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Abstract

The researchers made significant progress in all of the proposed research areas. The first major task in
the proposal involved model-based randomized methods for global optimization. In support of this task, the
researchers developed new methods for stochastic derivative estimators for discontinuous payoff functions;
the method includes Infinitesimal Perturbation Analysis and the Likelihood Ratio method as special cases
and can be applied to functions of more general forms containing indicator functions. The researchers de-
veloped a new method of distributed ordinal comparison of selecting the best option, which maximizes the
average of local reward function values among available options in a dynamic network. they discovered a
new innovative approach to simulation-based global optimization by building a connection between global
optimization and evolutionary games, as well as another new approach that exploits particle filtering; they
have summarized our model-based results in a comprehensive survey paper. The researchers also made
significant progress in other model-based randomized methods, including a stochastic search algorithm for
solving general optimization problems with little structure; the algorithm iteratively finds high quality solu-
tions by randomly sampling candidate solutions from a parameterized distribution model over the solution
space.

In support of the second task, the researchers made progress incorporating simulation-based and sam-
pling methods into Markov Decision Processes (MDPs). They made significant progress in new simulation-
based approaches to MDPs, and in applications to problems of supply chains and finance. In particular, the
researchers have developed a simulation-based algorithm called Approximate Stochastic Annealing (ASA)
for solving finite horizon MDPs.

In addition, the researchers developed a theory and new methods for solving dynamic stochastic opti-
mization problems with non-convex risk-sensitive performance measures, as well as two new methods for
simulation optimization.
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1 Introduction
In this research project, we proposed to investigate basic questions aimed at challenges in information su-
periority, logistics, and planning for the Air Force of the future. In particular, we proposed to investigate
simulation-based methodologies for global optimization and planning that can be effective tools in an in-
tegrated approach to Command and Control (C2), planning, and logistics. The questions we investigated
were motivated by future Air Force requirements, which will involve a flexible and world-responsive set
of missions. More agile, responsive, and integrated systems will be required. The aim of the research was
to facilitate Air Force decision making at many levels of operations, particularly at the mission, campaign,
and strategic levels. The proposed simulation-based methodologies were intended to provide approaches to
optimization and comparison of Alternative Courses of Action in Air Force simulation-based models.

Such problems and systems are exceedingly complex; in order to solve them, we focused on using
simulation-based methods for global optimization and sequential decision making under uncertainty.

In particular, we combined three approaches in the study of such problems:

• Developing, studying, and analyzing efficient simulation-based and sampling methodologies for global
optimization problems;

• Developing and studying efficient parallel simulation-based and sampling methodologies for problems
of dynamic decision making under uncertainty;

• Studying the application of these optimization methodologies to practical problems, such as preven-
tive maintenance, path planning for unmanned aerial vehicles, and financial engineering.

1.1 Model-Based Global Optimization

For a a bounded deterministic measurable function H : X →R, where X is the feasible solution space,
the optimization problem is to find

x∗ ∈ argmax
x∈X

H(x). (1)

It is common in many situations to introduce a measurable strictly increasing fitness function, φ : R→R+,
and reformulate (1) as

x∗ ∈ argmax
x∈X

φ (H(x)) , (2)

which guarantees the range of the new fitness-objective function will always be non-negative.
Model-based global optimization methods use probability distributions to weight promising areas of

the solution space, where the distribution is updated iteratively based on output from the samples drawn
according to the current distribution. They are well suited for global optimization problems where there is
limited structural information on the optimizing function (e.g., derivatives, convexity).

1.2 Simulation-Based and Sampling Methods for Markov Decision Processes

Simulation optimization problems arising in supply chain management, path planning for unmanned aerial
vehicles, financial engineering, and telecommunications are characterized by two critical aspects: changing
dynamics and stochastic events. For example, effective supply chain management requires optimal respon-
sive actions in the face of both gradual shifts in demand patterns (e.g., due to technology advances) and
sudden unpredictable disruptions in production capacity (e.g., due to an unanticipated manufacturing facil-
ity shutdown). Such systems often require computationally expensive simulation models for performance
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estimation, such as modeling the operations of an entire semiconductor fabrication facility, where simulation
runtime is typically on the order of hours. Markov decision processes (MDPs) provide a powerful paradigm
for modeling optimal decision making under uncertainty in these settings, but MDPs suffer from the well-
known curse of dimensionality, which can include exponential growth in the size of state spaces and action
spaces with the problem size; thus, direct numerical solution of MDPs for large-scale real-world problems
presents a formidable computational challenge. In general, heuristics and approximations are employed
to simplify the MDP model. Perhaps the most successful example of this approach has been approximate
dynamic programming using value function approximation (cf. [4, 16, 29, 37, 40]).

The PIs have developed evolutionary and simulation-based algorithms that provide new advances in the
solution of MDPs [9]. These advances include the following approaches: adaptive multi-stage sampling —
well-suited for large state spaces but relatively smaller action spaces; and population-based evolutionary
randomized policy search — designed to handle large action spaces. The PIs have developed many such
algorithms [7, 8, 9, 10, 12, 23].

2 Research Results
2.1 Model-Based Global Optimization

We distinguish between instance-based and model-based global optimization solution methods. In instance-
based methods, the search for new candidate solutions depends directly on previously generated solutions,
e.g., simulated annealing, genetic algorithms (GAs), tabu search, and nested partitions. On the other hand, in
model-based algorithms, new candidate solutions are generated via an intermediate probability model that is
iteratively updated. Our research has focused on the model-based optimization framework, which involves
the following ingredients:

(0) specify probability distribution over solution space;
(I) generate candidate solutions by sampling from distribution;

(II) estimate performance of (and possibly improve) candidate solutions;
(III) update distribution based on selected (“elite”) set of candidate solutions.

This approach retains the primary strengths of population-based approaches such as genetic algorithms
— improving upon simulated annealing, which works with a single iterate at a time, while at the same time
providing more flexibility in exploring the entire solution space, introducing more structure in the search
procedure, and allowing theoretical properties to be studied regarding both finite-time performance and
asymptotic convergence. The theory behind the framework is rigorous, but based on an idealized version
of the last three ingredients, specifically the distribution sequence, sampling from the distribution sequence
(or from a surrogate or approximation), and estimation of the performance, since it is observed through
simulation. Schematically, we seek a sequence of distributions

g0,g1,g2, ...−→ g∞,

where g∞ concentrates its mass around the optimal solutions.
Examples for the sequence of distributions {gk} include the instantiation of our model reference adaptive

search (MRAS) method in [22].
However, the sequence {gk} is unknown explicitly a priori, or else the problem would essentially be

solved. Our MRAS approach uses a projection onto distributions that are easy to work with, e.g., uses
a family of parameterized distributions { fθ}, and projects gk onto the family to obtain a sequence that
converges to the (final) target distribution, i.e.,

fθ0 , fθ1 , fθ2 , ...−→ g∞;
a common implementation minimizes the Kullback-Leibler (KL) divergence between fθk and gk at each
iteration, because it leads to analytically tractable solutions if the parameterized distributions are from the
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exponential family. This leads to a population of candidate solutions, from which an elite set is selected and
used to update the distribution.

