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SECTION 1. INTRODUCTION 

Promoting mental health and reducing suicide risk are important goals for 

Americans from all walks of life. Historically, the suicide rate among Army personnel 

has been lower than that of the civilian population. In 2004, however, the suicide rate 

among Soldiers began rising, reaching record levels in 2007 and again in 2008 and 2009. 

The situation prompted the Army to engage the National Institute of Mental Health 

(NIMH) in helping to address this issue. The Army Study to Assess Risk and Resilience 

in Soldiers (STARRS) is a direct response to the Army’s request that NIMH enlist the 

most promising scientific approaches to better understand psychological resilience, 

mental health, and risk for self-harm among Soldiers. 

Army STARRS is the largest study of mental health risk and resilience ever 

conducted among military personnel. Army STARRS investigators are using five 

separate study components – the Historical Data Study, New Soldier Study, All Army 

Study, Soldier Health Outcomes Study and Special Studies – to identify factors that help 

protect a Soldier’s mental health and factors that put a Soldier’s mental health at risk. The 

length and scope of Army STARRS means the study generates a vast amount of 

information. It also allows investigators to focus on periods in a military career that are 

known to be high risk for psychological problems. The information gathered from 

volunteer participants throughout the study will help researchers identify both potential 

risk factors and potential “protective” factors. Because promoting mental health and 

reducing suicide risk are important for all Americans, the findings from Army STARRS 

will benefit not only service members but the nation as a whole. 

This report documents work done in Fiscal Year (FY) 2013 by the Training and 

Doctrine Command (TRADOC) Analysis Center – Monterey (TRAC-MTRY) as well as 

the Naval Postgraduate School (NPS) in support of the Army STARRS project. For a 

number of reasons, we were unable to accomplish any of the original objectives of this 

effort save the first one; that of reproducing the original data set. As a result, a number of 

the insights we provide speak more to the usefulness and growth in capability of the 

Person-Event Data Environment (PDE) than to the analysis of the models themselves. In 
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this section we provide the scope of the original project and our methodology as well as 

describing the PDE very briefly. Section 2 will provide our problem definition and our 

operating set of constraints, limitations, and assumptions. In section 3, we list some of the 

obstacles that made this project less successful than it might have been. It is our hope that 

future analysts will benefit from being aware of some of these issues early on. In the final 

section we provide some recommendations for both system and code improvement. 

1.1. SCOPE 

The original objectives of this project essentially were to: one, reproduce the 

original data set and subsequently validate the analysis/model that had been done by the 

Department of Health Care Policy, Harvard Medical School, and two, test the resulting 

model (called the Concentration of Risk Model (CORM)) on a new data set, with the 

possibility of some model modifications. Figure 1 outlines the original methodology, 

with the green box showing the extent of our efforts this FY (due to a variety of reasons 

that will be discussed later on), and the tan boxes showing what is now future work.  

 
Figure 1: STARRS Analysis Methodology 
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The analysis done by Harvard in concert with the NIMH and using data from a repository 

at the University of Michigan, had attempted to identify soldiers at higher-than-average 

risk of suicide (We will use “Harvard” to mean “the set of analysts at Harvard”). 

Harvard’s work had consisted of building the data set and then producing and running a 

model thereupon; as mentioned above, our first task was to construct the very same data 

ourselves, using Harvard’s code but from the data in the PDE. The PDE is a virtual 

computer environment set up in association between the Defense Manpower Data Center 

and the Army Analytic Group. Users connect remotely to a server inside the PDE and, 

once there, can access data and analysis tools that are otherwise insulated from outside. In 

this way the security of Personally Identifiable Information (PII) is preserved. The PDE 

includes an Oracle database from which our data was drawn, and the SAS Enterprise 

Guide into which Harvard’s code was imported. 

The code was delivered in four pieces (“rounds”) at the beginning of the project in 

October of 2012 and then an updated set was delivered in April 2013 (which was 

augmented in May). The code also included some documentation, log files (showing 

what happened when Harvard ran the code at their facility) and, in some cases, data 

(with, for example, ICD9 codes). A fifth round was delivered in July 2013, near the end 

of the project. 

 3 



SECTION 2. PROBLEM DEFINITION 

2.1. PROBLEM STATEMENT (ORIGINAL) 

To validate and extend the statistical analysis and results from the Army Study to 

Assess Risk and Resilience in Soldiers (STARRS) based on syntax and variable coding 

provided by the original STARRS research team. 

