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Introduction 

 

This documents reports the accomplishments of the PI, Dr Mehdi Moradi, supported by the 

postdoctoral training Award W81XWH-10-1-0201, from April 1, 2010 to March 31, 2012. The 

progress on the specific task listed in the award will be listed. Since this is a training award, other 

achievements of the trainee during the award will be enumerated as well. The technology developed 

for vibroelastography was described in the annual report. We will focus on progress towards specific 

clinical outcomes and achievements of the trainee.  

The rationale of the proposal is that prostate tumors cannot be visualized in the ultrasound B-

mode images used for interventional guidance. As a result, the current methodology of transrectal 

ultrasound (TRUS) guided biopsy is a systematic sampling approach, which can potentially miss or 

under sample cancerous tissue or may incorrectly stage the disease. Similarly, for therapeutic 

interventions such as brachytherapy and surgery, the lack of reliable radiologic characterization of 

the tissue forces the choice of radical treatment as opposed to focal therapy. The proposed research 

aims to produce highly demanded imaging technologies for ultrasound-based prostate biopsy and 

treatment procedures. 

 

Body 

Progress towards the research tasks defined in the statement of work: 

 

Task 1: Data collection and analysis to address specific aims (i) and (ii) in the research narrative: Data 

collection for validation of in-vivo accuracy of cancer detection and extracapsular extension of 

prostate cancer based on RF time series and VE. This will be performed prior to prostatectomy. The 

gold standard will be histopathologic analysis of the extracted specimen. This serves specific aims 1 

and 2 in the research narrative. 

 

Progress toward task 1: data collection was performed under UBC IRB: “(H08-02696) Ultrasound 

studies for prostate imaging optimization”. The protocol was designed to acquire ultrasound RF data 

and vibroelastography from the patients in the operating room, immediately before the radical 

prostatectomy surgery. We scheduled pre-operative multiparametric MRI from the same cases as 

well. After the surgery, we collected whole-mount pathology analysis of the extracted prostate tissue. 
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Due to operational issues, the acquisition of the pathology slides was slow and in some cases 

impossible. Table I lists the data acquired.  

 

Table I: Number of cases and data types acquired during the study 

Total number of cases 19 

Cases with wholemount pathology 10 

Cases with VE 19 

Cases with RF ultrasound 12 

Cases with pre-operative MRI 14 

 

 

Task 2: Analysis to address specific aims (iii) in the research narrative: Data collection for 

validation of the visualization and segmentation of prostate with VE imaging. MR imaging is used 

for control. 

 

Progress toward Task 2: The PI and the team in UBC have made significant progress towards 

improving the visualization and the segmentation of the gland. This has resulted in publications that 

we included as Appendices. The summary of the methodology and results are provided here:  

 

VE as a tool to improve prostate visualization: Vibroelastography (VE), an ultrasound-based 

method that creates images of tissue viscoelasticity contrast, was evaluated as an imaging modality 

to visualize and segment the prostate. We performed a clinical study to characterize the visibility of 

the prostate in VE images and the ability to detect the boundary of the gland. Measures for contrast, 

edge strength characterized by gradient and statistical intensity change at the edge, and the 

continuity of the edges were proposed and computed for VE and B-mode ultrasound images. 

Furthermore, using MRI as the gold standard, we compared the error in the computation of the 

volume of the gland from VE and B-mode images. The results demonstrated that VE images are 

superior to B-mode images in terms of contrast, with an approximately six fold improvement in 

contrast-to-noise ratio, and in terms of edge strength, with an approximately two fold improvement 

in the gradient in the direction normal to the edge. The computed volumes showed that the VE 
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images provide an accurate 3D visualization of the prostate with volume errors that were slightly 

lower than errors computed based on B-mode images. The total gland volume error was 8.8 ± 2.5% 

for VE vs. MRI and 10.3 ± 4.6% for B-mode vs. MRI, and the total gland volume difference was -4.6 ± 

11.1% for VE vs. MRI and -4.1 ± 17.1% for B-mode vs. MRI, averaged over nine patients and three 

observers. Our results showed that viscoelastic mapping of the prostate region using VE images can 

play an important role in improving the anatomic visualization of the prostate and has the potential 

of becoming an integral component of interventional procedures such as brachytherapy. Full 

description of the technology and the clinical study are published in Medical Image Analysis. 

  

Task 3: Development of feature extraction and classification approaches for real-time tissue typing 

for cancer detection (based on RF time series). 

 

On cancer detection, due to technical issues regarding motion compensation from passive RF time 

series, we focused mainly on cancer detection from ultrasound elastography (which is the active 

version of the time series).  The most recent results acquired from data are outlined here.  

 

Transrectal ultrasound with VE was performed intra-operatively, prior to the prostatectomy 

procedure, on patients diagnosed with prostate cancer. Transfer function images of the prostate, 

showing the relative stiffness of the tissue within and surrounding the prostate were created. For 

each case, 9-13 pathology slides extracted from the prostate at approximately 4mm intervals, with 

cancer marked, were available. Areas suspected for cancer were marked on the VE images and then 

compared to the pathology results.  

Gleason scores for 51 tumors were available. Twenty of the 31 tumors with Gleason scores of 

3+3 (64.5%), 13 of the 16 tumors with Gleason scores of 3+4 (81.25%), both tumors with Gleason 

scores of 4+3 with tertiary 5 (100%) and both tumors with Gleason scores of 4+5 (100%) were 

detected. VE had an overall sensitivity of 75.5% for detecting prostate cancer, with a false 

negative and a false positive percentage of 24.4% and 37.3% respectively. The sensitivity of VE 

for detecting cancer with a Gleason score of 7 and above was 85%. A region based analysis was also 

performed. Some anterior lying tumors were detected in elastography. 

This study showed that the use of additional information from VE has the potential of 

improving the detection of prostate cancer. This alternative imaging method could aid prostate 
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biopsy by highlighting areas suspicious for cancer, reducing the need for repeated biopsy procedures. 

It could also potentially be used as augmented reality during robotic-assisted prostatectomy. An 

abstract featuring these results will be presented at the 67th Annual Meeting of the Canadian Urology 

Association in Banff, Alberta, Canada (June 24th, 2012).  

 A machine learning framework for cancer detection from image data: During the course of this 

award, the PI worked on a classification framework, based on support vector machine classification, 

to calculate cancer probability maps from image data. The details are reported in Appendix I on 

multiparametric MRI data. The use of the same approach for US data is the topic of a manuscript 

currently in preparation.  

 

Task 4: Developing automatic segmentation methods for delineating VE images of prostate for real 

time gland visualization during prostatectomy. 

 

Progress toward Task 4:  

Prostate segmentation in B-mode images is a challenging task even when done manually by 

experts. We proposed a 3D automatic prostate segmentation algorithm which made use of 

information from both ultrasound B-mode and vibroelastography data. We exploited the high 

contrast to noise ratio of vibroelastography images of the prostate, in addition to the commonly 

used B-mode images, to implement a 2D Active Shape Model (ASM)-based segmentation algorithm 

on the midgland image. The prostate model was deformed by a combination of two measures, the 

gray level similarity and the continuity of the prostate edge on both image types. The 

automatically obtained midgland contour was then used to initialize a 3D segmentation algorithm 

which models the prostate as a tapered and warped ellipsoid. Vibroelastography images were 

used in addition to ultrasound images to improve boundary detection.  

We reported a Dice similarity coefficient of 0.85±0.10 and 0.84±0.09 comparing the 2D 

automatic contours with manual contours of two observers on 61 images. For 11 cases, a whole 

gland volume error of 10.2±2.2% and 13.5±4.1% and whole gland volume difference of -7.2±9.1% 

and -13.3±12.6% between 3D automatic and manual surfaces of two observers was obtained. This 

was the first validated work showing the fusion of B-mode and vibroelastography data for 

automatic 3D segmentation of the prostate. Sample results are illustrated in Figure 1. The 

complete description of the methodology is currently under review in the IEEE Transactions on 
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Medical Imaging [1]. We have argued, in [1], that adding of vibroelastography images to the 

conventional B-mode, for improving prostate segmentation is very helpful and important.  