In [42], we propose a new framework for continuous global optimization problems by building a con-
nection between global optimization problems and evolutionary games, and we show that a particular equi-
librium set of the evolutionary game is asymptotically stable. Based on this connection, we propose a
Model-based Evolutionary Optimization (MEO) algorithm, which uses probabilistic models to generate
new candidate solutions and uses dynamics from evolutionary game theory to govern the evolution of the
probabilistic models. The MEO algorithm also gives new insight into the mechanism of model updating in
model-based global optimization algorithms. Based on the MEO algorithm, a Population Model-based Evo-
lutionary Optimization (PMEO) algorithm is proposed, which captures the multimodal property of global
optimization problems. Simulation experiments demonstrate the effectiveness of the proposed algorithm.

We study in [26] a class of random sampling-based algorithms for solving general non-differentiable
optimization problems. These are iterative approaches that are based on sampling from and updating an
underlying distribution function over the set of feasible solutions. In particular, we propose a novel and
systematic framework to investigate the convergence and asymptotic convergence rates of these algorithms
by exploiting their connections to the well-known stochastic approximation (SA) method. Such an SA
framework unifies our understanding of these randomized algorithms and provides new insight into their
design and implementation issues. Our preliminary numerical experiments indicate that new implementa-
tions of these algorithms based on the proposed framework may lead to improved performance over existing
procedures.

The Annealing Adaptive Search (AAS) algorithm for global optimization searches the solution space
by sampling from a sequence of Boltzmann distributions. For a class of optimization problems, it has been
shown that the complexity of AAS increases at most linearly in the problem dimension. However, despite
its desirable property, sampling from a Boltzmann distribution at each iteration of the algorithm remains
a practical challenge. Prior work to address this issue has focused on embedding Markov chain-based
sampling techniques within the AAS framework. In [24, 25], based on ideas from the recent Cross-Entropy
method and our Model Reference Adaptive Search method, we propose an algorithm, called Model-based
Annealing Random Search (MARS), that complements prior work by sampling solutions from a sequence
of surrogate distributions that iteratively approximate the target Boltzmann distributions. We establish a
novel connection between MARS and the well-known Stochastic Approximation method. By exploiting
this connection, we prove the global convergence of MARS and characterize its asymptotic convergence
rate behavior. Our empirical results indicate promising performance of the algorithm in comparison with
some of the existing methods.

The paper [45] presents a novel interpretation to transform an optimization problem into a filtering prob-
lem, where the goal is to compute the conditional distribution of the unobserved state given the observation
history. We prove that in our formulation the conditional distribution converges asymptotically to a degen-
erate distribution concentrated on the global optimum. Hence, the goal of searching for the global optimum
can be achieved by computing the conditional distribution sequentially. That is done through the application
of particle filtering, a class of sequential Monte Carlo methods for filtering, which has proven convergence
in tracking the conditional distribution. The resultant algorithmic framework unifies some recent random-
ized optimization algorithms as well as providing new insights into their connection. More importantly, the
framework opens up the possibility of new improved algorithms. In particular, we develop a new improved
cross-entropy method under this framework, and the numerical results show that our method is very effective
in preventing premature convergence of the Cross-Entropy method.

The paper [21] aims to improve the sampling efficiency of model-based methods for global optimization
by considering a generalization where a population of distribution models is maintained and subsequently
propagated from generation to generation. A key issue in the proposed approach is how to efficiently allocate
the sampling budget among the population of models to maximize the algorithm performance. We formulate
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this problem as a generalized max k-armed bandit problem, and derive an efficient dynamic sample alloca-
tion scheme based on Markov decision theory to adaptively allocate computational resources. The proposed
allocation scheme is then further used to update the current population to produce an improving population
of models. Our preliminary numerical results indicate that the proposed procedure may considerably reduce
the number of function evaluations needed to obtain high quality solutions, and thus further enhance the
value of model-based methods for optimization problems that require expensive function evaluations for
performance evaluation.

We propose in [15] to improve the efficiency of simulation optimization by integrating the notion of
optimal computing budget allocation into the Cross-Entropy (CE) method. This paper focuses on continuous
optimization problems. In the stochastic simulation setting where replications are expensive but noise in
the objective function estimate could mislead the search process, the allocation of simulation replications
can make a significant difference in the performance of such global optimization search algorithms. A
new allocation scheme is developed based on the notion of optimal computing budget allocation. The
proposed approach improves the updating of the sampling distribution by carrying out this computing budget
allocation in an efficient manner, by minimizing the expected mean-squared error of the CE weight function.
Numerical experiments indicate that the computational efficiency of the CE method can be substantially
improved if the ideas of computing budget allocation are applied.

We have also made considerable advances in applying our sampling and model-based framework and
related techniques to various applications. For example, the assessment of dose-response is an integral
component of the drug development process. Parallel dose-response studies are conducted, customarily, in
preclinical and phase 1, 2 clinical trials for this purpose. Practical constraints on dose range, dose levels and
dose proportions are intrinsic issues in the design of dose response studies because of drug toxicity, efficacy,
FDA regulations, protocol requirements, clinical trial logistics, and marketing issues. We have developed
(see [27]) a free on-line software package called Controlled Optimal Design 2.0 for generating controlled
optimal designs that can incorporate prior information and multiple objectives, and meet multiple practical
constraints at the same time. Researchers can either run the web-based design program or download its
stand-alone version to construct the desired multiple-objective controlled Bayesian optimal designs. Be-
cause researchers often adopt ad-hoc design schemes such as the equal allocation rules without knowing
how efficient such designs would be for the design problem, the program also evaluates the efficiency of
user-supplied designs.

In another application of simulation optimization, we have studied a finance problem in [5]. Assuming
the underlying assets follow a Variance-Gamma (VG) process, we consider the problem of estimating sen-
sitivities such as the Greeks on a basket of stocks when Monte Carlo simulation is employed. We focus on a
class of derivatives called mountain range options, comparing indirect methods (finite difference techniques
such as forward differences) and two direct methods: infinitesimal perturbation analysis (IPA) and the like-
lihood ratio (LR) method, where the latter is also implemented via a recently proposed numerical technique
developed by Glasserman and Liu using the characteristic function. We carry out numerical simulation ex-
periments to evaluate the efficiency of the different estimators and discuss the strengths and weakness of
each method.