2.2. CONTRAINTS 

2.2.1. The project will be complete by 30 September 2013. 

2.2.2. Technical difficulties with the PDE caused the original project objectives 
to be re-scoped. 

2.3. LIMITATIONS 

2.3.1. Any analytic accuracy will be greatly impacted by the accuracy of the 
data. 

2.3.2. Reproduction of the study team results may be hindered by the lack of 
documentation provided by the research team. 

2.3.3. SAS server storage size and software versioning will significantly slow 
progress. 

2.4. ASSUMPTIONS 

2.4.1. The data collected and provided will be as accurate as possible. 

2.4.2. We will be able to accurately reproduce the study team’s work without 
proper documentation. 

2.5. STUDY ISSUES AND ESSENTIAL ELEMENTS OF ANALYSIS 
(ORIGINAL) 

Study Issue 1: Is the risk model produced by the previous analysis valid? 

EEA 1.1: Can the models be reproduced from the original data? 

EEA 1.1.1: The NIMH model. 

EEA 1.1.2: The Harvard model. 
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EEA 1.2: How well does the model perform in classifying those Soldiers 

at risk of suicide? 

EEA 1.2.1: The NIMH model. 

EEA 1.2.2: The Harvard model. 

Study Issue 2: How does the structure of the model change with the incorporation 

of additional data? 

EEA 2.1: Does the model contain the same factors? 

EEA 2.2: How does model performance change with the inclusion of the 

new data? 
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SECTION 3. OBSTACLES 

In this section we lay out the obstacles that impeded progress on this work. The 

intent here is to record our experiences as an aid towards future developers in future 

projects. We are not intending to cast blame on collaborators, nor to exonerate ourselves 

for portions of the project that took unexpectedly long to perform.  

We have divided obstacles into two types, although in fact these overlap. The first 

set of obstacles includes a number that have now been remedied; again, we record these 

for the benefit of future developers in other environments. These are system- and 

connectivity-related issues and refer mostly to the inadequacies and vicissitudes of 

hardware and networks. The second set of obstacles concerns certain design choices in 

the code. We believe that this code was developed in a piecemeal manner in order for its 

users to answer a particular question one time. It was not the result of a rigorous software 

development effort designed to produce a re-useable product, and we recognize that. 

Nonetheless some of these design choices made it difficult for us to work on the code and 

the data, and so we detail those issues in that section. 

3.1. SYSTEM ISSUES 

In this section we detail the system-related obstacles that future researchers 

should be aware of. These can be roughly broken into categories representing 

connectivity issues, on the one hand, and disk space and other system resources, on the 

other. Of particular import is the behavior of SAS on abnormal termination, so we discuss 

that briefly as well. 

3.1.1. Connectivity Issues 

The nature of the PDE is such that a lot of computers need to be in 

communication with one another more or less continuously during processing. These 

computers include: 

• The client’s computer (at which the analyst sits physically); 
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• The SAS Desktop (which serves as the virtual home for the analyst in the 

PDE, and from which the analyst can run the SAS Enterprise Guide); 

• The SAS Server (on which SAS itself actually runs); 

• The Oracle Server (where the Oracle database is maintained and served). 

While we do not have much information about the internal construction of the 

PDE, it certainly makes sense to maintain a mental model that looks like this picture: 

 

 

 
Figure 2: PDE Model 

When our work on the project began, a failure of any component (either a 

computer or a link) was, we believe, enough to cause the SAS system to stop working. 

The connection between the client machine and the SAS Desktop was particularly 

troublesome. That connection, made via Citrix software, was very fragile, and, again, at 

the beginning of the project, any disconnection caused SAS to terminate abnormally (See 

“SAS WORK and What Happens On Termination,” below). A restart of the client 

computer, as another example, would terminate the entire job, and these restarts were 

distressingly frequent as a result of, for example, software updates at the administrative 

level.  

After some investigation, the PDE technical staff was able to find and alter certain 

timeout settings in such a way as to keep SAS Desktop sessions open for some length of 

time even when the client connection was temporarily lost. These actions, most of which 

took place in March 2013, constituted one of two main changes that made it possible for 

this work ever to be done (We learned that a second set of policies was needed for the 

SAS Server; these policies were modified in August 2013). The second main change was 

the addition of a large amount of disk space; see “Memory and Processing bottlenecks” 

below. 