 

Task 5: To investigate the sources of tissue typing information in RF time series. 

Our clinical in vivo study showed that our RF time series analysis as reported in [2] and [3] on ex-

vivo tissue, needs major modifications to be adopted for in-vivo work. This is due to the fact that 

the methods put forth in [2,3] rely on the assumption that continuously received samples of RF 

time series originate from the same physical location in the tissue. In the in-vivo case, breathing 

and patient motion violated this assumption. Therefore, we need to design motion compensation 

techniques to overcome this limitation. Since those methods are outstanding, we have sought 

funding from other sources to work on them. Since the goals of this award were clinical, our 

research group decided to separate Task 5 from the PI’s responsibilities. Nevertheless, the study of 

the sources of tissue typing information in RF time series in ex-vivo studies were accomplished in 

our research group by studying the thermal effects of ultrasound. This is now published in [4].  

 

Task 6: Training 

The training goal of this award was to prepare the PI to assume the role of an independent 

researcher. We list the training activities of the PI here. It is worth mentioning that the PI has 

received a preliminary offer to start working as a grant-tenure track assistant professor in a joint 

position between the Electrical Engineering and Urological Sciences  Department of the University 

of British Columbia.  

As suggested in the statement of work, the PI attended regular research meetings with 

Professor Tim Salcudean (weekly), and contributed to the Medical Imaging course (ECE433) 

offered by Dr Robert Rohling in UBC’s Department of Electrical and Computer Engineering in Fall 

term of 2010 and 2012. The PI also had a research visit to the Brigham and Women’s Hospital in 

Boston where he started a collaboration with Professor Clare Tempany from Harvard Medical 

School on multimodality prostate imaging. This resulted in two conference abstracts that are 

listed in this report as Appendix VI and XI.  
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Figure 1 - 2D segmentation results shown on corresponding B-mode (left) and vibroelastography 

(right) mid-gland images. The initial contour is shown in dashed yellow and the final contour in 

solid red. The final 3D segmented surface (triangulated blue) is also compared to the manually 

created surface (red) in the lower image. 

 

PI’s conference presentations during the course of the award: 

1) Poster Presentation: Towards joint MRI-US based tissue typing and guidance for prostate 

interventions in AMIGO, 4th NCIGT and NIH Image Guided Therapy Workshop, Washington 

DC, October 2011. 

2) Workshop style presentation: Deformable prostate registration, 3D ultrasound to MRI, 

2012 Winter Project Week of the National Alliance for Medical Image Computing, January 

2012, Salt Lake City, Utah.  

3) Poster Presentation: Towards intra-operative prostate brachytherapy dosimetry based on 

partial seed localization in ultrasound and registration to C-arm fluoroscopy, MICCAI 2011, 

Toronto, Canada, 2011. 

4) Poster Presentation: Prostate Cancer Probability Estimation Based on DCE-DTI Features 

and Support Vector Machine Classification, ISMRM, Montreal, Canada, May 2011. 
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5) Poster Presentation: Ultrasound-based techniques for enhancing diagnostic and 

therapeutic prostate interventions, IMPaCT 2011, Orlando, FL, March 2011. [Travel funded 

by this award]. 

6)  Poster Presentation: Brachytherapy strand visibility in reflected power ultrasound images: 

Comparison of EchoStrand vs. Regular Strands Using 3D Visibility Profiles, IEEE Ultrasonics 

Symposium, San Diego, CA, 2010. 

7) Poster Presentation: Under-Determined Non-Cartesian MR Reconstruction with Non-

convex Sparsity Promoting Analysis Prior, MICCAI, Beijing, China, 2010. 

8) Poster Presentation: Automatic Prostate Segmentation Using Fused Ultrasound B-Mode 

and Elastography Images, MICCAI, Beijing, China, September 2010. [Travel partially funded 

by this award].  

9) Podium Presentation: Ultrasound Image Segmentation Based on Statistical Unit-root Test 

of B-Scan Radial Intensity Profiles, The 33rd Conference of the Canadian Medical and 

Biological Engineering Society, Vancouver, Canada, 2010. 

 

Invited Tutorials, talks 

 

1) Invited Research Seminar: “Multiparametric ultrasound for tissue typing, results in 

prostate cancer characterization”, MIT Computer Science and Artificial Intelligence 

Laboratory, January 2012.   

2) Research seminar: “Image based solutions for prostate interventions: from 

multiparametric to multimodality”, Department of Radiology, Brigham and Women’s 

Hospital, Harvard Medical School, October 2011.  

3) Research seminar: “Image-based solutions for prostate interventions”, Vanderbilt 

University, Department of Biomedical Engineering, November 2010.  

4) A three hour tutorial titled: “Imaging in Practice: Comparing the Applications of X-ray CT, 

US, and MRI Modalities”, The 5th Canadian Student Conference on Biomedical Computing 

and Engineering, Waterloo, ON, Canada, May 20, 2010. 
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Key Research Accomplishments 

 

The main accomplishment of this postdoctoral fellowship is the success of the PI who will start an 

independent career as a researcher as of May 1st, 2012. The PI had an excellent opportunity to be 

trained in the general field of image-guided prostate interventions. The list of technical 

contributions can be summarized as follows: 

 

1) We showed that ultrasound vibroelastography is a valuable technology in imaging the 

prostate gland. It improves the visualization of the prostate gland and enhances the 

segmentation.  

2) We combined B-mode and vibroelastography and created a fully automatic method for 

prostate segmentation [1].  

3) We studied ultrasound vibroelastography for cancer detection and showed that VE has a 

high sensitivity in cancer detection. However, the specificity of this imaging technology is 

not sufficient for cancer characterization.  

4) An ultrasound-based methodology for visualization of radioactive brachytherapy seeds in 

prostate and dosimetry was designed and examined on a small clinical dataset [Appendix 

VII]. 

5) We developed a machine learning framework for characterization of prostate tissue using 

features extracted from medical images. We used this methodology as reported in 

[Appendix I] with multiparametric MRI data. The use of this same technology with VE and 

B-mode ultrasound RF data is the subject of a manuscript currently in preparation.  

 

Reportable outcomes 

Journal Publications:  

 

1. M. Moradi, S. E. Salcudean, S. D. Chang, E. C. Jones, Nicholas Buchan, Rowan G. Casey, S. L. 

Goldenberg and P. Kozlowski. Multiparametric MRI Maps for Detection and Grading of 

Dominant Prostate Tumors. Magnetic Resonance Imaging, In Press. DOI: 0.1002/jmri.23540, 

2012. [Appendix I]. 
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2. J. Lobo, M. Moradi, N. Chng, E. Dehghan, W. J. Morris, G. Fichtinger, S. E. Salcudean. Use of 

Needle Track Detection to Quantify the Displacement of Stranded Seeds Following Prostate 

Brachytherapy. IEEE Transactions on Medical Imaging, vol. 31, no. 3, pp. 738-748, 2012. 

[Appendix II].  

3. E. Dehghan, M. Moradi, X. Wen, D. French, J. Lobo, W. J. Morris, S. E. Salcudean, G. 

Fichtinger. Prostate Implant Reconstruction from C-arm Images with Motion-Compensated 

Tomosynthesis. Medical Physics, vol 38, no. 10, pp. 5290-5302, 2011. [Appendix III]. 

4. E. Dehghan, A. K. Jain, M. Moradi, X. Wen, W. J. Morris, S. E. Salcudean, and G. Fichtinger. 

Brachytherapy Seed Reconstruction with Joint-Encoded C-Arm Single-Axis Rotation and 

Motion Compensation. Medical Image Analysis, vol. 15, no. 5, pp. 760–771, 2011. 

