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ABSTRACT 
The Glass Failure Prediction Model (GFPM) is the basis for ASTM E1300 which is 
used across the nation for window glass design. ASTM E1300 states that the model is 
valid only for annealed (AN) glass but, ASTM E1300 does incorporate heat 
strengthened (HS) or fully tempered (FT) glass through the use of multiplication 
factors. Rather than multiplication factors, this paper will address modifying the 
GFPM to incorporate these types of higher strength glass. Designers can then 
incorporate the model into common design methods such as single degree of freedom 
(SDOF) and finite element analysis (FEA) to analyze dynamic performance of 
glazing layups. To validate the modified GFPM, both static and dynamic testing of 
high strength glass was completed and comparisons to analysis predictions will be 
provided in the paper. The paper also illustrates how to use the modified GFPM in 
window design for both static and dynamic applications through the use of Single-
degree-of-freedom Blast Effects Design Spreadsheet for Windows (SBEDS-W), a 
SDOF design tool to be released by the U.S. Army Corps of Engineers Protective 
Design Center (USACE PDC). Dynamic window analysis tools like SBEDS-W will 
be utilized more frequently due to the new threat-based requirements for windows 
and doors in the Unified Facilities Criteria (UFC) 4-010-01 DoD Minimum 
Antiterrorism Standards for Building (9 February 2012). Also, an understanding of 
the failure prediction capabilities of SBEDS-W is important for engineers performing 
the dynamic glazing analyses. 

INTRODUCTION 
Protection Engineering Consultants (PEC) was engaged by the Air Force Research 
Laboratory (AFRL) to provide evaluation of the performance of window systems 
incorporating Herculite® XP glass and develop a fast running model to be used as a 
design tool enabling engineers to specify Herculite® XP glass for the Defense 
Acquisition Challenge (DAC). Herculite® XP glass is a high strength glass 
technology developed by PPG Industries with a residual stress about twice that of 
commercially produced FT glass. The research program included quasi-static tests of 
Herculite® XP glass at PEC, shock tube tests of punched windows (insulating glass 
units (IGUs) with commercial window frames containing Herculite® XP glass) at 
ABS Consulting, and two full-scale blast tests at AFRL on IGUs containing 
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Herculite® XP glass in punched window and storefront configurations using 
commercially available window frames.  

The DAC test program was used to validate a model capable of predicting glass 
failure for both static and dynamic loads. The GFPM developed by Beason and 
Morgan (1984) was chosen for its incorporation of load rate, empirical probability 
distribution (validated), and because it is the basis for the industry standard ASTM 
E1300 design methodology. However, the GFPM was only developed to 
accommodate AN glass and needed modifications to handle the increased strength of 
Herculite® XP glass. The modifications to the GFPM and validation thereof are 
presented below. 
 

GFPM MODIFICATIONS 
 
Original GFPM. The original GFPM, developed by Beason and Morgan (1984), was 
developed through the analysis and testing of AN glass. To summarize the basic 
premise, the GFPM utilizes a finite difference model (Vallabahn and Wang, 1981) to 
correlate the lateral pressure on a given piece of glass to its stress distribution. The 
stress is then modified to account for load duration and biaxiality, which is referenced 
as the equivalent stress. The equivalent stress is applied to a Weibull distribution 
where empirical flaw parameters (m, k) define the shape of the Weibull distribution 
and correlate equivalent stress to the probability of failure. For more information on 
the GFPM see Beason and Morgan (1984). 

 
SBEDS-W GFPM Methodology. SBEDS-W uses the GFPM to predict glass failure 
for SDOF analysis. Specifically, SBEDS-W utilizes the methodology presented in 
ASTM E1300 Appendix X3. Use of the stress distribution factor, J, eliminates the 
need to explicitly map the relationship between lateral load and stress in the glass. 
However, the stress distribution factor is based on testing of AN glass. To 
accommodate the increased strength of Herculite® XP glass, a strength multiplier was 
added to the model which has a similar effect as altering the k parameter of the 
Weibull distribution found in the GFPM. Due to this modification, the k parameter is 
fixed at a value of 2.86x10-53 in SBEDS-W. Therefore, the m parameter is the only 
variable used to calibrate differing strengths of glass (in addition to the embedded 
strength factor). This parameter was established through both static and dynamic 
testing. 