Oracle 
Server 

SAS 
Desktop Client SAS 

Server 

 7 



Of course, each of the computers and connections in our mental picture is subject 

to planned events like shutdowns for maintenance and unplanned events like system 

crashes. Even if the frequency of any one event is low, the chance of even one 

interruption during a three-day job is not always insignificant. We developed a number of 

strategies to protect against the delays caused by interruption, although in retrospect none 

of them were particularly successful. We note that the connection from the client to the 

SAS desktop was very much the weakest link in this chain. We did observe failures of all 

sorts, but, as we said in the previous paragraph, real progress was very difficult until the 

PDE staff was able to alter timeout settings so that SAS Desktop sessions could remain 

working even when clients disconnected.  

Without our having spent much time on quantifying this, our intuition is that, 

before these timeout settings were altered, about 80% of stoppages were the result of the 

client disconnecting from the SAS Desktop; perhaps another 10% were the result of the 

client machine crashing; and most of the rest appeared to be associated with issues on the 

SAS Desktop itself. We did, however, see occasional evidence of the SAS Server 

crashing (or at least disconnecting from the SAS desktop) and of the Oracle server 

crashing or being inaccessible. Again, because of the large number of complex entities 

and connections, a certain crash rate is to be expected; the issue was, for us, the general 

inability to recover. 

It is worth noting that there is a set of timeout settings for access to the SAS 

Server itself that appear to be separate from those for the SAS Desktop. One approach we 

used was to try to run SAS jobs in “native” SAS directly on the SAS Server, rather than 

use Enterprise Guide from the SAS Desktop. This approach required that the Desktop’s 

own security settings be properly adjusted. 

3.1.2. Memory and Processing Bottlenecks 

A second set of issues arose when the resources of the PDE were inadequate to 

handle the demands of the code (In part this may have been due to inefficiencies in the 

code, but there is no way to get around the fact that this is a large problem). At the 

beginning of the project (October 2012) the available space on the SAS server was in the 
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range of about 100MB (megabytes). The issue of insufficient space was detected in the 

opening months. After an upgrade at the end of March 2013, the available disk space on 

the SAS Server was around 1.85 TB (terabytes). We learned in August 2013 that 

Harvard’s server required 2 TB of data in order for their scripts to run. The PDE technical 

staff was able to secure and install the required disk space at the beginning of September 

2013 – only, of course, after this requirement was made known to them. Disk space 

tended to be used up by intermediate products that were not removed because SAS 

terminated abnormally. This created another burden on the PDE technical staff; that of 

policing the disk drive in search of large files that could be safely removed. When the 

disk on the SAS Server filled, SAS terminated abnormally. 

In addition to the lack of disk space we suspect that the SAS Desktop’s stability 

could be endangered by the presence of multiple users. We observed a number of crashes 

that did not appear to be attributable to other causes, or to bad luck. As the PDE grows 

the number of machines dedicated to handling users should probably grow as well. 

3.1.3. SAS Work and Termination 

Intermediate products computed by SAS are stored in a directory named WORK 

which resides on the SAS Server. These products are regular disk files with extension 

sas7bdat and they persist until either they are explicitly deleted inside the SAS code, 

or SAS terminates normally. When SAS terminates, all the members of the WORK 

directory are deleted from the disk. If SAS terminates abnormally, items in WORK that 

have been completed will normally be complete and useable in a future session, although 

we were wary of using SAS items recovered after a crash, and would need to be 

explicitly removed in order to free up disk space (Certainly an item that is in use when 

SAS terminates abnormally will be unusable, because it will be either corrupt or 

incomplete). 

3.1.4. Failure Strategy 

Before it became clear that the PDE lacked sufficient disk space to run the 

Harvard code in the form in which it was presented, we attempted to run code through a 
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makeshift strategy of breaking scripts into pieces and running them bit by bit. This 

approach turned out to raise problems of its own; see section 3.2.5, “Breaking Scripts into 

Pieces,” and section 3.2.5.3, “Removal of Intermediate Products,” below. 

3.2. CODE ISSUES 

In this section we describe some of the issues that required attention or correction 

before Harvard code could be used in the PDE.  

It must be said that Harvard’s code was clearly not the product of a software 

development process designed to produce streamlined, well-tested code. Instead it had 

the hallmarks of a set of ad hoc programs put together in order to solve a particular 

problem one time. This is understandable given the nature of the project, but it made the 

code’s re-use difficult.  

