
CrossTalk—January/February 2014 33

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Mary Ann Lapham, SEI

Abstract.Today’s systems are increasingly reliant on software which must be sus-
tained into the future. To sustain these systems organizations must define sustain-
ment, meet criteria to enter sustainment, and overcome some classic sustainment
challenges. This article discusses these tasks along with historical parallel develop-
ment and sustainment and potential future trends in software sustainment.

Software Sustainment
Now and Future

While DoD Instruction 5000.02 describes sustainment in de-
tail, no authoritative definition of “software sustainment” exists.
The SEI’s working definition is as follows:

The processes, procedures, people, material, and information
required to support, maintain, and operate the software aspects
of a system.

Given this definition, software sustainment addresses other
issues not always an integral part of maintenance such as
documentation, operations, deployment, security, configuration
management, training (users and sustainment personnel), help
desk, commercial off-the shelf (COTS) product and license man-
agement, and technology refresh. Successful software sustain-
ment consists of more than modifying and updating source
code. It also depends on the experience of the sustainment
organization, the skills of the sustainment team, the adaptability
of the customer, and the operational domain of the team. Thus,
software maintenance as well as operations should be consid-
ered part of software sustainment.

Criteria to Enter Sustainment
The Operations and Support phase of the Defense Acquisi-

tion Management System has two major efforts, Life-Cycle
Sustainment and Disposal. The entrance criteria include an
approved Capabilities Production Document (CPD), an approved
Life-Cycle Sustainment Plan (LCSP), and a successful Full-Rate
Production (FRP) decision [1, section 8.a and b]. In addition, the
following criteria among others should be considered:

•	Stable software production baseline—Most sustainment
organizations will not accept software into sustainment until
the software is stable. Merriam-Webster Online defines stable
as “a. firmly established: fixed, steadfast; b. not changing or
fluctuating: unvarying; c. permanent, enduring” [4]. However, in
the realm of software stable can mean different things.

If one were to apply Merriam-Webster’s definition to soft-
ware, he or she could infer that a single instance of loss of
availability or a system failure would indicate that the software
is not stable. In other words, software is stable only if it does
not have problems that cause it to stop working. For software,
unfortunately, the definition of stable can be a subjective one
from several different perspectives. One organization may be
willing to accept software as stable if it only fails once a week,
while others would deem this rate of failure too high and would
not accept the software. In other situations, software may
be considered stable if no Category 1 or 2 Software Trouble
Reports (STRs) exist.

Defining the stability of a system depends somewhat on its
intended use, its mission criticality, and the potential conse-
quences if the system fails. For instance, a system such as
navigation software or command and control software whose
failure could result in loss of life should have more stringent
requirements for maintaining stability than one that is business
software supporting actions that could be postponed for hours
or even days.

The program office should define the criteria for accepting a
system as stable in the Sustainment Transition Plan. These crite-
ria should at the very least identify the types of STRs allowed to
be active in a system that is entering sustainment.

Introduction
This article provides an overview of current software sus-

tainment practices and challenges within the Department of
Defense (DoD) and a look at the potential future of software
sustainment within the federal government. It takes a broad view
based on a specific study done in 2006 which was not meant to
be all inclusive for every software sustainment topic. Thus there
are areas not covered that may be relevant to an individual situ-
ation. Areas such as open source software, anti-tamper, sustain-
ment cost estimation, and specific authority and responsibility
for transition to sustainment should be explored if relevant to
your situation.

As today’s systems become increasingly reliant on software,
the issues surrounding sustainment become increasingly com-
plex. The risks of ignoring these issues can potentially undermine
the stability, enhancement, and longevity of systems in the field.

