidance
maneuvers. The minimization of fuel consumption and maneuver efficiency are very important
in spacecraft applications. Excessive use of fuel can shorten spacecraft mission life, even if the
debris collisions are avoided. Secondly, the spacecraft dynamics and orbital motions are quite dif-
ferent from those of typical robots while the control authority of spacecraft thrusters is very limited.
Thirdly, the position of the debris and the states of the spacecraft are estimated but may not be
accurately known. Fourth, fast computational algorithms are necessary for deployment within the
control units of small satellites. Fifth, spacecraft may be flying alone or in formation and may
need to avoid multiple debris that may be moving relative to the spacecraft. These unique features
lead to both challenges and opportunities in the development of specific and effective maneuvering
solutions for spacecraft applications.

The interest in spacecraft trajectory optimization with obstacle avoidance has increased in recent
years. In Ref. 3, this problem was formulated as an optimal control problem with path constraints
constructed as ’keep out’ zones to avoid obstacles. The SOCS software was then used to solve
the problem. An optimal control problem formulation was used in Ref. 4 to solve the minimum-
fuel rendezvous between a chief and deputy vehicle. Collision avoidance constraints were added to
the problem in the form of inequality constraints, resulting in an inequality constrained, nonlinear
∗Research Aerospace Engineer, Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM.
†Graduate Assistant, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI.
‡Professor, Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI.
§Principal Research Aerospace Engineer, Space Vehicles Directorate, Air Force Research Laboratory, Albuquerque, NM.
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programming problem. The method involved solving a sequence of unconstrained optimal control
problems, whose solution converges to the solution of the original problem. Maneuver avoidance
strategies have also been determined utilizing collision avoidance probabilities. Ref. 5 presents
collision avoidance strategies based upon the number of evasive maneuvers, expected risk reduction,
false alarm rate, and required propellant consumption and mass fraction for an accepted collision
probability.

Artificial potential function guidance is used in Ref. 6 and 7 to determine a rendezvous solution
on a path free of obstacles. A potential function is developed with the intent that a minimum occurs
at a desired relative position and then a dynamic control law is used to ensure the trajectory is
obstacle free.6 A 3-D static optimization over final relative position and time-of-flight such that
obstacles are avoided and cost is optimized is presented in Ref. 7. Feedback is incorporated by
re-planning over either constant or variable time intervals.

The spacecraft obstacle avoidance problem has also been treated using linear programming tech-
niques.8, 9, 10, 11 In Ref. 8, the minimum-fuel avoidance maneuver problem is formulated with linear
constraints and discrete dynamics modeled as a linear, time-varying system. The trajectory opti-
mization problem is formulated as a linear programming problem with the capability of including
operational constraints and the optimal number of maneuvers is determined in Ref. 9. A mixed-
integer linear program results from combining collision avoidance, trajectory optimization, and fleet
assignment to obtain the optimal solution for spacecraft maneuvers as shown in Ref. 10. A robust
linear programming technique is proposed in Ref. 11. The maneuver can be constructed by solving
a linear programming problem with no integer constraints and guaranting collision avoidance with
respect to bounded navigation uncertainty.

Our approach in this paper is based on the use of constraint-admissible positively invariant sets12

centered around forced and unforced spacecraft equilibria in the HCW (relative motion) frame,13

and corresponding to different choices of the Linear Quadratic (LQ) control gain. The finite set
of these equilibria used for constructing debris avoidance maneuvers is referred to as a virtual net.
Given an estimate of the debris position, we build on-line a connectivity graph that identifies the
equilibria in the virtual net between which the spacecraft can move, with guaranteed collision-free
and thrust-limited motions. The construction of the connectivity graph is based on fast growth
distance computation between two ellipsoidal-type sets. We then employ real-time graph search
algorithms to determine an efficient path between the equilibria and control gains used that permit
debris avoidance. Simulation results are reported that illustrate the approach.

In our approach we do not rely on precise assignment of spacecraft position to the time instants
along the trajectory but wait for the appropriate conditions to switch to the next set-point and con-
troller gain. This approach is conservative and may facilitate fault-tolerant and disturbance-tolerant
execution of the maneuvers.