Motivated by IPA and the LR method, we derive in [44, 43] a new unbiased stochastic derivative estima-
tor for a class of discontinuous payoff functions that arise in many options pricing settings from finance. Our
method includes IPA and the LR method as special cases and can be applied to functions of more general
forms containing indicator functions. This new estimator can be computed from a single sample path or sim-
ulation, whereas existing estimators in the literature require additional simulations. We apply this method to
sensitivity analysis for European call options and American style call options. For pricing American-style
derivatives using a gradient-based stochastic approximation algorithm, numerical experiments indicate that
the estimator is computationally more efficient than other estimators in the literature.
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In [9], we analyze a call center with multiple customer types and dynamic priority service discipline, in
which a low-priority customer becomes high priority when its waiting time exceeds a given deterministic
service level threshold. Within each priority queue, the service discipline is first come, first served. Based
on a fluid approximation of the system, we apply infinitesimal perturbation analysis (IPA) to derive estima-
tors for the derivatives of the queue lengths with respect to the threshold parameter. Numerical examples
illustrate the validity of the fluid model approximation and the accuracy of the IPA estimators.

In [11], we consider distributed ordinal comparison of selecting the best option, which maximizes the
average of local reward function values among available options in a dynamic network. Each node in the
network knows only its reward function, and edge-connectivity across the nodes changes over time according
to Calafiores model. To estimate each options global reward function value, local samples for each option
are generated at each node, and those are iteratively mixed over the network by a weighted average of local
estimates of instantaneous neighbors. Each node selects an option that achieves the maximum of the current
global estimates as an estimate of the best option. We establish a lower bound on the probability of correct
local-selection at any node, which uniformly converges over the nodes to a lower bound on the probability
of correct global-selection by a virtual centralized node with the total available samples.

In [47, 46], we propose a stochastic search algorithm for solving general optimization problems with
little structure. The algorithm iteratively finds high quality solutions by randomly sampling candidate so-
lutions from a parameterized distribution model over the solution space. The basic idea is to convert the
original (possibly non-continuous, non-differentiable) problem into a differentiable optimization problem
on the parameter space of the parameterized sampling distribution, and then use a direct gradient search
method to find improved sampling distributions. Thus, the algorithm combines the robustness feature of
stochastic search from considering a population of candidate solutions with the relative fast convergence
speed of classical gradient methods by exploiting local differentiable structures. We analyze the convergence
and convergence rate properties of the proposed algorithm, and carry out a numerical study to illustrate its
performance.

2.2 Simulation Optimization
2.2.1 Direct Gradient Augmented Regression (DiGAR)

The classical linear regression model takes the form:

yi = β1xi1 +β2xi2 + · · ·+βdxid + εi = xT
i βββ + εi,

where xi = (xi1,xi2, · · · ,xid)
T ∈ Rd and βββ is to be estimated from the data. The Direct Gradient Augmented

Regression (DiGAR) model in [18] adds the gradient in an intuitive manner:

yi = xT
i βββ + εi, (3)

gi = βββ +δδδ i, (4)
where yi and gi, i = 1,2, . . . ,k are the performance measures and gradient estimates with residuals {εi} and
{δδδ i}, respectively. Since (4) is also a linear relationship, it could in principle be combined with (3) to obtain
the traditional model of the same form but with higher dimension (see Fu and Qu [18, 32]), but at a loss
of the intuition that will become evident by keeping them separate. For illustrative purposes, consider the
one-dimensional problem, i.e., the given data points are (x1,y1,g1),. . ., (xk,yk,gk) and Xβββ = β0+xβ1. Using
ordinary least squares, the function to be minimized is the sum of the squared deviations in both yi and gi:

L =
k

∑
i=1

(yi−β0−β1xi)
2 +

k

∑
i=1

(gi−β1)
2. (5)

Here, for simplicity, the two components are equally weighted; [18] includes the general convex combination
case. Denoting β̂ D

i and β̂ L
i , i = 0,1, as the respective DiGAR and classical linear regression estimators, the
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resulting estimators that minimize (5) are

β̂
D
0 = ȳ− β̂

D
1 x̄, (6)

β̂
D
1 =

k
∑

i=1
(xi− x̄)(yi− ȳ)+ kḡ

k
∑

i=1
(xi− x̄)2 + k

, (7)

whereas the estimators in classical linear regression are

β̂
L
0 = ȳ− β̂

L
1 x̄, β̂

L
1 =

k
∑

i=1
(xi− x̄)(yi− ȳ)

k
∑

i=1
(xi− x̄)2

, (8)

where x̄, ȳ and ḡ are the corresponding sample means of xi, yi and gi. Note that in the DiGAR model, the
form of the intercept estimator given by (6) remains unchanged, whereas the slope estimator given by (7)
has the additional terms nḡ and n in the numerator and denominator, respectively, reflecting the additional
direct gradient information.

Assumption 1.

i) The estimators for the responses and gradients are unbiased, i.e., E(δi) = E(εi) = 0.

ii) All the residuals are uncorrelated, i.e., Cov(εi,ε j) = 0, Cov(δi,δ j) = 0, Cov(εi,δ j) = 0, ∀ i, j.

The quality of the slope estimator is critical for use in sequential RSM, as it provides the basis for the
search direction. Denoting the respective response and gradient residual variances by Var(εi) = σ2 and
Var(δi) = σ2

g , the following result provides one simple sufficient condition under which the variance of the
slope estimator is smaller for the DiGAR model.

Proposition 1. Under Assumption 1, the variance of DiGAR estimator Var(β̂ D
1 ) ≤ Var(β̂ L

1 ) if σ2
g ≤C ·σ2,

where

C =

k+
k
∑

i=1
x2

i − kx̄2

k
∑

i=1
x2

i − kx̄2
> 1.

Since C > 1, as long as the gradient estimate is not too much noisier than the variance of the performance
estimate, the DiGAR slope estimator is guaranteed to provide statistical improvement.

Assumption 2. The residuals are normally distributed, i.e., εi ∼N (0,σ2), δi ∼N (0,σ2
g ).

Assumptions 1 and 2 imply that the performance and gradient estimates are independent due to the
residuals being uncorrelated, and the likelihood function is given by

L(β0,β1,σ
2,σ2

g ) = (2π)−k(σσg)
−k exp

{
− 1

2σ2

k

∑
i=1

(yi−β0−β1xi)
2− 1

2σ2
g

k

∑
i=1

(gi−β1)
2

}
,

which leads to the following respective maximum likelihood estimators (MLEs) for β0 and β1:

β̂
D
0 = ȳ− β̂1x̄, β̂

D
1 =

1
σ2

k
∑

i=1
xiyi +

k
σ2

g
ḡ− k

σ2 x̄ȳ

1
σ2

k
∑

i=1
x2

i +
k

σ2
g
− k

σ2 x̄2
, (9)

for which theoretical superiority of the slope estimator can also be established (proof in [18]).
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Proposition 2. Under Assumptions 1 and 2, the MLE β̂ D
1 in (9) has smaller variance than β̂ L

1 .
These results provide theoretical support for the intuition that the availability of direct gradient esti-

mates is beneficial. However, in most practical applications, the most critical assumptions are generally not
satisfied, e.g., direct gradient estimates are generally correlated with and less precise than the performance
estimates. Furthermore, the implicit assumption that the variance is constant over the input parameter space
is also violated. Even so, preliminary simulation experiments with queueing systems indicate that the con-
clusions are robust to violations in the assumptions, i.e., substantial gains are observed using the DiGAR
models. The following example illustrates typical results that have been observed.

