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ABSTRACT

The flow field of gaseous detonation waves is studied to determine
how heat addition and momentum changes brought about by the application
of electromagnetic fields will affect such properties as pressure,
temperature and particle velocity. An analysis based on a one-dimensional
nonsteady model for the flow field, coupled to a one-dimensional quasi-
steady model for the wave front is presented. Results of numerical
solutions, using electric field values and current distributions obtained
from experimental measurements, for cases with electric fields only and
for electric fields plus both positive and negative Lorentz forces are
presented. Solutions simulating energy losses by assuming that the E - j
enthalpy addition is just balanced by heat loss are also presented.

Quartz crystal pressure transducers were used in experiments to
test theoretical predictions of pressure changes, and the wave speed was
monitored to determine how it compared to theory. Pressure changes of
as much as 20% were observed under the combined influence of Lorentz
forces and electrical heating. These compared favorably with analytical
solutions which allowed some heat loss to the wall. No change in wave
speed was detected, which was also in agreement with theoretical
predictions for these experiments.
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CHAPTER 1

INTRODUCTION

A detonation wave is a composite wave, made up of a compression and

a combustion front. A centered rarefaction wave fans out behind the front

whenever the wave motion is initiated at the closed end of a tube and is

confined to one dimension thereafter. This combination produces an

interesting problem in non-steady gasdynamics in the flow field, which

can be further enhanced by the introduction of electro-magnetic effects.

The author has composed a one-dimensional model to describe the flow

field as it behaves-under the influence of electric and magnetic fields

and has experimentally observed pressure changes in the flow field which

can be explained-on the basis of this model.

The study of detonation phenomena in electromagnetic fields must be

preceded by an understanding of some of its basic characteristics when

these fields are-absent. The early work of such men as Chapman, Jouguet,

and Becker, using one-dimensional steady formulations to predict wave

speed, and the later work of Zeldovich, Doring and von Neumann, who fit

the composite wave-model to the earlier successes in one-dimensional

analysis, is presented by Lewis and von Elbe. Discussion of the validity

of the Chapman-Jouguet (hereafter referred to as C-J) criteria can be

found in numerous research papers and texts.2 Such phenomena as spin,

detonation limits and turbulent reaction zones cannot be accounted for

in a strictly one-dimensional analysis, but the 1-D analysis still

provides a strong-basic study from which departure to these other areas



can be made. Similar departures will be necessary for a full understanding

of results presented in this thesis.

Using the 1-D-steady model with a step change of electrical

conductivity from zeroto infinity at the wave front to represent a

detonation wave-in a magnetic field 3, 4, , 6 has yielded some interest-

ing solutions, but has not proved applicable to ordinary detonation

7.
phenomena. The parallel derivation for shock waves is verified in an

8
electromagnetically-driven shock tube . It is possible that similar

experiments in a combustible gas will characterize the frozen-flux solu-

tions for detonations.

Using a quasi-steady, one dimensional analysis with typical values

of flow variable variations through the reaction zone and reasonable

values of electrical conductivity within the wave, Plett9 predicted very

small effects on the wave speed. Kelly10 observed a reduction in wave

speed (for currents ranging between 2 and 5 amps flowing in his tube)

when the wave was acted upon by retarding Lorentz forces, and saw no

effect for the opposite sense of magnetic field or when the current was

outside this narrow range. He attributed the wave speed deficit to

expected increases in the boundary layer thickness within the wave, an

argument which is based on a departure from the usual 1-D model.

Having explored the possibilities of affecting the detonation front

by electromagnetic-means without considering its flow field, it is of

further interest to-examine the feasibility of changing the wave front

through its flow field.

Although the hypothesis of Chapman (1899) and-Jouguet (1905-6) has

formed the basis of much study in explosives since their time, no one

seems to have discussed the hydrodynamics of the burnt gas or the

distribution of pressure behind the detonation front until the late 1940's.
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11Taylor applies the progressive wave theory-of Riemann to calculate

pressure distributions behind plane and- spherical detonation fronts.

12Kistiakowsky et al obtained density profiles using X-ray absorption

measurements in the flow field and compared their results with rare-

faction wave theory. Their results show some scatter, but generally seem

in better agreement with theory than the pressure measurements

13reported by Gordon .. The pressure measurements reported by Edwards

et al14 are nearer to theoretical predictions than those reported by

Gordon, for a tube larger in diameter than Gordon's, and farther from

theory for a tube smaller in diameter. The implication that wall effects

are the cause of thediscrepancy will be discussed further in Chapter 4.

In addition to the hydrodynamic properties of the gaseous flow

field, it is necessary to have information about its electrical

properties in order to apply the model adopted by the author. Toong15

has contributed a-thorough and critical review of the knowledge about

16
ionization in detonations. The results reported by Basu and Fay,

17 10
Basu, the more recent findings reported by Kelly , and computations

like those by Chinitz et al18 all indicate that it will be necessary

to include seed-material of low ionization potential in the gas

mixture to increase its conductivity in order to allow electrical

currents of several hundred amps to flow through the products. This

last requirement is necessary before measureable effects can be

expected on the basis of the model proposed by the author.

1.1 Physical Model

The model proposed is intended to include those aspects of the test

apparatus which- can be included within the framework of a one-dimensional



analysis. The wave, initiated at the closed end of a tube, is presumed

to have reached the steady-state speed dictated by the C-J hypothesis

before entering-the test section. A rarefaction fan, consistent with

the distance from-the tube end wall, produces a non-steady flow field

behind the wave front.

U FD

t-
rarefaton'an

E-M
wave front

Field

\ Detonation initiated here x

gas flow I X~*- v

FIGURE 1-1 SCHEMATIC OF WAVE SYSTEM CONFINED TO ONE-DIMENSION IN THE TUBE

Fig. 1-1 illustrates the model. The wave front propagates down the

tube, initiating gas flow everywhere in its wake. The rarefaction wave

isentropically reduces the flow velocity, pressure, temperature and

density behind the wave front.

Electric currents can flow through the gas in region F, but no

electric currents flow in the region, U, upstream of the field or in the

region D, downstream of the field. Magnetic fields are encountered only
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in region F. When the detonation front reaches the test section, electric

currents flow through the gas which is in the region F, between the

electrodes, and behind the detonation front. When the detonation front

leaves the field area, it no longer experiences effects of the field, but

the gas which is in region F continues to be affected. Computations are

carried out for regions U, F, and D to observe how the flow properties

change as the wave system and gas motion it induces, enters and leaves

the field region F.

The mathematical relations used to describe this situation are

developed in Chapter 2. The wave front is treated as a discontinuity

with known conditions upstream, the same chemical energy release per

unit volume as though no electromagnetic fields were present, and

conditions at the hot boundary specified by the flow field. This hot

boundary has the conditions specified by the C-J hypothesis initially

and is only disturbed from this steady-state by one of two conditions:

1) When a finite disturbance is created behind the wave so that it

will propagate supersonically relative to the fluid, it has a chance of

overtaking the wave. A few simplified calculations indicate that such a

disturbance must be initiated very near the wave and also be of

considerable strength in order to overtake the wave within a reasonably

sized laboratory apparatus. (Appendix 6)

2) When energy is added to the gas in the flow field, the

temperature will rise, and so small disturbances, now travelling at the

new local sonic velocity, could overtake the wave front.

The method used in solving the system of equations was a linearized

(with respect to wave motion) treatment in that all disturbances
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propagated at the local sonic velocity relative to the fluid particle

velocity. Thus the method effectively treats condition (1) above, the same

as condition (2). For weak shocks, the errors introduced by lineariza-

tion are very small. A shock wave of ten per cent pressure rise only

travels about four per cent faster than a sound wave with correspondingly

less difference for weaker shocks.19 The linearization method actually

averages conditions before and after the pulse, so the error is even

less than cited here.

The method of solution used by the author is a numerical technique

programmed for the IBM 7094 computer. Approximate solution techniques20, 21

have been used to study effects on shock waves caused by changes in area

in shock tubes. Rosciszewski et al22 have adapted such a technique to

study the interaction of gasdynamic shocks with transverse electro-

magnetic fields. Their method is also valid only for small magnetic

Reynolds numbers, (as is the method used by the author). Mirels et a123

have applied an approximate method to study the problem of the flow of

a piston-driven shock with and without magnetic interactions. The author

has not attempted to compare his results with theirs as the flow field

of a detonation is sufficiently different to render such a comparison of

little value. The I characteristics in a shock-driven flow invariably

intersect the wave front20, 21 and the type II characteristics bend

forward rather than back as they do for a C-J detonation. Consequently,

much of the intrigue in the problem posed by the author does not exist

with shock waves as interactions of small disturbances with the front

will take place even without applying electromagnetic fields. Since the

type I characteristics behind a steady-state C-J detonation do not



7.

terminate in the wave front, the same sized disturbance which can cause

changes in a shock wave may never even reach the detonation front if it

occurred in a detonation flow field. So the possibility of such an

interaction in detonations must be established, and the conditions under

which it will occur specified.

The theoretical development indicates that such interactions are

possible but that little effect will be noted at the wave front for the

conditions obtained in experiments by the author. The general trend of

experimental results agrees with the trend predicted in theory with

several distinct features of experiments establishing these trends. The

predictions of the theoretical solutions are found to be in general

agreement with experimental observations when appropriate allowance is

granted for heat loss to the tube walls in the computations.

Experiments with electromagnetically produced shock waves in the

flow field demonstrate that very large changes in pressure can be

generated by this means. Large changes in detonation wave speed were

obtained as a result of the interaction of these shock waves with

the detonation wave front. (Appendix 6)



CHAPTER 2

THEORETICAL ANALYSIS

For the purpose of analysis, the problem can be divided into two

parts, the wave front, and the flow field behind the wave front. The wave

front will be treated as though it were momentarily in a steady state and

one dimensional so that the steady-state 1-D, "jump relations" are

applicable. The usual C-J criteria holds at the hot boundary only when

the flow field is dominated by a rarefaction which will not allow small

disturbances to overtake the wave and change these conditions. In the

solutions obtained here, there are possible situations for which

disturbances can reach the wave. When this happens, the hot boundary

condition is modified by the disturbance. In this way, the wave speed can

be affected by the flow field even when the "jump.conditions" apply.

These jump conditions will be unchanged as long as the changes to the hot

boundary are slow compared with changes taking place across the wave.

The flow field will be treated as having changes in time and one

dimension with uniform conditions in the other two dimensions. This

condition of unidimentionality may be difficult to realize in practice,

but the approximation can be used to good advantage. It will further be

assumed that chemical reactions occur only in the wave front, with frozen

conditions in the flow field. Heat transfer and friction will also be

neglected in the derivation, but will be simulated by various solutions.

The electrical conductivity is finite everywhere and zero ahead of the

wave.



2.1 Governing Equations

The general equations appropriate to this formulation are the one-

dimensional equations of change.

22 + -(pu) = - (2.1)at ax A~ax

p + pu + = J x B - Fp (2.2)

2 2

x a a

(C pu + ) 2 a 2 c (2.3)at p p 2 at ce

p = pRT (2.4)

In the reduction which follows, it is assumed that the specific

heat, C , is a constant and that the ratio of specific heats, C p/C = k,

is also a constant. It is also assumed that the electric field is only

in the y direction, the magnetic field only in the z direction, and the

velocity field only in the x direction (Fig. 2-la).

The generalized Ohm's Law for this system is

j = a(E-uB) (2.5)

2.2 Wave Front Relations

For a wave of finite thickness, it can be shown9 that for a finite

electrical conductivity there will be a small contribution made by the

electromagnetic terms. To determine this contribution,further assumptions

must be made about the structure of the wave, all of which becomes very

uncertain and involved. It was demonstrated9 that this contribution is
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negligibly small for the range of conditions which would be obtained in

the experiments of interest to the author. Taking all these factors into

account then, the non-steady terms drop out of equations (2.1) through

(2.3) as do the electromagnetic terms. It will further be considered to

be in a constant area channel where wall friction and heat transfer are

unimportant. Heat loss can easily be introduced in a qualitative way as

will be seen later. Eq. (2.1) through (2.3) become then, when integrated

across the discontinuity

21 1 P2 2 (2.6)

p1 V 2 + p1 = p2V 22 + p2 (2.7)

V 2 y 2
C T +Q C T + (2.8)

These can then be reduced to the jump relations

p2  1 + kM1 2

2(2.9)
1' 1+ kM2 2

/T2 1 + kM 12 M 2 2

(' ( 2  ) (2.10)
1 " + kM 1

212
M2 (1 + kM1 ) k- 2 k-l 2 Q(2.11)

I ~ 2 I(1l+- -M 2 ) =l1+--M 1  + CT (.1
1 (1 + kM2  p1

Where use is made of the equation of state (2.4) the definition of

k and the relation

I
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M = (1),(2) (2.12)
k$( 1),(2)

Discussion of how the solution is carried out in conjunction with

the flow field will be reserved until the equations of change in the

flow field are derived.

2.3 Flow Field Relations

The derivation of these relations is done in ref. 9 but will be

included here for the sake of completeness.

Putting (2.4) into (2.3) and using (2.5) yields

2
(a + u ) + ) - = aE(E-uB)(at- aux- k-1 p 2 at

when only electrical energy addition is considered. Expanding the left

side, grouping terms and using the relation c2 = kp/p, results in

+- ( + u.) + u (p + pu ) = aE(E-uB) (2.13)
k-l at 'k-1 ax k-l at ax) (P5t -X)

Making use of equation (2.2) converts this equation to the form

Su c2 ( + u) = a(E-uB) 2 (k-1) (2.14)

All the gas properties (i.e., u, p, p) must vary continuously with

x and t giving three additional relations, the six basic relations

being written, (in the absence of area change, heat transfer or

friction)
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dx + dtax at

dx + dtax at

dx + dt

+ Uap + ap

u +a + 1

= du

= dp

= dp

= 0

= - (-uB)

Sax + -uc2 - c2apat ax at

These equations are now in the form used

= (k-1) a (E-uB) 2

19by Shapiro . The

method of characteristic curves can now be applied to study the

behavior of the solutions.

du

dp

dp

OB (E-uB)
p

(k-1) a (E-uB) 2

Solving for au/ax in determinant notation

dt 0 0 0 0

0 dx dt 0 0

0 0 0 dx dt

1 1/p

-uc
2

-c

dx dt 0 0 0 0

1

dx dt 0

0 0 d

0 0 u

/P 0 0

(2.15)

x dt

1 -uc20 0 u
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2.4 Physical Characteristics

The condition that au/ax be indeterminate is that the denominator

of equation (2.15) be equal to zero. Since au/3x is in general finite,

it is necessary that the numerator also be equal to zero. By setting

the two determinants of equation (2.15) equal to zero, the differential

equation of the characteristic curves is obtained.

Setting the denominator equal to zero, and simplifying yields the

roots

( d u + c (Mach Lines) (2.16)

( ) = u (Path Lines) (2.17)

Equation 2.16 signifies that discontinuities in the derivatives may

occur on lines which travel either rightward or leftward with the local

speed of sound relative to the fluid. This is the same as saying that

the disturbances are propagated on such lines.

Equation 2.17 indicates that the trajectories of the fluid particles

themselves may be the loci of discontinuities. Physically, this means

that the fluid particles can behave individually in a nonsteady motion

so that the path lines are characteristic curves on which the entropy or

temperature gradients may have discontinuities.

It may be of interest to note that the equations of the characteristic

curves are identical to those found in ordinary gas dynamics, with no new

terms introduced by the electro-magnetic field. The reason for this

follows from the method of setting up the governing equations. Implicit

in the reduction of the governing equations is the assumption that B is
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a fixed, constant quantity. This allows the magnetic field to affect the

fluid dynamic problem as here developed, but does not allow the fluid to

affect the magnetic field. Thus no electromagnetic, or hydromagnetic wave

phenomena are considered. This assumption is valid as long as the Magnetic

Reynolds number, Rm = poaLu is much less than 1, so that the velocity

field and magnetic field are not strongly coupled. In experiments and

-2solutions considered here, Rm is typically of order 10-. (Appendix 1).

2.5 State Characteristics

Setting the numerator of equation 2.15 equal to zero, expanding the

determinant and eliminating dx by means of equation 2.16, the following

differential equation of the Mach lines in terms of the state co-

ordinates p and u is obtained

(du) = (dp) I , M (dt) + N(dt) (2.18)
I,pc - Pc I, II I

where M = (k-l)a(E-uB)2

N = P (E-uB)
p

Solving for in the same way, and eliminating dx by means ofax

equation 2.17 yields

(dp) l~ (dc) -k- (dt)th (2.19)
path =k-l c path k- pt

19This result can also be obtained another way as derived by Shapiro and

Plett9.

Using equation 2.19 as well as the additional two relations
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(4) () + C Edt I path ax

dc (S) + ac
tpath - 3X

it can be shown that

2 k

2A. 2k p (dc) a C-(t) ( ) gpc (n ) - (2.20)
I, II II p

Insertion of equation 2.20 into 2.18, after simplification,

yields

2k

2 2 ck-l E -k
(du) 2 + c - (n c ) + kE+ N (1 +ku ](dt)II +V x p B c -C

(2.21)

For computation sake, it is convenient to expand the first term in

the bracket, so that

2k
2 li1~ c a
2 (In c -) c - (2.22)T x p k-l ax kp ax

2.6 Solution of the Equations

Since the equation to be solved (2.21) contains terms which depend

upon t and x as well as c and u, it is not possible to integrate the state

characteristics in general form. Instead, the net of state characteristics

is different for each physical problem, and it must be constructed

simultaneously with the physical Mach net by means of a stepwise iterative

procedure. At the same time that the physical and state characteristics
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nets are under construction, it is necessary to integrate equation 2.19

stepwise along the path lines. This not only provides useful information

concerning the pressure at each value of x and t but also leads to the

determination of equation 2.22 which is necessary for the solution of 2.21.

In addition, this nonsteady solution must be matched with the quasi-

steady solution of the jump conditions at the wave front.

Solutions for a limited number of points by a semi-graphical

technique were obtained in ref. 9. The solutions to be reported here are

the result of a more refined numerical technique, capable of handling a

wide variety of initial conditions which was tested and improved over a

period of time. In addition the wave front is allowed to have modified

conditions as the solution dictates and solutions are obtained for a large

flow field behind the wave front.

2.7 Numerical Solution Technique

The numerical technique used is basically a method of solving

algebraic equations simultaneously to obtain intersections of lines as

opposed to the semigraphical technique of laying out the lines on a

graph to determine intersection points. The semigraphical procedure is

useful for preliminary results, as it gives the investigator insight into

trends of the solution quickly. The numerical technique, programmed for

a computer, is the practical way of obtaining detailed, extensive

solutions of greater accuracy than is possible by graphic technique.

Appendix 2 is the printout of the MAD program used to obtain the

solutions on the computer. A description of the solution of a general

point in the flow field will be followed by a description of how the

solution was begun.
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2.8 Obtaining a General Point

The basic step in the solution is to determine properties at a point

in the x-t plane given the properties at two other points along the I and

II characteristics, and given enough information to calculate the properties

at some point on the path line as well as the changes along these

characteristic directions.

The general case is illustrated in Fig. 2-lb. Given the location and

properties at points A, B, C and D, to find the location of, and properties

at point F. The lines BF and DF are straight lines. Consequently the

solution of two simultaneous, linear equations in two variables along

these lines yields the solution at F. Since the location of F determines

the change in properties from B and D to F, and these resultant properties

at F in turn help determine its location, it is necessary to use an

iteration scheme to solve for both the properties and the location of

the new point.

Equation 2.21 can be written in finite difference form, which for the

I characteristic becomes

2
(Au) 1 = 2- - (Ac), + (AuEM)I (2.23)

where (AuEM)I represents the change in particle velocity and sound speed

along the I characteristic due to electric and magnetic fields.

Expanding 2.23,

2
UF - uB = ~(~T) (cF - cB) + (AuEM)I (2.24)

Writing the corresponding equation for DF and solving for the un-

knowns results in,
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CB + D + [(uB + - CUD + (Au )II)] (2.25)

cB -D 1
UF - k-i +2 [uB + (ouEM I + UD + (auEM III (2.26)

A first approximation to cF and uF is obtained by setting AuEM

equal to zero. Now with this approximation of cF and uF, it is possible

to get the x and t location of F.

XB XD 1
x = [-+ t -t ] ()(2.27)F (u+c)BF (u-c)DF D B 1 1

(u+c)BF (u-c)DF

where (u+c)BF is the average (u+c) between B and F, and

(u-c)DF is the average (u-c) between D and F.

Then,

tF = (xD - tD(u-c)DF - XB + tB(U+C)BF) ((u+c) BF (u-c)DF (2.28)

Next, the pressure at point F is determined. To determine pF it is

necessary to integrate equation 2.19 along the path line and to do this,

properties at another point on the path line are required. To obtain these,

the path line is projected back from point F until it intersects either

line AB or AD at PP. The properties at PP are determined by linear

interpolation between A and B if it falls on AB or between A and D if it

falls on AD. In order to obtain the intersection point, PP, accurately,

it is necessary to use an average velocity between PP and F which can

only be obtained by iterative procedures. When this iteration has

converged and the properties at PP are known , the pressure at F can be

determined by the relations
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p= L ( F (CF - cpp) - a(E-uB) 2 (t - tP) (2.29)
p k-i C PP.. F PPF P

F= PP + Ap

where quantities in equation 2.29 are averages between PP and F. Since p

appears in the calculation of Ap, it is again necessary to use an

iteration loop to calculate an accurate value of pF'

Now that the pressure at point F has been determined, the pressure

gradients can be determined. These are needed to evaluate the first term

in the bracket of equation 2.21. The gradients of p and c are evaluated

along lines of constant time which necessitates more interpolation but

no iteration loops. The other terms in the bracket of equation 2.21 can

also be determined for mean values of the variables along lines BF and

DF. Combining these terms, the first approximation to (AuEM) is obtained

along the I and II characteristics.

Now using these values of (AuEM)I, II, we return to equation 2.25

and go through the entire procedure again. This is repeated until

satisfactory convergence is obtained. These final values of u, c, x, t,

p are the ones assigned to F and stored for subsequent calculations.

2.9 The Wave Front

Since the flow field behind the detonation wave was created by the

wave, and any small modification of the character of the wave front will

strongly modify the flow field, it is important to treat the analysis at

the front correctly. Some assumptions are necessary to render the problem

solvable, however, and the following procedure was used.
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The first assumption was that the wave is thin so that any

contribution by electromagnetic action in the direction of the type II

characteristic or along the path line through the reaction zone is

neglected. The type I characteristic lies parallel to the wave front at

the hot boundary, so it is conceivable that the flow could be modified

there by the electromagnetic fields. Since it was assumed that the

chemical energy contribution is unaffected by the fields, the only tie

between the flow field and the wave front is along the I characteristic.

The usual jump conditions, equations 2.9, 2.10, and 2.11 apply here.

Rather than setting the hot boundary at the C-J condition, this point

is allowed to be determined by the changes brought about along the

I characteristic, the only restriction being that M2 cannot be greater than

1, since the author disallows weak detonations2 .

The solution begins well upstream of the electromagnetic field, so

a well established flow field is present, prior to disturbances changing

conditions.

