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LIST OF SYMBOLS AND NOTATION 

For the sake of reference we record some of the more common 

notation and symbols used in the paper. For those symbols whose 

use in specific to this paper, we also record in parentheses the 

page(s) on which they are first used or where their definition may 

be found. 

Standard Notation 

In the background there is a probability space (n,A,p) on 

which all random variables are defined. The elements of n are denoted 

w. For a random variable W, E(W) refers to the expected value of W. 

Two random variables are of note: N(O,1) is a normal random variable 

with mean 0 and variance l' , U(a,b) is a random variable uniformly 

distributed on (a,b). If Z is a sequence of random variables, 
n 

then Zn ~ Z means that the Z s 
n converge in distribution to the 

random variable Z. For a function a(x), a-(xo ) is notation for 

lim a(x) 
xtxo 
and a.e. 

and a+(xo ) = lim a(x). w.p.1 (with probability one) 
x+xo 

(almost everywhere) are equivalent notations. Rand Rm 

are one-dimensional and m-dimensional Euclidean space respectively. 

If A is a set, IA(x) is the indicator function: IA(x) = 1 if 

x £ A and 0 if x ¢ A. If Xi' .•• , Xn are randqm variables, 

the order statistic is X(1) < X(2) ~ . ~ X(n)' Lastly, if A 

and B are two sets, A - B is the set difference defined to 

equal A nBc. 
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Symbols (Greek letters follow the Roman letters) 

A: a (0) 
N 

(8,10,17); a (0) 
n 

(41~44); A (59); aCt) (61,67); 

B: Bf 
(18) ; B (18) ; BO (18); BJ (18); beN) (60); Bw (59); 

B 
WI 

(59); b~';(.) (71) • 

(1) ; (1) ; * (1); (2); (19) ; c (10) ; c· c· . c· c· c· _1. 1.J _1. J. J 
c: 

c(u) (25). 

D: DN(o) (10,17). 

E: e. (1); e~ (12); S (12) ; e. (59) . 
1. 1. e(i) J 

F: F (1) ; f (11) ; F S ,N (21); FS (21); Fln , ... , F (35); nn 
- --1 -1 

F (38 ,42) ; Fn (42); fN (59); fN (59); FN (61); FN 

G: G(y) (21,42). 
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H: H(o) 

I(f) 

(18) ; h (32); Hn (40); H~ (40); Hn (44). 

I: 
.'. I (61); In (62). 
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K: KS (22); K (42). 
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N: N (1). 

P: ~n (50,53). 

Q: q (1) • 

s: SN (20); S n 
(35) . 
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u: u(l;;) (76). 
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CHAPTER 1. INTRODUCTION 

1.1 Description of the Problem 

The general problem we will be concerned with in this paper 

is that of estimating the regression parameters a,S1, ... ,Sq in the 

general regression model 

(1.1 ) T Y. = a + c.S + e. 1 -1- 1 i= 1,2, ... ,N, 

h Y · h .th b . h d d . bl . h were . 1S tel 0 servat10n on t e epen ent var1a e, a 1S t e 
1 

intercept parameter, @ is a column vector of slope parameters with 

~T=(S1, ... ,Sq) (T denotes transpose), c! = (c. , ... ,c. ) is the vector 
-1 11 1q 

f · . d . h h . th b . d o regress10n constants assoc1ate W1t tel 0 servat1on, an e. 
1 

is the random error associated with the ith observation. A formulation 

equivalent to (1.1) which is sometimes more convenient is 

(1. 2) 

h *T - (1 ) d o*T were now c. - ,c , ... ,c. an ~ 
-1 i1 1q -

we will assume that the {e.:i=1, .. "N } 
1 

= (a,S , ... ,S). Throughout 
1 q 

are independent, identically 

distributed (iid) random variables (rvs ) with cumulative distribution 

function (cdf) F(x), which is symmetric but possibly far from the 

normal distribution. 

More specifically, throughout most of the paper we will consider 
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the simpler problem of estimating a,S in the simple linear regression 

case, for which the model (1.1) becomes 

(1. 3) Y = a+Sc.+e. 
i ~ ~ 

now Sand c. are scalars. Besides simplicity, another reason for 
~ 

considering (1.3) was pointed out by Huber in ~~ 

"Note that the simple straight line regression problem 

is basic; if we know how to treat this, we can in prin-

ciple attack the general regression problem by considering 

one parameter at a time, keeping the others fixed at trial 

values." 

The main feature of note in models (1.1) and (1.3) is that we 

do not assume that the random errors {e.} are normally distributed. 
~ 

Indeed we will not assume we know the form of the distribution function 

F. In this context the problem of estimating the regression parameters 

becomes a problem of robust estimation and shares many features with 

the problem of robust estimation of a location parameter, which has 

been considered extensively in the last decade (cf. [3], [t~ , Q.2] , 

[13J , @..~ , [1~ , [17J ' [19J ). Here we use the word "robust" to refer to 

statistical procedures good for a broad class of possible underlying 

models. Asymptotically this can be viewed as demanding high absolute 

(asymptotic) efficiencies for all suitably smooth shapes. (For this 

and other approaches to "robustness", consult ~2J and [1tf].) 
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In the location problem the model in which we are interested 

is 

(1. 4) Y. ::"8+ e 
]. i 

where 8 is the unknown location parameter, Y. is the observation, and 
]. 

the {e.} are iid random variables with common cdf F assumed to be 
]. 

symmetric around 0. The simple linear regression model of (1.3) is 

one of the simplest gneralizations of this problem; both the regression 

models (1.3) and (1.1) include the location model as a special case 

and are important in practical applications. 

For the location problem three different classes of estimators 

of 8 have been proposed: L estimators, M estimators, and R estimators. 

Briefly summarizing: the L estimators are linear combinations of the 

ordered observations Y(l)~ Y(2)~ ... ~ Y(N); the M estimators are 

analogues of maximum likelihood estimators, with the estimator e of 

8 satisfying 

N 
(1.5) E p(Y.- e) = minimum, 

i=l ]. 

or the equation 

N 
A 

(1. 6) "r 1jJ(Y.- 8) = 0, 
i=l ]. 

where p is usually a convex function and 1jJ=p' R estimators, such 
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as the well-known Hodges-Lehmann estimator (cf. [11]), are derived 

from rank tests. For the problem of estimating regression parameters, 

each of these three classes of estimators has been generalized. In 

the next section we will consider these generalizations after briefly 

reviewing the classical technique of estimation for location and 

regression problems -- the method of least squares -- and some of its 

history. 

1.2 Techniques for Regression Estimation 

1.2.1 In the history of statistics, the problem of estimating 

regression parameters is a very old problem, and a number of techniques 

have been developed for dealing with it. The classical technique of 

estimation -- the method of least squares due to Gauss and others 

was developed by the early nineteenth century. The motivation for 

least squares, as described by Huber, is interesting: 

"The original motivation for this method (due to Gauss) is 

somewhat circular: least squares estimates are optimal if 

the errors are independent identically distributed normal; 

on the other hand, Gauss assumed a normal error law because 

then the sample mean, which 'is generally accepted as a good 

estimate,' turns out to be optimal in the simplest special 

case •... " (p. 799 of [15]; also see p. 1042 of [14J). 

The linchpin in this justification is, of course, the faith placed 

in the arithmetic mean. It is interesting to contrast the historical 
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dominance of least squares theory with the number of alternative 

techniques suggested over those 150 years which never gained prom

inence and which have only recently been resurrected. (For a history 

of these procedures and others, see ~8J.) Already in 1818 Laplace 

proposed, for estimating regression through the origin, minimizing 

the sum of absolute residuals rather than the sum of squared residuals. 

In the 1840s, in a paper criticizing Gauss' original justification 

for least squares, Ellis proposed essentially what are now called 

M estimators. 

In the last several decades, the prominent position of least 

squares and the accompanying classical normal theory has been vigorously 

questioned. One of the most recent assessments of the possibility 

of poor performance of classical least squares theory comes from the 

Princeton robustness study (see [3J), which evaluated dozens of 

different estimators in the simple location problem. Their answer 

to the question "Which was the worst estimator in the study?" was: 

"If there is any clear candidate for such an overall statement, it 

is the arithmetic mean ...• " (p. 239 of [3J). 

1.2.2 As was noted earlier, for the problem of estimating parameters 

in the regression models (1.1) and (1.3), a number of alternatives 

to the method of least squares have been developed. One such estimator 

for simple linear regression was originally proposed by Theil in 

1950 [30J and later elaborated by Sen [27J, who derived its asymptotic 

properties. Based on a rank test, the Sen-Theil estimator provides 
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an estimate of only the slope parameter 8. In the simplest case 

where all the c. are different, the estimate of 8 is simply the median 
1. 

of the (N) slopes (Y.- Y.)/ (c.- c.) joining pairs of points. 
2 J 1. J 1. 

There are also the estimators constructed to be analogues to 

the L, M, and R estimators for location. The most intensely studied 

class of analogues is the M-type estimators -- papers on this class 

include ones by Relles [26J, Huber [15J, Andrews [2J, Bickel [6], and 

Yohai [31]. 
A 

In this case (1.5) generalizes to: the estimator 8* of 

~* is that vector which causes 

A 

(1. 7) 81:) = minimum. 

Obviously one member of this class is the least squares estimator: 

take p(x)= x2 . A more robust proposal forp given by Huber in ~5J 

is 

(1. 8) 

where c is a constant. An entire family of M estimators is defined by 

(1. 9) 

This family contains both the least squares estimator (a=2) and the 

estimator proposed by Laplace (a=1). Forsythe [9J and others have 

studied members of this family and the family as a whole. 
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In the published literature there appears to be only one ana-

logue of an L estimator for regression, that of Bickel [5J. The 

analogy with the L estimates for location is more tenuous, however, 

than is the straightforward analogy obtaining for M estimates. Unlike 

the L estimate for location, Bickel's estimator requires a preliminary 

"reasonable" estimate of e~" in order to form a type of one step 

improvement. On the other hand the asymptotic results Bickel derives 

for his analogue are identical (except of course for the dependence 

on the design matrix (c )) to those which hold in the location case. 
ij 

An interesting special case of Bickel's estimator is the analogue to 

the trimmed mean: the residuals derived from fitting the model with 

the preliminary estimate are ordered and a "position index" is associated 

with each; one trims those observations leading to residuals with 

extreme position indices and then forms the standard least squares 

estimate from the remaining observations (cf. pp. 599-601 of [5J for 

details) . 

Several estimators have been developed for the regression problem 

based on rank tests. We have already mentioned Sen-Theil; in addition 

there are R-type estimators proposed by Adichie [1J, Koul [22J, 

Kraft and van Eeden [23J, Jureckov,i [21J, and Jaeckel [18J. The oldest 

of these proposals is that of Adichie, who is concerned with estimation 

in the simple linear regression model. His estimators a and S are 

constructed in a manner very similar to that of the Hodges-Lehmann 

estimator for shift: one forms rank test statistics T and T for 
1 2 
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testing hypotheses on a. and S respectively, and then by "inverting" 

these tests one derives the values for ~ and B (cf. pp. 895-896 of 

[lJ for details). There is an error in Adichie's paper which will 

assume some importance for us later: for Adichie's methods of proof 

to work, a necessary condition on the score function $ (u) used to 
a 

generate the rank statistic T is missing in the assumptions for the 
2 

asymptotic normality of S (pp. 894-895 and p. 898). Specifically 

he needs to assume that $0 be monotone increasing to insure that his 

conditions (A) and (B) (p. 895) obtain. 

For the general regression problem, Jureckov~ [21J considered 

generalizations of the rank tests used by Adichie in order to define 

her estimates of the regression parameters. Her basic approach is to 

first estimate the vector §, and then to estimate a using a location 

estimate on the resulting residuals. For estimating ~ she defines, 

for the sample (Yl" .. 'YN) and a score generating function J(u), the 

rank statistics 

(1.10) 

with c. 
J 

-1 = N 

SN. (b) = N 
J ~ 

1 
'2 

N 
.E (c -c) a (R~) 
1=1 ij j N 1 

N 
E c .. , b

T
= (b

1
, ... ,b ), a (k)= JI~) , and 

i=l 1J ~ q N \N+l 

j=l, ... ,q, 

b b T 
(R~, ... ,R-) is the vector of ranks corresponding to the variables 

1 N 

Y.- c: b, i=l, ... ,N. (We note that in the case of simple linear 
1 -1 ~ 

regression, q=l, Jureckova's rank statistic S corresponds to Adichie's 
N 

rank statistic T2.) Jureckova's estimate ~ of ~ is then any value of 

8 



2 which minimizes 

g 
(1.11) t IS .(b)1 

j=1 NJ rJ 

For the case q=1 this definition leads to an estimate.of 8 slightly 

different from Adichie's. Another estimator, closely related to 

Jureckova's but of a different motivation, is discussed next. 

