

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
CrossTalk. The Journal of Defense Software Engineering. Volume 27,
Number 1. Jan/Feb 2014

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave Bldg 1238,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—January/February 2014

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Identifying Trustworthiness Deficit in Legacy Systems
Using the NFR Approach
How do we systematically identify deficit in trustworthiness in existing systems
so that they may be re-engineered with trustworthiness as a priority?
by Nary Subramanian, Steven Drager, and William McKeever

Second Generation Product Line Engineering Takes Hold in the DoD
Product line engineering is a well-established engineering discipline that
provides an efficient way to build and maintain portfolios of systems that
share common features and capabilities.
by Paul Clements, Susan P. Gregg, Charles Krueger, Jeremy Lanman,
Jorge Rivera, Rick Scharadin, James T. Shepherd, and Andrew J. Winkler

Modeling Software Sustainment
An SEI research initiative is developing a model that shows the results of
various investment decisions, allowing decision makers to see the effects
and make adjustments before problems occur.
by Robert Ferguson, Mike Phillips and Sarah Sheard

Using Combinatorial Testing to Reduce Software Rework
In developing many safety-critical, embedded systems, rework to fix software
defects detected late in the test phase is the largest single cause of cost
overrun and schedule delay.
by Redge Bartholomew

Addressing Software Sustainment Challenges for the DoD
As DoD systems continue to age it is increasingly important to create more
efficient and effective approaches to sustaining and advancing the
competitive edge that software provides.
by Michael McLendon, Bill Scherlis and Douglas C. Schmidt

Software Sustainment—Now and Future
Today’s systems are increasingly reliant on software that must
be sustained into the future.
by Mary Ann Lapham

12

4

19

23

27

33

Legacy System Software Sustainment

Departments

Cover Design by
Kent Bingham

	 3	 From the Sponsor

	 37	 Upcoming Events

	39	 BackTalk

CrossTalk—January/February 2014 3

FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG
for sponsoring this issue.

The articles in this edition of CrossTalk address the challenges and op-
portunities associated with Legacy Software sustainment. As DoD budgets
continue to shrink, it is becoming increasingly obvious that in many cases
the best way to achieve new system capability is through modification of
legacy software that is embedded in an existing system. The challenges
of sustaining legacy software over many years are diverse and interesting.
Since the DoD is not likely to field as many new systems in the future due
to reduced budgets, the pressure to keep existing legacy systems opera-
tional will probably continue to increase over time.

Numerous core elements of software sustained in the DoD were
originally written 20 to 30 years ago. Even though many of the software
systems in sustainment today were written two or three decades ago they
still struggle with the same challenges of some new developments. Some
of the main challenges faced by developers and project managers are
related to improving Quality, Predictability, and Reducing Cost and Rework
of software. One area that is changing rapidly is Information Assurance (IA)
or system security. The changes associated with IA and system security can
be significant obstacles to efficient production but are necessary in order to
protect systems from intrusion, data loss, and malicious software.

In this edition of CrossTalk there are two articles related to security of
systems, Identifying Trustworthiness Deficit in Legacy Systems Using the
NFR Approach, and The Transformation of Software Engineering Security.
There is one article specifically focused on reducing rework by catching
defects earlier in the software lifecycle, that article is: Using Combinatorial
Testing to Reduce Software Rework. Additionally there are three articles
devoted to various aspects of improving software sustainment of legacy
systems and they are: Software Sustainment – Now and Future, Modeling
Software Sustainment, and Addressing Software Sustainment Challenges
for the DoD.

I hope that this issue of CrossTalk is helpful to many of you
because as long as it continues to be helpful to the software industry,
it is worth sponsoring this format in order to share good ideas and
relevant information.

Karl G. Rogers
Director
309th Software Maintenance Group

4 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Nary Subramanian, University of Texas at Tyler
Steven Drager, Air Force Research Laboratory
William McKeever, Air Force Research Laboratory

Abstract. Trustworthiness is an important emerging requirement for software sys-
tems deployed by the U. S. Air Force. Trustworthiness, briefly stated, is the ability of
a software system to be safe, secure, and reliable under a normal operating environ-
ment. However, most software systems have not been developed with trustworthi-
ness in mind. Therefore, how do we systematically identify deficit in trustworthiness
in existing systems so that they may be re-engineered with trustworthiness as a
priority? The Non-Functional Requirements (NFR) Approach provides a framework
for identifying gaps in trustworthiness in existing systems and recommending mecha-
nisms to overcome this “shortfall” in re-engineered systems. In this project we applied
the NFR Approach, as a case study to the middleware system called Phoenix used
by the Air Force and determined an 89% shortfall in trustworthiness. The advantages
of identifying this deficit include determination of trustworthiness in current systems,
exploring environments in which current systems may be (re)used, and prioritizing
trustworthiness requirements when these legacy systems are re-engineered.

Identifying Trustworthiness
Deficit in Legacy Systems
Using the NFR Approach

portability, or maintainability, which together ensure non-interfer-
ence with the normal operation of the system.

The NFR Approach [5, 6], where NFR stands for Non-Func-
tional Requirements, provides a framework for systematically
analyzing NFRs such as trustworthiness and decomposing it
further to capture other NFRs like reliability, safety, portability,
etc. The NFR Approach provides the ability to accommodate
alternate definitions of trustworthiness as well as provides a
rationalization process that allows one to evaluate the extent to
which trustworthiness is achieved by a system. More importantly,
the NFR Approach helps to identify gaps in trustworthiness
requirements. By understanding the extent of “shortfall” of trust-
worthiness, one is better prepared to identify solutions neces-
sary to make that system trustworthy for a specified time-scale.

In this paper we apply the NFR Approach to a selected
software system and identify the trustworthiness deficit in the
system. For this purpose we first obtain the definition of trust-
worthiness for this system from its stakeholders and convert the
definitions into a Softgoal Interdependency Graph, an artifact
used by the NFR Approach for reasoning about NFRs, which
are treated as softgoals in the system. Then the designs for the
selected software system are evaluated against trustworthiness
definitions using the propagation rules of the NFR Approach.
This evaluation will identify deficit in trustworthiness and will
permit analysis on how this deficit needs to be overcome. This
analysis will help identify adaptations that are needed to make
the selected software system function in a trustworthy envi-
ronment. These adaptations can be stated in terms of design
modifications and/or implementation mechanisms (for example,
wrappers) that will help the system be used for a specific time-
period in a trustworthy environment.

This problem considered is explained by Figure 1: legacy
system fulfills primarily its requirements and, mostly by accident,
some trustworthy requirements that represent the existing trust
in the legacy system. The trustworthy system includes the re-
quirements for trustworthiness that represent the total expected
trust as well as the re-engineering requirements for the legacy
system. The difference between the total expected trust and the
existing trust is the trustworthiness deficit in the legacy system.

The legacy system we used as a case study is the Phoenix
middleware system used by the Air Force - we identified the
trustworthiness deficit in Phoenix by using the NFR Approach
and developed a process for applying this approach to other
software systems. Our study identified an 89% shortfall in trust-
worthiness in the existing Phoenix system.

This paper was presented at the Software Technology Con-
ference held in Salt Lake City, Utah, in April 2013 [7] and was
well received by the audience.

Background
The existing approaches to trustworthy analysis split into two

categories: product-based and process-based. Product-based
techniques [9] identify factors that impact trustworthiness and
attempt to satisfy these factors in the product. Process-based
techniques, like Trusted Software Methodology [3] and Trust-
worthy Process Management Framework [10] approach the
problem with the belief that trustworthy processes will result in
trustworthy products. However, the NFR Approach considers
trustworthiness as a non-functional requirement for the product

Introduction
Trustworthiness is an important emerging requirement for

software systems including those deployed by the U. S. Air
Force: the National Software Strategy Report [1] has concluded
that trustworthiness in software will become the most important
goal by the year 2015. Trustworthiness, briefly stated, is the abil-
ity of a software system to be safe, secure, and reliable under
normal operating environments [2]. However, several legacy
systems in operation were not designed with trustworthiness
in mind—therefore, these systems can be used in a trustworthy
environment in one of two ways: employing wrappers that will
improve trustworthiness of the system or re-engineering the
system to be trustworthy. The second option is a long-term solu-
tion but will be expensive in terms of effort and cost required to
re-engineer the several dozens of systems being currently used
by the Air Force. The first option, namely, the addition of wrap-
pers may be a more cost-effective option for many systems.
However, how do we systematically identify deficit in trustworthi-
ness in existing systems so that solutions may be developed?
This is especially important when trustworthiness has different
connotations for developers, users, and maintainers.

Trustworthiness has been defined differently by different
sources, based on their approach to determine trust in a system.
For example, in [3] trustworthiness is defined as the degree of
confidence that exists that the system meets its requirements,
while in [4] defines trustworthiness as a level of confidence of
using software engineering techniques to reduce failure rates,
enhance testing, reviews and inspections. A discussion of
software trustworthiness among stakeholders often invokes nu-
merous non-functional attributes like reliability, safety, usability,

CrossTalk—January/February 2014 5

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Legacy System

Re-engineering
Requirements

Legacy System
Requirements

Trustworthiness
Requirements

Trustworthy System

Trustworthiness
Deficit

Existing
Trust

Total Expected
Trustworthiness 	

Figure 1. Context of the Trustworthiness Deficit Problem

being developed; being an NFR its constituents may interact
synergistically or conflictingly and NFR Approach is fully geared
to analyze these tradeoffs.

The NFR Approach
The NFR Approach is a goal-oriented approach that can be

applied to determine the extent to which objectives are achieved
by a process or product [5, 6]. NFRs represent properties of a
system such as reliability, maintainability, and flexibility, and could
equally well represent functional objectives and constraints for
a system (NFRs need to be contrasted with functional require-
ments—the latter state what the software system should do while
the former states requirements that are usually observed as a
characteristic of the system). In this paper we applied the NFR
Approach to design a trustworthy software system by evaluating
whether a specific design element satisfied trustworthy require-
ments for the system. The NFR Approach uses a well-defined
ontology for this purpose that includes NFR softgoals, operation-
alizing softgoals, claim softgoals, contributions, and propagation
rules; each of these elements is described briefly below (details
may be seen in [5]). Furthermore, the NFR Approach uses the
concept of satisficing, a term borrowed from economics, which
indicates satisfaction within limits instead of absolute satisfaction,
since absolute satisfaction of NFRs is usually difficult.

NFR softgoals represent NFRs and their decompositions.
Elements that have physical equivalents (process or product
elements) are represented by operationalizing softgoals and
their decompositions. Each softgoal is named using the conven-
tion (Type [Topic1, Topic2, …]) where Type is the name of the
softgoal and Topic (could be zero or more) is the context where
the softgoal is used; Topic is optional for a softgoal; for a claim
softgoal, which is a softgoal capturing a design decision, the
name may be the justification itself.

Following decompositions of either the NFR softgoals or the
operationalizing softgoals are possible:

1.	AND decomposition is used when each child softgoal of
	 the decomposition has to be satisficed for the parent soft
	 goal to be satisficed but the denial of even one child soft
	 goal is sufficient to deny the parent,

2.	OR decomposition is used when satisficing of even one
	 child satisfices the parent but all children need to be
	 denied for the parent to be denied, and

3. EQUAL decomposition has only one child for a parent
	 and propagates the satisficing or the denial of the child to
	 the parent.

Contributions (MAKE, HELP, HURT, and BREAK) are made
by operationalizing softgoals to the NFR softgoals and by claim
softgoals to other contributions. Reasons for contributions are
captured by claim softgoals, and claim softgoals may form a chain
of evidence where one claim satisfices another which in turn sat-
isfices another and so on. Each of the four types of contributions
has a specific semantic significance: MAKE contribution refers to
a strongly positive degree of satisficing of the objectives (repre-
sented by NFR softgoals) by artifacts (represented by operation-
alizing softgoals) under consideration1, HELP contribution refers
to a positive degree of satisficing, HURT contribution refers to a
negative degree of satisficing, and BREAK contribution refers to
a strongly negative degree of satisficing.

Due to these contributions, some of the softgoals acquire
labels that capture the extent to which a softgoal is satisficed:
satisficed, weakly satisficed, weakly denied (or weakly not sat-
isficed), denied (or not satisficed), or unknown (indicated by an
absence of any label attribute). Moreover, high priority softgoals,
decompositions, and contributions may be indicated using the
criticality symbol. The graph that captures the softgoals, their
decompositions, and the contributions is called the Softgoal
Interdependency Graph (SIG). The partial ontology of the NFR
Approach is shown in Figure 2. The notations used to indicate
the satisficing extent of softgoals are shown in Figure 3.

!

NFR
Softgoal

Operationalizing
Softgoal

Claim
Softgoal

Strongly Positively Satisficing or
MAKE Contribution

Positively Satisficing or
HELP Contribution

Negatively Satisficing or
HURT Contribution

Strongly Negatively Satisficing or
BREAK Contribution

AND Decomposition OR Decomposition Criticality

++ +

- --

	

As shown in Figure 2, normal cloud shaped figures represent
NFR softgoals, dark-bordered cloud shaped figures represent
operationalizing softgoals, and dashed-bordered cloud shaped
figures represent claim softgoals. A green arrow annotated with
two plus symbols indicates a MAKE contribution, a green arrow
annotated with one plus symbol indicates a HELP contribu-
tion, a red arrow annotated with a minus symbol indicates a
HURT contribution, while a red arrow annotated with two minus

Figure 2. Partial Ontology of the NFR Approach

Figure 3. NFR Approach Notations for Softgoal Satisficing

6 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

symbols indicates a BREAK contribution. A line with a single
cross-line represents AND-decomposition while a line with two
cross-lines represents OR-decomposition. Critical elements
(softgoals, decomposition, and contributions) are indicated by
“!” marks. As shown in Figure 3, a softgoal with a green check
mark represents a satisficed softgoal (or a softgoal with a satis-
ficed label), a softgoal with a green W+ annotation represents a
weakly satisficed softgoal, a softgoal with a pink W- annotation
represents a weakly denied softgoal, and a softgoal annotated
with a red X represents a denied softgoal.

Propagation rules propagate labels from child softgoal to the
parent across decompositions, from operationalizing softgoals to
NFR softgoals across contributions, and from claim softgoals to
contributions; propagation rules aid in the rationalization process
of the NFR Approach. In a SIG represented graphically, the NFR
softgoals and their decompositions are shown at the top of the
figure, the operationalizing softgoals and their decompositions
are shown in the bottom of the figure, while the contributions
between the operationalizing softgoals and the NFR softgoals
are shown in the middle. Therefore, contributions are usually
received by the leaf NFR softgoals that are at the bottom of the
NFR softgoal decomposition hierarchy. While detailed propaga-
tion rules may be seen in [5], a simplified list is given below:

R1.	A satisficed label is propagated as satisficed by a
MAKE contribution, as weakly satisficed by a HELP contribu-
tion, as weakly denied by a HURT contribution, and as denied
by a BREAK contribution.

R2.	A denied label is propagated as denied by a MAKE
contribution, as weakly denied by a HELP contribution, as
weakly satisficed by a HURT contribution, and as satisficed by
a BREAK contribution.

R3.	If most of the contributions propagated to a leaf NFR soft-
goal are satisficed then that NFR softgoal is considered satisficed.

R4.	If most of the contributions propagated to a leaf NFR soft-
goal are denied then that NFR softgoal is considered denied.

R5.	In the case of priority softgoals, or when there is a tie be-
tween positive and negative contributions, the system architect
or the developer can take the decision based on or a variation
of R3 and R4

R6.	In the case of an AND-decomposition, if all the child soft-
goals are satisficed then the parent NFR softgoal is satisficed;
else the parent softgoal is denied.

R7.	In the case of an OR-decomposition, if at least one child
softgoal is satisficed then the parent NFR softgoal is satis-
ficed; else the parent softgoal is denied.

R8.	In the case of EQUAL-decomposition (only one child) the
parent is satisficed if the child is satisficed; and the parent is
denied if the child is denied.

Upon applying these propagation rules, if the root (or top-
level) NFR softgoals are satisficed then the goals for the
domain of interest have been met to a large extent. In this paper
the root NFR softgoals will be related to trustworthiness and
therefore the SIG will help determine the extent to which a
particular design is trustworthy.

The NFR Approach requires the following interleaving tasks,
which are iterative

1.	Develop NFR goals and their decompositions: in this task
the trustworthiness softgoal is decomposed into its constituent
NFR softgoals; this decomposition captures the trustworthi-
ness requirements for a system as viewed by a particular group
of stakeholders. These decompositions may be developed from
scratch or may be extensions of existing decompositions.

2.	Develop operationalizing goals and their decomposi-
tions: in this task we develop operationalizing softgoals and
their decompositions. In this paper operationalizing softgoals
correspond to architectural design models2. Each individual
model may form its own operationalizing softgoal decomposi-
tion hierarchy. These models may be developed from scratch or
may use existing catalogs as a starting point.

3.	Develop goal tradeoffs and rationale: in this task we
determine contributions between operationalizing softgoals
(task 2) and the NFR softgoals (task 1) and the rationale for
the contributions are captured by claim softgoals; synergies
and conflicts between different NFR softgoals are captured
by the contributions, and tradeoffs (manifested by changes to
contributions) that take place are captured by corresponding
changes to rationale. This historical record keeping also helps
backtracking, if required.

4.	Develop goal criticalities: in this task we assign priorities
to softgoals—some softgoals (NFR softgoals, operationalizing
softgoals, and claim softgoals) may be more important for
the stakeholders involved and they are indicated as critical
softgoals. Criticalities may also be assigned to decompositions
and contributions.

5.	Evaluation and analysis: in this task the propagation rules
of the NFR Approach are applied to determine whether the
design models satisfy the requirements (represented by NFR
softgoal decomposition hierarchy) and to what extent – that
is, strongly positive, positive, negative, or strongly negative;
if positively satisficed then those design models satisfy the
requirements and if negatively satisficed then there is scope for
improvement.

Example Application of the Steps of the NFR Approach
An example SIG is shown in Figure 4 and we describe how

the five steps of the NFR Approach are applied to this SIG.
Step 1 involves decomposition of NFR goals for the problem
of interest. The upper part of the SIG of Figure 4 captures this
decomposition for the NFR trustworthiness for the Phoenix
system, which is represented by the root NFR softgoal Trust-
worthiness [Phoenix]. Based on the definition of trustworthiness
for the Phoenix system, we decomposed this NFR softgoal into
Dependability [Phoenix], Reliability [Phoenix], Trustworthiness
[Phoenix, Software], and Security [Phoenix], which represent,
respectively, the requirements that Phoenix must be depend-
able, Phoenix must be reliable, software for Phoenix must be
trustworthy, and Phoenix should be secure. This decomposition
is an AND-decomposition, which means all child softgoals must
be satisficed for the parent to be satisficed. The NFR softgoal is
further AND-decomposed into NFR softgoals Security [Mes-
sages] and Timeliness [Messages], which represent, respectively,
the requirements that messages be secure and timely. This
completes the first step.