Proposed ASTM E1300 Appendix Methodology. The ASTM E1300 committee 
also began discussion of an appendix to the current ASTM E1300 that accommodates 
higher strength glass. The new approach extends the original ASTM approach by 
incorporating the residual compressive surface stress (RCSS) found in higher strength 
glass into the material model found in the GFPM.  

Morse and Norville (2012) took the existing GFPM and modified it to account for the 
RCSS that is present in HS and FT glass. This is executed by subtracting the RCSS 
from the stress observed from the finite difference model prior to calculating the 
equivalent stress in the original GFPM. 



3 
Approved for public release; distribution unlimited. 

 

This approach allows for the same flaw parameters (m=7, k=2.86e-53 N-7m12 or 
k=1.365e-29 lb-7in12) identified in the original GFPM development to be used with HS 
and FT glass under the assumption that the number and distribution of the flaws are 
identical to AN glass. However, test data showed modification to the flaw parameters 
were necessary to accurately model Herculite® XP glass. 

PEC used an implicit FEA analysis by LS-DYNA to map stress to lateral load on the 
glass. This supplants the original finite difference model found in the GFPM, but is 
accomplishing the same task. Results were validated for AN glass to verify model 
accuracy. Additionally, the deflection data from this model verified the polynomial 
method for calculating deflection of the midpoint presented in ASTM E1300 
Appendix X2. 

This approach on modifying the GFPM differs from the approach using the GFPM 
implementation in SBEDS-W, but both yield conservative results when calibrated to 
blast test data. 

Model Comparison. Figure 1 and Figure 2 show the cumulative Weibull distribution 
(failure probability) using both the original and adjusted set of flaw parameters 
plotted against the lateral pressure on the glass. Both models of the RCSS GFPM are 
shown for comparison. 

The SBEDS-W model represents the model modified by PEC during the course of 
this project and uses an m value of 6.55 and k is treated as a constant (k=2.86e-53 N-

7m12). The RCSS version was run with both original flaw parameters (m=7, k=1.365e-

29 lb-7in12) and adjusted values (m=3, k=3.3e-15 lb-3in4). To adjust the Weibull 
distribution parameters, several pairs of flaw parameters were plotted against test data 
until the cumulative distribution encompassed most test values (minimizing the 
number of test values in the tails of the distribution curve). This adjustment proved to 
be robust across multiple sizes, thicknesses, and load durations. Also, notice that that 
SBEDS-W model is consistently conservative and tuned for better correlation on 
dynamic test results (compared to the quasi-static tests). 

The resistance of the glass was not directly measured in dynamic testing (shock tube 
and blast testing) as material resistances are extremely difficult to measure directly 
when combined with inertial resistances. Resistance was thus inferred from measured 
deflection and known mass. The deflection was measured over time through the use 
of a laser gauge and the time of failure was determined from high speed video. The 
resistance curve relates the deflection to the lateral pressure and the time of failure 
was used to identify the maximum deflection and subsequent pressure (resistance) on 
the glass.  
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Figure 1. Dynamic Test Validation (60-in x 34-in x 0.220-in Herculite® XP glass) 
 

 
Figure 2. Static Test Validation (60-in x 34-in x 0.220-in Herculite® XP glass) 

 
The plots show good results from both models based on conservative predictions 
from the probability distribution. The RCSS GFPM has better handling of load 
duration than the SBEDS-W GFPM as evidenced by a better probability envelope for 
both static and dynamic testing. However, SBEDS-W is only used for dynamic events 
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and thus the embedded GFPM method is specifically calibrated for such events and 
performs well based on test results plotted against the probability distribution. For 
longer duration loads, the SBEDS-W methodology will be very conservative.  