1.3 Jaeckel's estimator 

1.3.1 Jaeckel's method of estimation is concerned exclusively with 

estimating the vector of regression parameters § in the general regression 

model -- the technique does not directly admit an estimate of the 

intercept a; however, as in Jureckova's case, after the estimate S 

is computed, a may be estimated by applying a robust estimate of 

. h • {Y T-}. N locatlon to t e reslduals i- c.8 . 
-l- i=1 

The starting point for defining 

Jaeckel's estimate is a measure of the dispersion of a set of numbers; 

given this measure of dispersion, one constructs the residuals using 

the different possible values of § and chooses as one's estimate the 

vector minimizing the dispersion of the residuals. This procedure has 

many elements in common with the M-estimators discussed earlier. 

Indeed, if for example one were to define the disper~ion of the 

vector T z 
N 2 
E z., then the procedure outlined above 

i=1 l 
simply leads to the least squares estimates. What differentiates 

Jaeckel's procedure from the M-estimators, however, is his definition 

of the dispersion. Jaeckel defines the dispersion function DN(~) as 

9 



N 
(1.12 ) D (z) = E a (k) z(k) 

N - k=l N 

where z(l)~ Z(2)~ ... ~z(N) and the {aN(k)} are a set of scores 

satisfying 
N 
E a (k) = O. 

k=l N 

Thus for a vector of observations yT= (Y1""'YN) and vector band 

design matrix C= (c .. ), the dispersion is 
1.J 

(1.13) 

where the bracketed quantity is notation for the kth ordered residual. 

The estimate of ~ is then any value of b_ which minimizes D (Y~Cb). 
.. N - -

1. 3. 2 

(Note on notation: In the remainder of the paper, 

we will distinguish the true value of the parameter 

@ (or S) by denoting it as §O (or So); similarly 

a O will denote the true value of a -- so model 

(1. 3) reads 

(1. 3) Yi = a O + SOci + e i ' 

and so forth. Also, when no confusion will arise, 

we will shorten DN<Y - C~) to DN(§) to emphasize 

the dispersion as a function of S.) 

There are several motivations for Jaeckel's estimator. The 

first is that incorporated into the title of Jaeckel's paper: the idea 

10 



of minimizing the "dispersion" of the residuals. This, as we noted, 

is the same idea as involved in least squares and all M estimators: 

all Jaeckel has done is to choose another, but still intuitively 

appealing, formula for measuring how far a hypothesized line (or 

hyperplane in general) is from a set of observed values (c
1

,Y
1
), ... , 

(cN,Y
N

) (or C and ~ in general). 

The second motivation is not so apparent. But as Jaeckel proved, 

the asymptotic behavior of his estimator and that of Jure~kova's is 

identical. This coincidence, it turns out, derives from the fact that, 

when it exists, the derivative of D (B) with respect to the B. s 
is 

N ~ ] 

(except for a constant) equal to the set of Jureckova's rank statistics 

{SNj}. And so the good results for the asymptotic behavior of Juretkova's 

estimator carryover to Jaeckel's. 

A third possible motivation for Jaeckel's estimator, which he 

did not mention, is related to the asymptotic behaviors (as functions 

of S) of the dispersion and of the log likelihood. We briefly consider 

a heuristic derivation of this relationship. We note that Jaeckel's 

results and proofs are unrelated to these heuristics and do not provide 

any indication of under what conditions they can be formalized. Suppose 

that the errors {e.} are iid with cdf F and density F'=f. We assume 
l 

we use the scores generated by the function <Pf(u) = 

(i. e. a (k) = <p (~), 
N. f N+l 

k=l, ... ,N); for errors with·cdf F this turns 

to be the optimal choice under certain restrictions. For simplicity 

we take q=l (simple linear regression); and since the dispersion can 

11 



only be used to estimate BO we take ao=O. Then letting L (B;Y)= L (B) 
N ~ N 

be the likelihood based on N observations, we have 

N 
f(e~ ) (1.14 ) log L (B) = L log 

N i=1 J. 

N 
B = L log f(e(i» i=1 

where ef = Yi-BQi and e~i) is the ith ordered value among {Yk- Bc k }k:1 

We consider the behavior of log LN(B) in the vicinity of the true 

B -1 
value BO' For B~Bo and N large, e(i) ~ e(i) ~ F (i/(N+1»; expanding 

log f(e~i» about F-1(i/(N+1» in a Taylor series we get 

(1.15) log f(e~i»= log f(F-1(i/(N+1») 

+[e B• -F-
1
(i/(N+1»] ~ [j-1(i/(N+1»] 

(J.) f 

+ higher order terms 

thus on summing we get 

log LN(B) = kN - DN(B) + RN(B) 

where kN is a constant independent of Band RN(B) is the sum of the 

higher order terms. Thus we see that, at least locally at B
O

' 

-DN(B) and the log likelihood have similar asymptotic behavior if we 

use the correct scores in defining the dispersion. If the global 

behavior of D (B) is reasonable, then we might expect similar asymptotic 
N 

behavior for the maximum likelihood estimator and Jaeckel's estimator. 

12 



A fourth motivation for Jaeckel's estimate relates to its 

computational feasibility. First, unlike several other recent pro-

posals (cf. [5J, [23J), Jaeckel's estimator does not require a pre-

liminary estimate of §. Second, Jaeckel's estimator seems to be easier 

to compute than Jure~kova's proposal [21]. As Jaeckel points out, 

if the scores aN(k) are monotone increasing, then the dispersion is 

a continuous, convex function of §; also it is straightforward to 

compute the derivatives of the dispersion, which exist almost every-

where. Thus one can apply iterative methods for searching for the 

minimum; Jaeckel mentions the possibility of~using the method of 

steepest descent. 

One of the strengths of Jaeckel's estimator is its asymptotic 

performance as compared to that of other proposed estimators in use. 

As an example Jaeckel considered the simple linear regression case 

and compared the performances of the well-known Sen-Theil estimator 

and his estimator. Since the distribution of the errors is generally 

unknown, he chose for his scores aN(k) those optimal for the logistic 

k 1 distribution (Wilcoxon scores): aN(k) = For this choice 

his estimate becomes a "weighted median" :;1 the ;airwise Slopes{ \ - Y i }. 

With this set-up the asymptotic variance of the Sen-Theil c,- c, 
J 1 

estimator is always greater than (or equal to) that of Jaeckel's . 

estimator. 

1.3,3 There are several areas of weakness in the results for the 
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estimators of Jaeckel, Jureckova, and Adichie. The first is the 

requirement in all three theories that the scores be generated by a 

function ~(u) which is monotone increasing. This is an important 

restriction since for many choices of F, the distribution function of 

the errors, the "optimal" choice of scores -- ~ (u)= -f' (F-\u» --
f -

f 
is not monotone increasing. If F is the Cauchy distribution, then 

~f(u)= sin(2~u-~), which is not monotone for u€[0,1]. Indeed, an 

easy calculation shows that if F is a t distribution with n degrees 

of freedom the corresponding ~f(u) is not monotone for any choice of 

n. Also numerical results indicate that if F is one of a variety 

of contaminated normal distributions, then ~f is not monotone either. 

It turns out that ~f(u) is monotone if and only if F'=f is a so-called 

"strongly unimodal'! density (cf. [10J). Obviously for applications 

one would like to be able to use non-monotone scores and be assured 

of the asymptotic performance of the resulting estimator. 

The second deficiency arises since, in practice, one seldom 

knows the distribution function F. In this case one may, of course, 

choose an omnibus score function ~, such as the Wilcoxon score function 

mentioned earlier; or if one has ~ idea of the shape of F, one can 

try to choose ~ which works reasonably well (although not optimally) 

for all these feasible shapes. An alternative to choosing one specific 

score function is to choose the score function (possibly from a given 

family of choices) on the basis of the sample -- that is to make the 

estimator adaptive. In the location problem using L estimators, 
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adapting has been used quite successfully: not only has it provided 

estimators which are (nearly) asymptotically optimal over a large 

nonparametric family of error distributions, but the estimators also 

perform well in samples of modest size. (For details on adapting 

L estimators, see Johns [19J.) It would be very useful if adaptive 

estimators with similar properties could be found in the regression 

problem. 

1.4 Outline of Results 

The main results of this paper fall into three categories. The 

first category contains results related to the asymptotic consistency 

of Jaeckel's estimator when non-monotone score functions are used. In 

Section 2.2 conditions are stated for the problem of simple linear 

regression under which consistency obtains together with a proof of the 

result, which is similar in spirit to the classic proof by Wald of 

the consistency of maximum likelihood estimates. Section 2.3 contains 

a counterexample to the consistency of Jaeckel's estimator based on 

non-monotone scores if certain of the conditions on the error distri

bution, invoked in Section 2.2, are not met. It should be noted 

that these conditions are not necessary if one uses monotone scores. 

In proving the results of Sections 2.2 and 2.3, we utilize 

results due to Stigler [29J on the behavior of linear combinations 

of order statistics. However some of the results stated in his paper 

are incorrect and there are errors and gaps in some of his proofs. 
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The second category of results, contained in Sections 2.4 through 

2.7, corrects these deficiencies so the results can be used in the 

proofs concerning consistency. 

The third category of results, comprising Chapter 3, addresses 

the difficulty of not knowing the true distribution of the errors 

in the general regression model. An adaptive estimator is proposed 

based on a family of Jaeckel-type estimators (with monotone scores), 

and results are proved concerning its asymptotic behavior. These 

results show that, asymptotically at least, one loses very little in 

not knowing the error distribution (if it is strongly unimodal) if 

one uses this adaptive estimator. 
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CHAPTER 2. CONSISTENCY OF JAECKEL'S ESTIMATOR FOR NONMONOTONE SCORES 

2.1 Model and Assumptions 

Throughout this chapter we will be concerned with simple linear 

regression through the origin: 

(2.1) 

where Y1""'YN are observations on the dependent variable, c1 , ... ,cN 

are regression constants, S is the unknown slope parameter to be o 
estimated, and e , ... ,e are iid random variables with distribution 

1 N 

function F. We then define Jaeckel's dispersion function for the 

score-generating function J(u) (J: [O,lJ+ R) by 

(2.2) 
N S 

k L: a (k) e(k) =1 N 

where a (k) = J(~) and eS(k) is the kth ordered value among the 
N N+1 

residuals {Y -Sc. :i=l, ... ,N}, as defined earlier on p.12. Note that in 
i ~ 

the definition of D , the dependence on the {Y.} and {c } has been 
N ~ i 

suppressed. Jaeckel's estimate of So is denoted by SN and is any value 

of S in the parameter space BO satisfying 

(2.3) 
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Assumptions 

We will now summarize the usual assumptions we will invoke 

in the course of this chapter. 

Fl: F is unimodal and symmetric about 0. 

F2: F has density f with f ~ Bf , Bf a finite constant. 

Also F has finite Fisher's information ref) = J[f'/f]2f. 

F3: (Tail condition) For some £1 > 0, lim x£l [1 - 2F(x)] = 0. 
.. x-+ oo 

Bl: BO 
c: R is a compact set; without loss of generality take 

BO = [-B,B] . 

Cl: Define HN(x) = N-l x #{ci ~ x: i = 1, ... , N}, where #A 

denotes the cardinality of a set A. Thus HN is the "sample 

distribution function" of the {ci: i = 1, ... , N}. We 

assume I ci I .~ Bc for all i, so HN concentrates all its 

mass on and that some H, a distribution 

function. We assume the variance of H, var(H), is 

strictly positive. 

Jl: ° ~ J(~ + u) = -J(~ - u) for u £ [o,~), with J(~ + u) > ° 
on some interval. 