CrossTalk—January/February 2014 7

LEGACY SYSTEM SOFTWARE SUSTAINMENT

In the second step we decompose the design of the Phoenix
system. This is shown by operationalizing softgoals at the bottom
of Figure 4. We considered two views of the design: Component
and Connector Logical View (represented by the operational-
izing softgoal C&C View [Logical]) and Detailed Module View of
the Submission Service (represented by Module View [Detailed,
Submission Service]). The operationalizing softgoal C&C View
[Logical] is AND-decomposed into three component softgoals
representing Repository Service, Authorization Service, and
Channels. The operationalizing softgoal Module View [Detailed,
Submission Service] is AND-decomposed into its component
softgoals Information Validator, Input Channel Manager, Policy
Manager, and Forwarder. This completes the second step.

In the third step of the NFR Approach we determine the con-
tributions between the operationalizing softgoals and the NFR
softgoals; these contributions are determined by the domain
characteristics. The operationalizing softgoal Repository Service
has a MAKE contribution to the NFR softgoal Reliability [Phoe-
nix] and the justification for this contribution is captured by the
claim softgoal, “C2 user: repository service provides store-and-
forward capability that improves reliability” (here C2 user is one
type of system user); this justification gives the rationale for the
MAKE contribution. The other three contributions in Figure 4 are
BREAK contributions: one between Authorization Service and
Security [Messages] with claim softgoal “Limited Authorization”,
between Channels and Security [Messages] with claim softgoal
“Channels do not encrypt messages”, and between Information
Validator and Security [Messages] with claim softgoal “No au-
thentication or authorization performed”. This completes step 3.

In step 4 we can define priorities for NFR softgoals, op-
erationalizing softgoals, claim softgoals, decompositions, and
contributions. These priorities depend on the domain require-
ments. However, for our discussion here we will assume that all
elements of the SIG have the same priority.

In step 5 we apply the propagation rules of the NFR Approach
to determine the extent of trustworthiness (which is the root NFR
softgoal in the SIG) in the Phoenix system. For this purpose we
assume3, based on our current knowledge of the system, all claim
softgoals are satisficed. Since all claim softgoals have MAKE
contributions, all parent contributions (discussed as part of step 3
above) are satisficed—that is they remain unmodified by the claims.
Next we assume, again based on the current knowledge of the
domain, that the relevant operationalizing softgoals are satisficed,
that is, Repository Service, Authorization Service, Channels, and
Information Validator are all satisficed. By propagation rule R6,
since all child softgoals of the operationalizing softgoal C&C View
[Logical] (the children are Repository Service, Authorization Service,
and Channels) are satisficed, the parent C&C View [Logical] is also
satisficed. Then by propagation rule R1, four things happen: the
satisficed label of Repository Service is propagated as satisficed
label to the NFR softgoal Reliability [Phoenix] via the MAKE contri-
bution between them, the satisficed label of Authorization Service is
propagated as denied label to Security [Messages] via the BREAK
contribution between them, the satisficed label of Channels is
propagated as denied label to Security [Messages] via the BREAK
contribution between them, and the satisficed label of Information
Validator is propagated as denied label to Security [Messages] via
the BREAK contribution between them.

Therefore, by propagation rule R4, the NFR softgoal Security
[Messages] is denied since only denied labels are propagated
to it. Therefore, by R6 the parent NFR softgoal Trustworthiness
[Phoenix, Software] is denied since one of its children is denied.
By another application of the propagation rule R6 we observe
that the topmost NFR softgoal Trustworthiness [Phoenix] is also
denied since one of its children is denied—this means that the
current design of the Phoenix system is not trustworthy. More
importantly, we know why it is untrustworthy since we have the
chain of evidence in the SIG: all denied softgoals, decompositions
(if any), and contributions indicate the causes for untrustworthi-
ness. Further details of this evaluation may be seen in [11]. An-
other point to note is that the SIG of Figure 4 was drawn by the
StarUML tool with the Softgoal Profile module plugin [8] – this
tool automatically applies the propagation rules for a given SIG.

Trustworthiness Deficit Identification Using
the NFR Approach

In order to identify trustworthiness deficit we need only com-
pare the NFR softgoal decompositions for the untrustworthy
and trustworthy system. The actual NFR softgoal decomposi-
tion for the Phoenix system is shown in Figure 5. The Phoenix
system has interoperable protocols, is reliable has high perfor-
mance architecture, and is extensible – these are represented,
respectively, by the NFR softgoals Interoperability [Protocols],
Reliability [Phoenix], Performance [Architecture], and Extensible
[Phoenix]. The NFR softgoal Extensible [Phoenix] is AND-de-
composed into three child NFR softgoals: Scalability [Architec-
ture], Customizability [Phoenix], and Flexibility [Services], which
represent, respectively, scalability of architecture, customizability

Figure 4. SIG for Evaluating the Architecture of the Phoenix System
for Trustworthiness

8 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

These two SIGs (of Figures 5 and 6) may align themselves in
three different ways:

1.	Case A: No commonality between the SIGs because 	
	 they are totally different

2.	Case B: Some overlap between the SIGs
3.	Case C: Complete overlap between the SIGs.

The implications of each of the three possibilities are now dis-
cussed. When there is no commonality between the two sets of
SIGs as in Case A, this means that the legacy system does not
satisfy any trustworthy requirements at all, and has a very high
trustworthiness deficit. In Case B, when there is some overlap
between the SIGs this means that the legacy system already
satisfies some of the trustworthiness requirements, that is, the
legacy system is trustworthy to some extent already. Therefore,
the trustworthiness deficit in this case is medium, certainly less-
er than in Case A. Finally in Case C, when there is a complete
overlap between the SIGs, the legacy system already satisfies

of Phoenix, and flexibility of services. If we draw a SIG similar to
Figure 4, we will find that all of these NFR softgoals are satis-
ficed by the current design of the Phoenix system.

We also obtained the trustworthy requirements for the
Phoenix system from the stakeholders—these requirements,
from the point of view of one stakeholder, are captured by the
SIG of Figure 6. As may be observed, this SIG is the same NFR
softgoal decomposition as shown in the upper part of Figure 4,
and as we know from the discussion in Section 3, the current
design of the Phoenix system does not satisfice these NFR
softgoals and is therefore untrustworthy as far as this stake-
holder is concerned. In this section we will determine the extent
of untrustworthiness by developing the Deficit Equation based
on the NFR Approach.

Figure 5. SIG for Non-Functional Requirements for the Legacy Phoenix System

Figure 6. SIG with Trustworthiness Requirements for the Phoenix System
from a Stakeholder

Equation 2.

all trustworthy requirements and the trustworthiness deficit
does not exist.

Figure 7 shows the two sets of SIGs for Case A, Figure 8
shows the situation with the SIGs for Case B, and Figure 9
shows the juxtaposition of the SIGs for two scenarios of Case
C. The SIGs in Figures 7, 8, and 9, are hypothetical SIGs. SIGs
may overlap on individual softgoals or softgoal decompositions.
In Figure 8, there is an overlap on two softgoals—that is, these
softgoals are common to the legacy system requirements as
well as to the trustworthiness requirements. In Figure 9, there is
an overlap on softgoal decomposition: in Scenario 1, the overlap
is at the root of the SIG, while in Scenario 2, the overlap is at
the middle of the SIG. Therefore, the extent of overlap helps
identify trustworthiness deficit.

We can quantify this trustworthiness deficit using
the following steps:

1.	If no goal overlap occurs, deficit is 100%
2.	If there is goal overlap, deficit is given by the Deficit

	 Equation, where TS stands for trustworthiness SIG:

3.	If there is complete overlap, deficit is 0.
Therefore, in Figure 7, there are no overlapping goals and

no overlapping decompositions while there are four goals and
one decomposition in the trustworthy system; therefore, by the
deficit equation,

deficit = (1 – 0/(4+1))*100 = 100%. (for Figure 7
representing case A)

Therefore, the deficit is 100% in Figure 7. In Figure 8, there
are two overlapping softgoals, no overlapping decomposi-
tions, four softgoals and one decomposition in the trustworthy
system. Therefore,

 deficit = (1 – 2/5)*100 = 60%. (for Figure 8 representing
case B)

In Figure 9, for scenario 1, there are four overlapping soft-
goals, one overlapping decomposition; therefore,

deficit = (1-5/5)*100 = 0%. (for Figure 9, scenario 1, repre-
senting case C)

In Figure 9, for scenario 2, the same situation like scenario 1
is obtained and the deficit is again 0%. That the deficit is 0% for
both scenarios of Figure 9 should not be surprising since the
original system satisfies all trustworthiness requirements.

Likewise, in the SIG of Figure 6, there are seven softgoals
and two decompositions in the trustworthiness SIG. Also,
comparing the SIGs of Figure 5 and Figure 6, we find that there
is only one softgoal in common, namely, Reliability [Phoenix].
Therefore, the trustworthiness deficit is shown in Equation 2.

Equation 1. Deficit Equation

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 −
1
9 ∗ 100 = 89%	

CrossTalk—January/February 2014 9

LEGACY SYSTEM SOFTWARE SUSTAINMENT

No. Missing Trustworthiness Requirements Source
1 Phoenix system should be trustworthy. Softgoal: Trustworthiness [Phoenix]
2 Phoenix system should be dependable. Softgoal: Dependability [Phoenix]
3 Phoenix system should be secure. Softgoal: Security [Phoenix]
4 Phoenix system software should be trustworthy. Softgoal: Trustworthiness [Phoenix,

Software]
5 Phoenix system should send messages securely. Softgoal: Security [Messages]
6 Phoenix system should send messages in a timely

manner.
Softgoal: Timeliness [Messages]

7 Trustworthy Phoenix system should be
dependable, reliable, have trustworthy software,
and be secure.

Decomposition: Trustworthiness
[Phoenix] is AND-decomposed into
Dependability [Phoenix], Reliability
[Phoenix], Trustworthiness
[Phoenix, Software], and Security
[Phoenix].

8 Trustworthy Phoenix system software should send
messages securely as well as in a timely manner.

Decomposition: Trustworthiness
[Phoenix, Software] is AND-
decomposed into Security
[Messages] and Timeliness
[Messages].

	

Legacy System Requirements Trustworthiness Requirements

	

Legacy System Requirements Trustworthiness Requirements

	

Legacy System Requirements include some Trustworthiness Legacy System Requirements include some Trustworthiness

Scenario 1 Scenario 2

Figure 7. SIGs for Case A: No Commonality, High Deficit

Figure 8. SIGs for Case B: Some Commonality, Medium Deficit

Figure 9. SIGs for Case C: Complete Overlap, Zero Deficit, Two Scenarios

Therefore, the trust deficit
in the legacy Phoenix system
is relatively high. The missing
trustworthiness requirements
are given in Table 1. As can be
seen in Table 1, six require-
ments come from softgoals
and two from softgoal de-
compositions. These missing
requirements will allow us to
identify the environments the
legacy software system may
be safely used in.

Therefore, the process (or
checklist) for identifying trust-
worthiness deficit using the
NFR Approach is as follows:

1.	Obtain legacy system
	 requirements; create
	 the SIG

2.	Obtain trustworthiness
	 requirements; create
	 the SIG

3.	 Identify extent of overlap
	 between legacy system
	 requirements SIG and
	 trustworthiness SIG

4.	Apply the Deficit
	 Equation to evaluate

	 trustworthiness deficit
5.	 Identify missing

	 trustworthiness
	 requirements – both
	 from softgoals and
	 decompositions in the
	 trustworthiness SIG.

In the first step obtain the
requirements for the legacy
system either by reverse
engineering or from system
documentation, then cre-
ate the SIG with, if needed,
stakeholder involvement. Then
obtain the trustworthiness
requirements for the re-
engineered system and create
the SIG, again, if needed, with
stakeholder involvement. Then
identify the extent of overlap
between the two SIGs. Apply
the Deficit Equation to identify
the extent of the deficit. Then
identify the missing trustwor-
thiness requirements in the
legacy system from softgoals
and decompositions in the
trustworthiness SIG.

Table 1. Missing Trust-
worthiness Requirements
in the Legacy
Phoenix System

10 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

We mentioned earlier that NFR Approach helps us analyze
reasons for poor trustworthiness as well. This analysis proceeds
from the SIG of Figure 4 where we see that the main reason for
poor trustworthiness is the denial of the NFR softgoal Security
[Messages]; this is contributed by three design elements (as dis-
cussed in Section 3), which are Authorization Service and Chan-
nels of the Component and Connector View and the Information
Validator in the Submission Service. Therefore, any improvement
in securing messages in all of the three design elements will
significantly improve trustworthiness of the Phoenix system. Fur-
ther details of this analysis may be seen in [11].

It should be noted that the definition of trustworthiness shown
in Figure 6 is the view of one stakeholder. Another stakeholder
gave the definition of trustworthiness shown in Figure 10, which
as can be seen is more complicated. However, the checklist
given above can be applied to this definition as well and the
trustworthiness deficit can be identified. However, we did not
find one single set of attributes that defined trustworthiness
acceptable to all stakeholders. As such, NFR Approach provides
a process for identifying trustworthiness deficit given any
definition of trustworthiness.

Conclusion
Trustworthiness is expected to be an important requirement

for software systems in the future. However, not all legacy
systems were developed with trustworthiness in mind. It will be
helpful if we could systematically identify gaps in trustworthi-
ness in a software system so that the suitability of the software
system for use in trustworthy environments may be determined.
This is also important to understand the environments where the
software system may be used or re-used as well as to deter-
mine the requirements that need prioritizing when the software

	

Trustworthiness [Phoenix, Workers]	

Trustworthiness [Phoenix, Information]	

Trustworthiness [Phoenix, Software]	

Accuracy [Information]	

Relevancy [Information]	

Appropriateness [Representation,	

Information]	

Verifiability [Data Source]	

Trustability [Data Source]	

Appropriateness [Information	
 Use]	

Performance [Phoenix, Environment]	

Quality [Information, Consumer]	

Timeliness [Information]	

Pertinence [Information]	

Usability [Information]	

Quality [Information]	

Quality [Information, Producer]	

Quality [Information, Manager]	

Quality [Information, Federates]	

Disclosure [Information, Needed	

by Persons]	

Disclosure [Information, Authorized	

Persons]	

Protected [Information]	

Availability [Information]	

Efficiency [Usage, Resources,	

Information System]	

Appropriateness [Usage, Resources,	

Information System]	

Insight [Information]	

Reception [Information]	

Trustworthiness [Phoenix, Information,	

Navy]	

Consistency [Phoenix, Constrained	

Communication Links]	
 Performance [Phoenix, Constrained	

Communication Links]	

Trustworthiness [Phoenix]	

Trustworthiness [Phoenix, Hardware]	

Confidentiality [Phoenix]	

Security [Phoenix]	

Integrity [Phoenix]	

Availability [Phoenix]	

system is being re-engineered. We applied the NFR Approach
[5, 6] for this trustworthiness deficit identification since the NFR
Approach is useful in dealing with non-functional requirements
(NFRs) such as trustworthiness. The NFR Approach considers
trustworthiness as a goal to be achieved by the software system
and identifies the deficit by determining the extent to which the
system falls short of the goal.

In order to develop a process by which NFR Approach may
be systematically applied to any software system, we applied it,
as a case study, to the Phoenix system. The Phoenix system is
a middleware system used by the Air Force with about 100,000
lines of code. We first obtained the current requirements (or
legacy requirements) satisfied by the Phoenix system. We then
obtained the trustworthiness requirements for the Phoenix
system from the stakeholders. Then applying the NFR Approach
we determined the trustworthiness deficit in the Phoenix system
to be 89% - that is, the system is highly untrustworthy. Based
on this case study we believe that the process of the NFR
Approach can be applied to any software system to identify its
trustworthiness deficit.

For the future we plan to extend the deficit equation to
include both hardgoals and softgoals—that is, consider both
functional and non-functional requirements [12]. We also plan
to apply the NFR Approach to larger systems than Phoenix and
confirm that the NFR Approach is scalable to larger systems.
We also plan to quantitatively assess trustworthiness in a soft-
ware system [13] so that changes to design may be motivated
by quantitative considerations.

Disclaimer:
Approved for Public Release [88ABW-2013-4662] 07Nov13,

Distribution unlimited.

Figure 10. Another Definition of Trustworthiness for the Phoenix System

CrossTalk—January/February 2014 11

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Nary (Narayanan) Subramanian is currently an Associate Profes-
sor of Computer Science at The University of Texas at Tyler, Tyler,
Texas. Dr. Subramanian received his Ph.D. in Computer Science
from The University of Texas at Dallas. His specialization is soft-
ware engineering with particular focus on software architectures
and requirements engineering. He co-founded the International
Workshop on System/Software Architectures (IWSSA) and
served as a co-chair for seven years between 2002 and 2011.
He established and directed the Center for Petroleum Security
Research at UT Tyler. He has over fifteen years’ experience in
industry in engineering, sales, and management. He is a member
of the IEEE. His research interests include software engineering,
system engineering, and security engineering.

Department of Computer Science
University of Texas at Tyler
Tyler, Texas, USA
E-mail: nsubramanian@uttyler.edu
Phone: 903-566-7309

Steven Drager is a principal electronics engineer with the Air
Force Research Laboratory Advanced Computing and Com-
munications Division leading research in trusted computing, high
performance systems and emerging models and technologies
for computation. Mr. Drager has over 20 years at AFRL begin-
ning in reliability physics working wafer-level testing for oxide
breakdown, hot carrier degradation and electromigration and
then on the development and standardization of the analog and
mixed-signal extensions to the VHSIC Hardware Description
Language (VHDL-AMS). He has spent the last 10 years leading
research in high performance embedded computing architec-
tures, quantum computing architectures and algorithms, and
software-intensive systems producibility.

Information Directorate
Air Force Research Lab
Rome, New York, USA
E-mail: Steven.Drager@us.af.mi
Phone: 315-330-2735

William McKeever has been with the Air Force Research Labo-
ratory’s Information Directorate, since 2003. He is co-lead of the
Trusted Software-intensive Systems research which seeks to
develop techniques, methodologies and tools to guarantee trust
(as measured by correctness, security, reliability, predictability,
and survivability)and migrate the analysis from execution (testing
and monitoring) to design (correct and formal/security specifi-
cations) and development (composition and auto-generation)
to meet DoD System needs. Mr. McKeever received a BS in
Computer Science from Plattsburgh State University of New
York, and a MS in Computer and Information Science from State
University of New York Institute of Technology.