At the center of this puzzle are disparate definitions. Develop-
ers and acquirers have a general understanding that sustain-
ment involves modifying systems and deploying changes to
meet customer needs, but does this understanding align with
common practice and the DoD’s definition of sustainment? DoD
Instruction 5000.02 describes sustainment as follows:

Life-cycle sustainment considerations include supply; main-
tenance; transportation; sustaining engineering; data manage-
ment; configuration management; Human Systems Integration
(HSI); environment, safety (including explosives safety), and
occupational health; protection of critical program information
and anti-tamper provisions; supportability; and interoperability
[1, section 8.c.1.b].

The terms software maintenance and software sustainment
are often used interchangeably. It is important to make sure that
all stakeholders use the same terminology when discussing
software sustainment.

The IEEE Standard Glossary of Software Engineering Termi-
nology defines “software maintenance” as follows:

The process of modifying a software system or component
after delivery to correct faults, improve performance or other
attributes, or adapt to a changed environment [2].

Software maintenance consists of correcting faults, improv-
ing performance or other attributes, and adapting to a changing
organization and technical environment. To be complete, there is
usually a fourth category of maintenance activities focused on
anticipated problems, or preventive maintenance1 [3].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Software Sustainment Now and Future

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave Bldg 1238,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Today?s systems are increasingly reliant on software which must be sustained into the future. To sustain
these systems organizations must define sustainment meet criteria to enter sustainment, and overcome
some classic sustainment challenges. This article discusses these tasks along with historical parallel
development and sustainment and potential future trends in software sustainment.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

34 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

•	Complete and current software documentation—Complete,
current software documentation is paramount for the software
sustainment organization. Without it, the sustainment organiza-
tion has limited insight into how the software was designed
and implemented. Incompleteness or omissions increase soft-
ware maintenance costs because software engineers have to
reverse-engineer the code to determine how it works. In addi-
tion, this process increases the risk of inadvertently introducing
errors into the code. Well documented code is a plus and—for
those using incremental and iterative methods—expected.

The program office should determine what constitutes com-
plete documentation for its system. At a minimum the documen-
tation set should include the “why, how, what, and where” of the
system as built. That is, documents should allow the sustainment
organization to understand why the system was designed, how
the system was developed, what the system consists of, and
where functions were allocated to different subsystems. The
overall architecture or blueprint for the system needs to be
provided. Plans on how the program office intended to handle
COTS and configuration management issues are essential for
sustainment and continued implementation. Interface definitions
need to be documented. Database designs and their docu-
mentation are essential to understanding their purpose within
the system. Lastly, the development environment needs to be
defined so the sustainment organization knows what tools were
used to develop and support the system.

•	Authority to Operate (ATO) for an operational software
system—Before a system can be considered operational in the
field and thus meet the criteria to enter sustainment, an Author-
ity to Operate must be issued. The ATO issuance depends on
approval of security requirements by the Designated Approval
Authority (DAA). Issuing an ATO means that a DAA has accept-
ed that operation of the system represents a low security risk. An
ATO is issued for a fixed period of time (typically three years) and
must be renewed. Delay in obtaining ATO approval or renewal
could cause the system to be deemed non-operational.

•	Current and negotiated Sustainment Transition Plan—In
many instances, a program has been developed, tested, and
declared operational but there is no funding set aside to address
creation and subsequent negotiation of the Sustainment Transi-
tion Plan. Unfortunately, in an era where budgets are becoming
increasingly tight, sustainment planning is postponed and in
some instances forgotten.

Both the development organization and the sustainment
organization need to be involved in creating the Sustainment
Transition Plan. If a contractor is involved in development, that
organization also needs to participate in the development and
subsequent negotiation of the Sustainment Transition Plan. In
addition, the contract should include tasks that address the con-
tractor’s role in the sustainment planning and transition process.

The program office should ensure that while the program is
being developed, sustainment tasks are not forgotten or removed
from the development contractor’s tasking. While the development
contractor may not necessarily become the sustainment organiza-
tion, the development contractor is responsible for developing and
maintaining documentation that the sustainment organization will
need. It is the program office’s responsibility to ensure that the con-

tractor does not create documentation that is proprietary or unde-
liverable. Even though it was cancelled in 1998, the MIL-STD-498,
Section 5.13, “Preparing for Software Transition,” contains good
background and reference material in this area [5].