Queueing Example

A single-server, first-come, first-served queue with Poisson arrivals and i.i.d. exponentially distributed ser-
vice times (i.e., an M/M/1 queue) is considered, where the arrival rate is fixed (at 0.2). The performance
measure of interest is the expected system time. For simplicity, the queue is assumed to start empty, and the
output performance is the expected service time of the ith customer, denoted by y(i), which can be calculated
analytically as a function of the mean service time, denoted by x, for the purposes of evaluating the quality
of the fits of the different regression models. For this and many queueing examples, direct gradient estimates
are available using IPA, LR/SF, and WD; for the numerical results reported here, the IPA estimator is used,
as it has the lowest variance in this setting. To compare with traditional regression, three DiGAR models are
considered: uncorrelated, independent Gaussian, and a correlated Gaussian model to be described shortly.
The simulated data, true model and fitted models (DiGAR = uncorrelated, DiGARn = independent normal,
DiGAR* = correlated normal) are plotted in Figure 1, along with the 10 data points (at x = 3.6,3.7, ...,4.5),
which themselves are sample means based on 10 replications. All methods fit the model reasonably well for
the 2nd and 3rd customers, but there are dramatic differences in y(4) and y(5), where the slope of the tradi-
tional model has the incorrect sign, because the small number of replications leads to very noisy estimates of
the system time that indicate a negative trend. The direct gradient estimates (also based on the small number
of replications), however, provide critical additional information that leads to each of the DiGAR models
capturing the correct orientation of the curve. Similar results can be observed for higher-order functional
forms, e.g., quadratic (see Fu and Qu [18]).

Preliminary theoretical and experimental results such as these and others in Fu and Qu [18] are highly
encouraging. In our proposed research, we will use generalized least squares (GLS) to handle correla-
tions and heteroscedasticity. We assume the residuals have zero mean, i.e., E(εεε) = 0, so E(y) = Xβββ , and
Cov(εεε) = V, where the covariance matrix V is non-diagonal due to the correlations between yi and gi. The
generalized least squares estimator is

β̂ββ = (XTV−1X)−1XTV−1y,
and the covariance matrix for β̂ββ is

Cov(β̂ββ ) = (XTV−1X)−1.

If the residuals are assumed to be normally distributed, the MLE of βββ is the same as the GLS estimator. To
make the analysis of the slope estimator tractable, we assume that yi is correlated with g j only when i = j
and corr(yi,gi) = ρ , i = 1,2, · · · ,k. Under these assumptions, the variance of β̂ D

1 is given by

Var(β̂ D
1 ) =

σ2

1
1−ρ2

(
k
∑

i=1
x2

i − kx̄2

)
+ k σ2

σ2
g

, (10)

If 0 < σ2 < ∞, 0 < σ2
g < ∞ and −1 < ρ < 1, then we can show that Var(β̂ D

1 ) in (10) is smaller than
Var(β̂ L

1 ). Generally, ρ , and more generally V, is unknown and must be estimated based on data. Although
the theoretical analysis indicates potential for variance reduction from using the correlated DiGAR model,
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Figure 1: Expected time in system for each customer. For y(4) and y(5), the slope of the standard regression
model has the incorrect sign (negative rather than positive).

the extra computational budget spent on accurately estimating correlations must be traded off with any
potential performance gains.

2.2.2 Gradient-Enhanced Stochastic Kriging (GESK)

Stochastic kriging (SK) was introduced by Ankenman, Nelson, and Staum [1] to handle the stochastic
simulation setting, where the noise in the fitted curve could be viewed as coming from both uncertainty in
the fit and stochastic nature of the underlying system. Thus, unlike in regular (deterministic) kriging, the
fitted curve in stochastic kriging need not go through every data point, making it closer to regression rather
than, e.g., spline interpolation. In the same spirit as DiGAR and the second direction we propose here, Chen,
Ankenman, and Nelson [13] introduced stochastic kriging with gradient estimators (SKG), showing that
SKG provides better prediction than ordinary SK, in the sense of smaller mean squared error (MSE). SKG
is similar to cokriging used in deterministic simulations and directly differentiates correlation functions.
The approach introduced in Qu and Fu [32, 31] and summarized here is fundamentally different, because
it generates a set of completely new data points rather than improving the estimated fit at the originally
provided points.

Given an experiment design (xi,ni), i= 1,2, · · · ,k, stochastic kriging models the simulation output y j(xi)
from jth replication at design point xi as:

y j(xi) = f(xi)
T

βββ +M(xi)+ ε j(xi),

9



where f(xi) ∈ Rp with known functions of xi, βββ ∈ Rp with unknown parameters to be estimated, M is a
realization of a zero-mean random field. The trend term f(xi)

T βββ represents the overall surface mean and the
measurement error is denoted as ε j(xi). The uncertainties in M and ε j are referred as extrinsic and intrinsic
uncertainties, respectively. Denote the sample mean of response output and the average simulation noise at
xi as

ȳ(xi) =
1
ni

ni

∑
j=1

y j(xi), ε̄(xi) =
1
ni

ni

∑
j=1

ε j(xi),

with ȳ = (ȳ(x1), ȳ(x2), · · · , ȳ(xk))
T .

Suppose we want to predict the response y(x0) at x0. Let ΣΣΣM be the k× k covariance matrix implied
by the random field M and ΣΣΣε be the k× k covariance matrix implied by the simulation noise across all de-
sign point x1,x2, · · · ,xk. Let ΣΣΣM(x0, ·) = (Cov(y(x0),y(x1), · · · ,Cov(y(x0),y(xk))

T denote the covariances
between y(x0) and the responses from all design points. Also, let F = (f(x1), f(x2), · · · , f(xk)) be the design
matrix. The MSE-optimal predictor is of the form

ŷ(x0) = f(x0)
T

β̂ββ +ΣΣΣM(x0, ·)T (ΣΣΣM+ΣΣΣε)
−1(ȳ−FT

β̂ββ ), (11)
and the optimal MSE is

MSE(ŷ(x0)) = ΣΣΣM(x0,x0)−ΣΣΣM(x0, ·)T [ΣΣΣM+ΣΣΣε ]
−1

ΣΣΣM(x0, ·). (12)
In an enhanced data setting, we observe the responses y j(xi) and the gradient estimates g j(xi) for the jth
simulation replication at design points xi. Instead of modeling the gradient estimates with the partial deriva-
tive of the random field M as in [13], we model g j(xi) as a noise measurement of the true gradient g(xi), i.e.,
g j(xi) = g(xi)+δδδ j(xi). Denote the sample mean of gradient estimates and the average simulation noise at
xi as

ḡ(xi) =
1
ni

ni

∑
j=1

g j(xi), δ̄δδ (xi) =
1
ni

ni

∑
j=1

δδδ j(xi).