Information Directorate
Air Force Research Lab
Rome, New York, USA
E-mail: William.Mckeever.1@us.af.mil
Phone: 315-330-2897

ABOUT THE AUTHORS REFERENCES

NOTES

1.	 <http://www.cnsoftware.org/NSS2Report>
2.	 NIST Trustworthy Information Systems program available at
	 <http://www.nist.gov/itl/tis/>.
3.	 E. Amoroso, et al “A Process-oriented Methodology for assessing and improving
	 software trustworthiness”, Proceedings of the 2nd ACM Conference On Computer
	 and Communication Security, 1994, pp. 39-50.
4.	 D. L. Parnas et al “Evaluation of safety-critical software”, Communications of
	 ACM, Volume 33, Issue 6, 1990, pp. 636-648. 	
5.	 L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
	 Software Engineering, Kluwer Academic Publishers, Boston, 2000.
6.	 N. Subramanian and L. Chung, “Software Architecture Adaptability - An NFR
	 Approach”, Proceedings of the International Workshop on Principles of Software
	 Evolution (IWPSE 2001), ACM Press, Vienna, September, 2001, ACM Press, pp. 52-61.
7.	 N. Subramanian, S. Drager, and W. McKeever, “Identifying Trustworthiness Deficit
	 in Legacy Systems Using the NFR Approach”, Software Technology Conference,
	 Salt Lake City, Utah, April, 2013.
8.	 <http://staruml.sourceforge.net/en/modules.php accessed on August 10, 2013>.
9.	 D. Taibi, “Defining a Open Source Software Trustworthiness Model”, Proceedings
	 of 3rd International Doctoral Symposium on Emperical Software Engineering, 2008.
10.	Y. Yang, Q. Wang, M. Li, “Process Trustworthiness as a capability indicator for
	 measuring and improving software trustworthiness”, ICSP ‘09 Proceedings of the
	 International Conference on Software Process: Trustworthy Software Development
	 Processes, pp 389-401.
11.	N. Subramanian, S. Drager, W. McKeever, “Designing Trustworthy Software 	
	 Systems using the NFR Approach”, Chapter Paper, to appear in Emerging Trends
	 in ICT Security, Edited by Babak Akhgar and Hamid Arabnia, Elsevier
	 Publication, 2014.
12.	L. Chung et al., “Goal-Oriented Software Architecting”, Relating Software
	 Requirements and Architectures, (Eds.) P. Avgeriou et al., Springer, 2011,
	 pp. 91-109.
13.	N. Subramanian, S. Drager, and W. McKeever, “Evaluating Trustworthiness Using
	 the NFR Approach” poster presented at the Cyber and Information Challenges
	 Conference in June 2012, organized by Armed Forces Communications and
	 Electronics Association, in Utica, NY.

1.	 When contributions (MAKE, HELP, HURT, or BREAK) are between claim softgoals
	 and other contributions, then the “objectives” are these other contributions and
	 the “artifacts” are the justifications captured by claim softgoals.
2.	 The NFR Approach supports any level of realization: strategic level, conceptual
	 level, system level, requirements level, architectural design level, detailed design
	 level, code level, and so on; however, in this paper we considered architectural
	 design models.
3.	 If this assumption changes at any time we update the SIG to reflect the changes
	 and re-evaluate by applying the propagation rules.

12 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Paul Clements, BigLever Software,
Susan P. Gregg, Lockheed Martin,
Charles Krueger, BigLever Software,
Jeremy Lanman, U.S. Army PEO STRI,
Jorge Rivera, General Dynamics,
Rick Scharadin, Lockheed Martin,
James T. Shepherd, Lockheed Martin,
Andrew J. Winkler, Lockheed Martin

Abstract. Product Line Engineering (PLE) is a well-established engineering disci-
pline that provides an efficient way to build and maintain portfolios of systems that
share common features and capabilities. Systems—including DoD systems—built
with PLE have, for decades now, demonstrated improvements in development time,
cost, quality, and engineering productivity that consistently attain integer-multiple
improvements over comparable non-PLE engineering efforts. Until recently there
was no unified repeatable approach available; each PLE project went its own way.
But now, two high-visibility DoD examples (Navy’s AEGIS and Army’s Live Training
Transformation) are taking advantage of a strong and well-defined automation-
centered approach that some are calling Second Generation PLE, and reaping
substantial benefits as a result.

Second Generation
Product Line Engineering
Takes Hold in the DoD

each other that it is more beneficial to consider them as variants
in the same family. The Army’s Live Training Transformation
comprises a multitude of training systems covering a spectrum
from single-soldier weapons trainers to large-scale synthetic
force-on-force wargaming systems. Once again, there is benefit
being gained by viewing them as a family.

PLE: Feeling Its Way in the First Generation
Systems built under the discipline of PLE have, for decades

now, experienced improvements in development time, cost, qual-
ity, and engineering productivity that consistently attain integer-
multiple improvements over previous engineering efforts. The
PLE community, eager to spread the word, has over the years
published a swarm of readily available case studies and catalogs
of successful PLE-engineered families of systems in industry
[14][3][9][12][15]. Many of the improvements reported are jaw-
dropping, such as a family of embedded engine controllers that
used to take a year to develop and under PLE take less than a
week [3], or a family of computer peripherals can be built with
1/4 of the staff, in 1/3 of the time, and with 1/25 the number
of bugs as the organization’s pre-PLE products [14].

However, each of these successes employed its own unique
approach and techniques applied atop the basic concepts in
varying degrees and in varying ways. These approaches, which
can be characterized as first-generation, were point-case ef-
fective but lacked a systematic, repeatable, codified methodol-
ogy. All made a strong distinction between domain engineering
(creation of reusable parts) and its equal counterpart application
engineering (creation of specific products from those parts),
focused on software code as the most important reusable re-
source, and used the concept of a feature to compare systems
in a domain.

Nevertheless, the benefits were real and attention-grabbing.
In addition to the hard numbers, PLE practitioners have con-
sistently reported a wide array of less tangible (but arguably no
less important) benefits, including:

•	 Ability to perform continuous portfolio-wide insertion 	
	 of new technology and new functionality at low cost

•	 Uniform look and feel to products and greater
	 interoperability

•	 Higher engineer satisfaction with resulting lower
	 workforce turnover

This message was not lost on the Pentagon or its contractors,
both eager to lower cost and to translate (for example) reduced
time to market into reduced time to deployment to support the
Warfighter. Some early but notable examples of DoD-oriented
product line efforts include:

•	 A product line of satellite ground control systems
	 for the National Reconnaissance Office [3]

•	 A product line of weapons test ranges at the
	 Naval Undersea Warfare Center [4]

•	 A product line of helicopter avionics systems for the
	 Army’s Technical Applications Program Office [2]

•	 A product line of submarine combat systems for
	 the Navy’s Submarine Warfare Federated
	 Tactical System [8]

These efforts, too, enjoyed the same kind of eye-catching
benefits: Millions of dollars saved, delivery times slashed, and
increased capability for lower cost.

Introduction
The DoD is rife with systems that share much in common.

For example, over 80 companies, universities, and government
organizations are actively developing one or more of some 200
unmanned aerial vehicle designs. They differ from each other in
important ways, but they resemble each other in ways that are
at least as important. In 2004, the General Accounting Office
was able to identify 2,274 separate DoD business systems (but
nobody knows the true number) that are different, but also alike.
The Joint Strike Fighter is being delivered in three main variants
with very different capabilities, but they are all still the F-35.
Communication systems, armored vehicles, tactical fixed-wing
aircraft, helicopters—the list of large-scale examples of systems
that are different yet the same goes on and on.

These examples are—or in many cases should be—product
lines. A product line is a set of systems that share common
features, and are engineered, developed, and sustained using
a common set of shared assets1. The systems are built and
maintained in a way that respects the variations in capability and
function that they each need to provide to their respective users,
but also takes maximum advantage of the commonality they
share. PLE is the name of the established engineering discipline
that far-sighted organizations use to accomplish this. It is an ef-
ficient way of building and maintaining portfolios of systems.

This article is about two high-visibility examples in the DoD
where far-sighted organizations are achieving that efficiency.
The AEGIS command and control systems of Naval surface
combatants differ widely, but have so much in common with

CrossTalk—January/February 2014 13

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Meanwhile, PLE as a discipline was evolving. Languages for
expressing variation became more uniform and simpler, reflect-
ing only what was needed in practice. Automation to support
product derivation from shared assets moved out of the re-
search labs and into real-world application, gaining robustness,
simplicity, and usability. PLE adopted a whole-system perspec-
tive, a powerful generalization reflecting a move away from the
field’s software-only roots. The trends have crystallized into an
approach some are calling “Second Generation Product Line
Engineering” (2GPLE) [7].

PLE: Second Generation Maturation
Building on first-generation efforts, 2GPLE embodies a more

well-defined and repeatable process, centered on a strong fac-
tory paradigm. Distinguishing characteristics of 2GPLE include:

1.	Features express product variation: In the factory para-
digm, we need a way to describe what product we are building,
so the shared assets (requirements, designs, code, test cases,
user manuals, etc.) can be configured appropriately. Rather than
adopt a different “language” and mechanism for each type of
artifact (for example, compiler directives for code, attributes
for requirements, text variables for documents, and so forth),
2GPLE uses a small and consistent set of variation mechanisms
[1] for all of the artifacts. Each product is described by giving a
list of its features: “A prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [10].
Features are used to express product differences in all lifecycle
phase artifacts. This streamlines the development process and
lets all stakeholders speak the same language.

2.	Shared assets come from all lifecycle phases, not just
the software: Early approaches to PLE certainly encouraged
practitioners to include all kinds of artifacts in their collection of
shared assets, but the unmistakable emphasis was on software.
But in large-scale product lines, automated production of whole
and consistent sets of lifecycle artifacts is essential. Managing
these artifacts means imbuing them with variation points [1],
which are places where an artifact can change to support differ-
ent products. Variation points reflect the different feature-based
product contexts in which the artifacts will be used. In 2GPLE,
all supporting assets are considered equally important; software
plays the same role as any other, or even (in cases where the
products contain no software) no role at all.

3.	Industrial-strength automation is employed in the form
of a configurator, which is a tool that takes a feature-based
description of a product and exercises the variation points in
the shared assets to produce an artifact set that supports the
named features. Product development thus becomes automated,
so that application engineering (so important in first-generation
approaches) becomes vanishingly small. (Both product line
organizations in this article chose the BigLever Software Gears
PLE configurator [11] as the automation engine to power their
product line.)

Figure 1 illustrates these three distinguishing aspects of
2GPLE. A feature profile is a description of a product in terms
of the feature choices. The configurator (here, Gears) uses the
feature profile to configure each shared asset (by exercising
its variation points) to produce the set of engineering artifacts
specific to that product.

Figure 1. The 2GPLE factory paradigm. The configurator uses a feature profile
for a product to exercise variation points (denoted by the gear symbols) in the
shared assets, configuring them to support a product with those features.

	

To understand what PLE is, it is important to understand what it is not. A superficial ex-
planation of PLE describes reuse through shared artifact repositories. Yes, there is reuse,
and yes, there are repositories, but that is like explaining Project Apollo by starting with
powdered orange breakfast beverage. It was there, but was hardly the point.

Many organizations claim, incorrectly, that they are employing PLE when in fact are only
practicing reuse and nothing more. And they are practicing a particularly problematic form
of reuse called “clone and own.”

Figure 4 shows a stylized view of a production shop in which N products are developed
and maintained—or, for that matter, acquired. This “shop” could turn out the systems under
a PEO’s purview, and be run by a single contractor, or a prime with subs, or separately
administered programs. In this simplified view, each product comprises a set of artifacts;
for example, requirements, design models, source code, and test cases. Each engineer in
this shop works primarily on a single product. When a new product is launched, its project
copies—clones—the most similar assets it can find, and starts adapting them to meet the
new product’s needs. Development and acquisition efforts that think reuse is the goal can
chalk up impressive metrics to claim success.

But under this kind of reuse, making portfolio-wide changes becomes prohibitively
expensive. And portfolio-wide changes are the norm in DoD systems: New hardware,
new architectures, new standards, new mission doctrines, new rules of engagement, new
systems to interoperate with, new adversaries, and new threats can easily lead to the need
to change every system in a family.

To see how clone-and-own reuse can lead to intractable complexity, consider one kind
of portfolio-wide change: Defect elimination. Assume that a defect is found in Product
B and that the defect is traced to an ambiguous or incorrect requirement in Product B’s
requirements. The Product B team fixes the error, re-designs as necessary, then fixes the
code and test cases before re-deploying Product B. Product B is now healthy again.

But suppose that the defect in Product B’s requirements was “inherited” when the Prod-
uct B team copied the requirements from Product A. Suppose further that the source code
for Product N was copied from Product B’s (defective) source code, and the test cases for
Product N were similarly “borrowed” from Product N’s (inadequate) test cases.

To really root out the defect from the entire portfolio, each of the N product teams
should really confer with each of the other N-1 product teams. These communication
paths are shown in red in Figure 4. This communication obligation imposes an overhead
that grows as the square of the number of products. So, in a relatively modest product line
of 30 products, almost 900 inter-project communication paths should be activated. This
complexity will quickly overwhelm any program office, let alone any engineering staff, and
the result is usually exhaustion, a climbing defect rate, out-of-control sustainment cost, and
a reluctance or inability to make changes.

This complexity occurs even if reuse levels are as high as possible among the programs;
the product line will still collapse under the weight of its “clone and own” reuse strategy.
Copy-based reuse gives the copying program a head start, but then loses all of its value
as the new program spirals off on its own evolution and sustainment trajectory. Acquisition
programs that encourage reuse but not true product line engineering are setting themselves
up for sustainment failure.

PLE IS MUCH MORE THAN REUSE

14 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The automation-centered approach also enables a fourth salient
characteristic of 2GPLE: A simplified model for configuration man-
agement. The shared assets are configuration-controlled, but the
products need not be, since they can be quickly re-generated [11].

A fifth characteristic involves feature languages that facilitate
modular and hierarchical product lines developed across organi-
zational boundaries [7]. This allows a system-of-systems family
to become a product-line-of-product-lines.

Overall, 2GPLE represents a more clearly formulated meth-
odology that organizations can use directly. It simultaneously
generalizes and simplifies concepts from its first-generation
roots. Once again, industry and the DoD are paying attention. In
addition to 2GPLE projects in industry at large—General Motors,
for instance [7]—two multi-billion-dollar high-visibility programs
in the Army and the Navy (respectively) are employing 2GPLE
to help their Warfighters train and fight, and are seeing substan-
tial benefits in reliability, sustainability, and responsiveness. The
two programs are Live Training Transformation and AEGIS.

2GPLE in the Army: Live Training Transformation
In 2010 General Dynamics teamed with BigLever Software

(the PLE technology provider) to create the winning proposal
for the US Army’s Live Training Transformation (LT2) family of
training systems. (This contract was the first U.S. Army contract
focused specifically on product line engineering as a required
part of the solution.)

The United States Army Program Executive Office for Simula-
tion, Training and Instrumentation (PEO STRI) is in the business
of training soldiers and growing leaders by providing responsive,
interoperable simulation, training, and testing solutions and acquisi-
tion. Its training and testing systems portfolio includes live, virtual,
and constructive training packaged in embedded and interoperable
products that are fielded and used throughout the world.

LT2 has long been a true software product line, in the sense
defined in [3], using first-generation approaches. In 2010 the
program made the transition to 2GPLE. LT2 shared assets
include the open architectures, common software components,
standards, processes, policies, governance, documentation, and
more, all leading to a common approach and frameworks for
developing live training systems. Examples of the many types
of training systems in the LT2 family include Military Operations

Figure 2. Cost avoidance benefits of product line engineering for LT2

	

0

20

40

60

80

100

120

140

160

05 06 07 08 09 10 11 12 13

$
in

 M
ill

io
ns

Stovepipe w/o Consolidation Product Line - Industry Standard CPM Impact

1G PLM Cost Avoidance

1G PLM (Pre-
Consolidation)

2G PLM Cost Avoidance

2G PLM (CPM
Impact)

FY

480

420

360

300

240

180

120

60

0

on Urban Terrain (MOUT), Maneuver Combat Training Center
(MCTC), instrumented live-fire range training, and various Joint
(that is, inter-Service) training systems.

The commonality behind LT2 facilitates the rapid development
of new products but also ensures that products across the LT2
product line can communicate and interoperate with each other.
This is important because large training exercises need to employ
different kinds of training systems working together. The LT2
product line makes use of plug and play components and applica-
tions that are common between products, and permits changes,
upgrades and fixes developed for one product to be applied to
others. This concept provides the inherent logistics support ben-
efits that derive from commonality, standardization, and interoper-
ability including the reduction of total lifecycle costs [13].

The LT2 migration to 2GPLE is proving easier than expected.
First, a product line culture and high reuse were already in place
with the first generation product line. Second, 2GPLE approach-
es are easier to adopt because they enable non-disruptive and
incremental steps to be taken rather than a large “big bang”
start-over event. LT2 stakeholders have already enjoyed sub-
stantial benefits from LT2’s first-generation approach and are
therefore more willing to move to 2GPLE.

Maximizing asset sharing has proven to reduce fielding time
and minimize programmatic costs, while enhancing training
benefits afforded to the soldier. Recognized as the Army’s live
training standard, the LT2 product line architecture, standards,
assets, and common operating environment have been used by
more than 16 major Army and Department of Defense live train-
ing programs with more than 130 systems fielded.

In addition, LT2’s 2GPLE approach is exhibiting the
following benefits:

•	 More efficient integration of the Army products by the
	 use of common standards and products to meet
	 training and test requirements

•	 Compatibility of objective system and products with
	 evolving capabilities

•	 Wider interoperability before executing subsystem
	 and device production

•	 Reduced total lifecycle costs to include acquisition,
	 development, testing, fielding, sustainment,
	 and maintenance.

This continuing transformation has generated a significant
return on investment to date within PM TRADE’s live training
system acquisition portfolio. The first generation approaches
generated more than $300 million in cost avoidance across the
development of live training systems to include Combat Training
Centers Instrumentation Systems, Home Station Instrumenta-
tion Systems, Instrumented Ranges, and Targetry. The second
generation approach, known as Consolidated Product Line
Management or CPM in the Army, is projected to save another
$200 million over the next two to five years2.

2GPLE in the Navy: AEGIS Combat System
The AEGIS Combat System is an integrated warfare system

deployed on some 100 naval vessels in the U.S. Navy and the
navies of key allies across the globe. AEGIS is deployed on
deep-water fleet ships, Littoral Combat Ships, and (more recent-
ly) U.S. Coast Guard National Security Cutters (NSCs). As the

CrossTalk—January/February 2014 15

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Aegis Combat System Engineering Agent, Lockheed Martin’s
Maritime Systems and Sensors Division maintains the Common
Product Line (CPL) requirements in a common DOORS data-
base and source code in a Common Source Library (CSL) that
is maintained for all product configurations, and they do it using
the 2GPLE paradigm.

The primary objective of CPL is to develop once, and build
and deploy many times from one set of common assets—princi-
pally requirements, source code, and tests. The AEGIS Base-
line 9 Common Product Line comprises the requirements and
source code that is maintained for all product configurations.
CPL supports the US Navy’s objective to more quickly field
capability as well as the goal of minimizing cost and schedule
for delivering computer program capability updates.

The CPL methodology is in high gear for the current AEGIS
Baseline 9, which is the foundation for cruiser and destroyer

CIEDAS—Counter Improvised Explosive Device (IED)
After Action Review System (USAF)
The LT2 Homestation Instrumented Training System (HITS) product was heav-
ily leveraged in creating the Air Force’s CIEDAS product for convoy counter
IED training. An early version of what became the Digital Range Training
System (DRTS) Integrated Player Unit (IPU) was used to instrument Air Force
convoy vehicles providing multiple in-vehicle video feeds and position/loca-
tion information to the mobile Exercise Controller (EXCON). Temporary mobile
field cameras provided additional video coverage. The LT2 product line HITS
software components and Common Training Instrumentation Architecture
(CTIA) provided the basis for exercise control, player unit monitoring and con-
trol, and After Action Review (AAR) reporting. Common software components
provided the video monitoring and editing, and a new rapid AAR capability was
developed that allowed an on-going exercise run and an after action review
presentation simultaneously with a single operator.