 

TEST RESULTS AND MODEL VALIDATION 
Three test programs were completed to investigate and validate the SBEDS-W GFPM 
model – static, shock tube, and blast testing. Brief discussion of the setups are shown 
for each test along with the corresponding results and model comparison. 

Static Testing. Tests on monolithic Herculite® XP glass were performed with the 
PEC static test tank. Each framed glass lite was attached to the test tank with a steel 
mask corresponding to the nominal glass size. The tank utilized water to apply a 
uniform pressure to the glass. The side of the glass facing the inside of the test tank is 
denoted as the “blast” face and represents the exterior face of a window in a building. 
For all static testing, PEC used an ultraviolet lamp to determine the tinned (or weak) 
side of the glass. The tinned side was used as the blast face for all static tests, such 
that the strong side of the glass was facing up and tested in flexure. 
 
The test tank has a 4-ft by 6-ft opening and is 9-in deep. The mask was bolted to the 
test tank to decrease the opening to the nominal glass size. The non-responding 
window frame was bolted to the steel mask as shown in Figure 3. A rubber gasket 
was placed between the tank/mask and mask/frame interfaces to create a watertight 
seal. After shimming the frame at each bolt, the bolts were tightened around the 
frame and tank perimeter to minimize leaks.  
 

 
Figure 3. Quasi-Static Test Set-up 

 

potentiometers

glazing

window frame

steel mask

test tank

instrumentation frame
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Results from quasi-static tests on Herculite® XP glass tests are summarized in Table 
1. The residual stress “trapped” in the glass after tempering effectively reduces the 
effect of surface flaws. This enabled the Herculite® XP glass to reach high glass 
failure pressures relative to AN and FT glass. In addition, all of the specimens 
exhibited a forceful glass failure due to the residual stored energy from tempering and 
the applied strain energy accumulated during the quasi-static testing. Unlike the 
failure of AN glass, the monolithic Herculite® XP glass exhibited micro cracking. In 
general, the fracture planes of the glass fragments were dull and relatively smooth. 
The primary mode of failure was brittle fracture precipitated by stress concentration 
at the critical surface flaw site. Upon failure, specimens of monolithic Herculite® XP 
glass tended to fracture all the way up to the glazing tape bite at the aluminum frame 
edges. 
 

Table 1. Quasi-Static Test Results Summary 

 
 
The pressure and displacement histories from each test were used to develop static 
resistance functions for each test specimen. The measured gauge pressure inside the 
tank was taken to be equivalent to the resistance of the window assembly. Prior to 
each test, the pressure gauge was corrected for the additional pressure afforded by the 
static head of the water inside the tank. 
 

1 1 2 x 3 M 0.186 17.4 2.21 0.94 1.27
2 2 2 x 3 M 0.190 15.0 1.96 0.84 1.12
3 3 2 x 3 M 0.164 11.2 1.78 0.59 1.19
4 4 2 x 3 M 0.165 8.9 1.51 0.48 1.03
5 1 3 x 5 M 0.159 4.9 2.10 0.15 1.95
6 2 3 x 5 M 0.149 5.3 2.24 0.25 1.99
7 3 3 x 5 M 0.225 9.6 2.52 0.28 2.24
8 4 3 x 5 M 0.220 9.7 2.45 0.53 1.92
9 5 3 x 5 L 0.372 10.0 2.12 0.25 1.87
10 8 3 x 5 L 0.376 10.3 2.13 0.17 1.96
11 9 3 x 5 L 0.374 10.1 2.16 0.20 1.97
12 10 3 x 5 L 0.376 10.0 2.01 0.19 1.82
13 1 3 x 5 M 0.154 5.9 2.05 0.11 1.94
14 2 3 x 5 M 0.156 6.9 2.20 0.14 2.06
15 3 3 x 5 M 0.124 4.0 2.01 0.09 1.93
16 4 3 x 5 M 0.181 7.0 2.01 0.13 1.87
17 5 3 x 5 M 0.187 8.3 2.16 0.16 2.00
18 6 3 x 5 M 0.116 5.1 2.20 0.11 2.09
19 7 3 x 5 M 0.221 12.9 2.20 0.20 2.00
20 8 3 x 5 M 0.220 10.7 2.14 0.18 1.95

* M = Monolithic; L = Laminated (PVB thickness = 0.060 in.)

