
UNCLASSIFIED

An Evaluation of Potential Operating Systems for

Autonomous Underwater Vehicles

C. Madden

Maritime Platforms Division

Defence Science and Technology Organisation

DSTO–TN–1194

ABSTRACT

This document explores the Operating System (OS) features that are required
for the automation of Unmanned Undersea Vehicles (UUVs), from the perspec-
tive of a new system development. Recent improvements in system components
and sensors allow for increased vehicle capability; however reliable automated
software is required to perform extended missions due to the communications
limitations with submerged vehicles. The first step of software development for
such systems is selecting an appropriate Operating Systems which allows the
system to support the software required to perform real-time sensor analysis,
and control its behaviour to achieve the mission within the local environmental
conditions. This document defines key features for the evaluation of potential
Operating Systems for the UUVs with autonomous or semi-autonomous ca-
pabilities. Using these features, it explains why some UUVs use a real-time
Operating System with custom designed software, but others use the open
source Ubuntu Operating System combined with the Mission Oriented Operat-
ing System (MOOS) robotics software package, or metaOS. It also emphasises
that reuse of existing software and skills are important to advancing any AUV
project more rapidly.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO–TN–1194 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

Telephone: 1300 Defence
Facsimile: (03) 9626 7999

c© Commonwealth of Australia 2013
AR No. AR-015-676
February 2013

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

An Evaluation of Potential Operating Systems for
Autonomous Underwater Vehicles

Executive Summary

With oceans covering over 70% of the earth’s surface, there is an interest in unmanned
underwater vehicles (UUVs) that can exploit this environment. Due to environmental lim-
itations, remote control of such vehicles requires the use of a tether, limiting the vehicle’s
range; however operating underwater vehicles autonomously requires advanced sensors
and robust software to achieve its mission with limited communications.

This document identifies key features that can be used to compare a range of Operating
Systems (OSs) used to develop Autonomous Underwater Vehicles (AUVs). This study
found that many of the critical features are implemented throughout all of the potential
OSs considered, with differences occurring in real-time capability, previous AUV usage
and its availability in an open source form. Of the OSs evaluated, few were designed
to meet hard real-time requirements, as this increases development time, and Ubuntu
was the only fully open source OS. This open source nature and the limited number of
operational conditions that require real-time reactions has led to Ubuntu being widely
used, especially where many academic groups develop their systems, as freely available
open source projects. A separate computer or control board can be used to provide hard
real-time actuator control with an appropriate OS.

Most AUV specific functionality, such as sensor drivers or sensor analysis tools, are
provided using software packages, called here metaOSs. These can often be combined using
common data structures and messages to operate together to provide additional combined
functionality. Most of the metaOSs evaluated operated across a variety of non-real-time
OSs. Of these, the Mission Oriented Operating System (MOOS) is the most focused
upon AUV development, whilst many of the others are aimed towards automated ground
or aerial vehicles. This focus means MOOS provides a wider range of AUV targeted
components, including a simulation mode with hardware in the loop, though it can be
combined with other metaOSs. MOOS has a loop based structure which cannot provide
hard real-time processing, though this structure is common to most metaOSs.

The selection of an OS and metaOS for use in an AUV is often based upon the skills,
experiences and existing software available within the AUV development project. This
strategy allows the project to reduce its risks by reusing as many skills and components
as possible, and reducing the dedicated training required, especially for verifying real-time
vehicle control behaviours. Many AUV research groups therefore use an open source OS
like Ubuntu, though QNX is used where the designers deemed that they required real-time
motor control. As many AUVs are operated at relatively slow speeds in open waters, such
control is often not deemed necessary. As MetaOSs are mostly open source, developers
often combine components of them with other software libraries into their own existing
software operating on the OS they are most familiar with.

UNCLASSIFIED iii

DSTO–TN–1194 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

Author

Christopher Madden
Maritime Platforms Division

Christopher Madden graduated from the Australian National
University in 2003 with a BEng and a BIT. Christopher con-
ducted a Ph.D. at the University of Technology Sydney in video
surveillance focusing upon tracking individual people through-
out a campus environment. This research in object analysis
and tracking was then applied as a part of Kingston Univer-
sity’s entry into the 2008 MOD Grand Challenge, a UK based
robotics competition aimed at using automated systems to iden-
tify potential threats in a combat arena. From 2008 to 2010,
Christopher worked at the University of Adelaide investigat-
ing projects ranging from large scale video surveillance to the
MAGIC 2010 robotics competition. This competition promoted
coordinated groups of robots that can explore an area and iden-
tify key threats autonomously. He now works in DSTO’s Mar-
itime Platforms Division conducting research into increasing
the automation and sensor processing capabilities of unmanned
vehicles.

UNCLASSIFIED v

DSTO–TN–1194 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

vi UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

Contents

Glossary xi

1 Introduction 1

2 Features to Compare Operating Systems 4

3 Potential AUV Operating Systems 7

3.1 Windows XP . 7

3.2 Mac OS X . 8

3.3 Ubuntu . 8

3.4 Windows CE . 9

3.5 Operating System Embedded . 9

3.6 Real-Time Linux . 9

3.7 VxWorks . 10

3.8 QNX Neutrino . 10

3.9 Integrity-178B . 10

3.10 Comparison of OS Features . 10

4 Potential Robotic Meta-Operating Systems 12

4.1 Robot Operating System . 12

4.2 Player . 13

4.3 Mission Oriented Operating Suite . 13

4.4 Universal Robot Body Interface . 14

4.5 ERSP Robotics Development Platform . 14

4.6 Robotics Developer Studio . 14

4.7 Robotics Simulation Software . 15

4.8 MetaOS comparisons . 15

5 Discussion 17

5.1 Case Study: DSTO’s Wayamba Project 18

6 Conclusions 19

References 20

UNCLASSIFIED vii

DSTO–TN–1194 UNCLASSIFIED

Figures

1 Examples of DSTO’s underwater platforms that can become more automated 2

2 Typical AUV configuration where OS and metaOS functionality is utilised . . 3

3 DSTO’s UUV Wayamba undergoing testing in a water tank. 18

viii UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

Tables

1 Operating System summary based upon features from Section 2 11

2 meta Operating System summary based upon features from Section 2 16

UNCLASSIFIED ix

DSTO–TN–1194 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

x UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

Glossary

API Application Programming Interface

AUV Autonomous Underwater Vehicle

AUVSI Association for Unmanned Vehicle Systems International

CPU Central Processing Unit

DSP Digital Signal Processor

HIL Hardware In the Loop

IDE Integrated Development Environment

metaOS Meta Operating System

MOOS Mission Oriented Operating System

OpenCV Open Computer Vision

OS Operating System

PHINS Photonic Inertial Navigation System

POSIX Portable Operating System Interface for Unix

ROS Robot Operating System

ROV Remotely Operated Vehicle

RTOS Real-Time Operating System

SAUC-E Student Autonomous Underwater Vehicle Challenge - Europe

TCP Transmission Control Protocol

URBI Universal Robot Body Interface

UUV Unmanned Underwater Vehicle

UNCLASSIFIED xi

DSTO–TN–1194 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

xii UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

1 Introduction

Recent improvements in many critical robot components are leading to significant invest-
ment in the development of advanced robotic systems. These improvements are occurring
due to many factors including the increased resolution and accuracy of sensors, improved
stored energy density and battery life, as well as increases in the computational power
that can be embedded within the confined spaces of a robotic system. While these are
improving the performance capabilities in many areas of robotics, it is especially impor-
tant in the challenging underwater environment, where many platforms are still reliant
upon an umbilical tether for power and high bandwidth communications. This tether
allows for extended duration of platform operation and the high bandwidth data transfer
to allow remote control operation; however it limits the range of the vehicle to the tether
length, changes the vehicle dynamics and increases the possibility of the platform be-
coming snagged. Exploitation of this difficult environment is increasing from commercial,
academic and military interests as they attempt to create Unmanned Undersea Vehicles
(UUVs) that can be utilised to access more of the ocean environment.

The US Navy’s UUV Master Plan [1] defines a UUV as a self-propelled submersible
vehicle whose operation is either fully autonomous (pre-programmed or real-time adaptive
mission control) or under minimal supervisory control and is untethered except, possibly,
for data links such as a fiber optic umbilical. In practice some systems also use the umbili-
cal tether to provide power, reducing the need to have on-board batteries; however making
the UUV autonomous enough to remove their tether can improve the range and maneu-
verability of the platform, though not necessarily its endurance. Such an Autonomous
Underwater Vehicle (AUV) requires sophisticated software and control systems to achieve
its tasks with very limited operator intervention due to the low data rates of underwater
communications.

