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Introduction.   

The overall goal of this proposal is to develop synthetic lectins (SLs) that bind to prostate cancer associated 
glycans and glycoproteins (CAGs).  These studies are being pursued to develop this methodology into a robust 
system that can diagnose and monitor the stage of prostate cancer.  Related to the proposed system, aberrant 
glycosylation is a hallmark of cancer and, as such, the differential display of boronic acid moieties on peptides 
and peptoids will allow for monitoring the changes (over- or neoexpression of CAGs) associated with 
oncogenesis and metastasis, thereby providing a new paradigm for the development of a prostate cancer 
diagnostic.  AIM 1 describes a library based approach for the discovery of SLs targeting CAGs.  AIM 2 
describes biochemical and biophysical approaches to identify the factors that are required for the selective 
recognition of CAGs.  It is expected that the results of these studies will provide information that will allow us 
to improve the design of the libraries described in AIM 1, towards second and third generation libraries.  In 
AIM 3, selective and cross-reactive SLs will be assembled into an SL-based array.  The efficacy of this array 
will be evaluated using both prostate cancer derived CAGs and actual cell lines. 
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Body.   

Significant progress has been made in the prior funding period.  Tasks to be completed/initiated during the first 
year include: 

Task 1.  Use a library-based approach to identify synthetic lectins that bind to prostate cancer associated 
glycans/glycoproteins (CAGs). Note that this aim will continue over the life of the grant to continuously 
identify more selective and useful SLs. (Months 1-36) 

Initiating PI:  

Task 1 a):  Synthesize bead based peptoid libraries that incorporate phenylboronic acid moieties. (Months 1-4) 

Peptoid libraries were constructed using 9 
amine building blocks (diversity = 95; 5.9 x 
104 members) using the scheme depicted in 
Figure 1A.  Briefly, bromoacetic acid was 
coupled using DIC to Tentagel –NH2 beads 
already coated with our MRBB linker 
sequence.  The beads were split and the 9 
different amines were added to equal amounts 
of beads and reacted in DMF.  The beads 
were then washed, re-pooled and treated with 
bromoacetic acid and DIC to couple the 
second diversity element.  The Dde protecting 
group was selectively removed using 
hydrazine to uncover the primary amine to be 
conjugated to phenylboronic acid (PBA).  
PBA installation was verified using ARS and 
several beads were randomly selected for 
library quality evaluation. 

 With the synthesized libraries in hand, we 
turned our attention to identifying ideal 
screening conditions.  Our goal was to 
identify stringent conditions so we could 
identify highly selective hits from our 
libraries.  Based on previous studies,1 we 
used E. coli lysates (EL) to both pre-block the beads and minimize non-specific interactions during analyte 
incubation.  Figure 1B shows the drastic decrease in fluorescence when adding 0.1% EL to the screening 
buffer.  Indeed, an EL gradient (Figure 1C) identified 0.1% EL as the optimal concentration since higher 
concentrations showed to strong of a decrease in fluorescence.  We then optimized the salt concentrations 
(Figure 1D) and determined that 150 mM NaCl is ideal. 

Task 1 b):  Screen peptoid libraries with prostate cancer associated glycoproteins and complex glycans to 
identify highly selective and cross-reactive synthetic lectin (SL) hits. (Months 3-36) 

To identify SLs that are specific for CAGs (Figure 2A), we designed a screening platform that used 
biotinylated complex carbohydrates conjugated to fluorescently labeled streptavidin (SA) (Figure 2B).  
Briefly, a series of biotinylated carbohydrates (i.e., sialyl Lewis X, sialyl Lewis A, Lewis X and Lewis A) 
were obtained from the Consortium of Functional Glycomics (CFG).  Because of our previous success with 

 
Figure 1.  Optimization of screening conditions. A. 
Scheme for generating peptoid library. B. Images of 
phenylboronic acid (PBA) library with either 0% E. coli 
lysate (EL, left) or 0.1 % EL lysate (right). C. Bead 
quantification of increasing amounts (0 – 5 %) EL. D.  
Increasing amounts of NaCl decrease the binding of the 
library down to background. 
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peptide library screening, we initially 
optimized our screening conditions using 
phenylboronic acid based peptide libraries 
instead of peptoid based ones incorporating 
either the phenylboronic acid or 
benzoboroxole moieties.  For this assay, we 
preincubated the CFG glycans with FITC-
streptavidin for 1 h in a 4:1 glycan-SA ratio 
then added this complex to our PBA-
peptide library in screening buffer.  Using 
this method, we identified 2 hits when 
screening with sLex as the target glycan.  
These hits were sequenced and had the 
following sequences: sLex1 = MRBB – 
LDRFRDL-Ac and sLex2 = MRBB – 
RDRWVDY-Ac.  In addition to validating 
this screening modality for identifying both 
peptide and peptoid based libraries, further 
analyses demonstrate that these hits bind 
sialyl Lewis X better than Lex or either of 
the Lea

 derivatives (see below). 

Task 1 c):  Upon identifying ≥5 hits, we will 
sequence, resynthesize, and determine their 
selectivity of identified hits towards the 
target that they were selected against as 
well as the other prostate cancer associated glycoproteins and complex glycans. (Months 3-36) 

We set out to validate our two PBA-peptide hits by first resynthesizing the two hits identified in (Task 1b), 
sLex1 and sLex2.  We then screened these hits against Lex, Lea and sLea (Figure 2A) and determined that 
both of the hits bind sLex better than Lex or either of the Lea

 derivatives (Figure 2C).  These results are 
encouraging and will be expanded as the number of hits increases after additional rounds of screening. 

Partnering PI:  

Task 1 a):  Synthesize bead based peptide libraries that incorporate phenylboronic acid moieties. (Months 1-4) 

Two peptide-based fixed-position libraries were synthesized on Tentagel resin analogous to those previously 
described.2  The effectiveness of the coupling was assessed using MALDI-MS in the past, here however, we 
ran into difficulties.  From all of our efforts, our MS analysis consistently indicated incomplete deprotection 
of the iv-Dde protecting groups on the Dab side-chains (where boronic acids are attached).  This appeared to 
be a significant portion of the product, composing up to 60%.  Moreover, our MS analysis frequently 
suggested that we were getting incomplete coupling of the first Dab moiety.  These were problems we had 
not encountered previously, yet appeared to be an issue when even re-synthesizing known SLs. 

 Consequently, we thoroughly evaluated the quality of the batches of TentaGel resin, hydrazine (used to 
deprotect the iv-Dde) and Fmoc-Dab(iv-Dde)-OH from the vendors.  Note that we were using the same 
vendors as we had in the past.  No apparent anomalies were detected in these reagents.  Furthermore, upon a 

Figure 2. New screening targets. A. Structures of cancer 
associated glycans. B. Diagram of the glycan screening 
methods using FITC-Streptavidin (SA). C. Library screens 
of the different glycans from A. using the approach in B.  
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detailed investigation of the literature, we identified much “controversy” and similar problems were 
indicated with respect to deprotecting the iv-Dde protecting group. 

 We thus opted to re-evaluate our synthetic approach and tried different side-chain amine protecting 
groups on Dab including alloc and MTT.  From these studies, we determined that the deprotection of alloc 
was sensitive to water and oxygen, making it difficult to work with at times.  Furthermore while the MTT 
group was easy to deprotect, amino acids with this group on the side-chain were often difficult to couple to 
the resin due to the size of the MTT group and increased steric interactions. 

 Interestingly, when we synthesized SL5 on a cleavable Rink Amide Resin using Fmoc-Dab(iv-Dde)-
OH, we were able to confirm the presence of fully deprotected SL5 as the major product using MALDI-MS.  
Next, we more rigorously investigated the relative ratios of protected and deprotected SL5 from the 
TentaGel resin using LC-MS.  Remarkably, using this method we observed only ~3% of the mono-and di-
protected analogs combined.  Still, by MALDI-MS we were seeing nearly 40% of the protected products 
from the same sample.  After numerous control experiments, including investigating the ionization 
efficiencies for all of the possible products and using an Orbi-Trap MS-MS to confirm sequences, we were 
able to confirm the validity of the LC-MS analysis. 

 Ultimately, we accepted the fickle-nature of MALDI-MS and again felt confident in our synthetic 
protocols for library development.  Conformation of the attachment of the boronic acids proceeded with less 
uncertainty, relying on a previously identified binding assay with alizarin red S (ARS).  In the end, we were 
able to identify other orthogonal amine protecting groups (i.e. MTT on long side-chain amines) that will 
simplify syntheses related to studies on poly-valency as well as for incorporating other side-chain 
functionality such as biotin.  Using the Orbi-Trap MS we were also able to obtain better sensitivity and 
enhanced sequencing efficiency as compared to MALDI-MS. 

Task 1 b):  Screen peptide libraries with prostate cancer associated glycoproteins and complex glycans to 
identify highly selective and cross-reactive synthetic lectin (SL) hits. (Months 1-36) 

The screening methods previously used to identify SL1-SL5 were employed to screen portions of our library 
against prostate cancer associated glycoproteins.  As we continue to improve these screening methods we 
will continue to improve the quality of the hits we identify.  Initially, we screened the library with 
ovalbumin (OVA) and porcine stomach mucin (PSM) as these glycoproteins contain glycans of interest that 
have been associated with prostate cancer (PCa), namely mannose and N-acetyl glucosamine (GlcNAc) on 
OVA and GlcNAc and fucose on PSM.  From these screens, four new SLs were isolated and sequenced 
(SL6-SL9 in Table 1). 