To determine the new, hot boundary conditions, equation 2.24 can be

rewritten for the new situation.

cH =cA + k-l ((Au) - (uH - uA)) (2.31)

Fig. 2-lc here assumes the wave is already overdriven, otherwise

points A and B would coincide. The first approximation to the point H in

the x-t plane is obtained by projecting the wave speed from the last

calculated point on the wave front, point B in Fig. 2-1c. Using this

information, (Au) is obtained. The first approximation to uH is taken

as the value it had at B, and now a value of cH is obtained. With this,



21.

a new value of M at H is obtained, and used in equation 2.11 to obtain

a value for M This allows a new value of uH to be calculated by writing

uH 1 -= c . M2 (2.32)

where V is the wave front velocity corresponding to the new value of M .

Now using this value of uH and a better value for (Au)I based on the new

location and properties at H, returning to equation 2.31, a new value for

cH is obtained. This loop is continued until satisfactory convergence is

obtained.

2.10 Rarefaction Wave

To bring the theoretical development a step nearer to the experi-

mental observations, it is expedient to introduce a rarefaction wave in the

flow field since such a phenomena occurs in experiments to which it will

11be compared. Taylor has derived the relations which describe the

rarefaction wave and are easily modified to suit the purpose here.

For a plane detonation, Taylor shows that the particle velocity

decreases linearly behind the wave front for an isentropic expansion. This

can be written as

= 2.22 - 1.22 (2.33)

where u is the particle velocity at a point 1 from the detonation front.

(See Fig. 2-1d)

For an observer at a point in the tube, as the wave passes, the

position r remains fixed, but the reference distance Rchanges. To this

observer, the velocity changes as
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- =(2.22 Rc/(Re+ VNOT - t) - 1.22 (2.34)

where R1,= distance from detonation ignition

VNOT = Wave front speed

u2 = particle velocity at hot boundary of wave

t = time after wave passes observer

Since the expansion is isentropic, it follows that

2k

k-1 U U k-1 2.5P =p (u2- u) (2.35)

c c2 ~ ~k-) (u2 u) (2.36)

2.11 Order of Calculations

The unit operations used in the calculation of the flow field have

now been described. The computer printout shows how it is all made to

work together. In brief, the procedure is thus.

The appropriate data is read into storage and the conditions at the

hot boundary calculated. Since the initial point is well upstream of the

electromagnetic field region, the condition of the gas along the

II characteristic originating here can be specified using the rarefaction

wave results. This part is done in the main part of the program.

When the first column (the type II characteristics are referred to

as columns) has been calculated, the next point on the detonation wave

front is calculated. The program then switches to the subroutine PROVA,

which proceeds with calculations of the next column. It in turn calls

on GTPRK to calculate the pressure at the new point, and GTUSR to
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calculate the gradients in the flow field. When this column is completed,

it returns to the main program where the next point on the wave front is

obtained, and the cycle goes on.

The electromagnetic field introduces changes only over a specified

range. Disturbances caused by the field can be propagated to points

outside the field however, along the characteristic directions.

2.12 Grid Size

Before results of a numerical solution using a "grid" of arbitrary

size are acceptable, it is necessary to determine how the grid size has

affected the solution. If increasing or decreasing the grid size by a

factor of four does not substantially alter the solution, the grid size

is adequate.

Early returns from the computer showed that the region where grid

size had the greatest influence on the solution was at the wave front.

The most critical evaluation comes from examining the solution at the

wave front for affects of grid size. Fig. 2-2 is a plot showing wave

front speed as it changes through the 1 meter long test section as

calculated by three grid sizes, keeping all other parameters the same.

The grid shape used was an approximate parallelogram such that at the

beginning of the solution, the path line was approximately the one

diagonal. This shape would become somewhat distorted during the course of

a solution, but it was, in this sense, approximately equal sided to start

with. By doubling the grid size, both sides would be doubled so the area

would be increased by about four times. The'krid area" noted on Fig. 2-2,

is simply the product of the projected x-direction length multiplied by

the projected length of the other side on the t-axis, and is not the



24.

exact area of the grid. The three sizes used are noted on the figure. The

agreement is seen to be very good as there is no divergence anywhere, but

instead, the agreement gets better as the solution progresses. Slight

discrepancies arise between the solutions but the method appears to be

sClf-compensating so errors do not accumulate. The agreement at the wave

front is indicative of the accuracy of the values of other properties,

i.e., u, c, p, since these are determined by the wave speed or help

determine the wave speed. The solutions reported in Chapter 5 are all

obtained using the middle grid size tested here.

2.13 x - t Diagram

Fig. 2-3 shows a plot of the detonation wave and its flow field on

the x-t plane. Both types of characteristics are sketched in for the

control solution, with a path line also shown to give its approximate

direction. Close examination reveals the curvature of the type II

characteristics and the fan-like expansion of the type I characteristics

due to the rarefaction wave.

The grid area shown here is 64 times as large as that actually

used in computations as only every eighth row and every eighth column

was plotted here.

Following the type II characteristics, along which disturbances

propagate, will give insight to the reader as to how field effects can

change conditions at sta (1) and how downstream effects will influence

conditions at sta (3) after a time.

This evenly spaced grid becomes distorted by electromagnetic inter-

actions. Rarefactions generally cause the characteristics to spread
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further apart while compressions have the opposite effect. A decrease

in particle velocity, u, and an increase in sound speed, c, causes the

type II characteristic to bend backward more and vice versa. An increase

in both u and c causes the type I characteristic to bend toward the wave,

a decrease in both bends it away. Intermediate effects depend on the

relative magnitudes in changes to u and c.
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CHAPTER 3

EXPERIMENTAL APPARATUS AND PROCEDURES

3.1 Experimental Apparatus

A schematic diagram of the main parts of the experimental apparatus

is shown in Fig. 3-1 and 3-2. A horizontal rotating steel cylinder with

a steel pipe inside provides the necessary agitation to insure mixing of

the combustible gases before admitting them to the shock tube. The gases

are admitted to the mixing tank in the proper proportions by using a

manometer and the method of partial pressures.

The tube consists of 2" square, 85-15 brass tubing with stainless

steel flanges and 0-ring seals. A driver section which can be isolated

with a diaphragm is provided, but is not used as such in the experiments.

Ignition of the combustible mixture is accomplished by discharging a

1/4 pf capacitor, charged to 5000 volts, across a spark gap at the end

wall of the tube. Since there was some speculation that a large discharge

could produce overdriven waves, a porous diaphragm was placed at the end

of the driver section. This diaphragm had eight, 1/8" dia. holes equally

spaced on a 1" dia. circle, allowing the flame to pass through and

initiate a new detonation, and so eliminating any possibility of an

overdriven wave downstream. No significant difference was noted in the

pressure history downstream as a result of this addition, but it was left

in, nevertheless, to suppress any speculation that the wave may be over-

driven initially.

I
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A provision was added to allow continuous purging, or through-flow,

while the experiment was being performed. With just a simple connection

through a metering valve between the tube and mixing tank, ignition of the

gas in the tube would cause a flash-back and explosion of the remaining

mix in the mixing tank, if the metering valve were the least bit open.

Since this is both wasteful of mixture and potentially dangerous, a

quenching filter was put in the line between the mixing tank and shock

tube. This consisted of a 1 ft. length of 1/2" copper tubing, tightly

packed with steel wool. This allowed the high pressure gas from the

mixing tank to seep into the tube, but quenched any flashback, thus safe-

guarding the mixing tank. A similar filter, less tightly packed, was

inserted between the tube and vacuum pump to safeguard the pump. A by-

pass line to the pump was added to permit the tube to be evacuated to

lower pressures between runs. This by-pass was then clamped off and the

pressure stabilized at the desired test pressure while continuously

purging, prior to igniting the mixture for the experiment. A liquid

nitrogen cold trap cooled the gas before entering the pump.

3.2 Test Section

The test section consists of four equi-length sections for a total

of 2 meters. Each section has a 3/8" thick brass electrode, extending

across the entire width of the tube on the top and bottom, with windows

fitted, one on either side, held in by screws and sealed with 0-rings. The

sections are connected by a phenolic divider which insulates each electrode

section from the adjacent one. The two end sections have an additional

division in the electrode, to allow visual or optical observations of the

behavior of the wave as it first enters or when it leaves the electric field.
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The two center sections, which were used as the electric and magnetic

field region, were fitted with plexiglass windows. It was found advan-

tageous to have metal windows in which to mount the pressure transducers

as they were more rigid, therefore transmitting less vibration to the

transducer. Consequently the two end sections were fitted with aluminum

windows on one side for this purpose. The windows are all of identical

size so that they could be interchanged.

3.3 Magnetic Field Supply

The pulsed magnetic field is provided by a 1 meter long, saddle-

wound coil, of No. 8 square copper wire. Power is supplied by discharging

a 740 pf capacitor bank through the coil. The power supply is triggered

when the wave passes an ionization gap upstream of the test section, and

"crowbars" when the current begins to reverse in the coil, preventing a

ringing in the coil. The basic unit is described by Wilson24 with a

25modified crowbarring circuit described by Thomas

The resulting distribution of magnetic field strength along the axis

of the test-section and in time are shown in Fig. 3-3.

3.4 Electric Field Supply

For the proposed experiments, the electric field supply was required

to supply current of the order of a thousand amps for a duration of up to

600-800 Psec, and not start at such a high voltage that breakdown ahead

of the wave or arcing behind the wave would result. These requirements

are met by a large capacitor bank with small load impedance to control the

energy release while not dissipating too much energy in itself. Each of the
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two electrodes in the field region was energized separately. Fig. 3-2

shows schematically how this was done, listing the values used for

capacitors, inductors and resistors.

3.5 Electric Current and Field Measurements

The electric current flowing to each electrode was measured using a

Rogowski coil plus an intergrator. Silverstein26 describes the construction

and calibration of one of these coil-integrator combinations. A similar

one was used for the second electrode. This method of measuring current

proved far superior to measuring the voltage drop across a known resistor

since floating potentials inherent in the latter technique soon become

a problem when large currents are being drawn.

The author was not satisfied with using the voltage drop between the

electrodes as a measure of the electric field in the gas. Consequently,

a simple means of measuring potentials at intermediate points was devised.

The insert of Fig. 3-2 shows a schematic of the circuitry used.

Small wires were made to pass through the plexiglass window of the

test section in vertical rows at three points along the electrode. The

wires protruded into the test section approximately 1/8 inch at spacings

of 0.1, 0.5, 1.0, 1.5 and 1.9 inches from the cathode, which was separated

from the anode by 2 inches.

A battery was used to float the wires at a potential above ground,

equal to the battery potential. Large resistors were used to limit

currents to micro-amps, and a tap was taken off each resistor and its

voltage displayed on the oscilloscope.

Consider a single wire, for simplicity, used in this manner. When
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the conducting slug passes, if the potential in the plasma in the vicinity

of the probe is lower than the battery voltage, current will flow from the

probe into the gas and a negative voltage is displayed on the scope. When

the plasma potential is higher than the battery voltage, current flows

from the plasma into the probe and a positive deflection is observed.

When the two are at equal potentials, no current flows and there is zero

deflection on the scope. (In actual fact, zero current corresponds to a

probe potential of about 0.3 volt or less below plasma potential due to

the electron space charge for the typical conditions in these experi-

ments. See Appendix 1 27) If the gas conductivity is zero, the current also

would be zero, but when the trace crosses distinctly from positive to

negative deflections, the cross-over point corresponds to the point where

probe and plasma were at equal potential. An asymptotic approach to zero

was interpreted as resulting from the conductivity gradually reducing.

Plotting the points where the various probe traces crossed zero at

a given battery voltage yielded an equal potential line. By changing

the battery voltage for identical runs, different potential lines were

obtained and the potential map was plotted. Identical battery voltage and

identical detonation, electric-field and magnetic-field conditions

yielded good reproducibility in mapping the potentials. The current

drawn by each probe was micro amps compared to hundreds of amps flowing

into the electrodes so the distortion of the electric field by these

probes would be negligible.

3.6 Pressure Measurements

The pressure pickups were two nominally-identical Kistler 603A, non-

magnetic, acceleration compensated quartz crystal transducers. The charge

- - - mw'___Wb
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amplifiers were model 565, also by Kistler to correspond with the

transducers. The ringing frequency of the first was between 160 and 200 Kc,

while the second one was around 500 Kc. A 100 Kc low pass filter was used

on the output of the charge amplifier to eliminate this high frequency

ring, leaving a relatively clean signal.

Several problems were encountered in the use of the pressure pickup.

Measurements first made with the transducer securely mounted in the tube

wall had a curious sinusoid superposed on a signal which resembled the

expected pressure history. This sinusoidal signal was identified with

the ringing frequency of the window, and was obtained even when the

transducer was mounted on the outside of the window, not in contact

with the gas, since it was caused by the acceleration of the window and

hence the transducer mount. Increasing the effective mass of the window

improved conditions somewhat but did not solve the problem. The acceleration

effect was eventually reduced to a negligible amount by mounting the trans-

ducer in a separate piece of metal and connecting this assembly to the

tube wall by a flexible diaphragm. A cut-away schematic of the mount is

shown in Fig. 3-4. The one disadvantage of such a mount is that it is

difficult to keep the transducer face flush with the inside wall of the

tube. In most cases, the transducer was slightly recessed in the wall,

which may account for part of the sudden drop in pressure after the wave

front passed. This will be discussed in a later section.

Another major difficulty experienced was due to the temperature

sensitivity of the transducer. Stresses set up in the diaphragm caused

a negative deflection when the temperature was suddenly raised. This

effect was nullified by coating the transducer with an ablative covering.28
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General Electric RTV 580 applied over a primer coat of GE, SS-4004 was

found to shield the transducer adequately. This coating also provided an

electrically insulating shield which allowed the transducer to be mounted

inside the electric field without being bothered by stray currents

seeking ground through the transducer mount, thus putting extra noise

and distortion on the signal.

Calibration was accomplished while the transducer was mounted in the

tube. The tube was evacuated to some known vacuum, and the pump line

clamped. The output of the charge amplifier,set on long-time-constant, was

displayed on the oscilloscope, now set on a slow sweep rate. The line was

disconnected from the pump, the shutter on the scope camera opened and after

triggering the scope, the clamp was removed from the line to allow air to

rush into the tube. The pressure rise took approximately 1/2 second, which

is slow by shock-tube time scales but comparable to other methods of

static calibration. A good check would have been to calibrate it with

shock waves of known strength but since the detonation tube was not

suited to producing shock waves, this check was never made.

The charge amplifier's amplification was checked separately from

time to time. A square wave from the scope was fed into the cal. input

side and the output waveform monitored. It is noteworthy that the output

waveform had a very clean amplified square wave reproduction of the

input signal when no filter was on the output. A maximum overshoot of about

4-5% was seen when the filter was added.

3.7 Wave Speed Measurements

The detonation wave speed, although measurable by many techniques

under ordinary conditions, is not easily measured when the experiment



33.

includes passing large electric currents through the product gas.

Kelly10 used the Knight and Duff29 circuit with ionization gages and

obtained good accuracy, although he did experience some noise on his

signals from the currents in the gas. The experiments done here involve

currents several orders of magnitude larger, so the noise obliterates

the desired signal. Attempts to raise the signal level to overcome this

difficulty led to other related difficulties, but no solution.

Various optical techniques failed due to the intense light emitted

when large currents flow in the product gases. Perhaps good measurements

could be obtained by streak photography.

Since pressure changes would reflect small changes in the flow

field much more emphatically than would the wave speed changes, it was

decided to concentrate on making careful pressure measurements and

merely monitor the wave speed to note if it was approximately consistent

with expectations. This monitoring was accomplished by feeding the

signals from both pressure transducers, spaced by a known distance along

the tube, into a single beam on the oscilloscope. The resulting trace had

two sharp rises, separated by the time interval that it took the wave

front to pass between the two transducers. Deviations of less than 3%

could not be reliably detected by this means, but it served as a check

for larger changes.

3.8 Seeding

The electrical conductivity of a clean detonation wave and its

products is not high enough to observe the effects sought by the author
10' 14

Attempts to break down the gas and produce large electron concentrations
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were successful to a degree but results were generally difficult to re-

produce and currents did not appear to be distributed over the flow field

with any degree of homogeneity so that attemps to relate results to the

theory described in Chapter 2 seemed futile. One interesting experiment

was accomplished this way however and is reported in Appendix 6.

A desirable solution to this situation would be one allowing some

control on the conductivity while increasing it by several order of

magnitude. Some controlled method of seeding appeared to be the answer.

Basu 7 had accomplished this in detonation waves by sprinkling

alkali salt into a vertical tube at the proper instant before firing

the mixture. The results seemed reasonably well controlled, but the

thought of constructing a vertical tube was not a pleasant one. Louis 30

reported method of seeding with cesium vapor in a horizontal tube

seemed very attractive, but his method had been tried only in shock waves

with argon. Using the cesium vapor in oxygen may result in oxides

forming which result in larger particles which would settle faster

resulting in poorer performance. This technique warrants further

development but in this program the author did not want to undertake

such a task if not necessary.

31
Toong suggested sprinkling a little alkali salt in the tube to see

if this could produce the desired effect. Reagent quality KC1 powder was

sprinkled in the tube with a modified vegetable duster. The particles of

KC1 varied in size but Barak32 estimated most to be about 15 microns in

dia., although some were as large as 200 microns in dia. The apparent

conductivity with no electric fields applied to the electrodes was not

greatly affected. When the electric fields were applied and currents began
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to flow, the action of the currents seemed to increase the conductivity

by several orders of magnitude.

When the powder was newly sprinkled in the tube it was not as

evenly distributed as was desired. After firing a few detonations, however,

the powder seemed to be replaced by a film throughout the inside walls of

the test-section. When this state was reached, experiments measuring

electric current and the electric field distribution were very reproducible

so thoughts of improving the seeding technique were set aside. It may

still be a worthwhile extension of this work to improve upon seeding

methods to see how this will affect results.

The results reported in Chapter 5 as well as the electric fields and

conductivities reported in Chapter 4 were all obtained with this seed

material in the tube. During the course of a set of experiments no new

seed was added as the supply did not seem to be quickly depleted once a

substantial layer was deposited on the walls.

One disadvantage of this method of seeding is the fact that the

transparent windows become coated with a white layer making them entirely

useless for visual or schlieren studies.

3.9 Location of Observation Points

Provision for mounting the pressure transducers was made at four

locations along the tube, and designated as sta (1), ... sta (4). These

points are shown on Fig. 3-2. Sta (1) was approximately in the middle of

the first electrode and 0.28 meters upstream of the field. Pressure of

the detonation wave before it entered the field region was measured here

serving as a reference to the other transducer further downstream.
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Sta (2) was located 12.5 cm downstream of sta (1) but was never used

in experiments. Sta (3) was located 1.05 meters downstream of sta (1) which

was in the middle of the 3rd electrode of the test section, or about 3/4

of the way through the field region. Sta (4) was located 20 cm downstream

of the field or 1.48 meters downstream of sta (1). The computer program

printed out values of p, u and c at these same four locations to serve

as a convenient comparison between theory and experiment.
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CHAPTER 4

DETONATION PRESSURE, ELECTRIC FIELD AND

CONDUCTIVITY MEASUREMENTS

This section will be devoted to discussing pressure measurements

made without fields as well as measurements of electric field and

conductivity used to explain the pressure changes observed when fields

were applied.

Wave speed measurements serve as one indication whether the

experimental conditions are consistent with "theoretical model"

conditions. Since the pressure of the flow field is more sensitive to

change than is the wave speed, however, more emphasis was placed on

pressure measurements, which show large changes when the wave speed

remains apparently unaffected, within experimental accuracy.

4.1 Wave Speed

The method used to measure wave speed by noting the time taken for

the wave to travel between the two transducers was not sensitive to

small changes taking place in the interval. The measurement is an

average velocity over the range, so even if the velocity changed by ten

per cent over 1/3 of the length, this would register as an average change

of about three per cent, by this measurement, which falls within the

measurable accuracy for the wave speed measurements. Control runs taken

using the same mixture on the same day, with all other variables

staionary resulted in measurements well within this 3% margin.
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Several variables were found to affect the wave speed. After the

mixture had been in the mixing tank for several days, it would give

slower detonations than when it was first mixed. This was observed by

Kelly10 as well.

Another variable had an even larger effect on the wave speed. When

fresh KC1 powder was introduced to the tube, the wave speed was observed

to increase by as much as 5%. Some of the high frequency "hash" observed

on the pressure traces in the first 100 usec was also lost, giving a

cleaner signal. After several runs, however, the loose powder seemed to

disappear, leaving only a film on the tube walls. When this happened,

the wave speed would stabilize to a value with very small (less than 3%)

deviations from this value during a series of experiments. The pressure

trace would also become very reproducible for control runs.

The value at which it stabilized may have been a function of the

thickness of material on the wall, since from one day to another, this

value was changed, again only of the order of 3%. In the data presented

on Fig. 4-2, the runs shown (f) through (m) were all from one day' runs.

The control run (f) shows a velocity of 2210 m/sec and the only other

record of wave speed at that pressure, (j), also shows 2210 m/sec. The

record shown as (e) on this figure was from a set of runs at a later

date, after having added more KC1 to the tube. The wave speed shown here

is 2280 m/sec which is only about 3% higher than (f) and (j) but the

author wishes to point out that all runs made at this later date which

measured wave speed gave readings in the vicinity of 2280 + 15 m/sec.

So what appears, from the information presented on Fig. 4-2, to be an

increase in wave speed for case IV is actually not, when all the data

are examined.
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The author was very careful to compare results with and without

fields only for a series of runs which showed no appreciable variation

in the control measurements made before, during and after a series of

experiments. By so doing, any random error due to the unexplained effect

of the fresh KC1 powder was eliminated.

For the purposes of calculations in the computer program, a wave

speed of 2200 m/sec for an initial pressure of 40 mm Hg. was used, to

correspond approximately with experiments. This value is a little lower

than theoretically predicted33 but within about 3% of such predictions.

4.2 Pressure Profiles

Sample oscilloscope traces are shown in Fig. 4-2 illustrating pressure,

current and voltage measurements. Fig. 4-2a shows the control pressure

histories at sta (1) and (3) which will be compared to whatever changes

appear on traces from field runs shown on (b), (c) and (d) of this

figure. Fig. 4-2 (f) and (g) shows two control runs at sta(l) and (4)

which are from the sequence which includes (h), (i) and (j). Fig. 4-2(k)

shows a control pressure for 20 mm Hg. initial pressure at sta (1) and

(4) to be compared with the runs (1) and (m).

These control runs will now be examined and compared with theory as

well as to pressure measurements reported by other investigators.

The theoretical pressure-time profile as the detonation wave passes

a point was obtained from the computer program with electric and magnetic

fields set to zero. The values used to calculate the detonation jump

conditions are noted on Fig. 4-3. This figure illustrates the difference

between the calculated and observed pressure profile when no fields are

applied.
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Gordon13 has measured pressure profiles in hydrogen-oxygen

detonations and noted similar discrepancy between the predicted pressure

profile, with the rarefaction following the wave front, and the observed

pressure. He used a crystal submerged in an oil bath to obtain his

measurements, and Riemann theory of a progressive wave to predict the

rarefaction following the detonation. Appendix 4 has tabulated results

as published by Gordon compared with those measured by the author. The

percentage drop he reports below the predicted value is very nearly

what has been observed in the experiments reported here.