Net Defl. 
(in)

Identification Nominal 
Window 
Size* (ft)

Glass Break
Test 
No.

Window 
No.

Thickness 
(in)
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Pressure 
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Mid Point Defl. 
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The results of the quasi-static tests were used to confirm the GFPM parameters (m = 
6.40 and k = 2.86×10-53 N-7m12) for use in shock tube test predictions for Herculite® 
XP glass.  
 
Shock Tube Testing. The shock tube testing provided an abundance of data with 
regard to deformed shape, crack propagation, glass deflection at failure, and poly-
vinyl butyral (PVB) bite considerations. Initial predictions by SBEDS-W did a 
reasonable job of predicting glass response by correctly predicting 59% of all breaks 
across both monolith and IGU tests. The data obtained from the high speed cameras 
was used to capture crack propagation, which was used to assess glass break timing 
and correlated displacement at time of failure. This was used to improve the 
predictive capabilities of the GFPM found in SBEDS-W. 
 
The initial monolithic glass tests were performed to investigate rate effects included 
in the GFPM model. Layups tested are summarized in Table 2.  Figure 4 shows a 
typical setup for shock tube testing.  Shock tube test results and predictions using an 
m of 6.4 in SBEDS-W are summarized in Table 3. SBEDS-W predicted slightly 
higher deflections and resistances to first crack than observed in the tests. 
Additionally, the break point of glass was predicted correctly 57% of the time based 
on flaw parameters determined from static testing. Using the dynamic test data, m 
was adjusted to 6.55 to account for these differences which were most likely due to 
rate effects and assumed deformed shape. Figure 5 illustrates the effect of inertia on 
the observed test data versus the idealized window response calculated by SDOF in 
SBEDS-W. 
 

Table 2. Shock Tube Tests Glass Layup Types 

 
 
 

Outer Lite Air Gap Inner Lite*
1 4 3/16 1/2  1/4 laminate (0.060 PVB) aluminum
2 3 1/4 1/2  5/16 laminate (0.060 PVB) aluminum
3 3 1/4 1/2  3/8 laminate (0.060 PVB) aluminum
4 4 3/16 1/2  1/4 aluminum
5 1 1/8  -  - steel

1 5/32  -  - steel
1 3/16  -  - steel
1 1/4  -  - steel

* laminates composed of 2 lites of glass

Nominal Thickness (in)No. of 
Samples

Glass Layup 
Type

Frame 
Type
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Figure 4. Shock Tube Setup 

 
Table 3. Shock Tube Test Comparison of Monolithic Glass 

  
 

 
Figure 5. Shock Tube Test 1 Results: Deflection Comparison 

 

support frame
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Glass Break 
Time (ms)

Max. Defl. 
(in)

Glass Break 
Time (ms)

Max. 
Defl. (in)

1  1/4 7.7¹² ± 1 2.14 - 2.45ᵃ no break 2.33
2  3/16 no break 1.42ᵃ no break 1.54
3  3/16 break 1.92ᵃ no break 2.67
8  1/4 5.3¹² ± 1 2.71 - 6.10ᵃ 4.15 2.98
16  1/8 5.5¹ ± 0.5 1.67 - 3.08ᵃ 5.17 2.82
17  5/32 6¹ ± 0.5 2.23 - 4.40ᵃ no break 2.81
18  1/4 5¹ ± 0.5 1.03 - 3.58ᵃ 4.94 2.99