SMS—Soldier Monitoring System (Army—SOCOM)
The Soldier Monitoring System provides safety monitoring of special forces
students conducting a land navigation exercise. CTIA and HITS provide the
foundation of the exercise control and AAR capabilities of SMS. The player
unit radio instrumentation takes advantage of the standard LT2 Player Unit
gateway, CTIA provides the architecture and event distribution mechanism, and
HITS components provide situational awareness capabilities.

I-TESS II—Instrumented -
Tactical Engagement Simulation System II (USMC)
I-TESS II provides the USMC with dismounted instrumentation in support of
direct force-on-force tactical training. The LT2 HITS product was used in its
entirety as the exercise command and control and after action review capabil-
ity. Modifications to HITS were created to provide USMC customizations to
support their unique style of training. These changes were approved by the
LT2 Core Asset Working Group (CAWG) Integrated Product Team (IPT) and
absorbed by the LT2 product line.

MC-ITS—Marine Corps Instrumentation Training System (USMC)
MC-ITS was a predecessor to RISCon that provided force-on-force tactical
training for the USMC. HITS was used in its entirety as the foundation for this
program. Specific new functionality was added to HITS to mainly support USMC
IED training and specialized IEDs and IED jammers. The modifications produced
by this program have just recently been rolled into the LT2 product line.

RISCon—Range Instrumentation System Control (USMC)
The RISCon program’s objective is to reduce sustainment, operational, and
enhancement costs of the existing and future Marine Corps Range Instrumen-
tation System Product Line. RISCon leverages the CPM construct of tools (i.e.
Gears) and processes to establish and manage a framework for affordable
USMC Product Line operation, improvements and deployments. The project
leverages the US Army’s LT2 Product Line using CTIA. CTIA establishes the
framework (protocols, standards, interfaces, etc.) for developing a repository of
LT2 core components.

platforms as well as Land Based Ballistic Missile Defense
(BMD). The CPL approach enables the deployment of products
from the combat system on the Littoral Combat Ships (LCS)
and the US Coast Guard NSCs. It is also the basis for all future
domestic and international AEGIS and LCS development efforts.

CPL enables the critical convergence of AEGIS antiaircraft
warfare and BMD functionality while providing the fleet with
affordable capability and timely upgrades that keep pace with
evolving threats. The CPL approach encompasses all phases of
the classical V-chart. In the requirements development phase,
requirements are consolidated into a single database (using
IBM Rational’s DOORS tool) for all stakeholder programs using
Gears as the variation engine. This approach avoids redundant
efforts and requirements capture when managing program-
unique databases. Verification of the requirements is also main-
tained in the DOORS database.

In the software implementation phase, a master software
development repository (CSL) is utilized that contains source
files, libraries and configuration files that support multiple
product configurations. Products comprise common and unique
capabilities such that modifications to common configurations
are implemented once and feature-based variation is used to
automatically include or exclude each capability from a product.

Figure 3. The Aegis destroyer USS Hopper (DDG 70)
launches a missile to intercept a short-range ballistic missile.
(U.S. Navy photo/Released)

LT2 SPREADS ACROSS THE SERVICES
The hundred-plus systems deployed as members of the LT2 family
include these in the Air Force and Marines, as well as other
commands within the Army:

16 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

	

During the test and verification phase, CPL
utilizes a consolidated testing approach to maximize
efficiency of common requirements and capabili-
ties. This results in tailored regression testing based
on changed functional areas. This also utilizes an
integrated test team using common test plans and
procedures. Common test efforts are leveraged and
consolidated problem reporting avoids duplicate
reporting caused by redundant testing. These test
benefits are currently being realized as AEGIS
baseline 9 prepares for certification.

Organizational consolidation became possible
under product line development. Overall program
management was consolidated to minimize redun-
dancy and achieve a common program structure
and consolidated business rhythm, metrics, and
reviews. An engineering product team was estab-
lished that spans programs to maximize common-
ality and to drive consistency and design practices.
An Engineering Review Board was established as
a decision authority to ensure proper CPL behav-
ior at the product level for each of the elements.

The benefits were highlighted when the US
Coast Guard made the decision to enter the family
with their new National Security Cutter. Once in
the product line, they avoided the months it would
have taken to implement and verify the hundreds
of fixes and upgrades that set their application
apart. Instead, the Coast Guard applied their
unique feature-based requirements to the CPL
DOORS database using Gears, and thus avoided
having to apply the specification changes one by
one. This resulted in a much quicker deployment
of code and requirements for the Coast Guard.

Conclusion
Although this is primarily the story of an Army

and a Navy program, LT2 and AEGIS have put
down 2GPLE roots in every Service. Aegis has
brought the Coast Guard into its product line
family. And the hundred-plus LT2 family members
include several developed for and in use by the Air
Force and Marines.

There are organizational, management, and
contracting issues that these programs have had
to surmount, but their success shows that those
issues are tractable. As a result, they would seem
to provide strong evidence that Second Genera-
tion Product Line Engineering is an engineering
discipline suitable for DoD acquisition programs,
across Services and domains. Like its first-gener-
ation predecessor methods, it is showing multiple-
integer improvements in quality, time to deploy-
ment, cost, and engineering productivity.

Figure 4. Product-centric development and O(N2) complexity

CrossTalk—January/February 2014 17

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Dr. Paul Clements is the Vice President of Cus-
tomer Success at BigLever Software, Inc., where
he works to spread the adoption of systems and
software product line engineering. He was previ-
ously at Carnegie Mellon’s Software Engineering
Institute, where for 17 years he worked in software
product line engineering and software architecture
documentation and analysis. Clements is co-author
of three practitioner-oriented books about software
architecture as well as the field’s leading text on
software product line engineering.

E-mail: pclements@biglever.com
Phone: 512-567-1681

Susan P. Gregg is a Principal Project Engineer
for the Lockheed Martin Corporation. She holds a
B.A. in Physics from Rutgers University. She has
over 30 years experience is systems and software
engineering. She is currently the Technical Director
for the US Navy’s Common Product Line.

E-mail: susan.p.gregg@lmco.com
Phone: 856-359-1636

Dr. Charles Krueger, BigLever founder and CEO,
is a thought leader in the product line engineer-
ing field with 25 years of experience in software
engineering practice and more than 60 articles,
columns, book chapters, conference keynotes, and
session presentations. Krueger has proven exper-
tise leading product line development teams, and
helping establish notable PLE practices in com-
panies such as General Motors, Lockheed Martin,
General Dynamics, Ikerlan/Alstom, and three
Software Product Line Hall of Fame inductees.

E-mail: ckrueger@biglever.com
Phone: 512-426-2227

Jeremy T. Lanman, Ph.D. is the lead architect for
the Common Training Instrumentation Architec-
ture and Live Training Transformation Product
Line at the U.S. Army PEO STRI. His professional
experience includes 10 years of DOD acquisition
and systems engineering of military simulation
and training systems. Dr. Lanman received his
B.S in Computer Science from Butler University,
M.S. in Software Engineering from Embry-Riddle
Aeronautical University, and Ph.D. in Modeling and
Simulation from the University of Central Florida.

E-mail: jeremy.lanman@us.army.mil
Phone: 407-384-5307

Jorge Rivera is currently working for General
Dynamics C4 Systems out of the Orlando facility
leading live training efforts and supporting the
2nd Generation Product line instantiation under
the CPM contract. His prior experience includes
25 years of DoD Acquisition service with over 15
years of those in the live training domain. As the
Assistant Project Manager (APM) LT2, Mr. Rivera
championed the LT2 product line and managed the
CTIA & FASIT efforts. He earned his B.S. in Electri-
cal Engineering (EE) from the University of Puerto
Rico in 1983 and his M.S. in EE from Fairleigh
Dickinson University, NJ in 1987

E-mail: jorge.rivera@gdc4s.com
Phone: 407-275-4820

Rick Scharadin has over eighteen years of Senior
Program Management experience related to com-
plex large scale system development, open archi-
tecture designs, software product line development,
product integration, test and delivery for various
Navy Aegis Baselines. He has accumulated over
his career with Lockheed Martin 12 service awards,
including manager of the year in 2001. Rick has a
BS in Electrical Engineering from Penn State and a
MS in System Engineering from Stevens Institute.

E-mail: richard.w.scharadin@lmco.com
Phone: 609-326-4685

James T. Shepherd works as a Lead Architect on
the Aegis software common product line for Lock-
heed Martin MS2. He holds a B.S. in Computer Sci-
ence from Montclair State University and an M.S.
in Computer Science from Drexel University. He
has more than 25 years experience in systems and
software engineering of mission critical applications
for the US Navy.

E-mail: james.t.shephard@lmco.com
Phone: 609-326-4685

Andrew J. Winkler is a Principal Engineer at
Lockheed Martin and has over 15 years experi-
ence working on large scale systems, including the
AEGIS Combat System and the DDG1000 C3I
system. Most recently Andrew has held the role of
System Architect for the US Navy’s AEGIS Com-
mon Product Line. Andrew has a BS and MS in
physics from the University of Vermont.

E-mail: andrew.j.winkler@lmco.com
Phone: 856-914-6318

ABOUT THE AUTHORS

18 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

REFERENCES NOTES
1.	 Bachmann, F., Clements, P. “Variability in Software Product Lines,”
	 Technical report CMU/SEI-2005-TR-01, Software Engineering
	 Institute, 2005.
2.	 Clements, P. and Bergey, J. The U.S. Army’s Common Avionics
	 Architecture System (CAAS) Product Line: A Case Study, Technical
	 Report CMU/SEI-2005-TR-019, September 2005.
3.	 Clements, P.; Northrop, L. Software Product Lines: Practices and
	 Patterns, Addison-Wesley, 2002.
4.	 Cohen, S., Dunn, E., Soule, A. , Successful Product Line
	 Development and Sustainment: A DoD Case Study,
	 CMU/SEI-2002-TN-018, September 2002.
5.	 Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing U.S. Army
	 Return on Investment Utilizing Software Product-Line Approach,”
	 Interservice/ Industry Training, Simulation, and Education
	 Conference (I/ ITSEC), 2012.
6.	 FedSmith.com, “Billions Wasted…,” <http://www.fedsmith.com/
	 article/313/billions-wasted-dod-because-duplicate-business-
	 systems.html>
7.	 Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line
	 Engineering at General Motors,” Proceedings of the 2012 Software
	 Product Line Conference (SPLC), Salvador Brazil, August 2012.
8.	 Guertin, N., and Clements, P., “Comparing Acquisition Strategies:
	 Open Architecture vs. Product Lines,” Proceedings of the 2010
	 Acquisition Research Symposium, Monterey, May 2010.

9.	 Jensen, Paul. (2009). “Experiences with Software Product Line
	 Development.” CrossTalk 22, 1 (January 2009): 11–14.
10.	Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-
	 Oriented Domain Analysis (FODA) Feasibility Study” (CMU/SEI-90-
	 TR-021, ADA235785). Pittsburgh, PA: Software Engineering
	 Institute, Carnegie Mellon University, 1990.
11.	Krueger, C. “The Systems and Software Product Line Lifecycle
	 Framework,” BigLever Software Technical Report #200805071r3,
	 2010. http://www.biglever.com/extras/SplLifecycleFramework.pdf.
12.	Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software
	 Product Lines in Action, Springer, 2007.
13.	Rivera, J., Samper, W., Clinger, B. (2008). Live Training
	 Transformation Product Line Applied Standards For Reusable
	 Integrated And Interoperable Solutions. Paper No. 483;
	 MILCOM 2008.
14.	Software Engineering Institute, “Catalog of Software Product Lines,”
	 <http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm>
15.	SPLC Product Line Hall of Fame, <http://splc.net/fame.html>
16.	UAV Forum, Librarian’s Desk,
	 <http://www.uavforum.com/library/librarian.htm>

1.	 This is an adaptation of the Software �
	 Engineering Institute’s definition of a
	 software product line, which is a product
	 line in which software plays a central role
	 in the systems :3]
2.	 These figures are based on industry
	 standard estimates of code cost, and are
	 calculated assuming that post-deployment
	 software support constitutes 70% of
	 development cost and a life expectancy of
	 10 years. See [5] for a more detailed
	 explanation.

CrossTalk—January/February 2014 19

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Robert Ferguson, SEI
Mike Phillips, SEI
Sarah Sheard, SEI

Abstract. Software sustainment is critical to DoD capability, but it is difficult to
determine where and when to invest limited funds to produce the most significant
impact for the least amount of effort and expense. An SEI research initiative is
developing a model that shows the results of various investment decisions, allowing
decision makers to see the effects and make adjustments before problems occur.
Determining what data are needed to make the model work and how to collect it is
also a significant challenge addressed by this research.

Modeling
Software
Sustainment

These future challenges led to two related studies by the Air
Force in 2011. An Air Force Science Advisory Board report, “Sus-
taining Air Force Aging Aircraft into the 21st Century” [3] noted
that sustainment was an inherently expensive process that would
eventually involve the remanufacture of the entire aircraft, compo-
nent-by-component, as wear-out occurred. Significant techni-
cal challenges to this type of sustainment effort were recorded
as failure modes became age-driven rather than usage-driven.
Significant concern was expressed in the report: “The Air Force is
concerned that the resources needed to sustain its legacy aircraft
may increase to the point where they could consume the re-
sources needed to modernize the Air Force.” The report sought to
identify key technologies that could reduce the time and expense
for the Air Force sustainment enterprise in its quest to maintain
and field these aircraft through the 21st century.

The second report is the Air Force Studies Board’s “Examina-
tion of the U.S. Air Force’s Aircraft Sustainment Needs in the
Future and Its Strategy to Meet Those Needs” [4] which ad-
dresses the broad issues of sustainment, with a specific chapter
on software challenges.

The sustainment problem is made more complex because
the funding decisions involve an understanding of the tensions
among three different perspectives with differing definitions of
value: operational need (warfighter view), the management of the
portfolio (materiel view), and the capability and capacity of the
sustaining organization (process, skills, tools, and people). DoD
leaders must make decisions about allocating resources between
the efforts that support the warfighter and the efforts that im-
prove the performance of the sustainment organization consis-
tently, with the goal of optimizing long-term value to the services.

The economic model that our research initiative is develop-
ing to support decisions about these investment questions will
analyze factors such as demand for sustainment, the capacity
of an organic workforce to do the sustainment, and the timing
of funding, in terms of its impact on long term costs and the
readiness of aircraft fleets. As part of this work, we developed
an initial model that shows the interaction of the stakeholder
values and the allocation of investment as a systems dynamics
(or time-based) model. This type of model uses stocks and flows
to represent sustainment performance over time [5].

Foundations of Our Approach
Systems dynamics work traces its roots to Jay Forrester at

MIT in the 1950s and has been used as a modeling approach
in the study of economics and organizations. Systems dynam-
ics models allow people to study systems with many interrelated
factors. When many factors are changing at once, their interac-
tion can cause emergent effects that can result in a sudden and
dramatic change in outcome. For these situations, traditional,
simpler economic models such as return-on-investment and net
present value are insufficient to understand what is happening.
Through the modeling and analysis research, we are looking for
the minimum amount of data, a signal, that can forecast a sudden
and dramatic change (a “tipping point”). Forecasting the tipping
point gives decision makers time to take action before a problem
becomes intractable. Our research asks the following questions:

Introduction
Over the years, the percentage of functionality that depends on

software has increased rapidly, making the cost of sustaining that
software grow exponentially. For example, in the armed services
the number of weapon system platforms is diminishing, but their
projected service lifetimes are expanding. The B-52 now has a
planned 90-year lifetime, and it includes functionality that could
never have been imagined by its designers in the late 1940s. While
hardware sustainment typically focuses on maintaining structural
integrity, software sustainment is what continues to grow the
capability of the B-52 and many other platforms like it. Even in the
face of technological uncertainty, sustainment organizations across
the DoD must plan for—and sustain—their capability to continuously
improve critical software-intensive systems, update after update.

The SEI has worked with software sustainment groups in
each of the services to determine how to make the best use of
their dedicated software resources. In response, we are devel-
oping an economic model that can be used by decision makers
to determine where and when to invest to have the greatest
impact on long-term costs and fleet readiness.

Background
CrossTalk has been documenting the issues surrounding

sustainment for several years. In the December 2007 issue, Ca-
pers Jones pointed out 24 major reasons that software in aging
systems must be “improved” [1]. (Whether this would be called
“maintenance” or “sustainment engineering” was a sidebar ad-
dressed by the editor of CrossTalk at that time, Beth Starrett.)
In the same issue, the future challenges of sustaining F-35
software were described by Lloyd Huff and George Novak [2].

20 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

1.	How can we determine when there is a growth in
demand for sustainment on a particular program? If we can
identify the needed data, will it be possible to collect it and
do the necessary analysis?

2.	Do the models we are developing provide actionable in-
formation to decision makers in a timely manner? For example,
does reallocating some resources from the sustainment work
to the development of the workforce (tools, etc.) help reduce
the cost of sustainment?

3.	What measure of warfighter readiness correlates to the
predictive factors in the model?

Using this approach, we aim to help DoD programs better
plan their financial investment in software sustainment to ensure
that the products are sustainable for as long as possible and
deliver the best value for the taxpayer dollar. A working model
will help senior managers test alternative strategies for invest-
ment. Satisfying the senior managers that the model correctly
anticipates the behavior of the systems requires us to focus
our research on discovering what sources of data can be used
to calibrate the model for real application. Accomplishing this
requires us to:

•	identify data collection points within the
	 sustainment processes

•	identify opportunities to measure warfighter readiness
	 or system use

•	develop standards for applying data collection across
	 different sustaining organizations

The Systems Dynamics Model
The basic goal of a simulation model is first to represent the

normal behavior of a system and then to introduce a new input to
see how the responses change. The model that we have developed

represents the behavior of the different aspects of the sustainment
process, including the warfighter, the technical capability of the
sustainment organization, and the capacity of the sustainment or-
ganization to deliver the work. We are testing the system response
to various change scenarios, including the following:

Threat. An external change (such as a new threat to the warf-
ighter) results in a request to update the system capability. This
request means the sustaining organization will have to perform
both product and process changes; the development process
and testing may need to change as well. The changes often re-
quire funding to re-equip the facility and re-train the workforce.
Our systems dynamics model helps decision makers analyze the
effect if funding for this improvement is delayed.

Support Technology. The sustainment organization decides to
improve its own throughput and adopts new processes to “do
more with less.” Typically the change is also in response to new
quality goals. In this case our model helps codify the effect on
sustainment capability, and capacity and therefore on opera-
tional performance.

Workforce. Sequestration effectively decreases the staff avail-
able to sustainment organizations by 10% to 20 %. How does
this decrease affect a sustaining organization’s ability to meet its
sustainment demand? Does it affect aspects of the warfighter
mission as well?

Our current model of sustainment consists of five basic
processes and five dynamic feedback loops, shown in Figure 1.
(Model details are blurred to emphasize the loops rather than
exact feedback forms.) Process definitions provide suggestions
for measures of inputs and outputs. Those inputs and outputs
can then be calibrated for the forces and feedback functions.