The growing range of publications about UUV platforms and applications demonstrates
the increasing interest in this challenging domain. The UUV Master Plan produced by
the US Navy [1] demonstrates a significant level of interest from defence organisations
in the advancing capabilities of the UUVs as well as investigating their potential uses.
Yildiz et al. [2] has conducted a recent survey of the UUV literature and describes the
growing research interest in the underwater domain as well as providing a good outline
of the current challenges and developments in the areas of navigation, communications,
control and basic software and components to reduce costs where possible. This has
lead to many advances in AUVs as evidenced by the scope of AUVs being utilised and
their range of operations. Many AUV systems are designed and operated as research
platforms, using open source software components, and reusing existing software. Such
research groups, include MIT [3], the SIRIUS project [4] and the Naval Postgraduate
School [5, 6]. In addition AUV competitions are increasing in popularity, with examples
including the Student Autonomous Underwater Vehicle Challenge - Europe (SAUC-E) [7]
and the AUVSI robosub competition [8].

For more than a decade the Defence Science and Technology Organisation (DSTO)
has gained significant experience investigating a variety of UUV platforms and behaviours,
with Figure 1 showing some of the platforms that DSTO has developed and/or operated.
Their sizes vary considerably along with the payloads they can carry. Whilst the 4 metre

UNCLASSIFIED 1

DSTO–TN–1194 UNCLASSIFIED

long Wayamba platform, with its flatfish design [9], can carry a significant payload, the
Mullaya platform is torpedo shaped and less than a metre long with a more limited payload.
The lbv150 is a small commercial platform with very flexible motion but a very limited
payload. These vehicles are currently all Remotely Operated Vehicles (ROVs) piloted by
an operator at the dry end of the tether, though increasing levels of automation are being
investigated and incorporated into the vehicle control systems [10].

(i) Wayamba (ii) Mullaya (iii) lbv150

Figure 1: Examples of DSTO’s underwater platforms that can become more automated

Creating platforms which can operate autonomously in the ocean is difficult because
it is a constantly changing environment, which varies depending upon the location and
the local conditions. Electromagnetic characteristics, density, salinity, temperature and
motion of the water create a number of operational challenges ranging from limited com-
munications bandwidth to limited data for accurate localisation and the power required to
adjust or even maintain position. Wireless or satellite communications are widely used in
ground or air based unmanned platforms to provide significant communication bandwidth
with a predictable latency and a low rate of signal attenuation. Such communications are
possible with vessels on the ocean surface; however communications to submerged vehi-
cles are significantly attenuated, even over short distances. The current limitations with
underwater optical and acoustic signals, such as their low bandwidth, latency and range
limits have led to many research programs being conducted into improving underwater
communications [11]. The limitations in terms of available space and power also have a
significant impact upon the payload as they necessitate trade-offs between the range of re-
sources available including sensors, computers, propulsion, communications and a variety
of other factors that can affect the platform capability and operational duration. In prac-
tice most reconfigurable platforms will tend to focus upon the sensor and software packages
as many physical components, such as propulsion, are not readily changeable. The latter
tend to be very important considerations in the platform design and construction phases
and cannot be adjusted significantly during software development.

In order to minimise the operational difficulties of limited on-board AUV capability
and external communications within a dynamic ocean environment, AUVs require an
Operating System (OS) that will support its ability to sense and react appropriately to
its local environment without requiring continual operator intervention. Many OSs have
been developed both commercially and by open source communities, which have been
applied in the AUV domain. In this report a distinction is made between an OS, which
provides the ability for software to access the physical computing hardware and peripheral
devices, and a meta Operating System (metaOS), which builds a software based interface

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

to applications that utilises the OS functionality. A metaOS is therefore a software package
which provides a structure with components of functionality to coordinate the utilisation of
important system components, such as sensors or communications devices, and processing
the available data. They utilise OS features to gain the raw data from sensors, such as
reading from serial or network ports, and organise or analyse the raw data into something
more useful, such as video data. This is distinct from a software library which might
provide functions to analyse data, but not a program structure. MetaOSs follow a similar
structure to many of the earlier AUV software architectures explored in [12], though they
are designed to be used by a community rather than just for a single platform. An
example of the connections between the OS and metaOS on the vehicle and external
software is shown in Figure 2. This shows how applications both onboard the UUV and
offboard can use metaOS functionality and data structures to communicate and access
data or the sensors through the OS. Use of a metaOS reduces the need to develop some
aspects of AUV projects, such as communication structures and sensor analysis packages
for commonly used hardware, but can also include modules that utilise the available data
to perform other useful tasks, such as mission planning or obstacle avoidance behaviours.
The software development of an AUV system can therefore be built using an OS with a
metaOS executing on top of it so that the project can focus upon developing software for
novel areas where appropriate solutions do not already exist.

Onboard Vehicle

AUV Applications including

Message interface

- Automated sensor analysis
- Automated Behaviours

metaOS functions, messaging
and prgram structures

OS functionality

Sensor Devices

Message interface

Sensor connection

Offboard Applications
- Operator interface
- External sensor analysis
- Mission Planning

Function calls

Figure 2: Typical AUV configuration where OS and metaOS functionality is utilised

This document is broken into a number of sections to fully explore the topic of evalu-
ating potential OSs. Section 2 develops a set of features that are required for operations
by autonomous underwater platforms. This examines the need for fast sensor access and
processing capability, which is achieved through adherence to some broad computing stan-
dards such as POSIX standards and real-time evaluation. Section 3 describes the OSs that
are most commonly used in the robotics area and compares them based upon the impor-
tant features that are identified. Section 4 describes the metaOS packages that are being
developed for robotics and examines how they can combine with the OS in order to best
meet the features that are important to AUV operation. Section 5 discusses how the best

UNCLASSIFIED 3

DSTO–TN–1194 UNCLASSIFIED

candidate OS and metaOS can be utilised for increasing the speed of AUV development,
given that many projects begin with existing sets of skills and experience. A subsection
is also included as Section 5.1 discussing how this applies to the case study of DSTO’s
Wayamba UUV. The conclusions about how to utilise the list of features to select an OS
are then provided in Section 6.

2 Features to Compare Operating Systems

The challenging nature and increased unpredictability of the underwater operating envi-
ronment puts a greater emphasis on the requirement for an appropriate OS than many
other environments where autonomous platforms operate. The range of these difficulties
depends upon vehicle size, as well as its configuration. This is important as system errors
or equipment faults can lead to AUV behaviour where the entire platform may founder
and not be recoverable. For example in 2005 the AUV “Autosub” was lost under an ice
shelf [13]. The incident report states that the cause of the loss is not yet definitely known
as the AUV could not be recovered. For an ROV its tether, which is required for fast data
transfer and operator control, may become snagged in confined conditions. In addition to
the operational impact of such situations, platform loss is expensive and can make iden-
tification and correction of the cause very difficult. Fast and predictable reaction times
may assist UUVs to adapt to and overcome challenges in the environment, such as strong
water currents or localised variations in water density, which may overpower the vehicle’s
ability to follow its mission plan. In addition communication limitations can make such
adaptations difficult to transmit back to a base or support vessels and has already led to
the loss of AUVs [14].

Given these challenges, an important consideration for the selection of an appropriate
OS is its real-time nature. This can be classified as hard real-time, soft real-time, or non
real-time based upon its ability to meet task deadlines, such as accessing system resources.
A soft real-time system is one that usually meets the task processing deadline, where hard
real-time systems can be deterministically guaranteed to meet the task deadline every time.
A non real-time system may consistently overrun task deadlines, or may occur where no
deadlines for task execution are determined or evaluated. An important criterion for
selection of the real-time nature of the OS for a project is related to the impact upon
the system should a task overrun its deadline, either occasionally or consistently. For
an AUV based project the results vary depending upon the operational environment and
conditions. For example delays in processing sensors or planning tasks when moving slowly
will have little effect, though similar delays when travelling at high speed in a cluttered
environment may be catastrophic. It should also be noted that the development and
verification of performance for hard real-time systems is more time consuming and costly
than an equivalent soft real-time system. Final consideration depends upon a variety of
factors including required vehicle performance, the likelihood of vehicle loss, and the cost
to replace the vehicle.

A number of other considerations are also important for determining an appropriate
OS for AUVs. These relate to its support for processing multiple inputs using threading
and the availability of code specifically for reuse in projects aimed at developing AUVs.
Whilst a real-time focused OS may be important, having the ability to perform scheduling

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

across multiple cores allows platforms to effectively prioritise the processing of data inputs.
This is becoming increasingly important and more commonly utilised as computers move
towards multiple processing cores, gaining the ability to process multiple tasks concur-
rently. With appropriate scheduling and levels of prioritisation, this can ensure important
tasks are executed within deadlines, such as calculating actuator behaviour for critical
maneuvering. For this reason many OSs provide multi-threaded program execution. In
order to best utilise these aspects of the operating system it is important that support
exists for the OS to utilise common programming languages and practices. This facilitates
programming tasks to be conducted and tested across a wider variety of hardware without
the need for personnel to perform significant retraining. Using such languages can also
allow for significant reuse of code packages, though this will be most useful where packages
have been previously developed aimed specifically for AUVs. It is also useful where device
driver code or analysis modules for specific sensors can be reused, as these are time con-
suming to develop accurately and AUV devices can differ considerably from other robotic
domains due to the underwater environmental conditions.