[Appendix IV] 

5. S. S. Mahdavi, M. Moradi, X. Wen, W. J. Morris, and S. E. Salcudean. Evaluation of 

Visualization of the Prostate Gland in Vibroelastography Images. Medical Image Analysis, 

vol. 15, no. 4, pp. 589–600, 2011. [Appendix V].  

 

Conference Publications:  

 

6) M. Moradi, A. Fedorov, W. M Wells, K. Tuncali, S. N. Gupta, F. M. Fennessy, and C. M. 

Tempany, “Machine learning for target selection in MR-guided prostate biopsy: A 

preliminary study”, Accepted to appear in the Proceedings of the Annual Meeting of the 

International Society for Magnetic Resonance in Medicine (ISMRM), to appear in May 2012. 

[Appendix VI] 

7) M. Moradi, S. Mahdavi, S. Deshmukh, J Lobo, E. Dehghan, G. Fichtinger, W. J. Morris, S. E. 

Salcudean. Towards intra-operative prostate brachytherapy dosimetry based on partial 

seed localization in ultrasound and registration to C-arm fluoroscopy. In: MICCAI 2011, Part 

I, LNCS 6891, pp. 291–298, 2011. [Appendix VII]. 

8) M. Moradi, S. E. Salcudean, S. D. Chang, E. C. Jones, S. L. Goldenberg, and P. Kozlowski, 

“Prostate Cancer Probability Estimation Based on DCE-DTI Features and Support Vector 

Machine Classification,” Annual Meeting of the International Society for Magnetic 

Resonance in Medicine (ISMRM), pp 2638, 2011. [Appendix VIII]. 
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9) S. S. Mahdavi, M. Moradi, W. J. Morris and S. E. Salcudean. Automatic Prostate 

Segmentation Using Fused Ultrasound B-Mode and Elastography Images. In: MICCAI2010, 

LNCS 6362, pp. 76–83, 2010. [Appendix IX]. 

10)   [Abstract] Mehdi Moradi, et al., “Ultrasound-based techniques for enhancing diagnostic 

and therapeutic prostate interventions”, IMPaCT 2011, Orlando, FL, March 2011. 

[Appendix X]. 

11)   [Abstract] Mehdi Moradi, et al., Towards joint MRI-US based tissue typing and guidance 

for prostate interventions in AMIGO, 4th NCIGT and NIH Image Guided Therapy Workshop, 

Washington DC, October 2011. [Appendix XI]. 

 

 

Conclusions 

 

We have successfully completed four of the five tasks defined in the statement of work. One 

task (the study of the sources of tissue typing information in RF time series) was followed 

within our research group, with limited involvement from the PI due to the technical 

difficulty of acquiring high quality RF time series in vivo. The overall goal of the project 

which was the development of ultrasound-based technologies for image-guided prostate 

interventions was fully achieved. We have developed methodologies for segmentation of 

the gland, cancer visualization, and brachytherapy seed detection during this work. Eleven 

publications have been resulted from this work and two other submissions are currently in 

preparation. The PI has also met the training goals through the mentoring of world class 

scientists and clinicians including Professor Larry Goldenberg, Professor Tim Salcudean, 

and Professor Clare Tempany.  
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Original Research

Multiparametric MRI Maps for Detection and
Grading of Dominant Prostate Tumors

Mehdi Moradi, PhD,1* Septimiu E. Salcudean, PhD,1 Silvia D. Chang, MD,2,5,6

Edward C. Jones, MD,5 Nicholas Buchan, MD,6 Rowan G. Casey, MD,3

S. Larry Goldenberg, MD,3,4 and Piotr Kozlowski, PhD2–4,7

Purpose: To develop an image-based technique capable of
detection and grading of prostate cancer, which combines
features extracted from multiparametric MRI into a single
parameter map of cancer probability.

Materials and Methods: A combination of features
extracted from diffusion tensor MRI and dynamic contrast
enhanced MRI was used to characterize biopsy samples
from 29 patients. Support vector machines were used to
separate the cancerous samples from normal biopsy sam-
ples and to compute a measure of cancer probability, pre-
sented in the form of a cancer colormap. The classification
results were compared with the biopsy results and the
classifier was tuned to provide the largest area under the
receiver operating characteristic (ROC) curve. Based solely
on the tuning of the classifier on the biopsy data, cancer
colormaps were also created for whole-mount histopathol-
ogy slices from four radical prostatectomy patients.

Results: An area under ROC curve of 0.96 was obtained on
the biopsy dataset and was validated by a ‘‘leave-one-patient-
out’’ procedure. The proposed measure of cancer probability
shows a positive correlation with Gleason score. The cancer
colormaps created for the histopathology patients do display
the dominant tumors. The colormap accuracy increases with
measured tumor area and Gleason score.

Conclusion: Dynamic contrast enhanced imaging and dif-

fusion tensor imaging, when used within the framework
of supervised classification, can play a role in characteriz-
ing prostate cancer.

Key Words: Multi-parametric MRI; support vector
machines; prostate cancer; focal therapy
J. Magn. Reson. Imaging 2012;000:000–000.
VC 2012 Wiley Periodicals, Inc.

AS THE SECOND leading cancer-related cause of
death among males (1), prostate cancer is the subject
of research efforts worldwide. The improvements
achieved in the screening techniques for prostate can-
cer have resulted in the diagnosis of a rising number
of cases, among which lies a population with low risk
and/or localized tumors. Nevertheless, radical prosta-
tectomy remains the most common treatment for the
disease. As a result, 30% of cases of radical prostatec-
tomy are performed on patients with pathologically
insignificant cancer (2), making them subject to com-
plications such as sexual, urinary, and bowel morbidity
after the surgery. These complications are associated
with the techniques used during surgery. Even though
these have improved significantly in the past decade
(3,4), further improvements are difficult to envisage
without knowledge of the cancer location, which can
determine the need for and extent of the surgical posi-
tive margins applied. Furthermore, focal treatment of
the disease with associated sparing of sensitive struc-
tures such as the neuro-vascular bundles, are viable
options only if accurate patient-specific maps of cancer
grade and stage can be provided preoperatively. In other
words, the success of focal therapy relies on proper
patient selection and adequate characterization of the
tumor’s location, extent and histology. The most com-
monly used method to assess prostate cancer is biopsy
under transrectal ultrasound (TRUS). Because TRUS
cannot accurately image prostate cancer, biopsy proto-
cols suffer from significant sampling errors, resulting in
false negatives or under-sampling of major tumors (5).

Magnetic resonance imaging has a proven ability to
visualize the prostate anatomy (6). However, the con-
ventional T2 weighted MRI has insufficient specificity
and sensitivity for diagnosis, and specially grading, of
prostate cancer even at 3T (7–9). Several MRI-based
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techniques that provide physiological information about
tissue have been studied to improve the grading of can-
cer. Earlier studies focused on Magnetic Resonance
Spectroscopy (MRS), which allows the creation of
metabolite maps in the prostate region (10). However,
the diagnostic improvements due to MRS were limited
and inconclusive (11). A more recent development is the
use of diffusion, both diffusion weighted imaging (DWI)
and diffusion tensor imaging (DTI), which characterize
the de-phasing of the MR signal caused by molecular
diffusion. Prostate cancer causes a pathological change
in the tissue in which the regular pattern of distribution
of prostatic glands is disrupted by masses of malignant
epithelial cells and glands that are irregularly distrib-
uted (12). The increased cellular density can cause a
decrease in apparent diffusion coefficients (ADC) in
DWI, and average diffusivity hDi values in DTI, meas-
ured in prostate tumors. The structural changes are
also likely to alter the molecular level diffusion and to
cause differences in fractional anisotropy (FA) between
regular and normal cells, intensified by the progress of
the disease. Diffusion imaging is fast and convenient
without the need for contrast agents. Radiologists have
reported that ADC can help differentiate central gland
tumors from stromal and glandular hyperplasia (13).
Studies in case of DTI, however, are also inconclusive
and report increased, decreased, or even unchanged
values of FA (14–16). Dynamic Contrast Enhanced MRI
(DCE MRI) has also been studied for grading of prostate
cancer. When combined with a pharmacokinetic model,
DCE characterizes the changes in tissue microvascula-
ture which are linked to cancer growth (17). However,
DCE prostate studies report moderate to weak correla-
tions between cancer grade and Gleason score with
individual DCE parameters (18,19). A review of the role
of MRI in detection and staging of prostate cancer is
recently published (20).