Consider first the initial peak in these experiments. As already

mentioned in Chapter 3, the amplifier together with the filter had an

overshoot of between 4 and 5% for a square wave input. This could

account for part of the sharp peak observed in the pressure measurement.

Another possible contribution to the pressure in excess of the C-J pressure

could be that the point of complete combustion was far enough behind the

wave front to permit the transducer to register a higher pressure

indicative of the higher pressure in the reaction zone. Gordon13 has

shown that the point of 90% reaction on the Hugoniot curve corresponds

to a pressure 24% above the C-J pressure. The numbers noted here are more

like 10% above C-J, so the transducer face, 0.218 inches in diameter,

may be subjected to the higher pressures prior to complete reaction long

enough to register a pressure above the C-J pressure. Edwards et a114

attribute a similar peak to a partial response of the gage to the

von Neumann peak pressure within the detonation wave. Their argument

was strengthened by noting that shock waves did not produce a similar

peak and sudden drop at the wave front.
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The shock reflected from the end of the tube was observed in the

author's measurements at sta (4). These exhibited a small overshoot at

the initial rise,somewhat like the detonation wave, although perhaps a

little less pronounced. Compare for example the reflected shock shown

on the bottom traces of Fig. 4-2 (f), (g), (h), (i) and (j) with the

step change at the detonation wave for (k) which has approximately the

same magnitude of change. (Comparing the overshoot for different sizes

of pressure steps is not as meaningful as the transducer oscillation would

ring more violently as a result of a 1 atm. pressure step than for a

1/2 atm. pressure step.) The shock profile which is closely followed by

a rarefaction is somewhat similar to the detonation profile, as seen in

(f), (g) and (h) of Fig. 4-2. In (i) and (j), the shock profiles look

somewhat different, as the pressure changes behind the detonation wave

have provided a different pressure field ahead of the shock, consequently

leaving a different pressure field behind it. This illustrates another

point. The reflected shocks here normally propagate into a non-uniform,

decaying pressure field which results in a stronger rarefaction behind

them. Shocks propagating into a uniform pressure field, as used by

Edwards will look differently, so his conclusions about the different

nature of profiles obtained from shocks and detonations are probably

valid. At any rate, the author is in no position to disprove them, based

on these reflected shock profiles. Examing Fig. 4-3, a significant drop

of the observed pressure below the calculated pressure is observed

during the first 100 usec after the detonation wave passes. Thereafter

the lines become more nearly parallel. Appendix 4 tabulates this result

and compares it to data taken from a figure by Gordon. It further goes
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on to illustrate that this amount of pressure drop can be qualitatively

explained by heat transfer alone. The mechanism of heat loss and pressure

drop can be understood as follows. The gas in the vicinity of the wall

is cooled and recombines causing the pressure to fall near the wall. This

pressure drop is propagated into the free stream as a rarefaction wave,

at the acoustic velocity of the hot gases. Kistiakowsky et a134

attribute some reduction of wave speed to energy losses to the walls of

the tube taking effect within the reaction zone. The time for crossing

of such a wave in a 2 in, tube would be about 40 psec, which allows

time for several wave crossings during the first 100ysec.

The concept that wall effects are responsible for the sudden drop

in pressure can be verified by noting the effect of tube diameter on

the pressure history. Edwards and Williams35 made such a study and

concluded that the energy losses to the tube wall were significant in

determining the pressure profile. Their later measurements14 bear this

out further as they observed that for a 10 cm diameter tube, the pressure

falls off very gradually in some mixtures, and even increases for some

mixtures during the first 100 psec after passage of the wave. With a

1.6 cm diameter tube, on the other hand, they observe a consistent drop

ranging from 20 to 40 per cent during the first 100 ysec. Gordon's

results were obtained in a 4 cm diameter tube and the author used a

2 inch square tube. It is therefore also consistent that the pressure

drop observed by the author and Gordon agree very closely, and fall in

the range between the results obtained by Edwards for the 10 cm diameter

and the 1.6 cm diameter tube.

The results of Edwards et al14 were obtained using a driver section
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as opposed to the spark initiation used by Gordon and this author.

Wolfson36 used a 1.5 inch I.D. tube, spark ignition and had a distance

of 13 3/4 feet from the ignitor to the pressure tap. He was primarily

interested in checking the C-J pressure and did not attempt to

correlate the pressure history with theory. The pressure data that he

shows only spans the first 100 ysec, but even from these data it is

possible to note up to 30% or more decrease in pressure during the

first 100 psec.

A quantitative argument is presented in Appendix 4 to illustrate

that heat loss to the tube wall could easily account for the pressure

falling below the level calculated by assuming no such loss. Measure-

ments of heat transfer rates by Cutting37 to a wire in the free stream

of a detonation tube were much in excess of that required to explain

the present discrepancy. Since it is expected that heat transfer rates

to the wall will be lower, this does not discount the mechanism.

Further quantitative estimates based on the two dimensional model

of flow expansion proposed by Fay38 to explain wave speed deficits also

predicted a large pressure drop. The discrepancy was so large however,

that the model did not seem applicable in the region this far behind the

wave.

Some of the pressure data presented in Chapter 5 was obtained at

sta (3) which is located inside the field which necessitated attaching

the transducer to a plexiglass window. A very regular oscillation was

superposed on these measurements at a frequency agreeing with the time

of traverse of a sound wave across the tube. See Fig. 4-2 (a). Edwards

et al35 report a similar observation, and confirmed the relationship
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further by employing mixtures with different acoustic velocities. They

smoothed out the oscillations for the published report, so comparison

of amplitude is not possible. The natural frequency of vibration of the

plexiglass window is around 4000 cps and the frequency noted here is

around 17,500 cps so it is not a simple vibration of the window. At this

location the transducer was held in place by a rubber bond rather than

the diaphragm and ring combinations, as used in the aluminum windows.

The author has concluded that these oscillations come about as a result

of this mounting. The diaphragm-ring combination was first used at

sta (3) and no such oscillation observed. Due to electrical interference

during field experiments, presumably due to the metal ring being in

contact with the gas or so near the electrode, the mounting was changed.

This new mounting had no possible metal contact with the gas or

electrode, so the electrical interference was eliminated, but a regular

oscillation was now superposed in the pressure trace. It is believed

that this flexible rubber bond together with the heavy piece of metal

in which the transducer was mounted formed a spring-mass system which

oscillated when given a "push" by the sudden pressure rise passing the

transducer face. The author will have to treat the envelope of these

oscillations as the error flag as he does not fully understand why they

change in character when the gases are being acted upon by the electro-

magnetic fields.

The oscillations are not likely simple acoustic oscillations as

they were not ever observed at sta (1) or (4), and the tube cross-

section is essentially the same there.
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Fig. 4-3 shows a lower pressure measured at sta (4) than at sta (1)

contrary to the trend of a progressive rarefaction wave. This experimental

trend was verified by interchanging the transducers . Invariably, the

one downstream registered a lower pressure far behind the wave than the

one upstream, although the initial peak agreed quite well. The reason for

this is not quite clear but may be the result of higher rates of energy

loss to the walls in the test section than in the tube upstream. Due to

imperfect construction, the test section is a little irregular inside

which may give rise to more turbulence with a higher rate of energy loss

to the walls. The plexiglass windows may have heat transfer properties

differing somewhat from the brass walls and so influence heat loss too.

4.3 Electric Fields

A description of the technique used in measuring the electric field

in the gas was given in Chapter 3. Figs. 4-4 through 4-6 show some

typical results of these measurements.

The upper plot in Fig. 4-4 show how the equal-potential lines cut

diagonally across the tube in time at a fixed location in the tube. The

lower one is a scaled schematic with the vertical distance the same

scale as the horizontal distance behind the detonation front. If one

were to plot current paths perpendicular to the equal potential lines,

the lower one would illustrate that the current path is almost per-

pendicular to the tube axis, and not actually at the angle suggested by

the upper plot. So the theoretical model of current only in the y

direction is very nearly satisfied. Hall effects would still cause

currents to flow somewhat more diagonally however.
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It is interesting to note that the equal potential lines near the

detonation front are not greatly affected by the magnetic field. The

result of the Lorentz forces pushing on the gas (case III) is to shift the

lines up, farther from the wave. For the Lorentz forces retarding the

gas motion (case II) the lines are shifted in the opposite direction.

Fig. 4-4 was obtained from measurements made near the front of

the electrode. A similar plot is obtained from measurements at the

center of the electrode or at the point near the end.

Figs. 4-5 and 4-6 are typical plots used to determine the actual

voltage drop across the free stream. The upper line on the plot is the

voltage on the anode, the second is the potential at the point 0.10 in.

from the anode as obtained from a plot like Fig. 4-4. The bottom line

is the corresponding potential 0.10 inches from the cathode. The line

in between is obtained by taking the difference of potentials between

the second line and the bottom line, and it represents the potential

drop between the two probes nearest the electrodes. To facilitate use

of this information in computations a relation was needed to place in

the computer program. The form of equation chosen for each location was

f )= f + f T + f 2 (4.1)1 2 3

where the constants f1, f2 and f3 were evaluated by using three values

of f (V) from a plot like Fig. 4-5. This was done at two locations along

the electrode to obtain x' dependence. Linear interpolation was used to

get the voltage at a general location, or

f. .(V) (x' - x.) - f.(V) (x' - x..)
f(V) = (4.2)

x.. -
11 1
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This expression was then divided by the distance between the two

outer points of the electric field probe to get the electric field as

a function of T and x', where x' here is measured from the front of the

electrode. The resulting expression was of the form

E (T, x') = e1 + e2 x' + e3 T X' + e4 T2 x' + e5 6 + e6 2 4.3)

where the values of the e's were obtained from use of equations 4.1 and

4.2 and the other described operations.

Equation 4.3 is valid for one electrode of length 0.5 meters and

good only for T.,< 600 ysec by the way it was derived. The second

electrode was assumed to behave as the first, so the same expression

was used there with x' beginning from zero at its beginning.

4.4 Electric Conductivity

Efforts to measure the electric conductivity of the gas directly by

means of a d-c probe proved futile. The results of these attempts were

unreliable for several reasons.

First, the conductivity level was too high for good measurements

by this technique. Using a circuit such as Kelly10 used was unsatisfactory

because the output signal was strongly dependent on the battery voltage.

To operate correctly, the probe should apply a constant voltage across

the gas thereby allowing the current across a load resistor to serve as

a direct indication of gas conductance. To attain this condition, the

load resistance must be much smaller than the resistance offered by the

gas. The simple model to interpret results of this probe is valid only

for small currents, so the range of necessary conditions restricted one
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to using a small battery, and a small load resistance. With these

conditions the noise level often caused the signal to go negative,

leaving little confidence in the validity of such a record.

Secondly, such a probe used in the presence of other large electric

fields introduced many uncertainties so that it could only be used

outside the field. Indications of those measurements obtained, were that

the conductivity increased due to the action of the currents, and one was

not certain how a measurement downstream of the field could be related

to the values inside the field.

Other measurement techniques may have accomplished what was needed,

but for the purposes of correlation of theory and experiment, it would

suffice to know the current distribution since the total current was

easily measured by the Rogowski coil. The needed information was

therefore obtained in the following way.

It was assumed that there was a conductivity distribution

convecting along behind the wave which had no x dependence but could

be expressed as a function of T only, or

a(T) = SI + S2 T + S3 T + s4  (4.4)

The total electric field is,

= E (T, x') - uB (4.5)

where uB was taken as an average product of u and B.

If we take this expression for the electric field, multiply it by

the conductivity and integrate over the conducting slug which is

between the electrodes, this sum at any time should equal the total
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current flowing to the electrode at that time.

S-B

I(t') = a(T) E* dx' (4.6)
X'=o

where S-B is the slug boundary. When the wave is partly through this

electrode region, integration is over the distance from the front end of

the electrode to the wave front, since no currents flow upstream of the

wave. Once the wave is beyond the electrode, integration is over the

entire length of electrode, in which case the slug-boundary is

x' = 0.5 meters.

To perform the integration, use is made of the relation

T = t' - VNOT'x' (4.7)

where t' is the time after the wave front enters this electrode region

x' is the distance the wave front has progressed beyond the front

edge of the electrode.

The total current, I(t') is obtained from experiments where a

Rogowski coil is used to measure the total current to the first electrode.

The current traces corresponding to pressure traces are shown in

Fig. 4-2 for each run represented. It may be observed that the total

current traces look somewhat different for different cases. For each

case studied in detail, the electric field distribution was obtained,

multiplied by the assumed conductivity distribution and integrated

over x'. The I(t') for each was obtained from a typical current trace

for that case. These current traces were found to be quite reproducible

on agiven day, but when fresh KC1 was added, they would take on a

different appearance. The major part of the data reported was obtained
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on two days, separated by several weeks, and an addition of KC1. The

runs with combined electric and magnetic fields for simultaneous

pressure measurements at sta (1) and (4) and simultaneous electric

field measurements were obtained on one day. These are typified by

(f) through (m) of Fig. 4-2. The runs for electric field only, sta (1)

and (4) and all the simultaneous runs at sta (1) and (3) were obtained

in a second two-day span typified by (a) through (e) of Fig. 4-2.

The total current traces for the second series are a little different

than for the first series, for apparently equivalent initial conditions.

Electric field measurements used in the computations were only obtained

the first day, except for case I which was mapped the second day. Some

of the discrepancy between theory and experiments may be traced to the

change of electrical properties between these sets of runs.

A typical I(t') plot is shown in Fig. 4-7. This one is for case II.

The resulting G(T) for this case is shown plotted in Fig. 4-8. Perhaps

Eqn. 4.4 is a little too restrictive an assumption on a, as the tail on

a(T) for T approaching 600 usec seems a little unreal. Keeping in mind

that determining the conductivity level and the resulting current

distribution was the main objective in getting this solution, the

results are probably adequate for this purpose. One would not want to

argue that the conductivity distribution was exactly this result without

studying the effect of using more general forms of conductivity

distribution in the calculations.

Solutions for all the cases studied in detail are tabulated in

Appendix 5, giving the electric field and resulting conductivity distribu-

tions.
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These values of aC(T) and E(T, x') were fed into the computer program

to obtain the results for each case.

The gradual increase in conductivity with time after the wave passes,

as shown in Fig. 4-8, may result from having the seed material coated

on the walls, rather than distributed in the free stream. The high

conductivity observed was due to the seed material, however, as such

conductivities were not obtained before adding the KC1. The process by

which the effects are noted in the free stream when the material is

initially coated on the walls is the topic of a brief discussion which

follows.

Electrons accelerated by electric fields will bombard neighboring

molecules and atoms producing more electrons. This process of

multiplication of charge requires large electric fields to accelerate

the electrons sufficiently to produce higher concentrations of electrons.

The electric fields in the free stream here, as determined from probe

measurements, are not large enough to account for the high concentration

of electrons, on the basis of this mechanism.

Turcotte and Friedman40 have concluded that seed material coated

on the electrode surfaces during flame studies is responsible for high

39rates of electron emission. Since the work function of potassium is

only 2.2 volts, it is reasonable to conclude that it could be emitting

electrons thermionically and still be well below the free stream

temperature. (See Appendix 1) In the experiments described here, there

was a coating of seed material, which started as KC1, on both electrodes

as well as on the side walls of the tube.
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In the electric field measurements, a cathode drop of between 100

and 150 volts is observed immediately behind the wave front. This drop

decreases with time until it reaches a value in the vicinity of 45 volts.

Emission of electrons at the surface, increasing with time as the

temperature of material on the surface rises, could qualitatively explain

this trend.

A slightly smaller anode drop is observed initially, but rather than

decreasing, this drop increases until a drop of several hundred volts

occurs across 0.1 inch. Ohmic heating in this thin layer would further

raise the temperature of the seed material on the anode, causing emission

of electrons. The electrons emitted at this surface would undoubtedly be

accepted by the positively charged anode, leaving a high concentration

of K* ions near the surface. Positive potassium ions have a very large

collision cross-section which would inhibit electron flow, giving the

effect of a high resistance. This would qualitatively explain why a

large potential drop is required near the anode, to pass the current.

I
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CHAPTER 5

THE EFFECT OF ENTHALPY ADDITION AND LORENTZ FORCES ON THE FLOW FIELD

The previous chapters have explained the theoretical derivation and

how calculations were carried out. Experimental procedures have been

explained and some results discussed which are important to the final

discussion but only lead up to it. In this chapter, the results of

computations will be presented as well as the results of experiments. By

way of introduction to this discussion, it may be said that the theoretical

computations provide a good basis for understanding the experiments, and

the experiments point out some of the strong points as well as some

weaker points in the idealized theoretical development.

Shock tube experiments will unavoidably contain phenomena such as

boundary layer effects and the many complicating aspects which accompany

boundary layers. The theory which has been developed was intended as a

guide to the investigator to predict the type of results to be expected.

Therefore, what the author will emphasize in presenting and discussing

results is the trend predicted by theory as compared to the trend observed

in experiments. The trends are characterized by certain features such as

compressions in one region resulting in a pressure rise, and rarefactions

in another region resulting in a pressure decrease. Some of the trends seen

in the idealized theory would be accentuated if loss mechanisms were

included, others would be suppressed by losses. Insight into effects

caused by losses can be gained when solutions simulating losses are

examined. Following then, is a presentation of results of solutions with
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no losses considered together with results of solutions where possible

losses are simulated. This is followed by a presentation of trends as

observed in experiments. The magnitude of changes observed in experiments

is also cautiously compared to the magnitudes predicted in theory.

5.1 Cases Studied

A brief explanation of the method used to catagorize results is in

order. The conditions used in experiments which the theory attempted to

correspondingly simulate were divided into seven cases as summarized in

the table.

CASE INITIAL VOLTAGE ON APPROXIMATE MAGNETIC
ELECTRODES FIELD STRENGTH

0 (control) 0 0

I 500 0

2
II 500 -1 web/m

III 500 +1 web/m2

IV 1000 0

V 1000 -1 web/m2

VI 1000 +1 web/m2

Case 0, or the control case, is discussed in Chapter 4. Since theory

and experiment show significantly different pressures even for this case,

the discussion which follows will be carried on, on the basis of comparing

the pressure changes observed between control and "with field" experi-

ments to the changes predicted between control and "with field"

solutions.

Cases I and IV have only electric fields, with case IV passing more

current through the gas. Cases II and V are similarly related but with
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magnetic fields oriented so that the Lorentz force opposes the flow.

Cases III and VI are the parallels to II and V with the Lorentz force

pushing the flow.

In the experiments with magnetic fields, these cases had a Bmax

of about 1.1 web/m 2 which would give an approximate average of 1 web/m2

during the time of the experiment. (Fig. 3-3)

An extra set of computations was performed for cases II, III, V and

VI by setting the E -j term to zero and considering the effect of

losing all the electrical enthalpy added by some unspecified heat loss

mechanism. These solutions are designated as IIA, IIIA, VA, and VIA

respectively. This set of solutions would be realized in practice when

dissipative phenomena just balanced the energy addition.

5.2 Trends of Theoretical Predictions

By the nature of the governing equations it was necessary to solve

for the quantities u, c and p as well as the x and t location of each

lattice point. Theory, therefore, readily provides more information than

experiments and by using this information about changes in u and c as

well as p, it is easier to understand how the overall changes in

pressure are brought about.

One way of observing trends in theoretical solutions is to observe

how the physical characteristic net is changed. Figs. 5-24, 25 and 26 are

the x-t diagrams obtained from solutions for cases I, II and III. These

three cases illustrate the three basic categories being studied. Case I

(Fig. 5-24) illustrates the effect of electric fields only, case II

(Fig. 5-25) the combined effect of electric fields and Lorentz forces
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which retard the gas motion and case III (Fig. 5-26) the combined effect

of electric fields and Lorentz forces which push the gas in the direction

it is already flowing.

Each x-t diagram will first be compared with the diagram obtained

from the control run, case 0, which is shown in broken lines. The broken

line has been omitted wherever it was approximately coincident with the

solid line. The trend of each will be noted and compared to the other two.

The x-t diagram for the control run is much easier to interpret than

these shown for cases I, II and III. Since no losses are considered in

this idealized theory, and no energy or momentum changes are introduced

in case 0, the flow field is isentropic and behaves according to simple

relations such as those given by eqn. (2.35)and (2.36). From eqn. 2.36,

it can be seen that when u decreases, c decreases and vice versa. From

eqn. 2.35 it can be seen that when u decreases, p decreases and vice

versa. When both u and c decrease, the type II characteristics bend back

more than the type I characteristics, giving a fan shape associated with

a rarefaction. The opposite shift occurs when both u and c increase and

this depicts a compression.

For the non-isentropic cases such as these with electromagnetic energy

addition and momentum changes, no such generalizations can be made.

Equations (2.19) and(2.21) illustrate the complicated relationship

between the properties u, c, and p for the electromagnetic case. So in

interpreting the x-t diagrams, all that can definitely be obtained from

observing the characteristics is the changes in (u-c) and (u+c) compared

to other cases. To facilitate pressure comparisons, the author has

written in the pressure at each latice point shown, in cm of Hg.
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Approximate comparison with the control pressure can be made by noting,

as for the region upstream of the field in each case, that the pressure

does not change along a type I characteristic for the control case.

Therefore an estimate of what the control pressure at any point would be

can be obtained by noting what the pressure on that same type I

characteristic is, upstream of the field. This is not exact due to the

shift in location of the lattice point for the different cases. A more

exact comparison is obtained by cross-plotting pressure vs. x, or

pressure vs. time behind the wave as are shown in Figs. 5-1, 4, 7, 9, 11,

13, 15, 17, 19, 21 and 23. The pressure vs. time plots were used because

they are a direct parallel to what is measured by a transducer in a

fixed location in the tube. Pressure vs. x experimental data would have

to be obtained from cross-plotting measurements from numerous positions

along the tube. This was not done for the experiments, or for the

theoretical solutions.

Comparing Figs. 5-24, 25, and 26 can provide insight into some

overall trends. All the plots exhibit some increased backward bending

of the type II characteristics near the beginning of the field as well

as some increase in pressure in this region. Case II which has the

Lorentz force retarding the particle velocity exhibits this character

most strongly. All the cases shown here would produce some change at

sta (1) after some time but the changes occuring for the case with the

Lorentz force retarding the flow would appear at sta (1) after about

850 Psec or less after the wave passed that point, whereas for the

other two cases the changes would be noticed somewhat later, and the

rise in pressure would be greater for this case (i.e. with Lorentz
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forces retarding the flow) than for the others. Since solutions were

terminated after about 900 psec behind the wave, the only one of these

three cases showing changes at sta (1) during this time was case II.

Fig. 5-7 shows the p vs time plot at sta (1) for case VA. Case

VA has the same orientation of magnetic field as case II, with a higher

current density, but it considers the E - j enthalpy addition to be

just balanced by heat loss by some unspecified mechanism. For this

case there is no change in stagnation enthalpy, so the effect observed

is due to Lorentz forces alone. The solution for case HA, which

neglects the enthalpy addition of case II in this same way, is not

noticeably different from the control run as far as is plotted here.