Due to the costs inherent in deploying AUVs, especially in long duration open ocean
missions, the ability to design and test the platform within an appropriate simulation
environment is very important. Deployment costs can vary significantly depending upon
the platform size and availability of nearby testing facilities, though even small scale trials
can cost tens of thousands of dollars and can be improved through preliminary simula-
tion to identify and reduce the effect of potentially unforeseen challenges. Developing a
simulation environment from scratch is both time consuming and difficult to achieve with
a useful level of fidelity; however once this investment has been made, the availability of
a simulation environment or framework can allow for significant verification of platform
performance to maximise the productivity of costly trails. This can allow for faster de-
velopment of more accurate and reliable platforms as it can identify possible errors or
problems with the system in a range of challenging scenarios before they become an oper-
ational problem. Such simulations can be especially useful where a multi-fidelity system
allows for fast simulation and analysis of operational parameters, but can also provide
slower, more detailed analysis with an environment and physics model to compare the
most optimal parameters. Some simulations also incorporate the platform hardware in
the simulation loop so that system verification can be improved before full deployment.
This is important for complex missions where multiple platforms are in use, as it can allow
for significant optimisation and risk reduction before the systems are deployed into the
ocean environment. A survey of some existing robotics simulations aimed at providing
visualisations of the simulated robots are provided in [15, 16], though few of these systems
are targeted to simulate underwater environments.

Utilising an open source OS is a consideration for many research projects as it may
provide a greater understanding of the OS and increased flexibility of the low level OS
parameters, though perhaps more importantly they don’t require the payment of licensing
fees. This is even more important where the project is aimed at the development of AUVs
for research purposes with very limited budgets. Such open source or open licensed OSs
also tend to have dedicated communities that can assist with developer problems, although
these are usually web based and take longer to get responses than on-call technical staff
that may be available for some commercial OSs. This consideration is less important
for organisations which have resource available to cover licensing fees and have existing

UNCLASSIFIED 5

DSTO–TN–1194 UNCLASSIFIED

experience with development using one of the commercially available OS that can be reused
for AUV development.

It is important to note that OSs are generally developed to provide broad support for
computing tasks and interrupt driven device drivers for peripherals. Few if any are devel-
oped with specific functionality in the operating system kernel for robotic tasks, though
some specialised open source OSs do target other areas, such as Scientific Linux [17].
Many groups are developing metaOSs that provide reusable software and architectures for
typical applications and devices used in tasks for a given area, such as controlling motors
and analysing sensors in robotics. These metaOSs often provide capability and support for
specific tasks, allowing developers to reuse many typical components without developing
them from scratch, although the metaOSs utilise the underlying OS functionality. Some
of the metaOSs are reliant upon a single OS, whilst others are developed as cross-platform
systems to enhance portability by enabling their code to be re-compiled for use on many
underlying OSs. This distinction between an OS and a metaOS is important as many of
the desired features of an AUV system are achieved through a combination of both.

The features considered in this report are not intended to be exhaustive, but as a
guide to provide a more methodical comparison of potential OSs and metaOSs that can
be utilised in AUV development. A comparative scoring of potential candidates should
be conducted by providing relative weighting to each of the criteria for the AUV project
in mind. This is important as the weighting can differ depending upon the project goals,
the vehicle size, the organisation’s familiarity with the potential OS candidates, and the
ability to reuse legacy code for the AUV project.

For DSTO this weighting would focus upon the minimisation of resources through the
use of existing systems, especially where there is a large user and development community
that utilise existing common programming skills and software components or packages.
Previous AUV use and existing simulation capability are also important as this aligns
with the AUV design focus and increases the usability of existing software packages and
device interfaces, such as device driver code. Real-time programming is a lower priority
as Wayamba is intended for open ocean environments and the real-time actuator control
is being handled by a dedicated control box separate to the sensor processing computer.

A summary of OS and metaOS features to be evaluated for potential AUV projects
can be given as:

1. Support for appropriate real-time performance given the nature of the intended AUV
deployment.

2. Ability to utilise multiple CPU cores for parallel processing and improved task
scheduling.

3. The number of scheduling priority levels to differentiate task priorities.

4. Targets for the required CPU architecture (x86, ARM, etc) of the system hardware.

5. Ability to use common programming languages to reduce the need for programmer
retraining.

6. Use common interface standards, such as POSIX threads, to reduce programmer
retraining.

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

7. Existing source code packages able to be reused for typical tasks to reduce develop-
ment time.

8. Open source or open license with an established user community, as this can reduce
costs and allow for greater code reuse.

9. Support and drivers for typical AUV sensors to limit the need for low level driver
development

10. Previous use on AUV projects to ensure it is suitably designed for the operational
environment.

11. Ability to be used to support design and performance of system simulations, to
reduce the development costs and risk of equipment loss.

12. Existing familiarity of research staff with OS and metaOS capabilities which can be
reused on the AUV project.

3 Potential AUV Operating Systems

Many commercial organisations and development communities have developed OSs aimed
at supporting or performing certain activities, including real-time data processing. These
are often generic in nature as they provide the underlying computing capabilities and
ability to develop device drivers to interact with peripheral devices, though some are
developed for particular tasks. They may focus on real-time behaviour, target embedded
processors, or focus on memory or task limited devices. These focussed OSs are often
developed as a core OS kernel that provides the base functionality of the full OS of the
same type, but add only the necessary extra functionality for the current AUV project.
This can reduce the memory size of the OS used and eliminate any functionality that is
not required within the AUV.

This section explores many of the common OSs that are used in the robotics area, with
a focus upon those in widespread use or providing real-time capability. Whilst this list
is not exhaustive, it tries to cover many of the common OSs used in robotics and AUV
projects, including Windows XP, QNX Neutrino, Windows CE, Ubuntu, RTLinux, Mac
OS X, OSE and VxWorks. Each OS is described first to provide some background of its
typical usage and how well it provides the features identified as useful for AUV projects.
The candidate OSs are then compared in Table 1, with a discussion detailing which are
likely to be the most useful OS candidates.

3.1 Windows XP

Windows XP (WinXP) was released by Microsoft late in 2001 for personal computers, and
is based upon the Windows NT kernel [18], though it has been succeeded by the more recent
Windows CE and Windows 7 OSs. WinXP is not a Real-Time Operating System (RTOS)
and suffers when evaluated as one because it does not include enough levels of threading
priority, non-deterministic scheduling decisions, or the possibility of priority inversion,

UNCLASSIFIED 7

DSTO–TN–1194 UNCLASSIFIED

especially when performing interrupt handling through deferred procedure calls [19]. The
evaluation in [19] shows that these limitations can make the execution time difficult to
predict under periods of high loading, even if the average execution time may be well
within the project limits when average CPU loads are not high. They also suggest that
WinXP, or any other non real-time OS, could be coupled with an RTOS that handles all
the critical real-time execution, with other tasks being processed on a different machine
running the non real-time OS. Such a combination has previously been used in DSTO’s
UUV Wayamba [9], which ran WinXP in combination with QNX, though combinations
with other OSs are also used [20]. AUV simulation software has been developed that will
run on many operating systems [21, 22] including WinXP and later windows platforms,
though the recent reviews of the systems conclude that there is not an existing simulation
that handles multiple environments, is free and easy to use [15, 16], though some of the
advanced physics based engines can handle ocean environments.

3.2 Mac OS X

Apple’s Mac OS X [23] is beginning to be used in some development communities. It is
based on the Berkeley Software Distribution (BSD) Unix variant with a significant level
of proprietary API’s added. Although it is optimised for Apple specific hardware, it is
being increasingly supported by a wide range of peripheral devices. Mac OS X provides
preemptive thread scheduling for enhanced CPU sharing, and supports many programming
languages as well as typical standards such as POSIX threads [23]. The application specific
metaOSs consider Mac OS X to be used widely enough that many of them are set up to
compile and execute on it, though no evidence was found of its use in AUV projects. This
may be because Mac OS X is not as well supported by sensor and simulation developers.

3.3 Ubuntu

Ubuntu is based upon the Debian GNU/Linux OS distribution maintained by Canonical
Ltd. and is free and open source. The base Ubuntu OS is not an RTOS, but can use one
of the open source real-time Linux kernels to achieve hard real-time interrupt processing
if required [24]. Ubuntu is a common Linux-based distribution with a wide array of
community supported functionality obtained through open source reusable packages. It
supports most programming languages and Integrated Development Environments (IDEs),
which can be written to be POSIX compliant. It also has a large forum based support
network of users and developers. They can provide support and advice on development
issues, and have developed some reusable software packages. The community can also
assist users to get information about known bugs and fixes. Many sensor interfaces are
designed to be supported on Unix-style systems, with Ubuntu having been used on robotics
and AUV projects, though this is usually facilitated by open source metaOSs, such as
MOOS [25], ROS [26], and Player [27]. Its open source nature has also led it to be
widely used on university student platforms such as Red Herring [28] for entry into AUV
competitions such as SAUC-E [7], and AUVSI [8].