The inconclusive correlation of MRI-based physiologic
parameters with the progression of the disease is partly
due to the heterogeneous and complex nature of both
the biological tissue and the physiologic process of can-
cer progression. It is difficult, if not impossible, to
extract specific ranges for the values of the individual
parameters matched to the cancer stage. In the absence
of such statistics, the solution appears to be supervised
classification of the multi-parametric MRI data to sepa-
rate normal and cancer tissue (21–23). Therefore, in
this work a machine learning approach based on sup-
port vector machine classification (SVM) is used.

The purpose of this work is to use machine learning
to develop an image based technique capable of detec-
tion and grading of prostate cancer by combining fea-
tures extracted from multiparametric MRI into a sin-
gle parameter map of cancer probability. We also
study the validity of this method by comparison of the
probability maps with whole-mount pathology.

MATERIALS AND METHODS

Data Collection Protocols

The data used in this work were obtained in two stud-
ies, both reviewed and approved by the Clinical

Research Ethics Board of our institution. The data
from a biopsy study were used for training the
machine learning algorithm and leave-one-patient-out
evaluation. A second dataset from patients scheduled
for radical prostatectomy, with available whole-mount
histopathology analysis after surgery, was used for
further validation of the trained classifier.

Biopsy Data

These data were used to train classifiers and quanti-
tatively assess the performance of the DTI-DCE
parameters for cancer detection. During 2009, 29
patients with a high clinical suspicion for prostate ad-
enocarcinoma due to an elevated prostate specific
antigen (PSA) and/or palpable prostatic nodule, with
no prior treatment, were consecutively recruited to
this study. Average PSA was 8.5 ng/mL (range: 0.94–
15 ng/mL). Written consent was obtained from each
patient before entering the study. To ensure that the
biopsy process or result did not affect the assessment
of MRI as a diagnosis tool, the MRI scans in the origi-
nal study were completed before biopsy for all
patients; the biopsy was done the same day within a
couple of hours following MRI. We use the same data
here, with the goal of training a classifier to detect
and grade prostate cancer.

The biopsies were performed under local anesthetic
and the number of biopsies obtained from the periph-
eral zone (PZ) was determined by prostate gland size.
In patients with a prostate gland of 30 cc or less, eight
biopsies (base: right and left; midgland: right lateral,
left lateral, right medial, left medial; apex: right and
left) were taken. For prostate glands ranging from 31
to 60 cc, 10 biopsies (base: right lateral, left lateral,
right medial, left medial; midgland; and apex biopsies
as above) were obtained. For prostate glands greater
than 60 cc, 12 biopsies were obtained (apex: right lat-
eral, left lateral, right medial, left medial; base; and
midgland biopsies the same as the 10 biopsy scheme).

The dataset included a total of 240 negative biopsy
cores and 29 positive biopsy cores. The positive cores
were from 10 patients. Detailed information about the
positive cases is provided in Kozlowski et al (23) and
Table 1. In seven cases, the patients went on to radical
prostatectomy as their treatment. In these cases, the
Gleason scores reported from postsurgical analysis were
used as the Gleason score of the tumor. The histology
was interpreted with assignment of the Gleason score
by several different experienced anatomic pathologists
who practice general and subspecialty uropathology.

Prostatectomy Data

In 2010, we started a new study in which patients
scheduled for radical prostatectomy consent to an
MRI imaging session before the surgery. This is a dif-
ferent population than the biopsy cases described
above. The patients recruited for this study have not
received any therapy before radical prostatectomy. At
the time of writing, four datasets were obtained, pro-
viding 40 cross-sections.

To acquire the whole-mount pathology analysis, the
radical prostatectomy specimens were dissected and
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histopathologically examined in a uniform manner.
The external surfaces of the specimens were inked
and the seminal vesicles amputated. The specimens
were dissected following a minimum of 24-h fixation
in 10% buffered formalin. The apical and bladder
neck tissue was removed, using 5-mm-thick layers.
We developed a device (24) to cut the prostate gland
in serial transverse cuts perpendicular to the poste-
rior capsule, at 4-mm intervals, from inferior to supe-
rior. This procedure allowed us to obtain reasonably
good correspondence between the pathology slices
and the MR image slices. The processing and paraffin
embedding were carried out in a routine manner,
except using oversized baskets and blocks to accom-
modate the intact prostate gland. Whole-mount sec-
tions were cut using a Lieka RM2245 whole body
rotary microtome, and were submitted as intact trans-
verse sections mounted on oversize glass slides for
hematoxylin and eosin staining.

MR Imaging Protocol

For both the biopsy and the prostatectomy studies,
the MRI protocol was as follows. All MRI examinations
were performed on a 3 Tesla (T) MRI scanner (Achieva,
Philips Healthcare, Best, The Netherlands). MRI sig-
nals were acquired with a combination of an endorectal
coil (Medrad, Pittsburgh, PA) and a cardiac phased-
array coil (Philips Healthcare, Best, The Netherlands).
Fast spin-echo T2-weighted images (repetition time
[TR] ¼ 1851 ms, effective echo time [TE] ¼ 80 ms, field
of view [FOV] ¼ 14 cm, slice thickness ¼ 4 mm with no
gap, 284 � 225 matrix, 3 averages) were acquired in
the axial and coronal planes to provide anatomical
details of the prostate. From this sequence, 12 axial
slices covering the entire gland were then selected and
used for the DTI and DCE MRI scans. DTI data were
acquired using a diffusion weighted single shot echo
planar imaging (EPI) sequence (TR/TE ¼ 2100/74 ms,
FOV ¼ 24 cm, slice thickness ¼ 4 mm with no gap,
128 � 115 matrix, 6 noncollinear gradient directions,
b-value ¼ 0 and 600 s/mm2, 18 averages, total acqui-
sition time of 8 min; the relatively low b-value of
600 s/mm2 was chosen to ensure sufficient SNR for
quantitative measurements of DTI parameters).

DCE MRI was performed using a three-dimensional
T1-weighted spoiled gradient echo sequence (TR/TE ¼

3.4/1.06 ms, flip angle ¼ 15�, FOV ¼ 24 cm, 256 �
163 matrix, 2 averages). Initially, proton density (PD)
images (TR/TE ¼ 50/0.95 ms, flip angle ¼ 4�) were
acquired to allow calculation of the contrast agent
concentrations in the prostate. Next, a series of
75 T1-weighted dynamics were acquired before
(3 images) and after (72 images) a bolus injection of
Gd-DTPA (Magnevist, Berlex Canada, 0.1 mmol/kg
injected with a motorized power injector within 10 s
at the rate of 2 mL/s, followed by a 20-mL flush of
saline. This resulted in a time resolution of 10.6 s per
12 slices. Currently, our scanner allows higher tempo-
ral resolution; however, we kept the same protocol over
the duration of the study for consistency. T1 values
were calculated based on PD-weighted and T1-weighted
images according to the procedure described in
Parker et al (25).

The total time of the MRI examination was approxi-
mately 45 min. The DTI data were processed off-line
to calculate FA and average diffusivity (hDi) values.
Diffusion weighted images were registered to the
nonweighted b ¼ 0 image with a mutual information
algorithm before calculating the eigenvalues of the dif-
fusion tensor and generating maps of the average dif-
fusivity hDi (i.e., trace of the diffusion tensor) and
fractional anisotropy (FA) with the proprietary DTI
processing toolbox PRIDE (Philips Healthcare, Best,
The Netherlands).