 Beyond simply identifying new SLs, we 
have learned a great deal about how we do our 
analysis, specifically in how we image our 
resin and extract color data.  In all of our 
image acquisition and analysis we have always 
been conscientious of the quality of the image 
and how we extract luminosity data.  Still, until 
recently all decisions had been made by the 
user, which can introduce user bias.  Therefore, 
in order to limit introduction of external bias 
we wrote a bead finding and data extraction 
algorithm using MATLAB.  Of particular 
interest to us was eliminating any inhomogeneity across the field of view, which could result from variation, 

Table 1.  Sequences of identified SLs. 
SL Hit Sequence Glycoprotein

Screened
Glycoprotein
Selectivity

SL1 Ac‐RGD*VTFD*R‐BBRM‐resin OVA Cross reactive

SL2 Ac‐RTD*RFLD*V‐BBRM‐resin OVA OVA

SL3 Ac‐RSD*VTTD*R‐BBRM‐resin OVA OVA

SL4 Ac‐RRD*TQTD*Q‐BBRM‐resin PSM OVA, PSM

SL5 Ac‐RAD*TRVD*V‐BBRM‐resin PSM PSM

SL6 Ac‐RTD*NRND*F‐BBRM‐resin PSM OVA, BSM

SL7 Ac‐RSD*YFTD*Q‐BBRM‐resin PSM OVA, PSM

SL8 Ac‐RTD*YGND*N‐BBRM‐resin PSM PSM

SL9 Ac‐RTD*YQVD*A‐BBRM‐resin PSM OVA, PSM
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between users, in the illumination source settings, focus or hardware alignment.  The simplest approach was 
to define a region of interest (ROI) that could be set and used to reduce any edge effects.  From there we 
could simply have the software “find” the beads based on relative intensity changes.  In addition, we created 
the option to reject any identified objects based on size (area or circumference), circularity and/or pixel 
saturation at any given percentile of the pixels for each bead.  Remarkably, reprocessing existing images 
with this algorithm, using only the ROI and rejection based on size, improved classification accuracy, based 
on leave-one-out methods, from 97% to 99% for 5 cell lines. 

Task 1 c):  Upon identifying ≥5 hits, we will sequence, resynthesize, and determine the selectivity of identified 
hits towards the target that they were selected against as well as the other prostate cancer associated 
glycoproteins and complex glycans. (Months 3-36) 

As described above, the four new hits listed in Table 1 were sequenced using MS-MS techniques and were 
resynthesized on TentaGel resin.  To identify general selectivity trends, and for comparison with the original 
five SLs identified, each SL was bound with three glycoproteins (OVA, BSM, and PSM) as well as BSA, 
which was used as the control for nonspecific protein binding to the beads.  Briefly, the library and the SLs 
were blocked with 1% BSA to minimize nonspecific binding, and then incubated with 0.1 mg/mL FITC-
labeled analytes for 16 hours.  After washing with PBS to remove unbound analyte, beads were imaged 
using a fluorescent microscope and color data extracted using the MATLAB algorithm described above.  
The library was used as a control, to reduce the differences between each glycoprotein in the extent of 
fluorescent labeling and degree of glycosylation.  As such, the average raw intensity values for the library 
was subtracted from each replicate measure 
for each SL binding analyte.  This 
normalized difference was then divided by 
the raw intensity of the library to afford a 
relative percent change for each SL binding 
each analyte.  As shown in Figure 3, all of 
the SLs are cross-reactive to some degree.  
For example, while SL1 is considered 
completely cross-reactive, showing virtually 
no selectivity for any particular analyte, 
SL5 and SL6 display exquisite selectivity 
for PSM over BSM (~50-fold) and BSM 
over PSM (~60-fold), respectively,  The 
remaining newly identified SLs show 
between 1.6 and 18-fold selectivity for one 
analyte over another. 

Task 2.  Initiating PI:  Examine the biochemical/biophysical basis of the glycan•SL interaction. (Months 3-36) 

Task 2 a):  Upon identifying ≥5 hits (Task 1), we will develop a structure-activity relationship for highly 
selective SLs based on: 1) Alanine scanning ‘mutagenesis’; 2) Varying the tether length; 3) Varying the 
boronic acid linkage and substitution patterns; and 4) Examining boronic acid substituent effects, to identify 
the factors that promote the selective recognition of a glycan by a particular SL. (Months 3-32) 

 While we have had previous success using 2-phenylboronic acid as our glycan targeting moiety, we also 
wanted to see if the recently described benzoboroxole would serve as a more suitable boronic acid.  We first 
synthesized the carboxy-benzoboroxole (Figure 4A) and then coupled it to the same sidechain Dab amine on 

 
Figure 3. SL selectivity trends. Relative percent change in 
luminosity for SL1-SL9 binding ovalbumin (OVA), 
bovine submaxillary mucin (BSM), porcine stomach 
mucin (PSM) and bovine serum albumin (BSA).
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SL5 as was used for the PBA derivative.  Interestingly, benzoboroxole-SL5 showed increased affinity for 
PSM when compared to the original PBA derivative (Figure 4B).  Due to the improved affinity, we built 
both a peptide library (diversity = 115; 1.6 x105 members) as well as a peptoid library (diversity = 95; 5.9 
x104 members) incorporating the benzoboroxole moiety.  While were able to successfully screen the peptide 
library and identify a hit (“Box1” - MRBB–VDARTDGR), sequencing the boroxole hits has been 
challenging due to the effect of the benzoboroxole moiety on ionization. As such, we are optimizing a 
variety of oxidations and cross couplings that we expect will efficiently remove the benzoboroxole 
functionality, and thereby facilitate the successful sequence of hits.  Additional structure-activity 
relationships will be determined once we accumulate ≥5 hits. 

Task 2 c):  Feed information from the above studies back into the library design process to aid the generation 
and subsequent identification of highly selective SLs. (Months 9-32). 

 Based on our experience with the benzoboroxole, which improved the affinity of SL5 for PSM, we are 
focused on incorporating this moiety into libraries once we optimize library sequencing.  The lessons 
learned from the Partnering PI’s structure-activity-relationships are also being incorporated into the design 
process (see below). 

Task 3.  Partnering PI: Examine the biochemical/biophysical basis of the glycan•SL interaction and develop 
SL-based sensor arrays for the proposed prostate cancer diagnostic. (Months 1-36) 

Task 3 a):  Develop a structure-activity relationship for previously identified SLs (SL2 and SL5) based on: 1) 
Alanine scanning ‘mutagenesis’; 2) Varying the tether length; 3) Varying the boronic acid linkage and 
substitution patterns; and 4) Examining boronic acid substituent effects to identify the factors that promote 
the selective recognition of a glycan by a particular SL. (Months 
1-12) 

 In our analysis of how structure impacts binding affinity and 
selectivity of SLs for glycoproteins, we have identified some 
expected and some unexpected correlations.  These studies 
primarily revolved around SL2 and SL5 because they represent 
opposite ends of the spectrum; in that SL2 displayed modest 
selectivity (~2-fold) with high background binding while SL5 
exhibited high, nearly 50-fold selectivity, with low non-specific 
binding.  In selecting these two SLs we wanted to learn more 
about what factors most significantly impact binding for highly 
selective and modestly selective SLs to better understand if the 
same factors are important for each in order to improve new SL 
development. 

 Using alanine scanning mutagenesis with SL2 for binding 
OVA (Task 3 a-1, Figure 5A) we see that charge on the peptide is 
important for binding affinity.  Specifically, replacing R4 with 
alanine causes a 60% decrease in binding compared to native-
SL2.  Similarly, R1 and the arginine found in the C-terminal 
MRBB-sequence also reduce binding, though to a lesser extent 
(45% and 24% respectively).  Likewise, binding affinity is 
reduced by more than 50% when the aminomethyl-phenyl boronic 
acids (D* = 3,7-Dab-PBA) are replaced with alanine or 
phenylalanine.  However, when the Dab residues were left 

Figure 5. Alanine scanning 
mutagenesis. A. Relative binding for 
SL2-mutants with OVA. B. Relative 
binding for SL5-mutants with PSM. 
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unmodified or alkylated with benzaldehyde, thereby leaving the charged ammonium at neutral pH, binding 
affinity was only diminished 2-3%.  Similar trends were observed in SL5 for binding with PSM (Figure 5B).  
For example, when R5 was replaced by alanine binding was decreased nearly 55% and replacing both D* 
with alanine resulted in a 65% binding decrease.  Interestingly, when T4 was replaced by alanine PSM 
binding was enhanced 25%.  Similarly, when V6 or V8 was replaced with alanine a 20% and 5% increase in 
PSM binding was observed, respectively. 