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

3.4 Windows CE

Windows CE (officially Windows Embedded Compact) has been developed by Microsoft as
a commercial compact OS and is a new OS kernel, distinct from Windows XP Embedded,
which is NT-based [29]. The kernel is optimised for devices with minimal storage, and is
often configured as a closed system that does not allow for end-user extension, though parts
are offered to developers in source code form where they may benefit from being adapted
to specific hardware. WinCE is an RTOS with a deterministic interrupt latency, with
recent versions featuring 256 priority levels that can be applied to individual threads [29].
Compiling for WinCE is supported by Microsoft Visual Studio 2008, though the Embedded
Visual C++ tool is becoming the preferred compiler option. Windows CE is developed
for embedded devices, and has been used in user interfaces for some sensors, such as the
display on Applied Acoustics Engineering’s 2650 Easytrak Portable Display for acoustic
positioning [30].

3.5 Operating System Embedded

Operating System Embedded (OSE) is a commercial RTOS from Enea aimed at large
scale distributed systems [31], but is also used widely in the smart phone sector. It uses a
proprietary high level message passing API to allow for software to be developed as modu-
lar concurrent processes. It also provides some abstraction from the lower level hardware,
making it easier to develop for systems that comprise of multiple Central Processing Units
(CPUs) and Digital Signal Processors (DSPs) running the relevant OSE version. OSE
has also developed a Soft Kernel Environment which allows OSE processes to run on a
Windows, Unix, or Solaris host and can also work with a running real-time system. It
allows run-time software upgrades and is dynamically reconfigurable to increase system
availability, though no evidence was found of its use in AUV projects.

3.6 Real-Time Linux

Real-Time Linux (RTLinux) is a proprietary OS developed by V. Yodaiken and his col-
leagues at the New Mexico Institute of Technology [32] and is now owned by Wind River
systems. It runs a thin Linux microkernel that separates and prioritises real-time appli-
cations and interrupts for fully preemptive processing [32]. Interrupts are handled by the
real-time core for deterministic processing, whilst others are passed using pipes or shared
memory to the Linux core which is being processed as a lower priority thread. Other
commercial and open source real-time Linux options are available [33], though finding an
exhaustive list is difficult. One of the main differences between the commercial and open
source options is in the way they provide technical support if it is needed. As RTLinux is
based upon a similar Unix OS base to Ubuntu, it also has many of the similar functional
support features with device drivers and other software generally being supported and
available. RTLinux has been previously used in some AUV projects [34].

UNCLASSIFIED 9

DSTO–TN–1194 UNCLASSIFIED

3.7 VxWorks

VxWorks is a proprietary RTOS developed by Wind River Systems [35] aimed at embedded
systems. It is designed to allow for its programming code to be compiled on one computer,
but can then be transferred to run on a separate ‘target’ device. This allows development
and simulation of systems from many OSs, with the proprietary kernel providing the opti-
misation for the targeted hardware without requiring code changes. It otherwise provides
many of the same functionalities of other real-time OSs, though driver support for some
devices and sensors may not be as wide spread as other OSs. VxWorks has been used on
a variety of projects and is widely used in many industries including space robotics [36]
and AUV development projects [37].

3.8 QNX Neutrino

QNX Neutrino is a commercial OS aimed at hard real-time systems. It has been developed
since 1986 and is aimed to be a modular OS with a small microkernel of core functionality,
with extra modules that can be added for additional functionality, including networking
tools and graphical interfaces [38]. The microkernel handles largely POSIX compliant
message passing between processes and allows for a range of priority based thread pro-
cessing that allows for fine level of control over the CPU load sharing, which also scales
well over multiple cores and devices. It can also be compiled and transferred to a target
machine, increasing the portability to a variety of embedded devices. Whilst QNX was
not developed specifically for AUV projects, it has been incorporated on some commercial
and research AUV platforms [39], though the availability of AUV sensor drivers is not
clear.

3.9 Integrity-178B

Green Hills Software has developed their Integrity-178B OS over more than 10 years as
a secure POSIX-certified royalty-free hard real-time operating system. They claim it is
the most secure and reliable real-time OS as it has been certified by the National Security
Agency managed Evaluation Assurance Level (EAL) 6+, indicating high robustness [40],
whilst Linux and Windows are EAL4+ certified, indicating a commercially viable level
of security. Integrity uses multiple levels of security and proprietary tools for debugging
and ensuring the removal of deadlock conditions and other multi-threading problems that
might cause the OS to lock under specific circumstances. Their proprietary compilers are
also developed to provide a high level of optimisation across a wide range of embedded CPU
architectures. Green Hills claim their products are used widely in the avionics industry,
including in defence platforms [41].

3.10 Comparison of OS Features

Table 1 compares the ability of prominent OS candidates to meet the key requirements
of any AUV project as listed in Section 2, with the number in parentheses indicating
its position in the feature list. It should be noted that Table 1 compares the features

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

that differ between the OS’s, with all the OSs meeting features such as the support of
multiple CPUs. The key differences occur in their open source availability and whether it
is known that they have been previously used on AUVs. The three non real-time candidates
evaluated are commonly used for a range of projects, with their main limitations being
the lack of deterministic real-time behaviour and that WinXP and Mac OS X are not
open source, though they are widely used for general computing tasks. The Xenomai
framework can be used as a micro-kernel in conjunction with Ubuntu [24] (or other Linux
distributions), to provide hard real-time support for hardware, though it also makes the
system more complicated to use. The remaining OS candidates all could deterministically
achieve the hard real-time deadlines. The lack of deterministic behaviour of tasks meeting
their deadlines can be a serious problem within very dynamic environments, and where
the consequences are significant. Such conditions might occur for AUV systems where
multiple vehicles are working in close proximity, or where vehicles are operating within
complex harbour environments. In many other situations such as open ocean deployment,
the consequences of course, location, actuation and sensor errors or delays within the
system are less severe. The implementation of hard real-time code that has been verified
and optimised to ensure deadlines are reached can take significantly longer to develop and
verify than implementations aimed at meeting soft or non real-time requirements where
the average CPU use is not excessive. Additionally for many cost sensitive AUV projects,
especially low budget research projects into small AUVs, the software licensing costs have
led to the use of the freely available Ubuntu OS and other Linux variants, though many
commercial AUV platforms utilise the proprietary OSs as their cost is a much smaller
fraction of the overall system budget. Consideration of the CPU architecture is also
important to ensure that the chosen OS will run on the available hardware for the project,
though many of the OSs do support a wide range of CPU targets.

Table 1: Operating System summary based upon features from Section 2

OS Name Real-time Supported POSIX Open Previous
Type (1) Language(5) Threads(6) Source (8) AUV use (10)

WinXP Non Many No No Yes [9]
Mac OS X Non Many Yes No Unclear

Ubuntu Non Many Yes Yes Yes [28]
Windows CE Hard Many No No Unclear

OSE Hard C/C++ Yes No Unclear
RTLinux Hard Many Yes No Yes [34]
VxWorks Hard Many Yes No Yes [37]

QNX Neutrino Hard Many Yes No Yes [39]
Integrity Hard Many Yes No Unclear

Most of the OS candidates allow for broad support of multi-threaded applications to
fully utilise multiple CPU cores and most of the typical programming languages. This
allows the flexibility for software to optimise the CPU cores to perform multiple tasks
at the same time, and allows for the significant reuse of existing software components.
POSIX compliant threading commands are also widely used, except on the Windows OSs,
though some of the OSs extend these to provide additional inter-thread or inter-process
communications, such as within QNX. Where most of the OSs can be differentiated is in
their open source status and their known use and support for previous AUV projects. The

UNCLASSIFIED 11

DSTO–TN–1194 UNCLASSIFIED

availability of existing simulation environments for code testing and mission evaluation of
AUV systems is also important, with some limited simulation options being available on
the non-real-time systems. For organisations that have a legacy of experience and licensing
for proprietary OSs, especially where they have been used on previous AUV projects, these
factors would be a lesser consideration than the ability to reuse existing code.

OSs provide the capability to utilise the CPU hardware and other peripheral devices.
They can be used with a metaOSs for rapid development of effective AUV platforms and
simulations, as the metaOS can provide some of the application specific capability, such as
communication frameworks and device drivers. Many groups are utilising Ubuntu as an
open source OS option where they don’t consider real-time to be essential, though QNX
and VxWorks are commonly used for AUV projects to provide hard real-time capabilities.
Whilst some of these OSs are freely available, the cost of commercial OSs may be less
significant than the cost of the time required for the programmers to learn to effectively
utilise a new OS, the cost of the physical hardware and sensors for all but the smallest
AUVs, or the consideration of whether the OS can be supported on the architecture of
the underlying computer hardware. For some projects the software development may
be conducted upon available computer systems for multiple devices, so cross-platform
support may also be important. Some of this abstraction of code away from a specific OS
can also be handled by selecting a metaOS which provides application specific software
components that may operate on multiple OSs. For some projects with larger AUVs it
may be appropriate to use multiple machines running different OSs optimised for specific
tasks, such as real-time motor control, or non real-time sensor processing, reducing the
difficulties of obtaining a single OS to support the capability of the entire platform.