DCE MRI data were processed off-line with software
procedures developed in house using Matlab (Math-
works, Natick, MA) and Igor Pro (WaveMetrics, Port-
land, OR). Arterial Input Functions (AIFs) were
extracted from voxels in the external iliac or femoral
arteries in the central slice for each patient (26). Phar-
macokinetic parameters: volume transfer constant,
Ktrans, fractional volume of the extra-vascular extra-
cellular space, ve, and fractional plasma volume, vp,
were calculated by fitting the contrast agent concen-
tration versus time curves to the extended Kety
model. Fitting was carried out in every pixel of every
slice within a region of interest (ROI) encompassing
the prostate gland to generate maps of the pharmaco-
kinetic parameter as described by Tofts et al (27).

T2-weighted images were used to identify the pros-
tate gland, the peripheral zone, and other anatomical
details that helped with matching MRI with histology.
DCE MRI and DTI images were acquired with the slice

Table 1

Clinical Data for 10 Patients With Biopsy Confirmed Cancer

Patient

Age

[years]

PSA

[ng/mL]

No. of positive

biopsies (size in mm)

Biopsy Gleason

score

Prostatectomy

Gleason score

Clinical

stage

P003 62 5.3 5 (8, 6, 2, 2, 1) 3þ4 4þ3 cT2a

P004 67 7.1 4 (7, 5, 1, 1) 3þ4 3þ4 cT2b

P005 60 5.4 2 (1.5, 1) 3þ3 n/a n/a

P007 58 7.1 5 (2, 3, 1, 2, 2) 4þ5 3þ4 cT1c

P010 55 7.09 2 (0.5, 4) 3þ3 n/a cT1c

P015 72 12 3 (10, 1.5, <1) 4þ4, 4þ5 4þ5 cT1c

P016 65 5.43 2 (<1, <1) 4þ3, 3þ3 3þ4 cT1c

P020 64 6.8 2 (1, 7) 3þ4 3þ4 cT2a

P024 60 5.4 1 (3) 4þ4 4þ3 cT1c

P026 62 6.4 1 (not recorded) 3þ3 n/a cT2a
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thickness of 4 mm, location, and the same resolution;
no interpolation was required. The vast majority of
the glands were smaller than 48 mm and typically 8 –
10 slices were enough to cover the entire gland. We
did not have any cases where the tumor was missed
because of the insufficient MRI coverage.

Matching ROIs from MRI to Biopsy Cores

In the biopsy data, one ROI represented by one set of
DCE and DTI parameters was defined for each biopsy
core. To relate the DTI and DCE MRI parameters
with biopsy results, we used the consensus in the lit-
erature on the values of hDi and Ktrans in prostate
tumors. It is widely reported that hDi is lower and
Ktrans is higher in the tumor than in normal PZ
(19,28).

The following correspondences between MRI slice
locations and gland anatomy was assumed: slices 5–8
corresponded to midgland area, slices 1–4 (2 or 3–4
for smaller glands) corresponded to the apex, and sli-
ces 9–12 (9–10 or 11 for smaller glands) corresponded
to the base. The tumor identification in the MRI data
was based on a threshold value determined separately
for the DTI and DCE MRI data. To determine the
threshold, first the areas with low intensity on the hDi
maps were manually segmented, based on visual
inspection, in the areas corresponding to the positive
biopsy locations. For example, left lateral midgland
positive biopsy corresponded to any low hDi value
areas, not smaller than 3 � 3 contiguous pixels
(approximately 3 mm � 3 mm), in the left lateral
peripheral zone within slices 5–8. The intensity
threshold for the DTI data was defined as the average
of all ROIs corresponding to positive biopsies plus one
standard deviation. The addition of one standard devi-
ation was applied to minimize the bias caused by
manual segmentation. Similarly the intensity thresh-
old for the DCE MRI data was determined as the aver-
age of the all high intensity areas on the Ktrans maps
corresponding to the positive biopsies, minus one
standard deviation. Once the threshold values for the
DTI and DCE MRI data were established across the
dataset, the MRI data were analyzed again, and all
the areas below the intensity threshold on the hDi
maps and above the intensity threshold on the Ktrans

maps, corresponding to biopsy locations, were con-
sidered cancer. In the areas where no low hDi or high
Ktrans values were present, and also for negative
cores, the average parameter values from the entire
area corresponding to the biopsy location (e.g., aver-
age of the left lateral PZ in slices 5–8 corresponded to
the left lateral midgland biopsy location) were calcu-
lated and used as the feature vector representing the
biopsy core.

It should be noted that the ROIs from DCE and DTI
were selected separately. This was to ensure that the
selection criteria from one modality did not affect the
selection in the other modality. Furthermore, the two
datasets were not geometrically registered. Therefore,
matching was neither possible nor helpful. Because
we classify an area generally corresponding to a

biopsy, perfect geometric matching of the two image
types is unnecessary.

Reference Standard in the Prostatectomy Data

The histology slides were examined and the regions of
the prostatic carcinoma were outlined with assign-
ment of the Gleason score by an anatomic pathologist
with over 20 years of experience who practices general
and subspecialty uropathology. The cancer probability
maps acquired using the SVM-based measure of can-
cer probability (see the next section) were validated
based on these histopathology results. Our cutting
method and device ensured the matching of two-
dimensional MRI slices with pathology slides. How-
ever, the MRI slices and pathology slides were not
deformed to be registered to each other.

Classification

The MRI data processing resulted in three DCE
parameter maps (Ktrans, ve, and vp) and two DTI
parameter maps (hDi and FA) per imaging plane. Each
parameter map was of size 256 � 256 covering the
field of view. In the biopsy data, each ROI constructed
based on a biopsy core was represented by the five-
dimensional feature vector x ¼ [Ktrans, ve, vp, hDi, FA]
consisting of values of the DCE and DTI parameters
averaged over the ROI. To generate the colormaps, ev-
ery pixel of the DTI-DCE image was represented and
classified as a feature vector.

Support Vector Machines

In its most common form, the SVM classification
approach depends on using a kernel function to map
the input data to a higher dimension space where a
hyperplane can be used to separate the data into dif-
ferent classes. The process of training an SVM classi-
fier is equivalent to finding the optimal hyperplane
that minimizes a classification error measure on the
training dataset and maximizes the perpendicular dis-
tance between the decision boundary and the closest
data points in the classes, a quality that makes SVM
a maximum margin classifier. These closest data
points that define the decision boundary are called
‘‘support vectors’’. In a two-class case, if the training
dataset consists of N feature vectors {x1, . . ., xN} with
class labels yi [ {1,�1}, then the SVM training problem
is equivalent to finding w and b such that:

1

2
wTw þ c

Xi¼N

i¼1
ei ½1�

is minimized subject to

yiðwTuðxiÞ þ bÞ � 1� ei ½2�

where b and w (the normal vector) define the hyper-
plane, ei � 0 are the so-called slack variables that
allow for misclassification of noisy and difficult data
points, and c > 0 controls the trade-off between the
slack variable penalty and the error margin, and f(.)
is the mapping function to a higher dimension. As
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shown in Cortes and Vapnik (29), w can be written as
a linear combination of the transformed support vec-
tors. In other words, w ¼ P

aj f(xj), where xj’s are the
support vectors. This observation means that the de-
cision hyperplane and the optimization Eq. [2] only
contain the mapping function in its dot product for-
mat. Therefore, one does not need an explicit expres-
sion for f(.) and the SVM optimization and decision
hyperplane are defined fully given the kernel function
of form K(xi, xj) ¼ f(xi)

T. f(xj) The most common choice
for the kernel function, also used in our work, is a
Radial Basis Function (RBF) kernel defined as:

Kðxi ; xjÞ ¼ e�gj xi�xjj jj2 ½3�

The use of this kernel is equivalent to mapping the
data into an infinite dimensional Hilbert space (29).
The RBF kernel has only one parameter (g > 0) that
can be adjusted. This means that the process of tun-
ing the SVM classifier to a specific problem is limited
to finding the appropriate values for just two parame-
ters: c and g. Once ei � 0 are given, for a given choice
of c and g, w, and b that solve Eqs. [1] and [2] are
obtained by solving a quadratic program (QP). The
details of the solution can be found in Fan et al (30)
and in the publicly available Cþþ implementation of
the SVM algorithms known as LIBSVM (http://www.
csie.ntu.edu.tw/�cjlin/libsvm), which is the library
that we have used.