 The role that the boronic acids play in defining SL 
binding affinity and selectivity was also studied (Task 3 a-3).  
In general, there was no observed loss of affinity when regio-
isomeric phenyl boronic acids (PBAs) were used in SL2 
and/or SL5, yet the PBA is undoubtedly important for 
defining selectivity (Figure 6).  As seen in Figure 6A, there 
is no appreciable change in the selectivity patterns whether 
the boronic acid is ortho-, meta- or para- to the linkage to 
the peptide.  This observation was unexpected 1) because of 
expected conformational preferences for sugar binding based 
on positioning the boronic acid in a specific orientation to 
bind the sugar, and 2) because when the boronic acid is 
ortho- to the amino-methyl group enhanced diol binding is 
expected due to conformational and Lewis acidity trends.  
When the more sterically crowded and conformationally 
restricted 2-Ac-PBA is incorporated into SL2 the binding 
preference for OVA actually increases, though modestly 
(from 3-fold to ~6-fold).  Most notably, however, is that 
when the PBA is replaced with a simple benzyl-group all 
selectivity is lost.  SL5 showed similar trends (Figure 6B); 
with the orientation of the boronic acid having no significant influence on glycoprotein binding.  
Interestingly, in contrast to what was observed for SL2, the binding selectivity for SL5 decreased when the 
bulky 2-Ac-PBA was used.  The final boronic acid modification, adding electron-donating (-OCH3, -NR2) 
and electron-withdrawing (-CF3, -NO2, -CN) substituents onto the PBA to alter the Lewis acidity of the 
boronic acid (Task 3 a-4), unquestionably showed no impact on analyte binding. 

 The length of the side-chain connecting the PBA to the peptide (i.e., the tether length, Task 3 a-2) was 
also investigated.  For this analysis, Dab and Lys were incorporated as the amino acid to which the boronic 
acid was attached in order to probe how degrees of freedom and thus preorganization can impact binding 
selectivity.  Figure 7A and B show representative fluorescence images of portions of two libraries, derived 
independently from attachment of PBA to either DAB or LYS, after incubation with FITC-OVA.  The Dab-
based library displays decreased non-selective binding, as indicated by the decreased background 
fluorescence and increased library differentiation.  Figure 7C is a binning chart, in which individual bead 
luminosities are plotted for each library.  The greater spread in the data obtained for the Dab-containing 
library, versus the otherwise identical LYS-containing library, is an indication of greater differentiation and 
selectivity for binding the targeted glycoprotein. 

Figure 6. Impact on binding selectivity 
between SL and different test 
glycoproteins (OVS, BSM, PSM, BSA) 
when different regio-isomeric boronic 
acids are used for SL2 (A.) and SL5 (B.).
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 As a final investigation of how structure can impact 
binding between SL and glycan, we looked at what impact 
the fluorescent label could have.  SL1-SL5 are cationic, 
each containing a minimum of three arginine residues, and 
fluorescein is anionic at physiological pH.  Based on what 
we learned about how charge impacts affinity in our 
alanine scanning mutagenesis studies, we wanted to 
determine how the dye charge was impacting binding 
affinity.  We therefore labeled each of our glycoproteins 
with coumarin (as a neutral alternative) and rhodamine (as 
a cationic alternative) separately.  If the charge on the dye 
significantly impacts the affinity of the SL for any given 
glycoprotein, we should see a decrease in the binding 
response as we move from fluorescein to coumarin, which 
is in fact what we observe (Figure 8).  Still, rhodamine 
labeled glycoproteins would be expected to have a further 
reduced binding affinity due to the cationic dye, which is 
contrary to our results.  We conclude from this that our 
microscope filter set is somehow inappropriate for the 
coumarin dye we are using, even though the wavelengths 
described seem relevant.  Regardless, we are much more 
confident that labeling our targets is an appropriate method for 
identifying hits diagnostic. 

Task 3 b):  Upon identifying ≥5 selective and cross-reactive SLs 
(Task 1), we will assemble them, and others identified in Task 
2, into an array-based diagnostic format. (Months 1-36) 

Task 3 c):  Evaluate the ability of the array to discriminate 
complex glycans (i.e., TF antigen, Lea, Lex, sLea, sLex).  Note 
that because the development of the arrays will be continually 
evolving, as we identify new and more selective SLs.  Thus, 
the time frame for this task is the entire proposal period. (Months 1-36) 

Task 3 d):  Evaluate the ability of the array to discriminate prostate cancer cell lines (i.e. PC-3, LNCaP, and 
DU145), as well as RWPE-1, WPE1-NA22, WPE1-NB14, WPE1-NB11, and WPE1-NB26, which are 
referred to as the MNU cell lines, all available from the ATCC. Note that because the development of the 
arrays will be continually evolving, as we identify new and more selective SLs, the time frame for this task 
is the entire proposal period. (Months 1-36) 

 The vast majority of our work to date in developing and working with arrays has focused on how we 
analyze our array data.  As described above, we have improved our data collection methods to obtain better 
consistency between replicate measurements as well as optimizing how intensity values are extracted.   

 In this regard, we have begun to evaluate our array response using color space intensities and not just 
luminosity.  In particular we have focused on the popular “Red-Green-Blue” (RGB) color space to obtain 
more of a full spectral response from our array.  In so doing we have improved our classification accuracy 
from 97% to 100% for a five cell line panel (including: HT-29, CT-26, CT-26-F1, CT-26-FL3, and 
3T3/NIH) made up of 114 replicates we often use to evaluate our models. 

Figure 7. Representative fluorescence 
images of libraries incorporating Dab (A.) 
or Lys (B.) upon binding FITC-OVA. C. A 
binning chart of individual bead 
luminosities showing decreased 
background fluorescence and increased 
differentiation when Dab is used.

 
Figure 8. Relative binding response for 
SL2-SL5 binding with PSM, labeled 
with coumarin (blue), fluorescein 
(green) or rhodamine (red). 
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 To further validate our approach we have assessed the 
ability of our array to identify analytes which it has never seen 
before.  Specifically, we used ten cell lines including a mix of 
mouse and human lines as well as colon (7 - 3T3, HT29, 
HCT116, CT26, CT26-F1, CT26-FL3, and Lovo), breast (2 - 
MCF7 and MCF10A) and prostate (1 - PC3) cell lines.  To do 
this we create a statistical model based on 9 cell lines while 
leaving data from one cell line out and then attempt to classify 
this excluded line, in much the same way that a diagnostic test 
must determine the disease status for a patient that did not 
contribute to the calibration data set.  As such, when classifying 
our samples as healthy, cancerous/non-metastatic or 
cancerous/metastatic we only obtained 56% overall 
classification accuracy (Figure 9, blue).  However, if we simply 
look to diagnose the cancer and not stage it at the same time, 
thereby identifying our data as either healthy or cancerous, we improve our classification accuracy to just 
over 83% (Figure 9, green).  Still, by ignoring the 3T3/NIH mouse fibroblast line, the most out of place cell 
line in this analysis, and looking at the remaining nine cell lines using this same approach, we can 
“diagnose” the presence of cancer 100% of the time, with a sample set of n = 434. 

 Finally, we realize that using linear discriminant analysis (LDA) is not necessarily the best approach for 
analyzing our data.  We also recognize that not all samples can be controlled as tightly as ours have been 
previously.  As such we evaluated our complete data set derived from colon cancer cell lines, including 
variations in incubation time (1 h to 24 h), incubation temperature (4 oC, 25 oC and 37 oC), and sample 
dilution (20x, 50x and 100x).  In total this afforded nearly 12,000 measurements.  Using support vector 
machines we were able to obtain 93% classification accuracy and using regression tree analysis we 
improved the classification accuracy to 97%.  Working closely with Prof. Edsel Pena in the Department of 
Statistics at the University of South Carolina we are continuing to explore our options, being cautious that 
the approach we take is appropriate for the type of analysis we are doing as well as verifying that we do not 
“over-train” our models and that we maintain statistical validity 

  

Figure 9. Individual classification 
accuracies (3-class groupings in blue, 
2-class groupings in green) for each of 
10 cell lines derived from a model 
lacking all input from that line. 
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Key Research Accomplishments 

 Synthesized peptoid libraries (PRT).  Peptoid based SL libraries (diversity = 95; 5.9 x104 members) 
were synthesized on Tentagel macro beads and their utility for identifying SL’s targeting proof-of-concept 
glycoproteins assessed.  The library was also used to further optimize our screening procedures.  
Screening with this library to identify selective SL’s is ongoing.  We are also moving toward the synthesis 
of β-amino acid containing libraries, which are intrinsically structured/pre-organized, we expect to further 
aid the identification of SL’s with improved selectivity. 

 Synthesized peptide libraries (JJL and PRT).  Peptide based SL libraries (diversity = 115; 1.6 x105 
members) were synthesized on Tentagel macro beads and also used to further optimize our screening 
procedures and identify several new selective SLs (see below). 

 Optimization of screening protocols (PRT).  The above libraries were used to identify optimized 
conditions for identifying SLs that selectively bind our proof-of-concept glycoproteins and CAGs.  These 
conditions are:  10 mM HEPES, 150 mM NaCl, 0.1% E. coli lysate (stock conc. 8 mg/mL) and 0.05% 
TWEEN. 

 Developed a structure activity relationship (JJL).  Used SL2 and SL5 to develop a structure activity 
relationship.  The key findings were that positive charge and the boronic acid are critical for affinity and 
selectivity.  This information is being fed back into the library design process to aid in the generation and 
subsequent identification of highly selective SL’s (see Tasks 2c and 3a). 