4 Potential Robotic Meta-Operating Systems

Many real-time OSs are widely available for generic tasks, but they can be used with
application specific software packages to provide typically used capabilities, such as gen-
erating robotic motion and sensor processing. These are sometimes termed “metaOS”
as they often provide levels of abstraction to access typical low level device drivers, such
as sensors and actuators, and are often developed by interested communities as shared,
open source resources. These differ from useful code libraries, such as the Open Computer
Vision (OpenCV) library [42], which only provide a set of data structures and functions
that can be used as needed, as libraries do not specify how the program is structured
or functions. The metaOS allows platform developers to focus upon developing new or
unique components in their system, which may be incorporated into future versions of the
metaOS. Some of the common metaOSs aimed specifically at robotics are described in this
section, including the Robot Operating System (ROS), the Mission Oriented Operating
Suite (MOOS), Universal Robot Body Interface (URBI) and Microsoft Robotics Developer
Studio (RDS), with Table 2 providing a comparison of their capabilities for AUV systems.

4.1 Robot Operating System

Robot Operating System (ROS) is an open source metaOS designed specifically to support
code reuse in robotic applications [26]. It is currently supported by Willow Garage with

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

many partner organisations in the robotics field. ROS operates as a set of peer-to-peer
processes, or nodes, that are connected using the ROS communication infrastructure.
This specifies the communication format used to send information between the nodes.
The nodes provide many of the low-level device control and hardware abstraction layer
components, with the inter-process message-passing and package management performed
in a peer-to-peer manner similar to many other robotic frameworks. It also provides
tools and libraries for developing code across multiple processors or computers. ROS is
aimed primarily for Ubuntu and Mac OS X, though many other Linux based platforms
are supported by the community. Windows based platforms are yet to be well supported.
Code has primarily been developed for Python and C++, though other experimental
libraries are also being developed. ROS can also be integrated with some other metaOSs
and frameworks, such as the Stage or Gazebo simulation environments.

4.2 Player

Player [43] is an open source metaOS that is widely used in the robotics community. It
is the robotic server and device interface of the Player/Stage project [27], and provides a
network style interface to connect a range of robot and sensor hardware. Player uses a
client/server model, which allows for software development to occur in many programming
languages and run on any computer that has a network connection to the message cue of
the robot components, such as drivers [44]. Although Player was initially developed around
the Pioneer 2 robotic platform, it now supports a wide range of typical robotic hardware.
Player is also developed in conjunction with Stage, a 2D scalable robot simulation, and
Gazebo, a 3D environment with rigid body physics models. These simulation environments
allow for code to be tested without requiring the physical robot and are typically used for
ground based robots and although broader use may be possible, physics models for water
environments do not seem to be developed yet.

4.3 Mission Oriented Operating Suite

Mission Oriented Operating Suite (MOOS) was initially developed by Paul Newman as a
robotic metaOS aimed specifically for AUV applications [25]. It has grown into a com-
munity supported system that provides a control loop based cross-platform structure. Its
star based topology uses a central database, called MOOSDB, which connects to each
application in order to provide the appropriate messages in a human readable string or
double precision format. These applications are executed once for each loop cycle in a
predefined order. Many platforms can connect to a single MOOSDB in order to share
and access data within their own systems, or across platforms. A simple simulation flag
allows for the same code to be operationally tested across multiple platforms in a simple
Hardware In the Loop (HIL) simulation. In this mode the system generates data either by
repeating its expected state, such as the AUV location, or it can use simple environmental
models to add noise to the data. More recently the Helm control architecture has been
added to create MOOS-IvP. This combination builds upon MOOS to provide behaviour
based automated platform control [45]. MOOS-IvP has been used in a variety of projects,
including recent operations with multiple platforms [46]. A variety of MOOS-IvP based

UNCLASSIFIED 13

DSTO–TN–1194 UNCLASSIFIED

AUV platforms have been demonstrated by the Naval Undersea Warfare Center [47, 48].
One of the main limitations of MOOS is its inherent loop-based structure that does not
allow for real-time guaranteed behaviour, or operate well with sensor data that is obtained
at varying rates.

4.4 Universal Robot Body Interface

Universal Robot Body Interface (URBI), has been developed by Gostai and is now available
as an open source cross-platform metaOS aimed at supporting the development of complex
systems primarily in the robotics domain [49]. URBI is based on UObject, a distributed
C++ component architecture, which utilises the urbiscript, a parallel and event-driven
scripting language. This allows it to be developed as a cross-platform system and is
embeddable to many CPU boards. URBI is interoperable with ROS and some other C++
based software, and is also usable in the proprietary Webots professional robot simulation.
The RTCs (Robot Technology Components) are proprietary and involve many of the
control aspects developed for existing robotic platforms, though these seem to be primarily
ground based platforms including popular consumer items, such as Lego Mindstorms.

4.5 ERSP Robotics Development Platform

ERSP Robotics Development Platform was created by Evolution Robotics Inc. as a
commercially available metaOS for robotic application development [50]. It operates on
WinXP as well as some Linux variants, and provides a hardware abstraction layer, a be-
haviour abstraction layer with over 75 predefined behaviours, and a task execution layer.
Applications are developed to interact with these layers as well as the proprietary vision,
navigation and interaction modules to achieve the desired goals with the platform. These
modules and layers aim to provide a significant portion of the tasks that form the basis
of robotics platforms so that developers can focus upon those components that they are
most interested in developing.

4.6 Robotics Developer Studio

Microsoft’s Robotics Developer Studio (RDS) 2008 R3 is actually a free robotics library
rather than a metaOS. As a library it only provides a visual programming interface for
tools and a simulation interface, rather than providing the program structure. RDS makes
available asynchronous, state driven components [51] that can be programmed through
their visual interface. It is aimed at supporting a variety of robots to allow for code
and skill transfer between robotics projects. RDS is designed to use the Microsoft Visual
Studio .NET framework, which is not generally POSIX compliant, though in practice it
is aimed directly for the Windows OS making the code less portable.

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

4.7 Robotics Simulation Software

Being able to utilise robotics simulation software, or having an inbuilt simulation mecha-
nism, can reduce the field trials required to develop and verify a robotic capability. Stage
and Gazebo are two simulation systems that were developed as simulations for Player, but
their network interface can be connected with other metaOSs, so long as the data is trans-
ferred in an appropriate structure. Stage as a 2D simulation allows for many robots to be
simulated and interact at the same time, though it is limited in its applicability as it can
not model the inherently 3D environments in which AUVs operate. Gazebo does provide
the 3D environment; however it is not as optimised in its processing as other possibilities,
such as game engines, and can only simulate a small number of vehicles in a world that
uses low quality graphics. They also focus upon ground based robots and may not be as
applicable for AUVs. Other robotic simulation environments have also been built utilising
interfaces to game engine technology [15, 16]. These simulations provide more realistic
graphics and physics, though they can require some development to interface with the
robotic code, implement appropriate physics and develop useful operational maps. Exam-
ples include USARSim, which was built upon the Unreal Tournament game engine, and
has recently been extended to provide simulations of water environments [52, 53], and the
Search And Rescue Game Environment (SARGE) [54], which was built using the Unity
game engine. It may also be cost effective to use other high grade gaming environments
where they provide easy to use artificial intelligence systems for actors within the simula-
tion and where the productivity and quality of terrain generation is high enough to allow
for both simulation and system demonstration to interested parties with less technical
knowledge.

4.8 MetaOS comparisons

Table 2 compares the most widely used metaOS packages developed for robotics appli-
cations and environments against the relevant criteria for AUV development provided in
Section 2. The aims of these metaOSs are often quite similar, with many components
being developed in the open source community and are somewhat inter-operable, as well
as being somewhat OS independent. URBI differs from the other metaOSs in that it does
have some aspects that are proprietary in nature and has dedicated technical support be-
hind it. It also utilises Urbiscript, whose event driven nature requires new developers to
spend some time becoming familiar with its different structures. ERSP is also significantly
different to the other metaOSs evaluated as it is a commercial product and is not open
source, though it does provide modules to perform some tasks that can be important in
robotics, such as image processing and localisation. RDS is also included here as it does
provide many of the similar components to the other metaOSs; however it is implemented
as a library, allowing for the easy use of only those components required.