SVM-based A Posteriori Class Probabilities

SVM is merely a decision machine:
If f(xn) ¼ wTf(xn) þ b > 0, then the class label for xn is
yn ¼ 1. In other words, SVM does not provide a poste-
riori class probability. To generate the cancer distri-
bution probability maps and also the receiver operat-
ing characteristic (ROC) curves, one needs a posteriori
probability of cancer of the form:

PcðxnÞ ¼ pðyn ¼ 1jf ðxnÞ ¼ wTuðxnÞ þ bÞ ½4�

where Pc(xn) stands for probability of xn being cancer-
ous. To extend SVM for probability estimates, after
the training step, we train the parameters of an addi-
tional sigmoid function of the form:

PcðxnÞ ¼ pðyn ¼ 1jf ðxnÞÞ ¼ 1

1þ expðAf ðxnÞ þ BÞ ½5�

to map the values of f(xn) to a posteriori probabilities.
The values of parameters A and B are fitted using
maximum likelihood estimation from the training set
for which the actual labels are known (31,32). We
used class probabilities generated with this method
for creating the probabilistic cancer maps.

Cross Validation and Tuning the Classifier

To tune the classifier, with appropriate values of c
and g, we exhaustively searched the parameter space
1 � c � 100, 1 � g � 100 with steps of 0.1. For each
set of parameters, we trained the SVM using data
from 28 biopsy patients and tested it on the data from

the 29th patient, and repeated the process for all 29
datasets. This exhaustive search could be completed
in less than 10 min on a typical personal computer.
Note that this process was only completed once to set
the parameters of the classifier. The classifier parame-
ter set resulting in the best classification perform-
ance, as measured by the average area under the
ROC curve for the 29 tests, was chosen.

The biopsy dataset was unbalanced, with more nor-
mal biopsy cores than cancerous cores (240 versus
29). This could cause a bias toward the normal class
during the optimization step of the SVM. To reduce
the bias, we repeated the entire leave-one-patient-out
training-testing cross validation 100 times, each time
with a random subset consisting of half of the normal
biopsies, and averaged the results to report the ROC
curve. One-way analysis of variance (ANOVA) was
used with the outcome of the 100 trials to compare
the performance of DCE features alone, DTI features
alone, and DCE-DTI combined.

ROCs and Colormaps

To generate the ROC curves, a posteriori cancer prob-
ability (Pc) was used to determine a decision boundary
which we call t. A biopsy core was classified as can-
cerous if Pc > t. The value of t was incrementally
increased from 0 to 1, with each t value yielding one
point on the ROC curve (sensitivity versus 1-specific-
ity). To create the colormaps used to validate the
methods by comparison with the histopathologic anal-
ysis of whole-mount slides from prostatectomy cases,
each pixel in the entire surface of the prostate gland
in DCE-DTI images was classified using the SVM
tuned and trained on the biopsy data. The Pc values
were plotted in standard Jet colormap, with hot colors
representing high cancer probabilities.

RESULTS

The results reported here are acquired using the SVM
classifier with parameter values set at c ¼ 0.6 and g ¼
4, determined by the exhaustive search to improve
the area under the ROC curve.

ROC Curves and Correlation With Gleason
Score on Biopsy Data

To study the role of DCE and DTI separately, we
report three sets of ROC curves acquired using only
the DCE features, [Ktrans, ve, vp], only the DTI features
[hDi, FA], and the combined feature vector, [Ktrans, ve,
vp,hDi, FA]. The summary statistics for the five parame-
ters in the biopsy dataset is presented in Table 2, sepa-
rately for biopsy normal and cancerous regions of
interest.

The area under ROC curve (AUC) was 0.867, 0.919,
and 0.956 for DCE, DTI, and the combined DCE-DTI
features (Fig. 1). The combined feature vector resulted
in higher AUC than DCE (P ¼ 0.002) and DTI (P ¼
0.01). With the combined feature vector, at the deci-
sion threshold of Pc ¼ 0.5, three of the 29 tumors were
misclassified while a specificity of 91% was obtained
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(221 of 243 normal biopsy samples were correctly clas-
sified). When Pc ¼ 0.3 was set as the threshold for cancer
detection, only one tumor was misclassified, while the
specificity of 87% was maintained (211 of 243 normal
biopsy samples were correctly classified).

We also noted a positive correlation between the Pc

value and the Gleason score of the tumors. The aver-
age Pc value was 0.555 for tumors of grade 3 þ 3
(number of tumors¼7), 0.778 for tumors of grade 3 þ
4 and 4 þ 3 (n ¼ 19), and 0.963 for grade 4 þ 5 (n ¼
3). The increase in Pc values was significant from
Grade 6 to 7 (P ¼ 0.01). The small number of tumors
in grade 4 þ 5 did not warrant an analysis of statisti-
cal significance. None of the 4 þ 5 tumors were mis-
classified in any of the experiments.

The T2-weighted image and the cancer probability
map obtained for the mid slice MRI data of a patient
with positive biopsy cores in the mid-left-lateral and
mid-left-medial regions of the prostate are illustrated
in Figure 2. This was acquired by treating every pixel
of the DCE-DTI image as a feature vector and comput-
ing Pc. The tumor was of grade 4 þ 5. For this case,
the hDi and Ktrans maps are also strong indicators of
the existence of cancer. These maps are presented in
Figure 3.

Cancer Colormaps Revealing Significant
Pathologic Conditions

The trained classifier was used on the second data set
from patients who underwent radical prostatectomy
followed by whole-mount pathology analysis. In three
of these four patients we found a ‘‘dominant tumor.’’
This is in agreement with previous studies that point
out the existence of a single dominant tumor with sev-
eral much smaller foci also present in many prosta-
tectomy specimens (33). In a study involving 100
prostatectomy patients, it was shown that the Gleason

score of the dominant tumor was identical to the pri-
mary Gleason score of the prostatectomy specimens
in 97% of patients (34). Therefore, we believe a system
designed to efficiently screen patients for possible
focal therapy, can be assessed based on its ability to
demonstrate the dominant tumor. Figure 4 shows the
outcomes for case 1. For one of the prostate sections
in this case, the parametric maps (Ktrans and hDi) are
presented in Figure 5. For case 2 and 3, samples of
the probabilistic maps, along with pathology finding
and T2-weighted image are presented in Figures 6
and 7. As these Figures illustrate, in the cases with
dominant tumors, the cancer colormaps created by
pixel-wise computation of the Pc values demonstrate a
visible tumor in the area validated by the histopatho-
logic analysis. Note that the DTI and DCE data from
these patients were not used in training the SVM
classifier.

Table 3 reports the surface area and the Gleason
score of the tumors determined by the pathologist and
compares them with the surface area of the tumor
and Pc determined from the colormaps. To calculate
the surface area, pixels with Pc > 0.5 were considered
part of the tumor. For each case, the data are pre-
sented for two consecutive cross-sections (pathology
levels) that best depict the dominant tumor. In cases
with Gleason score > 3 þ 3, the area of the tumor is
very close in the pathology slide to the area depicted
by the SVM-based cancer colormap resulting in an av-
erage difference of 2.8%. In case of the 3 þ 3 tumor,
level 4 in case 2, the area of the tumor as depicted in
the probability map is 40% smaller than the pathology
finding. As expected, the colormaps more accurately
depict the tumor in the cases of tumor grades 3 þ 4
and 4 þ 5 than in tumor grade 3 þ 3. In one case
(level 10, case 3), a 4 þ 5 tumor was identified. The
average Pc in this case was 0.86, providing a distinct
appearance to the tumor. Note that if one considers
the effect of shrinking due to specimen fixation, the
depicted tumor area in the colormaps is smaller than
the expected size of the tumor even in case of 3 þ 4
and 4 þ 5 tumors.