J2: IJ(u) I ~ BJ < 00 for u £ [O,lJ. Also, J satisfies a Holder 

condition with y > ~ (Le. for u, v £ [O,lJ , 

IJ(u) - J(v)1 ~ constant· lu - vlY ), 

except possibly at a finite set of points t 1 , ••• , tp • 

Lastly J trims: for some a £ (O,~), J(u) = ° if 

u ~ a or u >,.. l-a 
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Jaeckel's Theorem 

For the sake of reference, we state Jaeckel's asymptotic normality 

result: 

Theorem Let F have finite Fisher's information and suppose that J(u) 

is non-constant, non-decreasing, and square integrable on (0,1) such 
N 

that L aN(k) = O. Then under some technical assumptions on the 
k=1 

{c.} (cf. p. 1328 of [21J), 
l 

estimator and v = 

where Q is Jaeckel's 
!:N 

-1 
• L , with 

J = (/ J(u)du, tPf(u) = -f' /fO-.-
1
(u», and L = [Olj] with 

o . = 
IJ 

lim 
N-+«> 

-1 N • and c. 
J 

-1 N = N • L c
k 

.• 
k=1 ] 

If q=1 (simple linear regression), L is a scalar equal to var(H).§ 

2.2 Consistency Proof 

In this section we prove the consistency of Jaeckel's estimator 

-8
N 

for the true slope parameter 80 , Because of the invariance of 

Jaeckel's estimator (cf. p. 1452 of [18J), we will assume without loss 

of generality that 80 = 0 in the remainder of the paper. The method 

of proof will be to use Theorem 7* of Section 2.6 to derive asymptotic 
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results about the behavior of the dispersion D (S) and then use the 
N 

compactness of the set BO of possible values of the slope parameter. 

For ease of reference we now state a version of Theorem 7* 

which we will use in this section (cr2(Z) is an alternate notation for 

the variance of a random variable Z): 

Theorem 7* (special version) Let X1N , ..• , XNN be independent random 

variables with cdfs F1N , •.. , FNN respectively; suppose that for some 

cdf G(y), for which there is an E: > ° such that lim 
1 

E: 
xl [l-G(x)-G( -x)] 

there is a finite constant M such that if y~-M then FkN(y)~G(y) and 

if y~M then FkN(y)~G(y) (for all k,N). Assume that for a.e. x,y 

(with respect to Lebesgue measure) the following limits exist: 

and 

lim 
N~ 

lim 
N~ 

-1 
N K(x,y). 

Also assume that F -1 is absolutely continuous with respect to 
N 

Lebesgue measure for each N. 

Assumption J2 and define SN 

Let J be a score function satisfying 

-1 = N 
N 
L J(i/(N+1» XCi) 

i=1 
, where 

XCi) is the ith ordered value among X1N , ..• , XNN . Then 

(i) lim 
N~ 

2 2-
Ncr (SN) = cr (J,F,K) 

Cii) if cr 2(J,F,K»0, then 

(given below); 

~ N(O,l) as N~; 

20 
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(iii) 

--1 
~(J,F ) = flJ(u) FN (u) du and 

N 0 

a2 (J,r,K) =foo fooJ(r(x» J(r(y» K(x,y) dx dy.§ 
_00 _00 

We now consider the application of this result. Let the value 

of S be fixed. In order to use Theorem 7* we define the function 

(2.4) 

Then lim 
x-+oo 

lim 
x-+oo 

0·1 

G(y) = 
F(y-BB ) 

c 

F(y+BB ) 
c 

y~BB 
c 

y<-BB c 

arbitrarily in [-BB ,BB ) so that 
c c 

G(y) is a distribtuion function. 

x El [l-G(x)+G( -x)] = 

r E 
[1-2F(x-BB )]} [ X-:Bc 

{(x-BB ) 1 • lim 
c c 

X-+OO 

=0 by Assumption F3, where El is as in that 

assumption. 

Defining the resuidual e~ = Y.-Sc. and letting F
l
.
N 

be the cdf 
l l l 

of e~ , we note that the cdfs {F.
N

}.N1 and G satisfy the required 
l l l= 

= 

relationship in the assumptions of Theorem 7*, with the M of Theorem 7* 

being BB. Also, for all x, 
c 

(2.5) 

-

N 
E FkN(x)= jF(x+Sc) dHN(c) +FS(x) 

k=l 

as N-+oo, where FS(x) _ jF(x+Sc) dH(c), by Assumption Cl; similarly, 
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for all x and y, 

(2.6) 
-1 N • 

as N~, where KS(x,y) = f[F(min(x,y)+8c) - F(x+Sc)F(y+Sc)] dH{c). 

Since F(x) is everywhere continuous and strictly increasing 

(for xS such that F(x)£(O,1» by Assumptions F1 and F2, for each fixed 
- -

~ FS,N(x) and FS(x) are also everywhere continuous and strictly 
- -1 - -1 

increasing, implying FS,N and FS are absolutely continuous with 

respect to Lebesgue measure. 
--1 

Thus J is uniformly continuous a.e. FS 

and satisfies the Holder condition a.e. 
--1 
FS,N for all N=1,2, ••. by 

Assumption J2. Thus Theorem 71: is applicable. Letting 

(2.7) 
-1 

S = N 
N 

N S 
L J(i/(N+1» e(i) 

i=1 

Theorem 7* implies (with cr 2 (W) denoting the variance of the r.v. W) 

(2.8) 2 () 2 ( - ) =_ foofoo Ncr .. S N ~cr J,FS,K 
-00 -(X) 

For simplicity we usually denote cr 2 (J,F
S

,K) by cr~ to emphasize its 

dependence on S. We can assume cr~>O, since otherwise equation (2.11) 

below follows immediately. Then by Theorem 7* we can conclude, since 

S N 

N 

, that 
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(i) 

(2.9) 

( ii) 

a ( DN:B») 

N~ t (DN:B») 

D 
~ N(0,1) and 

- "(J'FB'N~ --? 0 
as 

N+oo, where ~(J,FS,N) = £1 J(u) F;~N (u)du and E denotes expectation. 

We usually denote ~(J,FS,N) by ~N(S) and ~(J,FS) by ~(S). Combining 

the results of (2.8) and (2.9): 

(2.10) 
D 
~ N(0,1) 

By a standard result of Mann-Wald theory (cf. [24J for the result and 

notation), if a sequence of random variables X converges in distribution 
n 

to a random variable X, then X = ° (1). Thus by (2.10) 
n p 

which implies D (S) 
N 

Combining we get 

(2.11) 

as 
= N~N(S) + 0p(lN) 

23 

and D (0) 
N 

= 0 (1) 
p 
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To proceed farther in proving consistency, we need the behavior of 

~N(S) - ~N(O). Specifically we show that for any fixed S~O there is 

for all N sufficiently large. We do 

this in several steps. 

Lemma 2.1 

Proof 
_-1 

~(S) = ~l J(u) FS (u) du 
~ _-1 

= ~ J(~+u) [F S (~+u) 

since J(~-u) = -J(~+u) by Assumption J1. Hence to show ~(S) = ~(-S) 

it suffices to prove 

-1 _-1 
(2.12) F S (~+u) 

_-1 
F S (~-u) 

-1 
= F:.s (~+u) ~S (~-u) for all UE: [O,~). 

-
As before F is strictly increasing, implying Fa has a unique inverse. __ is J.> 

-
Let w= F S (~+u), so F Sew) 

~+u 

~-u 

= ~+u. Then 

B 
= f c F(w + Sc) dH(c) 

-Bc 

B 
= f c [1 - F( -w-8c)] dH(c) 

-B 
c 

B 
= 1 - f c F(-w-Sc) dH(c) 

-B 
c 

B 
= f c F(-w-Sc) dH(c) 

-B c 

= F (-w) 
-8 

implying 

24 

(since f is symmetric) 

thus 



_-1 
t:S (~-u) = -w, so 

(2.13) 
-1 

F 8 (~+u) -
--1 

-~8 (~-u) 

_-1 -·1 
This argument also shows F8 (~-u) = -~8 (~+u), which combined with 

(2.13) yields (2.12). Thus ~(S) = ~(-S). § 

Because of this result we will now restrict our attention to 

8>0. Indeed, throughout the rest of this chapter we will restrict 

attention to (3)0, since the results for (3~0 follow in an analogous 

fashion. 

We define: 

-1 
(2.14) C(u) - FS (~-u) 

_-1 -1 
F 8 (~+u) + 2F (~+u) . 

Then we have 

Lemma 2.2 ~(S) - ]1(0) = 

Proof Note that F (u) = 0 

-1 
-1 

F 0 (u) = F (u). Thus ~(S) 

B 
f C 

-B 
c 

~ 
f J(u+~) C(u) duo § 
o 

F(u) dH(c) = F(u), 

-1 

so 

- ~(O) = flJ(u) [F (u) 
13 0 

-1 
F (u)]du; 

the result easily follows on recalling J(~-u) = -J(~;-u). § 

Lemma 2.3 

Proof By Assumption Jl J(~+u)~O for UE[O,~J with strict inequality 

on some interval; so to prove the result it suffices to show C(O) = 0 
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-1 
and C(u)<O for U8(O,~J. Now C(O) = Fs (~) 

-1 -1 
F S (~) + 2F (~) = 0 

by the symmetry of f. Let U8(O,~J and set d = 
_-1 

x is defined by F (x) = F(d), so x = F (~+u). 
S S 

-1 
F (~+u»o. 

Then 

-1 _-1 -1 

Suppose 

C(u) = F (~-u) s FS (~+u) + 2F (~+u) 

_-1 
= F (~-u) - x + 2d. 

S 

-1 
If we denote y= F (~-u) and y = x-2d, to show C(u)<O it will suffice S 0 

to show y<y , or equivalently o 

(2.15) F (y ) = F (x-2d) > ~-u 
S 0 S 

since FS is strictly increasing. To continue the proof we need the 

following 

Fact: If z~-d, then F(-d) - F(z) < F(d) - F(2d+z). 

Proof of Fact: Suppose z<-d. Then (considering Figure 1) 

-d 
F(-d) - F(z) = J feu) du 

z 

-z 
= J feu) du 

d I 

z -d. d 
(by symmetry), so 

FIGURE 1 

-z-d 
(2.16) F(-d) - F(z) = f f(v+d) dv. 

o 
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Now 

Since f is unimodal and d>O, f(d+v)<f(d-v) for all v>O, implying 

-z-d -z-d 
f f(v+d) dv < f f(d-v) dv 
o 0 

d 
= f f(u) du 

2d+z 

= F(d) - F(2d+z) 

The same argument shows that if z>-d, then 

F(z) - F(-d) > F(2d+z) - F(d), or equivalently 

F(-d) - F(z) < F(d) - F(2d+z) , 

completing the proof of the Fact. 

YO+i3B 
= f c F(z) dH«z-Yo)/i3) 

Y -i3B o c 

By the Fact, F(z) > [1-2F(d)] + F(2d+z), so 

YO+i3B 
+ f c F(2d+z) dH«Z-Yo)/i3) 

Yo-fmc 

The first integral is just 1-2F(d). 

B 
The second integral = f c F(2d+Y

O
+!3c) dH(c) 

-B c 

B 
= f c F(x+!3c) dH(c) 

-B c 

= F(d) . 
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Thus F (y ) > 1-2F(d)+ F(d) = ~-u, implying (2.15); thus Lemma e 0 

2.3 is proved. § 

Lemma 2.4 Let e~O; then there exists n(e»O and N* such that 

~ (e) - ~ (0) > nee) for all N~N*. § 
N N 

Proof We first note that ~N(O) = ~(O). Also, by Lemma 2.3 

~(e) - ~(O»O. Hence it will suffice to show 

(2.17) 

lim 
N-+oo 

_-1 
JIJ(u) Fe N(u) du 
o ' , 

i.e. that 

_-1 
--~> {/J(u) Fe (u) du as N-+oo. 

Since J(u) = 0 for u~a and u~1-a, the dominated convergence theorem 

will imply (2.17) if we show: 

(i) 
_-1 
Fe,N(u) + 

_-1 
Fe (u) for u£ G ' 1-aJ , and 

(ii) there is v(u) integrable on [a,1-a] such that 

-1 
IFe~N(u)l~v(u) for u£[a,1-a] for all N large. 

Proof of (i): By assumption C1, 

To simplify notation let g (x) 
N 

Fe,N(X) 

= Fe,N(x) 

+ Fe(X) for all x. 

and g(x) = Fe(x). 