Notes: ¹ABS Estimation; ²high-Speed Video Estimation
ᵃLaser Deflection
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In addition to the monolithic glass tests, several laminated IGU layups were tested. 
The shock tube pressure capacity was the limiting factor on the thicker glass layups 
(Type 2 and 3 as shown in Table 2) as higher pressures were needed to break the 
glass without subsequent over loading of the PVB. Higher impulses with lower 
pressures could be achieved to break the glass, but this resulted in a lack of control in 
the testing and caused PVB failure and catastrophic failure of the system, 
immediately after glass break occurred. Several successful and controlled tests were 
conducted, however. Table 4 shows the inner lite test results and the corresponding 
SBEDS-W predictions using an m of 6.4. On average, SBEDS-W was 3% lower than 
the measured deflections of the inner lite when the glass did not break. Thus, 
deformed shape has a limited effect on the maximum deflection of the window at 
midspan, which occurs after the shape has returned to the typical parabolic shape. 
However, the GFPM predicted no failure for each of the tests where the glass failed, 
which could be improved. Again the test data showed a value of m adjusted to 6.55 
would account for these differences and provide better predictions for the blast tests.  

Table 4. Shock Tube Results: Laminated IGU Comparison 

  
 
Blast Testing. Two full-scale blast tests were performed on twelve window 
assemblies (six per test) at the AFRL test facilities located on Tyndall Air Force Base 
in Panama City, Florida. Test 1 was performed on August 22, 2012 and Test 2 was 
performed on October 3, 2012 (Figure 6). Both tests were performed to validate the 
performance of IGUs incorporating Herculite® XP glass in punched window and 
storefront configurations using commercially available window frames.  
 
PEC analyzed the performance of the Herculite® XP glass subjected to the actual 
blast loads. SDOF analyses were performed using SBEDS-W. The SBEDS-W glass 
module was calibrated to match results from static tests completed in January 2012 
and shock tube tests in April 2012 (m = 6.55, k = 2.86×10-53 N-7m12, POF = 500, LF = 

Glass Break 
Time (ms)

Max. 
Defl. (in)

Glass Break 
Time (ms)

Max. 
Defl. (in)

9 1 6.1² ± 0.15 2.67ᵇ no break 2.77 3.7%
10 1 7.2² ± 0.15 2.40ᵇ no break 2.5 4.2%
11 1 no break 2.37ᵃ no break 2.23 -5.9%
12 1 no break 2.55ᵇ no break 2.42 -5.1%
13 1 6.2² ± 0.15 2.44ᵇ no break 2.76 13.1%
14 3 no break 2.51ᵇ no break 2.45 -2.4%
15 3 <6.7² ± 0.5 N/M no break 2.9 N/M
19 2 no break 2.58ᵃ no break 2.58 0.0%
20 2 no break 2.60ᵃ no break 2.58 -0.8%
21 2 no break 2.77ᵃ no break 2.66 -4.0%

Notes:
ᵃLaser Deflection; ᵇDIC Deflection; N/M - not measured

Test 
No.

Window 
Type

Testing SBEDS-W Predictions
SBEDS-W 
Error (%)

2High-Speed Video Estimation
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1). The predicted and observed response of each IGU is summarized in Table 5 (note, 
predictions were made assuming a single window with rigid supports). In all cases, 
the SBEDS-W glazing response predictions are conservative.  
 

 
Figure 6. Blast Test 2 Results 

Table 5. Blast Test Comparison 

 
 

Observed Predicted1 Measured2 Predicted1

1 Storefront 4 no break fail glass 2.96  - 
2 Storefront 2 no break no break 3.16 1.7
3 Punched 1 break3,4 break3 7.9 2.3
4 Storefront 1 no break break3 3.46 2.3

Punched 4 fail glass fail glass  -  -
Punched 1 break4 fail pvb  -  -
Punched 4 fail glass fail glass  -  -
Punched 4 fail glass fail glass  -  -

1 Storefront 3 break3 break4  - 2.3

2 Storefront
(3) 3 & 

(1) 2 break3,4 break4  - 7.6

3 Punched 3 break4 break4 6.04 7.6
4 Storefront 1 break4 fail pvb 13.56  -

Punched 4 fail glass fail glass  -  -
Punched 1 fail pvb fail pvb  -  -
Punched 4 fail glass fail glass  -  -
Punched 4 fail glass fail glass  -  -