In one case, case 4, no dominant tumor could be
identified. Cancer was bilateral involving all areas of
the gland, occupying 25% of the overall volume of the
prostate and up to 60% of the surface of certain
cross-sections. The highest grade reported by the pa-
thologist was 3 þ 3. The colormap showed many hot
spots. However, no dominant tumor was identified. In
the middle plane of this 3 þ 3 case, the cancer area
depicted on the probability map, with threshold of
Pc > 0.5, was 36% smaller than the area depicted by
the pathologist.

DCE imaging is not always possible because con-
trast agents are contra-indicated in some cases. It

Table 2

Summary Statistics in Format of Mean (Standard Deviation) for the Five Parameters Used in the Analysis*

hDi (1000�3mm2/s) FA Ktrans (min�1) ve vp

Normal 1.662 (0.317) 0.207 (0.067) 0.070 (0.047) 0.227 (0.115) 0.017 (0.011)

Cancer 1.120 (0.174) 0.198 (0.051) 0.148 (0.071) 0.202 (0.049) 0.007 (0.007)

*Values are reported for the normal and cancer biopsies.

Figure 1. ROC curves for the biopsy data, for different
groups of features acquired by changing the decision thresh-
old, Pc, from 0 to 1. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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was noted that DTI alone can also provide an efficient
modality within our framework: for the three cases
with a dominant tumor, using only DTI features we
acquired maps showing an area difference with the
combined DTI-DCE of approximately 6.1% in the
dominant tumor.

DISCUSSION

We found that the combination of DTI and DCE pro-
vides an area under ROC curve of 0.96 and is more
efficient in cancer detection than each method indi-
vidually. DTI alone provides an area under ROC curve
of 0.92 in the biopsy data. Using an extension of the
standard SVM classification approach, we were able
to compute a posteriori class probabilities that quan-
tify the probability of cancer for each set of DCE-DTI
parameters, based on the available training data. The
average Pc value was 0.555 for tumors of grade 3 þ 3,
0.778 for tumors of grade 3 þ 4 and 4 þ 3, and 0.963
for grade 4 þ 5.

One distinction of our work compared with the pre-
viously published (21,23) work on multiparametric

MRI for cancer detection is our ability to combine DTI
and DCE features and provide one reliable measure of
cancer probability (Pc) that can be used for ROC
curves and cancer probability maps. We also validate
our cancer probability measure based on the refer-
ence standard of whole-mount pathology on a second
group of patients.

In the past, we have reported the performance of
the five parameters in detection of prostate cancer
individually, and the use of a statistical approach,
namely logistic regression, for combining the DTI and
DCE parameters for cancer detection (23). The use of
SVM in the current work provides two main advan-
tages. The first one is the fact that SVM is a maximum
margin classifier and provides the ability to generalize
the trained classifier. The second one is the ability of
the proposed framework to provide a value for the
probability of cancer.

In analyzing the presented colormaps, one should
note that the training of the SVMs used to compute
these probability values was entirely based on the
data from our biopsy datasets. This means that
the outcomes are most reliable on the peripheral
zone of the gland, which is usually the target of the

Figure 2. Left: T2-weighted MRI of the mid-gland of a patient with biopsy confirmed cancer in mid-left region. Right: The
SVM-based cancer probability map, with hot colors showing higher Pc. The Gleason score: 4 þ 5, the average Pc in the tumor
area: 0.9. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. The hDi and Ktrans maps for the patient presented in Figure 2.
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biopsy studies. Nevertheless, as visible in Figure 4,
we have also been successful in detection of the
dominant tumor in the transition zone. Additional
data from the transition zone are required as we have
also encountered false positive findings in this zone
(Fig. 6).

At this stage of our work, we decided not to use the
data from prostatectomy patients for the training step
of the SVM classification. This was due to several rea-
sons, including the currently limited number of
patients enrolled in the prostatectomy study, and the
difficulty of accurately registering the pathology slides
to MRI images to establish the reference standard for
training. Also, our analysis does not target accurate

delineation of the individual tumor contours at this
stage. This is partly due to the fact that specimen
deformation during fixation limits our ability for
establishing a reference standard for the exact geome-
try of the tumor.

As described earlier, we used a special cutting
device that allowed us to slice the prostate in corre-
spondence with the position of the MRI slices. Fur-
thermore, we ensured the matching of the slices, visu-
ally, based on the anatomical details clearly visible in
T2-weighted images and histology sections. We
acknowledge that deformations caused by the fixation
process and the potential slight shift of the slices in
the axial direction exist and result in errors in the

Figure 4. Cancer colormaps and MRI images with corresponding histopathology slide for case 1. The main pathologic finding
is a 3þ4 tumor in the transition zone, visible in two consecutive cross-sections. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 5. The hDi and Ktrans

maps corresponding to the
case presented in Figure 4,
row 1.
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process of matching the MRI and histology reference.
Investigators have reported attempts directed toward
developing deformable registration of the histology
and MRI images (35–38). However, the validation of
the registration process requires maintaining visible
markers throughout the imaging, surgery and labora-
tory work. This has led to the lack of a clinically viable
method for quantitative registration of MR slices with
histology. Due to this limitation, we have not used the
data from prostatectomy patients in the training
stage. Instead, we used these data as a second valida-
tion dataset. We looked for the existence of dominant
tumors in the areas of the slides corresponding to
areas of the cancer maps with high probability of can-
cer. We report the surface area and the average proba-
bility of cancer from the maps and study their correla-
tion with the surface area and Gleason score of the
tumor determined by the pathologist. In the absence
of a method for quantitatively validated deformable
registration of slices from MRI and histopathology, we
have used these measures for qualitative validation.
In our current setup, when most areas of the gland
are invaded by carcinoma (such as case 4 in our pros-
tatectomy study), the interpretation and validation of
the colormaps is difficult due to the lack of quantita-
tive registration. These cases, however, are unlikely to
be missed during conventional biopsy. Furthermore,
they are not candidates for focal therapy.

Similar to any other machine learning method, our
algorithm can be improved by presenting more data in
the training stage. We require more data to represent all
levels of cancer progression, including very high grade
and very low grade cases, and also all areas of the
gland including the central zone. As we continue our
study, such data will be incorporated into the system.
We will also consider the detection of benign pathologies
such as benign prostatic hyperplasia when such cases
are represented in our data for training purposes.

We found that tumor classification is increasingly
more accurate for higher Gleason scores (with 2–3%
area difference in 3 þ 4 and 4 þ 5 tumors versus 30–
40% difference in 3 þ 3 tumors). The sensitivity of our
approach to the pathologically significant cases, accu-
racy in determining the dominant tumors with high
Gleason score, and the correlation of the computed
cancer probabilities with the Gleason score, are help-
ful features for treatment planning. This provides
additional value to the routine radiological analysis of
the images, even in cases where the tumor is visible
on the T2-weighted image.

As it is evident from Figures 3 and 5, hDi and Ktrans

provide tumor contrast in many cases. Nevertheless,
clinical challenges remain in dealing with false posi-
tive detections, and more importantly, separating in-
dolent from aggressive tumors. This type of prognos-
tic information is currently available only through

Figure 6. Cancer colormaps and MRI images with corresponding histopathology slide for case 2. The main pathologic finding
is a tumor that is of Gleason score 3 þ 4 in one cross-section and 3 þ 3 in the neighbor cross-section. The hot-spot in the
transition zone of the prostate is a false positive detection. This is most likely due to the fact that our SVM is trained only on
data from peripheral zone. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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pathology, which can be misleading due to under-
sampling of the clinically significant diseased areas
during biopsy. Our computational framework is a
step toward developing the ability to quantitatively
characterize prostate tumors noninvasively. The clin-
ical impact of such system, if achieved, will be signif-
icant. We propose an objective, quantitative method
to radiologically characterize prostate cancer and
replace the standard practice of visual evaluation by
a radiologist.