RELATIVE MOTION MODEL

In the traditional treatment of the relative motion problems, the spacecraft motion is considered
relative to the (non-inertial) Hill’s frame with the origin at a target location on the nominal orbit. For
generic elliptic orbits, the linearization of the nonlinear equations of motion equations yields a set
of linear time-varying Tschauner-Hempel (TH) equations. For circular orbits, these TH equations
reduce to the well known linear time-invariant Clohessy-Wiltshire-Hill (CWH) equations. See Ref.
13. A nominal circular orbit is assumed in this work.
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Nonlinear equations of motion

The relative position vector of the spacecraft with respect to a target location on a circular orbit
is expressed as

δ~r = xı̂+ yı̂+ zk̂,

where x, y and z are the components of the position vector of the spacecraft relative to the target
location and ı̂, ̂, k̂ are the unit vectors of the Hill’s frame. The Hill’s frame has its x-axis along the
orbital radius, y-axis along the orbital track, and z-axis orthogonal to orbital plane. The position
vector of the spacecraft with respect to the center of the Earth can be expressed as ~R = ~R0 + δ~r =
(R0 +x)̂ı+ y̂+ zk̂, where R0 is the nominal orbital radius. The nonlinear equations of motion for
the spacecraft (relative to an inertial frame) can be expressed in vector form as

~̈R = −µ
~R

R3
+

1

mc

~F , (1)

where ~F is the vector of external forces applied to the spacecraft, R = |~R|, mc is the mass of the
spacecraft, µ is the gravitational constant, and

~̈R = (ẍ− 2nẏ − 3n2x)̂ı+ (ÿ + 2nẋ)̂+ (z̈ + n2z)k̂.

In these equations, n =
√

µ
R3

0
denotes the mean motion of the nominal orbit. Similar equations can

be used to describe the motion of the debris.

Linearized HCW equations in discrete-time

For δr << R, the linearized HCW equations13 approximate the relative motion of the spacecraft
on a circular orbit as

ẍ− 3n2x− 2nẏ =
Fx
mc

,

ÿ + 2nẋ =
Fy
mc

,

z̈ − 3n2z =
Fz
mc

,

(2)

where Fx, Fy, Fz are components of the external force vector (excluding gravity) acting on the
spacecraft.

Assuming a sampling period of ∆T sec, we can convert the model (2) to a discrete-time form

X(t+ 1) = AX(t) +BU(t), (3)

where X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T is the state vector at the time instant t ∈ Z+,
U(t) = [Fx(t), Fy(t), Fz(t)]

T is the control vector of thrust forces at the time instant t ∈ Z+, and
A, B are the discretized matrices obtained from HCW equations. Alternatively, the control vector
U can represent an instantaneous change in the velocity of the spacecraft, ∆v, induced by thrust,
with an appropriately re-defined B-matrix.

3
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DEBRIS AVOIDANCE BASED ON A VIRTUAL NET

In this paper we treat a spacecraft motion planning problem with debris avoidance. We initially
assume that the debris is stationary relative to the spacecraft. The case of moving debris will be
discussed later in the paper.

Our approach to debris avoidance is based on utilizing constraint-admissible positively invariant
sets12, 14 centered around the spacecraft forced and unforced equilibria. A finite set of these equi-
libria used for constructing debris avoidance maneuvers is referred to as a virtual net. Given an
estimate of the debris position, we build a connectivity graph that identifies the equilibria in the vir-
tual net between which the spacecraft can move, with guaranteed collision-free motion and within
the available thrust authority. We then employ graph search to determine an efficient path between
the equilibria that permits debris avoidance.

Virtual Net

The virtual net comprises a finite set of equilibria, Xe(r), corresponding to a finite set of pre-
scribed spacecraft positions r ∈ N = {r1, r2, . . . , rn} ⊂ R3,

Xe(rk) =

[
rk
0

]
=



rkx
rky
rkz
0
0
0

 , k = 1, · · · , n. (4)

See Figure 1. We assume that for all r ∈ N , the corresponding values of control necessary to
support the specified equilibria in steady-state satisfy the imposed thrust limits.

Debris

Figure 1: The virtual net for debris avoidance.