1 predictions made with SBEDS-W using m = 6.55
2 measured data is from laser gauges prior to rigid body motion of the frame
3 outer lite break, inner lite not break
4 PVB activated and stretched

2

6

5

Max. Disp. (in)Glazing ResponseTest 
No. Bay

Window 
Type

Layup 
Type

1
5

6
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CONCLUSIONS AND RECOMMENDATIONS 
In addition to evaluation of Herculite® XP glass through testing for blast and the 
evaluation of existing techniques for prediction of that response, a goal of the project 
was to determine a design method to enable engineers to specify Herculite® XP glass 
for windows using consensus based standards such as ASTM E1300. Herculite® XP 
glass can be incorporated into existing industry standards, such as ASTM E1300, 
using an approach outlined by the ASTM task group with minor modifications to the 
m and k parameters. Data collected during the test program was used to adjust the 
approach specifically for applications with Herculite® XP glass. 

Testing during this program provided sufficient data to evaluate a resistance function 
for IGUs containing Herculite® XP glass for use in a dynamic SDOF analysis 
program. Comparisons of test data illustrate that the model can conservatively predict 
the performance of IGUs containing Herculite® XP glass subjected to blast loads. In 
general, Herculite® XP glass can provide the same level of protection as AN or HS 
glazing using a thinner and lighter section. 

Accuracy of SDOF Analysis Predictions. Shock tube and blast testing showed good 
correlation with SDOF predictions made with SBEDS-W based on consistent and 
conservative glazing failure predictions. As discussed previously, the deformed shape 
of the glass is consistent with large deformation plate theory and exhibits a parabolic 
shape soon after load is applied. Additionally, the resistance curve generation based 
on the polynomial method found in Appendix X2 in ASTM E1300 was verified with 
the static test results. 

Lastly, based on a comparison of predictions and observations of glazing failure in 
the blast tests found in Table 5, the modifications to the GFPM used in SBEDS-W 
provide good predictions for glass failure. The flaw parameters were calibrated to 
static and shock tube test data and Table 5 again shows they did a good job of 
predicting glass failure in the final blast tests. 

Final Design Parameters and Assumptions. The flaw parameters for the SBEDS-W 
GFPM model were continually refined throughout the course of this project. The 
modified GFPM treats the flaw parameter, k, as a constant (k = 2.86e-53 N-7m12) and 
must be run using international system (SI) units. For the remaining flaw parameter, 
m, a value of 6.34 was selected to match quasi-static test results. However, for short 
duration loads such as shock tube and blast tests, an m of 6.55 was selected to match 
test results. Since an m value of 6.55 is conservative for all load durations and 
calibrated to blast loads, it is the final design value selected for Herculite® XP glass 
for use in the SBEDS-W modified GFPM, as shown in Table 6. The SBEDS-W 
model assumes that a probability of 0.5 will be used for design purposes. 
Additionally, while only a single glazing geometry was tested and evaluated in the 
shock tube and blast tests, size variation was evaluated as a part of the original static 
test series and not found to change the design parameters significantly. Window sizes 
significantly larger than 60-in by 34-in tested could require additional investigation, 
but should be adequately predicted for aggregate response using the parameters 
recommended. 
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Alternatively, the approach proposed for ASTM E1300 offers a robust solution for 
static and dynamic analysis based on results shown in Figure 1 and Figure 2. Both 
methods provide a probability distribution that encapsulates test data conservatively 
and can be improved as more tests are completed to refine model accuracy. This 
model should utilize different flaw parameters (m=3, k=3.3e-15 lb-3in4) and is valid for 
all load durations. 

Table 6. Recommended Flaw Parameters for SBEDS-W GFPM Model 
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Annealed
Heat Strengthened

Fully Tempered
Herculite® XP

  
Glass Type

  
 m (for 

design) k (N-7 m12)

7 2.86x10-53 1.04x107

 6.93 2.86x10-53 1.04x107

 6.85 2.86x10-53 1.04x107

 6.55 2.86x10-53 1.04x107

Surface Flaw Parameters
 

 Young’s 
Modulus 

(psi)
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