The open source nature of the development of many of these metaOSs as well as the
size of the robotics development community has led to collaboration between many of the
communities, such that many of the metaOS are interoperable. This can be either via
interfaces that support the use of components from some other metaOSs, or by allowing
messages to be easily passed between components implemented under other metaOSs. The
open source nature also allows for users to adjust and improve some of the components such

UNCLASSIFIED 15

DSTO–TN–1194 UNCLASSIFIED

Table 2: meta Operating System summary based upon features from Section 2

metaOS Name Supported Supported POSIX Open AUV use
OS Language(5) Threads(6) Source(8) (10)

ROS Many Many Yes Unclear Yes
Player Many Many Yes Yes Yes
MOOS C++ Many Yes Yes Yes
URBI C++ Many Yes Unclear Mostly
ERSP C++, Python Win & Linux No Unclear No

Microsoft RDS C++, C# Windows No No No

as messages that are sent, or algorithms for sensor analysis or achieving certain robotic
behaviours. These improvements can then be incorporated back into the main source code
to improve the metaOS with the release of the next version. This interoperability is often
also possible with the commercial metaOSs, who also offer technical support for the use
of the API of their product.

Whilst many metaOSs are aimed at the robotics area, most of them are developed
primarily for ground based platforms, with some incorporating aspects for aerial robotics.
MOOS is the only metaOS developed specifically for underwater environments and AUV
platforms. The sensors available and the dynamics required for useful simulation of AUVs
can differ significantly from those required for ground-based or even airborne robotics.
This specialisation for AUVs is inherent in MOOS, which has also developed an easy to
use simulation system that can utilise the actual hardware in a HIL simulation. Such
simulations can reduce the need for research groups to conduct expensive field trials to
test the interfaces between hardware and software or to more quickly verify its accuracy.
HIL simulation is also possible with other metaOSs, though some metaOSs are designed
to easily interface with virtual simulations and visualisations. For example Player has
the 2D Stage and 3D Gazebo simulations, whilst Microsoft RDS has its own simulation
environment. If the simulations are intended to do more than verify code execution, then
they need to incorporate a physical model to determine the robot’s interaction with its
external environment, though for AUVs the model will need to incorporate some degree of
fluid dynamics. In general running simulations with a more complex environmental model
takes longer, so having multiple levels of fidelity may also be useful. It is also possible to
perform the simulation of the robot moving using other physics based game engines, such
as the Open Dynamics Engine [55] in Gazebo, or the PhysX engine within MarineSim [53].
These simulations tend to be network based, allowing for a simple scalable interface where
the simulation can run on separate dedicated hardware; however developing a physics
model of the vehicle can take some time regardless of the simulation. It can also be easier
to reuse skills in developing the simulation if the simulation operates on the same OS as
the AUV. It is crucial that the simulation model behaves in a very similar manner to the
real AUV and utilises the same messaging in order to verify that the software will operate
effectively when deployed into the field.

When selecting the appropriate metaOS, a key consideration is the ability to reuse
any existing code and skills for AUV development, including development experience for
specific hardware and OSs. Where a project team has little experience with metaOSs and
does not require real-time performance, then MOOS may be a good choice as it focusses

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

upon the AUV domain specifically. It can operate across the common non real-time OSs
and its centralised model can be easily adapted to a vehicle centric approach, although
other metaOS such as ROS or Player are more suitable if a decentralized approach is
preferred. The centralised loop-based structure of MOOS will also not be able to meet
real-time requirements if those are required for the AUV’s operation. In practice the
implementation of hard real-time AUV performance may be based upon components and
even the structure of one of the other open source metaOSs; however the optimisation
to meet the real-time deadlines is likely to require significant experience to rewrite the
necessary components, reducing the benefits of using the metaOS to reduce development
time.

5 Discussion

The previous sections have explored the features of candidate OS and metaOS for a system
based primarily upon the operational requirements of AUV design; however unmanned sys-
tems research groups generally have existing software and skilled development personnel.
These are an important consideration for the selection of the OS and metaOS because
they may improve the progression of the project where they can be reused effectively.
This is especially important when considering the real-time requirements of the AUV, as
this can be a difficult area to effectively implement, optimise and verify without significant
experience. Effective hard real-time software is also tied significantly to the hardware used
because high data acquisition rates and complex system behaviours will require greater
onboard computational power. For these reasons metaOSs do not try to provide real-time
functionality, but rather provide more general methods that can give access to sensors and
actuators, leaving the development and optimisation of real-time components to those
groups who require it.

Where a research group already has significant development experience or software that
can provide methods to communicate between devices, it is generally beneficial to re-use
that experience. This choice is likely to drive the selection of the OS to be used as well as
the metaOS or software architectures, though the open source nature of the metaOSs may
allow them to provide software components, such as a driver for a different sensor type.
MOOS is the only metaOS that is specifically targeted at providing a software resource
for AUV platforms and it can be implemented on a range of OSs. The behaviour based
control of the IvP Helm component [45] that operates with MOOS is another area that may
provide useful ideas or components for a system, as it demonstrates the areas where other
research groups have developed control strategies. Other metaOSs may also be useful as
they offer a different range of components or interfaces to simulation environments. For
example the interface that Player uses to interact with the Gazebo 3D simulation might be
reused for physics based simulation of AUV control or sensor processing, though interfaces
to other simulations like USARSim [52] may be better depending upon where the group
has more experience and the fidelity of the physics required for the simulation.

Such considerations of where it is important to reuse the existing software and expe-
rience depend heavily upon the experience level within the development group as well as
the system requirements. A brief Case Study of DSTO’s Wayamba Project is provided

UNCLASSIFIED 17

DSTO–TN–1194 UNCLASSIFIED

in the following section to outline how these considerations can impact upon an existing
project.

5.1 Case Study: DSTO’s Wayamba Project

DSTO has been developing its UUV research platform Wayamba since 1998, with an
initial report provided in 2002 [9]. The Wayamba platform is a flatfish design capable of
a maximum speed of approximately 4 knots which has two main thrusters, three vertical
thrusters, and a single rear lateral thruster as shown in Figure 3. Large static control
surfaces at the rear of the vehicle make it very stable in flight, but the mix of propulsors
yield flexibility of maneuvering, including having the capability of underwater hovering.
Wayamba has two on-board computers to manage the access to on-board sensors, actuators
and other devices, as well as the communications within the vehicle and to a remote
operations system that can be setup upon a dock or support vessel. The design of Wayamba
can be adjusted to allow for the investigation and evaluation of new UUV equipment, such
as novel sensor design, or as a concept demonstrator, such as simulating a system to test
the launch of offboard submarine sensors [56].

Figure 3: DSTO’s UUV Wayamba undergoing testing in a water tank.

The two on-board computers are currently split between running the motor control
functions and processing sensor inputs and communications with the ship or dockside
control station, with both computers running the WinXP OS. A separate commercial
autopilot unit has been incorporated for real-time adjustments to maintain the vehicle’s
attitude and course [10]. Wayamba’s software system, WANE [57], utilises a custom
communications system based upon a combination of TCP and UDP to connect the AUV
components together in a decentralised fashion and connect it with the dockside operator
console via a tether. The motor control computer is dedicated to obtaining the UUV’s pose
information from a high grade Photonic Inertial Navigation System (PHINS) and parsing

18 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

the motor control commands with the motor control unit. The other computer obtains
data from the other sensors and provides the communications via the optical fibre tether
to the operator console. Some components, such as the BlueView sonar, are implemented
as network devices and can be access from any computer on the network. Currently the
operator console is used to provide commands to control the vehicle motion as well as
displaying and logging the system data for the operator.

Given the historical scope and skill sets within the Wayamba project, as well as the
typical operation of the vehicle as a demonstration platform in relatively open seas, there
is little requirement for the development of highly responsive hard real-time control code.
This is more evident when considering that the vehicle usually operates a speeds signifi-
cantly less than its maximum of 4 knots and, due to its size and mass, it has significant
latency in reacting to commands requiring large speed changes. A conversion of the com-
munications structure of such an established system to conform to one of the metaOSs,
such as MOOS or ROS, would be difficult and require significant redevelopment; however
adapting components from the open source metaOSs may more easily add functionality
to the system.

The existing software system is implemented using C++ targeted directly for the
WinXP OS, which meets the non real-time requirements of the current platform deploy-
ment. Microsoft has now withdrawn support and maintenance for this OS, so a consider-
ation is required of migration to an alternative OS. One option is to retain the current OS
with 10 years of experience in its operation, though the maintenance of up-to-date hard-
ware drivers may become increasingly difficult as providers reduce their support. With a
low top speed and limited need to operate in a cluttered environment, the requirement
for real-time processing is low, reducing the need for changing the software structure to a
hard real-time OS. Conversion of the code to operate in the Windows 7 (or 8) environment
is likely to cause the least disruption, as some of the current communications and user
interface code is not platform independent. It would require significant effort to convert
to a different OS such as the Linux based Ubuntu, or Mac OS, which could provide more
consistent execution times [19]. If the platform was to be operated at high speed in an
environment with many other vessels, such as at an operating port, a greater consideration
of a hard real-time OS such as QNX may become important, though the conversion and
verification of the software would take considerable time.