The solution for case II shows a pressure rise beginning at about

850 usec behind the wave front and rising more gradually than for case

VA.

Next, the trends throughout the field region will be discussed.

Comparing Fig. 5-24 and 26 it can be seen that cases I and III have

about the same slope of type II characteristic throughout the field

region, but the type I characteristics for case III are bent more

toward the wave front than for case I. This means that u-c is about the

same for each, but u+c is greater for case III. Comparing the actual

magnitudes of each at sta (3) which are plotted on Fig. 5-2 and 5-18

it can be seen that case I has a reduction in particle velocity and an

increase in sound speed (temperature) to give a larger difference in u

and c than for the control run. This causes the type II characteristics

of slope 1/(u-c) to bend backward more than for the control run. By

adding the particle velocity and sound speed at any point as shown on

N -- -01L-
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Fig. 5-2 it can be seen that u+c for case I is higher than for the control

immediately behind the wave but lower than the control after several

hundred microseconds. This means that the type I characteristic of

slope 1/u+c bends toward the wave near the wave more than it did in the

control, but since u+c is still not perceptibly larger than (u+c)CJ

there will be little modification of the detonation wave speed. In case

III on the other hand, the Lorentz force is pushing the particles so the

particle velocity is not reduced as in case I; in fact it stays very near

the control as is seen in Fig. 5-18. Immediately behind the wave, in

case III, both the sound speed and particle velocity are increased above

the C-J level, causing the type I characteristic to bend toward the

wave and giving more promise of wave speed changes. These wave speed

changes will be discussed further later.

It has already been noted that for case II, the type II characteristics

bend backward more than for either cases II1I or the control. Fig. 5-10

shows the plot of u and c vs. time at sta (3) for this case. From this

it can be seen that u is decreased and c increased to give a large

change in u-c. Here the Lorentz force is helping to reduce the particle

velocity.

The tendency for the particle velocity to be reduced for case I,

which has only energy addition and no momentum changes, can be

understood from eqn. (2.21) which shows that the energy addition term,

here shown as kEN/Bc, along the type II characteristic causes a decrease

in u. And for case II, the Lorentz force has the same effect, causing a

larger decrease in u than for case I. For case III, the Lorentz force

has the opposite effect of the energy addition along the type II
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characteristic,keeping the particle velocity near normal.

From Fig. 5-10 for case II, it can be seen that even near the

wave front u+c is less than (u+c)C-J, so interactions with the wave

front can be ruled out at this point of the flow field for this case.

So, from these observations, it can be noted that the Lorentz force

can have a significant effect on the distribution of energy between the

mode of thermal energy characterized by the sound speed (c2 = kRT) and

the mode of flow energy characterized by the particle velocity. Without

adding or subtracting any enthalpy then, the temperature can be raised

by reducing the particle velocity and vice versa. This is an important

observation as it provides an understanding for the different pressure

changes for these various cases.

From eqn. 2.19 it can be seen that pressure changes are directly

proportional to changes in sound speed but are only weakly related to

the particle velocity through the uB term. For the three cases being

compared here, the electromagnetic term on the right side of eqn. 2.19

is approximately the same for each, or at least considerably less than

the term involving sound speed change, so the pressure compares almost

as the sound speed amoung these three cases.

Comparing cases I and II, it can be noted from comparing Fig. 5-10

for case II and Fig. 5-2 for case I that the sound speed is generally

higher for case II. This, it may be recalled, was partly due to the

Lorentz forces in case II retarding the particles, causing more of the

total energy to appear as heat by redistribution of energy. From this

discussion, it would be expected that the pressure would be higher here

for case II than for case I, as indeed it is. (Fig. 5-9 vs. Fig. 5-1)
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The author would like to caution the reader from carrying some of

these arguments further than they are taken here. It will be recalled that

the electric field and conductivity values used in these calculations were

obtained from experiments as described in Chapter 3 and 4. So, although

the initial voltage on the electrodes was the same, subsequent develop-

ments not all of which are understood, affected the electric field and

current densities, so that the energy input was not the same for these

three cases even when the initial electrode voltage was the same. One

of the main purposes of these solutions was to duplicate experimental

conditions as closely as possible. As a result of this, some of the

qualitative comparisons which would lead to quantitative comparisons

between cases must be carried on cautiously since the total energy

addition was not quite the same for each of these three cases.

Some comparisons can be carried further nevertheless. From comparing

the sound speed of case III (Fig. 5-18) with that of case II and I,

(Figs. 5-10 and 5-2), it will be noted that c is higher for case III

than for either of the other two cases. Correspondingly, the pressure for

case III, (Fig. 5-17) is higher than for either case I (Fig. 5-1) or

case II (Fig. 5-9).

The comparitive trends of the solutions in the transition from the

field region to the downstream region is also of interest. For case I,

and II the type II characteristics (Figs. 5-24 and 5-25) were bent

backward more than the ones for the control (in broken lines) throughout

the field region. These now gradually return to the normal slope. From

Fig. 5-14 it can be seen that (u-c) is still smaller than (u-c) for the

control run, but in comparing it to Fig. 5-10 it can be seen that both
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u and c have changed a great deal in the interval. The reader is reminded

that the electromagnetic fields have no direct effect in this downstream

region. The difference from the control run is only due to what is con-

vected downstream with the flow. Even in this purely one-dimensional case,

there are changes in the flow field as it leaves the electromagnetic field

region. These changes are brought about by the following mechanism.

One term remains in effect in eqn. 2.21. This term, shown expanded

in eqn. 2.22 results from lengthwise derivatives in p and c which accounts

for lengthwise distribution of entropy. (Shapiro 9 p. 977). Upstream of

the field region where the flow was isentropic, this term had no

influence. (Even in the approximate numerical technique employed for

these solutions, this term had a negligible contribution as it should

ideally for the control run which was intended to have an isentropic

solution in the flow field.) Inside the field region, this term has some

effect and downstream it accounts for all the changes taking place. In

this downstream region, it has the effect of bringing about a re-

distribution of energy.

As a result of this redistribution of energy, for case I the

particle velocity which was below normal at sta (3) (Fig. 5-2) is now

slightly above normal at sta (4) (Fig. 5-5). The sound speed which was

above normal at sta (3) is still slightly above normal and the pressure

has also returned almost down to the control level, Fig. 5-4.

For case II, the particle velocity which was far below normal at

one point at sta (3) Fig. 5-10, is now very nearly back to normal,

Fig. 5-14. The sound speed is also seen to decrease between sta (3) and

sta (4), Figs. 5-10 and 5-14, as some of the thermal energy contributes
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to acceleration of the gas particles. There is a large decrease in

pressure between sta (3) and sta (4) for this case. (Fig. 5-9 and 5-13).

For case III, the type II characteristics actually bend back less

than for the control in this downstream region. (Fig. 5-26) By comparing

particle velocities and sound speed changes between sta (3) and (4) for

this case (compare Fig. 5-18 with Fig. 5-22) it can be seen how the

equalization process already mentioned has brought the particle velocity

from a level around the control at sta (3) to well above it at sta (4).

At the same time the sound speed has been decreased somewhat but

remains above normal. As aresult of this, their sum, u+c, is actually

higher for the most part than it was at sta (3) giving increased

bending toward the wave front of the type I characteristic (Fig. 5-26).

Again the pressure reflects the trend of the sound speed and remains

well above normal. Fig. 5-21.

To summarize the trends of these solutions then, it was pointed out

that case II, which has the Lorentz froce opposing the flow direction,

would produce the largest pressure change at sta (1). The electro-

magnetic effects are expected to generally increase the pressure above

the control level, with the largest changes occurring for case III

which has the Lorentz force pushing the flow. There is an expected trend

of decreasing pressure as the flow leaves the field, with case II, which

had the greatest decrease in particle velocity within the field region

due to the effect of retarding Lorentz forces, showing this effect most

strongly.

5.3 Detailed Results of Computations

The preceding discussion dealt with trends in solutions and what
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generally caused these trends. The solutions discussed up to this point

were idealized solutions in the sense that no deviation from one-

dimensionality was allowed. In examining the solutions at each point, a

parallel set of computations will be presented which, in a simple way,

simulate the possible effect of energy losses to the walls of the tube.

Since the information gleaned from experiments does not include

any direct measurements of heat loss or viscous dissipation losses, it

is impossible to provide the computer with all conditions existing in

the experiments. Consequently, only if these loss mechanisms had made

negligibly small contributions could the theory predict accurately

what would be the effects observed in experiments.

The effects of losses can be simulated however. An extreme case

simulating additional heat loss would be if the electrical energy added

was just balanced by losses so the only net effect remaining was that

caused by Lorentz forces. This case was realized by setting the E -

term equal to zero. Perhaps a more realistic way to simulate additional

heat loss would be to limit the temperature rise above normal, (since

the present scheme leads to some ambiguities as will be seen) but this

will be discussed later. (See Appendix 7) The case of only electric and

no magnetic field applied was studied both theoretically and experimentally

and so the case of no momentum changes is taken care of. Partial losses

of both effects can be observed by studying cases of lower current.

The author therefore provides solutions with both F~- j and j x

included for low current levels. A solution with only j is included

to show the effect of heat addition alone. Finally solutions at both the

higher and lower current levels used in experiments are provided, by
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artificially setting E - j to zero, which show the effect of Lorentz

forces alone. This last set of solutions may have no exact parallel

in experiments but is helpful in understanding the effects of heat losses

when Lorentz forces are large enough to substantially change the flow

field conditions.

In all the cases considered, the region of primary interest is the

first 400 to 500 psec after passage of the wave at sta (3) and (4). At

sta (1) the region of interest begins later than that, and so for the

interesting cases here, results will be presented as long as 900 Usec

after the wave passes.

a) Cases I and IV (Electric Fields only)

These two cases are considered jointly as they are qualitatively

alike and quantitatively differ primarily in the current density in the

gas. Due to this similarity, computations were performed only for case I.

No interesting changes in conditions are predicted for this case

at sta (1), within the region of interest.

Fig. 5-1 shows the predicted pressure rise at sta (3) while Fig. 5-2

shows the corresponding changes in particle velocity and sound speed.

The reason for the decrease in particle velocity below the control

solution may be traced to the governing equations (as was discussed in

section 5.2) which give a negative increment to u for heat addition along

the type II characteristics. At a point after 600 usec, the type II

characteristic which crosses the sta (3) position originated downstream

of the field so it doesn't impose so great a velocity decrease.

Consequently, from this point on, the particle velocity, taking energy

from the heat energy stored in the gas, gradually approaches the value
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of the control case. This latter process produces a decrease in sound

speed (temperature) and is brought about by the term in the equation

which comes from gradients in the properties c and p in the flow field

which may be identified with entropy changes (as pointed out earlier).

The outcome of these equalization processes may be seen at sta (4),

(Fig. 5-4 and 5-5). Here the pressure is only slightly above the control

case. The particle velocity is now also slightly above the control

case, and the sound speed, although reduced from sta (3) is still well

above the control solution.

For these cases with no magnetic field, the effect of losing all

the additional heat added would simply bring the solution back to the

control solution.

b) Cases II, IIA and VA (Lorentz Force Retarding Flow)

These cases have interesting effects at sta (1). The solution for

case II predicts a small pressure pulse accompanied by an increase in

sound speed and decrease in particle velocity propagated back from the

fields region which appears at sta (1) after 850 psec. When the E - j

term was omitted, case IIA showed no pressure pulse, while case VA

still had a pulse at sta (1) as shown in Fig. 5-7. Fig. 5-8 shows the

corresponding changes in particle velocity and sound speed.

Fig. 5-9 shows the predicted pressure rise at sta (3) for the cases

II and IIA, with the corresponding sound and particle velocity shown on

Fig. 5-10. The current density and electric field for case II is not

substantially different from case I, but the distribution of energy is

apparently influenced by the Lorentz forces. Comparing Fig. 5-2 with

5-10, it can be seen how the Lorentz force has retarded the flow, case II,
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reducing the particle velocity a great deal more than in case I. The

flow energy which is reduced when the particle velocity is reduced

appears as thermal energy as the sound speed for case II is considerably

higher than for case I. It can further be noted from Fig. 5-10 for

case IIA, when no enthalpy is added, that the sound speed is still

increased above the control value due to the redistribution of energy

when the particle velocity is suppressed.

The predicted pressure, sound speed and particle velocity changes

for case VA, at sta (3), are shown on Figs. 5-11 and 5-12. Here again

the particle velocity is greatly reduced and the sound speed increased.

As the wave leaves the field, the equalization processes, noted in

case I, again take effect and the properties approach their control

values at sta (4). Fig. 5-13 shows the pressure at sta (4) for cases II

and IIA. Both are only slightly different from the control value with

case II slightly above and case IIA slightly below the control

pressure. The particle and sound velocities for these cases are shown on

Fig. 5-14.

The pressure, sound speed and particle velocity at sta (4) for

case VA are shown on Fig. 5-15 and 5-16. Here the pressure is considerably

below the control case, the particle velocity is well below its control

case, and the sound speed oscillates around its control.

It is noteworthy that the electromagnetic term on the right of

2
eqn. 2.19, giving the pressure change along the path line is j /a. When

E - T is zero, there still remains a term of li - x II which contributes

to a pressure decrease for cases IIA and VA.
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c) Cases IIIIIIA, and VIA (Lorentz Force pushing Flow)

There is nothing of interest predicted for sta (1) during the

observation time for these cases although small changes may appear

later as observed from Fig. 5-26.

Fig. 5-17 shows the pressure rise predicted at sta (3) for cases

III and IIIA, while the corresponding changes in sound speed and

particle velocity are shown on Fig. 5-18. For case III, the Lorentz

force is tending to increase the particle velocity and the enthalpy

addition to decrease it. The resulting effect is that the particle

velocity is very near the control level, the sound speed is greatly

increased above the control level and the pressure is also a great

deal higher than the control level. Without the enthalpy addition,

case IIIA, the particle velocity through momentum changes rises much

higher than the control level, (Fig. 5-18) the sound speed must

compensate as there is no enthalpy added and it goes below normal. The

pressure follows the trend of the sound speed and also falls below the

control level.

The solutions for case VI A at sta (3) are shown in Figs. 5-19 and

5-20. The increased current (over IIIA) results in a greater Lorentz force

with the result that the particle velocity increases even more than for

case IIIA. Again, since the stagnation enthalpy remains unchanged, the

sound speed must decrease to compensate, and now the particle velocity

exceeds the sound speed after about 300 usec. This decrease in sound

speed corresponds to a temperature decrease of about 1000*R. The

pressure is initially above normal, but when the sound speed decreases

so rapidly, the pressure follows this trend until it is far below normal.



69.

The equalization tendency already noted, as the wave leaves the

field, again takes effect for these cases. For case III, the particle

velocity, which had remained near the control level up to sta (3), now

increases to a level above the control at the expense of the sound

speed which is decreased but still remains well above the control level.

The pressure is reduced somewhat from sta (3) but remains well above

the control level.

Technical difficulties prevented the computer solutions from

going through to sta (4) for cases IIIA and VIA. Only some calculated

information could be kept in storage due to the limited size of the

computer memory. Some information already deleted was required for the

completion of these solutions. The difficulties were not insurmountable,

but the solutions were not deemed important enough to make the necessary

alterations in the mechanics of the program at this time. Based on trends

in other solutions, the author will deduce the final outcome of these

two solutions.

For case IIIA, the particle velocity and sound speed would return

approximately back to the control level, with both perhaps a little

above the control. The pressure would again follow the trend of the

sound speed and end very near the control level.

Based on intermediate points in the solution for case VIA, the

tendency is similar to other cases. It appears as though the particle

velocity will remain a little above normal, the sound speed was return-

ing toward the control level but was still well below it after several

hundred psec. The pressure at the intermediate point seemed to be well

above normal for the first several hundred usec, and then follow the

trend of the sound speed and fall below normal.
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d) Wave Speed

Since the treatment of the problem is one-dimensional, with the same

chemical energy added in the wave in the presence of electromagnetic

fields as without them, the only possible solutions other than the C-J

solution are ones having increased velocity corresponding to strong

detonations. The changes predicted in the cases studied are very small.

Case I shows a maximum increase of .0045%. Case II a maximum increase of

.0063% while case III predicts a maximum increase of .032%. These

changes did not persist as an average change. The numbers quoted here are

the maximum increase above the control velocity. The average velocity

would be even closer to the control.

The cases with no enthalpy addition were not very different at the

wave front. The maximum increase for any of these was 0.43% for case

VIA.

The overall trend from these solutions at the wave front is one of

very little or negligible change. The reason for this can be traced to the

fact that the electrical conductivity at the wave front is much lower than

in most of the flow field. Consequently, most of the energy input and the

maximum momentum change occurs too far behind the wave to strongly affect

the wave front within the short field region.

In comparing solutions for no heat loss to the tube walls to those

solutions simulating heat loss by considering all the electrical

enthalpy which was added to be lost, it is found that the effect of heat

loss is to reduce the pressure. In the case with the Lorentz force re-

tarding the flow, the temperature still rises above normal when no

enthalpy is added and the pressure is reduced below normal downstream of
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the fields. For the case of Lorentz forces pushing the flow, the

accelerated gas flow causes the temperature to drop far below normal,

which in turn causes the pressure to fall below normal.

5.4 Experimental Results

Before giving a detailed account of experimental results for all

cases, the author would like to point out the conditions under which

very definite changes in pressure were seen. The oscilloscope traces

shown in Fig. 4-2 illustrate the most interesting cases. As a reference

regarding the dependability of reduced results, the reader may refer

to Appendix 3. An account of how data were reduced to the form presented

in this chapter is given there, with a plot showing error flags which

could be attached to all such measurements. The oscilloscope traces

shown in Fig. 4-2 illustrate typical results. Some show no changes from

the control, others show substantial change.

Fig. 4-2(a) shows pressure traces for a control run. The high

frequency wiggles in these curves were assumed to be associated with

the transducer ringing characteristics and were smoothed out in plotted

data. The lower frequency wiggles observed at sta (3) were assumed to

be due to acceleration effects caused by the mounting of the transducer,

as discussed in Chapter 4. These wiggles were plotted on graphs although

some reservation was held about their significance, as was discussed in

Chapter 4.

Fig. 4-2 (b) shows traces for sta (1) and (3) for case IV. No

perceptible change from the control is observed at sta (1). At sta (3)

the first thing to notice is the smoothed out wiggles. A slight rise

in pressure is observed here as plotted in Fig. 5-3.
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Fig. 4-2 (c) shows the pressure traces for sta (1) and (3) for case

V with the j x B forces retarding the flow. The upper trace (sta (1))

clearly shows a pressure rise at about 640 psec behind the wave. Theory

predicted that this orientation of fields, of the three considered, would

produce the largest pressure change at sta (1) and this piece of experi-

mental evidence is in direct support of this prediction. Little can be

said of any change observed at sta (3) of this figure.

Fig. 4-2 (d) shows the pressure traces for case VI at sta (1) and

(3). No change is observed at sta (1), which further substantiates the

agreement noted above for case V. The pressure rise at sta (3) is not

as large as theory predicts but it is perceptible. Of the three

catagories considered, theory predicted the largest rise at this station

for this orientation of fields. Again experiments with this orientation

of fields gave the largest pressure increase.

Fig. 4-2(e) shows the oscilloscope traces at sta (1) and (4) for

the case of electric fields only (case IV). Again, nothing of note is

seen at sta (1), and no obvious change is seen at sta (4). The small

effect predicted by theory at these two stations for this case would

probably be difficult to detect with the present apparatus.

Fig. 4-2(f) shows a control for sta (1) and (4) to be compared to

the following four illustrations. Fig. 4-2(g) is another control with

the pressure from the downstream transducer not added to the upper trace.

This provides a sharper contrast to the one which follows.

Fig. 4-2(h) is another set of traces for the j x B force retarding

the flow, but for sta (1) and (4) now. This again illustrates the pulse

seen in (c) at sta (1). The pulse here does not have as sharp a rise as
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the one in (c). Comparing the current flowing to the electrode, as shown

in each case, it can be seen that the current rises faster for (c) than

for (h). This would indicate that there is greater concentration of

current near the leading edge of the electrode in (c), resulting in a

larger interaction with the magnetic field, hence producing a larger

pulse which steepens more. Results of this type are shown plotted on

Fig. 5-7. By comparing this figure with Fig. A3-1, the reader can clearly

see that the probable error flags on that figure do not enclose the

large changes plotted on Fig. 5-7. The lower trace of Fig. 4-2(h) illus-

trates the changes in pressure observed at sta (4) under these same

field conditions. It is obvious that at times around 500 - 600 psec

behind the wave, the point-by-point pressure on this curve is lower

than the corresponding points of the control. Fig. 5-15 shows a plot of

some typical results obtained for these conditions. Again the error

flags would not enclose these points. The current density for these

experiments is in the vicinity of 10 amps/cm2 and the magnetic field

2strength about 1 web/m2

Fig. 4-2(i) and (j) show two representative sets of traces for the

case when current densities are again in the vicinity of 10 amps/cm 2

and the magnetic field of about 1 web/m2 combines with the current to

push the gas flow. In the upper trace of (i) there is again no distinct

rise in pressure as observed on the upper trace of (h). After re-

duction of data, any change at sta (1) for this case falls within the

error margin cited on Fig. A3-1, giving further significance to the

result seen on the upper trace of Fig. 4-2(h) and (c). The upper trace

of Fig. 4-2(j) has the downstream pressure added at a reduced scale.
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This was used, as in the control shown in (f) to measure the wave speed

between the transducers. This could be disconnected to observe the

entire trace at sta (1) as was done in (g), (h) and (i).

The lower traces of (i) and (j) illustrate changes observed at

sta (4). The changes observed at this station fell into two general

catagories as shown here. The type shown in (i) had large fluctuations

in pressure, predominately above the control, but sometimes falling below

the control, locally. The type shown in (j) had a relatively smooth rise

in pressure which had a peak somewhere in the vicinity of 200 usec

behind the wave front. In the experiments measuring pressure at sta (3),

the pressure rise was like that shown in Fig. 4-2(d), which resembles the

rise in (j) here. Only a limited number of experiments were performed

measuring pressure at sta (3), so perhaps a representative sample was

not obtained at that point. At sta (4), it was found that sometimes several

consecutive experiments showed the character of change illustrated in

(i), followed by a number of runs exhibiting the nature of change shown

in (j), without any apparent change in experimental conditions. The

author has no proof of the cause of the changing character, but

suspects that it could be traced to local changes in current density

distribution patterns. Support for this suspicion comes from an earlier

set of experiments not reported here. Small coils were placed in the tube

walls which were connected to an integrating circuit. These coils

picked up a signal due to flux linking of the winding with currents in

the gas. They were never calibrated, nor was their spacial resolution

determined so the results obtained were purely qualitative. In those

experiments, large fluctuations in the output of these pick-ups had a
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frequency corresponding to the frequency of pressure pulses measured

by a transducer several inches downstream. The conclusion was that the

current patterns were interacting with a relatively uniform magnetic

field causing pressure pulses of the same frequency. Similar inter-

actions may be causing the fluctuations observed here, although the

current sensitive coils were not used to detect these effects in this

set of experiments.