LQ Controller with Gain Switching

A conventional Linear-Quadratic (LQ) feedback is used to control the spacecraft to a commanded
equilibrium in (4),

U = K(X −Xe(r)) + Γr = KX +H(K)r, (5)

4

Approved for public release; distribution is unlimited.



where

Γ =

 −3n2mc 0 0
0 0 0

0 0 3n2mc

 ,
H(K) = Γ−K

[
I3

03

]
,

and where I3 denotes the 3 × 3 identity matrix and 03 denotes the 3 × 3 zero matrix. This LQ
controller provides an asymptotically stable closed-loop system but does not enforce the constraints.

To provide greater flexibility in handling constraints, a multimode controller architecture is em-
ployed.14 Specifically, we assume that a finite set of LQ gainsK ∈ K = {K1, · · · ,Km} is available
to control the spacecraft. By using a large control weight in the LQ cost functional, motions with
low fuel consumption yet large excursions can be generated; using a large control weight in the LQ
cost, motions with short transition time can be generated.15 We assume that a preference ordering
has been defined and the gains are arranged in the order of descending preference, from K1 being
the highest preference gain to Km being the lowest preference gain.

Positively Invariant Sets

The ellipsoidal set

C̄(r,K) = {X ∈ R6 :
1

2
(X −Xe(r))

TP (K)(X −Xe(r)) ≤ 1} ⊂ R6, (6)

where (A+BK)TP (A+BK)−P < 0, P = P (K) > 0, is positively invariant. Positive invariance
implies that any trajectory of the closed-loop system that starts in C̄(r,K) is guaranteed to stay
in C̄(r,K) as long as the same LQ gain K is used and the set-point command r is maintained.
To achieve the positive invariance, the matrix P can be the solution of the discrete-time Riccati
equation or the above Lyapunov equation for the closed-loop asymptotically stable system. We note
that because the system is linear, the positive invariance of C̄(r,K) implies the positive invariance
of the scaled set

C(r,K, ρ) = {X ∈ R6 :
1

2
(X −Xe(r))

TP (K)(X −Xe(r)) ≤ ρ2}, ρ ≥ 0 (7)

Geometrically, the set C(r,K, ρ) corresponds to an ellipsoid scaled by the value of ρ and centered
around Xe(r), r ∈ N .

Debris Representation

We use a set, O(z,Q), centered around the position z ∈ R3, to over-bound the position of the
debris, i.e.,

O(z,Q) = {X ∈ R6 : (SX − z)TQ(SX − z) ≤ 1}, Q = QT > 0, (8)

where

S =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 . (9)

This set can account for the debris and spacecraft physical sizes, and also for the uncertainties in
the estimation of the debris/spacecraft position. Note that the set O(z,Q) has an ellipsoidal shape
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in the position directions and it has a cylindrical shape in the velocity directions. Ellipsoidal sets
rather than polyhedral sets are used to over-bound the debris since ellipsoidal bounds are typically
produced by position estimation algorithms, such as the Extended Kalman Filter (EKF).

Debris Avoidance Approach

Consider now ri ∈ N , representing a possible position on the net that the spacecraft can move
to as a part of the obstacle avoidance maneuver. Suppose that the current state of the spacecraft is
X(t0) at the time instant t0 ∈ Z+. If there exists a ρ ≥ 0 and Kj ∈ K such that

X(t0) ∈ C(ri,Kj , ρ) and O(z,Q) ∩ C(ri,Kj , ρ) = ∅, (10)

the spacecraft can move to the position ri ∈ N by engaging the control law with r(t) = ri and
K(t) = Kj , t ≥ t0, and without hitting the debris. This idea underlies our subsequent approach to
debris avoidance, where we maintain the spacecraft trajectories within the tube formed by positively
invariant sets that do not overlap with the debris.

Growth Distances

The minimum value of ρ ≥ 0 for which O(z,Q)
⋂
C(r,K, ρ) 6= ∅ is referred to as the growth

distance, similarly to Ref. 16. This growth distance can also be viewed as the least upper bound
on the values of ρ for which O(z,Q) and C(r,K, ρ) do not intersect. See Figure 2. We use the
notation ρg(r,K,Q, z) to reflect the dependence of the growth distance on the set-point r ∈ N , the
control gain K ∈ K and the obstacle parameters Q and z.