6 Conclusions

Unmanned Underwater Vehicles operate in a dynamic ocean environment that is made
more challenging by limited underwater communications. An Autonomous Underwater
Vehicle must therefore have reliable software and hardware to ensure effective operation
where there is little capability for operator input. This document has identified a range of
features that are required of an Operating System and meta Operating System that are
used as the basis for developing AUV software. A range of potential OSs and metaOSs
that have been previously used in robotics were then compared using these features to
investigate their suitability for use on AUVs. It was found that for AUVs, the factors
which have the most influence on the selection of the OS and metaOSs are whether the
operating conditions require critical real-time decision making and the experience level of

UNCLASSIFIED 19

DSTO–TN–1194 UNCLASSIFIED

the software development team. Most of the other factors were found to be implemented
in all of the candidates explored, or had a significantly lower impact upon the progress of
software development.

Many current AUV systems are designed and operated as research platforms operating
in open ocean environments, where delays of up to a few seconds in movement decisions or
activation of actuators have a limited impact on vehicle operation. For such operations,
real-time OSs may add little to the reliability of the vehicle, but increase the complexity
of the software development and testing required. Where the AUV software development
team has experience with the selected OS and metaOS, this can dramatically reduce
the development time as it reduces the effort required to learn the intricacies of the new
software system. For these reasons many research groups have developed an Ubuntu based
system utilising the MOOS metaOS where they often have previous experience, or where
there exists a collaborative community to assist those groups with very limited experience.

Where an AUV may operate in a cluttered environment, such as a harbour with mul-
tiple moving vessels, real-time decision making becomes significantly more important.
These AUVs tend to use the real-time focussed OSs, such as QNX, with software devel-
oped specifically for that AUV, though such software may draw on ideas developed in
other areas. Where a group has an existing AUV with an existing software system, it is
generally very time consuming for them to adapt that software to work on an alternative
OS, though they may use ideas or components from the freely available metaOSs when
developing new capabilities.

Acknowledgments

Initial research included into this report was conducted under a DSTO research contract
with PADJ PL by Dr Christopher Madden.

References

1. The Navy Unmanned Undersea Vehicle (UUV) Master Plan. Published by the US
Department of the Navy, (2004).

2. Yildiz, O., Yilmaz, A.E., and Gokalp, B. (2009) State-of-the-Art System Solutions for
Unmanned Underwater Vehicles, Radio Engineering, 18(8)

3. Johannsson, H., Kaess, M., Englot, B., Hover, F., and Leonard, J. J. (2010) Imaging
Sonar-Aided Navigation for Autonomous Underwater Harbor Surveillance, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)

4. Williams, S.B., Pizarro, O., Webster, J.M., Beaman, R.J., Mahon, I.J., Johnson-
Roberson, M., and Bridge, T.C.L. (2010) Autonomous underwater vehicle assisted
surveying of drowned reefs on the shelf edge of the Great Barrier Reef, Australia,
Journal of Field Robotics, 27(5), 675–697

20 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1194

5. Brutzman, D. (2007) Autonomous Unmanned Vehicle (AUV) Workbench Rehearsal and
Replay: Mapping Diverse Vehicle Telemetry Outputs to Common XML Data Archives.
In: 15th International Symposium on Unmanned Untethered Submersible Technology
(UUST)

6. Horner, D.P., McChesney, N., Kragelund, S., and Masek, T. (2009) 3D Reconstruc-
tion with an AUV Mounted Forward Looking Sonar. In: International Symposium on
Unmanned Untethered Submersible Technology (UUST)

7. SAUC-E (2012) Student Autonomous Underwater Challenge - Europe [Accessed 17
March 2012]; sauc-europe.org/

8. AUVSI (2013) AUVSI robosub competition [Accessed 21 January 2013]; http://www.
auvsifoundation.org/Competitions/RoboSub

9. Coxhead, M., Graham, P., Neill, R., Price, P., Travers, A., Wharington, J., and Wright,
G. (2002) A Report Card on Wayamba, DSTO’s New Uninhabited Undersea Research
Vehicle, Proceedings of Undersea Defence Technology (UDT) Korea

10. Madden, C., Gilbert, J., and Knox, B (2012) Integrating the Spectre Autopilot with
the Wayamba Research Platform. DSTO–TN–1124, Melbourne, Vic., Defence Science
and Technology Organisation (Australia)

11. Chitre, M., Shahabudeen, S., Freitag L., and Stojanovic, M. (2008) Recent Advances
in Underwater Acoustic Communications and Networking. Marine Technology Society
Journal. 42(1)

12. Ridao, P., Battle, J., Amat, J., and Roberts, G.N. (1999) Recent trends in control
architectures for autonomous underwater vehicles. International Journal of Systems
Science, 30(9) 1033–1056.

13. Strutt, J.E. (2006) Report of the inquiry into the loss of Autosub2 under the Fimbu-
lisen, National Oceanography Centre Southampton Research and Consultancy Report,
12, National Oceanography Centre, Southampton

14. Dowdeswell, J.A., Evans, J., Mugford, R., Griffiths, G., McPhail, S., Millard, N.,
Stevenson, P., Brandon, M.A., Banks, C., Heywood, K.J., Price, M.R., Dodd, P.A.,
Jenkins, A., Nicholls, K.W., Hayes, D., Abrahamsen, E.P., Tyler, P., Bett, B., Jones,
D., Wadhams, P., Wilkinson, J.P., Stansfield, K., and Ackley, S. (2008) Autonomous
Underwater Vehicles (AUVs) and investigations of the ice-ocean interface in Antarctic
and Arctic waters. Journal of Glaciology. 54(187)

15. Craighead, J., Murphy, R., Burke, J., and Goldiez, B. (2007) A Survey of Commer-
cial & Open Source Unmanned Vehicle Simulators. In: Proceedings of International
Conference on Robotics and Automation (ICRA)

16. Harris, A., and Conrad, J.M. (2011) Survey of Popular Robotics Simulators, Frame-
works, and Toolkits. In: Proceedings of IEEE Southeastcon

17. dawson (2011) Scientific Linux [Accessed 22 March 2012]; https://www.

scientificlinux.org

UNCLASSIFIED 21

sauc-europe.org/
http://www.auvsifoundation.org/Competitions/RoboSub
http://www.auvsifoundation.org/Competitions/RoboSub
https://www.scientificlinux.org
https://www.scientificlinux.org

DSTO–TN–1194 UNCLASSIFIED

18. Microsoft News Center (August 2001) Windows XP to Take the PC to New Heights,
Windows Press Release [Accessed 24 July 2012]; http://www.microsoft.com/en-us/
news/press/2001/aug01/08-24winxprtmpr.aspx

19. Ramamritham, K., Shen, C., Gonzalez, O., Sen, S., and Shirgurkar, S. (1998) Using
Windows NT for Real-Time Applications: Experimental Observations and Recommen-
dations, In: Proceedings of Real-Time Technology and Applications Symposium:102–111

20. McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., and McEwen, R. (2007) T-
REX: A Model-Based Architecture for AUV Control, In: Proceedings of International
Conference on Automated Planning and Scheduling Workshop

21. Parodi, O., Lapierre, L., and Jouvencel, B. (2009) Hardware-in-the-loop Simulators
for Multi-vehicle Scenarios: Survey on Existing Solutions and Proposal of a New Ar-
chitecture, In: International Conference on Intelligent Robots and Systems (IROS)

22. Brutzman, D. (2010) NPS AUV Workbench: Rehearsal, Reality, Replay for Unmanned
Vehicle Operations, In: Oceanic Engineering Society’s conference on Autonomous Un-
derwater Vehicles (OES AUV)

23. Apple (2012) Mac Technology Overview [Accessed 12 June 2012];
https://developer.apple.com/technologies/

24. Litayem, N., Achballah, A.B., and Saoud, S.B. (2011) Building XenoBuntu Linux
Distribution for Teaching and Prototyping Real-Time Operating Systems. International
Journal of Advanced Computer Science and Applications. 2(2)

25. Oxford Mobile Robotics Group (2011) MOOS Home Page [Accessed 8 March 2011];
www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage

26. TullyFoote (2013) Robot Operating System (ROS), [Accessed 16 March 2013]; www.
ros.org/wiki/

27. Gerkey, B. (2011) The Player Robot Device Interface [Accessed 16 March 2011]; http:
//playerstage.sourceforge.net/doc/Player-2.1.0/player/

28. Calutt, S., Weatherill, D., Rickenbach, J., Ridge, A., Swirski, L., Crosby, J., Vincent,
H., Pritchard, A., Barton, R., Bremner, S., Silaghi, D., Luk, J., and Dunietz, J. (2010)
Cambridge AUV 2010, Technical Report published by Cambridge University

29. Veerabahu, M. (2011) Windows CE 6.0 vs 7.0, Published by E-Con systems [Accessed
16 March 2011]; http://www.e-consystems.com/WindowsCE6vs7.asp

30. Applied Acoustics (2011) EasyTrak Technical Specification [Accessed 12 March 2011];
http://www.easy-trak.com/pdf/EasytrakPortableAndLite.pdf