• Sustainment staffing and training plan—Staffing the sustain-
ment organization is critical. The staff needs to be trained software
professionals that can work with the development organization
to transfer the necessary system knowledge. One should not as-
sume that any of the development organization staff will transition
to the sustainment organization; rather, adopt a plan to transfer the
knowledge from one organization to the other as part of the staff-
ing plan. The staffing and training plan are related to and should
be coordinated with the Sustainment Transition Plan.

As with many other areas associated with sustainment, train-
ing for the sustainment organization is often treated as an after-
thought and is usually an under-funded activity. Even though the
sustainment staff is composed of trained software professionals,
they still need training on the specifics of the system entering
sustainment. This is especially true for the increasingly complex
systems that contain a mixture of COTS, government off-the-
shelf (GOTS), and organic (government-developed) software
code. “On-the-job” training is not sufficient for personnel sus-
taining these types of complex systems. The system’s specific
architecture, design decisions, and other nuances need to be
communicated in some depth.

Sustainment Challenges
Our research in the 2006 timeframe identified a variety of

issues or challenges prevalent with software sustainment at that
time. These were grouped into six categories. This is not to say
that one would not find other issues that must be addressed
when a system is entering sustainment. In addition, no priority is
implied by the order in which these topics are discussed.

The following categories of sustainment challenges were identified:
•	Sustainment with COTS software—requires consideration of

system obsolescence, technology refresh, source code escrow,
and vendor license management among related topics.

•	Programmatic considerations—discusses issues with
relegating the sustainment requirement to the category of
“minor requirements.”

•	System transition to sustainment—considers topics of support
database transition, development and software support environ-
ment infrastructure (software test lab, hardware spares, release
processes and procedures), staffing, operations training, and
transition planning

•	User support—discusses help desk, user documentation, and
user training.

•	 Information assurance—discusses the unique challenges of IA
and COTS software products and testing for IA.

•	Development versus sustainment.
While these challenges are most likely still valid, the only one

discussed in depth within this article is the last one, development
versus sustainment.2

Parallel Development and Sustainment—History
As I found in 2006 (and continuing to the present), many

systems are fielded in an incremental manner. Incremental

CrossTalk—January/February 2014 35

LEGACY SYSTEM SOFTWARE SUSTAINMENT

means that an increment or version of the system that pro-
vides partial capabilities is developed and fielded. The remain-
ing capabilities are developed later depending on budget,
requirements definition, and technology advancements. For the
sustainment organization, this means that it will be sustaining
a system in parallel with another version of the system that is
still under development.

Development in parallel with sustainment is not a new con-
cept; however, many sustainment organizations may not have
experience with this mode of operation. In some instances,
upgrades (development) are considered a sustainment activity.
This makes the “line” between development and sustainment
very hazy. To ensure continued operation of the system, the
sustainment and development organizations need to develop
processes and procedures, coordinate them with all parties, and
obtain concurrence on their use. This should include an under-
standing of who is responsible for any upgrades.

Historically, in organizations that are successful in performing
development and sustainment concurrently, groups within the
organizations report to the same person. Given the organiza-
tional structure of the development and sustainment organiza-
tions, this can be problematic. In many instances, the person
who has enough experience to oversee both the development
and sustainment groups does not have the desire or the time to
be involved in this level of oversight.

To better align parallel development and sustainment efforts,
the program office needs to consider the current sustainment
structure. With that in mind, it should then determine how the
system being developed is evolving and how it can fit into the
sustainment structure. Sustainment organizations should plan to
adapt their processes to handle an evolving system, especially if
it implements COTS hardware or software products.