Then we know gN(x) -+ g(x) for all x, and we wish to prove 

-1 -1 r. ] gN (u) + g (u) for all u£La,1-a. Let £>0 be given and 

pick u£[a,1-a]; denote x=g-l(u). We must show Ig~l(u)_xl<£ 

for all N large. By the monotonicity of g it will suffice 
N 

to show (for N large): 
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(2.18) 

But gN(x-£) ~ g(x-£)<u, and gN(X+E) ~ g(x+£»u, so for all 

N large (2.18) obtains, implying (i). 

Proof of (ii): For u£[a,l-a], Ig-\u)kmax{lgN-1(1-a)l, Ig-1(a)l}. 
N N 

But by (i) g;l(l_a) ~ g-l(l_a) and g;l(a) ~ g-1(a) as 

N-+co. Therefore set v(u) = max{lg-1(1-a)1 +1, Ig-1(a)I+1}. 
-1 

Then for all N sufficiently large IF (u) kv(u). Trivially 
S,N 

v is integrable on [a ,1-a], implying (ii). 

Thus (2.17) obtains, completing the proof of Lemma 2.4. § 

Lemma 2.5 Whenever it exists, the derivative of the dispersion 

has the bound I D I ( S) I ~ NB B 
N J c 

§ 

Proof By Jaeckel's Theorem 1 and the remarks of p. 1451 of [18J, 

DN(S) is a non-negative, continuous, piecewise linear function of 

S (even in the case J(u) is not increasing for u~~,1]). By p. 1455 

of [18J, where it exists 

D I (S) 
N 

c 
(k) N 

l: 
k=1 

J(k/(N+1» 

(k) S 
where c is the c value associated with the residual e(k)' 

Assumptions C1 and J2. § 

N 
~ l: 

k=1 
IJ(k/(N+1»1 Ic(k)f < NB B 

J c 
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Theorem 2.1 (Consistency of Jaeckel's estimator) 

Assume SO=O without loss of generality. Then under the assumptions 

of Section 2.1, 

p 
-»- O. § 

Proof The idea of the proof is the following simple observation. 

For we~, if DN(S) (w) > DN(O) (w), then SN(w) 1 B since BN minimizes 

o D (B) over all BeB. Let ~,e>O be arbitrary and choose B* outside 
N 

the interval O~=(-~,~). Then by the piecewise linearity of DN and 

Lemmas 2.4 and 2.5, there is an interval IB*=(B*-h
S
*' 8*+h

B
*) and N

8
* 

such that for all N~N8* 

(2.19) sup I D
N

(B)-DN(B11) I < ~N· [tlN(8~il)_tl(0)] 
Bel 8~'1 

(simply choose ho ." < n (B~':) / (2B B ) ). Consider the collection of open 
...," J c 

sets {I
8
*: 8*eBO-O~}. This collection provides an open cover of 

o B -0 ~' which is compact by Assumption B1. Thus there is a finite 

subcover I , •.. ,1 say. Recall that by (2.11), 
81 8p 

DN(8i) = DN(O) + N(tlN(8i)-tlCO» + 0pCIN) 

(where we note that the term ° (IN) may depend on 8.). Thus for each 
p l 

8. (i=1,2, ... ,p), there exists N. (for which (2.19) -- with 8*=8.--
l l l 

obtains for N~N.) such that 

for all N~N .• 
l 

the following 

l 

P{ID
N

(8 i ) - DN(O) - N(tlN(8 i )-tl(0»I ~ ~N·(tlN(8i)-tl(0»)} < e 
p 

If we let N1: = max {N il i then for all N~N~'I 
i=1, ... ,p 

p inequalities hold simultaneously with probability > 1-e: 
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(2.20) 

i = 1,2, ... ,p. 

Nowany S E BO-08 satisfies SEISk for some k = 1,2, ... ,p; also 

for all N~N* 

by (2.19). Hence by (2.20) we obtain 

for all 

- p 

* N ~ N . Thus 

B -+0 since E and 8 were arbitrary. § 
N 

2.3 Counterexample 

for all N N*,' I' ~ 1mp ylng 

The aim of this section is to show that, in the case of a 

non-monotone score function J(u), some sort of condition (not a 

regularity condition) needs to be invoked on the distribution of the 

errors in order that Jaeckel's estimator have the desired asymptotic 

properties. In the last section we proved the consistency of Jaeckel's 

estimator assuming f is unimodal; the counterexample that follows 

shows that this assumption cannot be dropped without invoking some 

other conditions. In the case of non-monotone scores, there are non-

unimodal densities (otherwise well-behaved) for which Jaeckel's estimator 

is not consistent for the true slope parameter. 
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Theorem 2.2 

There are a non-monotone score function J(u) and a non-unimodal 

density f, with J satisfying the assumptions of Section 2.1 and 

f satisfying all but the unimodality assumption of Section 2.1, for 

which - P 
SN f O. § 

To carry out the proof we need 

Lemma 2.6 

There exist J and f as described in Theorem 2.2 and S' ~ 0 

such that peS') < p(O). § 

1: 
Proof Recall pes) - ].l(0) = _J 2 

J(u+~) C(u) duo Also C(O) = 
0 

We will find S' and £>0· such that C(u) > 0 for u £ (O,£). 

will be sufficient to prove the lemma since we will then choose 

(cf. Figure 2) J such that J(u+~) = 0 for u > £ and J(u+~) 

for u e: (0, e:/2 ) say. J(u) 

We'll assume H has 
( ", ,p ). 

a density h, symmetric 

about O. Since 

c'(u) = 

I \ ,1: ~+£ 
\_" 2 

FIGURE 2 

2 

{ JBCf(F-l(~_u) + Bc) h(c) dc}~l 
-Bc S 

{ JBc f(F-l(~+u) + Bc) h(c) dc}-l 
-Be S 
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Therefore 

e'(O)=2[ 
1 

HO) 

If h is symmetric about o 

(2.21) C' (0) 

1 

Be) h(e) de J B -f cHF-l (~) + 
-B a c 

it is easy to show that r-1 (~) 
a 

1 

HO) 

= 0, so 

Now Bc is fixed. If f(x) > f(O) in an open neighborhood of 0 

(with 0 deleted), and f(O) > 0, then by taking a sufficiently 

close to 0 (13 1 0) we obtain 

implying C'(O) > O. Since C has a finite first derivative at 

t = 0, a theorem from calculus (cf. Chung [8 J, p. 156) implies 

(2.22) C(t) = C(O) + C'(O)-t + 0(1~1) as t + 0 

= tC'(O) + o(ltl) 

Thus there is £ > 0 such that 0 < t < £ implies C(t) > O. § 

Proof of Theorem 2.2 We consider the same J and f functions 

described in the proof of Lemma 2.6. Choose a point a' (whose 

existence is guaranteed by Lemma 2.6) such that 

~(O) - ~(a') = A > 0 

say. By the proof of Lemma 2.4, ~N(a') + ~(a'), so there is N' 

such that for all N ~ N', 
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This fact, together with 

= 

imply that given € > 0 there is Nil such that 

(2.23) 

We consider the neighborhood about 0 defined by 

By Lemma 2.5 

(2.24) 

Thus by (2.23) 

for all N ~ N". 

/sl < __ A __ } 
8B

J
B

c 

2.4 Comments on paper of Stigler 

§ 

+ O.(IN), 
.p 

for all N ~ N". 

w.p.1. 

In the next several sections we consider [29]: "Linear 

functions of order statistics with smooth weight functions," by 

Stephen Stigler. Our interest in this paper derives from the fact 

that many of the results in it are used extensively in Sections 2.2 

and 2.3 in considering the consistency of Jaeckel's estimator SN' 
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However for our purposes there are several deficiencies in the paper: 

Theorems 6 and 7 are incorrect (cf. Section 2.5 for a counterexample); 

in our attempt to patch up Theorem 7, it was also discovered that there 

is a mistake in Stigler's proof of Theorem 4, on which his later 

results depend; lastly there are gaps in several of his proofs which 

possibly deserve some elucidation. 

In Sections 2.4-2.7 we state and prove a corrected version of 

Stigler's Theorem 7, and in the course of the proof we indicate one 

way of getting around the difficulty involved in his Theorem 4 (at 

the expense of an extra assumption, however); in these sections we 

also prove some results which help to fill in the gaps. In the 

remainder of this section, we outline the problem which Stigler's 

paper addresses, his notation, and outline his most important results 

and their interconnections, in order to illuminate our later proofs 

(which lean heavily on Stigler's proofs). 

Let X1n ,X2n , ... , Xnn be independent random variables with 

(possibly different) cdfs F1n ,F2n , .•• , Fnn. If we denote the order 

statistics of this sample as X(1)~X(2)~ ... ~X(n)' then Stigler is 

interested in the asymptotic behavior of the statistic 

(2.25) S 
n 

= n 
-1 

n 
E J(i/(n+1» XCi) 

i=1 

where J: [0,1J + R is some weight function. By asymptotic behavior 

we mean the asymptotic normality of (a normalized version of) S 
n 
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and the speed of convergence of E(S } to an asymptotic value. The 
n 

paper is concerned with two set-ups: the XS are iid, so F
kn 

= F for all 

k and n, or the more general non-iid case. In both set-ups Stigler's 

results deal with the interplay between assumptions about the cdfs 

(the existence or lack thereof of second moments) and assumptions 

about the weight function J (whether it "trims" or not). 

Theorem 2 is the basic asymptotic normality result for S 
n 

assuming the iid case and that F has a finite second moment. Theorem 4 

is the basic result containing information on how fast E(S ) converges 
n 

to ~(J ,F) -
-1 

flJ(u) F (u) du , also assuming the iid case and the 
o 

existence of the second moment. The proof of normality basically 

involves an application of Hajek's projection lemma to show S is 
n 

"equivalent" to a sequence of random variables for which the standard 

central limit theorem applies. On the other hand the proof of Theorem 4 

basically involves an application of dominated convergence -- unfortu-

nately the purported dominating function does not dominate. Theorem 5 

then combines the conclusions of Theorems 2 and 4, only the assumption 

of a second moment is replaced by a much weaker tail condition while 

the extra assumption that J trims (Le. J.(u) = 0 for u~a and u~1-a} 

is added. 

Stigler indicates in the proof of Theorem 5 how in general this 

new assumption can be used at the places where dominated convergence 

was invoked in the proofs of Theorems 2 and 4 to replace the second 

moment assumption -- it involves using the new assumption to bound 
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certain binomial tail probabilities. Lastly Theorem 6 is the extension 

of Theorems 2 and 4 to the non-iid case, and Theorem 7 extends Theorem 5 

to the non-iid case. The proofs on the whole are pretty similar to 

those in the iid case, only now Lindeberg-Feller replaces the regular 

central limit theorem, and certain random variables, useful in bounding 

different quantities, which were binomial are now generalized binomial 

random variables. Theorems 6 and 7 both contain the rate of convergence 

result for E(S ) which is false. The proof to Theorem 6 outlines 
n 

the changes to the proof of Theorem 2 necessary to prove asymptotic 

normality in the non-iid case, but no real proof is given to the 

(false) extension of Theorem 4 -- just that it follows "in an equally 

straightforward manner." No proof to Theorem 7 is given -- just that 

it follows from Theorem 6 as Theorem 5 followed from Theorems 2 and 4. 

Our proof of a corrected version of Theorem 7 will be very similar 

to Stigler's development. We will begin by proving the corrected 

version of Theorem 6: this will be obtained by mimicking the proof 

Stigler gives (pp. 684-686) for Theorem 4 -- only assuming the non-

iid case -- and by using the comments in Stigler's proof of Theorem 6, 

and by circumventing the incorrect dominating argument by assuming 

that J trims (in addition to the assumption of second moments). Then 

the step from this corrected Theorem 6 to the corrected Theorem 7 

will invoke the method described in Stigler's proof of Theorem 5; 

in Section 2.7 we show how to obtain certain inequalities for the 

generalized binomial distribution necessary for this step. 
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2.5 Counterexamples to Stigler 

k: 
In his Theorem 6 Stigler asserts that n 2 (E(S ) - ~(J,F)) + 0 

n 

as n-+«>, where 

lim 
n-+«> 

-1 
n 

n 
E 

k=1 

-
F (x) = F(x). 

kn 

The following example, which satisfies all of the regularity conditions 

of Theorem 6, shows that in general this result is not true. 