31. ENEA (2011) Enea OSE [Accessed 6 March 2011]; http://www.enea.com/

solutions/rtos/ose/

32. Yodaiken. V. (1999) The RTLinux Manifesto, In: 5th Linux Conference Proceedings

22 UNCLASSIFIED

http://www.microsoft.com/en-us/news/press/2001/aug01/08-24winxprtmpr.aspx
http://www.microsoft.com/en-us/news/press/2001/aug01/08-24winxprtmpr.aspx
www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage
www.ros.org/wiki/
www.ros.org/wiki/
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/
http://playerstage.sourceforge.net/doc/Player-2.1.0/player/
http://www.e-consystems.com/WindowsCE6vs7.asp
http://www.easy-trak.com/pdf/EasytrakPortableAndLite.pdf
http://www.enea.com/solutions/rtos/ose/
http://www.enea.com/solutions/rtos/ose/

UNCLASSIFIED DSTO–TN–1194

33. Kang, D., Lee, W., and Park, C. (2007) Kernel Thread Scheduling in Real-Time Linux
for Wearable Computers, Electronics Telecommunications Research Institute (ETRI)
Journal 29(3)

34. Wantanabe, K. (2005) Compact AUV Platform System Designed for the Experiment
of Underwater Multi-agent Development, In: International Conference on Computer
Applications in Shipbuilding

35. wind river (2011) Wind River VxWorks: Embedded RTOS with support for POSIX
and SMP. [Accessed 17 March 2011]; www.windriver.com/products/vxworks/

36. Wind River (2011) Wind River Aerospace and Defence: Space [Accessed 15 March
2011]; www.windriver.com/solutions/aerospace-defense/

37. Valavanis, K.P., Gracanin, D., Matijasevic, M., Kolluru, R., and Demetriou, G.A.
(1997) Control Architectures for Autonomous Underwater Vehicles, In: IEEE Control
Systems

38. QNX (2008) Realtime Programming under QNX Neutrino: Course Notes

39. Bian, X., Zou, H., Chang, Z., Zhao, D., and Wang, Z. (2005) Multi-thread Technol-
ogy’s Application in the Decision-making System of AUV. In: Proceedings International
Conference on Mechatronics and Automation

40. K.J. Higgins (2008) Secure OS Gets Highest NSA Rating, Goes Commercial, Pub-
lished by Dark Reading, [Accessed February 2011]; http://www.darkreading.com/

applications/secure-os-gets-highest-nsa-rating-goes-c/212100421

41. Mills, E. (2008) Green Hills spins off Integrity operating system, Published by CNet,
[Accessed February 2011]; http://news.cnet.com/8301-1009_3-10102784-83.html

42. Bradski, G. and Kaehler, A. (2008) Learning OpenCV: Computer Vision with the
OpenCV library. O’Reilly Media

43. Gerkey, B., Vaughan, R., and Howard, A. (2003) The Player/Stage Project: Tools
for Multi-Robot and Distributed Sensor Systems, In: Proceedings of the International
Conference on Advanced Robotics (ICAR)

44. Collett, T., MacDonald, B., and Gerkey, B. (2005) Player 2.0: Toward a Practical
Robot Programming Framework, In: Australasian Conference on Robotics and Au-
tomation

45. Benjamin, M.R., Schmidt H., Newman, P., and Leonard, J.J. (2013) An Overview of
MOOS-IvP and a Users Guide to the IvP Helm - Release 13.5 [Accessed 24 May 2013];
http://oceanai.mit.edu/moos-ivp-pdf/moosivp-helm.pdf

46. Jiang, D., Pang, Y. and Qin, Z. (2010) Coordination of Multiple AUVs Based on
MOOS-IvP, In: International Conference on Control and Automation (ICCA)

47. Benjamin, M.R., Schmidt, H., Newman, P.M., and Leonard, J.J. (2010) Nested Au-
tonomy for Unmanned Maritime Vehicles with MOOS-IvP, Journal of Field Robotics
27(6): 834–875.

UNCLASSIFIED 23

www.windriver.com/products/vxworks/
www.windriver.com/solutions/aerospace-defense/
http://www.darkreading.com/applications/secure-os-gets-highest-nsa-rating-goes-c/212100421
http://www.darkreading.com/applications/secure-os-gets-highest-nsa-rating-goes-c/212100421
http://news.cnet.com/8301-1009_3-10102784-83.html
http://oceanai.mit.edu/moos-ivp-pdf/moosivp-helm.pdf

DSTO–TN–1194 UNCLASSIFIED

48. Eickstedt, D.P., and Sideleau, S.R. (2009) The Backseat Control Architecture for
Autonomous Robotic Vehicles: A Case Study with the Iver2 AUV, In: OCEANS,
Marine Technology for Our Future: Global and Local Challenges

49. Baillie, J-C (2008) Urbi 2: Introduction to Concurrent Real-time Programming,
In:Proceedings of the Fourth International Workshop on Software Development and
Integration in Robotics

50. Evolution Robotics (2011) ERSP 3.1 Robotic Development Platform [Accessed 17
March 2011]; http://www.evolution.com/products/ersp/

51. Chrysanthakopoulos, G., and Singh, S. (2005) An Asynchronous Messaging Library for
C#, In: Proceedings of the Workshop on Synchronization and Concurrency in Object-
Oriented Languages

52. Sehgal, A., and Cernea, D. (2010) A Multi-AUV Mission Simulation Framework for
the USARSim Robotics Simulator, In: 18th Mediterranean Conference on Control and
Automation Congress

53. Senarathne, P.G.C.N., Wijesoma, W.S., Kwang, W.L., Kalyan, B., Moratuwage,
M.D.P., Patrikalakis, N.M., and Hover, F.S. (2010) MarineSIM: Robot simulation for
marine environments, In: International Conference on OCEANS

54. Craighead, J., Burke, J., and Murphy, R. (2008) Using the Unity Game Engine to De-
velop SARGE: A Case Study, In: Simulation Workshop at the International Conference
on Intelligent Robots and Systems (IROS)

55. Koenig, N., and Howard, A. (2004) Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator, In: IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS)

56. Rodgers, J., Wharington, J., Tynan, A., and Coxhead, M. (2008) A concept for the
deployment of unmanned maritime systems from submarines: MURULA integration,
impact modelling and results, Undersea Defence Technology (UDT) Pacific

57. Knox, B. (2012) The WANE Manual, DSTO–GD–0705, Melborune Vic., Defence Sci-
ence and Technology Organisation (Australia)

24 UNCLASSIFIED

http://www.evolution.com/products/ersp/

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

An Evaluation of Potential Operating Systems for
Autonomous Underwater Vehicles

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHOR

C. Madden

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

6a. DSTO NUMBER

DSTO–TN–1194
6b. AR NUMBER

AR-015-676
6c. TYPE OF REPORT

Technical Note
7. DOCUMENT DATE

February 2013

8. FILE NUMBER

2011/1026884/1
9. TASK NUMBER

FUSW CERP
10. TASK SPONSOR

CDS
11. No. OF PAGES

24
12. No. OF REFS

57

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Maritime Platforms Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Underwater Vehicles Operating Systems Robotics
Software Systems

19. ABSTRACT

This document explores the Operating System (OS) features that are required for the automation
of Unmanned Undersea Vehicles (UUVs), from the perspective of a new system development. Recent
improvements in system components and sensors allow for increased vehicle capability; however reliable
automated software is required to perform extended missions due to the communications limitations
with submerged vehicles. The first step of software development for such systems is selecting an
appropriate Operating Systems which allows the system to support the software required to perform
real-time sensor analysis, and control its behaviour to achieve the mission within the local environmental
conditions. This document defines key features for the evaluation of potential Operating Systems for
the UUVs with autonomous or semi-autonomous capabilities. Using these features, it explains why
some UUVs use a real-time Operating System with custom designed software, but others use the open
source Ubuntu Operating System combined with the Mission Oriented Operating System (MOOS)
robotics software package, or metaOS. It also emphasises that reuse of existing software and skills are
important to advancing any AUV project more rapidly.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Glossary
	1 Introduction
	2 Features to Compare Operating Systems
	3 Potential AUV Operating Systems
	3.1 Windows XP
	3.2 Mac OS X
	3.3 Ubuntu
	3.4 Windows CE
	3.5 Operating System Embedded
	3.6 Real-Time Linux
	3.7 VxWorks
	3.8 QNX Neutrino
	3.9 Integrity-178B
	3.10 Comparison of OS Features

	4 Potential Robotic Meta-Operating Systems
	4.1 Robot Operating System
	4.2 Player
	4.3 Mission Oriented Operating Suite
	4.4 Universal Robot Body Interface
	4.5 ERSP Robotics Development Platform
	4.6 Robotics Developer Studio
	4.7 Robotics Simulation Software
	4.8 MetaOS comparisons

	5 Discussion
	5.1 Case Study: DSTO's Wayamba Project

	6 Conclusions
	References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