Note that the growth distance depends on the position of the debris which may be unknown in
advance. Consequently, the growth distance computations have to be performed online.

Debris

z
O(z,Q)

ri

S C(ri ,K,���x

S �

Figure 2: The positively invariant set is grown till touching the debris. The spacecraft can move
from any of the equilibria on the virtual net inside the positively invariant set C(r,K, ρ) to Xe(ri)
marked by ’x’ without colliding with the debris.

Since the spacecraft maneuvers have to be performed using limited thrust, we additionally define
a maximum value of ρ = ρu(r,K) for which X ∈ C(r,K, ρu(r,K)) implies that the thrust U =
KX + H(K)r satisfies the imposed thrust limits. We refer to ρu as the thrust limit on growth
distance. Unlike ρg, the value of ρu does not depend on the position or shape of the obstacle and
can be pre-computed off-line. Suppose that the thrust limits are expressed in the form ||LU || ≤ 1

6
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for an appropriately defined matrix L and norm || · ||. The computational procedures to determine
ρu(r,K) involves solving a bilevel optimization problem where ||L(KX+H(K)r)|| is maximized
subject to the constraint X ∈ C(r,K, α) and bisections are performed on the value of α so that the
maximum value is driven to 1.

Finally, we define the thrust limited growth distance

ρ∗(r,K,Q, z) = min{ρg(r,K,Q, z), ρu(r,K)}. (11)

Note that X(t0) ∈ C(ri,Kj , ρ
∗(ri,Kj , z)) implies that the ensuing closed-loop spacecraft trajec-

tory under the control (5) with r(t) = ri and K(t) = Kj for t ≥ t0 satisfies the thrust limits and
avoids debris collisions.

Connectivity Graph and Graph Search

We now introduce a notion of connectivity between two vertices of the virtual net, ri ∈ N and
rj ∈ N . The vertex ri is connected to the vertex rj if there exists a gain K ∈ K such that

Xe(ri) ∈ intC(rj ,K, ρ
∗(rj ,K, z)). (12)

The connectivity implies that a spacecraft located close to an equilibrium corresponding to ri can
transition to an equilibrium Xe(rj) by using limited thrust and avoiding collision with the debris.
We note that if ri is connected to rj this does not imply that, in turn, rj is connected to ri. We also
note that connectivity depends on the existence of an appropriate control gain from the set of gains
K but the condition (12) does not need to hold for all gains.

The on-line motion planning with debris avoidance is performed according to the following pro-
cedure:

Step 1: Determine the debris location and shape (i.e., z and Q).

Step 2: By using fast growth distance computations, determine thrust limited growth distance based
on (11), with ρg computed online and ρu pre-computed off-line.

Step 3: Construct a graph connectivity matrix between all ri, rj ∈ N . In the graph connectivity
matrix, if two vertices are not connected, the corresponding matrix element is zero; if they are
connected the corresponding matrix element is 1. In parallel, build the control gain selectivity
matrix, which identifies the index of the highest preference gain K for which ri and rj are
connected. This gain will be applied if the edge connecting ri and rj is traversed.

Step 4: Perform graph search to determine a sequence of connected vertices r[k] ∈ N and control
gains K[k] ∈ K, k = 1, · · · , lp, such that r[1] satisfies the initial constraints, r[lp] satisfies
the final constraints, and the path length lp is minimized.

Per the above algorithm, a graph search is utilized to determine the minimum number of equi-
librium hops around a piece of debris. After the path has been determined as a sequence of the
set-points and the corresponding control gains, the execution of the path proceeds by checking if
the current state, X(t) is in the safe positively invariant set corresponding to the next reference r+

and next control gain K+ in the sequence; if it is, then the controller switches to this reference and
control gain:

X(t) ∈ C(r+,K+, ρ∗(r+,K+, z))→ r(t) = r+, K(t) = K+.

7
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Growth Distance Computations

The fast online growth distance computation can greatly facilitate the implementation of the pro-
posed approach.