The code was only sporadically documented (Documentation on the outside, 

describing the flow from one program to the next, was somewhat better). Certain coding 

standards that we have come to expect (the use of meaningful variable names that are not 

re-used from one task to a different one) were not always met. Again, we understand that 

code is often developed under time pressure and the rewards for comprehensive 

documentation are small. Nonetheless, the code is clearly not of commercial quality or 

presentable to clients. 

3.2.1. Mismatched File and Library Names 

Tables in Harvard’s data center often had slightly different names than the 

corresponding tables in our Oracle database. References to tables with different names 

had to be found and changed. In principle this might have been done automatically after 

constructing a table with one row per table and two columns giving the different names, 

but in practice we did this by hand. 

It is also the case that Harvard’s own internal table- and library-naming 

conventions were inconsistent. For example the final script from round 1, script 2 is 

named final1 and stored in a library named linuxdrv. In script 5 this is read in from 

a library named new1, and, separately from new. We learned that these libraries were 
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maintained by different analysts. It might be worth noting that, also in round 1 script 5, 

another dataset named final1 is created. This is not the same as the earlier dataset by 

that name. We detected some of these differences only through conversation with 

Harvard. Others – particularly the issue of libraries having different names – were 

widespread enough to be mentioned in several places in Harvard’s documentation.  

3.2.2. Changing the ID Name 

The simplest change we had to make to the code was to convert all references to 

Harvard’s ID (which they called PID_CHPPM) to the ID in the PDE (called PID_PDE). 

For most scripts, a simple global change was all that was necessary. However, we did 

encounter several issues with IDs. First, in a number of places the Harvard code specified 

particular IDs, presumably to resolve issues with individual records. Because we lacked 

the ability to convert CHPPMs to PIDs, we ignored all of these references.  

Second, in a number of cases the code creates additional ID columns (in, for 

example, dcips_injury_afmets_death_agregation). These new columns 

were given width 9 in Harvard’s code, whereas we require that they have width 12. These 

references had to be found and changed. 

Third, in a few instances the SAS code would refer to the column names directly, 

which caused problems with case-sensitivity. SAS variable names are not case-sensitive, 

so we got into the habit of making a global, case-sensitive conversion of all instances of 

PID_CHPPM (or pid_chppm, or whatever; we saw plenty of each) to pid_pde in every 

script. But, for example, on line 1798 of allsx_cpt_v7_linux_3 we see this macro 

code: 

    %let var = %sysfunc(varname(&dsid, &i)); 

    %if &var ne yearmonth & &var ne PID_PDE &then … 

Here the value contained in var is being compared to the strings yearmonth and 

PID_PDE. This comparison is a case-sensitive one, so if in this case an instance of 

PID_CHPPM (upper-case) was converted to pid_pde (lower-case), this code will fail. 

In short, even the act of converting one ID name to another could cause problems. 
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3.2.3. Code That Didn’t Work 

3.2.3.1 Direct Sorting of Oracle Data 

In some cases code that we were provided did not run in our environment. 

One type of difference arose from the different ways that data was being accessed by the 

SAS engine – Harvard used an ODBC connection, while we used the SAS/ACCESS 

interface to Oracle. If tmds were the name of an ODBC connection, then Harvard’s code 

would use that library and execute a command like this (this example comes from 

make_tmds_constructs_1.sas): 

Proc sort data=tmds.tmds_pem_inpt_dt  (other clauses here) 

We presume that this call was successful for Harvard, but it does not 

appear to be valid in the case where tmds is an Oracle connection. Instead, we needed to 

read the data into SAS first, and sort in a separate step, like this: 

Data holder; set tmds.tmds_pem_inpt_dt; run; 

Proc sort data=holder (other clauses here) 

3.2.3.2. Transposition Without Prefix 

In some cases (e.g. make_tmds_constructs_1.sas) the Harvard 

code used Proc Transpose to transpose a matrix. The PREFIX= option specifies a 

prefix to be added to the front of the names of the newly constructed columns. This 

prevents SAS from constructing columns names that are invalid (because, for example, 

they start with a numeric character). In this case, the new columns were constructed with 

names of ICD9 codes, which in many cases start with a numeric character. No PREFIX 

option was used, so we supplied one. It is not clear how this code could have worked at 

Harvard. 