In addition, a joint (development and sustainment) Configura-
tion Control Board (CCB) needs to be created and given the
authority to act. All decisions for changes to the baseline must
go through the CCB without exception. The operational soft-
ware must be driven from the CCB approved baseline. Last, a
clear, documented path of escalation up to senior-level person-
nel must be created to address issues. It is not a question of if
there will be issues, but when they will occur. Being prepared to
handle issues reduces the impact problems have on the overall
development and sustainment of the system. Emphasis in bold
is added to point out the criticality of following a strict CCB
process when there are two organizations (one development
focused and one sustainment focused). Otherwise, keeping the
two systems in alignment will be problematic at best.

Future of Software Sustainment
In 2006, when I authored the Sustaining Software Intensive

Systems technical note, many commercial organizations were
starting to use incremental and iterative methods known as
Agile methods. These methods have evolved over time; today
the commercial environment is using something referred to as
DevOps. What is DevOps?

What it is. A way of working that encourages the Develop-
ment and Operations teams to work together in a highly col-
laborative way towards the same goal.

What it is not. A way to get developers to take on operational
tasks and vice versa [6].

Strangely, I find the definition very similar to what was de-
scribed in the Parallel Development and Sustainment section.
However, there are some major differences. DevOps seems to
be the Agile community’s term for doing sustainment and opera-
tions in parallel. The methods used are based on the Agile Mani-
festo four tenets and 12 principles but applied in a sustainment
environment. Adopting these tenets and principles within DoD
requires a major change in the paradigm for doing business [7].

The SEI currently has a team researching the use of Agile
methods in sustainment within the federal government. This
research is how I came upon the term DevOps. In addition, Gene
Kim provided a keynote speech on DevOps at the 2013 Soft-
ware Technology Conference. The question is whether this type
of methodology will be useful and adopted within the federal
government. We’re still trying to determine this.3

However, we have learned that several maintenance organiza-
tions within the federal government are trending toward using more
Agile-like methods for conducting sustainment. While the “jury is
still out” on whether Agile methods are indeed in use, there seems
to be a movement to try more incremental and iterative methods
using empowered teams. This movement toward incremental and
iterative methods does seem to make sense for a sustainment
environment where defects and/or enhancements are prioritized
and worked on in that order based on the amount of capacity the
sustainment team possesses. This approach sounds eerily like the
product backlog maintained by an Agile team [8].

In fact, one of the early conclusions by SEI in our Agile work
included the following thoughts on using Agile for sustainment:

Operations and Support is where sustainment of the software
is conducted. It is assumed that the software previously devel-
oped (during the Engineering and Manufacturing Development
phase) is mature and stable, so the anticipated software effort
expended during this phase is low and should follow a sustain-
ment model, driven by the need to correct errors observed during
qualification testing, or providing enhancements as requested by
program stakeholders. It is quite possible for a software develop-
ment team working in these life cycle phases to follow an Agile
approach. Quite often the features requested during this phase
are modifications that are only relevant within the context of the
system that had been previously developed. The aspect of user
involvement that naturally occurs at this point of the life cycle
makes it easier for the use of a collaborative approach.

It should be noted that some of the Agile methods might not
be as practical as others4 during the Operations and Support
phase. For example, it is quite likely that the capability provided
during sustainment is planned to be provided over a significant
period of time, typically on the order of two years. While the in-
volvement of the user might be beneficial, the frequent releases
may not be useful because of limitations with the verification
and validation environments required for deployed systems. On
the other hand, this constraint should not preclude the use of
Agile during this stage of development [8].

In addition, many issues need to be explored including but not
limited to documentation required, CCB interaction, release of
updated software to the field, quality of code, and cost of code.

36 CrossTalk—January/February 2014

LEGACY SYSTEM SOFTWARE SUSTAINMENT

Our ongoing Agile and sustainment research is looking at these
and other issues. The results of our Agile and sustainment study
should be available in early 2014.