For given z ∈ R3, r ∈ R3 and K ∈ K, the growth distance is the minimum value of ρ ≥ 0
for which O(z)

⋂
C(r,K, ρ) 6= ∅. To determine the growth distance, one enlarges C(r,K, ρ) by

changing ρ until touching O(z). Since C(r,K, ρ) is compact and O(z) is closed, it can be shown
that the growth distance exists and is well-defined.

Define X̄ = X −Xe(r) and α = 2ρ2. The problem of determining the growth distance reduces
to the following constrained optimization problem:

min
α,X̄

α

subject to X̄TPX̄ ≤ α
((S(X̄ +Xe(r))− z)TQ((S(X̄ +Xe(r))− z) ≤ 1.

(13)

To solve this optimization problem, we use the Karush-Kuhn-Tucker (KKT) conditions. Note
that the standard linear independence constraint qualification conditions hold given that P > 0. We
define

L = α+ λ1(X̄TPX̄ − α)

+ λ2((S(X̄ +Xe(r))− z)TQ(S(X̄ +Xe(r))− z)− 1),

where λ1 and λ2 are Lagrange multipliers. The stationarity of the Lagrangian (setting partial deriva-
tive equal to zero) with respect to α leads to the condition λ1 = 1. The stationarity of the Lagrangian
with respect to X̄ leads to

PX̄ + λ2S
TQSX̄ + λ2S

TQ(SXe(r)− z) = 0,

or
X̄ = X̄(λ2, r, z) = −(P + λ2S

TQS)−1STQ(SXe(r)− z)λ2, (14)

where λ2 ≥ 0 is a scalar to be determined. Note that P > 0, STQS ≥ 0, λ2 ≥ 0 (as the Lagrange
multiplier corresponding to an inequality constraint) imply that (P + λ2S

TQS) is invertible.

A computational procedure to determine the growth distance can now be defined based on the
bisections approach. Specifically, the bisections can be performed to find a nonnegative scalar λ2

which is the root of the equation

F (λ2, r, z) = ((SX − z)TQ(SX − z)− 1 = 0, (15)

where
X = X̄(λ2, r, z) +Xe(r).

Computationally, these bisections to find λ2 can be performed rapidly.

An alternative procedure to using bisections is to apply a Newton-Raphson method to determine
the unknown λ2 in the nonlinear equation (15). Since the computations of the growth distance
need to be performed for different r ∈ N and possibly z (in the case the debris is moving), we
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propose an even faster approach than bisections to the distance computation based on viewing the
above root finding problem as a functional root-finding problem where the parameters are z and r.
Unlike conventional root finding problem, in a functional root finding problem, a root needs to be
determined as a function of a parameter.

Consider an iterative update procedure for λ2 in response to changes in z and r. Let the super-
script k denote the kth iteration. As the Newton-Raphson’s approach is based on setting a first order
approximation of F to zero, we consider the following approximate equation

F (λk+1
2 , zk+1, rk+1) ≈ F (λk2, z

k, rk) +
∂F

∂λ2
(λk2, z

k, rk)(λk+1
2 − λk2)

+
∂F

∂z
(λk2, z

k, rk)(zk+1 − zk) +
∂F

∂r
(λk2, z

k, rk)(rk+1 − rk) = 0.

Solving this equation leads to a predictor-corrector update algorithm of the form,

λk+1
2 = λk2 + { ∂F

∂λ2
(λk2, z

k, rk)}−1{−F (λk2, z
k, rk)

− ∂F

∂z
(λk2, z

k, rk)(zk+1 − zk)− ∂F

∂r
(λk2, z

k, rk)(rk+1 − rk)}. (16)

The computational procedure involves first setting rk and zk to nominal values and letting several
algorithm iterations to take place. Given quadratic convergence rate associated with the Newton-
Raphson’s method, we expect fast convergence during these initial iterations to take place. We then
start varying rk and zk, letting λk2 respond based on (16) and letting X̄(λk2, r

k, zk), computed using
(14), track the minimizer. Under suitable assumptions, and following steps of showing quadratic
convergence rate for Newton’s method, it can be demonstrated that the minimizer tracking accuracy,
||X̄k−X̄∗k||, is of orderO(ε), where ε bounds ||rk+1−rk|| and ||zk+1−zk||, and where X̄∗k denotes
the true minimizer. Consequently, slowing changes in r and z reduces the minimizer tracking error.
To implement the algorithm, we take advantage of the explicitly known functional form for F , and
use the following expressions