 Identified boroxole as a high affinity sugar binding motif (PRT).  The 2-formylphenyl boronic acid 
moiety was replaced with several different boronic acids to explore boronic acid substituent effects, and 
thereby identify the factors that promote the selective recognition of a glycan by a particular SL.  The key 
findings were that the substitution pattern did not matter and that substituent effects (e.g. electron 
donating/withdrawing group) were minimal. Also, the boroxole moiety was identified as an alternative 
moiety with improved affinity. 

 Optimization of image capture and analysis (JJL).  A Matlab algorithm was successfully developed to 
automate data extraction from microscope images of our bead-based assays.  The algorithm not only 
identifies each bead and extracts color space intensity values, but also allows for data rejection based on 
customizable threshold values for size, circularity and/or color space percentile high values (i.e., relating 
pixel saturation).  Using this automated data collection system, additional statistical analyses have been 
performed on our colon cancer data sets, and using quadratic discriminant analysis and/or support vector 
machines, our classification accuracies improved from 97% to >99%. 

 Identified 4 additional SLs that bind proof-of-concept glycoproteins (JJL and PRT).  Screens of 
peptide libraries containing either 2-formylphenyl boronic acid or boroxole identified 4 additional SLs that 
bind proof-of-concept glycoproteins. 

 Identified SLs that selectively bind sialyl Lewis X over Lewis X, sialyl Lewis A, and Lewis A (PRT).  
Screens of peptide libraries versus biotinylated-sialyl Lewis X identified two SLs (SLex1 and SLex2).  
Confirmation assays demonstrated that SLex2 selectively binds sialyl Lewis X over Lewis X, sialyl Lewis 
A, and Lewis A. 

 Used existing SL array to demonstrate the utility in diagnosing and staging prostate, breast, and 
colon cancer (JJL).  Using our SL array to classify various colon cancer cell lines according to metastatic 
potential, we achieved 97% classification accuracy as reported in our Chem Sci manuscript.  Inclusion of 
additional colon, breast and prostate cancer cell lines (n = 10; 426 separate measurements), and grouping 
the different cell lines according to whether they are healthy, cancerous and cancerous/metastatic we 
achieve 84% classification accuracy.  However, if we look at it from a diagnostic perspective, i.e. 
cancerous versus non-cancerous, the classification accuracy improves to 95%.  
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Reportable Outcomes 

 Published a manuscript in Chemical Sciences3 (see Appendices) detailing the utility of SL arrays to 
discriminate cancer cell lines based on metastatic potential, thereby setting the stage for further 
developing this approach for the diagnosis and staging of cancer. 

 Kevin Bicker, who played a key role in developing the SL array, will begin his tenure track faculty 
position at Middle Tennessee State University in August 2013. 

 Lavigne presented a seminar to the College of Pharmacy at the Medical University of South Carolina. 
 Held joint lab meeting at The Scripps Research Institute, Scripps Florida, on July 25, 2013.  Anna 

Veldkamp, Kathleen O’Connell, and Daniel Lewallen presented seminars on their SL studies. 
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Conclusions 

Significant progress has been made in the first year of funding on this project to develop synthetic lectin (SL) 
arrays that bind to prostate cancer associated glycans and glycoproteins (CAGs) to detect glycosylation patterns 
associated with cancer.  These studies are being pursued to develop this methodology into a robust system, 
thereby providing a new paradigm that can diagnose and stage prostate cancer.  Moreover, these studies directly 
relate to the “Imaging,” and “Biomarker” focus areas of the PCRP overarching challenges.  In particular, the 
progress made towards creating a cross-reactive sensor platform will allow for more reliable diagnosis of 
prostate cancer and thus improve the likelihood of accurate detection and aid in managing prostate cancer, 
thereby decreasing many of the negative impacts associated with prostate cancer. 

 Thus far, peptide and peptoid libraries have been synthesized and screened against cancer associated 
analytes.  Consequently, six new synthetic lectins have been identified targeting both glycans (2 new SLs) and 
glycoproteins (4 new SLs).  In so doing, we have been able to improve our methods for binding SLs to CAGs to 
reduce background binding, thereby improving our signal to noise ratio.  We have also been able to advance our 
approaches to 1) acquire assay images, 2) extract assay response values and 3) analyze the assay outcome.  
Ultimately, these improvements have allowed us to verify the validity of our approach while also improving the 
overall assay accuracy.  As such, we have enlarged our data set to nearly 12,000 measurements while expanding 
the assay relevance and at the same time maintaining classification accuracies between 93-97%.  These results 
reflect assay responses to a combination of prostate, colon and breast cancer cell lines. 

 In addition to enhancing the overall assay performance, we have also advanced our understanding of what 
factors are important for SLs to bind CAGs.  Specifically, we have demonstrated that boroxoles are efficient 
replacements for the originally proposed boronic acids and can improve the binding affinity of SLs for certain 
CAGs.  We have also begun to develop a detailed structure-activity-relationship that has to date indicated that 
charge on the SL is important for defining binding affinity with CAGs while the boronic acids significantly 
contribute to binding selectivity. 

 As this project progresses, we will continue to expand our understanding of the factors important for SLs to 
bind CAGs.  Specifically, we will synthesize sequence and positional mutants of other SLs to better define the 
role of each residue in binding CAGS and therefore to be able to draw more detailed broad conclusions.  At the 
same time we will continue to evaluate the benefits of using peptoids and boroxoles in our array development.  
Significantly, we are continually screening our libraries for new hits that better target prostate cancer and 
subsequently these hits are included into our array and used to better discriminate prostate cancer cell lines 
while simultaneously improving our signaling strategies, our data analysis and the overall utility of our 
approach. 

 Despite being located at two different sites, PRT at TSRI and JJL at USC, the project has continued to grow 
and evolve through constant email and phone contact, as well as organized weekly meetings and scheduled site 
visits.  As revealed above, each PI has contributed to different aspects of this project; with both PIs having 
overlapping and supporting roles for the other.  Clearly, this team works well together, providing their own 
expertise to result in a level of productivity that is greater than that achievable by each PI working 
independently.  Certainly, this project would not exist without the input of both PIs. 
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Aberrant glycosylation is a hallmark of various disease states, including cancer, and effective detection

and discrimination between healthy and diseased cells is an important challenge for the diagnosis and

treatment of many diseases. Here, we describe the use of boronic acid functionalized synthetic lectins

(SLs) in an array format for the differentiation of structurally similar cancer associated glycans and

cancer cell lines; discrimination is based on subtle variations in glycosylation patterns. We further

demonstrate the utility of our SLs in recognizing glycoproteins with up to 50-fold selectivity, even in

95% human serum. Given their robust and selective nature, these SLs were able to effectively

distinguish (a) five structurally similar glycans with 94% accuracy; (b) seven normal, cancerous and

metastatic colon cancer cell lines, including three isogenic cell lines, with 92% accuracy; and (c) these

same seven cell lines using a guided statistical analysis to improve our analysis to 97% accuracy. In

total, these data suggest that an SL-based array will be useful for the diagnosis of cancer.
Introduction

The intracellular and extracellular biomarkers displayed by

healthy and diseased cells provide unique signatures by which

these cells can be distinguished. For example, in healthy cells,

post-translational glycosylation of proteins plays a critical role in

cell–cell interactions and in cell signaling.1 However, aberrant

protein glycosylation is a hallmark of numerous diseases

including inflammation and cancer, thus providing a means for

the detection and classification of healthy and diseased states.

Related to cancer, distinguishing between healthy and cancer

cells that possess either low or high metastatic potentials typi-

cally relies on detecting subtle variations in the types and levels of

specific biomarkers (e.g., DNA, RNA, and proteins) using high-

affinity, target-selective sensors, e.g. antibodies. Regardless of

the analyte, these approaches all require prior knowledge of the

markers targeted and no specific biomarker or combination of

biomarkers has been identified to sufficiently differentiate

between healthy, cancerous/non-metastatic and cancerous/
aDepartment of Chemistry & Biochemistry, University of South Carolina,
631 Sumter Street, Columbia, SC, USA 29208. E-mail: JLavigne@chem.
sc.edu; Fax: +(803)-777-9521; Tel: +(803)-777-5264
bDepartment of Chemistry, The Scripps Research Institute, Scripps
Florida, 120 Scripps Way, Jupiter, Florida, USA 33458. E-mail:
PThompso@scripps.edu; Fax: +(561)-228-3050; Tel: +(561)-228-2860
cDepartment of Biological Sciences, University of South Carolina, 715
Sumter Street, Columbia, SC USA 29208

† Electronic supplementary information (ESI) available: Complete
methods including: labeling, membrane extraction and screening
protocols, Supplementary Figures S1–S5 and LDA classification data.
See DOI: 10.1039/c2sc00790h

This journal is ª The Royal Society of Chemistry 2012
metastatic cell types. An alternative to this ‘‘lock-and-key’’

approach2–6 would be to use cross-reactive recognition elements

as part of a sensor array.

Cross-reactive sensor arrays incorporate multiple receptors

with different affinities such that each component has a selective

and unique interaction with the targeted analyte(s). As a result,

the response from the entire array produces a fingerprint pattern

characteristic of the analyte to which it is responding. That is to

say that classification is not based on the response from a single

receptor, but rather it is the composite response from the entire

array that allows for identification and classification of the

analyte. This practice has often been referred to as the ‘‘electronic

nose’’ approach,7–13 though, in this case, used for solution-based

analysis.