Notice that the response and the gradient estimates are noisy and usually correlated, and we assume that
δ̄δδ (xi) is independent of the random field M.

To incorporate gradient estimates into stochastic kriging, we extrapolate in the neighborhood of the
original design points {xi}, i = 1,2, · · · ,k, i.e., additional response data is generated via linear extrapolations
using the gradient estimates as follows:

x+i = xi +∆xi, ȳ+(x+i ) = ȳ(xi)+ ḡ(xi) ·∆xi. (13)
Different extrapolation techniques can be applied in (13), and we can also add multiple points to the neigh-
borhood of xi. In this preliminary study we assume that the same step size is used for all design points, i.e.,
∆xi = ∆x, i = 1,2, · · · ,k. We also assume that only one additional point is added in the neighborhood of
xi. Let ȳi = ȳ(xi) and ȳ+i = ȳ(x+i ) for simplicity and ȳ∗ be the 2k× 1 vector containing all of the original
response outputs and the additional response outputs in (13):

ȳ∗ = (ȳ1, ȳ2, · · · , ȳk; ȳ+1 , ȳ
+
2 , · · · , ȳ

+
k ).

Similarly, x+ is defined as
x+ = (x1,x2, · · · ,xk;x+1 ,x

+
2 , · · · ,x

+
k ).

To fit this augmented dataset into the stochastic kriging approach, we model the additional points similar to
the original response output, i.e.,

ȳ+(x+i ) = f(x+i )
T

βββ +M(x+i )+ ε
+(x+i ),
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and the variance of the noise ε+(x+i ) and the covariance between ε+(x+i ) and ε(xi) are approximated by

Var
(
ε
+(x+i )

)
= Var(ε(xi))+(∆x)2 tr

[
Cov(δ̄δδ (xi))

]
+2(∆x)1T Cov

(
ε̄(xi), δ̄δδ (xi)

)
,

Cov
(
ε
+(x+i ),ε(xi)

)
= Var(ε(xi))+∆x1T Cov

(
ε(xi), δ̄δδ (xi)

)
.

Let ΣΣΣ
†
M = Cov[M(xi),M(x+j )], ΣΣΣ

+
M = Cov[M(x+i ),M(x+j )], i, j = 1,2, · · · ,k, and ΣΣΣ

∗
M be a 2k×2k covariance

matrix across all the original design points and additional design points, which takes the form

ΣΣΣ
∗
M =

[
ΣΣΣM ΣΣΣ

†
M

ΣΣΣ
†
M ΣΣΣ

+
M

]
.

Similarly, let

ΣΣΣ
∗
ε =

[
ΣΣΣε ΣΣΣ

†
ε

ΣΣΣ
†
ε ΣΣΣ

+
ε

]
,

where

ΣΣΣ
†
ε = diag

{
Cov

(
ε
+(x+1 ),ε(x1)

)
, · · · ,Cov

(
ε
+(x+k ),ε(xk)

)}
,

ΣΣΣ
+
ε = diag

{
Var
(
ε
+(x+1 )

)
, · · · ,Var

(
ε
+(x+k )

)}
.

Let ΣΣΣ
∗
M(x0, ·) be the covariance between y(x0) and all 2k design points. Also, let F∗=(f(x1), f(x2), · · · , f(xk),

f(x+1 ), f(x
+
2 ), · · · , f(x

+
k ))

T be the design matrix. Under the enhanced data setting, we can easily find the
MSE-optimal predictor and the corresponding MSE by substituting ȳ∗, F∗, ΣΣΣ

∗
M(x0, ·), ΣΣΣ

∗
M and ΣΣΣ

∗
ε for ȳ, F,

ΣΣΣM(x0, ·), ΣΣΣM and ΣΣΣε in (11) and (12), respectively.
The random field M is assumed to be second-order stationary, i.e.,

ΣΣΣM(xi,x j) = τ
2R(xi−x j;θθθ),

where τ2 =Var [M(x)] and R(xi−x j;θθθ) is a correlation function with parameter θθθ depending on the distance
between xi and x j. The extended covariance matrix ΣΣΣ

∗
M follows the same correlation structure, and the

parameters (τ2,θθθ) and βββ can be estimated from maximum likelihood estimators (MLEs) provided that ΣΣΣ
∗
ε

is known.

Illustrative Numerical Example

Here, we consider a stylized example adopted from [39] where direct gradient estimates are just assumed to
be available in the canonical form:

y(x) = exp(−1.4x)cos(7πx/2)+ ε, −2≤ x≤ 0, ε ∼N (0,1), g(x) = y′(x)+δ , δ ∼N (0,25).
This is just an exponentially damped sinusoidal function with added noise. A Gaussian correlation function
R(x,x′) = exp{θ(x− x′)2} is used for the kriging. Four experiments will be used to illustrate some charac-
teristics of SK, SKG, and GESK, with respect to the choice of design points and number of replications.

In the upper left graph in Figure 2 we plot predictions using six equally spaced design points based on
20 samples at each point. Because GESK is able to explore the design space more via extrapolation, it does
a better job of capturing the fluctuations of the response surface. When the number of points is increased
to eight (again equally spaced, with 20 samples per point), which in addition to being a larger number of
points also happens to place the points in more critical parts of the design space, all three of the approaches
are able to do a decent job of capturing the true shape, as indicated in the upper right graph.

In the next experiment we increase the number of replications by an order of magnitude (from 20 to 200
per each of the eight design points), which surprisingly leads to a dramatically worse fit for SK, as shown in
the lower left graph. The last experiment then increases the number of points again, this time to 20 (with 200
replications per design point), at which point both SK and SKG perform poorly, whereas GESK continues
to provide an improved fit. Again, because the location of the 20 points is not ideally suited to the shape of
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Figure 2: Test function: y(x) = exp(−1.4x)cos(7πx/2)+ ε , using equally spaced design points;
top row 20 samples per design point; bottom row 200 samples per design point; SK and SKG have poor fits
when design points not well placed (cf. top left and bottom right), whereas GESK robust to placement.

the curve, SKG is lead astray, whereas GESK is still able to capture the shape due to the additional points
generated that can serve to compensate.