Figure 1:

CrossTalk—January/February 2014 21

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The processes in the model are listed below with input and
output suggestions:

1.	Operational Performance
	 Input: Missions measured by capabilities used and mission-	
	 capable availability
	 Output: Action reports measured by %success,
	 and availability gap

2.	Operational Needs Analysis
	 Input: Mission performance measures and new potential
	 threats, technologies, uses, and mission-capabilities
	 Output: New capability definition

3.	Engineering & Delivery
	 Input: Sustainment demand (accepted and
	 not-accepted requests)
	 Sustainment capability required (skills, tools, facilities)
 	 Sustainment capacity required (throughput)
	 Output: Delivered products by count of deployments
	 and costs
 	 Sustainment gap (requests not accepted)

4.	Capacity & Capability Development
	 Input: Changes to training, tooling, facility, processes
 	 Hiring, furloughs, and attrition
	 Output: Capacity available (%of request)
 	 Capability available date or delay

5.	Improvement Funding
	 Input: Funding requested for capability and

	 capacity development
	 Output: Time required to fund, amount funded

The following dynamic loops have been identified:
1.	Bandwagon Effect. Successful missions and high mission

performance lead to additional demands for capacity and capability.
2.	Sustainment Work. Product use and environmental ef-

fects increase demand for sustainment work.
3.	Limits to Growth. Capacity and capability of a sustain-

ment organization limit the rate of completion of sustainment
work. As these limits begin to extend the time required to
redeploy, the long-term effect may be a reduction in demand or
a switch to an alternate platform.

4.	Work Bigger. A sustainment organization may attempt
to meet sustainment demand by requiring overtime work or
employing extra contract employees. Either of these approaches
may work for a short time or a small additional cost, but they
stress the organization and quickly reach the limits of their
effectiveness. The organization can hire staff, but it must also
allow time for training and acculturation of new hires to meet
performance objectives.

5.	Work Smarter. A sustainment organization invests in new ca-
pabilities (skills, tools, and processes) and possibly additional resources
(people and facilities) to improve capacity for sustaining work.

Each of these scenarios entails several decisions in the
process loops and stimulates response curves from the model.
The response curves help decision makers forecast how defer-
ring decisions or reallocating resources affects both warfight-
ers and sustainment organizations. Our systems dynamics
model will be helpful to decision makers if they are able to
make faster decisions and if the data from the model makes it

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

High Maturity Organizational Characteristics
July/August 2014 Issue

Submission Deadline: Feb 10, 2014

Acquisition of Software-Reliant Capabilities
Sep/Oct 2014 Issue

Submission Deadline: April 10, 2014

Software Engineering Tools and the Processes They Support
Nov/Dec 2014 Issue

Submission Deadline: June 10, 2014

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

22 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

easier to get sponsor support for the decisions. Our systems
dynamics model will be helpful to researchers because the
inputs/outputs of the model process suggest how to validate
the model with sustainment data.

Initial Results and Future Work
Our research thus far has shown that the system dynamics

model exhibits the expected and observed behavior of product
sustainment. Of particular interest has been the impact of work-
force changes on the sustainment cycle—positive effects like
training and new software tool sets, and negative ones like the
recent furloughs. As the system responds to change, the model
helps us see that the effects have distinct cycles. A furlough
has immediate impact, but a decision to fund new engineering
environments can take years.

Model calibration is needed to capture specific, real world
situations. Calibration will require significant work with programs
and sustainment organizations. We are initiating a collaboration
with a sustainment organization that could potentially provide
the needed data for this research, and we are soliciting broader
participation across the services and agencies.

Additional Reading:
•	McGarry, J. Software Maintenance Life Cycle Cost

	 Estimation Model. Proc. of the PSMSC User Group,
	 Portsmouth, Virginia, 2012.
	 <http://www.psmsc.com/UG2012/Workshops/
	 w4-%20files.pdf>

•	Rosser, J. B. From Catastrophe to Chaos: A General Theory
	 of Economic Discontinuities: Mathematics, Microeconomics
	 and Finance (Vol. 1). Kluwer Academic Pub, 2000.

•	Jones, C. “The Economics of Software Maintenance in the
	 Twenty-first Century.” ComputerAid Inc. (CAI), 2006.
	 <http://www.compaid.com/caiinternet/ezine/capersjones-
	 maintenance.pdf>

Robert Ferguson is a senior member of the technical staff at the
Software Engineering Institute. He works primarily on software
measurement and estimation. He spent 30 years in industry as
a software developer and project manager before coming to
the SEI. His experience includes applications in real-time flight
controls, manufacturing control systems, large databases, and
systems integration projects. He has also frequently led process
improvement teams. Ferguson is a Senior Member of IEEE and
has a Project Management Professional (PMP) certification from
the Project Management Institute (PMI).

4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: rwf@sei.cmu.edu
Phone: 412-268-9750
Fax: 412-268-5758

D. Mike Phillips is a principal research engineer at the Software
Engineering Institute. He led a team that created the CMMI
Product Suite, successfully describing key practices for both
systems and software engineering. As an Air Force senior of-
ficer, Phillips led an Air Force program office’s development and
acquisition of the software-intensive B-2 Spirit stealth bomber
using integrated product teams. He holds a B.S. in astronautical
engineering from the U.S. Air Force Academy, an M.S. in nuclear
engineering from Georgia Tech, an M.S. in systems management
from the University of Southern California, an M.A. in interna-
tional affairs from Salve Regina College and an M.A. in national
security and strategic studies from the Naval War College.

4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: dmp@sei.cmu.edu
Phone: 412-268-5884
Fax: 412-268-5758

At the Software Engineering Institute, Dr. Sheard researches
software engineering process and measurement and brings
software engineering tools and technologies to government
clients. Previously she was a consultant and teacher at Third
Millennium Systems and at the Systems and Software Consor-
tium, and a systems engineer at Loral/IBM Federal Systems
and Hughes Aircraft Company. She has a Ph.D. in Enterprise
Systems from the Stevens Institute of Technology, a master’s de-
gree from the California Institute of Technology, and a bachelor’s
degree from the University of Rochester.

4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: sheard@sei.cmu.edu
Phone: 412-268-7612
Fax: 412-268-5758

ABOUT THE AUTHORS

REFERENCES
1.	 Jones, C. “Geriatric Issues of Aging Software.” 20.12
	 CrossTalk (December 2007): 4-8.
2.	 Huff, Lloyd and Novak, George. “Performance-Based Software Sustainment
	 for the F-35 Lightning II.” 20.12 CrossTalk (December 2007): 9-14.
3.	 United States Air Force Scientific Advisory Board, “Sustaining Air Force Aging
	 Aircraft into the 21st Century” (SAB-TR-11-01). August 2011.
4.	 National Research Council. “Examination of the U.S. Air Force’s Aircraft
	 Sustainment Needs in the Future and Its Strategy to Meet Those Needs.”
	 National Academies Press, 2011.
5.	 Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a
	 Complex World. Irwin/McGraw-Hill, 2000.

CrossTalk—January/February 2014 23

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Redge Bartholomew, Rockwell Collins

Abstract. In developing many safety-critical, embedded systems, rework to fix
software defects detected late in the test phase is the largest single cause of cost
overrun and schedule delay. Typically, these defects involve the interactions among no
more than 6 variables, suggesting that 6-way combinatorial tests could detect them
much earlier. NIST developed an approach to automatically generating, executing,
and analyzing such tests. This paper describes an industry proof-of-concept demon-
stration to see if this approach could significantly reduce the number of defects that
escape into the test and evaluation phase of safety-critical embedded systems.

Using Combinatorial
Testing to Reduce
Software Rework

This paper describes an industry proof-of-concept study that
used NIST’s approach to automate unit testing of a software
defined radio’s control software. The goal was to determine if the
NIST approach could cost-effectively reduce the number of latent
software defects escaping into system testing and at the same time
achieve the structural coverage required by regulatory authorities.

The Test Environment
Tests were generated, executed, and analyzed on a Windows 7,

quad-core, 2.5 GHz, i5 laptop with 4GB memory. ACTS was used
to create a model of the input variables, generate 6-way combi-
natorial test vectors, and export them to a networked server. The
NuSMV2 model checker generated the state space and exported
it to the same networked server. An in-house utility function read
the two files, searched the state space for states containing the
ACTS vectors, reformatted them, and exported them as test cases
back to the server. A commercial test harness, VectorCAST, instru-
mented the source code to track structural coverage, measured
code complexity, imported the test case file, loaded test values
into input variables, and executed tests. It also accumulated the
achieved modified condition/decision coverage (MC/DC) [18],
collected output variable values, compared actual with expected
values, and identified discrepancies.

The code being tested was a software defined radio’s control
interface, containing 196,000 executable source lines of C++
code. The initial focus of the study was a code unit responsible for
controlling the radio’s waveform mode (e.g., HAVEQUICK, SINC-
GARS, Link 4) and operational state (e.g., idle, ready, running).
This had 579 lines of code, 34 input variables, and 4 output
variables of interest, used by 47 decisions nested up to 8-levels
deep, spread over a 6-case switch. Its measured complexity
(number of unique execution paths) was 46. In addition to the
mode and state controller, the study tested another 70 of
717 code files.

Defining the Input Space
Developers provide ACTS with a name, a data type, and a set

of values for each input variable. They also select the combina-
torial strength of the vector generation (2-way through 6-way).
ACTS then generates a set of input vectors containing all com-
binations of input variable values for the selected strength. Table
1 shows the 2-way vectors ACTS generated for the function:

	 if (c = = true)
		 e = a + b;
	 else
		 e = a * d;
	 return e;

Introduction
Studies of safety-critical, embedded systems have shown that

the rework required to fix late-detected software defects is one
of the largest single components of their development cost and
schedule—e.g., [1][2][3][4][5]. They also show that detection of
these latent defects accelerates during late-stage testing and
that those detected during operational test and evaluation have
become more than just problematic. Much of this is attributable to
verification tools and techniques that are becoming increasingly
inadequate as the scale and complexity of software continues to
increase [6][7][8][9]. An emerging need to develop parallel software
for embedded multicore processors will make this problem worse
[10]. Improvement requires tools and methods that prevent defect
injection or that accelerate detection. They must do so, however,
without a prohibitively large impact on normal development.

A study conducted by NIST and NASA looked at software
defects detected over a 15-year period [11]. Systems studied
included avionics, medical devices, web browsers, servers, space
systems, and network security systems, and ranged in size from
tens of thousands to hundreds of thousands of lines of code. It
found that defects were triggered by the interactions among no
more than six variables. This being the case, 6-way combinato-
rial test vectors might be able to detect them. Subsequently,
NIST and the University of Texas-Arlington found an efficient
algorithm for minimizing the number of test vectors that would
cover up to 6-way combinations of input values [12][13][14]
[15]. They implemented this algorithm in a tool called Automated
Combinatorial Test System (ACTS)1.

The tool was effective at triggering defects, but verification
testing required expected outputs, not just inputs, and creating
these manually for thousands of inputs would be prohibitively
expensive. NIST found an approach to automating this process
using a model checker’s counter examples. It also created a utility
that merged the input vectors with their expected outputs as well
as a test harness that read complete test cases, executed tests,
analyzed results (compared actual versus expected outputs), and
identified anomalies [16].

 a b c d

1 0 255 true -1
2 0 256 false 0
3 0 255 false 1
4 15 256 true -1
5 15 255 true 0
6 15 256 false 1
7 16 255 false -1
8 16 256 true 0
9 16 255 true 1

Table 1: Two-Way
Combinatorial Vectors

Defining the input space to
maximize defect detection and
structural coverage without
significant test iteration (test,
measure coverage, determine
coverage gaps, add input vec-
tors, repeat) is nontrivial [12].
The greater the number of
input test values, the greater
the code coverage but also the
greater the likelihood of com-

24 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

binatorial explosion. The smaller the number, the greater is the
likelihood of missed defects and inadequate structural coverage.

A compromise is to limit input values to those representing
equivalence classes [16]. For each input variable, possible val-
ues are segregated into groups that would ostensibly produce
no difference of interest in code behavior or output value. One
or more representative values are then picked from each group.
This typically includes values that test behavior across instruc-
tion and memory architecture boundaries (e.g., positive and
negative minimum and maximum values, and 0), data definition
ranges, coordinate systems, units of measure, and so on, and
also those that drive decision conditions.

Identifying representative values for boundary values was
straightforward. Finding values for condition variables in
complex, nested logic—values that would force the execution
paths required for code coverage—took more time. MC/DC
requires that every condition in a decision has taken all pos-
sible outcomes at least once, and that each condition in each
decision has been shown to independently affect that decision’s
outcome. Demonstrating independence-of-outcome typically
requires modifying each condition in a decision while all others
remain fixed, and showing that this modification has changed
the outcome of the decision. For the while-loop in

 if ((a != b) && (a != c))
 {
 …
 while ((a != b) && (a != c))
 {
 a = chan ();
 }
 }

tests must be run to show that when both conditions are true,
the loop is executed, and that when each is false but the other
true, the loop is not executed. To determine the input space, val-
ues that force execution of each such path under the required
conditions must be selected for each variable of each condition
of each decision.

Enabling those values was difficult when the condition vari-
able was an input and the values had to be loaded by an exter-
nal procedure invoked from within a decision. In the example,
the loop decision must be tested when a = b and when a = c,
neither of which conditions can be created by direct input from
a test case. The value of a must be changed at runtime by the
call to the external procedure chan (), which is stubbed-out for
unit test. The work-around was to add test-unique variables to
the test cases generated by ACTS and the model checker. Test
stubs were replaced with small procedures that loaded the value
of the test-unique variable directly or indirectly into the condi-
tion variable. In the example, the test variable’s value would be
loaded into the return value of chan ().

Generating a state space for all 34 input variables of the
mode-state controller produced combinatorial explosion. Several
separate sets of test vectors had to be generated instead, each
set covering only those variables that interact to produce an
output. The test harness assigned default values to those vari-
ables not included in a test case. Maximizing structural coverage

required running all such sets of tests. In no case, however, was
there an output value affected by interactions among more than
six input variables, and in aggregate all 6-way combinations of
interacting variables were tested.

Generating Expected Outputs and Executing Tests
The model checker is given a model containing variable

definitions, their relationships, their values in an initial state, and
how their values are determined in subsequent states. It then
generates the state space (or a binary decision diagram of it),
each state mapping a combination of input variable values to
output variable values. See Fig. 1 showing the mapping of the
input values from Table 1 to the output variable, e. For all states
in which the value of c is true, the value of e will be equal to the
value of a plus the value of b, which is expressed as c = true : a
+ b. In all other states, the value of e will be equal to the value
of a times the value of d, expressed as TRUE : a * d. Fig. 1b
shows a segment of the generated state space—the value of e
followed by the input values that produced it.

In the NIST approach, the process of creating expected
outputs for an input test vector relies on a model checker’s
counter-examples [17]. Ordinarily, to verify requirements or a
design, developers using a model checker would create a model
like the one in Fig. 1a , but they would also write properties the
model must preserve—e.g., there must always be a way for the
variable e to be 0, there must always be a way for it to be 272.
The model checker attempts to prove that the model preserves
these properties. Where it finds a violation of a property (a
counter-example—e.g., an execution path in which e can never
be 0), it produces a trace of the states that led to the violation.

To have a model checker determine an expected output for
a given input vector, developers could negate a property and
use the counter example to trace back to the input values that
produced it. For example, they could specify that the variable e
must never be 0. The model checker would detect a state that
violated this property and generate a counter example show-
ing the state transitions from the initial input values (the input
vector) to the point at which e became 0. A simple utility could
create a complete test case from a counter-example by merg-
ing the value of the output variable with the values of the input
variables that produced it [16].

This study used a slightly different approach, requiring a smaller
learning curve. Instead of searching through counter examples
generated by the model checker, the utility function searches for
each input vector across the entire state space generated by the
model checker. The model in Fig. 1a generated 36 states: those
containing all possible combinations of variable values. As shown
in Table 1, all 2-way combinations of inputs can be covered by the
nine input vectors generated by ACTS. The utility function finds
state 4 containing the input vector, {0,255,false,1}, eliminates
any irrelevant inputs and outputs from the state, reformats the
remainder (the input vector and its expected outputs), and exports
the result, {0,0,255,false,1}, to the test harness. When it has found
and exported all 9 test cases, it is finished.

Developers then load the test harness with both the source
code and the test cases, and map the test case entries to input
and output variable names—e.g., map the first entry of the input

CrossTalk—January/February 2014 25

LEGACY SYSTEM SOFTWARE SUSTAINMENT

test case in Fig. 1b (0) to the source code variable e, the second
entry (0) to the variable a. They can then execute the tests. Fail-
ures and the achieved code coverage can be monitored in test
harness windows. Correctness of the expected outputs (verify-
ing the oracle) is established when the resulting test cases are
able to detect all seeded defects with no false positives.

Results
Putting aside defective or incomplete requirements, misin-

terpretations of requirements and design decisions, and other
errors not revealed by exercising the code, at issue was whether
such an automated test approach could cost effectively detect
all (or nearly all) implementation defects. Evaluation criteria in-
cluded accuracy, structural coverage, scalability, execution time,
maturity, ease of learning, and ease of use.

Accuracy was measured in two ways: as the percent of
seeded defects the tests detected; and as the percent of false
detections (number of false positive detections as a percent of
total detections). Defects were manually and arbitrarily seeded
into versions of the code by changing values in arithmetic and
logic statements, changing arithmetic signs, reversing and ne-
gating comparisons, deleting statements, and so on. In all, there
were over 200. After debugging the NuSMV model, the search-
export utility, and the test harness definition, the generated tests
triggered all defects with no false detections.

The initial set of tests achieved 75% statement coverage,
71% branch coverage, and 68% MC/DC. The relatively low
initial coverage was the result of the inadequately defined input
space, described earlier. With a better understanding of how the
input space was to be defined, the subsequently generated test
cases achieved 100% MC/DC.

Scalability was an evaluation of both size (in this case, the
number of input and output variables) and logical complexity.
As mentioned earlier, after limiting inputs to only interacting
variables, test generation never again produced state space
explosion. After using test variables to deal with loops that
changed the value of their condition variables, there were no
further complexity issues.

Execution time was acceptable: for the largest vector genera-
tion model (19 input variables, 1 output variable), ACTS produced
2775 input vectors in six seconds, NuSMV generated the state
space in about 60 minutes, and searching it and building the test
cases took just over eight minutes. The test harness imported

MODULE main
VAR
 a : {0,15,16};
 b : {255,256};
 c : {true,false};
 d : {-1,0,1};

DEFINE
 e :=
 case
 (c = true) : a + b;
 TRUE : a * d;
 esac;

------- State 4 ------
 e = 0
 a = 0
 b = 255
 c = false
 d = 1
------- State 5 ------
 e = 272
 a = 16
 b = 256
 c = true
 d = 1
------- State 6 ------

Fig 1b. State Space SegmentFig. 1a. NuSMV Model

them in 15 seconds, created their executable tests in 12 seconds,
and executed and analyzed them in under eight minutes.