Summary
There are multiple issues associated with software sustain-

ment. They start with agreeing on a standard definition for the
term software sustainment. This is followed by knowing the
criteria for entering sustainment which include stable software
production baseline; complete and current software documenta-
tion; Authority to Operate; current and negotiated Sustainment
Transition Plan; and sustainment staffing and training plan. Finally,
specific known challenges need to be considered. These include
but are not limited to sustainment with COTS software; program-
matic considerations; system transition to sustainment; user sup-
port; information assurance; and development versus sustainment.

Parallel development and sustainment have historically been
done which may lead to a move towards the more current DevOps
approach. DevOps is becoming popularized by the Agile move-
ment. Many issues need to be resolved and the jury is still out on
the effectiveness of this approach in the federal government.

Disclaimers:
Copyright 2013 Carnegie Mellon University.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHEDON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARN-
EGIE MELLON UNIVERSITY DOES NOT MAKE ANY WAR-
RANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and
unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM-0000536

Mary Ann Lapham, a Principal Engineer at the Software En-
gineering Institute (SEI) of Carnegie Mellon University, is the
technical lead for SEI’s agile in acquisition research, focused
on identifying and addressing barriers to adopting Agile
practices in DoD and other government settings. She is also
the Space Sector lead within the Software Solutions Division,
Client Technical Solutions Directorate. Prior to her coming
to the SEI in 2004, Ms. Lapham spent 30 years in technical
and program management roles on programs of variable size
and complexity. She also is a PMP and CSM.

E-mail: mlapham@sei.cmu.edu
Phone: 412-268-5498

ABOUT THE AUTHOR

REFERENCES

NOTES

1.	 Department of Defense. DoD Instruction Operation of the Defense Acquisition System (DoDI 5000.02).
	 December 2008. Print.
2.	 Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of Software Engineering
	 Terminology (IEEE Std. 610.12-1990). New York, NY: IEEE, 1990 (ISBN: 155937067X). Print.
3.	 Lapham, M.A.; Woody, C. Sustaining Software Intensive Systems (CMU/SEI-2006-TN-007). Software
	 Engineering Institute, Carnegie Mellon University. Web. 2006.
	 <http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm>
4.	 “Stable.” Merriam-Webster Online Dictionary, 10th Edition. Web.
	 <http://www.merriam-webster.com/dictionary/stable>
5.	 Department of Defense. MIL-STD-498 Software Development and Documentation. December 1994.
	 (Cancelled June 1998). Print.
6.	 Swartout, Paul. Continuous Delivery and DevOps: A Quickstart Guide, Continuous Delivery and DevOps
	 Explained. Packt Publishing, 2012. Print.
7.	 Lapham, M.A.; Miller, S; Adams, L; Brown, N; Hackemack, B; Hammons, C; Levine, L; and Schenker, A.
	 Agile Methods: Selected DoD Management and Acquisition Concerns (CMU/SEI-2011-TN-002).
	 Software Engineering Institute, Carnegie Mellon University. Web. 2011.
	 <http://www.sei.cmu.edu/library/abstracts/reports/11tn002.cfm>
8.	 Lapham, M.A.; Williams, R.; Hammons, C.; Burton, D.; & Schenker, A. Considerations for Using Agile in DoD
	 Acquisition (CMU/SEI-2010-TN-002). Software Engineering Institute, Carnegie Mellon University. Web. 2010. 	
	 <http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm>

1.	 Information for sustainment is based on the SEI Technical Note Sustaining Software-Intensive Systems,
	 CMU/SEI-2006-TN-007 and updated to reflect the DoDI 5000.02 released in 2008
2.	 For discussion on the first five challenges see Sustaining Software-Intensive Systems,
	 CMU/SEI-2006-TN-007, http://www.sei.cmu.edu/library/abstracts/reports/06tn007.cfm
3.	 A future technical note is expected to be published in early 2014 addressing agile and sustainment topics.
4.	 Kanban/lean style of Agile might be the most relevant for this phase.