This simple numerical example indicates how both GESK and SKG can dramatically improve the meta-
model fit over ordinary stochastic kriging.

2.3 Simulation-Based and Sampling Methods for Markov Decision Processes
We define an MDP {Xi, i = 0,1, ...,T} on state space S and action space A (cf. e.g., [3, 9]). In period
(stage) i, the MDP in state Xi ∈ S takes action ai ∈ A , incurs cost Ci(Xi,ai,ωi), where ωi denotes the
stochastic element (e.g., random number), and then transitions according to

Xi+1 = fi+1(Xi,ai,ωi),

where fi(x,a, ·) denotes the (stochastic) transition function in period i for action a taken in state x. For
notational simplicity, we have not made state and action spaces period dependent.

The objective is to find a feedback control policy π ≡ {πi(x)}T−1
i=0 , which is a sequence of decision rules
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specifying the action ai taken when in state x in period i, that minimizes an expected cost function, usually
either finite horizon total cost, finite horizon discounted total cost, infinite horizon average cost, or infinite
horizon discounted total cost. While we will consider all of these types of cost criteria in our research, in this
proposal we focus on the discounted total cost setting, both finite and infinite horizon; for the risk-neutral
case, we define the value function associated with a policy and initial state:

V π(x) = E

[
T−1

∑
i=0

α
iCi(Xi,ai,ωi)

∣∣∣∣∣X0 = x

]
, (14)

where α is the (one-period) discount factor and T could be infinite, under the assumption that the limit
is then well defined. As stated earlier, the chief context is the setting in which simulation is required to
generate the system dynamics (state transitions) and/or period costs.

We begin by defining some familiar quantities:

Qi(x,a) = (expected) cost-to-go (Q-function) in period i for action a taken in state x
and optimal actions taken henceforth;

Vi(x) = optimal value function in period i for state x.
Then we have the usual Bellman optimality equation [3, 30]:

Vi(x) = inf
a
{E [Ci(x,a,ωi)+αVi+1( fi+1(x,a,ωi))]} , (15)

written here in two-part form:

Qi(x,a) = E [Ci(s,a,ωi)+αVi+1( fi+1(x,a,ωi))] , (16)
Vi(x) = inf

a
Qi(x,a). (17)

An optimal policy in period i will be denoted by

π
∗
i (x) ∈ arg inf

a
Qi(x,a), i = 0, ...,T −1, x ∈S . (18)

When the policy is stationary, the subscript/argument i will be dropped. In the infinite horizon stationary
case, (15) takes the following form:

V (x) = inf
a
{E [C(x,a,ω)+αV ( f (x,a,ω))]} , (19)

and we will assume there exists an optimal stationary policy such that

π
∗(x) ∈ arg inf

a
Q(x,a), x ∈S .

Traditional methods of policy iteration, value iteration, and variants based on linear programming all suffer
from the curse of dimensionality. Furthermore, the transition function fi is generally not known in closed
form (note that in traditional MDP formulations, it is expressed in terms of explicit transition probabilities
assumed given), but may be generated by a complicated stochastic simulation model, so in such a setting,
the traditional methods are not directly applicable.

2.3.1 Non-Convex Dynamic Measures

In recent years, with particular motivation from the field of mathematical finance, many new approaches to
the incorporation of risk into decision making have been developed. One well-studied approach involves
coherent or convex risk measures (cf. [2, 17]); here, we briefly describe some of the work of Ruszczyński
and colleagues in applying this approach to multi-period problems [38, 6]. In this work, expected value
operators are replaced by more general risk measures. It is shown that time-consistent dynamic risk mea-
sures can be written recursively in terms of one-step conditional risk measures; furthermore, these one-step
conditional risk measures are assumed to satisfy properties of coherent measures of risk. Examples of one-
step conditional risk measures satisfying these conditions are mean-semideviation models and conditional
Value-at-Risk (cf. Rockafellar and Uryasev [35, 36]). These risk measures are applied to controlled Markov
processes by defining Markov risk measures.
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To motivate the form of these risk measures, consider the cost function (14) with α = 1 and where Ci is
only a function of Xi and ai. Using the tower property of conditional expectation, V π(X0) can be written as

V π(X0) =C0(X0,a0)+ρ0(C1(X1,a1)+ρ1(C2(X2,a2)+ · · ·+ρT−2(CT−1(XT−1,aT−1)) · · ·)), (20)
where, for any function h,

ρt(h(Xt+1,at+1)) = E[h(Xt+1,at+1)|Xt ].

The work of Ruszczyński and colleagues generalizes the cost function (20) to more general Markov risk
measures satisfying a number of properties. Under appropriate hypotheses, value functions are defined and
dynamic programming equations are shown to lead to optimal Markov policies. Discounted infinite-horizon
problems and undiscounted transient problems are also studied, along with their corresponding analogs of
value iteration and policy.

Cumulative Prospect Theory (CPT)
Prospect theory was proposed in the 1970s by Kahneman and Tversky to model observed behavior in human
decision making that could not be adequately explained by existing utility theory. Although prospect theory
did a better job of explaining the experimental data, and served as the basis on which the Nobel Prize
was awarded to Kahneman in 2002 (Tversky had already passed away), there were still some theoretical
deficiencies that led to various proposed alternatives to and extensions of prospect theory. Cumulative
prospect theory (CPT), also developed by Kahneman and Tversky [41], posits a utility function that has
a reference point against which gains and losses are measured, and is concave on gains and convex on
losses (i.e., horizontal S-shape), along with a probability weighting function that transforms the probability
measure such that a small probability is inflated and a large probability is deflated.

Based on the special utility and weighting functions, a CPT performance measure can be characterized.
A CPT performance measure has the following form:

ρ(R) =
∫

∞

0
w+
(
P
(
u+
(
(R−B)+

)
> t
))

dt−
∫

∞

0
w−
(
P
(
u−
(
(R−B)−

)
> t
))

dt, (21)

where w+ : [0,1]→ [0,1] and w− : [0,1]→ [0,1] are two continuous non-decreasing functions. u+ :R+→R+

and u− :R+→R+ are two utility functions, and the random variable B represents the reference point against
which the performance is measured.

The key to understanding Equation (21) is∫
∞

0
w(P(u(x)> t))dt =

∫
u(x)≥0

u(x)d [w(FX (x))] , (22)

so that the CPT performance measure can be interpreted as the sum of the distorted expected gains and
losses. As mentioned earlier, CPT and other related approaches better explain empirically observed human
behavior in many cases. One way to understand these approaches is the following: recall that an expected
utility assigns a utility to each outcome, and then weights each outcome according to its probability of
occurrence. In CPT, not only are the outcomes transformed using the utility function, but the probabilities
by which they are weighted are also transformed using the weighting function.