Counterexample. Let X1 ,X2 , •.. be iid U(0,1) random variables, and 

define the triangular array 

(2.26) k=1,2, ... ,n. 

s 
Let F denote the cdf of the X and F

kn 
that of Zkn' To satisfy the 

conditions of the theorem we need also a cdf G with finite second 

moment and some finite constant M such that Fkn(y)~G(y) if y~-M and 

Fkn(y)~G(y) if y~M. For the cdf G in this case take the cdf of a 

U(-3,3) random variable, and take M=2. Then {Fkn } and G satisfy the 

requirements. Furthermore it is clear that 

(2.27) lim 
n-+«> 

-1 
n 

n 
E F

kn 
(x) 

k=1 
= F(x), 

so the limit on the left hand side exists as is required by the theorem. 

In the terminology of the theorem then, rex) = F(x). Also it is 

clear that 

lim n 
n-+«> 

-1 n 
E [Fkn(min(x,y)) - Fkn(x) Fkn(y)] 

k=1 

exists, thus satisfying the requirements of the theorem. We define 
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n 
8 -1 L: J(i/(n+1» XCi) = n 

(2.28 ) 
n i=1 

-1 n 
8-4': = n L: J(i/(n+1» Z(i) n i=1 

n 

where Z(i) is the ith ordered value among {Zkn}k=1 ' and J(u) is any 

nice function, specifically take J(u) = 1. Clearly J satisfies all 

of the regularity conditions. Then 

(2.29) 8 1: = 8 
n n 

+ n 
-~ 

According to the last remarks of Theorem 6 

(2.30) 

as n-+oo, where 

However using (2.29) in (ii) we have 

as n-+oo, which contradicts (i). § 

k 
n 2 ~(8 ) + 

n 

As we will show in the next section, a simple and natural 

modification of the offending statement makes the rate result obtain 

in Theorem 6 (and also in Theorem 7). In contrast, the error associated 

with Theorem 4 relates to the proof of the result and not its statement. 

It may very well be that the result stated in 8tigle~'s Theorem 4 

is correct. However we were not able to patch up the proof without 

introducting an additional assumption. 

The error in the proof of Theorem 4 is located in the first 
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sentence of the last paragraph of p. 685 of [29J: namely the statement 

that the supremum of H* (u;x) occurs at u=F(x) is not in general 
n 

true. For suppose x is chosen such that F(x) = j+n for some 

n+1 

nonnegative integer j and O<n<1 (note the strict inequalities). 

Obviously this is the case for a.e. x since F has a positive density. 

We now compute (To shorten notation 

we will usually just write H* (u) for H* (u;x).) For u<F(x), 
n n 

(2.31) H* (u;x) = H (u;x) = 
n n 

-~ 
n • L: 

i~(n+1)u 

For convenience we denote P(X(i»x) = Pi (suppressing the dependence 

on n and x). We consider UE: [j /(n+1), F(x» (in this interval it 

turns out H* is constant). For such u, ~n+1)uJ = j, where the 
n 

brackets denote the greatest integer function. Thus 

and hence 

(2.32) 

Hi: (u) = 
n 

Hi: ( F(x) 
n 

n 
-~ 

-
) -

j 
L: 

i=1 

lim 

p. 
l 

utF(x) 
H'" .. (u) = n 

Now we consider u=F(x). Note that 

(2.33) 

But H (F(x» 
n 

H* (F(x» = H (F(x» - a (F(x» 
n n n 

:J.: 
=n 2 (1-F(x)) -~ n· L: 

i>(n+1)F(x) 
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p. 
l 

-~ 
j 

n L: p . 
i=1 l 

By calculations 



done after equation (12) of p. 684, 

(2.34) 

implying 

so 

(2.35) 

n 
I: 

i=1 
p. = n - nF(x) 

1 

l: 
i>(n+1)F(x) 

p. 
1 

= 

H (F(x» = H* (F(x)-) 
n n 

n 
I: 

i=j+1 
p. = n - nF(x) -

1 

j 
I: 

i=1 

But a (F(x» 
n 

= n -~ [(n+1)F(x)] !" -~. ~ n 2F(x) = n ] - n «j+n)/(n+1», 

so 

(2.36) a (F(x» = 
n 

j - nn 

rn (n+1) 

Combining (2.33), (2.35), and (2.36) we obtain 

(2.37) H* (F(x» = H* (F(x)-) 
n n 

( 
j - nn ) 

rn (n+1) 

If n<j/n, then j-nn>O, implying H* (F(x» < H* (F(x)-) , in turn 
n n 

implying that sup H~'; (u;x) 
n 

u 

Indeed for any x such that 

does not necessarily occur at u=F(x). 

n{(n+1)F(x) - '[(n+1)F(x)]} < [~n+1)F(x)J, the 

supremum will not be at u=F(x). However, from the fact that H* is 
n 

non-decreasing for u<r(x) and non-increasing for u~F(x) and the above 
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calculations, we can say 

(2.38) sup 
u 

H1; (F (x) ; x) + I a (F (x) ) I . 
n n 

The main difficulty that the correct statement (2.38) causes in the 

proof is not in showing that 

If1{J(u) - J(F(x»} dH* (u;x)1 + 0, 
o n 

but instead in bounding this sequence by an integrable function so that 

dominated convergence can be invoked. 

2.6 Proofs of corrected results 

We will now prove a modified version of Theorem 6: 

Theorem 6~'; Suppose that for some distribution function G(y) of a ran-

dom variable Y with 
2 E(Y )<00, it is true that whenever y~-M, 

Fkn(y)~G(y), and whenever y~M, Fkn(Y)~G(y), where M is some finite 

constant. Assumethat for a.e. x,y with respect to Lebesgue measure 

the following limits exist: 

and 

lim F (x) = rex), where F (x) 
n n n+oo 

lim 
n+oo 

-1 
n 

n 
L {Fkn(min(x,y» 

k=l 

-1 n = n • L Fkn(X) 
k=l 

_-1 
Then if J(u) is bounded and continuous a.e. F 

na2 (8 ) + a2 (J,F,K) (given below) as n+oo; 
n 
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and if a 2 (J,r,K»O, then 

Here 

S - E(S ) 
,n n 

a(S ) 
n 

D 
N(O,1) as n~ • 

a2 (J,F,K) = foo foo J(F(x» J(F(y» K(x,y) dxdy 
_00 _00 

If in addition J satisfies a Holder condition with y>~ (cf. Section 
_-1 

2.1) (except possibly at a finite set of points t 1 , ... ,t
p 

with Fn 

measure ° for each n) and J(u)=O for u~a and u~1-a, and if 

1 

f{G(y) (1-G(y»}~ dy 

is finite, then 

(2.39) 
k 

n 4 (E(S ) - ~(J,r » ~ 0, 
n n 

where 

~(J,F ) = 
n 

-1 
fIJ(u) F (u) duo 
o n 

§ 

Proof The proof of the asymptotic normality is just Stigler's proof 

on page 689 (cf. Section 2.7 however for elucidation on the use of 

Chebychev's inequality for the generalized binomial distribution). 

The task of this proof is to show that (2.39) obtains by appropriately 

modifying Stigler's proof of Theorem 4. (The following should be read 

in conjunction with that proof.) Without loss of generality we assume 

° is a median of r. As in his proof integration by parts yields 
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n . 
(2.40) E(Sn) = {'" {n -1 ~ J(_l_) P(X(i) > x)} dx -

0 i=1 n+1 

JO 
n . 

{n-1 ~ J(_l_) P ( X ( i) ~ x)} dx 
_00 i=1 n+1 

We will handle only the first integral, since the result for the 

second follows in a similar manner. We define 

I = n 

= 

where 

Define 

and 

Then 

and 

l
2n 

We shall show 

theorem. 

1: n 2 IX> 
0 

Joo Jl 
0 0 

n . 
{n-1 ~ J(-\-) pcX( i) > x) - _;1 J(u) 

i=1 n+ Fn(x) 

J(u) dHn(u;x) dx 

-~ n (1-u) - -~ n· ~ P(X(i) > x) 
i>(n+1)u 

n -~ • ~ p(X. > x) 
i~(n+1)u (l) 

du} dx 

u < F (x) 
n 

1: -n2u (with a(1)-0), 
n 

H~(u;x) = H (u;x) 
n 

I = I + I 
n 1n 2n 

where 

= Joo Jl { J(u) 
o 0 

J(F (x»} dH * (u;x) 
n n dx 

= Joo { Jl 
0 Fn(x) 

J(u) da (u) + J(F (x» a (F (x»} dx n n n' n 

l 1n and o as n -+ 00 by the dominated convergence 

We note that H * (u) 
n 

is monotone non-decreasing for u<. F (x), 
n 

and monotone non-increasing for u~F(x); 
n 
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to (2.38) 

(2.41) sup 
u 

H l':(U) < H '\r(x» + la (F (x» I 
n "n n n n 

We also note that now the X.S are not 
1 

iid F, but instead Xkn ~ Fkn , 

k = 1,2, ... ,n; thus P(X(i) > x) is no longer the (lower) tail probabil

ity of a binomial random variable, but is the tail probability of the 

generalized binomial random variable y = # {Xs ~ x} n with parameter 

T 
P = (F1n(x), ... , Fnn(x», and mean nFn(x). Consider a fixed _n 

x ~ F-1(t1 ), "', F-1(tp )' Note that for all n sufficiently large, 
_ ~lp8 

min(IFn(x) - t11, .0', IFn(x) - tpl) ~n . 

and 0 ~ u ~ 1} , 

it follows by Chebychev's inequality for fourth powers of a generalized 

binomial random variable (cf. Section 2.7 also) and the boundedness 

of J that 

(2.42) 

where 

[I {J(u) - J(F (x»}dH *(u;x) I 
o n n 

= [ {J(u) - J(Fn(x»} dHn*(U;x)I + 0(1) 

An 

~ sup_ IJ(u) - J(Fn(x» I ·1 dHn":(u;x) I + 0(1) 
u <: An 

is the total variation of the measure 
_.t .. H .

n • 

- t/~ Hn is monotone increasing and then monotone decreasing, 

Since 

Thus the right hand side of (2.42) is less than or equal to 
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Since the length of A goes to 0, sup_ IJ(u) - J(r (x» I -+ 0 n 
u e:: Au n 

- ~', as n -+ 00. Thus to show l1n -+ 0 we need only show that sup H (u;x) n u 
is bounded, and that the sequence of functions 

on x e:: [0,00) is bounded by an integrable funct ion. 

As in Stigler's proof 

(2.43) 

Now 0 is a median of F, but for x ~ 0 we don't know that 

r (x) 'l .5 
n 

(2.44) 

However, since Inr (x) n . certainly, 

Then by Stigler's reasoning 

Since it is easy to show that la (F (x»1 ~ 1/1n ,this result 
n n 

combined with (2.41) yields (for all n sufficiently large) 

sup R* (u;x) ~ R*(r (x)) + la (r (x»1 n n n n n 
u 

~ 2 
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implying the boundedness of sup H~ (u;x) . 
u 

Denoting p (x) = jl{J(u) J(r (x»} dH;': (u;x) 
n n n 0 

we now need to find a function p(x), integrable on xe[O,oo), such that 

!Pn(x)! ~ p(x) 

write [0,00) = 

for all n sufficiently large and all xe[O,oo). We 
-1 1 

L1 U L2 = [o,r o-!» U [r- 0- * ) ,00). For xd
1 

it is easy to define p(x) 

Thus we set p(x) = 6B 

_-1 
Let x = F (1 

° 

J 

p (x) 
n 

for 

a. ) 
4 

~ jl!J(u) - J(r (x»! o n 

~ jl 2B
J 

{2# (x) (1 -
0 n 

~ jl 2B {2·!:2 + 2} du 
0 J 

xeL
1

, 

!dH~! 