3.2.4. Diagnoses With No Soldiers 

In script 4 of round 2 (alldx_merge_master_4), we encountered a number 

of errors that we attributed to referring to diagnoses for which there were no soldiers 

recorded. This might have been caused by differences between our data’s and Harvard’s, 
 12 



but the ultimate genesis of this issue is still unresolved. In the meantime, we have 

removed references to these diagnoses. 

3.2.5. Breaking Scripts Into Pieces 

During the time that we found ourselves unable to run jobs to their completion, 

because of connection or resource issues, we tried to break the scripts into pieces and run 

the pieces one at a time. This approach, too, ran into difficulties. These difficulties 

included the use of global variables, macros, and deletion of intermediate products. 

3.2.5.1. Global Variables 

Some scripts used global variables. These are variables that do not belong 

to a SAS data set. They can be set or retrieved anywhere in the code. As an example of 

their use, imagine trying to construct a dataset with one row for each individual and one 

column for each separate diagnosis for that individual. It would be useful to know the 

maximum number of diagnoses that any individual had, in order to dimension the 

resulting data set. One way to accomplish this would be to read all diagnoses, 

accumulating counts by ID, and saving the maximum number of diagnoses to a global 

variable. 

The issue is that when running code in pieces, any global variable that will 

be needed in a particular piece has to be identified and set before the piece can be started.  

A more general solution might have been to write these variables to a small text file or 

SAS data set for more permanent storage between runs. 

3.2.5.2. Use of Macros 

A SAS macro is a sub-function that allows the re-use of code in different 

contexts. Macros can be very useful and we will not argue for their elimination. 

However, SAS Macros are written in a modified form of the language that makes reading 

and understanding macro code difficult. We believe that long complicated macros 

deserve particularly strong documentation.  
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If a section of code needs to be run several times, a macro is a natural 

choice. However, it is difficult to run only a piece of a macro, which is best seen as an 

indivisible unit. So a script consisting of a macro definition followed by a single 

invocation confers no advantage in efficiency over “regular” code and suffers from being 

very difficult to divide into pieces. We encourage developers to avoid this. 

3.2.5.3. Removal of Intermediate Products 

In a number of instances, the SAS code explicitly removes intermediate 

products. This is a good practice when disk space is at a premium, but a bad one when 

crashes are common, since if all intermediate products up through a particular point can 

be preserved, the program can be re-started at that point with no loss.  We do not fault 

Harvard for their choices in this matter, but, seemingly inevitably, we found ourselves 

both running out of disk space and being unable to restart at intermediate points. 

3.2.5.4. Copying Results Across File Systems 

Because of insufficient disk space, we would often attempt to run a piece 

of the SAS code, copy intermediate products over to another file system on the network, 

delete the product from the SAS server, and then resume. While this makes sense in 

principle, it is painful in execution. These disk copy operations often took several orders 

of magnitude longer than would an equivalent copy within a file system – and, as we 

have said, the danger of a crash during any extended operation is non-zero. Still, when 

disk space was at a premium something had to be done. 
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SECTION 4. RECOMMENDATIONS 

 We look at this project as part of the PDE’s startup cost. Had the PDE 

been configured at the beginning of the project as it is now, we expect that this project 

could have been completed in a few months. Primary PDE improvements listed below. 

4.1. SUFFICIENT DISK SPACE 

The initial configuration of the SAS server was insufficient for the project. The 

current setup, at about 2TB on the main disk, is just barely adequate. Given that disk 

space is comparatively cheap, we urge administrators to obtain and make available as 

much disk space as possible. 

4.2. PERMISSION CONTROL 

When PDE technical staff was able to arrange for SAS Desktop sessions to 

continue after a disconnection, progress was hugely improved. It is important to note that 

the settings for the SAS Server are distinct. We thank the technical staff for their 

flexibility and recommend that these settings be maintained the way they are now. 

4.3. INCREASED PROCESSING POWER 

We suspect, but cannot prove, that some crashes were caused by contention 

among users for resources, either those of SAS, or Oracle, or of the network. As the 

number of PDE users grows, so too will this contention. We recommend that PDE 

administrators continue to have the environment grow in terms of the processing 

resources available. Perhaps parallel computing architectures can be brought to bear for 

the big jobs we expect to see in the future. 

4.4. CODE 

As mentioned earlier, the code given to us by Harvard was inadequate for the 

task. We recommend that quality control be performed on the code and the 

documentation as part of any contract. The code not being able to run because of 

Harvard’s own internal naming system inconsistencies is less than acceptable. 
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