Probabilistic Sensitivity
Combining a number of other approaches, including both expected utility maximization and CPT, He and
Zhou [19] proposed a method of risk-averse optimization via quantiles. At the heart of the unification is
the incorporation of the idea of probabilistic sensitivity into risk measures, which is a source of technical
challenges. Overcoming these challenges, He and Zhou restrict their investigation to the drift-diffusion case,
which can be tackled using the martingale approach. Probabilistic sensitivity replaces the (probabilistic)
linearity of expected utility theory with more expressive but also more challenging nonlinear weighting
functions. Because of this modification, the resulting stochastic optimal control problems do not enjoy the
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desirable properties of time-consistency and convexity, which lead to fresh challenges in applying dynamic
programming. Our proposed research builds upon ideas from this work in the MDP setting.

Research Results
The class of coherent risk measures satisfies several properties, one of which is convexity. In many cases,
the convexity requirement is too strong for practical applications. Specifically, the CPT risk measures,
which have nonlinear probabilistic sensitivity, are not convex, but empirical evidence provides support of
their use for predicting human decision-making processes. The class of CPT-inspired measures bestows
upon practitioners the flexibility of choosing gain/loss measure distortion functions, which is important
in expressing risk. This alternative approach of representing risk-sensitivity using probabilistic sensitivity
sets CPT-inspired performance measures apart from the existing risk-sensitive measures. A CPT-inspired
performance measure can be used as the one-step conditional risk measure ρt (·) (i.e., condition on the
knowledge at time t) in Equation (20).

As noted before, we are interested in a broader class of risk-sensitive measures than expected utility;
however, we still need to impose some conditions on the performance measure such that dynamic program-
ming is still applicable. We focus on a class of risk-sensitive measures that contains a subset of CPT-inspired
risk measures. The members of this class of risk-sensitive measures satisfy the following conditions.

Assumption 3. The one-step conditional risk measure, ρt (·), satisfies the following conditions:

1. If Z ≤W then ρt(Z)≤ ρt(W ), ∀Z,W ∈Lt+1;

2. ρt(βZ) = βρt(Z), ∀Z ∈Lt+1,β ≥ 0,

where Lt+1 is the space of t +1 measurable and integrable functions.

A desirable property of the class of risk measures satisfying Assumption 3 is that it include expected utility
and coherent risk measures. As we will see, this class also contains a large subset of CPT-inspired risk
measures. We denote the space of probability measures over A by P (A) and the state transition probability
measure by Qt(·|x,a). The first result presents the optimality criteria for the class of risk measures satisfying
Assumption 3. (The proofs of all theorems in this section can be found in [28].)

Theorem 1. Assume Assumption 3 and the following conditions hold:
1) ∀x ∈S , the stochastic kernels Qt,x : a→ Qt(·|x,a) are continuous.
2) The one-step dynamic risk measure {ρt}T−1

t=0 is Markov, and ∃ a sequence of corresponding risk
transition mappings σt : m→ σ(ψ,x,m), t = 0, . . . ,T −1 that are lower semi-continuous.

3) The functions {Ct(·, ·, ·)}T−1
t=0 are bounded, measurable, and a→Ct(·,a, ·) is lower semi-continuous.

4) ∀x ∈S and t ∈ [0, . . . ,T −1] the set At(x) is compact.
5) The function CT is bounded and measurable.
Then a minimizer for the dynamic programing equations,

vt(x) = min
δ∈P(A(x))

σt (Ct(x, ·, ·)+ vt+1(·),x,δ ◦Qt,x)

vT (x) =CT (x) x ∈S , t = 1, . . . ,T −1, (23)
exists. Furthermore, an optimal policy, π∗ =

{
π∗0 , . . . ,π

∗
T−1
}

, exists and each π∗t,x is a minimizer for the
right-hand side of Equation (23). In addition, every measurable solution of Equation (23) at time 0, v0, is
an optimal solution for Equation (20).

In Theorem 1, the assumptions are standard with the exception of the second. In the second assumption,
ρt (·) is required to be Markov, which means it can be expressed as a function of the risk, the current state,
and the transition probability (i.e., ρt (z) = σt (z,x,m), where x is the current state, and m is the transition
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probability). Other more technical requirements (i.e., boundedness) for a conditional risk measure to be
Markov have been omitted here.

Theorem 1 provides the optimality criteria for a class of dynamic risk measures. The next goal is to
identify the subset of CPT-inspired risk measures that belongs to this class, i.e., satisfy Assumption 3 and
the second assumption of Theorem 1. The following result provides conditions on the gain/loss probability
weighting functions such that the corresponding CPT risk measure belongs to the class of risk measures
satisfying Assumption 3; hence, it is suitable for dynamic programming.

Theorem 2. If w+ and w− are continuous and monotonically non-decreasing functions in Equation (21),
then the assumptions in Theorem 1 are satisfied; hence, dynamic programming is applicable.

Since the requirement on these probability weighting functions is minimal (i.e., continuity and mono-
tonicity), the class of CPT-inspired measures is large. Examples of popular probability weighting functions
and their empirical support can be found in existing literature from the decision theory community. The
finite-horizon case can be extended to the infinite-horizon transient case via assumptions such as k-step
contraction and the Markov model being uniformly transient, as shown in [28].

2.3.2 Additional Results on Simulation-Based and Sampling Methods for Markov Decision Processes

In a simulation-based approach to MDPs, we have developed in [20] a simulation-based algorithm called
Approximate Stochastic Annealing (ASA) for solving finite horizon MDPs. The algorithm iteratively esti-
mates the optimal policy by sampling from a sequence of probability distribution functions over the policy
space. By exploiting a novel connection of ASA to the stochastic approximation method, we show that the
sequence of distribution functions generated by the algorithm converges to a degenerate distribution that
concentrates only on the optimal policy. Numerical examples are also provided to illustrate the algorithm.

In a supply chain application, we consider in [34] a make-to-order business that serves customers in
multiple priority classes. Orders from customers in higher classes bring greater revenue, but they expect
shorter lead times than customers in lower classes. In making lead time promises, the firm must recognize
preexisting order commitments, uncertainty over future demand from each class, and the possibility of
supply chain disruptions. We model this scenario as an MDP and use reinforcement learning to determine
the firms lead-time policy. In order to achieve tractability on large problems, we utilize a sequential decision
making approach that effectively allows us to eliminate one dimension from the state space of the system.
Initial numerical results from the sequential dynamic approach suggest that the resulting policies more
closely approximate optimal policies than static optimization approaches.