The tendency of pressure pulses to steepen into shocks may

cause pressure pulses of the type shown in (i) to coalesce or partially

merge to form a pulse of the type shown in (j). The significant point

to be made here, at any rate, is that both (i) and (j) show large

pressure changes which fall well above the error margins shown on

Fig. A3-1. Fig. 5-23 show the points for five runs for case VI giving

results representative of both catagories discussed here. By joining

points, the oscillating or smooth rise for any run can be seen more

clearly.

Fig. 4-2(k), (1) and (m) are intended to indicate the effect of

initial detonation pressure on the changes observed. Only a few runs

were done at 20 mm of Hg. initial pressure and no detailed theoretical

solutions were performed to correspond to this case. Some qualitative

comparisons can be made on the basis of governing equations. From

eqn. (2.21) it can be seen that changes in u and c are directly

proportional to N which equals aB (E-uB)/p. From the perfect gas law,

we know that density is directly proportional to pressure for a fixed

temperature. Since the temperature in the wake of a detonations is

effectively unchanged for different initial detonation pressures,
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provided the mixture is unchanged, it follows that the term N in eqn. 2.21

is inversely proportional to the pressure upstream of the detonation. This

tells us that for the same electromagnetic interactions the changes in

u and c will be inversely related to the initial pressure. This trend

continues in eqn. 2.19. From this it can be seen that _ !1. So
p c p

without doing a detailed solution, since the term M/p is much smaller

than dc/c for the cases studied in detail and would not change

significantly for this case, it can be concluded that a larger percentage

pressure rise should be observed for lower pressures.

In Fig. 4-2(1), a large pressure pulse is observed at sta (1) for

the case with j x B retarding the flow. Comparing the pressure at sta (4)

between the control run (k) and (1), a small decrease in pressure is

seen for (1).

A more dramatic change is seen at sta (4) in Fig. 4-2(m). This result

parallels those of (i) and (j) but now the pressure pulse appears as a

shock wave. The percent increase in pressure here is approximately double

that seen in (i) and (j).

The oscilloscope traces referred to in this discussion have clearly

shown that there are some very definite pressure changes observed in the

flow field which are caused by the electromagnetic fields. The major

changes observed may be summarized by:

1) With j x B retarding the flow, at current densities of about

10 amps/cm2 and a magnetic field strength of about 1 web/m2 , a pressure

increase is observed at sta (1) about 650 ysec after the wave front

passes. These same conditions result in a point by point pressure

decrease at sta (4). (Fig. 4-2(h))
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2) With j x B pushing the flow, at average current densities of

about 10 amps/cm 2, with a magnetic field strength of about 1 web/m2

pressure increases are observed at sta (3) and sta (4). (Figs. 4-2(d),

(i) and (j)).

Results obtained for smaller current densities, and for electric

fields alone are also presented here. These will now be examined

systematically and compared with theoretical predictions.

a) Cases I and IV (Electric Fields only)

The typical experimental results for these cases are plotted on

Figs. 5-1 through 5-6. No plot is provided for sta (1) since no

modification of pressure was observed and nonepredicted.

At sta (3), theory predicts a pressure rise of as much as 14 cm

of Hg. for case I but experiments show no such rise (Fig. 5-1).

Experiments for case IV show a slight pressure rise (Fig. 5-3) about

4-6 cm of Hg. at maximum. If the enthalpy added byI - j terms was lost

to the tube walls or dissipated in some way, there would be no pressure

change for these cases. It appears as though this happened for case I,

but more energy was added in case IV and not all of it was lost, so a small

change in pressure was observed. A discussion of how this added energy

could be lost is provided in Appendix 7.

At sta (4), the predicted pressure rise is smaller than at sta (3).

Experiments show no noticeable change for case I, but a slight rise

above the control level for case IV (Figs. 5-4 and 5-6).

b) Cases II and V

A pressure increase at sta (1) after about 600psec is noted for

case V (Fig. 5-7). No such rise is seen for case II in the experiments.
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Theory for case II predicts a gradual rise after 850 usec, but no such

rise when the E -j term is set to zero in case IIA. Case VA (Fig. 5-7)

still predicts a pressure rise after 840 psec, so good qualitative agree-

ment, and reasonable quantitative agreement is seen between experiments

and theory when enthalpy loss is allowed. Noteworthy on Fig. 5-8 is the

fact that the temperature (sound speed) is still above the control

level in the pressure pulse. So, having allowed all the energy added to

escape, the temperature is still above normal.

It is interesting to note that the pressure pulse observed here

arrives sooner than predicted. This would indicate that the particle

velocity is smaller in magnitude than the sound speed by a greater

amount than used in the theory. (Type II characteristics have a slope

of (1/(u-c)) so the smaller u is, and the greater c is, the more

they bend backwards. Consequently disturbances can reach sta (1) from

downstream sooner.) It would seem as though wall effects have not only

reduced the pressure below what is expected by ideal 1-D theory, as

discussed in Chapter 4, but have also reduced the gas velocity pro-

portionately more than the sound speed.

Based on the relations for turbulent boundary layers given by

Fay 38, the boundary layer would close in the author's tube at a distance

of about 2.8 meters behind the wave or about 1300 psec after the wave

passes a point. The free stream is only a small fraction of the tube

after 500 usec. (See Appendix 7) This being a non-steady flow problem,

rarefaction waves originating at the wall could be propagating into the

free stream, and the free stream conditions could be affected through these.

This could, perhaps, account for the apparent reduction of particle

velocity below what is expected from I-D theory.
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The pressure measurements at sta (3) for case II show no obvious

change from the control pressure. This is in reasonably good agreement

with the case IIA solution which also predicts little change from

normal. The temperature for case IIA is still above normal, so the

assumption that heat transfer has dissipated the added enthalpy does not

lead to any ambiguities here.

Fig. 5-11 shows the pressure measured for cme V at sta (3) compared

to the solution for case VA. The measurements seem to indicate a slight

decrease below normal after about 250 usec, while theory predicts first

a slight decrease, then a moderate increase followed by another drop.

This pressure increase coincides with a rise in sound speed due to a

large suppression in particle velocity.

At sta (4), (Fig. 5-13) the pressure measurements for case II show

negligible deviation from the control, which is consistent with theory

for both case II or IIA.

Case V shows a definite decrease in pressure below the control, from

experimental measurements at sta (4). Fig. 5-15 compares these results

with theory for case VA. The theoretical curve has a slight "kink" in it

which looks very much like the curve for particle velocity change. The

conductivity used in these calculations started low, rose to one

plateau and then rose again, much like shown in Fig. 4-8. It appears as

though the change in pressure and particle velocity from the control

level has been directly influenced by the conductivity distribution.

Since it has not been proved that this conductivity distribution accurately

depicts the one in the experiment, the emphasis, in comparing experimental

results with theoretical predictions, should be placed on the trend
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of the solution rather than the point by point correspondence.

With this understanding, it can be said that the experiments for

case V distinctly display the features predicted in the solution for

case VA which considered all the enthalpy added to be lost. The

temperature, again, has not fallen appreciably below the control level

at this point for case VA.

In summary for cases II and V, there is good agreement between

experiments and the theoretical solutions which considered the enthalpy

addition to be compensated by an equivalent loss mechanism. Since in

these cases, the temperature still rose above normal in the field region,

there are no ambiguities resulting from assuming this heat lost.

c) Cases III and VI (J x B pushing the flow)

No pressure changes were observed at sta (1) for either of these

cases, and since none was predicted there is good agreement between

theory and experiment at this point.

At sta (3), the pressure measurements for case II (Fig. 5-17)

show very little difference from the control level. There appears to

be a slight tendency toward pressures lower than the control level

after about 450 ysec, which qualitatively agrees with the case IIIA

solution. Associated with this pressure drop in the solution is a

decrease in sound speed below the control level. This is a little

ambiguous as any mechanism for additional heat loss would not likely

lower the temperature below the level at which it normally equilibrated,

unless the heat transfer coefficient was altered. Discounting this

possibility for the present, it would seem more reasonable that the sound

speed would not drop below normal and the pressure would also be closer
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to the control level. It is expected that agreement between theory and

experiment would still be quite good if this were so.

This argument becomes of more importance in evaluating the results

for case VI. The few experiments done at sta (3),(Fig. 5-19) for this

case show a consistent rise in pressure beginning after about 100 psec

remaining above normal for several hundred psec, and a drop back to

normal about 400 psec after the wave passes, remaining around the control

level thereafter. The solution for case III which includes enthalpy

additition and effects of Lorentz forces, but has a lower current level

than the experiments of case VI, could be used to simulate partial loss

of both effects. This solution predicts a substantial increase in

pressure which does not return to the control level as do the experi-

mental results. Recalling that the turbulent boundary layer penetrates

far into the tube by 500 psec, one would expect a higher rate of

dissipation thereafter, thus perhaps explaining the deviation of

experiments from this solution after several hundred microseconds.

The solution for case VIA, on the other hand introduces some

ambiguities as a result of this simplified method of simulating heat

loss. Since the Lorentz forces are large and no energy is added to

suppress the particle velocity, it has risen several hundred m/sec above

the control level. The sound speed has fallen below the particle velocity,

with a corresponding temperature drop of about 1000*R below the control

level. This does not seem physically possible since the energy is

actually added and its rate of loss presumably would be governed, at

least in part, by the rise in temperature above normal. When the

temperature drops to the control level, one would expect energy losses
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to be reduced to the level experienced in control runs. The enthalpy

addition should therefore maintain the temperature a little above

normal and perhaps suppress the particle velocity a little. Consequently,

the particle velocity would not go supersonic and the pressure would not

drop far below normal as predicted for case VIA.

It would seem, therefore, as though a more sophisticated way of

treating heat loss would result in a closer agreement between theory

and experiment.

The pressure measurements for case III at sta (4) (Fig. 5-21) gave

no indication of change from the control level. This would agree with

the expected solution for case IIIA at this location.

The results for case VI at sta (4) are more interesting again.

(Fig. 5-23) Experiments showed pressure rises of 10 to 15% over a range

of several hundred psec. The pressure profile did not look exactly the

same for each experiment with these conditions. Two examples are shown

on Fig. 4-2 (i) and (j). The reader can follow the trend of other

experiments by examining the results on Fig. 5-23. The best comparison

with theory available, is with the solution for case III, which, as

was mentioned, could be considered a simulation of partial loss of both

the effects of enthalpy addition and the effects of the Lorentz forces.

Over the first 400 Usec the experiments display a definite rise above

normal, which agrees qualitatively with theory. After that there is

some discrepancy as the closing boundary layer undoubtedly dissipates

the effects seen in theory.

In summary, for cases III and VI. The experimentally observed

pressure changes are smaller than predicted by the solutions having no
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heat loss. When all the enthalpy which is added in experiments is

neglected in theory, the temperature falls far below normal and now

the pressure also falls below normal, a trend which is not seen in

experiments. The correct solution is expected to be somewhere in

between. If the heat loss were proportional to the rise in temperature

above normal, the solution would more closely agree with experimental

observations.

d) Wave Speed

The wave speed was only measured between two transducers, so the

accuracy is not adequate to check the theory. Theory predicts negligible

change, and from all measurements, no effect on the speed attributable

to the fields has been observed.

A general point can be made for all cases involving magnetic

fields. Hall currents were not taken into account in the theoretical

solutions. A Hall parameter of about 0.66 is estimated by order of

magnitude calculations in Appendix 1. Since the total current measured

in experiments included Hall currents, using these current levels in

the theory without compensation for Hall currents would lead to

predictions of enthalpy addition and momentum changes slightly larger

than could be attained,even with no dissipation. In this case,

dividing the currents in the computations by a factor of 1.44 for a

magnetic field strength of 1 web/m2 would give a more accurate

estimate of the effects to be expected. The Hall componenet of

current is perpendicular to the electric field direction so it would

not contribute to E j enthalpy addition. It is also parallel to the

axis of the tube so the resulting j x B forces would be at right
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angles to the axis, giving no contribution to momentum changes in the

x direction unless through modifying the boundary layer.

It is nevertheless not likely that the discrepancy between idealized,

no-loss theory and experiment can be accounted for in terms of Hall

effects.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Conclusions

a) Theoretical Predictions

Analytical solutions for the one-dimensional non-steady model

proposed by the author, using electric field and current distributions

obtained from experimental results, have predicted some definite trends

for modification of the flow field for the three orientations of

electric and magnetic fields under study. The three orientations under

consideration are electric fields only, electric fields plus magnetic

fields which result in Lorentz forces which retard the gas motion and

electric fields plus magnetic fields which result in Lorentz forces

which push the gas. These field conditions were examined to determine

their effects on particle velocity, sound speed and pressure in regions

upstream of the field, within the field and downstream of the field.

The trends predicted are as follows.

All three field orientations would produce some pressure rise in

the region upstream of the field, but the combination of electric fields

and Lorentz forces which retard the gas motion would produce a

considerably larger pressure rise here than either of the other field

orientations. Correspondingly, the pressure rise is noticed nearer the

wave front for this case than for the other two.

Within the field region, all three field orientations would produce

some pressure rise, but the combination of electric fields and Lorentz
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forces which push the gas would produce a greater pressure rise than

either of the other two. In the transition from the field region to the

region downstream of the field, the pressure would generally decrease,

and again the case which had a combination of electric fields and

Lorentz forces which push the gas would maintain the highest pressure

in the downstream region.

For all three of these orientations of fields, the major changes

produced by electromagnetic fields were far enough from the wave front

so that less than 1 per cent change in detonation wave speed was

predicted.

Heat loss to the tube walls was simulated by considering the effect

of having the E . j enthalpy addition just balanced by an unspecified

loss mechanism, so no net enthalpy was added. From these solutions, it

could be seen that the effect of energy losses was to generally reduce

the changes brought about by the fields. Even with all the added energy

lost, the case with Lorentz forces retarding the flow still maintained

temperatures generally above the level of control runs within the field

region and still produced a pressure rise upstream of the field region

(although reduced in magnitude). In the transition from the field to the

region downstream, the general trend of reducing pressures resulted in

a pressure level below that for control runs (in this downstream region)

for this case with Lorentz forces retarding the flow. When all the

added energy was considered lost (in the case with Lorentz forces pushing

the gas) the temperature was observed to fall far below the level it

maintained in control runs within the field region, resulting in pressures

far below normal. The fact that the temperature fell far below normal
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for this case, appears to make the trial assumption of all added energy

lost an ambiguous one for this case.

b) Experimental Observations

Experimental pressure measurements simultaneously obtained from

two pressure transducers (one upstream of the field, the other in the

field or downstream of the field) were presented and examined for

trends of changes. It was observed that there was a definite rise of

pressure at the station upstream of the field for the case with Lorentz

forces retarding the gas motion. The magnitude of this rise was seen to

increase as the current density in the field region was increased. No

noticeable change was observed here for the other two orientations of

fields.

At the station in the field region, a small pressure rise was observed

for the case with electric fields only, but of these three orientations,

the greatest rise above normal was seen for the case which had Lorentz

forces pushing the gas.

At the station downstream of the field, the greatest pressure rise

above normal was again observed for the case which had had Lorentz

forces pushing the gas within the field. These pressure rises were

observed to be as much as 20 per cent above normal. The case which had

had the Lorentz forces opposing the gas motion within the field

exhibited pressures decidedly below the normal level at this downstream

position.

Within experimental accuracy no changes were observed in the

detonation wave speed in the experiments.
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c) Comparison of theory and experiment

In comparing theory and experiment, it can be seen that the

prediction of maximum pressure rise above normal in the region upstream

of the fieldfor the case with Lorentz forces retarding the flowhas been

verified in experiments. The smaller changes predicted here for other

orientations of fields must have been too small to detect in experi-

ments.

The prediction of greatest pressure rise above normal within the

field for the case having Lorentz forces pushing the gas was also verified.

The trend of falling pressure in the transition from the field region

to the region downstream was seen most strongly in the case where the

Lorentz forces were opposing the flow, which is also in agreement with

theory. Observation of the largest pressure rise above normal at this

downstream station for the case which had had Lorentz forces pushing

the flow was also in agreement with theory.

The fact that no change in the detonation wave speed was observed

for these experiments was also, within experimental accuracy, a

verification of the theoretical predictions.

d) Evaluation of simulated heat loss

The experimental results for the case with Lorentz forces opposing

the flow was in better quantitative agreement with the theoretical

solutions with simulated heat loss than for the ones with no losses. For

the former case, the temperature within the field region as seen in

solutions was higher than in control solutions even with the added energy

loss, so it was not considered unreasonable that all this added energy

could be lost. For the case with Lorentz forces pushing the gas, the
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solution, allowing all added energy to be lost predicted temperatures far

below normal with resulting pressures far below normal. This large

pressure drop was never observed in experiments and the fact that the

predicted temperatures dropped so far below normal gave evidence that

the assumption which allowed all the added energy to be lost was not

correct. The experimentally observed rise in pressure was smaller than

predicted when no losses were considered, however, so it was concluded

that some losses occurred in this case too, but not all the added

energy was lost.

The general conclusion that energy losses to tube walls could

have a substantial effect in reducing the pressure in the flow field

was first arrived at by comparing results obtained by the author in

his tube, and published results by other investigators in various

sized tubes, to the theory of a progressive rarefaction wave, which has

no allowance for tube diameter.

e) Shock interaction with detonation

In a study, somewhat related to the general thesis (Appendix 6),

it was demonstrated that when large currents are allowed to concentrate

in a small region in a transverse magnetic field, shock waves are

formed. This method was used to generate shock waves behind the wave

front. The detonation wave was observed to become overdriven when these

shocks overtook it, resulting in propagation speeds several hundred m/sec

above their usual C-J speed. This result is again qualitatively explained

on the basis of a one-dimensional model.
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6.2 Suggestions for Future Research

Many of the arguments used to explain experimental results ended in

the conclusion that energy losses to the tube walls had a great effect

on the flow field. Heat transfer measurements to the tube walls which

could identify the mechanism of loss as well as the magnitude would

significantly enhance knowledge in this area. A theoretical model

employing two-dimensional concepts to determine loss rates, combined

with the one-dimensional nonsteady formulation to describe the flow

field would appear to be a good approach for analysis. Extending this

study to the case with electromagnetic interactions would presumably

lend support to inferences made in this thesis.

Although many interesting effects were observed in these experi-

ments, the slow increase of conductivity behind the wave partly

confined the interesting results to regions too far from the wave

front to alter its character. The author recommends performing similar

experiments with a more sophisticated method of seeding which could

result in a more rapid increase in conductivity. Large current densities

immediately behind the front should cause large changes in wave speed.

Such effects are predicted with the theory used in this thesis for the

above mentioned conditions but were not observed in experiments, nor

were they predicted for the field variations obtained in experiments.

The experiments reported in appendix 6 were only of a preliminary

nature but gave promise of an interesting area of research. Studying the

actual interaction of the shock and detonation waves by schlieren

techniques may prove interesting. It would also be of interest to see

how well one-dimensional theory could predict changes in wave characteristics.
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Qualitative comparisons were in agreement here, but careful quantitative

comparisons were not made. It would be of interest to obtain structure

measurements in the newly formed wave, after the shock overtakes the

detonation, to see if the location of the region of chemical reaction

had shifted from its former location relative to the von Neumann spike

or not.
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FIGURE 2-1 (a), (b), (c), (d)
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a) no voltage on electrodes
90 volt battery

b) 500 volts initially on
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no B field
90 volt battery
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no B field
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40 mm Hg initial pressure

a) Control - no fields
Current and B field monitor

Pressure sta (1)
27 cm Hg/cm on scale
100 ysec/cm
2 filters in series on
of amplifier

output

Pressure at sta (3)
27 cm Hg/cm on scale
100 ysec/cm
2 filters on output

40 mm Hg initial pressure

b) Case IV (E field only)
Current to 1st electrode
1420 amps/cm on scale
100 ysec/cm

.- Pressure at sta (1)
27 cm Hg/cm on scale
100 ysec/cm
1 filter on output

Pressure at sta (3)
27 cm Hg/cm on scale
100 ysec/cm
2 filters on output

FIGURE 4-2 (a) and (b) SAMPLE OSCILLOSCOPE TRACES

All runs are with stoich C2H2 + 02



40 mm Hg initial Pressure

c) Case V (j x B retarding)
Current to 1st electrode
1420 amps/cm on scale
100 psec/ cm sweep
B field monitor

Pressure sta (1)
27 cm of Hg/ cm on scale
100 Usec/ cm
2 filters on output

Pressure at sta (3)
27 cm Hg/cm on scale
100 usec/cm2 filters
40 mm Hg initial Pressure

d) Case VI (j x B pushing)
B field monitor
Current to 1st electrode
1420 amps/cm on scale
100 ysec/cm sweep

Pressure sta (1)
27 cm Hg/cm on scale
100 usec/cm sweep
2 Filters

Pressure sta (3)
27 cm Hg/cm on scale
100 usec/cm sweep
2 filters

FIGURE 4-2 (c) and (d) SAMPLE OSCILLOSCOPE TRACES



40 mm Hg initial Pressure

e) Case IV (E field only)
Current to 1st electrode
1420 amps/cm on scale
100 ysec/cm sweep

Pressure sta (1)
27cm Hg/cm on scale
100 usec/cm sweep
1 filter on output

wave speed - 2280 m/sec
Sum of pressures at sta (1) and (4)

Pressure sta (4)
27 cm Jig/cm on scale
100 psec/cm sweep
2 filters
2nd rise is reflected shock

40 mm Hg initial pressure

f) Control - no fields

Pressure sta (1)
27 cm Hg/cm on scale
100 psec/cm sweep
2 filters
Plus: Pressure sta (4)
108 cm Hg/cm on scale
100 ysec/cm
2 filters
Wave speed 2210 m/sec
Pressure sta (4)
27 cm Hg/cm on scale
100 psec/cm
2nd rise is reflected shock

FIGURE 4-2 (e) and (f) SAMPLE OSCILLOSCOPE TRACES



40 mm initial pressure

g) Control - no fields
Pressure sta (1)
27 cm Hg/cm on scale
100 ysec/cm sweep
1 filter

--- Pressure sta (4)
27 cm Hg/cm on scale
100psec/cm sweep
1 filter

40 mm Hg initial Pressure

h) Case V (J x B retarding flow)
Pressure sta (1) only
27cm Hg/cm on scale
100 ysec/cm sweep
1 filter

Pressure sta (4)
27 cm Hg/cm on scale
100 usec/cm sweep
1 filter

Current to 1st electrode
1420 amps/cm on scale
100 usec/cm sweep

Voltage on 2nd electrode
500 volt/cm; 100Ausec/cm

Voltage on 1st electrode
500 volt/cm; 100 Asec/cm

FIGURE 4-2 (g) and (h) SAMPLE OSCILLOSCOPE TRACES



40 mm Hg initial pressure

i) Case VI (j x B pushing flow)
Pressure sta (1)
27 cm Hg/cm on scale
100 psec/cm sweep
1 filter

Pressure sta (4)
27 cm Hg/cm on scale
100 ysec/cm sweep
2 filters
2nd sharp rise is reflected shock

Current to 1st electrode
710 amps/cm on scale
100 psec/cm sweep

Voltage on 2nd and 1st electrode
500 volt/cm
100 usec/cm sweep

40 mm initial pressure
j) Case VI (j x B pushing flow)

Pressure sta (1) plus sta (4)
Sta (1) - 27 cm Hg/cm on scale
Sta (4) - 108 cm Hg/cm on scale
100 usec/cm sweep
1 filter on each
Wave speed 2210 m/sec

Pressure sta (4) only
27cm Hg/cm on scale
100 ysec/cm sweep
1 filter
2nd sharp rise is reflected shock

Current 1st electrode
710 amps/cm on scale
100 psec/cm sweep
Voltage on 2nd and 1st electrode
500 volt/cm
100 psec/cm sweep

FIGURE 4-2 (i) and (j) SAMPLE OSCILLOSCOPE TRACES



20 mm Hg initial pressure

k) Control - no fields
- Pressure: sta (1) and sta (4)

Sta (1) - 27 cm Hg/cm on scale
Sta (4) - 108 cm Hg/cm on scale
100 usec/cm
2 'filters
Wave speed - 2230 m/sec

Pressure: sta (4) only
27 cm Hg/cm on scale
100 usec/cm sweep
2 filters
2nd peak is reflected shock

20 mm Hg initial pressure

1) J x B retarding flow
1000 volts initially on electrodes
-1 web/m 2 B field

Pressure: sta (1) only
27 cm Hg/cm on scale
100 psec/cm sweep
1 filter

- Pressure sta (4) only
27 cm Hg/cm on scale
100 I sec/cm sweep
1 filter
2nd peak is reflected shock

Current to 1st electrode
1420 amps/cm on scale
100 P sec/cm sweep

Voltage 2nd and 1st electrode
500 volt/cm
100 Isec/cm sweep

FIGURE 4-2 (k) and (1) SAMPLE OSCILLOSCOPE TRACES



20 - Hg initial pressure

) j x B pushing flow
1000 volts initially on electrodes
+1 web/m2 B field

Pressure sta (1) plus sta (4)
Sta (1): 27 cm Hg/cm on scale
Sta (4): 108 cm Hg/cm on scale
100 psec/cm sweep
1 filter
Wave speed - 2230 m/sec

Pressure sta (4) only
27 cm Hg/cm on scale
100 usec/cm sweep
1 filter

Sharp rise 140 ysec behind
front due to E-M effects

Rise after 660 psec is reflected
shock

-Current to 1st electrode
710 amps/cm on scale
100 psec/cm sweep

Voltage 2nd and 1st electrode
/500 volt/cm

100 p1sec/cm sweep

FIGURE 4-2 (m) SAMPLE OSCILLOSCOPE TRACES
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ELECTRICAL CONDUCTIVITY
vs. TIME
CASE II
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APPENDIX 1

SAMPLE CALCULATIONS

The values of temperature, pressure, etc. on which these calculations

are based are those used in the theoretical calculations to correspond

with the experiments. The experiments were done for 40 mm of Hg. initial

pressure in stoichiometric C2 H 2-02 mixtures.