While natural lectins (sugar binding proteins) display cross-

reactivity, and lectin arrays can often offer an effective approach

to cancer diagnostics, the methodology is often complex and the

constituents are of inherently low stability and high cost.14–17

Here we describe an alternate approach based on the covalent yet

reversible binding between boronic acid functionalized synthetic

lectins (SLs) and cancer associated glycans and glycoproteins.

This design does not require previous knowledge of the

biomarkers targeted; rather it is focused on identifying changes

in glycosylation patterns, a factor that is known to play

a significant role in oncogenesis and metastasis.

In cancerous cells, the expression of specific glycan structures

can be increased, decreased, or even newly expressed. These

changes often co-opt cellular signaling pathways to promote

growth, division and metastasis.1 For example, sialyl Lewis X

(sLex) and sialyl Lewis A (sLea) (Fig. 1A) are overexpressed in
Chem. Sci., 2012, 3, 1147–1156 | 1147
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Fig. 1 (A) The structures of biotinylated cancer associated glycans used

in this study. (B) The sequences of the SLs used for validation studies and

in the array assessments.

Fig. 2 Percent change in luminosity of each identified SL towards four

different analytes (analyte identification indicated in the legends above).

Error bars represent the standard error of the percent change relative to

the control as this propagated uncertainty is based on the variance

between replicate measurements for the sample and control reference.
breast, colon and pancreatic cancers,1 and the increased expres-

sion of sLex is known to enhance tumor metastasis.18–21 Tests to

detect specific aberrant glycosylation events are used for both

initial disease diagnosis and monitoring disease progression yet

suffer from limitations including a high number of false positives

and a reliance on inherently unstable and costly antibodies or

natural lectins.14–17 For example, elevated levels of CEA (carci-

noembryonic antigen), an aberrantly glycosylated glycoprotein,

are associated with an increased risk of colon cancer relapse and

metastasis.15 However, the test for CEA is only effective in 4%

and 25% of Stage I and II cancers, respectively, which is prob-

lematic for a cancer diagnostic because it is during these early

stages when the disease is most effectively treated.22

The development and use of boronic acid functionalized

synthetic lectins (SLs) for saccharide detection and cancer diag-

nosis is a rapidly growing field.23–36 Boronic acids are incorpo-

rated into the SLs to enhance glycan binding via their ability to

form covalent yet reversible bonds to the 1,2- and 1,3-diols

present on many saccharides. These small molecule SLs generally

show enhanced stability compared to antibodies and natural

lectins, and it has been shown that incorporation of synthetic

lectins into an array format allowed for the recognition and

discrimination between simple monosaccharides and oligosac-

charides in neutral aqueous media as well as real-world beverage

samples, i.e. sweet tea with added Splenda.37 Further advances

using cross-reactive nanoparticle-conjugated polymer based

arrays have shown utility in differentiating normal, cancerous

and metastatic cell types.38

We previously described the design, synthesis and utility of

boronic acid functionalized peptide-based SLs in binding to

glycoproteins36 and highlighted efforts in library design optimi-

zation and peptide sequencing.35 SLs, that were both cross-

reactive and up to 5-fold selective for a particular glycoprotein,

were identified.

Herein, we report the identification and characterization of

three additional SLs that bind to proof-of-concept glycoproteins

with up to 50-fold selectivity, even in complex matrices (i.e.,

human serum). Additionally, a four-component SL array was

used to detect and differentiate five structurally similar cancer
1148 | Chem. Sci., 2012, 3, 1147–1156
associated glycans (Fig. 1), as well as one ‘healthy’ and six cancer

cell lines with high classification accuracy. By combining selec-

tive and cross-reactive SLs within the array, the selectivity of an

individual SL need not be high as each sensor need only be

incrementally different to create an array that maximizes varia-

tion in the array response to different analytes.39,40 Further

analyses using directed partitioning, based on similarities in

metastatic potential, was used to enhance the classification

accuracy. Our results demonstrate the utility of using SL arrays

for the diagnosis of cancer. Furthermore, since the analyte for

which each SL was selected is not found on any of the cancer-

associated cells studied, our array displays inherent adapt-

ability.39,40 That is to say that this relatively small array was able

to ‘‘learn’’ and accurately classify never before seen analytes.39,40
Results and discussion

Employing the same approach used to identify SL1 and SL2,35,36

SL3, SL4 and SL5 (Fig. 1B) were identified by screening our

bead-based fixed position library with fluorescein isothiocyanate

(FITC)-tagged versions of ovalbumin (OVA) and porcine

stomach mucin (PSM). These SLs were subsequently re-synthe-

sized and their selectivity and cross-reactivity evaluated using

OVA, PSM, BSM (bovine submaxillary mucin) and BSA (bovine

serum albumin). OVA, PSM and BSM are all glycoproteins, and

it is noteworthy that the two mucins contain the same type of

glycans but to differing extents and displayed in different envi-

ronments. BSA, which is not glycosylated, was used as a control

for non-specific protein binding.
SL selectivity studies

To control for differences in the extent of labeling or glycosyla-

tion, the fluorescence intensity of a similarly sized set of the SL

library was used as a reference. The fluorescence intensity of the

library was subtracted from the fluorescence intensity of the re-

synthesized SL incubated with the same FITC-tagged glyco-

protein (Fig. S1, ESI†), providing a change in fluorescence

intensity upon binding. A percent change in binding was

obtained by dividing this difference by the fluorescence intensity
This journal is ª The Royal Society of Chemistry 2012



of the library (Fig. 2). To compare the ability of each SL to

differentially bind to glycoproteins, a selectivity factor was

obtained by dividing the percent increase for each analyte by the

percent increase of the weakest binder for that SL (Table 1). The

library was chosen as the reference because it provides a control

containing all of the potential cross-reactive elements that could

interfere with our assessment of binding selectivity. Outliers from

the control were removed using the studentized t-test at the

second quartile to give an accurate average for standardization

purposes.

The data for SL1 and SL2 have been previously described35

and are included in Fig. 2 and Table 1 for comparison. Here we

see that SL1 is completely cross-reactive, binding with no more

than 2-fold selectivity for any one analyte. In contrast, SL2

shows modest selectivity for binding OVA. The 3- and nearly

5-fold selectivity SL2 shows over BSM and PSM, respectively,

demonstrated the ability of this approach to distinguish between

similar analytes. However the 2-fold selectivity of SL2 for OVA

over BSA suggests high non-specific, background binding for

this SL, thereby decreasing its potential utility in a diagnostic

array.

The newly reported SL3 was selected from screening the

library against OVA, and showed only 2-fold selectivity towards

OVA over BSM and PSM, while exhibiting relatively low

background binding, as indicated by the 5-fold selectivity over

BSA. SL4 and SL5 were identified from screening the library for

PSM binders. Although SL4 displays an impressive 25-fold

selectivity for PSM over BSM, it exhibits only �6-fold selectivity

for PSM over BSA. Thus, while exhibiting some degree of

selectivity and showing a particular preference for binding

certain analytes (i.e., PSM vs. BSM), this SL can also be

considered cross-reactive with respect to PSM vs. BSA. As such,

this SL is an ideal candidate for inclusion in a sensor array

because it possesses differential analyte binding. Note that SL4

shows virtually no affinity for OVA and as such the percent

change in luminosity relative to the library control is very small

(0.15%). Thus, for the discussion of selectivity, presented in

Table 1, BSM was used as the weakest binder because it was not

reasonable to use OVA and divide by such a small number (e.g.

PSM selectivity vs. OVA is 250).

Similar to SL4, SL5 displayed exquisite selectivity, exhibiting

50-fold selectivity for PSM over OVA and �15-fold selectivity

over BSM. The excellent selectivity of SL4 and SL5 for PSM over
Table 1 Selectivity factors for each SL screened against four different
glycoproteinsa

OVA BSM PSM BSA

SL1 1.0 1.3 1.9 1.3
SL2 4.7 1.4 1.0 2.3
SL3 5.1 2.9 2.5 1.0
SL4 0.1b 1.0 24.8 3.9
SL5 1.0 3.4 49.9 4.8

a The fold selectivity of an SL for one glycoprotein over another can be
obtained by dividing their respective selectivity factors. SL1 and SL2 data
from Bicker et al.35 b The fold selectivity for SL4 was determined using
BSM as the reference. OVA was not used as the reference because the
%D luminosity was practically zero and dividing by such a small
number resulted in fold selectivities that were quite meaningless.

This journal is ª The Royal Society of Chemistry 2012
BSM (�25- and �15-fold selectivity, respectively) is particularly

impressive because these two glycoproteins possess identical

types of glycans, though to a different extent and differentially

displayed.41–43 These results suggest that these SLs not only bind

to the saccharide, but also the protein. Nevertheless, it is

important to recognize that we have previously shown that

glycans are significant for the SL–glycoprotein interaction.36

The robustness of the SL-glycoprotein interaction was

assessed using SL2 and SL5 with differing percentages of

human serum (0, 25, 50 and 95%) in screening buffer. Both SLs

retained excellent selectivity for the respective glycoproteins in

all concentrations of serum (Fig. S2, ESI†). Control experi-

ments confirmed that no serum components caused any changes

in the assay response (Fig. S3, ESI†). To examine the contri-

bution of valency, dissociation constants (Kd) were determined

for both the bead-based polyvalent SL5 and a monovalent SL5.