F (x» 
n 

~ 6B
J 

+ 2} du 

a. 
4 

Since 

Fn is monotone this implies rn(x) ~ 1 - ~ for all xeL
2 

if 

n~N1' But J(u) = ° for u~1-a., so for xeL
2 

and n~N1 

J(r (x» = 0, implying 
n 

I-a. 
f J(u) dH* (u;x) 
o n 

for xeL
2

, n~N1' 

Since H* is monotone increasing for u~F (x) , and since 
n n 

r (x) >,. 1 
n 

a. 
we obtain 

2 
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since u = 1-a < f (x) and H* = H for u<F (x). Thus n n n n 

(2.45) I P (x) I ~ B 
n J 

-~ n 

Any index i in this summation satisfies i~(n+1)(1-a), so for all 

n ~ 4(1-a)/a say, 

Illy - il 
n 

>: na 
~ 

4 

and E(Y ) = lly 
n n 

= nF (x) ~n(1 _ a ). 
n 

By Chebychev's inequality for 
2 

fourth moments 

P{ I y - lly I ~e:} 
n n 

ll4(Yn) is the 4th central moment of Yn' Letting E = n~ and using the 

results of Section 2.7, we have for any i in the index set 

P(X( i»x) 3n
2 F~ (x) - 2 + nF (x) U-F (x)} ~ {1-F (x)} n n n 

4 

t n~) 

~ K F (x) {1-F (x)} 4 a n n where Ka = 6'4 

2 
a4 n 

Thus 

Ipn(x)1 B 
-~ 

E P(X(i»x) ~ n 
J i~(n+1)(1-a) 
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K B F (x) (1-F (x» a J n n 
.:S 

3/2 
n 

.:S KaBJ 
(1-F (x» 

n 

for x8L
2 

and all n sufficiently large. Thus for x8L set 
2 

{K B x<M 
p(x) = a J 

KaB
J 

(1-G(x) ) x~M 

Then for X8 [0 ,(0) Ip (x)1 ~ p(x) and clearly foo p(x) dx <00 
n 0 

• ( 2) . . Slnce E Y <00 lmplles 
00 

f (1-G(x»dx < 00 (indeed it implies that 
o 

00 
f x(1-G(x» dx < 00 by a simple Fubini argument). Thus we can conclude 
o 
11n + ° as n+oo. Stigler's proof that 12n + 0 in Theorem 4 is simply 

adapted to show 12n + ° in the non-iid case by replacing F(x) by Fn(X) 

and noting that his results still obtain. The proof of Theorem 6* 

is complete. § 

If the moment conditions on G of Theorem 6* are replaced 
8 

by the condition that for some 81>0, lim x 1(1-G(x)-G(-x» = 0, and 
x+oo 

we continue to assume the conditions on J in Theorem 6*, including 

that J(u) = ° for u~a and u~1-a, then the conclusions of Theorem 6* 

continue to hold. § 

As we have mentioned, the proof of this modification of Theorem 6* 

utilizes exactly the techniques of Stigler's modification of his proofs 

of his Theorems 2 and 4 to obtain his Theorem 5: namely one finds bounds 
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for certain (generalized) binomial tail probabilities which allow the 

continued use of the dominated convergence theorem under the modified 

assumptions. We will not prove the result in detail. Section 2.7, 

however, proves that certain moments of the generalized binomial 

distribution behave nicely, so that bounds for the needed tail prob-

abilities in the non-iid case are analogous to those Stigler uses in 

proving Theorem 5 in the iid case. 

2.7 Miscellaneous results 

Throughout this section let Y be a generalized binomial random 

variable with parameters nand 

Y = Z1+Z2+ ..• +Zn' where the ZS are independent Bernoulli random variables, 

with E(Z.) = p .. Let X be a (regular) binomial random variable with 
1. 1 

parameters nand p, where 

Lemma 2.7 If we denote the 4th central moment of a random variable W 

by ]14(W) (that is, 
4 

]14(W) = E{(W-]1W) }, where ]1W = E(W) ), then 

]14 (y) ~ ]14 (X). § 

(In words: a generalized binomial distribution has smaller fourth 

central moment than that of the "equivalent" regular binomial distribution.) 

Proof The proof will make use of the concept of Schur convexity 

(cf. [25J). Tedious calculation shows that 
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n 4 4 
J..l

4
(y) = L ( p . q . +q . p . ) + 3 L p.q.p.q. , 

i=l 1 1 1 1 i;ij 1 1 J J 

n -4 -2-2 
11 4CX) 

-
and = L P q + 3 L P q , where 

i=l i;ij 

q.=l-p. (i=l, ... ,n) and q = 1-p . 
1 1 

Let 
n 

S = {pER : O~p.~l}, a convex 
1 

subset of Rn, and consider f:S + R defined by 

Clearly f is symmetric in its arguments. Then by result D.a.7.a of 

Olkin and Marshall (cf. pp. 8-9 of [25J), to show f is Schur concave 

it suffices to show 

(2.46) 

We now show this. A straightforward calculation 

shows 

(2.47) 

n 

2 = 1 - 14Pk + 36Pk 

where T _ L Pi(l-Pi)' This in turn yields 
i=l 

where 

that (2.46) obtains it suffices to show Q ~ O. Clearly 
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2 2 2 2 
Q ~ 12(Pk+P~) - 12Pk - 12p~ + 14 - 36(Pk+P~) + 24(p~+PkPt+Pk) 

= 14 - 24(Pk+P~) + 12(P
k

+Pt ) 
2 

2 = 12 (Pk+P~-l) + 2 > 0 

Hence f is Schur concave on S, so by Theorem D. a. 7 of [25], if :: -< ~ 

on S, then f(x) ~ f(y) (cf. [25J for notation). But it is well 

known that (p.23 of [25J) 

Lemma 2.8 Denote the kth factorial moment of a random variable W by 

(that is, 
(k) 

~' (W) = E(W ) = E {W(W-1)"'(W-k+1)} ). 
k 

W 

Then 

Proof If W assumes values 0,1,2, ... define Ij>(t) = E(t ). Then 

derivative. 
- - n 

Simple calculations yield Ij>X(t) = (q + pt) and 

(k) _k h = n p, were Also 

<Py (t) = 
n 
II (q +p. t) 

i=l i ~ 

(k) 
To deal with Ij>y (1) we introduce the elementary symmetric functions. 
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T n 
We again denote the column vector (P1, ... ,Pn) E R by P ; let _n 

n ( ) kth .. Ek ~n denote the elementary symmetr1c functlon of n arguments. 

Claim: 

Proof: We will prove this claim by a double induction on k and n with k~n 

(k=0,1,2, ... and n=1,2, ••. ). For k=O and arbitrary n, 

= and En (p ) = 1, 
k _n 

verifying the claim. Now suppose the claim has been verified for all 

(k' ,n') pairs with k '~k and n '~n. We verify the claim for k' =k and 

n'=n+1: 

Denoting f(t) = qn+1 + Pn+1 t 

~n+1(t) = ~n(t) f(t). Thus 

(k) 

and p = (P1, ... ,Pn,Pn+1)' we have 
-n+1 

(2.48) <Pn+1 (t) = ~ (k)· ~(k-g,)(t) /Q,)(t) • 
£=0 t n 

(0) (1) (Q,) 
But f (t) = f(t), f (t) = Pn+1 ' and f (t) = 0 for Q, greater than one. 

Thus 

(k) 
(1) 

(k) 
(1) 

(k-1) 
(1) <l>n+1 = ~n + kPn+1 <l>n 

·0 n n (p )] = k! Ek (p ) + p +1 E
k

_
1 . -n n -n 

But from a simple picture it is clear that 

to complete the induction we need to show that for k=1,2, ..• that 
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But for ~k 

where here c1 , ... ,c
k 

are just some constants. 

equals k!E~ (~k)' Thus the claim holds. 

(k) 
Thus <Pk (1) = 

which 

S · E(x(k» -- k'. En
k 

(- -) t 1 d h f f h 1 lnce p, .•. ,p , 0 conc u e t e proo 0 t e emma 

we need to show that 

(2.49) 

One possible approach to this is to use a theorem due to Marcus and 

Lopes (cf. p.33 of [4J); but a simpler proof is to again use results 

from Olkin and Marshall about Schur convex functions. By result 

D.d.3 on p.31 of [25J, En (x) is symmetric and Schur concave on 
k -

{x: x=(x1""'x )}. _ _ n 
n 

Thus -Ek (~) is symmetric and Schur convex, so 

by Theorem D.a.7 of Olkin and Marshall we again have 

-E~ (x) ~ _En (y) 
k 

if x<y 
~ -

n 
in R . 

Again noting (p, ... ,p)< (P1, .. ·,Pn) , we obtain E~ (p, ... ,p) ~ E~ (P1, ... ,Pn)' 

thus verifying (2.49) and completing the proof. § 
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CHAPTER 3. ADAPTING JAECKEL'S ESTIMATOR 

3.1 Adaptive estimators and the kink family 

The ultimate goal of the work on regression problems which we 

are considering is to find a method of estimation which is asymptotically 

efficient (in the sense of minimizing the asymptotic variance)_and 

which gives excellent results in small samples for a wide spectrum 

of error distribtuions. The experience with the location problem 

seems to indicate that, although the goal may be technically not 

obtainable, in spirit one may be able to come close, and the methods 

and insights derived in its pursuit are very useful. 

In either the regression or location problem, if one uses L, 

M, or R estimators, then once can find an asymptotically optimal 

estimator (under certain conditions) -- assuming one knows the error 

cdf F. But as was noted in the introduction, the form of the error 

distribution is seldom known. A reasonable idea for circumventing 

this obstacle is to somehow estimate the unknown error distribution 

and proceed from there. An early implementation of this idea to actually 

construct usable estimators in the location problem was by Jaeckel 

in [17J. We briefly consider his approach since ours is very closely 

related. Jaeckel began with a family of estimators for the location 

parameter: namely a-trimmed means, with the trimming proportion 

aE[aO,a
1
J (O<aO<a1<~)' Two characteristics of this family are of note: 

it is easily parameterized, and for a wide variety of error distributions 
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there is a member of the family which does reasonably well. However 

the trimmed means are usually not asymptotically optimal. Also of 

great importance is the fact that the asymptotic variance cr2(a) of 

the a-trimmed mean is a fairly simple function of F and f=F'; this 

means that one has some hope of estimating cr2 (a) on the basis of a 

moderate-sized sample. This is exactly what Jaeckel does: he constructs 

2 
an estimator s (a) of cr2(a). As his adaptive estimator he then chooses 

that trimmed mean (with ae[a O,a1J) which has the smallest estimated 

asymptotic variance. He is then able to show under certain conditions 

that the asymptotic variance of his adaptive trimmed mean for a given 

error distribtuion is the same as that of the best trimmed mean for 

that error distribution (with ae [aO,a1J). (Also see Johns [19J for 

a more ambitious adapting scheme in the location problem.) 

The family of estimators for the vector of slope parameters f3 

we'wish to consider are the Jaeckel regression estimators (cf. Section 

2.1) with monotone score functions J(u) given by 

-~ u<~-~ 
(3.1) J~(u) = 

u-~ ~-~~u~~+~ 

~' u>~+s 

with se[O,~J(see Figure 3). They 

resemble the "Wilcoxon" scores 

J(u) = u-~ , except that at 
o 1 

~-s and ~+s they have "kinks," _~ 
FIGURE 3 

beyond which they are horizontal. 
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We will refer to them simply as kink scores. 

A simple calculation using Jaeckel's theorem (see Section 2.1) 

gives the asymptotic covariance matrix of the estimator with score 

function J~(u) proportional to (that is, excluding the factor E-
1

) 

the asymptotic "variance" 

(3.2) v(~) = 

We note that the dependence of v on F is confined to the denominator 

and that it is a relatively nice function of F. This introduces the 

important question of: why introduce this kink family (or other such 

simple families) when one might instead think of simply estimating 

the optimal score function ~f(u) =(-f'/f)(F-1(u)). In other words, 

why be concerned with choosing the best estimator from a small family 

which contains optimal scores for only a few distributions -- when 

one can estimate the optimal score function and base one's estimator on 

that. The answer lies of course in the virtual impossibility of 

getting a good pointwise estimator of -f l /f(r-
1
(u)), a quantity involving 

the second derivative of F. The sample sizes necessary are simply 

prohibitive. By reducing consideration to the kink family, we have 

simplified the problem to basically one of estimating !the integral of 
. :' 

f2, which we have some hope of doing reasonably well ~ith moderate 

sample sizes. 

To estimate v(~) we begin with a preliminary estimate S of S 
-N -
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satisfying certain conditions (in practice we will just use the 

Jaeckel estimator with Wilcoxon scores). Then based on the residuals 

from this preliminary fit we will use standard techniques to construct 

- . - -1 ( -1) an estimator fN(t) of f(t) and an est1mator FN t) of F (t. These 

give us an estimator ;N(~) of v(~). We then choose as our estimator 

basically that kink estimator ~~ which has the smallest estimated 

asymptotic "variance". More precisely, because of technical reasons, 

we consider only a finite set of valuse of ~ equally spaced on 

[s:O'~lJ (0<1;0<1;1 <~). As far as results are concerned, this simplifi-

cation is minor: the estimator obtained in this manner is shown to 

have asymptotic efficiency (relative to the best kink estimator with 

I;£[I;O,~J) arbitrarily close to 1. The next section gives the proof 

of this result. 