Cost effectiveness was a measure of the value-in-use (accu-
racy, coverage, scalability, and performance), the effort required to
learn the approach, and the effort required to use it on an ongoing
basis. Learning to use ACTS was simple. NIST provides a tutorial
that takes about two hours to process and contains everything
needed to begin using the tool. Initial definition of the 34 input
variables used by the mode controller took four hours, including
initial equivalence class determination and value selection. Using
the .pdf tutorial from the NuSMV web site, learning to develop
NuSMV models and to use the NuSMV simulator to generate the
state space took 20 hours. After encountering state space explo-
sion, generating sets of input vectors for only interacting variables
and selecting equivalence class values to achieve 100% branch
coverage took an additional 16 hours. Finding a way of achiev-
ing 100% MC/DC coverage without manual intervention took
another 16 hours. In total, the learning curve was 84 hours. As er-
rors were found in models, the worst-case time spent completely
regenerating and re-executing tests was under 90 minutes, but
more commonly was less than 15 minutes.

Maturity was an evaluation of readiness for deployment across
a potential population of several thousand engineers—e.g., if the
tools crash frequently or if they produce inconsistent, incorrect, or
confusing results. The study used the 9-level NASA/DoD Tech-
nology Readiness scale3 and found the toolset to be at Level 7,
“System Prototype Demonstrated in [an operational environment]”.
In summary, prototype software exists and all key functionality is
available for demonstration or test; the tools were well integrated
with operational systems; operational feasibility was demonstrated
and most of the software bugs have been eliminated; and at least
some documentation is available. A general deployment would
require level 9 “Actual system [performance] proven through suc-
cessful [developmental use].”

Conclusion
For unit test, this appears to be much more effective than

the standard manual, iterative approach of writing tests, running
them, checking coverage, writing more tests to fill coverage
gaps, running more tests, and so on. Defining the input space
to achieve required coverage consumed the largest amount
of time, requiring several iterations of test case generation –
especially to achieve full MC/DC. With experience, however, the
number of iterations was significantly reduced. The study used
staff with significant experience, but in general the approach
required no knowledge or skills that could not easily be learned
by an above average entry-level software engineer—e.g., creat-
ing and debugging the test generation models was much easier
than writing and debugging the source code being tested.

Overall, results of the study were positive, although there are
remaining issues of deployment packaging and tool licensing,
training, mentoring, and technical support. Data for an empirical
comparative evaluation of defect detection capability between
combinatorial testing and other approaches do not exist, but
there is enough evidence from literature to justify a pilot project
or a trial deployment in a business unit. This is the current plan
going forward.

26 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Redge Bartholomew is with Rockwell Collins, currently research-
ing tools and methods for automating the development of em-
bedded software and for reducing the number of latent software
defects found during test and evaluation.

400 Collins Road
M.S. 108-265
Cedar Rapids, Iowa 52498
Phone: 319-295-1906
E-mail: rgbartho@rockwellcollins.com

ABOUT THE AUTHOR REFERENCES

NOTES

1.	 Government Accountability Office, “F-35 Joint Strike
	 Fighter: Current Outlook Is Improved, but Long-Term
	 Affordability Is a Major Concern, GAO-13-309”, March 2013
2.	 Government Accountability Office, “KC-46 Tanker Aircraft:
	 Program Generally Stable but Improvements in Managing
	 Schedule Are Needed, GAO-13-258”, February 2013
3.	 Government Accountability Office, “Airborne Electronic
	 Attack: Achieving Mission Objectives Depends on
	 Overcoming Acquisition Challenges, GAO-12-175”,
	 March 2012
4.	 Jones, “Software Quality and Software Economics”,
	 SoftwareTech News, April 2010
5.	 Dvorak (ed.), NASA Study on Flight Software Complexity,
	 March 2009.
6.	 National Academy of Sciences, Critical Code:
	 Software Producibility for Defense, 2010
7.	 Baldwin, DoD Software Engineering and System Assurance,
	 NDIA Proceedings of the 11th Annual Systems Engineering
	 Conference, October 2008.
8.	 Afzal, Torkar, Feldt, Search-Based Prediction of
	 Fault-Slip-Through in Large Software Projects, IEEE
	 Symposium on Search Based Software Engineering,
	 September 2010.
9.	 Andersin, TPI – a Model for Test Process Improvement,
	 Seminar on Quality Models for Software Engineering,
	 U of Helsinki, October 2004
10.	Lu, Park, Seo, Zhou, Learning from Mistakes –
	 A Comprehensive Study on Real World Concurrency Bug
	 Characteristics, ACM Proceedings of the 13th Annual
	 International Conference on Architectural Support for
� Programming Languages and Operating Systems, March 2008
11.	Kuhn, Wallace and Gallo, “Software Fault Interactions
	 and Implications for Software Testing,” IEEE Transactions
	 on Software Engineering, June 2004.
12.	Borazjany, Yu, Lei, Kacker, Kuhn, Combinatorial Testing of
	 ACTS: A Case Study, Proceedings of the International
	 Conference on Software Testing, Verification, and Validation,
	 April 2012
13.	Lei, Kacker, Kuhn, Okun, Lawrence, IPOG: A General
	 Strategy for T-Way Software Testing, IEEE Proceedings
	 of the Conference and Workshops on the Engineering of
	 Computer-Based Systems, March 2007.
14.	Kuhn, Lei, Kacker, “Practical Combinatorial Testing:
	 Beyond Pairwise,” IEEE IT Pro, May/June 2008.
15.	Kuhn, Okun, Pseudo-Exhaustive Testing for Software,
	 NASA/ IEEE Proceedings of the 30th Software Engineering
	 Workshop, April 2006.
16.	Kuhn; Kacker; Lei, Practical Combinatorial Testing, NIST
	 Special Publication 800-142, National Institute of
	 Standards & Technology, October 2010.
17.	 Ammann, Black, Majurski, Using Model Checking to
	 Generate Tests from Specifications, IEEE Proceedings
	 of the 2nd International Conference on Formal Engineering
	 Methods, December 1998.
18.	RTCA, DO-178C: Software Considerations in Airborne
	 Systems and Equipment Certification, RTCA, 2011.

1.	 The ACTS executable is available from NIST. See <http://csrc.nist.gov/groups/SNS/acts/index.html>
2.	 NuSMV is available from <http://nusmv.fbk.eu>
3.	 Technology Readiness Calculator at <https://acc.dau.mil/CommunityBrowser.aspx?id=320594&lang=en-US>

CrossTalk—January/February 2014 27

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Michael McLendon, SEI Carnegie Mellon University
Bill Scherlis, SEI Carnegie Mellon University
Douglas C. Schmidt, SEI Carnegie Mellon University

Introduction
Software is essential to the DoD. It delivers enhanced capability
to warfighters and provides competitive performance advantage
across the full spectrum of DoD systems. These systems range
from business information systems to complex C4ISR systems to
major defense weapon systems and cyber capabilities [1]. To at-
tain and maintain this advantage, it is imperative—and increasingly
urgent—to create and execute an enterprise strategy for software
innovation, development, and evolution that enhances affordability
and continually optimizes warfighter effectiveness.

Addressing
Software
Sustainment
Challenges for
the DoD

Addressing
Software
Sustainment
Challenges for
the DoD

This enterprise DoD strategy must recognize the extent to which :
•	 Mission effectiveness depends on the ability of software de-

velopers and teams to deliver capability affordably and support
the continual adaptation and enhancement of that capability

•	 Great value is provided to warfighters by enabling
software-intensive functionality across the lifecycle so systems
can operate interdependently and dependably in net-centric
and cyber environments

It is hard to achieve these goals, however, due to rapid
changes in mission environments and technology infrastructure,
along with a challenging fiscal environment.

As DoD systems continue to age [2]—and sequestration
and other budget constraints and uncertainties place greater
emphasis on efficiency and productivity in defense spending
[3]—it is increasingly important to create more efficient and
effective approaches to sustaining and advancing the competi-
tive edge that software provides. Software sustainment involves
coordinating the processes, procedures, people, information, and
databases required to support, maintain, and operate software-
reliant aspects of DoD systems [4]. This article summarizes key
software sustainment challenges faced by the DoD and high
lights key R&D activities needed to address these challenges.

Software Sustainment Trends and Challenges
The software acquisition process delivers operational perfor-

mance to meet identified warfighter requirements. Henceforth,
systems transition into the sustainment phase. During sustain
ment, software-engineering processes and practices are con-
tinuously applied to (1) assure the ongoing competitive military
advantage of a system and (2) ensure its seamless operation in
helping to evolve net-centric and cyber infrastructures and envi-
ronments. Various trends shape DoD policies and infrastructure
for sustaining software, including:

•	 rapid performance advances associated with Moore’s Law and
associated hardware innovations (cost and capacity for storage,
processing, and communications, and the consequent influence
on computing systems architectures) that accelerate technology
refresh cycles,

•	 the ever-increasing connectedness of systems, in which each
system becomes a node in a vast, complex information network,

•	 the prevalence of closed-source and open-source off-the-shelf
software technologies and practices, which commoditizes the
market for software engineers with modern skills but creates gaps
for projects that need staff with expertise in older technologies,

•	 the need to adapt software to address diminishing manufactur-
ing sources stemming from the loss of producers or suppliers of
hardware used in DoD systems,

•	 the challenges of modernizing and recapitalizing legacy DoD
systems in a constrained budget environment that increasingly
emphasizes greater efficiency and productivity in defense spending,

•	 the repurposing of systems to meet new threats, mission
requirements, and coalition configurations, and

•	 the increasing requirements for interoperability in
net-centric environments.

28 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The Impact of Supply Chains on Software
Infrastructure and Sustainment

Compared to legacy systems, newer DoD systems tend to rely
more on software as a primary means to deliver functionality [1].
There are good reasons for this trend, which has rapidly acceler-
ated over the past decade in both national security systems and
commercial systems. In particular, the increasing use of—and
dependency on—software means there are fewer limits on what
capabilities can be enhanced and created in the future. For
example, the percentage of avionics specification requirements
that rely on software has risen from approximately 8 percent of
the F-4 in 1960 to 45 percent of the F-16 in 1982, 80 percent
of the F-22 in 2000, and 90 percent of the F-35 in 2006 [7], as
shown in Figure 1.

Software is ubiquitous in DoD systems, and it is increas-
ingly hard to identify sub-systems and components that are not
controlled or enabled by software. Ironically, in this increasingly
software-reliant environment, there is a growing bow wave of
software sustainment demands (of unknown size, complexity,
characteristics, and technical debt) that are neither recognized nor
understood by the acquisition community and the DoD enterprise.

For example, not only are we dealing with a growing soft-
ware base, but also the constantly evolving infrastructure in
which software runs. This infrastructure includes commercial
and open-source components, frameworks, and libraries, all of
which are increasingly necessary for modern software systems.
Moreover, there is increasing reliance on software supply chains
that provide and support this infrastructure.

For example, there are supply chains for hardware/firmware
components, as well as integrated components, such as network
routers, operating systems, databases, and middleware [16].
A supply chain for COTS software products includes product
development organizations and their suppliers. Likewise, the
supply chains for custom-developed DoD acquisition systems
can include the prime contractors, subcontractors, and supply
chains for the COTS products used.

Software infrastructure typically evolves at a rapid pace, driv-
en by opportunities to increase capability, improve performance,
provide repairs and security enhancements, and exploit growth
in underlying hardware capability. This upgraded capability must
be integrated into existing systems. Likewise, software defects
and performance bottlenecks must continually be identified,
fixed, and optimized to provide full functionality.

Infrastructure also evolves due to improvements in its own
underlying infrastructure, (i.e., lower layers of the software/hard-
ware stack). A common example involves improvements in un-
derlying operating systems, cloud architectures, and storage and
processing capabilities that enable improvements to a database
framework. An important consequence of this—and a principal
driver of component-based and service-oriented software para
digms—is the speed and efficiency with which new capabilities
can be manifested. For example, talented undergraduate stu-
dents can apply modern software and hardware infrastructure
in a matter of weeks to create highly capable mobile software
apps that access dedicated cloud resources and can be widely
deployed and supported.

Figure 1: The Increasing Role of Software in Avionics Systems

The confluence of these and other trends impact the spec-
trum of acquisition and sustainment policies, programs, and
infrastructure. These trends also exacerbate the growth in total
ownership costs across program lifecycles [6].

Unfortunately, DoD acquisition programs have traditionally
discounted design and program planning considerations for
system sustainment until late in the acquisition phase (if at all).
This attitude stems partly from the difficulty involved in mea-
suring “sustainability attributes” in early phases of design and
implementation. This difficulty, in turn, impedes a style of evolu-
tionary enhancement during sustainment, where increments of
investment in a system yield increments of immediate value in
enhanced functionality, improved performance, etc.

Increasingly, however, the costs of software sustainment are
becoming too high to discount for several reasons:

•	 Sustainment costs account for 60 to 90 percent of the total
software lifecycle effort [5], which motivates the need to address
sustainment throughout acquisition program lifecycles and improve
the ability to measure—and ultimately reward—design and quality
attributes applied during development that favor sustainability.

•	 In an era where DoD new-start programs are being reduced in
favor of prolonging legacy systems, significant software sustainment
cost increases are themselves unsustainable [6].

The growing expense of legacy systems—and their prolonged
use—necessitate greater discipline, a sense of urgency, and atten-
tion to methods and technologies designed to improve sustainment.

To meet these challenges, software sustainment organizations
must have a resilient and properly resourced infrastructure that
integrates processes, practices, and people with evolving com-
petencies, tools, information, databases, and system-integration
lab capabilities. These infrastructure elements, in turn, must be
systematically refreshed throughout the life of a system to sup-
port, maintain, and operate in accordance with unique properties
of software in DoD systems.

For example, software does not follow the laws of physics
that bound hardware design and define failure [1]. Legislative
and DoD policies, however, have historically mandated a de
pot-centric maintenance paradigm based on relatively discrete
hardware aging/replacement models. Unfortunately, these mod-
els are not well-suited to understand the cost, effort, and quality
drivers of software sustainment, which is a continuing software
engineering process that lasts for decades.

CrossTalk—January/February 2014 29

LEGACY SYSTEM SOFTWARE SUSTAINMENT

The increasing reliance of DoD systems on software supply
chains extends well beyond the defense industrial base. This
trend is the subject of a 2007 Defense Science Board report [8]
regarding the challenges of testing and evaluating these supply
chains. Although software does not wear out, firmware and
hardware become obsolete rapidly, thereby driving changes in
software applications and infrastructure.

In mainstream commercial systems, these changes are
planned for and provide end users a steady flow of improve-
ments in performance and reliability derived from the underlying
infrastructure. Just as importantly, these changes create head-
room for improvements in function and capability.

The Relationship of Software Sustainment
to Modernization Efforts

The majority of software sustainment activity is better de-
scribed and managed as a modernization effort. This shift in
perspective is consistent with commercial development practices
and shifts in the business environment for defense systems [10].
The technical drivers discussed below—along with the ongoing
rapid growth in capability of software infrastructure discussed
above—have also enabled this move toward modernization.

In general, software sustainment involves the following
pattern of repair, enhancement, and adaptation:

•	 Repair in response to defects and vulnerabilities related
to functional, quality, and security attributes.

•	 Enhancement in response to demands for increased
functional capability and performance, driven by competitive
pressure (in the commercial world) and changes in mission
profile (in defense).

•	 Adaptation in response to improvements, changes, new
opportunities in the underlying stack of software and hardware
infrastructure, and the mission benefits of increased interop
erability among software-reliant systems in the enterprise.

This pattern is pervasive in commercial software. In recent
years, this software sustainment pattern—and the tempo at
which that pattern has been applied—has been amplified be-
cause many applications and data repositories have migrated to
cloud-based systems [9]. This transformation is evident across
the spectrum, from mobile apps (which tend to rely on cloud-
based resources) to large-scale data-intensive applications.

The sustainment community has shifted from primarily empha-
sizing repair to focusing on enhancement and adaptation [6]. This
shift stems from various mission and business considerations, not
the least of which is the reduced deployment of new systems in

Understanding and Mitigating the Cost Drivers
of Software Sustainment

To craft a more effective and efficient approach to software
sustainment, organizations must examine and understand the
complexities and costs of the software infrastructure envi
ronment. This complex nexus of activities has historically been
neglected. Recent studies [2][6], however, indicate that the DoD
is expending more time and effort sustaining software, often
more than originally anticipated due to uncertainties encoun-
tered during initial program cost estimation.

For example, a 2011 Air Force Scientific Advisory Board study
[6] showed that total weapon system software sustainment costs
have doubled in less than 10 years, as shown in Figure 2. Like
wise, software sustainment hours at the three Air Logistics Cen-
ters over the past eight years have also increased significantly.

	

Figure 2:
Increase in
Software
Sustainment
Costs Over
the Past
Decade

favor of sustaining legacy systems. It is also a result of the DoD’s
growing ability to manifest increasing levels of functionality in
software, which in turn is a consequence of the rapid pace of in-
novation in tools, languages, models, and processes.

Indeed, cloud-based software applications may have a much
greater tempo in their update cycle. The term “DevOps” arose in
the context of commercial systems to refer to the rapid iteration
of development, quality assurance, and operations. This iteration
is most evident in cloud-based applications due to the relative
ease—and transparency—of deployment, especially when quality
practices are integrated into development efforts.

On a larger scale, the Office of the Deputy Assistant Secre-
tary of the Army for Cost and Economics—in collaboration with
the Air Force and the Navy—is sponsoring critical and founda
tional research into understanding the myriad of activities that
occur in what the DoD calls “software depot maintenance.” SEI
at Carnegie Mellon University has also initiated research [14]
that addresses the uncertainty of cost estimates early in the
lifecycle and the dynamics of decision making associated with
choices about sustainment strategies.

Various factors contribute to the high costs of software
sustainment. For example, functionality (such as fly-by-wire)
originally provided by hardware may be replaced by software,
which must then be sustained. Periodic software upgrades and
enhancements throughout the lifecycle of DoD systems may
also result in unanticipated increases in sustainment costs.
Moreover, software maintainers must expend costly and
time-consuming effort to understand original designs and
carefully make changes to avoid degrading design integrity
or negatively impacting key quality attributes. In addition, the
scale and complexity of software are growing significantly to
meet the expanded threat spectrum [11], which exacerbates
sustainment costs.

As sustainment costs have increased, the DoD has struggled
to support all its legacy systems—especially its weapon systems
platforms—many of which will remain in the operational inventory
much longer that planned due to budget constraints. Examples

30 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

of weapon systems platforms include the physical airframes,
hulls, chassis, and their associated parts such as engines, weap-
ons, sensors, and computing/communication units. Economic
strategies for understanding and addressing these rising costs
are affected by a key difference between the software running
in DoD weapon system platforms and the platforms themselves.

Sustainment costs have historically been attributed to the
following factors:

•	 the number of systems in the operational inventory,
•	 the operating tempo (optempo) of systems (flying

	 hours, driving miles, number of deployments, etc.),
•	 the number of different configurations,
•	 parts count, and
•	 failure rates.
The wear and tear on hardware at the platform-, sub-sys-

tem-, and component-levels represents a significant mainte-
nance expense. Through the years, the DoD has developed
a finely tuned set of heuristics for estimating field and
depot maintenance costs, budgets, and the relationships of
maintenance funding and backlogs to operational readiness.
In the face of declining budgets, the DoD has traditionally
handled these costs by shrinking its force structure inven-
tory and the operational tempo of forces, (e.g., by retiring
and/or reducing the numbers of aging aircraft, ship, and
vehicle platforms) [6].