The dynamic nature of the beads44 (i.e., being a gel resin) allows

for multiple interactions between bead-based SLs and the many

glycans expressed on PSM. Therefore, incubating polyvalent,

bead-based SL5 with varying concentrations of fluorescently

labeled PSM (having a polyvalent display of glycans) yielded

a Kd of 2.5 � 0.29 mM (Fig. S4, ESI†).45 A fluorescence

polarization (FP) assay was used to measure the affinity of the

fluorescently-labeled, monovalent SL5 (FITC-SL5) for PSM.46

However, saturation of the FP signal was not observed because

of limited glycoprotein solubility (Fig. S5, ESI†), thus Kd values

could not be determined. Nevertheless, the observed response

validated the assay and suggested that the Kd for the mono-

valent SL5-PSM interaction is significantly higher than 10 mM,

the highest concentration tested. These results indicate that the

polyvalent nature of the beads is critical for high affinity

binding and suggest that multiple SLs on a single bead interact

with each glycoprotein.
Glycan competition studies

Glycan competition assays were used to identify the glycan

structure(s) that were responsible for SL2-OVA and SL5-PSM

binding. For these studies, SL2 was selected over SL3 because of

the higher selectivity shown for OVA over BSM and PSM, while

SL5 was chosen over SL4 because of the larger signal intensity

response. In this study, varying concentrations of different

monosaccharides were independently incubated with equal

portions of resin-bound SLs and a constant concentration of the

FITC-glycoprotein (0.1 mg mL�1) that the SL preferentially

binds. The glycans used in the study of SL2 were those found on

OVA, namely galactose, mannose and N-acetylglucosamine

(GlcNAc).36,47 For SL5, galactose, GlcNac, sialic acid, fucose

andN-acetylgalactosamine (GalNAc),36,48 which are all found on

PSM, were used. Fructose was used to probe non-specific

saccharide binding between the SLs and glycoproteins because it

is one of the strongest known 1 : 1 boronic acid binders.49,50 It

was expected that effective competition between a mono-

saccharide and a FITC-glycoprotein, for binding to the resin-

bound SL, would result in a decrease in luminosity. Such

a decrease in the binding signal would suggest that a particular

monosaccharide was important for glycoprotein binding to the

SL. Note that the response values in Fig. 3 have been mathe-

matically defined such that increasing bar height corresponds
Chem. Sci., 2012, 3, 1147–1156 | 1149



Fig. 3 Percent change in luminosity for the glycan competition studies

used to explore the SL2-OVA (A) and SL5-PSM (B) binding interactions

(analyte identification indicated in the legends above). Error bars repre-

sent the standard error of the percent change relative to the control as this

propagated uncertainty is based on the variance between replicate

measurements for the sample and control reference. The dashed lines in

each panel indicate a competition threshold, based on three standard

deviations above the noise. Signal response above this threshold indicates

significant competition.
with more effective competition (intensity ¼ (initial � final)/

initial) to more clearly show the competition trends.

It is noteworthy that effective competition was only observed

at high concentrations of the monovalent saccharides being

studied. This result is likely due to the fact that these mono-

saccharide guests poorly compete with the multivalent display of

saccharides found on the glycoproteins for binding to the

multivalent display of SLs on the bead, as multivalent interac-

tions are nearly always stronger than the sum of the monovalent

interactions.51 Also note that reducing glycosides and non-

reducing monosaccharides (as found on the glycoproteins) were

both used for these competition experiments, and that both

classes of compounds showed similar trends in the data. The

results from the competition studies with the reducing sugars are

shown in Fig. 3 and the non-reducing sugar competition study

data are summarized in the supporting information (Fig. S6,

ESI†). Given that reducing monosaccharides can isomerize to the

furanose form to provide a diol that more effectively binds to

boronic acids in a 1 : 1 manner,52–56 these monosaccharides

provide a more stringent test of ligand binding than the non-

reducing saccharides because they provide a ‘‘dual-competition’’

pathway. Namely via 1 : 1 furanose–boronic acid binding as well

as the proposed pyranose–SL binding predicted for the
1150 | Chem. Sci., 2012, 3, 1147–1156
saccharides found on the glycoproteins. Note that significant

competition was defined as being three standard deviations

above the noise (indicated by the dashed lines in Fig. 3). For this

analysis the standard error for 1000 mM galactose was used

because it displays the largest variance, thus for SL2 and SL5, the

‘cut-off’ percent change in luminosity was 23% and 29%,

respectively.

For SL2, no appreciable decrease in luminosity was observed

with N-acetylglucosamine (GlcNAc) even at concentrations as

high as 1 M (Fig. 3A, red bars) indicating that N-acetylglucos-

amine does not interact with SL2, and thereby suggesting that

this glycan is not critical for binding SL2 to OVA. In contrast,

a significant decrease in luminosity was observed with both 1 M

mannose and with as little as 10 mM galactose (Fig. 3A, blue and

orange bars, respectively). These data indicate that SL2 is likely

binding primarily with galactose, and to a lesser extent with

mannose, both found on OVA. Competitive binding with non-

reducing saccharides also showed significant competition with

mannose (see ESI†). These results are particularly impressive

because they suggest that SL2 interacts with both terminal

(galactose) and core (mannose) glycan structures.47 Given that

galactose is typically considered to be a weak boronic acid binder

for simple 1 : 1 binding, the observed competition suggests that

the binding site in this system is organized in a manner suitable

for binding this sugar.31

Particularly small changes in luminosity corresponding to the

addition of GlcNAc or fucose to SL5 (Fig. 3B, red and yellow

bars, respectively) suggest that these glycans were not crucial for

SL5 binding to PSM. Conversely, GalNAc competed for binding

at high concentrations (Fig. 3B, purple bars), while both sialic

acid and galactose displayed significant competition with PSM

for binding to SL5 at concentrations above 100 mM (Fig. 3B,

gray and orange bars, respectively), suggesting that SL5 is likely

interacting with these terminal glycans. The data for the non-

reducing sugars also demonstrates that sialic acid and GalNAc

compete for binding to SL5.

The fructose competition studies are particularly impressive

because neither SL2 nor SL5 showed any significant competition

with up to 1 M saccharide, i.e., less than 10% observed decrease

in the glycoprotein binding signal (Fig. 3, green bars). Since

fructose is one of the strongest known 1 : 1 binders for boronic

acids, the lack of competition with fructose provides further

evidence that the SL–glycoprotein interactions are likely

multivalent.
Discrimination of glycans

As an initial test of our approach towards binding biologically

relevant targets, we used an array of SL1, SL3, SL4 and SL5 to

distinguish between five structurally similar cancer associated

glycans (TF antigen, Lea, Lex, sLea and sLex; Fig. 1A). These

glycans were chosen because they represent some of the more

common saccharide motifs overexpressed by cancerous cells as

well as being composed of many of the same monosaccharides

that were used in the above competitive binding assay with our

SLs. SL2 was not included in the array to eliminate redundancy

based on response similarities with SL3 and because of the high

background binding to BSA as compared with SL3. It is worth

noting that while SL1 has higher background binding to BSA
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than SL3; it was still included in the array due to its broad yet

differential, cross-reactive response to all glycoproteins assessed.

After screening each SL against a solution containing bio-

tinylated glycan and fluorescently labeled streptavidin, lumi-

nosity values, from fluorescence microscope images, were

analyzed (4 SLs by 5 glycans by 15 replicates). To account for

differences in bead size and loading levels, luminosities were

normalized against the highest luminosity within a given SL type

(in this study the greatest degree of variability stems from bead-

to-bead variations). The unique pattern generated for each

different glycan based on the response of the four different SLs is

shown in Fig. 4A. Note that the response for each glycan

produces patterns that do not differ greatly between analytes,

nevertheless the response is reproducible and the resulting

patterns are unique and distinguishable within the limits of the

associated error.

Though these patterns are similar they are nonetheless unique,

and therefore statistical analyses were used to identify the most

significant features necessary for classification of the analytes.

Specifically, linear discriminant analysis (LDA) was used.57 This

analysis minimized variation within each glycan type while

maximizing the differences between different glycans by creating

linear combinations of each response pattern and transforming

them into canonical discriminants. For this analysis,
Fig. 4 Differentiation of five glycans using a SL array. (A) Fingerprint

pattern of the average normalized luminosity intensities from SL1, SL3,

SL4 and SL5 responding to five different glycans (TF, Lea, Lex, sLea and

sLex). (B) The two-dimensional LDA score plot derived from the patterns

shown in (A) for 15 replicates. Ellipses indicate 95% confidence level,

analyte identification indicated in the legends above.
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Discriminant 1 and Discriminant 2 contain 83.3% and 14.8% of

the between group variation, respectively (Fig. 4B).58 Therefore,

each point in the plot contains information for an explicit

measurement from the four different SLs responding to a specific

glycan. Note that the different glycans are clustered into five

groups with an average standard deviation of �6%. Further-

more, the Wilks’ lambda value for this analysis is 0.009 with

a p-tail value of <0.000001, indicating that there is a statistically

significant difference in the population means from this analysis

at the 95% level of confidence.