Magnetic Reynolds Number

Rm = y ULU (for induced fields)

y = 4w x 10~ (magnetic permeability)

a ' 10 mho/m (electrical conductivity)

3
U 10 m/s (velocity of product gas)

L 1 meter (length of field in test section)

Rm = 4N x 10-3 = 10-2

To calculate corresponding Rm in terms of applied fields

E 2000 v/m (applied electric field)

a " 10

L ' 1

B 1 web/m2 (magnetic field intensity)

AB L = 03 -3 -2
Rm B-B-L =8w xl10 ~2.Sxl10
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Ratio of Lorentz Force to Pressure

P ". 100 cm Hg , 1.33 x 105 newt/m2 (pressure)

j a aE "' 2 x 104 amps/m2 (current density)

B % 1 web/m2 (magnetic field strength)

1 " 1 meter (characteristic length)

(jxB)/l 0.15 per meter
PCJ

Ratio of Electrical Energy to Flow Energy

u i 10 3 m/sec (particle velocity)

p " 1.3 x 105 newt/m2 (pressure)

4 2j i 2 x 10 amps/m (current density)

E A 2 x 103 volts/m2 electric field)

1 I 1 meter (characteristic length)

p = p/RT (gas density)

7 3(E.j)/l= (E-j)/l , 4 x 10 watts/m .06 per meter
pu CpT kpu 6.65 x 108 watts/m2

(k-1)

Electron Collision Frequency

V = fd2 nN f- <v>

8K BT, N 5<v > = - = 3.7 x 10 m/sec (electron velocity)
e

for T = 36000 K
e

d2 = E X Q 0 x 10-15 cm2 (diameter of molecules)2

n % 2.4 x 10 18/cc (number density)

v " 2.5 x 10 12/sec

I . ;- 1 '0 -1, - -- . - --.--
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Hall Parameter

ne e

n = an (electron number density)

a E j a(25x10-15 -
a = (. -1010 -10 0 = 3,.9 x 104 a (mho/m)

3.84 x 1010 3.84 x 1010

(from Saha Eqn.)

a .1 mho/cm (electrical conductivity)

-20
e = 16 x 10 coul. (electron charge)

B 1 web/m2 (magnetic field strength)

A 0.66

Probe Sheath Voltage Drop

At zero current, the space charge on a probe in a plasma

KBT,
Be volts
e

T 3600*K (electron Temp.)e

K = 1.38 x 10-16 erg/*K (Boltzmann constant)B

e = 1.6 x 10~ 9 coulomb (electronic charge)

K T
e .31 volts

Thermionic Emission

Js C ET 2 F-e$/kT
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for example for emission-from Tungsten

CE = 60.2 amp/cm2 deg2

T = 30000K

S = 4 volts

j = 100 amp/cm2

= 106 amp/m2

This current density is higher than observed but the electrodes are

not tungsten, nor would they be as hot as the gas - even at the surface.

The author has not been able to find a value of CE for potassium,

but if it is the same as tungsten, then the current emitted at several

temperatures is:

4 = 2.2 volts

-eo/kT = -25,500/T

i) For T = 1000*K

6 -25.5 4j = (60.2) (10 ) (Ce ) (104)S

= 4.9 amps/m 2

ii) For T = 1500*K

4 6 -17j= (60.2 x 10 ) (2.25 x 10 ) (Ce )

= 5.64 x 104 amps/m2

j " 2 x 104 amps/m2 from experiments

Even for CE much smaller than used here, the expodential function

will quickly increase so thermionic emission could account for the current

density for a temperature around 1500*K at the surface of the layer of

potassium on the electrode.
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APPENDIX 2
COMPUTER PROGRAM (MAD) LISTINGS

DETDA R
R THIS PROGRAM HAS INTERNAL SHIFT
R AND REQUIRES GTUSRGTPRKMARCHANDLAZY TO OPERATE
R THIS DECK HAS RAREFACTION ON FIRST II CHARACTERISTIC
INTEGER RKYZPLTCYCLESSOLNS,SOLDONRMAXKMAXVHEAD,
1INTRMINYNREADPRINTRMAXKSKNXTRS
BOOLEAN SW1,SW3
PROGRAM COMMON U,C,XTP
D'N U(1202,PLT),C(1202,PLT),X(1202,PLT),T(1202,PLT),
1P(1202,PLT),PLT(20),VNOT(400)
READ BCD TAPE 4,LOUPES9SOLNS
WRITE BCD TAPE 2,LOPRNTSOLNS
THROUGH TY31,FOR SOLDON=1,1,SOLDON.G.SOLNS
READ BCD TAPE READPOINTSRMAXqKMAX
PLT(2)=14
PLT(4)=RMAX
PLT(5)=KMAX
PLT(11)=13
PLT( 1)=28-PLT( 11)
READ BCD TAPE 4,TR10,XOWTFFM1,M2,V1,V2,P1,oQBRO'
lElE2,E3,E4,E5,E6,S1,52,53,54
YN=0
INT=1
SENDA.(O.,0.,0.,0.,0.,Q,RMAXYN)
SENDB.(BQV1,O.,0.,0,0,0.,0.,0.)
WRITE BCD TAPE 2,TR20,XOWTFFM1,M2,V1,V2,P1 ,Q,B,RORMAXKMAX
1,E1,E2,E3,E4,E5,E6,S1,52,53,S4
W*R RMAX .G.85,TIO TY31
WRITE BCD TAPE 2,WAVE
WRITE BCD TAPE2oJOE
COW=V2/M2
UOW=V1-V2
U(0,0)=UOW
C(0,0)=COW
X(0,0)=0.
PNOT=133.3*P1
CNOT =V1/M1
VNOT (0) =V1
POW=PNOT*(1.+Q*Ml*M1)/(1.+Q*M2*M2)
P(0,0)=POW
ACC=M2*M2*(1.+(Q-1.)*M2*M2*.5)/((1.+Q*M2*M2)*(1.+Q*M2*M2))
AA=(Q-1.)*.5-Q*Q*ACC
BE=1.-2*Q*ACC
CUE=(ACC-AA*(M1).P.4)/(Ml*M1)-BE
PRINT RESULTS CUE
T(0,0)=X(0,0)/V1
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LX2=XOW
T(1,0)=T(0,0)+TFF
R=1
Y=R-1
RMIN=1
YN=O
K=O
SENDC.(0,XOW,0.,o,0,0,0,0)
PRESS=POW/1333.
WRITE BCD TAPE 2,FORT,0,0,UOWCOWX(0
T( R,O)=T (0,0)+R*TFF
U(RO)=UOW*(2.22*RO/(RO+(UOW+COW)*T(R
C( RO)=COW-(Q-1. )*(UOW-U(RO) )*.5
P(R,0)=POW*(1.-(Q-1.)*(UOW-U(R,0))/(2
UR=(U(RO)+U(Y,O))*.5
CR=(C(RO)+C(YO))*.5
X(RO)=X(YO)+(T(RO)-T(YO))*(UR-CR)
PRESS=P(RO)/1333.
WRITE BCD TAPE 2 ,FORT,R,K,U(RK),C(R
WHENEVER R.E.RMAX
K=K+1
R=RMIN
TRANSFER TO TY21
END OF CONDITIONAL
R=R+1
Y=R-1
TRANSFER TO K010
Z=K-1
Y=R--l

K010

TY 21,

WA 12

W A 10

,0),T(0,0),PRESS

,0) )-1.22)

.*COW))p.(2.*Q/(Q-1.))

,K),X(RK),T(RK),PRE5S

((VNOT(K)+VNOT(Z) )*.5)

VNOT(K)+VNOT (Z) )*.5)

5
5
5
5

K=1
CONTINUE
Z=K-1
C(YNtK)=C(YNZ)
U(YN,K)=U(YN*Z)
P(YN,K)=P(YNZ)
U2=U(YNZ)
VNOT (K)=VNOT (Z)
DURI=O
X(YNtK)=X(YNiZ)+LX2
WIR INT.E.5
T(YN,K)=T(YN-1,Z )+LX2/
Qt E
T(YNK)=T(YNZ)+LX2/((
EIL
UR=(U(YNK)+U(YNZ))*.
CR=(C(YNfK)+C(YN,Z))*.
PR=(P(YNsK)+P(YNZ))*.
XR=(X(YNK)+X(YN,Z))*.
W'R M2.GE..99
UO=U(YNZ)
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TO=T(YNtZ)
CO=C (YN 9 Z)
OtR INTeE*5
TO=T(YNgZ)
UO=U(YNtZ)
CO=C(YNtZ)
0 # E
UZ=(U(YN*Z)+U(
CZ=(C(YNtZ)+C(
ucz=uz-cz
UCR=UR+CR
TO=(X(YN*K)-X(
LL=TO-T (YN sZ)

YN+19Z))**5
YN+ltZ))**5

YNtZ)-T(YNgK)*UCR+T(YNgZ)*UCZ)/(UCZ-UCR)

L=T(YN+19Z)-T(YNtZ)
UO=U(YNoZ)+(U(YN+ltZ)-U(YNtZ))*LL/L
CO=C(YNgZ)+(C(YN+ltZ)-C(YNgZ))*LL/L
EIL
WOR XR*GE*1#28

,SR=O
OfR XR 6LEo*28
SR=O
OIE
SR=51
EOL
WOR XR*GE**28 oAND* XR*LE*o78
XER=XR-o28
0 # E
XER=XR-*78
EIL
ER=El+E2*XER
UEJR=CR*ER*SR*(ER-UR*B)/PR
UJBR=CR*(l*-Q*UR/CR)*B*CR*SR*
R=YN

(ER-UR*B)/(Q*PR)

PRSUR6(USRsUSKtXqTqCqPqRvK)
DUR=(USR+UEJR+UJBR+UAR)*(T(YN,,K)-TO)
DTT=5+*l*(*ABS*(DUR))
CTT=l
C2=CO+(Q-1*)**5*(DUR-(U2-UO))
M2=(VNOT-U2)/C2
WIR M2*G*1*0
M2=1*0
C2=COW
E 0 L
ACC=M2*M2*(l*+(Q-lo)*M2*M2**5)/((l*+
EX=Q*Q*ACC-*5*(Q-1t)
WY=1*+CUE-2*Q*ACC
MISQ=(WY+SQRT*O(WY*WY-4**EX*ACC))/(2*
MlA-SQRT*(MiSQ)
VlA=MlA*CNOT
U2A=VlA-C2*M2

WA 15

Q*M2*M2)*(l*+Q*M2*M2))

*EX)
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WHENEVER.ABS.((VlA-VNOT)/V1)+.ABS.((U2A-U2)/U2).LE..001.AND.
1CTT.G.DTTT*O WA20
VNOT=VlA
U2=U2A
CTT=CTT+1
TRANSFER TO WA15
VNOT(K)=VlA
U(YNtK)=U2
C(YNK)=C2
P(YNK)=PNOT*(1.+Q*Ml*M1)/(1.+Q*M2*M2)
T(YNK)=T(YNZ)+LX2/((VNOT(K)+VNOT(Z))*.5)
DUW=1+.ABS.(DUR)
W*R .ABS.((DUR1-DUR)/DUW).LE..01,T'O WA40
DUR1=DUR
TRANSFER TO WA 10
CONTINUE
M1=M1A
PRESS=P(YNK)/1333.
WRITE BCD TAPE 2,FORT,0,KU(YNK),C(YNK),X(YNK),T(YNK),
1PRESSVNOT(K),USRUEJRUJBRM1,M2,DURERSR
W'R INT.E.2
YN=YN+1
RMIN=RMIN+1
SENDA.(0.,0.,0.,0.,0..QRMAXYN)
INT=5
TIO WA12
O'R INT.E.5
INT=3
LX2=XOW
E'L
LAZY.(U,C,XsTPR,K)
R=YN+1

WA20

WA40

TY22 23

TY23

1) 9T
W*(T

'0 TY23
(RMINK)-T(YNK)))/(1.-U

1CW/UCRM)
PRINT FORMAT SCHRK*X(YNK+1),XW
WvR ((XW-X(YNK+1))/XOW).GE.ilT'O TY23
LX2=XW-X( YNg K)
PRINT RESULTS XW
INT=2
CONTINUETY23

RMIN=R
MARCH.(PLTB,Q,R,K,RMINRMAXSW3)
WHENEVER K.E.KMAX, TRANSFER TO TY
WHENEVER SW39T'O TY30
UCW=VNOT(K)
UCRM=U(RMIN,K)+C(RMINK)
WHENEVER UCW *GE.UCRMsTRANSFER TO
T(YNK+1)=T(YNK)+LX2/VNOT(K)
X(YNK+1)=X(YN,K)+LX2
W'R .ABS.T(RMINgK).G..ABS.T(YNgK+
XW=(X(YNK)-UCW*X(RMINK)/UCRM+UC
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WHENEVER K.E.KMAX, TRANSFER TO TY30
W'R K.LE.ll
K=K+1
R=RMIN
T'O WA12
E'L
W#R (K-(K/PRINT)*PRINT).E.0,T'O TAPE(O)
K=K+1
R=RMIN
TOO WA12

TAPE(O) CONTINUE
PT=PLT(11)-13
PL=PLT(ll)-1
T'H SLIPFOR KS=PT,1,KS.G.PL
KNXT=KS+2
THROUGH SLIP, FOR RS=0,1,RS.G.RMAX
U(RSKS)=U(RSKNXT)
C(RSKS)=C(RSKNXT)
X(RSgKS)=X(RSKNXT)
T(RSqKS)=T(RSKNXT)
P(RS,KS)=P(RSKNXT)

SLIP CONTINUE
PLT(11)=PLT(11)+2
PLT(1)=28-PLT(11)
K=K+1
R=RMIN
TPO WA12

TY30 CONTINUE
TY31 CONTINUE

EXECUTE EXIT.
VECTOR VALUES PRINT=2
VECTOR VALUES READ=4
VECTOR VALUES PLT(O)=2
VECTOR VALUES POINTS=$(3(14))$
V'S TR1O=$(5(F1O.4)/5(F1O.4)/6(F10.4)/4(F1O.4))*$
VECTOR VALUES SPACE=$(lX)$
VECTOR VALUES LOUPES=$(I3)$
VECTOR VALUES LOPRNT=$(lX,13,20H SETS OF INPUT DATA. )$
V'S TR20=$(11H I-NPUT DATA/5X,3HXOW,1OX,3HTFF,1OX,2HM1,12X,2HM
12,11Xs2HV1,11X,2HV2,11X,2HP1,11X,.1HQ, 12X,1HB/lX,9(lX,1PE12.5)
2/6X,2HRO,12Xq9HRMAX KMAX,6X,2HEl 11X,2HE2, 11X,2HE3,11X'2HE4,1
31X,2HE5,11X,2HE6/3X,1PE12.5,6X,2(lXI4),2X,6(lPE12.5,1X)/1OX
42HS1,11X,2HS2,1IX,2HS3,11X,2HS4/4X,4(lPE12.5,1X))*$
VECTOR VALUES WAVE=$(15H FOR WAVE FRONT /2X,1H0,2X,1HK,4X'6HU
1(OK),8X,6HC(OK),8X,6HX(0,K),8X,6HT(0,K),8X,6HP(OK),7X,7HVN
20T(K),8X,3HUSR,11X,4HUEJR/5X,4HUJBR,1OX,2HM1,12X,2HM2,12Xf3HD
3UR.11Xo2HERi12X,2HSR/lX/10H OTHERWISE)*$
VECTOR VALUES JOE=$(lH-,2X,1HR,2X,1HK,4X,6HU(RK),8X.6HC(RK)
1,8X,6HX(RK),8X,6HT(R,K),8X,6HP(RK),9X,3HXPP,11X,3HTPP,11X,3
2HPPP/1X,4X,3HUSR,1OX,3HUSK,1OX,4HUJBR,9X,4HUJBK,9X,4HUEJR,9X,
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34HUEJK,9X,4HDUR1,9X,4HDUK1/9X,2HER,11X,2HSR)*$
VECTOR VALUES CHECK=$(2XI4)$
VECTOR VALUES FORT=$(2X,214,8(1PE13.6,1X)/lX,6(1PE13.6,1X)*$
VECTOR VALUES SCHRK=$(lX,2(lPE13.6,1X))$
INTEGER CTTPTPL
DIMENSION VNOT(400)
END OF PROGRAM

R
EXTERNAL FUNCTION (PLTBWQWRWKWRMINRMAX*SW3)
ENTRY TO SENDC.
XOW=BW
SW3=OB
READ BCD TAPE 4,PTSPRTROWCOLROMXCOMXROMNCOMN
READ BCD TAPE 4,FLDElE2,E3,E4,E5,E6,S1,52,S3,S4
FUNCTION RETURN
ENTRY TO MARCH.
PROGRAM COMMON U,C,XTP
R=RW
K=KW
Q=QW
B=BW
POT(0)=PLT(O)
POT( 1)=PLT(1)
POT (2)=PLT (2)
POT(3)=PLT(3)
Z=K-1
N=1
CONTINUE
DUR=O
DUK=O.
Y=R-1
C(R,K)=(C(RZ)+C(YK))*.5 +(Q-1.)*.25*((U(RZ)+DUR)-(U(YK)+D

lUK))
U(RK)=(C(RZ)-C(YK))/(Q-1.)+(U(R,Z)+DUR+U(YK)+DUK)*.5
UR=(U(R,Z)+U(RK))*.5
UK=(U(YK)+U(RK))*.5
CR=(C(RZ)+C(RK))*.5
CK=(C(YK)+C(RK))*.5
UCR=1./(UR+CR)
W'R .ABS.(UK-CK).LE..1
X(RK)=X(YK)
T(R,K)=T(RZ)+UCR*(X(RK)-X(RZ))
0' E
UCK=1./(UK-CK)
X(RK)=(X(RZ)*UCR-X(YK)*UCK+T(YK)-T(R,Z))/(UCR-UCK)
T(RK)=(X(YK)-T(YK)/UCK-X(RZ)+T(RZ)/UCR)/(1./UCR-1./UCK)
E'L
XR=(X(RK)+X(RZ))*.5
XK=(X(RK)+X(YK))*.5

PROVA

TY21

TYl 1
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TR=(T(RK)+T(RZ))*.5
TK=(T(R,K)+T(YK) )**5
V1=X(0,K)/T(0,K)
TAUR=(TR-XR/V1)*1.E06
TAUK=(TK-XK/V1)*1.E06
W'R TAUR.G.600.
TAUR=600.
E#L
W'R TAUK *G.600.
TAUK=600.
E'L
W'R XR.GE.1.28
SR=0
SK=O
O'R XR .LE..28
SR=0
SK=0
OtE
SR=S1+S2*TAUR+S3*(TAUR).P.2+S4*(TAUR).P.3
SK=Sl+S2*TAUK+S3*(TAUK).P.2+S4*(TAUK).P.3
EvL
PATHP.(UCXTP,R,K,XPPPPPTPP)
PR=(P(R,Z)+P(RK))*.5
PK=(P(YK)+P(RK))*.5
EXECUTE PRSUR.(USRUSKXTCPRK)
W#R XR.GE..28 *AND. XR.LE..78
XER=XR-. 28
O'E
XER=XR-.78
E'L
ER=El+E2*XER+(E3*XER+E5)*TAUR+(E4*XER+E6)*(TAUR),P.2
EK=-l+E2*XEK+(E3*XEK+E5)*TAUK+(E4*XEK+E6)*(TAUK).P.2
UEJR=CR*ER*SR* ( ER-UR*B) /PR
UEJK=-CK*EK*SK*(EK-UK*B)/PK
UJBR=CR*( 1.-Q*UR/CR)*B*CR*SR*(ER -UR*B)/(OQ*PR)
UJBK=CK*(1.+Q*UK/CK)*B*CK*SK*(EK-UK*B)/(Q*PK)
DUR 1=( USR+UEJR+UJBR+UAR)*(T(RK)-T(RZ))
DUKl= (USK+UEJK+UJBK+UAK ) *( T (R ,K ) -T ( Y ,K)
WHENEVER .ABS.(DUR1-DUR)+.ABS. (DUK1-DUKI.LE.1.0,TRANSFER TO