3.2 Assumptions and Bickel-Rosenblatt result 

In this section we outline the assumptions required to establish 

our results and state the result of Bickel and Rosenblatt [7J which 

is fundamental to our technique. 

The model we are considering is 

T 
(3.3) Y. = c.S + e. 

1 -1- 1 
i=l, .•• ,N 

where the e are iid random variables with cdf F and density f. We 
i 

assume we have a preliminary estimate S of S, satisfying 
-N -
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(i) §N is invariant (cf. p. 1452 of [18J) 

-~ 
§o+OpCN ), where §o is the true value 

of a. 

Because of the invariance we assume without loss of generality that 

(3.4) 

As estimates of the unknown errors we use 

T 
e = Y. - c. S 

j ] -]-N 

-

j=1, ... ,N 

From the assumptions on §N ' it follows, since we will assume 

-~ 
e. = e. + 0 (N ) uniformly in j. Our estimate of the 

] ] P 

unknown density f is constructed from these residuals using the 

density estimator of Bickel and Rosenblatt: 

(3.5) f (x) = 
N 

-1 
(Nb(N)) 

N 
L 

j=1 
w«x-~.)/b(N)) 

] 

where beN) is a bandwidth going to 0 as N+oo, and w is a weight function. 

We also define a density estimator based on the true errors: 

(3.6) f (x) 
N 

Our assumptions are: 

-1 
= (Nb(N)) 

N 
L 

j=1 
w«x-e.)/b(N)) . 

] 

Ai. w is symmetric about 0 with f w(x)dx = 1. There is a finite 
R 

constant A such that w vanishes outside [-A,AJ; also w is bounded: 

Iw(x)I~Bw' w has a bounded derivative w' on (-A,A) with 

Iw'(x)k B , . Also, for (x,x+O)C(-A,A) ,w(x+8) = w(x)+w'(x)8+0(8 2 ) 
w 
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uniformly in x. 

A2. The density f is continuous, positive, bounded, symmetric, and 

unimodal. (Without loss of generality we can assume f is symmetric 

about 0.) 

~ 
A3. The function f2 is absolutely continuous and its derivative 

~ f'/f is bounded in absolute value. Moreover 

3/2 ~ 
J Izi [logloglzlJ [lw'(z)1 + Iw(z)IJ dz < 00 • 

[l z l?:3] 

A4. The second derivative f" of f exists and is bounded. 

A5. 
2/9 -~ ~ ~ beN) = o(N- ) and N (logN) 2 (loglogN) = o(b(N)) as N+oo. 

A5. Ic.1 ~ B for j=1,2, •.. 
-] c 

We note that in our applications we generally will use the 

"natural" weight function 

(3.7) wet) = t 
otherwise 

which easily satisfies A1 and the latter part of A3. Assumptions 

A3, A4, and A5 are of a technical nature which Bickel and Rosenblatt 

require for their results. 

Under Assumptions A1-A5 the following result obtains: 

Theorem 3.1 (Bickel and Rosenblatt [7J) 

The quantity 
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is asymptotically distributed N(O, 2f(fw(x+y)w(x)dx)2dY'fa2(t)f2(t)dt 

as N+oo, where aCt) is a bounded, piecewise smooth integrable function. § 

3.3 Preliminary results 

In order to estimate the asymptotic variance v(~) for different 

values of ~, we need to estimate fO f2(t)dt 
F-1(~_~) 

As indicated, 

to estimate the integrand we use f~Ct) . To estimate the lower 

endpoint of integration we use the inverse of the empirical cdf based 

on the residuals: 

i/N~t} . 

Because of the restriction in Bickel and Rosenblatt that a(x) be 

integrable, their result cannot be applied without restricting the 

range of integration [F-1(~-U,OJ . We thus consider the interval 

of possible ~ values defined as I = [O,~ J, where 
1 

is arbitrary 

(in application taken to be close to ~). Then the following result 

relating 

and our estimate of this quantity based on the residuals {e.} obtains: 
J 

Theorem 3.2 Under Assumptions A1-A6 

sup I [ 
~e:I 
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We begin by establishing several lemmas, from which the proof 

of the theorem will easily follow. For completeness we start with 

a very useful lemma due to Jaeckel on the behavior of order statistics. 

Lemma 3.1 (Jaeckel [17]) Let X1 , ... ,Xn be iid random variables with 

cdf G. Suppose G is symmetric, has density g, and that there are 

numbers uO>O, eO>O, and gO>O such that g(x)~go for allx such that 

1 k 
uO-e O ~ G(x) ~ 1-(uO-eO). Then XCi) - G- (i/(n+1)) is 0p(n- 2

) 

uniformly in i =[u on]+1, ... , n-[uonJ . § 

We note that if g is unimodal, then Lemma 3.1 is satisfied for any 

For convenience define 1* = [F-1 (~-~1 ) ,0]. Recalling the 

definition of fN from (3.6), we have 

Lemma 3.2 f (x) = ° (1) uniformly for x£I*. § 

Proof 

(3.8) 

N P 

Since w is bounded it suffices to show 

sup 
xeI1: 

#{e : lx-e. I ~ Ab(N)} = ° (Nb(N)) 
j ] p 

Let x£I*. Lemma 3.1 implies that given £*>0, there exists M such that 

for all N 

(3.9) p{le(i)-F-1(i/(N+1))I~ MN-~ for all i= [1';;N/4],[1';;N/4]+1, ... , 

[(1- ~)NJ} ~ 1-£l': , 

where 1';;= ~-~1. 

Let Q denote the exceptional set (of probability <e*) where these 
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inequalities may be violated (note that Q does not depend on x). 

In passing we note that the assumptions about the bandwidth beN) 

certainly imply beN) = 0(1) and N-~ = o(b(N». Now consider e(j) 

such that Ix-e(j)I~Ab(N). Then for all N large 

since F-l(~)~x~O and Ab(N)+O as N+oo. Thus, for WEQ~ Q, we have by 

(3.9) that for all N sufficiently large 

N large. 

j d [~N/4J, [~N/4J +1, ... , [( 1- I )[]} certainly; so for 
4 

Ix-e(j)I~Ab(N) only if IX-F-l(j/(N+l»I~Ab(N)+MN-~ for 

-~ 
But for N large Ab(N) + MN ~ 2Ab(N) ; and the number of 

jS for which IX-F-1(j/(N+l»1 ~ 2Ab(N) is just the number of jS 

such that 

F(x-2Ab(N» ~ _j_ ~ F(x+2Ab(N» 
N+l 

which is no greater than 

(N+l) (F(x+2Ab(N» - F(x-2Ab(N») 

~ 2 + Nf(O) . 4Ab(N) (unimodality of f) 

~ O(Nb(N» uniformly in x. 

Thus we have shown that 

sup #{e. 
xEI~'; ] 

lx-e. kAb(N)} = 0 (Nb(N» 
] p 

implying the result. § 
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Lemma 3.3 sup 
x£P~ 

Proof Let x£I*. Then 

(3.10) 
N 

IfN(x)-fN(X)! ~ (Nb(N»-1 L 
i=1 

§ 

Let T denote the indices for which the arguments of w on the right 

hand side (RRS) of (3.10) are both in [-A,A] or both outside of 

[-A,AJ ; i.e. T = T1 U T2 ' where 

T1 = {j: x-e· and x-e. £ [-A ,A] } ] ] , 
beN) beN) 

-
T2 {j: x-e· and x-e. £ [_A,A]c} (Note that = ] J 

beN) b(N) 

T1 ,T2, and T depend on x and w.) Since w is zero on [_A,A]C and 

w(y+o) - w(y) = 8w'(y) + 0(0 2 ) uniformly for y, y+o£[-A,A], and since 

- -~ e.-e. = 0 (N ) uniformly in j (independent of x), we obtain that the 
] J p 

RRS of (3.10) is less than or equal to 

(3.11) 

where 0 and 0 are uniform for xEI* and in j. Since Iw'I~Bw,=O(1), 
p p 

(3.12) 
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Now #(T1 ) is certainly less than or equal to #{e.: Ix-e.I~Ab(N)}. 
] ] 

By (3.8) this latter quantity is 0 (Nb(N» uniformly for xr::I*. Thus 
p 

sup #(T) = 0 (Nb(N). The assumptions for beN) imply that for N 
xr::i:~'~ 1 p 

sufficiently large, -~ ~ beN) } N (logN) , so for all N large the first 
1 

term on the RHS of (3.12) is 0 (N-~) uniformly for xr::I*. Similarly 
p 

"k 
the second term is 0 (N- 2

) uniformly for xr::I*. To evaluate the third 
p 

term we need to bound #(Tc ) uniformly for xr::I*. 

Let r::>0 be given and consider a fixed N. Then there is Mr:: 

(independent of N) and a subset I
N 

of Q, with P{J
N

} > l-r::, such that 

for wr::JN 
"k (logN) 2 

and j=1,2, .•. ,N. Since for N sufficiently 

on I N we have 

-e.-e. 
] ] 

beN) ~ "k N (logN) 2 

for all N large, j=l, ... ,N. Thus for N large and wr::J
N 

(3.13) sup #(Tc ) ~ sup # e. : x-e. E [-A- Mr:: -A+ ME ] 
xr::I~': xr::I~" ] ] 

beN) ~ k 1 k 
N (logN) 2 N~(logN) 2 

or x-e. 
E [A- Mr:: , A+ 

ME ] J 
beN) ~ k ~ k N 4( 10gN) 2 N (logN) 2 

By the same reasoning as in the proof of (3.8), the RHS of (3.13) is 

Since r::>0 was arbitrary 
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we conclude 

#(TC ) = 0 \ Nb(N) ) 
p L h: 

N'4(logN) 2 

1 
Thus the third term on the RHS of (3.12) is 0 (N-~) uniformly in 

p 

x£I*, and so the RHS of (3.12) is 
1 _h: _~ 1 

Op(N-~) + OpeN 2) + OpeN ) = Op(N-~), uniformly 

in x£I*. Tracing the inequalities back we have 

-~ = a (N ) 
p 

, concluding the proof.§ 

Corollary 3.1 o (1) 
p 

uniformly for x£I*. 

Proof This follows immediately from Lemmas 3.2 and 3.3 . § 

§ 

Corollary 3.2 sup If O -~ 
= 0 (N ) . § 

~£l F-1(~_~) 

Proof Consider a fixed ~£I. -1(1 ) -1(1 ) Note F ~-~ ~F ~-~1 . 

p 

By Lemma 

3.3 - -~ sup IfN(t)-fN(t)1 = 0 (N ) and by Lemma 3.2 and Corollary 
t£I* p 

3.1 

sup 
t£I~'c 

From this the result follows. § 

Lemma 3.4 
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Proof Let us denote the first integral as a(~) and the second as 

b(~), so the quantity of interest is 

sup la2(~)_b2(~)1 = sup {la(~)-b(~)I'la(~)+b(~)I} 
~eI ~eI 

From Corollary 3.2 we see it suffices to show 

(3.14) sup la(U+b(~)1 = 0p(l) . 
~eI 

But Lemma 3.2 and Corollary 3.1 imply f~(t) and f~(t) = 0p(l) uniformly 

for teI*, so a(~) and b(~) are ° (1) uniformly for ~eI and so (3.14) 
p 

follows. § 

Lemma 3.5 

Proof First we show 

(3.15) J~l [fN(t)-f(t)]2dt = 0 (N-
3

/
4

) 
F (~-~1) P 

By the result of Bickel and Rosenblatt (Theorem 3.1), 

(3.16) 

Consider aCt) = I (t) 
[F- ;(~-~1 ) , 0] 

we note this choice satisfies the 

assumptions of Bickel and Rosenblatt. Then, since w is bounded and 

vanishes off [-A ,A] ' we can assert that 

ff(t)a(t)dt • fw2(z)dz = finite constant. 

Also since beN) 
1: = 0(1), b(N)2 = 0(1), so that (3.16) implies 
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constant + 0 (1) = 0 (1), 
p p 

and hence 

(3.17) 

-~ ~ Again, for all N large, beN) ~ N (logN) ,so 

(Nb(N»-1 ~ N-3/4(logN)-~ for all N large, 

which combined with (3.17) implies (3.15). 