While there is some overlap of the ellipses drawn in Fig. 4B, it

is important to recognize that this plot only shows two dimen-

sions out of the four dimensional data used for this analysis

(displaying the data in three dimensions (four is not possible)

does not visually enhance the ability of the plot to show

discrimination).

Leave-one-out cross-validation was next used to assess the

ability of the SL array to classify unknowns as the appropriate

glycan.58 This procedure sequentially removes one sample point

at a time and uses the remaining points as a new training set to

create a model analogous to that shown in Fig. 4B. The classi-

fication accuracy was determined by whether or not the ‘‘left-

out’’ data point was assigned to the correct glycan grouping.

Using this method each analyte response can be used as an

unknown and the classification accuracy determined for the

entire data set. Based on this analysis, the SL array correctly

classified 71 of the 75 measured samples (94.7% classification

accuracy, with a chance accuracy of only 20%). Significantly, the

Lewis antigens and their sialylated forms (Lea/Lex and sLea/sLex)

were efficiently discriminated while only differing by the addition

of a terminal sialic acid moiety. Additionally, this SL-array

impressively distinguished between Lea and Lex, as well as

between sLea and sLex, glycans where the only structural differ-

ence is the regiochemistry of the linkage to the core GlcNAc

moiety (Fig. 1A). Of the four misclassified glycans (Table 2), Lea

was twice identified as sLea, sLea was once classified as Lea, and

Lex was once recognized as sLea.

To further evaluate the validity of our SL array for discrimi-

nating between these five structurally similar glycans, and to

circumnavigate the disadvantages associated with leave-one-out

cross-validation (also referred to as delete-one jackknife) the

more statistically robust ‘‘boot-strapping’’ approach was used.59
Table 2 Percent classification accuracies of glycans using an SL array as
determined by different cross-validation techniques

Jackknife Boot-strapa Training/test setb

Lea 86.6 85.8 88.2
Lex 93.3 95.3 96.0
TF 100 96.2 93.8
sLea 93.3 93.6 94.4
sLex 100 99.0 99.0
Total 94.6 94.2 93.9

a Average values were calculated from 50 replicate analyses of
independently randomized samples with N ¼ 75. b Average values were
calculated from 25 replicate analyses of independently randomized
samples at approximately 50% exclusion (randomized test samples
accounted for, on average, 37 samples (49.5%), ranging from 26–43
samples).
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In the approach, multiple data sets (typically 20–10 000) are

generated by randomly selecting points from the original data

set. During this sampling, the probability that a data point will

appear ‘n’ times is close to a Poisson distribution with mean

unity.

The Mersenne–Twister random number generator60 was used

for random selection of data points in Systat and data sets were

created with 75 elements, the same number as the original data

set. Fifty (50) separate and unique data sets were generated using

this approach and were then evaluated for classification accu-

racy. Overall, this analysis yielded a 94.2 � 2.0% classification

accuracy for the array identifying these five glycans. This is

consistent with the leave-one-out accuracy of 94.6%. Signifi-

cantly, individual glycans were accurately classified from 86–99%

(Table 2). As with the leave-one-out analysis, the three greatest

misclassifications were due to Lea being misclassified as sLea

(9.3%), sLea being misclassified as Lea (6.7%), and Lex being

misclassified as sLea (4.7%).

Still further stressing the limits of this array for differentiating

glycans, we chose to randomly split our data in half. Using one

half as a training set, to create a statistical model, and the other

half as a test set to assess the ability of this model to accurately

identify these ‘‘unknowns.’’ Training and test sets were chosen at

random from the Normal distribution.61 To minimize systematic

error, random set generation and subsequent analyses were

carried out 25 times to create replicates. The data in Table 2

represents the averages obtained for these replicate runs.

Consistent with the previously described analyses, the overall

classification accuracy of this approach was 93.9% � 2.8%. This

is by far the most stringent method used to assay the validity of

the models generated from our SL array and still exhibits

exceptional classification accuracy. The consistency displayed

across the three methods further testifies to the strength of the

outlined SL array design for discriminating structurally similar

cancer associated glycans.

As indicated above, it is possible that the SLs interact, not only

with the glycan, but also with the protein portion of glycopro-

teins. In this analysis the protein component, FITC-streptavidin,

is the same for each glycan being analyzed. As such, any observed

difference in the response from the array must be attributed to

the glycan constituent. Given the structural similarities between

these glycans, it is remarkable that there were not more

misclassifications. In total, these results validate our ability to

differentiate structurally similar cancer associated glycans with

high accuracy using a small, cross-reactive SL array.
Discrimination of cancer cell lines

To further probe the utility of this four-component SL-array, we

targeted an important goal in cancer diagnostics: to distinguish

between healthy, cancerous/non-metastatic and cancerous/

metastatic cell types. Specifically, we used our SL-array to

discriminate between seven different cell types including: three

colorectal carcinoma non-metastatic cell lines (HCT116, CT-26,

HT-29), three colorectal carcinoma metastatic cell lines (CT-26-

F1, CT-26-FL3, LoVo), and one murine fibroblast cell type

(NIH/3T3) to serve as a ‘‘healthy’’ control cell line. Note that

CT-26-F1 and FL3 cell lines were derived from the parental

CT-26 cell line by in vivo education selection through serial
1152 | Chem. Sci., 2012, 3, 1147–1156
passage in Balb/c mice and represent a series of highly similar

isogenic cell lines that only differ in their metastatic potential

(CT-26 <10% metastatic, CT-26-F1 �50% metastatic and CT-

26-FL3 �95% metastatic).

Unlike the identification of discrete, structurally similar

glycans, we predicted that cell type discrimination would result

from a general response to the distinctive membrane protein

composition of each cell type, thus affording a unique cellular

signature, as previously demonstrated by Bunz and Rotello.38

For this study, cell membrane proteins and glycoproteins were

isolated62 and fluorescently labeled to detect binding to the SL-

array. While we note that this labeling approach is less than ideal

for the development of a diagnostic, it does suffice to demon-

strate the utility of using an SL array towards discriminating

between cell lines. To account for differences in the extent of

fluorescent labeling and protein concentration between each cell

extract, luminosities were normalized against the highest lumi-

nosity within a given cell type (in this study the greatest degree of

variability stems from cell line-to-cell line variations).63 Note that

replicates obtained for the LoVo, HCT116, NIH/3T3 and HT-29

cells were derived from multiple sample preparations of cell

cultures grown by different researchers over the course of several

months.

Fig. 5A shows the two-dimensional projection of the LDA

results (4 SLs by 7 cell lines by 40 replicates each for NIH/3T3,

CT-26, HT-29, CT-26-F1 and CT-26-FL3; 60 replicates for

LoVo; and 80 replicates for HCT116). It is important to note that

if all of the variance is captured in one discriminant then the

statistical analysis is not really necessary; however successive

discriminants containing large portions of the variance supports

the validity of and the need for the statistical analysis. In this

analysis Discriminant 1 contains 54% and Discriminant 2

contains 31% of the total variance, while the remaining 15% is

partitioned between Discriminants 3 (11%) and 4 (4%) (i.e., this is

four-dimensional data). This distribution of variance suggests

that each of the SLs in the array is important for discriminating

between cell lines.

Note that each of the same colored points cluster together

indicating the ability of the statistical model to define similarity

between replicates of a specific analyte. However, some of these

different clusters are closely packed and some groups overlap

suggesting that there are strong similarities between some of the

analytes, as would be expected. Nevertheless, it important to

recognize that the data is in fact four dimensional; therefore the

overlap between groups shown in this two dimensional figure

(Fig. 5A) is not necessarily indicative of poor classification.

To quantitatively evaluate the accuracy of this approach,

leave-one-out cross-validation was used and demonstrated that

this statistical model exhibited 92.1% accuracy, correctly identi-

fying 313 out of 340 measured samples. Fig. 5B presents the LDA

classification results matrix for the assay. The cross-diagonal of

the matrix corresponds to the number of accurately identified

samples (set in bold). Any numbers that fall off this diagonal

represent the number of misclassifications for that cell type and

correspond to the misclassified cell type identity. The column on

the right of the matrix provides the classification accuracy for

each cell type. While the overall classification accuracy for the

array is 92.1%, the accuracy for each individual cell type varies

between 81–100%.
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Fig. 5 (A.) The two-dimensional LDA score plot of the response of the

SL array for discriminating seven cell types. Green curves indicate

boundaries between healthy, cancerous/non-metastatic and cancerous/

metastatic cell types. For clarity, the Discriminant 1 vs. Discriminant 2

data was rotated 20� about the z-axis (analyte identification indicated in

the legends above). (B.) Leave-one-out cross validation classification

matrix for the SL-array based assay.