1 PR10
DUR=DUR1
DUK=DUK1
TRANSFER TO TYl
WHENEVER R.LE.ROMN .AND.K.LE.COMNTRANSFER TO TY16
WHENEVER R.GE.ROMXTRANSFER TO TY16
WHENEVER K .GE.COMXTRANSFER TO TY16
WHENEVER R.E.RMINTRANSFER TO TY16
WHENEVER (R-(R/ROW)*ROW).E.O .AND.(K-(K/COL)*COL).E.0
TRANSFER TO TY16
0 THER W IS E

PR10

I
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TRANSFER TO PR20
END OF CONDITIONAL
PRESS=P(RK)/1333.
PRP=PPP/ 1333.
WRITEBCD TAPE 2,FORT,R,K,U(RK),C(RK),X(RK),T(RK)'PRESS,X
1PPTPPPRPUSRUSKUJBR,UJBKUEJRUEJKDUR1,DUKlERSR

TY16

PR20

SLIK

TY 17

TY18

K),P(RK),
,T(R,Z) ,C(

-1) ,T (RZ-

-7,K-8,K-9

LAZY.(UCXTPR#K)
WHENEVER R.E*RMAXTRANSFER TO PR22
WHENEVER (X{RK)-X(RZ))/XOW.GE..5,TRANSFER TO TY17
UCK=U(RoK)-C(RtK)
UCZ=(U(RZ)+U( R+1,Z)-C(R+1,Z)-C(RZ))*.5
WHENEVER UCZ.E.UCK, TRANSFER TO TY17
TIN =(T(RZ)*UCZ-T(RK)*UCK+X(RK)-X(RZ))/(UCZ-UCK
WHENEVER TIN -.LT(YZ),TRANSFER TO TY17
W#R ( TIN-T (R+1,Z) ) / (T (RZ) -T (YZ)).GE..2,T 90 TY17
PRINT RESULTS TIN
WRITE BCD TAPE 2,FORTRKU(RK),C(RK),X(RK),T(R,
1X(R+1,Z),T(R+1,Z),U(R+1,Z),C(R+1,Z),PP(R+1,Z),X(R,Z)
2RZ) iP(RZ)
WRITE BCD TAPE 2,FORTRZ-1,U(RZ-1),C(RZ-1) ,X(RZ

11) ,P(RZ-1)
T'H SLIKFOR VALUES OF KS=K-1,K-2,K-3,K-4,K-5,K-6,K

1,K-10,K-11 K-12
KNXT=KS-1
TH SLIKROR RS=R,1*RS.G.RMAX
U(RS,KS)=U(RSKNXT)
C(RStKS)=C(RSKNXT)
X(RSKS)=X(RSKNXT)
T(RSKS)=T(RSKNXT)
P(RSKS)= P(RSKNXT)
CONTINUE
R=R+1
TIO TY21
WIR (X(RK)-X(RZ))/XOW.LE.2.,T#O TY18
N=N+1
UU(N)=U(R,K)
CC(N)=C(RK)
XX (N ) =X (R sK)
PP(N)=P(RK)
TT(N)=T(RK)
RR(N)=R
U(RK)=(UtRsZ)+U(RK))**5
C(R, K)=(C(RZ)+C(R*K))*.5
X(RK)=(X(R*K)+X(RZ))*.5
T(R.K)=(T(RK)+T(RZ))*.5
P(R,K)=(P(RK)+P(R*Z))*.5
WHENEVER T(R+1,Z).GE.T(RK)*TRANSFER TO TR175
UCR= (U(RZ)+U(RK)+C(R,Z)+C(R,K) )*.5
UCR1=U(R+1,Z )+C( R+1,Z)
WHENEVER UCR1.LE.UCRTRANSFER TO TR175

)
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XIN=((T(R+1,Z)-T(RK))*UCR1*UCR-X(R+1,Z)*UCR+X(RK)*UCR1)/(UC
1R1-UCR)
WHENEVER (XIN-X(RK))/(X(RK)-X(RZ)).GE..1,TRANSFER TO TR175
PRINT RESULTS XIN
WRITE BCD TAPE 2,FORTRKU(RK),C(R,K),X(RK),T(RK),P(RK)
WRITE BCD TAPE 2,FORTRZU(RZ),C(R,Z),X(RZ),T(RZ),P(RZ),
1U(R+1,Z),C(R+1,Z),X( R+1,Z), T(R+1,Z),P(R+1,Z),
2U(R+2,Z) ,C(R+2,Z),X(R+2,Z),T(R+2,Z),P(R+2,Z)
WIR (R+1).GE.RMAX,T'O SLID
T'H SLIDgFOR -RS=R+1,1,RS.G.RMAX
RNXT=RS+1
TtH SLIDFOR VALUES OF KS=K-12,K-11,K-lOK-9,K-8,K-7,K-6,K-5,
1K-4,K-3,K-2*K-1
U(RSKS)=U(RNXTKS)
C(RSKS)=C(RNXTKS)
X(RSKS)=X(RNXTsKS)
T(RSKS)=T(RNXTKS)
P(RS*KS)=P(RNXTKS)

SLID CONTINUE
RMAX=RMAX-1
YN=RMIN-1
SENDA.(04,0.,0.,0,,0.,QRMAX.YN)
TRANSFER TO TY18

TR175 R=R+1
TRANSFER TO TY21

PR22 W'R N.E.1
FUNCTION RETURN
01E
TH SLIPFOR VALUES OF KS=K-13,K-12,K-11,K-10,K-9,K-8,K-7,K-6
1#K-51K-4,K-3,K-2 )K-1
KNXT=KS+1
TH SLIPFOR RS=RR(N),1,RS.G.RMAX
U(RStKS)=U(RSKNXT)
C(RSKS)=C(RSKNXT)
X(RSiKS)=X(RSKNXT)
T(RSKS) =T(RSKNXT)
P(RSKS)=P(RSKNXT)

SLIP CONTINUE
R=RR(N)
U(RK)=UU(N)
C(RK)=CC(N)
X(RK)=XX(N)
T(RK)=TT(N)
P(RK)=PP(N)
N=N-1
TiO TY21
EiL
DIN UU(10) ,CC (10) ,XX( 10) , TT(10) ,PP(10) ,RR(10)
INTEGER NRRKSKNXTRSYNRNXT
INTEGER RKRWKWiROMNCOMNROMXCOMXRMINRMAXKMAXYZROW,
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1COLPLTPOT
D'N U(1202,POT),C(1202,POT),X(1202,POT),T(1202,POT),P(1202,PO

1T) ,POT(8)
BOOLEAN SW3
VECTOR VALUES FORT=$(2X,214,8(1PE13.6,IX)/lX,8(lPE13.6,1X)/6X
1q2(IPE1346,1X))*$
VIS FLD=$(6(F1O.4)/4(FiO.4))*$
VECTOR VALUES PTSPRT=$(6(14))$
END OF FUNCTION

GTPRKC R
R THIS DECK HAS SIMPLE L AND Li STATEMENTS AND LOOPS SEVERAL
R TIMES BEFORE EXITING WHEN CALCULATING L AMD Li

R AND HAS PRESS* CONV. BY RATIO 6/10/65
EXTERNAL FUNCTION(UCX, TPRWKWXPPPPPTPP)
ENTRY TO SENDB.
B=U
Q=C
Vl=X
READ BCD TAPE 4,FLDElE2,E3,E4,E5,E6,S1,S2,S3,S4
PRINT RESULTS BQVi
FUNCTION RETURN
ENTRY TO PATHP.
R=RW
K=KW
DPPi=0
Z=K-1
Y=R-1
CTX=1
CTT=1
UAPP=(U(YZ)+U(RZ))*.5
WHENEVER X(YZ).E.O0..AND.X(RZ).E.O0
EMZ=Q
OTHERW ISE
EMZ=(U(YZ)+U(RZ)-C(YZ)-C(RZ))*5
END OF CONDITIONAL

TY3 UP=(UAPP+U(R, K))*.5
TPP=(X(RK)-X(YZ)+EMZ*T(YZ)-UP*T(RK))/(EMZ-UP)
XPP=X(Y,Z)+EMZ*(TPP-T(YfZ))
L=T(RsZ)-T(YZ)
L1=.ABS. (TPP-T(Y,Z))
WHENEVER CTT.G.5.AND.Li.G.LTRANSFER TO TY5
UPP=(U(RZ)-U(YZ))*L1/L+U(YZ)
WHENEVER.ABS.(UAPP-UPP).LE.5.,TRANSFER TO TY4
UAPP=UPP
CTT=CTT+1
TRANSFER TO TY3

TY4 WHENEVER.ABS.TPP.L..ABS.T(YZ),TRANSFER TO TY5
CPP=(C(RZ)-C(YZ))*L1/L+C(YZ)
PPP=(P(RZ)-P(YZ))*L1/L+P(YZ)
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TRANSFER TO TY9
TY5 UAPP=(U(YZ)+U(YK))*.5

EMY=(U(YZ)+U(YK)+C(YZ)+C(YK))*.5
TY6 UP=(UAPP+U(R9K))*.5

TPP=(X(RK)-X(YZ)-UP*T(RK)+EMY*T(YZ))/(EMY-UP)
XPP=X(Y,Z)+EMY*(TPP-T(YZ))
L=X(YK)-X(Y9Z)
Ll=.ABS.(XPP-X(YZ))
WHENEVER CTX.G.5.AND.L1.G.L
PRINT RESULTS L1,L,XPPTPPX(RK)
EXECUTE EXIT.
OTHERWISE
CTX=CTX+1
UPP=(U(YK)-U(YZ))*L1/L+U(YZ)
WHENEVER .ABS.(UAPP-UPP).LE.5.,TRANSFER TO TY7
UAPP=UPP
TRANSFER TO TY6
END OF CONDITIONAL

TY7 CPP=(C(YK)-C(YsZ))*L1/L+C(YZ)
PPP=(P(YK)-P(YZ))*L1/L+P(Y#Z)

TY9 PARK=(P(YK)+P(RZ))*.5
TR=(TPP+T(R*K))**5
XR=(XPP+X(R,K))*.5
TAUR=(TR-XR/V1)*1.E06
W'R TAUR.G.600.
TAUR=600.
END OF CONDITIONAL
W'R XR.GE..28 *AND. XR.LE..78
XER=XR-.28
0'E
XER=XR-.78
E'L
W'R XR.L..28
SR=0
ER=0.
OIR XR.G1..28
SR=O
ER=O.
0E
SR=S1+52*TAUR+S3*(TAUR)*P.2+S4*( TAUR).P.3
ER=E1+E2*XER+(E3*XER+E5)*TAUR+(E4*XER+E6)*(TAUR).P.2
E'L

TYll DPP=((2.*Q/(Q-1.))*(C(RK)-CPP)*(PARK+PPP))/(C(RK)+CPP) -

1(SR*(ER-UP*B)*(ER-UP*B))*(T(RK)-TPP)
P(RK)=PPP+DPP
WiR *ABS.((DPP-DPP1)/P(R ,K)).LE..00005,TO *GP1O
PARK=P(RtK)
DPPl=DPP
T'O TYll

GP1O FUNCTION RETURN
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INTEGER RKRWKW,Y,Z
INTEGER CTTtCTX
V'S FLD=$(6(F1O.4)/4(F10,4))*$
END OF FUNCTION

EXTERNAL FUNCTION (
ENTRY TO SENDA.
Q=P
RMAX=RW
YN=KW
FUNCTION RETURN
ENTRY TO PRSUR.
R=RW
K=KW
Z=K-1
WOR R.E.YNT*O PY25
Y=R-1
LEG1=(T(YK)-T(YZ)
WHENEVER LEG1.GE.1,
PGl=P(Y,Z)+LEG1*(P(
CG1=C(YZ)+LEG1*(C(
XG1=X(YZ)+LEG1*(X(
TRANSFER TO PYll
LEG1=(T(Y,K)-T(RZ)
PG1=P(RZ)+LEG1*(P(
CG1=C(R,Z)+LEG1*(C(
XG1=X(R,Z)+LEG1*(X(
LEG3=(T(R,K)-T(RZ)
WHENEVER LEG3*GE.1,
PG3=P(RK)+LEG3*(P(
CG3=C(RK)+LEG3*(C(
XG3=X(RK)+LEG3*(X(

USRUSKtXTCPRWKW)

)/(T(RZ)-T(YZ) )
TRANSFER TO PYl0

RZ)-P(YtZ))
RZ)-C(Y9Z))
RZ)-X(YZ))

)/(T(RK)-T(RZ))
R,K)-P(RZ))
R*K)-C(RZ))
RK)-X(RZ))
)/(T(RK)-T(YK))
TRANSFER TO PY20
YK)-P(RK))
Y,K)-C(RK))
YtK)-X(RtK))

TRANSFER TO PY21
LEG3=(T(RZ)-T(YZ))/(T(YK)-T(YZ))
PG3=P(YZ)+LEG3*(P(Y,K)-P(YZ))
CG3=C(YZ)+LEG3*(C(YK)-C(YZ))
XG3=X(YZ)+LEG3*(X(YK)-X(YZ))
CS1=.5*(CG1+C(YK))
PSI=.5*(PGl+P(YK))
CS3=.5*( CG3+C(RZ))
PS3=.5*(PG3+P(RZ))
DPX1= (( P (Y*K )-PG1) /(X( YK) -XG1) )*CSl*CSl/ (Q*PS1)
DPX3=((PG3-P(RZ))/(XG3-X(RZ)))*CS3*CS3/(Q*PS3)
DCX1=((C(YK)-CG1)/(X(YPK)-XG1))*2.*CS1/(Q-1.)
DCX3=((CG3-C(RZ))/(XG3-X(R*Z)))*2.*CS3/(Q-1.)
WHENEVER R.E.RMAX.AND.T(R,Z).LE.T(YK)
DPX2=DPX1
DCX2=DCX1
OR WHENEVER R.E.RMAX.AND.T(RZ).G.T(YtK)

GTUSR

PylQ

PYll

PY20

PY2 I

PY25



DPX2=DPX3
DCX2=DCX3
O'R R.E.YN.AND.T(RIK).G. T(R+1.Z)
N=R+1
M=R+2
LEG=(T(RK)-T(N*Z))/(T(MZ)-T(NZ))
PG2=P(N,Z)+LEG*( P (MZ) -P (NZ ) )
CG2=C(NZ)+LEG*(C(MZ)-C(NZ))
XG2=X(N, Z)+LEG*(X (M,Z) -X (NZ))
CS2=.5*(CG2+C(RK))
PS2=*5*(PG2+P(R9K))
DPX2=((P(RK)-PG2)/(X(RK)-XC 2))*CS2*C
DCX2=((C(RK)-CG2)/(X(RK)-XG2))*2o*CS
OTHERWISE
LEG2=(T(RK)-T(R,Z))/(T(R+1,Z)-T(RZ))
PG2=P(RZ)+LEG2*(P(R+1,Z)-P(RZ))
CG2=C(RZ)+LEG2*(C(R+1,Z)-C(RZ))
XG2=X(R,Z)+LEG2*(X(R+1,Z)-X(RZ))
CS2=e5*(CG2+C(RoK))
PS2=.5*(PG2+P (R ,K))
DPX2=((P(R,K)-PG2)/(X(RK)-XG2) )*CS2*C
DCX2=((C(RK)-CG2)/(X(R,K)-XG2))*2s*CS
END OF CONDITIONAL
W'R RoE.YN
DPXR=DPX2
DCXR=DCX 2
USR=DCXR-DPXR
FUNCTION RETURN
E'L
DPXR=.5*(DPX3+DPX2)
DPXK=*5*(DPX1+DPX2)
DCXR=.5*(DCX3+DCX2)
DCXK=.5*(DCX1+DCX2)
USR=DCXR-DPXR
USK=DCXK-DPXK
FUNCTION RETURN
INTEGER RKRWKW,Y,Z,RMAXYN
INTEGER M*N
END OF FUNCTION

EXTERNAL
ENTRY TO
R=RW
K=KW

S2/(Q*PS2)
2/ (Q-1 s)

S2/(Q*PS2)
2/(Q-1le)

FUNCTION (UCXTPRWKW)
LAZY.

N=1
Z=K-1
STAX( 1)=0
STAX(2)=0*125
STAX(3)=1.05

154.
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STAX(4)=1.48
THROUGH- LA20, FOR N=1,1,N.G.NMAX
WHENEVER X(RK).GE.STAX(N).AND.X(R,Z).LE.STAX(N)
RAXN=(STAX(N)-X(RZ) )/ (X(RK)-X( RZ))
STAP(N)=(P(RZ)+RAXN*( P(RK)-P(RZ)))/1333.
UP(N)=U(RZ)+RAXN*(U(RK)-U(RZ))
CP(N)=C(RZ)+RAXN*(C(RK)-C(RZ))
TP(N)=T(R,Z)+RAXN*(T(RK)-T(RZ))
WRITE-BCD TAPE PRINTGOORNSTAP(N),NTP(N),NUP
END OF CONDITIONAL
CONTINUE
FUNCTION- RETURN
VECTOR VALUES NMAX=4
VECTOR VALUES GOO=$5H R = 14,6H STAP(I1.4H) = 1PE
15H TP(II,4H) = 1PE13.6,5H UP(11,4H) = 1PE13.6,5
2 = 1PE13.6/lX*$
VECTOR VALUES PRINT=2
INTEGER Y,Z
INTEGER R*KRWKW,N
DIMENSION STAP(5),XP(5),STAX(5),TP(5),UP(5),CP(5)
END OF FUNCTION

(N),NCP(N)

13.6,
H CP(I14H)

LA20
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APPENDIX 3

EXPERIMENTAL PROCEDURES AND DATA REDUCTION

A3.1 Experimental Procedures

Certain important experimental procedures were followed, some to

insure good results and others to insure safety of equipment and

experimenter.

Before beginning a series of experiments the following was done:

1) Pump was allowed to pump down tube for at least an hour.

2) Equipment was allowed to warm up at least 30 minutes.

3) Oscilloscopes were recalibrated. Vertical sensitivity was

checked each time, sweep rates from time to time.

4) If magnetic field to be used, check to see that it "crowbars"

at low voltage before going to higher test voltages.

5) The transducers were usually calibrated somewhere during the

series of runs, sometimes before and after. No difference in results

was noted if they had warmed up for 30 minutes to an hour prior to

calibration.

During a series of runs, a good sequence of events to follow was:

1) Check to see that pressure in the tube was low enough.

300 microns of Hg was a good mark since the continuous purging was used.

2) Check all scope settings and set up trigger.

3) Charge up magnetic field bank, if using.

4) Clamp off pump filter bypass and allow some mixture to begin

tftn
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purging tube. (Enough gas is needed to ensure that electric field will

not break down the gas.)

5) Charge up electric field bank, if using.

6) Open shutters of camera.

7) Make final adjustment to desired test pressure and fire.

8) Close camera shutter.

9) Open pump filter by-pass to allow tube to pump down for next run.

10) Develop pictures and label them.

For the final data reported in this thesis, the pressure, electric

fieldcurrent and wave speed measurements were taken simultaneously. The

magnetic field was monitored from time to time to insure that it was

behaving correctly. Usually its influence on the other measurements, es-

pecially the total current, were indicative of its performance.

A3.2 Data Reduction

Fig. 4-2 shows some typical oscilloscope traces representing

pressure measurements made. Close examination of these traces will

convince the reader that there are, indeed, differences in the pressure

profile between the various cases. Before a thorough study of these

results can be made, this raw data must be reduced to a form which

allows comparisons to be made readily. Several steps were used by the

author in reducing the data to the form presented in Chapter 5. A brief

account of how this was done is presented here.

In all the experiments for which results are reported, two pressure

transducers were used, one at sta (1), the other at sta (3) or sta (4).

Since sta (1) is 0.28 meters upstream of the field, the wave arrives at
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the beginning of the electromagnetic field about 125 ysec after crossing

the transducer face at sta (1). It would take any finite disturbance

generated in the field region several hundred microseconds to reach

sta (1) due to the gas flow in the opposite direction. This leaves at

least 400 psec of pressure history at sta (1) which can act as a

control pressure, to give an accurate measure of the detonation pressure

for any given run. To be on the safe side, only the first 200 ysec

were used as an indication of the pressure level.

In any set of experiments, control runs were made regularly, with

one before and after each cycle of four to six experiments. In reducing

this set of runs, the control runs before and after were used as a

basis for comparison.

Since a difference of 1 mm of Hg in the initial pressure from one

experiment to another could result in a difference of about 27 times as

much in the flow field at the C-J point, with proportionately less

elsewhere, this control information at sta (1) was very necessary. The

reduction procedure was as follows:

1) The pressures at points 0, 50 psec, 100 Usec, 200 ysec and there-

after in intervals of 100 usec after passage of the wave front were

recorded. If any noticeable deviation from the general trend was seen

between these points, intermediate measurements were made as well.

These measurements could be made to an accuracy of + 1 cm of Hg using

a pair of precision dividers and stepping off the measurements on the

scale of the picture.

2) The master control at sta (1) was obtained by first averaging

the point by point pressure measurement for the control run made before
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and after the cycle under consideration. Due to the slight uncertainty

in the initial pressure, these two runs may be in slight disagreement,

but this type of discrepancy was indicated by an almost constant

difference in pressure at corresponding points behind the wave. The

averaging had the effect of reducing random errors incurred while

taking data from the picture.

3) To determine whether runs with fields had any changes in

pressure at sta (1), it was first necessary to correct for changes in

initial pressure. The pressure, for the trace under consideration, at

the two points, 100 ysec and 200 psec behind the wave front was

compared with the master control at these two points. The average

deviation at these two points was then used as a correction factor for

all points along this trace. Strictly speaking, some graduated scale

may have been more correct, but the system used appeared to give

accuracy within 1 cm of Hg which was within the limits of possible

measuring accuracy anyway. This estimate is obtained by comparing runs

with slightly different initial pressure and noting their point by

point difference in pressure up to around 600 ysec behind the wave

front.

To illustrate error ranges to be expected as a result of this

reduction, the method was applied to five control runs taken on several

different days. The master control was obtained by averaging two runs

from one day, and the deviations from this shown as "error flags" on

Fig. A3-1. It can be seen that the error flags at sta (1) are very

small except perhaps right at the wave front. The accuracy obtained

within a cycle, as described previously, would be even better than shown
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on this figure. Any deviations of more than two or three cm of Hg from

the master control would be outside the possible error range, and was

considered as a change in pressure.

To correlate results at sta (3) or (4) an additional comparison

was necessary. As mentioned in Chapter 4, the point by point pressure

at sta (4) (and sta (3) for that matter) was lower than at sta (1).

The same procedure was used at sta (4) as at sta (3) so it will only

be described once.

1) The point by point pressures were recorded as at sta (1). At

sta (3) many intermediate points were found due to the oscillations

on the signal.

2) The master control was again obtained by averaging measure-

ments from the control runs at that station for the runs at the be-

ginning and end of the cycle. This average at any point was then

subtracted from the corresponding point of the master control at sta (1).

Since each point on the trace at these downstream stations could

possibly have been altered by the fields, the deviation of the

measured pressure from the pressure at sta (1) was the critical

measurement. To illustrate, let us suppose the pressure at time ta

behind the wave at sta (4) is to be compared to the control pressure

at that point.