We now fix sEI and let 

standard norm on the space of square integrable functions defined on 

[r-1(~-s),o]. Then the quantity of interest in the lemma (neglecting 

the sup) is III f N II ~ - II f II ~ I , which is equal to 

(3.18) Illflls-llfNIIf:I·lllfll~+llfll~llfNIIf:+llfllsllfNII~ 

+ II fN II ~ I . 
Again using the fact that f (t) = ° (1) uniformly for tEI, and using 

N p 

f~Bf' we have I IfNI Is = 0p(1) and I If I If: = 0(1) , implying that 

(3.19) 

Also, Iiall = I I (a-b)+bl I ~ Iia-bil + Ilbll by Cauchy-Schwarz, implying 

II a-b II ~ II a II - II b II . Similar reasoning also yields 

!la-bll ~ IIbli - lIali , 
so III a II - II b I I I ~ II a..,b II . Thus 

68 



(3.20) 

For any t;d, II gil t; ~ i I g 111;1 

(3.19), we obtain 

combining this with (3.20) and 

= I If-fNI 11;1 .Op(l) 

= o (N- 3/ 8 ) • 0 (1) (by (3.15») p p 

= o (N- 3/ 8 ) 
p 

§ 

For the random variables e1 ,e2 , •.• ,eN ' define the inverse 

-1 
empirical cdf F by 

N 

Lemma 3.6 I -1 --1 1 I -~ sup F (~-i;) - F ("l1-i;) = 0 (N ) . § 
I;EI N P 

Proof It follows easily from Lemma 3.1, since for !;EI ~-I;~s , 

that 

(3.21) sup IF-1(~_t;) - F~1(~_t;)1 = Op(N-~) . 
!;d 

Thus we consider the difference between Consider a 

fixed t;EI. By our definition of F;l and FN1 , we have 

depending on whether (~-!;)N is an integer or not, where 

k = ~~-t;)NJ (brackets representing the greatest integer function); 
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also 

sup 
sd 

it suffices to show (for example) 

(3.22) 

(the other cases follow similarly). 

To establish that 

k 
We recall that e. = e.+O (N- 2

) 
] ] p 

uniformly in j. This easily implies 

Hence 
-k 

= 0 (N 2) uniformly for s£I. 
p 

Thus to obtain (3.22) 

it certainly suffices to show 

i=[Z:;N],[Z:;N]+1, ..• ,[(1-Z:;)N] . 

But Lemma 3.1 implies 

{ e(i) = F-1(i/(N+1)) + 0 (N-~) 
P 

-1 o (N-~) e(i+1) = F «i+1)/(N+1)) + 
p 

uniformly in i in this range. For all N large and all i in this range 

so for all of these i by the 

unimodality of f. Then by the mean value theorem and unimodality, 
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1 -1 1 F- «i+1)/(N+1» - F (i/(N+1» ~ 1 = O(N- ). 
(N+1)f

O 

Thus (3.22) obtains, which, combined with (3.21), completes the proof. § 

Let us define 

(3.23) a~':(~ ) and 

By Lemma 3.6, given s>O, there is M' such that for all N large, 

for all ~sI, with probability at least 1- s/2 the following 

inequalities obtain: 

Furthermore, by Corollary 3.1 there exists M" such that 

with probability at least 1- s/2. Combining these results we obtain, 

with probability at least l-s ,for all N large 

(3.24-) for all ~ d and 

for all ~d . 
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More briefly, sup 
F;d 

We now use these results to prove 

Lemma 3.7 sup 
F;£l 

and sup a1(F;) = 
F;d 

Proof From previous work we know sup b*(F;) = 0 (1) 
F;£I p 

Thus 

Hence 

sup 
F;d 

la*(F;) + b*(F;)1 = 0 (1). 
p 

o (1). 
p 

sup la*2(F;) - b*2(F;)1 = sup [Ia*(~) + b*(F;)I·la*(F;) - b*(F;)IJ 
F;£I F;£I 

We now return to 

Proof of Theorem The quantity of interest is: 

-2 2 
sup l [[~1 fN( t )dtJ 
F;d F N (~-F;) 

~ sup la*2(~)_b*2(~)1 
~d 

+ sup 1 [J~1 f~(t)dtJ2 -
~£I F (~-~) 

1 [.r0 2 ] 2 + sut,') fN(t)dt -
-1 1 

~£I F ("2-~) 

Ir0l f~(t)dtJ21 
F- (~-F;) . 

[.r0 
F-1 (~-F;) 

f2(t)dtJ 21 

by Lemmas 3.7,3.4, and 3.5 respectively. § 
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3.4 Asymptotics for adaptive estimator 

We are now ready to consider the adaptive estimator of 8 in 

detail. We define the estimated variance by 

(3.25) = 

Let an interval [~o,~J be given, with ~O>O. Then the following 

asymptotic result obtains for the adaptive kink estimator: 

Theorem 3.3 Let E>O be given. Under Assumptions A1-A6 and the 

assumptions in the statement of Jaeckel's theorem (see p. 19), there 

is a 0>0 such that the adaptive kink estimator §~ defined as 

-
any value of B which minimizes the dispersion D (8) constructed with 

N -
score function J~ (J~ defined in equation (3.1) ), where ~ is any 

value of ~E3 minimizing v (~) -
N 

has asymptotic efficiency greater than 1-E , where the asymptotic 

efficiency is computed with respect to the best kink estimator with 

~E [~O'~ J. The grid set M does not depend on the unknown error 

density function f. § 

Proof Let f be any density satisfying the assumptions. We will 

assume the minimum of {v(~):~E3} is unique, and we will denote 

the minimizing value~. This is to simplify notation; it is otherwise 

irrelevant to the proof. We break the proof up into several parts. 

(i) For the given E>O, there is 0>0 such that if f satisfies the 
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conditions of the theorem 

(3.26) 
inf v(~) 

~£ [~o ,~J 
> 1-£ 

v("f) 

Proof of (i): Denote fO f2(t)dt 
F-1(~_r,:) 

by Hr,:). We first show there 

is a constant K such that 

(3.27) 

I 
v' (~) 

v(O 

An easy calculation yields 

(3.28) v' (~) = 
v 

for all ~£ [~O ,~J, uniformly in f. 

-1 
2f(F (~-~» 

I(O 

The first term is bounded for s£ [~O ,~J and does not depend on f. 

The second term (neglecting the constant) is 

(3.29) by change of variables; 

-1 
since F is increasing and 

f is unimodal and symmetric about O. Thus the integral in the denom
-1 

inator of (3.29) is at least ~f(F (~-~», implying the quantity of 

-1 -1 
(3.29) is at most ~ which is no larger than ~O Thus (3.27) 

obtains. We return to (3.26). Since v is continuous the infimum of 

v( ~) on [~O'~ is achieved; label a value at which it is achieved ~ I , 

and suppose ~'£[so+ro'~O+ro+o) for some r. By the mean value theorem 

74 



there exists f;1:€ [f;O+ro ,f; 'J such that 

v(f;O+ro) - v(f;') = (f;' - ~O - ro)·v'(f;*) 

with v'(~*) > 0 (since we can assume v(~o+ro) > v(~'». Since 

o < f;1-~O-ro < 0 , this implies 

(3.30) 1 - v(1;') 
~ 

cSv' ( 1;~':) 

v(1;o+ro) v(1;o+rcS) 

~ oK v(~~':) , by (3.27) 

v(~O+ro) 

To conclude our proof of (3.26), since v(~O+ro) ~ v(~) certainly, 

. 

it will suffice to determine ° so that < € , independent 

v(1;o+ro) 

of 1;* and f. This entails bounding v(~*)/v(~O+ro) We consider 

the function 

u(x) = v(1;O+ro+x)1 v(~o+ro) for xe:[O,oJ say. 

Then 

u' (x) = VI (~O+ro+x) 
~ 

Kv( ~O+ro+x) = Ku(x) by 
v(1;o+ro) v(1;o+ro) 

(3.27). Thus u satisfies: u( 0) = 1 and u'/u (x) ~ K , so 

u(x) ~ exp(Kx) certainly. Hence max u(x) ~ exp(KO), which implies 
xe: [0,0] 

s~ 
x€ L 0,0) 

~ exp(Ko) ,implying 
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In other words 

8Kv(~l~) 

v(~O+r8) 

~ 8Kexp(K8) and choosing 

8= €/2K for example makes 8Kexp(K8) < € (if € is small). This 

concludes the proof of (3.26). 

( ii) For any T»O there are NO and sets AN' with P(AN»1-T) , such 

that N~NO implies v(E;)/ v(~N) = 1 on A . 
N 

Proof of (ii): Write v(r,;) in (3.2) as U(~ )/V(r,;) and vN(~) in 

(3.25) as U(~)/VN(~)' Then Theorem 3.2 implies 

(3.31) 

Also there exist constants k1' k2 , k3' k4 such that 

0 < k1 < U(r,;) < k2 
for all ~€ [~O,~J , 

and 0 < k3 < V(r,;) < k4 

implying that ~N(r,;) = v(~) + a (N-\) uniformly in ~€ [~O '~1J . p 

Thus given T»O there are sets AN' with P(AN) > 1-T) such that 

But for all N sufficiently large, 

2N-\ < min (v(~) - v(I» ,which 
~€~-{O 

implies that on AN (N sufficiently large) 
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-
min vN(~) 

f,;e:E-H;} 

this inequality implies ~N = f,; and thus the result. 

Thus, if we define ~N to be the kink estimator derived from 

the score function J~ , we have e* = e on the sets -N -N AN for all 

N sufficiently large. Since n>O was arbitrary this implies 

theory the asymptotic distributions of e* and 
-N 

§N are the same. 

Specifically this implies the asymptotic "variance" of 

v(I) , which combined with (3.26) yields the theorem. § 
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CHAPTER 4. FUTURE WORK 

4.1 Possible extensions 

There are a number of topics in the area of robust regression 

considered in this paper which need further study. Undoubtedly the 

most important theoretical problem still unanswered is the asymptotic 

normality of Jaeckel-type estimators based on a non-monotone score 

function for both the simple linear regression and the general linear 

regression models. There is every reason to believe that, subject 

to certain restrictions (as indicated by the counterexample of Section 

2.3), a result like Jaeckel's theorem (see Section 2.1) obtains for 

such estimators. The extension of the consistency result of Section 

2.2 to normality does not appear simple however, a situation in contrast 

say with the case of maximum likelihood estimates. Some work the 

author has done seems to indicate a plausible approach to the extension, 

although the technique is very complicated. 

On the other hand, the extension of the consistency result to 

the case of a vector parameter S is very straightforward. Indeed 

the basic proof of Section 2.2 continues to hold with appropriate 

modifications (for example, the condition Ic.1 ~ B for the regression 
] c 

constants becomes ISjl ~ Bc where 1·1 is now the Euclidean norm; 

similarly the compactness condition for the set of possible parameter 

values BO is now that BO should be compact in Rq, and so forth). 
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A further extension of the consistency result would result from 

weakening the boundedness conditions on the {c.} 
l 

so as to allow 

Ic.I+oo at a sufficiently slow rate (for example one might use Noether's 
.~ 

condition: see [20J). Obviously one should also be able to weaken 

some of the technical conditions on f (Assumption F2) and the score 

function J (Assumption J2). These extensions would be, very possibly, 

at the expense of a much more involved set of proofs. Nothing appears 

to inherently demand the restrictions we invoked however. The unimodality 

restriction of Assumption Fl is a different matter, as the counter-

example indicates. A most intriguing question is: exactly what sort 

of conditions does one need to impose on the error distribution to 

insure correct asymptotic behavior for estimators using non-monotone 

score functions? 

With regard to the results on adapting, there are a number of 

important extensions that would be very desirable. First, there are 

obviously a number of alternatives to the kink family which could be 

used for adapting and whose behavior might lead to better estimators, 

especially for small samples, than the one we proposed. Second, the 

implications of extending asymptotic normality to estimators based on 

non-monotone scores would be very important in adapting, since one 

could then utilize more flexible families containing non-monotone 

members. In such a case one could realistically hope to construct 

an adaptive estimator whose asymptotic efficiency, relative to the 

Cramer-Rao bound, would be very high across a very large nonparametric 
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class of error distributions, subject only to regularity conditions. 

When such a result is achieved, we will have a reasonable understanding 

of the problem of robust regression. 
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