∂X̄

∂λ2
= (P + λ2S

TQS)−1
{
−STQ(SXe(r)− z)

}
,

∂F

∂λ2
= 2(SX̄ − r)TQ(S

∂X̄

∂λ2
),

∂X̄

∂r
= (P + λ2S

TQS)−1
{
−STQSΩ

}
λ2,

∂F

∂r
= 2(SX̄ − z + r)TQ(S

∂X̄

∂r
+ I3),

∂X̄

∂z
= (P + λ2S

TQS)−1STQSΩλ2,

∂F

∂z
= 2(SX̄ − z + r)TQ(S

∂X̄

∂z
− I3).

In these equations,

Xe(r) = Ωr, where Ω =

[
I3

0

]
,
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and I3 denotes the 3× 3 identity matrix.

Figure 3 illustrates the growth distance tracking in the case when z = [0.3, 0.4, 0.5]T, Q = 100I3

and P = PT > 0 is determined as a solution to the Lyapunov equation. For the first 20 iterations,
rk is a constant and then starts to vary slowly through the virtual net. The growth distance tracking
is accurate. Figure 4 illustrates the growth distance tracking in the case when rk varies through
points in the virtual net in such a way that the distance becomes zero for some of the points.
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Figure 3: Implementation of parameter-dependent Newton-Raphson algorithm.
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Figure 4: Implementation of parameter-dependent Newton-Raphson algorithm.

Extensions

The above approach considered a single debris which remained stationary relative to the space-
craft. Multiple stationary or moving debris can be handled with a similar approach. The basic idea
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is discussed in this paper and will be developed further in future publications. In this approach a
union of a finite number of sets of ellipsoidal shape,

D =

i=nd⋃
i=1

O(zi, Qi), (17)

where the ith set is denoted by zi ∈ R3 and the ith set shape is defined by Qi = QT
i > 0 is

used to cover the predicted paths of one or multiple debris. The growth distance is redefined as the
minimum distance to each ofO(zi, Qi), i = 1, · · · , nd, and used to construct the connectivity graph
and perform motion planning. A simulation example of avoiding collision with two debris will be
presented in the next section.

Another extension is to incorporate bounds on the disturbances due to air drag, solar pressure or
thrust errors. The main modifications required are in the definition of the vertex connectivity and in
the notion of the invariance of C(r,K, ρ∗(r,K, z)). Specifically, we consider the vertex ri as being
connected to the vertex rj if there exists Kj ∈ K such that for all K ∈ K

F∞(ri,K) ⊂ intC(rj ,Kj , ρ
∗(rj ,K, z)), (18)

where F∞(ri,K) denotes the minimum invariant set14 of the closed-loop dynamics with the gainK
and set-point, ri. This minimum invariant set plays a role similar to Xe(r), i.e., it is the minimum
asymptotic attractor of the closed loop trajectories under the influence of all possible disturbance
inputs. The set C(rj ,Kj , ρ

∗(rj ,K, z)) must be positively invariant under the influence of distur-
bances satisfying the specified bounds. This in effect imposes a lower limit on ρ∗(rj ,K, z) and
makes the case C(rj ,Kj , ρ

∗(rj ,K, z)) = ∅ more common. However, under suitable probabilistic
assumptions on the independence of the disturbances for different time instants, the connectivity
condition (18) can be replaced by the weaker, “disturbance-free” condition (12). See Ref. 14 for
the basic approach in the multimode controller case.