For this illustrative case, the pressure at points 100 psec and

200 ysec behind the wave as measured at sta (1) is found to be Ap

below the master control on the average for these two times. The

pressure Pa' at sta (4) is obtained from the oscilloscope trace at

time ta. The pressure pa, to be used in comparison with the master
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control at ta is obtained by adding the correction Ap

pa a +

This was done for the five control runs to illustrate possible

uncertainty in measurements at each point at this station. Fig. A3-1

shows that these error flags are a little bigger than at sta (1) but

are still reasonably small. Again, accuracy within a cycle was even

better than shown here.

A final correction is needed before comparing results with theory.

The pressure transducers measure the difference in pressure, p2 - P1

whereas theory deals with the actual pressure p2. This correction

simply consists of adding p1 to all the measurements made by the

transducer to get p2'
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APPENDIX 4

COMPARISON OF PRESSURE PROFILE MEASURED IN
EXPERIMENTS WITH THEORY - NO E-M FIELDS

Results of W. E. Gordon 1 atm. initial pressure

Time y sec Theoretical Experimental
Pressure Pressure
(Atm.) (Atm.)

Behind wave PT E PT PE

front PT PE PT E

0 18.6 18.2 0.0215 0.022
50 17.5 14.0 0.20 0.25

100 16.4 12.0 0.268 0.367
200 14.5 11.2 0.227 0.295
300 13.2 10.0 0.242 0.32
400 12.0 9.0 0.25 0.33
500 11.0 8.5 0.227 0.294
600 10.0 8.5 0.20 0.25

Results of the author at sta (1) in C2H2 + 5/2 02

40 mm Hg initial pressure

PT ~ PE PT ~ E
Time y sec PT(cm of Hg) pE(cm of Hg) PT PE

0 101.8 114. -0.120 -0.087
50 98. 91. 0.0715 0.077
100 95. 84. 0.116 0.131
200 90. 77. 0.145 0.169
300 86. 73. 0.152 0.178
400 82. 69.2 0.156 0.185
500 78. 67.5 0.135 0.155
600 74. 65.2 0.119 0.135
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Results of the author at sta (4) in C2H2 + 5/2 02

40 mm Hg initial pressure

Explanation of Results in Terms of Heat Loss

(dp)th =k (dT)th - Pi(dt) path

Equation A4-1 gives the pressure drop due to a temperature drop and heat

loss along a path line. Following a particle of fixed identity then, the

time of travel behind the wave is 180 Usec. to come to the point which

is 100 Psec. after passage of a wave by a fixed observer. It is now of

interest to compare measured heat transfer rates with what would be

needed to explain the observed pressure drop near the wave front.

Heat transfer measurements by Cutting37 to a thin wire suspended in

the free stream of H2-0 2 detonation waves show high rates of heat

transfer. Extrapolating his results, which fall on a straight line on a

log plot, to an initial pressure of .05 atm. predicts a heat transfer

Time Usec Theoretical Experimental
Pressure Pressure

pT ~ E T ~EE
pT(cm of Hg) pE(cm of Hg) PT __PEPT ___E

0 101.8 112. -0.10 -0.091
50 99. 88. 0.111 0.125

100 97. 79. 0.185 0.228
200 92.5 71. 0.233 0.302
300 88. 67.5 0.232 0.303
400 85. 64. 0.247 0.328
500 83. 61.8 0.255 0.343
600 78. 59.1 0.242 0.32

(A4-1)
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rate of 2600 Btu/sec ft 2. Cutting's measurements were in the free stream

and the author wishes to compare this with a rate of transfer to tube

walls. Since the boundary layer this near the detonation wave would be

relatively thin, it is not unreasonable to make such a comparison.

Since heat loss has helped establish the flow field as it is, a

complete solution of the flow field would be needed to show the exact

result of a given heat loss rate. An estimate can be made however, by

use of equation A4-1 and by assuming a simple model. Equation A4-1 can be

solved in closed form for this case if it is assumed that the internal

energy of the gas, given by C vT, represents the energy content of the

gas. Then writing

q = (C T) (A4-2)

q(dt) path = d(C vT)path = Cv(dT)path (A4-3)

for Cv a constant equal to ( . Using this in A4-3 then
v (k-l)PT

pt4(dt) -1 P- (dT)(A-4path =k 1 T path (A4-4)

Placing this in eqn. A4-1, after reduction yields

path Z path (A4-5)

The percentage temperature drop needed is directly proportional to the

percentage pressure drop.

The heat transfer rate, equation A4-4, needed to account for this

pressure drop is 6200 Btu/sec ft3 or only 258 Btu/sec ft2 for the surface
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area of the author's detonation tube. This rate is well below the rate

measured by Cutting, so it is in the right range, as one would expect a

lower rate of transfer to the wall. What is more, the rates measured

by Cutting increased linearly with pressure on a log plot so that this

effect could still be prominent at higher pressures. This would seem

to qualitatively explain Gordon's results as well.

Explanation of Results in Terms of Nozzle Effect

Fay38 has proposed a two-dimensional model with the boundary

layer displacement effect within the reaction zone producing a uniform

flow divergence throughout the detonation front. The velocity deficit

calculated on the basis of this two dimensional flow agrees within a

factor of two with experimentally observed deficits for the cases

compared. Since a divergence of this nature behind the front would

cause a decrease in pressure, the model may explain the sudden drop

behind the detonation front.

Using the relation given by Fay for turbulent displacement thickness:

6* = 0.22 10.8 ( / v )0.2

where 1 is distance behind wave

e is viscosity of gas in combustion zone

v is the detonation velocity

P is the density upstream

a value of 6* = .33 cm is obtained after 100 Psec from the time the

6
wave passes a given point, for a Reynolds number/ft of 10 . For the

author's tube, the effective area is increased by a factor of 1.26.
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Using this area ratio with isentropic expansion tables 4, for a value

of k = 1.4, this would give a pressure, at 100 ysec after the wave front

passes, of 0.43 the pressure at the C-J plane, or a deficit of

approximately 53% below the value calculated for the simple rarefaction

wave. This model therefore predicts a much greater deficit than is

observed, which would indicate that the model may not be applicable in

the flow field downstream of the C-J plane.
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APPENDIX 5

TABULATED ELECTRIC FIELD AND CONDUCTIVITY DISTRIBUTION

Electric Field Distribution

volts/M volts/m 2  volts/m2 volts/2 volts/m volts/M
CASE ysec (ysec)2  usec (psec)2

re Ie 2e3e4 e 61 e2 "3 04 e5

I 3520 -6540 22 -.0218 -8.37 .0069
II 5727 -7600 12.15 - -6.32 -

III 8800 -15,200 69 -.0815 -20.1 .0203
V 7070 -11,400 32 -.0227 -18 .0144

VI 9000 -9850 -1.32 .0296 -17.2 .0105

E (r, x') = e + e2 x' + e3 T x' + e4

Electrical Conductivity

2
0 = s1 + S2 T + S3 T + Sg T

Units

T - psec

x- meters

a - mho/m

E - volts/m

T2 x' + e5 T+ e6 T

CASE mho/m mho/m psec mho/m(psec)2  mho/m(ysec)3

s s2 s3 s4

I 3.78 9.86x10-2 -6.26(10 -5) -5.97(10 9)
II 1.63 4.51x10-2 -1.26(10~4) 1.3 (10~7)

III 1.113 6.60x10-2  -2.11(10-4 2.6 (10-7)
V .096 .288 -1.13(10-) 1.36(10-6)

VI 5.53 .146 -5.46(10-5) -3.12(10-7)
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APPENDIX 6

ELECTROMAGNETIC SHOCK INTERACTION WITH DETONATION WAVE

A series of experiments were performed which consisted of creating

a shock wave, by means of an electromagnetic interaction behind the

detonation front, and observing the effect on the wave front when the

shock overtook the wave. These results are reported separately since a

modified theoretical model would be needed to describe the electro-

magnetic interactions, but are included since it acts as a useful

supplement illustrating the type of effects obtainable when a regime

of localized arc interaction with a magnetic field is introduced to the

flow field. Once the shock wave is formed, the problem is very similar

to the piston problem and could be used to further understanding of

problems of that nature. The development of the shock is similar to

initiation of an electromagnetic shock and could be analyzed by the same

techniques. The individual parts of this picture are not new, their

combination is novel.

A6.1 Apparatus and Procedure

The shock tube used for these experiments is the one described

earlier with a few minor modifications, as shown in Fig. A6-1. The

magnetic field coil was moved ahead to straddle the first two electrodes.

Two short, 6" long, electrodes were inserted inside the main electrodes.

These electrodes had an inverted V at one end projecting 3/8 inch into

the tube over the center 1 inch of the tube width. They were higher
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in the center of the tube than at the walls all along their length to

encourage the arc to remain near the tube center to better influence the

free stream. A capacitor bank was connected to these electrodes through

an ignitron circuit which was triggered by a signal after the wave had

passed the electrodes. The resulting discharge of current, as large as

36,000 amps, interacted with the magnetic field which was pulsed as

before, and oriented to push the gas, forming a strong shock in the

product gases. The single pressure transducer was placed near the

beginning of the third electrode, just downstream of the magnetic field.

Ion gaps connected to a circuit such as used by Knight and Duff29 were

spaced throughout the last meter of the test section to measure the

wave speed.

Quantitative pressure measurements were not perfected to the degree

of later work reported in earlier sections, when this work was done.

Later additions of filters and heat shielding improved results

considerably. The pressure measurements left no doubt about the pressence

of strong shock waves behind the front however, and velocity measure-

ments qualitatively agreed with what one would expect as a result of

one dimensional theory using the pressure data.

A6.2 Theoretical Model

The theoretical model to describe the interaction of the shock

overtaking the detonation is a slight modification of shock overtaking

shock as suggested by Shapiro19 (p. 1023). The accompanying schematic

illustrates the model used. A C-J detonation, A, is intersected by a

shock, B, resulting in an overdriven detonation C, a contact line E and
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an expansion fan D. The usual jump conditions apply across the

detonation with M2 = 1 in region 2 but M5 is not equal to one. The

conditions in regions 4 and 5 are matched by equating particle

velocity and pressure and finding the temperature difference across

the contact line. From region 2 to 3, shock jump conditions hold;

from 3 to 4 is an isentropic expansion. Following are tabulated

results for one example worked out.

detonation

Shock Overtakes Detonation
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A6.3 Sample Calculations

C-J Detonation, perfect

M = 6.73

V = 2200 m/s

T2 1T = 15.6

C2  = 1290 m/s

P= 0.88 atm

gas model,

p =

T =

C =

k = 1.4 throughout.

.033 atm

298*K

327 m/s

Shock B, strength MB

p3/P2

u
3

T
3

c 3

= 2.4583

= 1804 m/s

= 6150*K

= 1480 m/s

Final Conditions

T = 6070*K T5

p4  = 2.07 atm p5

ug = 1796 m/s shdul5

same

= 2.17 atm

= 64700K

= 2.07 atm

= 1760 m/s

A6.4 x-t Diagram

Figure A6-2 shows an x-t plot with a C-J detonation wave and shock

waves of various strength overtaking it. Each shock locus is considered

individually, not showing how the detonation is modified by the inter-

action. The purpose of this figure is to illustrate the length of time

it takes shocks of several strengths to overtake a steady state C-J

detonation. No rarefaction has been considered in plotting these lines.

= 1.5

kit
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A rarefaction behind the detonation would weaken the shocks in time, so

a shock initially at M = 2.5 would be weaker when it intersects the

detonation, and it would take it longer than 340 psec from this starting

point to overtake the detonation.

A6.5 Experimental Results-

The position of the shock with respect to the wave front when the

wave system passed the transducer depended on the shock strength as

well as how near the front the shock was initiated. Fig. A6-3 illustrates

the pressure profile for three cases. Case A is the control data with

no shock following. Case B is a shock passing just 20 psec after the

detonation front. Case C illustrates an overdriven detonation which

resulted from a shock overtaking it prior to reaching the transducer.

Fig. A6-4 shows the wave speed for these cases. Case A shows the

trend of detonation velocity for these ion gaps. The trend is probably

due to inaccurate spacing of the ion gaps rather than a changing

velocity so the best comparison at any point is with the control data.

Case B begins at a velocity consistent with control data in the region

opposite the transducer, which is before the shock interacts with the

front. A sharp rise in wave speed occurs for this case about the time

one would expect the shock to overtake the wave front producing an over-

driven wave. Case C is overdriven and has a correspondingly higher velocity

when it enters the region of measurement. Its velocity decays slowly as

one would expect of an overdriven wave.

No attempt will be made here to draw quantitative comparison between

theory and experiment since these experiments do not yield sufficient
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data for a rigorous comparison. This would be an interesting problem to

persue further using several transducers properly shielded against heat

sensitivity and using filters on the output to clean up the signal.

A6.6 Conclusions

Qualitative results indicate that one dimensional theory can

predict the wave speed changes brought about by shocks overtaking

detonations. Further, from observing case B, one can deduce that the

shock only changes the wave speed when it actually overtakes the wave

or crosses the C-J plane, as one would expect from the Chapman-

Jouguet hypothesis.

The observations made, that the one dimensional theory is

qualitatively correct for these large changes in wave speed and

pressure, support the main thesis. There the changes at the wave front

were too small to measure, but were not inconsistent with theory. Here

the speed change was detected and qualitatively, at least, agreed with

the same theory used to calculate wave speed changes.
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APPENDIX 7

ENERGY LOSS IN THE PLASMA

The problem of evaluating possible heat loss for the conditions of

the experiments described in this thesis is not a simple one. Some of

the mechanisms which may be involved are:

a) convective-conduction losses in a turbulent boundary layer

b) radiative losses (black body type)

c) recombination at the cold wall

d) Bremsstrahlung

a) Convection-conduction:

Heat transfer in fully developed turbulent flow can be treated

reliably by empirical or semiempirical relations obtained by correlating

heat transfer data taken for the type of situations under study.42 The

problem here is one concerning heat transfer to a tube wall from

detonation products which are "contaminated" by potassium chloride. The

flow field is nonsteady and being acted upon by electromagnetic fields.

The heat transfer rate of such a system has not, to the authors knowledge,

been measured.

A simple-minded model could be useful in gaining insight into the

situation, however. Fig. A7-la shows the growth rate of the turbulent

boundary layer behind the detonation wave as given by Fay.38 This

boundary layer will build up on all four walls, so the free stream area

is rapidly reduced, as shown in Fig. A7-1b. At a point 200 psec behind

the wave, 40% of the electromagnetic interaction would take place in
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the boundary layer where gradients in temperature as well as turbulence

would allow heat transfer to the wall to dissipate much of the added

energy. After 600 usec, 80% of the tube cross-section is in the boundary

layer.

Fig. A7-lc shows the radial temperature distribution for turbulent

flow in a tube for Prandtl number unity. This type of temperature

distribution may be expected in the boundary layer of the shock tube.

Qualitatively it seems obvious that the heat transfer rate to the wall

will increase as the gas temperature rises. Whether this can account

for the apparent heat loss in the experiments would take careful

analytical or experimental work, or both.

b) Radiation:

Radiation of the type associated with black bodies can account for

large rates of energy transfer. A few simplified calculations may

illustrate this point.

A measure of the flow energy at the C-J plane can be evaluated from

5 3
pC T n 5 x 10 watt sec/M-
p

2
Since there is energy associated with the pu term, the total energy

may be of the order of 106 watt sec/m3 . The rate of loss by black body

radiation is given by

SB = a T

where a = 5.67 x 10-8 watt/m2 OK4

If the effective mean temperature of the products is 30000K over the

first 1000 Psec, and the gas was losing energy by black body radiation
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at all surfaces, for the author's tube, 3.6 x 105 watt sec/m3 would be

lost during this 1000 usec. This estimate of energy loss is about 30%

above what was needed in Chapter 4 to explain the pressure drop below

normal. (The gas is therefore probably not a black body.)

Now suppose the electromagnetic effects raise the temperature

slightly, so that the new temperature is (1+m) T. The black body radia-

tion is now

SB = a(T(l+m))4

and the additional radiation, above what it was for the "no fields"

case would be

ASB = a((T (1+m)) - ) T4) 4 a m T

For a fractional increase in temperature of 0.0166, which corresponds to

50*K for T = 30000K, this additional radiation loss in a tube with the

geometry as used here amounts to 2.45 x 10 watt/m3. The rate of elec-

7 3
trical energy addition is about 5 x 10Z watt/m . Noting that the excess

loss rate is directly proportional to the fractional increase in

temperature, m, it appears as though this mechanism could easily

dissipate the added energy with a small increase in temperature even

if it was not quite as good a radiator as a black body. An increase in

temperature of 50*K corresponds to an increase in sound speed of only

about 10 m/sec. All the cases reported in Chapter 5 which retained the

E - j term had increases of sound speed much greater than 10 m/sec, so

the numbers used here are realistic.

The one condition upon which this argument rests is that the gas

surface acts as a black body, a condition which may not be realized.
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Rose and Clark43 (p 229) assert that a "plasma appears as a black body

at low frequency". Whether or not this argument can apply here has not

been ascertained by the author.

Even if the plasma does act as a black body, some mechanism must exist

to cause the effects of heat loss at the boundary to be felt throughout

the flow. Usual boundary layer concepts involving temperature gradients

and radiative thermal conductivity44 may provide the needed mechanism.

Rarefactions originating at tube walls and propagating across the tube

may assist in equalizing effects.

Rohsenow42 states (p 333) that "the part of the radiant energy

which is absorbed or emitted by materials which are electric conductors

is all completely absorbed or emitted in a layer of approximately

0.00005 in. below the surface. In electric nonconductors this layer is

of the order of 0.05 in. thick."

The side walls of the author's tube are made of plexiglass, which

would presumably not get as warm at the surface as a conductor would,

since its absorption layer is thicker. Since the absorbtivity is high

the reflectivity would be low (since it could be considered opaque).

Perhaps the side walls could also approximate a black body which absorbs

all the radiation incident upon it. The electrodes had a layer of oxide

as well as KCl, so they too would be relatively good absorbers of

radiation.

c) Recombination at the cold wall:

37
The heat transfer measurements made by Cutting in the flow field

of H2-0 2 detonations correlated closely with estimates of heat exchange

due to recombination of the dissociated gases coming in contact with the



183.

wire. But the dominant mechanism of heat exchange at the wall may be altered

by the thick, turbulent boundary layer. It is possible that dissociated

products would diffuse to the cooler region of the boundary layer and

recombine before reaching the wall. Some other mechanism may be required

to transport the recombination energy to the wall. Further study of this

mechanism would be required to determine if it would to any degree

account for the additional losses which apparently dissipate much of the

electrical energy added.

d) Bremsstrahlung:

This form of radiation is closely related to the degree of

ionization so deserves consideration as the mechanism of additional loss.

The relation predicting rates of loss43 by Bremsstrahlung is

2 4
1 3e n n 8KB Te 3

w=23 3 mwatts/rn
247rc c m h eo e

where the symbols are defined in the usual way.

For a singly ionized plasma, q = q and n. = n e. This can be

simplified to give

w = 1.49 x 10-49 ne2  Te watts/m3

Some numerical examples can give a better indication of the

magnitude of this effect.

i) n0 = 2 x 1024 /M3

1% ionization -n = 2 x 1022 /M3

Te \ 3600*K
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w = 3.58 x 10 watt/m3

For these same conditions and a collision cross-section of

2.5 x 10-1 cm 2, this degree of ionization corresponds to an electrical

conductivity of " 2560 mho/m which is several orders of magnitude larger

than obtained in experiments.

24 3
ii) n = 2 x 10 /m

.1% ionization -n = 2 x 1021 /m3

Te o 3600*K

w = 3.58 x 105 watt/m3

equivalent a o 256 mho/m

iii) n = 2 x 1024 /M3

.01% ionization-n = 2 x 1020 /M3

T e 36000K

w = 3.58 x 103 watt/m3

equivalent a n, 25.6 mho/m

The first example has a dissipation rate approximately equivalent

to the rate of energy input, but the electrical conductivity in

experiments is much lower than that corresponding to 1% ionization. The

third example has a conductivity level which corresponds more closely

with experiments, but now the energy dissipation rate is much lower

than the rate of electrical energy addition. It can be concluded that

Bremsstrahlung do not account for the apparent loss of energy experienced

in experiments.

With the information now available, it is difficult to assess which

mechanism, if any, of the ones considered here is actually responsible
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for the loss of the electrical energy contributed by the electric

fields. Boundary layer effects most certainly will be an important

factor but whether convection-conduction, radiation, recombination or

a combination of these are important would have to be verified by more

careful experimental and theoretical study.
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NOMENCLATURE

A - tube area (eqn. 2.1)

A/A - ratio of free stream area to tube area (Fig. A7-lb)

a - defined in Appendix 7

B, B - scalar and vector magnetic field

Cp - specific heat at constant pressure

CV - specific heat at constant volume

c - sound speed in gas =k RT

C-J - of or pertaining to the Chapman-Jouguet criteria which
determines the steady state detonation wave speed

E, E - scalar and vector electric fields

F - friction term in momentum eqn. (2.2)

f (V) - voltage drop across the two outer probes of electric
field probes at point (i) along the electrode

f (V) - as f. but at point (ii) along the electrode

h - Planck's constant

j, j - scalar and vector electric current density

KB - Boltzmann constant

k - C p/Cv - ratio of specific heats

L - characteristic length (section 2.4 and App. 1)

M (1),(2) -Mach number used in co-ordinate system attached to
wave front

M defined in section 2.5

m - fractional increase in temperature used in App. 7

m - electron masse

N -defined in section 2.5
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VNOT' 1' 0

V
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x,y,z

y/r,

a

6

0

number density of neutrals, ions and electrons

- static pressure in gas

- non-dimensional stagnetion enthalpy addition in
wave front

- charge on ions and electrons

- distance of wave front from ignition point

- Reynolds number (puL/y)

- Magnetic Reynolds number (App. 1)

- distance of observer from ignition point

- radiant energy transfer rate (App. 7)

- static temperature of gas

- electron temperature

- wall temperature of tube (Fig. A7-1c)

- temperature at center of tube (Fig. A7-1c)

- time measured relative to origin at sta (1)

- particle velocity in laboratory co-ordinates

- detonation wave front speed

- particle velocity in co-ordinates attached to wave front

- energy density of Bremsstrahlung radiation

- three co-ordinate directions (Fig. 2-la)

- fractional distance from center of tube (Fig. A7-1c)

- fraction ionized

- boundary layer thickness

- boundary layer displacement thickness

- permittivity of free space
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Ch'm - eddy diffusivity pertaining to enthalpy and mass

C- base of natural logarithm

,- coefficient of viscosity at free stream conditions

P, - (4 x 10~ ) magnetic permeabiJity

p - gas density

a - electrical conductivity of gas

- time with respect to the wave front
T = t - x V for constant VNOT at position (xt)NOTNTatpsto(x)

Subscripts

1 - pertaining to conditions upstream of wave front

2 - pertaining to conditions at the hot boundary of the
wave front

I - pertaining to changes along the type I characteristic

II - pertaining to changes along the type IJ characteristic

path - pertaining to changes foIlowing a fluid particle on its
path line

i - pertaining to the position of the first point along the
electrode at which electric field measurements are made

ii - pertaining to the second point of electric field measure-
ments

Other subscripts used in Chapeter 2 may be identified from Fig. 2-1.
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