This approach worked when sustainment costs were large-
ly a function of the hardware for weapon system platforms.
In contrast, software has essentially no expenses related
to manufacturing or wear-and-tear. As a result, software
sustainment costs are insensitive to the traditional hardware-
maintenance cost drivers. In fact, software sustainment costs
are primarily driven by the function a system or sub-system
exists to perform, the multiple configurations of systems in
the inventory (each with their own software variant), and the
increasing degree of interoperability among systems in
net-centric environments.

For example, a class of ships, planes, or vehicles may
have scores of software variants reflecting different sen-
sor, processing hardware, operating system, and network/
bus configurations; different algorithms; and different security
profiles for customers from different countries. Sustaining all
these variants affects the time and effort required to assure,
optimize, and manage the system throughout the lifecycle.
These factors then inform the size, configuration, and capabili-
ties required of the software sustainment infrastructure.

A critical workforce challenge is the need to reconsider
current legislative and policy mandates concerning the
organic and contractor share of sustainment across the DoD
enterprise [6]. The pace of technological change—coupled
with the continuous need to deliver greater performance to
the warfighter at an affordable level of investment—creates
significant pressure to assess, at the DoD-enterprise level,
how to plan, organize, and perform software sustainment.
This assessment should create more effective, efficient, and
continually refreshed software-sustainment strategies and or-
ganizations, and the alignment of those organizations around
portfolio and product-lines.

The Importance of Architecture in Enabling Effective
and Efficient Sustainment

Software variability inevitably grows in legacy systems unless
a concerted effort is made to rein it in. Unchecked, it becomes
increasingly hard to avoid adding unnecessary variability, re-
implementing variation mechanisms more than once, selecting
incompatible or awkward variation mechanisms, and missing
required variations. This bloat can be overcome through explicit
attention to architectural features and encapsulation of the vari
ous separate dimensions of variability [12], which is a principal
feature of software architecture [13].

In modern software-reliant systems, the concept of architec-
ture includes commitments regarding the structure and content
of the interactions among system components [1]. Structural
commitments generally focus on which components can interact
and how information exchanged between components is repre-
sented, scaled, and transmitted via data models and protocols.
Other commitments may include critical quality attributes, such
as performance and availability expectations, security consider-
ations, usability, and so on.

In short, architecture is the set of critical design commitments
that regulate what may and may not happen within an overall
system [12]. There are two key perspectives on architecture that
are essential for effective and efficient software sustainment:

•	 From a management perspective, architecture embod-
ies anticipation of change: in the rapidly evolving technology
infrastructure, in capabilities that will be delivered to users over
a period of 5 to ten years, and in policy and business rules.
Interoperability problems are evidence of missing or inadequate
architectural planning, often compounded by misaligned incen-
tives among development teams or contractors.

•	 From a technical perspective, architecture provides a frame-
work for coordinating data exchange within an enterprise and for
systematically addressing quality attributes. Good architectural
designs anticipate change by encapsulating variability to reduce
cost and risk. In this approach, change-prone areas (such as
hardware and communication infrastructures) are accessed
via stable interfaces whose implementations can be replaced
without undue side-effects on other software components.
Many software patterns [13][15] exist entirely for this purpose.

Architectural decisions thus regulate the overall interplay
among systems within an enterprise. In many enterprises,
“architecture” may be the result of incremental decisions over
time, where a sequence of local decisions determines overall
organizational outcomes, for better or worse.

Failure to attend to architecture often leads to the loss of intel-
lectual and configuration control that is manifested via terms such as
“software rot” or “bloatware.” In the absence of an architecture-cen-
tered approach, the DoD will face “sticker shock” because software
sustainment costs are unlikely to decrease by shrinking inventory
alone. For example, since the cost drivers for software sustainment
relate more to the (combinatorial) number of configurations and vari-
ants, approximately the same level of effort is needed regardless of
whether there are 100 or 10,000 hardware platforms.

To address these issues, the DoD needs different strategies
for understanding and alleviating rising software sustainment
costs by considering architecture-based approaches early

CrossTalk—January/February 2014 31

LEGACY SYSTEM SOFTWARE SUSTAINMENT

in the system-acquisition process. Architecture must there-
fore be an explicit consideration in the systems engineering
trade-off process in advanced development planning and the
technology development phase of the acquisition process. In
particular, sustainment strategies based on managing software
commonality and variability via software product lines should
be considered when conducting systems engineering trade-off
analyses [12].

Workforce Challenges Associated with
Software Sustainment

In addition to the technical and economic challenges dis-
cussed above, the DoD faces challenges with recruiting, training,
and retaining an efficient, productive, and continually refreshed
workforce of engineers and technical managers to meet its
sustainment needs [1][6]. Effective software sustainment requires
this workforce to have expertise in older programming languages,
operating platforms, and tools. It must also have deep domain
knowledge, software architecture knowledge, and a full appre-
ciation of the emerging software technologies that will form the
basis of reengineered systems. More experienced members of
the DoD workforce tend to possess this expertise, so retaining
and replenishing this critical human resource is essential.

In general, the DoD’s software sustainment activities rely on a
combination of in-house expertise (so-called “organic sustain-
ment”) and external capability (accessed through contracting,
consultancy, or advisory panels). A base of capable in-house
expertise is essential in any technology-intensive organization,
even those that outsource the bulk of actual technical work. In-
house experts help ensure an organization is a smart customer
on development projects. For example, these experts can iden-
tify needs and opportunities, create and manage relationships,
structure incentives, evaluate risks and costs, and otherwise
assure that the external (and internal) relationships are techni-
cally sound and aligned with organizational interests.

In-house expertise is particularly essential for DoD programs,
program offices, and services to address architectural sustain-
ment issues that transcend individual systems, development ac-
tivities, and acquisition programs. These broader issues involve
how separately managed, contracted development efforts might
interact. While external advice can (and should) be sought and
followed, it is necessary—from the standpoint of vision, strategy,
and accountability—that the core technical leadership come from
within the organization [1][8].

For in-house sustainment activity, a high-quality technical work-
force is essential to support rapid, informed, and agile responses
to evolving mission requirements, operational needs, and changes
in technology infrastructure. Fewer barriers exist for in-house
teams to engage in modern iterative and incremental develop-
ment practices to support rapid evolution. Unfortunately, although
some in-house organizations [5] are dedicated to sustaining
software, their efforts are often not as well recognized (or funded)
by the DoD, especially in the face of an aging DoD inventory [2].

The DoD must also address other critical deficiencies to
achieve and sustain a high-quality workforce. For example, soft-
ware acquisition management and software engineering are not
DoD career fields, even though expertise in these domains has

proven critical to success. There is thus an urgent need to ad-
dress critical and emerging workforce challenges stemming from
current legislative and policy mandates concerning the organic
and contractor share of sustainment across the DoD enterprise.

The rapid pace of technological change, coupled with the ever-
increasing need to deliver greater performance to the warfighter
at an affordable level of investment, creates significant pressure
to objectively assess at the DoD enterprise level how to plan,
organize, and perform software sustainment. This assessment
should seek to create more effective, efficient, and continually re-
freshed software sustainment strategies, organizations, and align
ment of those organizations around portfolio and product-lines.

Key R&D Activities Needed to Address Software
Sustainment Challenges

The software research community has devised various ap-
proaches to improve software sustainability. For example, tools
for detecting software modularity violations help identify eroding
design structures (referred to whimsically as “bad code smells” by
software developers and managers) so they can be refactored.
Likewise, intelligent automated regression testing frameworks
help ensure that changes to legacy software work as required
and that unchanged parts have not become less dependable.

Over the past several decades, the SEI has created methods
and guidelines for sustaining, migrating, and evolving legacy sys-
tems. For example, the SEI has devised strategies for modernizing
legacy systems and reusing legacy components. These strategies
employ risk-managed, incremental approaches that encompass
changes in software technologies, engineering processes, and
business practices. In addition, the SEI has created techniques for
measuring the effectiveness of software-sustainment practices.
These techniques can help decision-makers select between (1)
continued sustainment versus replacement or (2) which of the
multiple (redundant) legacy systems to keep and which to retire.

Conclusion
Despite its strategic importance to the DoD, software sustainment

has received relatively little visibility and emphasis as an enterprise
policy, program, and resource issue. The fact that our legacy weapon
systems provide competitive advantage to the warfighter is due to
the dedication and skills of the software sustainment workforce,
both government and contractors, located at the services’ software
depot centers and at contractor facilities. We contend, however, that
a greater sense of urgency is required to ensure DoD’s sustainment
capabilities can continue to deliver warfighter capability in the face of
significant fiscal, technology, and workforce challenges [3].

This article just scratches the surface of the complex land-
scape of policy, program, people, and technical design and infra-
structure challenges associated with sustaining software-reliant
DoD systems. Other vexing, non-technical challenges affecting
sustainment and total ownership costs are that DoD contracts
often fail to procure source code, necessary licenses, and tech-
nical data rights, as well as technical data on design artifacts,
testing facilities, and procedures during the acquisition process
[10]. The DoD needs to adopt a holistic approach to software
sustainment that addresses the technical, management, and
business perspectives in a balanced manner.

32 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Mr. McLendon currently serves as the Associate Director, Software Solutions
Division for the Software Engineering Institute, Carnegie Mellon University.
Prior to assuming this position, Mr. McLendon served as Senior Advisor in the
Office of the Assistant Secretary of Defense for Systems Engineering. He
also served as a principal in the Office of the Assistant Secretary of Defense
for Program Analysis and Evaluation and in the Office of the Under Secre-
tary of Defense for Policy. He later was a Professor at the Defense Systems
Management College. He served as a career Air Force officer in a range of
leadership and management positions in system and technology development
and acquisition as well as the federal level and the private sector.

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: mmclendon@sei.cmu.edu

Dr. William L Scherlis is a Professor in the School of Computer Science at
Carnegie Mellon. He is director of CMU’s Institute for Software Research (ISR)
in the School of Computer Science and the founding director of CMU’s PhD
Program in Software Engineering. From Jan 2012 to January 2013 he served
as the Acting CTO for the Software Engineering Institute. His research relates
to software assurance, software analysis, and assured safe concurrency. Dr.
Scherlis chaired the National Research Council (NRC) study committee on
defense software producibility, which released its final report Critical Code:
Software Producibility for Defense in 2010. He is a Fellow of the IEEE and a
lifetime National Associate of the National Academy of Sciences. Dr. Scherlis
joined the Carnegie Mellon faculty after completing a Ph.D. in Computer Sci-
ence at Stanford University, a year at the University of Edinburgh (Scotland) as
a John Knox Fellow, and an A.B. at Harvard University.

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: scherlis@sei.cmu.edu

Dr. Douglas C. Schmidt is a Professor of Computer Science and Associate
Chair of the Computer Science and Engineering program at Vanderbilt Univer-
sity. He is also a Visiting Scientist at the Software Engineering Institute, where
he served as the CTO from September 2010 to December 2011. Dr. Schmidt
has published 10 books and more than 500 technical papers on software-re-
lated topics, including patterns, optimization techniques, and empirical analyses
of object-oriented frameworks and domain-specific modeling environments that
facilitate the development of distributed real-time and embedded middleware
and mission-critical applications running over data networks and embedded
system interconnects. Dr. Schmidt received B.S. and M.A. degrees in Sociology
from the College of William and Mary in Williamsburg, Virginia, and an M.S. and
a Ph.D. in Computer Science from the University of California, Irvine (UCI).

SEI Carnegie Mellon University
4500 Fifth Ave
Pittsburgh, PA 15213
E-mail: dschmidt@sei.cmu.edu

ABOUT THE AUTHORS REFERENCES
1.	 National Research Council’s Critical Code: Software
	 Producibility for Defense report, <http://www.nap.edu/
	 openbook.php?record_id=12979&page=R1>
2.	 National Research Council’s, Aging of U.S. Air Force Aircraft
� report <http://www.nap.edu/catalog.php?record_id=5917>
3.	 Ashton Carter, “Better Buying Power: Guidance for
	 Obtaining Greater Efficiency and Productivity in Defense
	 Spending,” Memorandum for Acquisition Professionals,
	 September 14, 2010.
4.	 Mary Ann Lapham, “Sustaining Software-Intensive
	 Systems,” SEI technical report,
	 <http://www.sei.cmu.edu/library/abstracts/
	 reports/06tn007.cfm>
5.	 United States Air Force Software Technology Support
	 Center, “Guidelines for Successful Acquisition and
	 Management of Software-Intensive Systems: Weapon
	 Systems, Command and Control Systems, and Management
	 Information Systems (Condensed Version 4.0).,” Ogden Air
	 Logistics Center Hill AFB, UT, February 2003.
6.	 Air Force Science Advisory Board’s Sustaining Aging Aircraft
	 report, <http://oai.dtic.mil/oai/oai?verb=getRecord&meta
	 dataPrefix=html&identifier=ADA562696>.
7.	 Report from the Defense Science Board Task Force on
	 Defense Software, November 2000.
8.	 Report of the Defense Science Board Task Force on Mission
	 impact of Foreign Influence on DoD Software,
	 September 2007.
9.	 Teri Takai, et al., “Department of Defense Cloud Computing
	 Strategy,” July 12, 2012.
10.	Nick Guertin and Brian Womble, “Competition and the DoD
	 Marketplace,” Proceedings of the Ninth Annual Acquisition
	 Research Symposium, April 30th, 2012.
11.	Lind Northrop, et al., Ultra-Large-Scale Systems:
	 The Software Challenge of the Future, Software Engineering
	 Institute, 2006.
12.	Paul Clements and Linda Northrop, Software Product Lines:
	 Practices and Patterns, Addison-Wesley, 2001.
13.	Frank Buschmann, et al., Pattern-Oriented Software
	 Architecture: A System of Patterns, Wiley, 1996.
14.	Robert Ferguson, “An Investment Model for Software
	 Sustainment,” SEI Blog, July 22, 2013.
15.	Erich Gamma et al., Design Patterns: Elements of Reusable
	 Object-Oriented Software, Addison-Wesley, 1995.
16.	Robert J. Ellison, Christopher Alberts, Rita Creel, Audrey
	 Dorofee, and Carol Woody, “Software Supply Chain Risk
	 Management: From Products to Systems of Systems,”
	 CMU/SEI-2010-TN-026.

CrossTalk—January/February 2014 33

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Mary Ann Lapham, SEI

Abstract.Today’s systems are increasingly reliant on software which must be sus-
tained into the future. To sustain these systems organizations must define sustain-
ment, meet criteria to enter sustainment, and overcome some classic sustainment
challenges. This article discusses these tasks along with historical parallel develop-
ment and sustainment and potential future trends in software sustainment.

Software Sustainment
Now and Future

While DoD Instruction 5000.02 describes sustainment in de-
tail, no authoritative definition of “software sustainment” exists.
The SEI’s working definition is as follows:

The processes, procedures, people, material, and information
required to support, maintain, and operate the software aspects
of a system.

Given this definition, software sustainment addresses other
issues not always an integral part of maintenance such as
documentation, operations, deployment, security, configuration
management, training (users and sustainment personnel), help
desk, commercial off-the shelf (COTS) product and license man-
agement, and technology refresh. Successful software sustain-
ment consists of more than modifying and updating source
code. It also depends on the experience of the sustainment
organization, the skills of the sustainment team, the adaptability
of the customer, and the operational domain of the team. Thus,
software maintenance as well as operations should be consid-
ered part of software sustainment.

Criteria to Enter Sustainment
The Operations and Support phase of the Defense Acquisi-

tion Management System has two major efforts, Life-Cycle
Sustainment and Disposal. The entrance criteria include an
approved Capabilities Production Document (CPD), an approved
Life-Cycle Sustainment Plan (LCSP), and a successful Full-Rate
Production (FRP) decision [1, section 8.a and b]. In addition, the
following criteria among others should be considered:

•	Stable software production baseline—Most sustainment
organizations will not accept software into sustainment until
the software is stable. Merriam-Webster Online defines stable
as “a. firmly established: fixed, steadfast; b. not changing or
fluctuating: unvarying; c. permanent, enduring” [4]. However, in
the realm of software stable can mean different things.

If one were to apply Merriam-Webster’s definition to soft-
ware, he or she could infer that a single instance of loss of
availability or a system failure would indicate that the software
is not stable. In other words, software is stable only if it does
not have problems that cause it to stop working. For software,
unfortunately, the definition of stable can be a subjective one
from several different perspectives. One organization may be
willing to accept software as stable if it only fails once a week,
while others would deem this rate of failure too high and would
not accept the software. In other situations, software may
be considered stable if no Category 1 or 2 Software Trouble
Reports (STRs) exist.

Defining the stability of a system depends somewhat on its
intended use, its mission criticality, and the potential conse-
quences if the system fails. For instance, a system such as
navigation software or command and control software whose
failure could result in loss of life should have more stringent
requirements for maintaining stability than one that is business
software supporting actions that could be postponed for hours
or even days.

The program office should define the criteria for accepting a
system as stable in the Sustainment Transition Plan. These crite-
ria should at the very least identify the types of STRs allowed to
be active in a system that is entering sustainment.

Introduction
This article provides an overview of current software sus-

tainment practices and challenges within the Department of
Defense (DoD) and a look at the potential future of software
sustainment within the federal government. It takes a broad view
based on a specific study done in 2006 which was not meant to
be all inclusive for every software sustainment topic. Thus there
are areas not covered that may be relevant to an individual situ-
ation. Areas such as open source software, anti-tamper, sustain-
ment cost estimation, and specific authority and responsibility
for transition to sustainment should be explored if relevant to
your situation.

As today’s systems become increasingly reliant on software,
the issues surrounding sustainment become increasingly com-
plex. The risks of ignoring these issues can potentially undermine
the stability, enhancement, and longevity of systems in the field.

At the center of this puzzle are disparate definitions. Develop-
ers and acquirers have a general understanding that sustain-
ment involves modifying systems and deploying changes to
meet customer needs, but does this understanding align with
common practice and the DoD’s definition of sustainment? DoD
Instruction 5000.02 describes sustainment as follows:

Life-cycle sustainment considerations include supply; main-
tenance; transportation; sustaining engineering; data manage-
ment; configuration management; Human Systems Integration
(HSI); environment, safety (including explosives safety), and
occupational health; protection of critical program information
and anti-tamper provisions; supportability; and interoperability
[1, section 8.c.1.b].

The terms software maintenance and software sustainment
are often used interchangeably. It is important to make sure that
all stakeholders use the same terminology when discussing
software sustainment.

The IEEE Standard Glossary of Software Engineering Termi-
nology defines “software maintenance” as follows:

The process of modifying a software system or component
after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment [2].

Software maintenance consists of correcting faults, improv-
ing performance or other attributes, and adapting to a changing
organization and technical environment. To be complete, there is
usually a fourth category of maintenance activities focused on
anticipated problems, or preventive maintenance1 [3].