SIMULATION

Simulations are now provided that illustrate our debris avoidance approach. We consider a nom-
inal circular orbit of 850 km and discretize the HCW equations with a sampling period, ∆T , of
120 seconds. We construct an approximately 2 km cubed virtual net and define two sets of pref-
erence ordering for our LQ gains. We refer to the first preference ordering of LQ gains as mini-
mum fuel ordering where gains corresponding to higher control penalty and lower fuel consump-
tion are preferred. For this ordering, we let Q = diag(100, 100, 100, 0.1, 0.1, 0.1) and R = ρI3,
where ρ = 2 × 109, 2 × 108, 2 × 107, 2 × 106. We refer to the second preference ordering of
LQ gains as the minimum time ordering where gains corresponding to lower control penalty and
faster response are preferred. For this ordering, we keep the same Q and let R = ρI3, where
ρ = 2× 104, 2× 103, 2× 102, 2× 101.

An ellipsoidal set over-bounds a piece of debris, O(z1, Q1), centered at z1 = [0.3 0.4 0.5]T

km and with Q1 = 100I3. We use the fast distance computation technique based on bisections
to determine the growth distance to the debris from each node in the net. The spacecraft’s initial
condition is X(0) = Xe(r0), where r0 = [1.58 1.0 1.58]T. The target equilibrium node is Xe(0).
Finally, we do not consider thrust constraints in this simple example. Dijkstra’s algorithm is used to
find the shortest cost path from initial node to final node.
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Figure 5 shows the path the spacecraft takes under closed-loop control in order to avoid the debris.
The case when minimum time gain preference ordering is used is shown in Figure 5a, and the case
when minimum fuel gain preference ordering is used is shown in Figure 5b. In both cases, the
spacecraft is able to complete the desired maneuver while successfully avoiding the debris.

(a) Minimum time LQ gain ordering preference. (b) Minimum fuel LQ gain ordering preference.

Figure 5: Debris Avoidance Path. The green x marks the initial node, the blue x marks the final
node. The red ellipsoid represents the debris. The blue line is the path the spacecraft takes in order
to avoid the debris. The blue ellipsoids represent the invariant sets along the path.

In Figure 6 we rerun the above simulation for a grid of initial conditions. The minimum time
maneuvering, shown in Figure 6a, clearly demonstrates the initial conditions for which the manuever
path is purturbed from that which it would have taken had there been no debris.

Finally, we add a second piece of debris, O(z2, Q2), centered at z2 = [−0.3 0.4 0.5]T and with
Q2 = 100I3. In calculating the growth distance, we take the minimum distance to each ofO(zi, Qi),
i = 1, 2 . Figure 7 shows the path the spacecraft takes under closed-loop control in order to avoid
the debris. The case of minimum time gain preference ordering is shown in Figure 7a. The case
of minimum fuel gain preference ordering is shown in Figure 7b. Note that while the “minimum
time” maneuver path is not noticeably changed as compared to the case with one piece of debris,
the “minimum fuel” maneuver path is quite different, as the second piece of debris lies along the
path the controller would have selected had the second piece of debris not been there.

CONCLUSION

The paper proposed an approach to spacecraft relative motion control which satisfies constraints
on thrust and avoids collisions with debris. The approach is based on switching between set-points
in a virtual net and maintaining the spacecraft trajectory within a tube formed by safe positively
invariant sets. The invariant sets have ellipsoidal shape, and fast online distance computation has
been proposed to determine a distance between two ellipsoidal objects.

Several extensions of this approach are of interest, including less conservative treatment of the
case of multiple debris, and will be pursued in future publications.
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(a) Minimum time LQ gain ordering preference.

−2

0

2

−2−1012

−2

−1

0

1

2

x (km)

Debris Avoidance Path

y (km)

z 
(k

m
)

(b) Minimum fuel LQ gain ordering preference.

Figure 6: Debris Avoidance Path for many initial conditions. The green x marks the intial node, the
blue x marks the final node. The red ellipsoid represents the debris. The blue line is the path the
spacecraft takes in order to avoid the debris. We do not show the invariant set ellipsoids for visual
clarity.

(a) Minimum time LQ gain ordering preference. (b) Minimum fuel LQ gain ordering preference.

Figure 7: Debris Avoidance Path for 2 pieces of debris. The green x marks the intial node, the
blue x marks the final node. The red ellipsoid represents the debris. The blue line is the path the
spacecraft takes in order to avoid the debris. The blue ellipsoids represent the invariant sets along
the path.
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