Table 3 Percent classification accuracies of cell lines using an SL array
as determined by different cross-validation techniques

Jackknife Boot-strapa Training/test setb

3T3/NIH 100 100 100
CT-26 97.5 97.0 96.7
CT-26-F1 82.5 80.5 82.3
CT-26-FL3 92.5 92.7 87.4
HCT116 81.3 83.6 89.2
HT-29 97.5 96.8 96.7
LoVo 100 99.9 100
Total 92.1 92.1 92.7

a Average values were calculated from 100 replicate analyses of
independently randomized samples with N ¼ 340. b Average values
were calculated from 25 replicate analyses of independently
randomized samples at approximately 50% exclusion (randomized test
samples accounted for, on average, 173 samples (50.9%), ranging from
153–191 samples).
Given the diversity of protein and glycan structures present on

the cell membrane for each of these different cell types, it is

difficult to speculate on the specific glycans that are recognized

by the SLs and that contribute to the discrimination of these

different cell lines. Still, there are clear trends in the statistical

output that support the validity of this analysis. As one moves

from left to right along the x-axis in Fig. 5A the metastatic

potential of the cell lines increases. Specifically, the green curves

in Fig. 5A provide boundaries between the ‘‘healthy’’ 3T3 cells

(black) at the far left of this plot; the cancerous/non-metastatic

cell lines (HCT116, CT-26 and HT-29 – orange, yellow, red,

respectively) in the middle and the cancerous/metastatic cell lines

(CT-26-F1, CT-26-FL3 and LoVo – light blue, purple, blue,

respectively) to the right. This clustering of cell types with similar

metastatic potential suggests that the basis upon which the first

two discriminants are derived correlate highly with this attribute.
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Additionally, the Wilks’ lambda value for this analysis is 0.003

with a p-tail value of <0.000001, thus indicating that there is

a statistical difference in the population means from this analysis

at the 95% level of confidence. Further MANOVA treatment of

the data provided a Wilks’ lambda value of 0.004 with a p-value

of <0.000001 and sequential univariate F-Tests for each variable

provided p-values of <0.000001 for each.

To further validate this approach, boot-strapping and

training/test set analyses (at a 50% exclusion split) were carried

out. The results provided in Table 3 indicate that these more

rigorous validation methods provide classification accuracies

consistent with those obtained for the leave-one-out cross-vali-

dation, 92.1 � 1.1% and 92.7 � 1.8%, respectively. As seen for

the glycan analysis above, cell-line misclassifications were

consistent across all three validation methods. Furthermore, the

misclassified cell-lines were not random but often had a struc-

tural basis behind the result. For example, in the boot-strap

analysis, CT-26-F1 displayed the lowest classification accuracy at

80.5%; and all of the misclassifications were as CT-26-FL3, an

isogenic, highly metastatic cell line. Similarly, from the training/

test set analysis, CT-26-FL3 has one of the lower classification

accuracies (87.4%); here all of the misclassifications in this

analysis were attributed to CT-26-F1 (85%) and LoVo (15%).

Recall that both CT-26-FL3 and LoVo are highly metastatic and

that CT-26-FL3 is isogenic with CT-26-F1. Finally, while the

classification error for HCT116 is relatively large across the

validation methods (classification accuracies from 81.3–89.2%),

the majority of misclassifications are CT-26 and HT-29 cells.

Since all three cell lines are cancerous non-metastatic, these

misclassification are not unexpected because classification accu-

racy, in this model, correlates with metastatic potential.
Directed partitioning for enhanced cancer cell discrimination

With the advancement of cross-reactive sensor arrays, numerous

statistical and non-statistical approaches have become available

to evaluate the array responses; however, many do not scale well

with increasing numbers of analyte classes. For analysis of these

multi-class systems, the most common statistical approaches rely

on multivariant analysis, such as feature selection algorithms.

Alternatively, the analysis can be reduced to a series of multiple
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binary classification problems run in parallel, such as one-from-n

(one-against-rest), pairwise (one-against-one) or hierarchical

(decision trees) processes.

We have previously presented a hybrid approach, for the

identification and discrimination of biogenic amines,64 where

the multi-class system is simplified in a manner analogous to the

binary classification routines. However, this class reduction did

not rely on statistical methods; instead, we used insight into the

chemical nature of the analytes to group these compounds into

structurally related categories.

In training the array using this directed partitioning technique,

previous knowledge about the nature of the samples is required,

for example whether the cell lines are cancerous or not. However,

as described above, no specific information about the exact

identity of the analytes is necessary, for example the glycan being

bound. This method is in direct contradiction with traditional

routines that rely solely on statistical models. The quality of the

results from this approach is often enhanced because logical

reasoning, based on the inherent nature of the samples, is

involved as part of the partitioning. Once classified into groups,

these subsets could be further categorized as the individual

components using a hierarchical, group–ungroup, multi-layered

analysis approach to achieve enhanced classification. Therefore,

directed partitioning was used to reduce classification error and

the data were grouped according to their metastatic potential, i.e.

healthy, cancerous/non-metastatic and cancerous/metastatic.

When the analysis was performed using these new groups,

classification accuracies, based on leave-one-out cross-valida-

tion, improved to 97.1%, correctly identifying 330 out of 340

samples (Fig. 6A). The classification accuracy is unchanged using

the training/test set analysis at 50% exclusion (97.3 � 1.5%).

From a diagnostic perspective, this is perhaps the most impor-

tant classification; to determine whether the cancer is present or

not. Of the 10 misclassified samples, 8 were cancerous/non-
Fig. 6 (A) The 2-D LDA score plot of the response of the SL array for

discriminating grouped healthy, grouped cancerous/non-metastatic and

grouped cancerous/metastatic cell types. (B) 2-D LDA score plot of the

array response to ungrouping the cancerous/non-metastatic cells:

HCT116, CT-26 and HT-29. (C) 2D LDA score plot of the array

response to ungrouping the cancerous/metastatic cells: CT-26-F1, CT-26-

FL3 and LoVo. Ellipses indicate 95% confidence level, analyte identifi-

cation indicated in the legends above.
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metastatic that were identified as cancerous/metastatic and the

remaining 2 were cancerous/non-metastatic that were considered

healthy, thus producing a 0.6% ‘‘false negative’’ rate. Addition-

ally, note that the data for the 3T3 cells seems ‘‘bimodal,’’

showing two distinct clusters within the category. This separa-

tion results from combining data acquired by different experi-

mentalists from different culture broths. Most significantly, while

this separation is noticeable, the overall clustering is still quite

tight and the 3T3 classification is 100% in the leave-one-out

analysis. Based on the training/test set analysis, the within group

misclassification is 6.7%, resulting in an overall 0.8% ‘‘false-

positive’’ rate. These results clearly support the validity of this

approach to identify cancerous from noncancerous cell lines.

Furthermore, the low false negative rate compares quite favor-

ably with current diagnostic tests such as the CEA test, where the

false negative rate is 16%.22

By successively ungrouping each subset, a multi-layered

analysis could be carried out to identify the individual cell type.

The two-dimensional projections of the four-dimensional LDA

results for these subset categorizations are shown in Fig. 6B–C.

In Fig. 6B cancerous/non-metastatic cell lines were accurately

discriminated in 150 out of 160 samples or 94%; an improvement

from 89% in the single-layer analysis. Specifically, HT-29 cells

were classified with 100% accuracy; CT-26 cells achieved 98%

classification accuracy and HCT116 were classified with 89%

accuracy. For the 10 misclassified analytes, 9 of the HCT116

samples were identified as CT-26 while one CT-26 was classified

as HCT116. Given that all three of these cell lines are cancerous

non-metastatic, these misclassification are not extraordinary

because classification accuracy, in this model, correlates with

metastatic potential.

Similarly, the cancerous/metastatic cell lines were separated

into the individual components with 92% classification accuracy

(129 out of 140 samples, Fig. 6C). In this analysis, 91% of the

misclassifications resulted from mis-assignments between CT-26-

F1 and CT-26-FL3. It is important to recall that these are highly

similar isogenic cell lines, derived from the parental CT-26 cell

line, and differ only in their metastatic potential. The impressive

88% classification accuracy, between the highly metastatic cell

lines CT-26-F1 and CT-26-FL3, as well as 92% classification

accuracy between the parent CT-26, and metastatic CT-26-F1

and CT-26-FL3 cell lines further validates our approach while

indicating that there are distinct glycosylation patterns associ-

ated with metastatic potential. These results highlight the

adaptability of this array-based approach for classifying cell

types based on complex mixtures rather than a specific analyte,

thereby mimicking the mammalian senses of taste and smell.39,40
Conclusions

In summary, selective and cross-reactive SLs have been identified

by screening a resin-based SL library binding to glycoproteins.

Selectivities as high as �50-fold, for one glycoprotein over

another, have been observed. The selectivity of the SL-glyco-

protein interactions are maintained in 95% human serum,

demonstrating their robustness. Significantly, SLs were assem-

bled into an array format to distinguish between five structurally

similar cancer associated glycans with 94% accuracy. Addition-

ally, the same array was used to discriminate seven cell types,
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including three colorectal carcinoma non-metastatic cell lines,

three colorectal carcinoma metastatic cell lines, and one healthy

control cell line with high accuracy. Two statistical methods

were employed for this analysis. In a single layered approach,

analysis of all seven analytes at once provided overall classifi-

cation accuracy above 92%. Using directed partitioning affor-

ded 97% accuracy for distinguishing between cancerous non-

metastatic, cancerous metastatic and healthy cells. By sequen-

tially ungrouping these subsets the overall accuracy of the

analysis was improved compared with the single-layer analysis.

Current work is focused on identifying SLs for specific cancer

associated targets to enhance detection sensitivity and discrim-

ination ability, as well as expanding the array to discriminate

between other glycans and cell types. Finally, we note that SLs

themselves may possess therapeutic utility as targeting agents

and metastatic inhibitors, as has been shown with natural

lectins.65,66
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