34 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

•	Complete and current software documentation—Complete,
current software documentation is paramount for the software
sustainment organization. Without it, the sustainment organiza-
tion has limited insight into how the software was designed
and implemented. Incompleteness or omissions increase soft-
ware maintenance costs because software engineers have to
reverse-engineer the code to determine how it works. In addi-
tion, this process increases the risk of inadvertently introducing
errors into the code. Well documented code is a plus and—for
those using incremental and iterative methods—expected.

The program office should determine what constitutes com-
plete documentation for its system. At a minimum the documen-
tation set should include the “why, how, what, and where” of the
system as built. That is, documents should allow the sustainment
organization to understand why the system was designed, how
the system was developed, what the system consists of, and
where functions were allocated to different subsystems. The
overall architecture or blueprint for the system needs to be
provided. Plans on how the program office intended to handle
COTS and configuration management issues are essential for
sustainment and continued implementation. Interface definitions
need to be documented. Database designs and their docu-
mentation are essential to understanding their purpose within
the system. Lastly, the development environment needs to be
defined so the sustainment organization knows what tools were
used to develop and support the system.

•	Authority to Operate (ATO) for an operational software
system—Before a system can be considered operational in the
field and thus meet the criteria to enter sustainment, an Author-
ity to Operate must be issued. The ATO issuance depends on
approval of security requirements by the Designated Approval
Authority (DAA). Issuing an ATO means that a DAA has accept-
ed that operation of the system represents a low security risk. An
ATO is issued for a fixed period of time (typically three years) and
must be renewed. Delay in obtaining ATO approval or renewal
could cause the system to be deemed non-operational.

•	Current and negotiated Sustainment Transition Plan—In
many instances, a program has been developed, tested, and
declared operational but there is no funding set aside to address
creation and subsequent negotiation of the Sustainment Transi-
tion Plan. Unfortunately, in an era where budgets are becoming
increasingly tight, sustainment planning is postponed and in
some instances forgotten.

Both the development organization and the sustainment
organization need to be involved in creating the Sustainment
Transition Plan. If a contractor is involved in development, that
organization also needs to participate in the development and
subsequent negotiation of the Sustainment Transition Plan. In
addition, the contract should include tasks that address the con-
tractor’s role in the sustainment planning and transition process.

The program office should ensure that while the program is
being developed, sustainment tasks are not forgotten or removed
from the development contractor’s tasking. While the development
contractor may not necessarily become the sustainment organiza-
tion, the development contractor is responsible for developing and
maintaining documentation that the sustainment organization will
need. It is the program office’s responsibility to ensure that the con-

tractor does not create documentation that is proprietary or unde-
liverable. Even though it was cancelled in 1998, the MIL-STD-498,
Section 5.13, “Preparing for Software Transition,” contains good
background and reference material in this area [5].

• Sustainment staffing and training plan—Staffing the sustain-
ment organization is critical. The staff needs to be trained software
professionals that can work with the development organization
to transfer the necessary system knowledge. One should not as-
sume that any of the development organization staff will transition
to the sustainment organization; rather, adopt a plan to transfer the
knowledge from one organization to the other as part of the staff-
ing plan. The staffing and training plan are related to and should
be coordinated with the Sustainment Transition Plan.

As with many other areas associated with sustainment, train-
ing for the sustainment organization is often treated as an after-
thought and is usually an under-funded activity. Even though the
sustainment staff is composed of trained software professionals,
they still need training on the specifics of the system entering
sustainment. This is especially true for the increasingly complex
systems that contain a mixture of COTS, government off-the-
shelf (GOTS), and organic (government-developed) software
code. “On-the-job” training is not sufficient for personnel sus-
taining these types of complex systems. The system’s specific
architecture, design decisions, and other nuances need to be
communicated in some depth.

Sustainment Challenges
Our research in the 2006 timeframe identified a variety of

issues or challenges prevalent with software sustainment at that
time. These were grouped into six categories. This is not to say
that one would not find other issues that must be addressed
when a system is entering sustainment. In addition, no priority is
implied by the order in which these topics are discussed.

The following categories of sustainment challenges were identified:
•	Sustainment with COTS software—requires consideration of

system obsolescence, technology refresh, source code escrow,
and vendor license management among related topics.

•	Programmatic considerations—discusses issues with
relegating the sustainment requirement to the category of
“minor requirements.”

•	System transition to sustainment—considers topics of support
database transition, development and software support environ-
ment infrastructure (software test lab, hardware spares, release
processes and procedures), staffing, operations training, and
transition planning

•	User support—discusses help desk, user documentation, and
user training.

•	 Information assurance—discusses the unique challenges of IA
and COTS software products and testing for IA.

•	Development versus sustainment.
While these challenges are most likely still valid, the only one

discussed in depth within this article is the last one, development
versus sustainment.2

Parallel Development and Sustainment—History
As I found in 2006 (and continuing to the present), many

systems are fielded in an incremental manner. Incremental

CrossTalk—January/February 2014 35

LEGACY SYSTEM SOFTWARE SUSTAINMENT

means that an increment or version of the system that pro-
vides partial capabilities is developed and fielded. The remain-
ing capabilities are developed later depending on budget,
requirements definition, and technology advancements. For the
sustainment organization, this means that it will be sustaining
a system in parallel with another version of the system that is
still under development.

Development in parallel with sustainment is not a new con-
cept; however, many sustainment organizations may not have
experience with this mode of operation. In some instances,
upgrades (development) are considered a sustainment activity.
This makes the “line” between development and sustainment
very hazy. To ensure continued operation of the system, the
sustainment and development organizations need to develop
processes and procedures, coordinate them with all parties, and
obtain concurrence on their use. This should include an under-
standing of who is responsible for any upgrades.

Historically, in organizations that are successful in performing
development and sustainment concurrently, groups within the
organizations report to the same person. Given the organiza-
tional structure of the development and sustainment organiza-
tions, this can be problematic. In many instances, the person
who has enough experience to oversee both the development
and sustainment groups does not have the desire or the time to
be involved in this level of oversight.

To better align parallel development and sustainment efforts,
the program office needs to consider the current sustainment
structure. With that in mind, it should then determine how the
system being developed is evolving and how it can fit into the
sustainment structure. Sustainment organizations should plan to
adapt their processes to handle an evolving system, especially if
it implements COTS hardware or software products.

In addition, a joint (development and sustainment) Configura-
tion Control Board (CCB) needs to be created and given the
authority to act. All decisions for changes to the baseline must
go through the CCB without exception. The operational soft-
ware must be driven from the CCB approved baseline. Last, a
clear, documented path of escalation up to senior-level person-
nel must be created to address issues. It is not a question of if
there will be issues, but when they will occur. Being prepared to
handle issues reduces the impact problems have on the overall
development and sustainment of the system. Emphasis in bold
is added to point out the criticality of following a strict CCB
process when there are two organizations (one development
focused and one sustainment focused). Otherwise, keeping the
two systems in alignment will be problematic at best.

Future of Software Sustainment
In 2006, when I authored the Sustaining Software Intensive

Systems technical note, many commercial organizations were
starting to use incremental and iterative methods known as
Agile methods. These methods have evolved over time; today
the commercial environment is using something referred to as
DevOps. What is DevOps?

What it is. A way of working that encourages the Develop-
ment and Operations teams to work together in a highly col-
laborative way towards the same goal.

What it is not. A way to get developers to take on operational
tasks and vice versa [6].

Strangely, I find the definition very similar to what was de-
scribed in the Parallel Development and Sustainment section.
However, there are some major differences. DevOps seems to
be the Agile community’s term for doing sustainment and opera-
tions in parallel. The methods used are based on the Agile Mani-
festo four tenets and 12 principles but applied in a sustainment
environment. Adopting these tenets and principles within DoD
requires a major change in the paradigm for doing business [7].

The SEI currently has a team researching the use of Agile
methods in sustainment within the federal government. This
research is how I came upon the term DevOps. In addition, Gene
Kim provided a keynote speech on DevOps at the 2013 Soft-
ware Technology Conference. The question is whether this type
of methodology will be useful and adopted within the federal
government. We’re still trying to determine this.3

However, we have learned that several maintenance organiza-
tions within the federal government are trending toward using more
Agile-like methods for conducting sustainment. While the “jury is
still out” on whether Agile methods are indeed in use, there seems
to be a movement to try more incremental and iterative methods
using empowered teams. This movement toward incremental and
iterative methods does seem to make sense for a sustainment
environment where defects and/or enhancements are prioritized
and worked on in that order based on the amount of capacity the
sustainment team possesses. This approach sounds eerily like the
product backlog maintained by an Agile team [8].

In fact, one of the early conclusions by SEI in our Agile work
included the following thoughts on using Agile for sustainment:

Operations and Support is where sustainment of the software
is conducted. It is assumed that the software previously devel-
oped (during the Engineering and Manufacturing Development
phase) is mature and stable, so the anticipated software effort
expended during this phase is low and should follow a sustain-
ment model, driven by the need to correct errors observed during
qualification testing, or providing enhancements as requested by
program stakeholders. It is quite possible for a software develop-
ment team working in these life cycle phases to follow an Agile
approach. Quite often the features requested during this phase
are modifications that are only relevant within the context of the
system that had been previously developed. The aspect of user
involvement that naturally occurs at this point of the life cycle
makes it easier for the use of a collaborative approach.

It should be noted that some of the Agile methods might not
be as practical as others4 during the Operations and Support
phase. For example, it is quite likely that the capability provided
during sustainment is planned to be provided over a significant
period of time, typically on the order of two years. While the in-
volvement of the user might be beneficial, the frequent releases
may not be useful because of limitations with the verification
and validation environments required for deployed systems. On
the other hand, this constraint should not preclude the use of
Agile during this stage of development [8].

In addition, many issues need to be explored including but not
limited to documentation required, CCB interaction, release of
updated software to the field, quality of code, and cost of code.

36 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Our ongoing Agile and sustainment research is looking at these
and other issues. The results of our Agile and sustainment study
should be available in early 2014.

Summary
There are multiple issues associated with software sustain-

ment. They start with agreeing on a standard definition for the
term software sustainment. This is followed by knowing the
criteria for entering sustainment which include stable software
production baseline; complete and current software documenta-
tion; Authority to Operate; current and negotiated Sustainment
Transition Plan; and sustainment staffing and training plan. Finally,
specific known challenges need to be considered. These include
but are not limited to sustainment with COTS software; program-
matic considerations; system transition to sustainment; user sup-
port; information assurance; and development versus sustainment.

Parallel development and sustainment have historically been
done which may lead to a move towards the more current DevOps
approach. DevOps is becoming popularized by the Agile move-
ment. Many issues need to be resolved and the jury is still out on
the effectiveness of this approach in the federal government.

Disclaimers:
Copyright 2013 Carnegie Mellon University.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHEDON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARN-
EGIE MELLON UNIVERSITY DOES NOT MAKE ANY WAR-
RANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and
unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM-0000536

Mary Ann Lapham, a Principal Engineer at the Software En-
gineering Institute (SEI) of Carnegie Mellon University, is the
technical lead for SEI’s agile in acquisition research, focused
on identifying and addressing barriers to adopting Agile
practices in DoD and other government settings. She is also
the Space Sector lead within the Software Solutions Division,
Client Technical Solutions Directorate. Prior to her coming
to the SEI in 2004, Ms. Lapham spent 30 years in technical
and program management roles on programs of variable size
and complexity. She also is a PMP and CSM.

E-mail: mlapham@sei.cmu.edu
Phone: 412-268-5498

ABOUT THE AUTHOR

REFERENCES

NOTES

1.	 Department of Defense. DoD Instruction Operation of the Defense Acquisition System (DoDI 5000.02).
	 December 2008. Print.
2.	 Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software Engineering
	 Terminology (IEEE Std. 610.12-1990). New York, NY: IEEE, 1990 (ISBN: 155937067X). Print.
3.	 Lapham, M.A.; Woody, C. Sustaining Software Intensive Systems (CMU/SEI-2006-TN-007). Software
	 Engineering Institute, Carnegie Mellon University. Web. 2006.
	 <http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm>
4.	 “Stable.” Merriam-Webster Online Dictionary, 10th Edition. Web.
	 <http://www.merriam-webster.com/dictionary/stable>
5.	 Department of Defense. MIL-STD-498 Software Development and Documentation. December 1994.
	 (Cancelled June 1998). Print.
6.	 Swartout, Paul. Continuous Delivery and DevOps: A Quickstart Guide, Continuous Delivery and DevOps
	 Explained. Packt Publishing, 2012. Print.
7.	 Lapham, M.A.; Miller, S; Adams, L; Brown, N; Hackemack, B; Hammons, C; Levine, L; and Schenker, A.
	 Agile Methods: Selected DoD Management and Acquisition Concerns (CMU/SEI-2011-TN-002).
	 Software Engineering Institute, Carnegie Mellon University. Web. 2011.
	 <http://www.sei.cmu.edu/library/abstracts/reports/11tn002.cfm>
8.	 Lapham, M.A.; Williams, R.; Hammons, C.; Burton, D.; & Schenker, A. Considerations for Using Agile in DoD
	 Acquisition (CMU/SEI-2010-TN-002). Software Engineering Institute, Carnegie Mellon University. Web. 2010. 	
	 <http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm>

1.	 Information for sustainment is based on the SEI Technical Note Sustaining Software-Intensive Systems,
	 CMU/SEI-2006-TN-007 and updated to reflect the DoDI 5000.02 released in 2008
2.	 For discussion on the first five challenges see Sustaining Software-Intensive Systems,
	 CMU/SEI-2006-TN-007, http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm
3.	 A future technical note is expected to be published in early 2014 addressing agile and sustainment topics.
4.	 Kanban/lean style of Agile might be the most relevant for this phase.

CrossTalk—January/February 2014 37

UPCOMING EVENTS

International Conference on Computing,
Networking and Communication
2-6 February 2014
Honolulu, HI
http://www.wikicfp.com/cfp/servlet/event.sho
wcfp?eventid=30749©ownerid=548

2014 T3 Advisor Conference
10-12 February 2014
Anaheim, CA
http://2014t3-eorg.eventbrite.com

Spring 2014 Software & Supply Chain
Assurance Forum
11-13 March 2014
McLean, VA
https://buildsecurityin.us-cert.gov/swa

30th Annual National Test &
Evaluation Conference
24-27 March 2014
Seattle, WA
http://www.ndia.org/meetings/4910/Pages/
default.aspx

Summer 2014 Software & Supply
Chain Assurance (SSCA)
Working Group Sessions
24-26 June 2014
McLean, VA
https://buildsecurityin.us-cert.gov/swa

American Society of Quality
International Conference
February 25-26, 2014
Dallas, TX
http://asq-icsq.org

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

38 CrossTalk—January/February 2014

UPCOMING EVENTS

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk—January/February 2014 39

I found myself with a looming deadline (basically, this column
was due five days ago) and was scrambling to come up with a
good topic that fits in with “Legacy Systems Software.” I kept
delaying, and decided that I would write the column when I flew
to New York for a meeting. I was waiting for inspiration. As luck
would have it, as I was texting my wife from the airplane, the
flight attendant gently reminded me that it was time to turn off
all electronic equipment.

And there it was. You see, I am a relatively proud user of
an…… well, to keep from getting sued, let us say I have a
“MiPhone.” In fact, I have been a MiPhone user since 2009.
I also have a MiPad, and several MiMacs (two laptops and a
desktop at the office). I have been a loyal MiMac user since
1988, and prefer it to the alternative operating system.

I teach computer science, and 30% of my students use Macs.
I feel I have an obligation to show students how the two major
desktop operating systems compare. On a PC, I cannot install
Mac OS. However, on all three of my Macs, I can run several
virtualized operating systems simultaneously. I can show how to
accomplish some task on Mac OS, and then quickly show the
same task on Windows 7, and then on Windows 8 with just a
simple swipe to another virtual environment. To me, a computer
is simply a tool, and right now, with the job I have, a Mac is the
right tool for me.

Back to my MiPhone. Since I bought it back in 2009, it has
basically operated the same. I got it when MiOS 3 was out, and
through MiOS 4, 5, and 6, it has basically operated the same.
Each successive operating system brought out new features,
but the older features basically worked exactly the same. So
much so, that my brain trained itself to run on autopilot. Need to
unlock the phone? My thumb knew where to push to enter my
massively secure 4-digit password. Need to go to mail? Once
loaded, my thumb automatically knew how to read an email, and
then swipe to delete it.

Need to set an alarm? The MiPhone alarm had two dials to
set the hour and minute, and my thumb, over the last five years,
automatically knew how hard to swipe it to get it to roll from 15
minutes after the hour all the way around to 45 after. In fact, like
so many others, my phone was so much a part of my life that
I automatically grabbed for it, unlocked it, and clicked an icon
without thinking—until last week.

I am writing this column the last week of September, at which
time, the long-awaited MiOS 7 was released. And while adding lots
of cool features, it also changed a lot of existing features.

The unlock screen changed both the size and location of
the number pad. Granted, it only takes a while to figure out the
new positioning, but why is there a new size and layout of the
number pad?

For some reason, the icons for certain long-used applications
(such as Photos) have totally changed. In fact, there is a general
redesign of almost all of the graphics. Everything somehow
looks childish and less colorful. Again, I have to ask—why? For
almost five years, I automatically knew what the icon for Set-
tings looked like. It was like being on autopilot to find it. How
hard is it to have to re-learn what the Settings (and Photos, and
several other apps) icons look like? But the bottom line is, why
should I have to re-learn what I already knew well?

One last complaint. To get to the Spotlight search screen, you
used to go to the home screen and swipe left to right. MiPhone
users learned to quickly hit the select button twice (bringing
you to the first home screen) and then swiping. Now, however,
you swipe down from the middle of any screen to get to search.
I agree, the new method is better. But they disabled the older
method. The older way could have been left working. Now I have
to retrain my muscle memory. For five years I have automatically
clicked twice and swiped without thinking about it.

Form. Fit. Function. These are the keys to sustainable legacy
software. Legacy software must evolve, but have the same
basic form. The fit must match existing interfaces. And any new
function should not violate rules that the user has spent years
and years learning. It is ok to make users learn new things, but
do not make them unlearn what has always worked. Any new
functionality should not delete old functionality (assuming the
old functionality was not incorrect).

Imagine a Windows computer where the three keys for the
task manager became Tab-Shift-Return. How long would it take
you to quit hitting Ctrl-Alt-Delete by reflex?

My wife, who has owned both a MiPhone and MiPad longer
than me, summed it up nicely when she said, “If I am going to
have to relearn basic functionality, why not just relearn on an
Android instead of a MiPhone?”

Change it too much and your users might start looking for
newer alternatives. Be it an Android or large-scale software.
One thing is for sure, your users certainly won’t be happy.

Form. Fit. Function. Even on an inexpensive phone.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Form. Fit.
Function.

BACKTALK

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads
Coming Soon
 �Ground Theater
Air Control System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Contact Us:
Email: 309SMXG.SODO@hill.af.mil

Phone: (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

	Front Cover
	Table of Contents
	From the Sponsor
	Identifying Trustworthiness Deficit in Legacy Systems Using the NFR Approach
	Second Generation Product Line Engineering Takes Hold in the DoD
	Modeling Software Sustainment
	Using Combinatorial Testing to Reduce Software Rework
	Addressing Software Sustainment Challenges for the DoD
	Software Sustainment Now and Future
	Upcoming Events
	BackTalk
	Back Cover