Portfolio Selection as introduced by Harry Markowitz laid the foundation for Modern Portfolio Theory.
However, the assumption that underlying asset returns follow a normal distribution and that investors are
indifferent to skew and kurtosis is not practically suited for the hedge fund environment. Additionally,
the lockup and notice provisions built into hedge fund contracts make portfolio rebalancing difficult and
justify the need for dynamic allocation strategies. Market conditions are dynamic; therefore, rebalancing
constraints in the face of changing market environments can have a severe impact on return generation.
There is a need for sophisticated yet tractable solutions to the multi-period problem of hedge fund portfolio
construction and rebalancing. In [14], we generalize the hedge fund asset return distribution to a multivariate
K-mean Gaussian mixture distribution; model the multi-period hedge fund allocation problem as a Partially
Observable Markov Decision Process (POMDP); and propose practical rebalancing strategies that represent
a convergence of literature on hedge fund investing, regime switching, and dynamic portfolio optimization.

In an application to semiconductor manufacturing, we present in [33] the architecture and implementa-
tion of a preventive maintenance optimization software tool (PMOST), based on algorithms for the optimal
scheduling of preventive maintenance (PM) tasks in semiconductor manufacturing operations. We also
present results from four complex simulation case studies, based on real industrial data and employing full
fab models, to illustrate the use, data needs and outcomes produced by PMOST. These results demonstrate
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significant improvements in tool production and consolidation of PM tasks. We give a description of the
different software modules that compose PMOST, to provide guidelines as well as a template for other
implementations of the PM optimization algorithms utilized by PMOST.
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[17] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time. de Gruyter, 2004.

18



[18] M.C. Fu and Huashuai Qu. Augmented regression with direct gradient estimates. Working Paper,
2012.

[19] Xue Dong He and Xun Yu Zhou. Portfolio choice via quantiles. Mathematical Finance, 21(2):203–
231, 2011.

[20] J. Hu and H.S. Chang. An approximate stochastic annealing algorithm for finite horizon markov
decision processes. In Proceedings of the 49th IEEE Conference on Decision and Control, pages
5338–5343, Piscataway, New Jersey, December 2010. Institute of Electrical and Electronics Engineers,
Inc.

[21] J. Hu, H.S. Chang, M.C. Fu, , and S.I. Marcus. Dynamic sample budget allocation in model-based
optimization. Journal of Global Optimization, 2010.

[22] J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method for global optimization.
Operations Research, 55(3):549–568, 2007.

[23] J. Hu, M. C. Fu, V. Ramezani, and S. I. Marcus. An evolutionary random search algorithm for solving
Markov decision processes. INFORMS Journal on Computing, 19(2):161–174, 2007.

[24] J. Hu and P. Hu. An approximate annealing search algorithm to global optimization and its connections
to stochastic approximation. In Proceedings of the 2010 Winter Simulation Conference, pages 1223–
1234, Piscataway, New Jersey, December 2010. Institute of Electrical and Electronics Engineers, Inc.

[25] J. Hu and P. Hu. Annealing adaptive search, cross-entropy, and stochastic approximation in global
optimization. Naval Research Logistics, 58:457–477, 2011.

[26] J. Hu, P. Hu, and H.S. Chang. A stochastic approximation framework for a class of randomized
optimization algorithms. IEEE Trans. Automatic Control, 57:165–178, 2012.

[27] Y. Su J. Hu, W. Zhu and W. K. Wong. Controlled optimal design program for the logit dose response
model. Journal of Statistical Software, 35:1–17, 2010.

[28] Kun Lin. Stochastic Systems with Cumulative Prospect Theory. PhD thesis, University of Maryland,
2013.

[29] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley,
New York, NY, 2007.

[30] M. L. Puterman. Markov Decision Processes. John Wiley & Sons, 1994.

[31] Huashuai Qu and M.C. Fu. Augmented stochastic kriging with direct gradient estimates. Working
Paper, 2012.

[32] Huashuai Qu and M.C. Fu. On direct gradient enhanced simulation metamodels. In Proceedings of
the 2012 Winter Simulation Conference, pages forthcoming, to appear, Piscataway, New Jersey, 2012.

[33] J.A. Ramirez-Hernández, J. Crabtree, X. Yao, E. Fernández, M.C. Fu, M. Janakiram, S. I. Marcus,
and M. O’Connor. Optimal preventive maintenance scheduling in semiconductor manufacturing sys-
tems: Software tool and simulation case studies. IEEE Transactions on Semiconductor Manufacturing,
23:477–489, 2010.

[34] M. Reindorp and M.C. Fu. Dynamic lead time promising. In Proceedings of 2011 IEEE International
Symposium on Adaptive Dynamic Programming and Reinforcement Learning, 2011.

19



[35] R. T. Rockafellar and S. P. Uryasev. Optimization of conditional value-at-risk. The Journal of Risk,
2:21–41, 2000.

[36] R. T. Rockafellar and S. P. Uryasev. Conditional value-at-risk for general loss distribution. The Journal
of Banking and Finance, 26:1443–1471, 2002.

[37] B. Van Roy and J. N. Tsitsiklis. Regression methods for pricing complex American-style options.
IEEE Transactions on Neural Networks, 14:694–703, 2001.
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3.2 Awards

• Michael Fu: Elected Fellow of the Institute of Electrical and Electronics Engineers (IEEE).

• Michael Fu: Elected Fellow of the Institute for Operations Research and the Management Sciences
(INFORMS).

• Steven Marcus: Elected Fellow of the Society for Industrial and Applied Mathematics (SIAM).

• Yongqiang Wang (University of Maryland Ph.D. student): received the INFORMS Computing Society
Student Paper Award 2010 for the paper “A New Stochastic Derivative Estimator for Discontinuous
Payoff Functions with Application to Financial Derivatives.”

• Yongqiang Wang (University of Maryland Ph.D. student): won the Best Student Paper Award for
“Best OR/MS-focused Paper” at the 2010 Winter Simulation Conference, for the paper “Model-based
Evolutionary Optimization.”

3.3 Ph.D. Students Graduated

• Andrew Hall, Ph.D., 2009, Univ. of Maryland, supervised by M. Fu, “Simulating and Optimizing:
Military Manpower Modeling and Mountain Range Options” (currently: US Military Academy, West
Point)

• Matthew Reindorp, Ph.D., 2009, Univ. of Maryland, supervised by M. Fu, “Industrial Flexibility in
Theory and Practice” (currently: Technical University of Eindhoven)

• Abraham Thomas, Ph.D., 2009, Univ. of Maryland, supervised by S. Marcus, “Learning Algorithms
for Markov Decision Processes.”

• Enlu Zhou, Ph.D., 2009, Univ. of Maryland, supervised by S. Marcus and M. Fu, “Particle Filtering
for Stochastic Control and Global Optimization” (currently: Georgia Tech)
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• Ping Hu, Ph.D., 2011, Stony Brook, supervised by J. Hu

• Yongqiang Wang, Ph.D, 2011, Univ. of Maryland, supervised by M. Fu and S. Marcus

• Kun Lin, Ph.D, 2013, Univ. of Maryland, supervised by S. Marcus
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