We recognize several limitations in the current stage
of the study. One limitation is the current lack of a

quantitative registration mechanism between MRI and
pathology. This has limited our quantitative analysis
on the whole-mount data to cases with a dominant
tumor. As described earlier, tackling this issue is
among our immediate research goals. The potential
geometric distortion of diffusion images is another
shortcoming. This limits our ability to pinpoint the
exact location of a tumor. At the current stage, we
have not detected significant distortion away from the
rectum in the DTI images from the prostatectomy
cases for which we have whole-mount pathology. We
will work toward a reliable technique to register DTI
data to other MRI images as we progress. Finally, our
current validation with whole-mount pathology is lim-
ited to a small dataset and we need to expand this
study to a sufficiently large group of patients who rep-
resent different stages of the disease.

In conclusion, a combination of DCE and DTI MRI
features, when used along with a SVM-based machine
learning approach, can provide helpful cancer proba-
bility maps for detection and grading of prostate can-
cer. The performance of the method is reported on a
biopsy dataset of 29 patients, and validated for three
additional cases by comparison of the generated prob-
ability maps with whole-mount pathology in terms of
the accuracy in depiction of the dominant prostate
tumors.

Figure 7. Cancer colormaps and MRI images with corresponding histopathology slide for case 3. The main pathologic finding
is a tumor that is of Gleason score 4 þ 3 (with considerable tertiary Gleason score of 5) in one cross-section and 4 þ 5 in the
neighboring cross-section.

Table 3

Area and Gleason Score of the Tumors in Six Cross-Sections

From the Prostatectomy Cases Where a Dominant Tumor Was

Present*

Patient

Tumor area

(pathology)

Gleason

Score

Tumor

area (map) Pc

Case 1, level 4 108 mm2 3þ4 106 mm2 0.72

Case 1, level 3 94 mm2 3þ4 92 mm2 0.70

Case 2, level 4 120 mm2 3þ3 70 mm2 0.68

Case 2, level 3 93 mm2 3þ4 88 mm2 0.75

Case 3, level 9 86 mm2 4þ3 83 mm2 0.82

Case 3, level 10 72 mm2 4þ5 71 mm2 0.86

*For each tumor, the area of tumor in the colormaps and also the

average Pc are given.
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Use of Needle Track Detection to Quantify
the Displacement of Stranded Seeds
Following Prostate Brachytherapy

Julio R. Lobo, Mehdi Moradi, Nick Chng, Ehsan Dehghan, William J. Morris, Gabor Fichtinger, and
Septimiu E. Salcudean*

Abstract—We aim to compute the movement of permanent
stranded implant brachytherapy radioactive sources (seeds) in the
prostate from the planned seed distribution to the intraoperative
fluoroscopic distribution, and then to the postimplant computed
tomography (CT) distribution. We present a novel approach to
matching the seeds in these distributions to the plan by grouping
the seeds into needle tracks. First, we identify the implantation
axis using a sample consensus algorithm. Then, we use a network
flow algorithm to group seeds into their needle tracks. Finally,
we match the needles from the three stages using both their
transverse plane location and the number of seeds per needle. We
validated our approach on eight clinical prostate brachytherapy
cases, having a total of 871 brachytherapy seeds distributed in 193
needles. For the intraoperative and postimplant data, 99.31% and
99.41% of the seeds were correctly assigned, respectively. For both
the preplan to fluoroscopic and fluoroscopic to CT registrations,
100% of the needles were correctly matched. We show that there is
an average intraoperative seed displacement of mm
and a further mm of postimplant movement. This
information reveals several directional trends and can be used for
quality control, treatment planning, and intraoperative dosimetry
that fuses ultrasound and fluoroscopy.

Index Terms—Computed-tomography (CT), minimum cost net-
work flow, prostate brachytherapy, X-ray fluoroscopy.

I. INTRODUCTION

P ROSTATE brachytherapy is an effective, minimally in-
vasive treatment technique for men with prostate cancer

[1]. It involves transperineal insertion of permanent radioactive
sources, or seeds, into the prostate using needles. A satisfactory
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implant quality requires the target volume to be sufficiently irra-
diated while sparing noncancerous tissue. Poor implant quality
can arise due to errors in the seed positions caused by needle de-
flection and prostate movement during insertion, as well as sub-
sequent seed displacement due to inflammation of the prostate
after operation. The American Brachytherapy Society identifies
the need to assess the impact that seed displacement has on the
effectiveness of the implant and recommends routine postim-
plant dosimetric analysis for all patients [2].
Measurement of the displacement of seeds after implantation

has been performed by several research groups. Many of the
published papers on measuring seed displacements and move-
ment use manual seed detection [3]–[7]. The introduction of au-
tomatic methods for plan reconstruction [8], [9] is likely to fa-
cilitate postimplant dosimetry.
Pinkawa et al. investigated postimplant seed migration by

looking at the dose levels over a 30 day period [10], [11].
Manual localization and contouring, without specific seed
identification between datasets, was required in this study. The
individual seed displacements, rather than the overall dose
change, was quantified in Usmani et al., in which the seed po-
sitions relative to fiducial markers were compared in repeated
postimplant computed-tomography (CT) images [12]. In Chng
et al., seeds segmented from CT data were automatically
grouped into their respective needles using a minimum cost
network flow algorithm [13] following a coarse registration
performed by iterating through all trajectory angles of every
seed. The cost function consisted of complex correspondence
functions used to compute the positional error, trajectory angle
error, and the strand spacing error. Once the needle tracks were
detected, a nonlinear optimization algorithm called Graduated
Assignment was then used to match the entire “graphs” created
by the needle track networks [9]. Accurate dose changes could
be computed based on the seed positions.
The above investigations made use of postoperative data, and

could only find the seed migration due to the combined effect of
1) seed misplacement at the time of the implant, and 2) postim-
plant inflammation.
We have combined several techniques, including the use of

an iterative best line detection algorithm and network flow algo-
rithms, to formulate a novel method to accurately identify corre-
sponding brachytherapy seeds in different datasets to perform a
seed displacement analysis. Our method extends the grouping
of seeds into needles approach by simplifying the cost func-
tion components so that it is effective over multiple data types.
We compare seed locations obtained from intraoperative fluoro-

0278-0062/$26.00 © 2011 IEEE
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based images both to preplan data and to postimplant CT data.
The two comparisons are done separately which allows us to
investigate and distinguish between seed misplacement during
surgery and postimplant movement. Our postimplant analysis
uses CT images taken immediately after surgery so this study
does not look at long term seed migration, although the same
techniques described here can be used for CT data taken at later
times to do so. The comparison with intraoperative seed po-
sitions, however, does allow an investigation of the effect of
change in patient pose which changes from dorsal lithotomy
during the implant procedure to horizontal recumbent during CT
imaging. This has also not been analyzed using individual seed
displacements before. Furthermore, we propose that given find-
ings from Moradi et al. who show that given a complete recon-
struction of the fluoroscopic data and identification of the seeds,
registration can be performed with an incomplete reconstruc-
tion of the seed cloud in ultrasound data [13], we can use our
methods to register the seed displacements within the prostate
volume.
We have developed a new technique for registration, which

is a required step for accurate computation of seed displace-
ment. We stress that a full deformable registration by matching
individual seeds is not desired as this can remove the trends
in displacement that are to be measured. Therefore, instead of
using individual seed positions, our method uses two global av-
erage parameters to register the different datasets. These param-
eters are the average implantation axis and the seed cluster cen-
troid position. Aligning datasets to the same average parame-
ters keeps local trend information, while bringing the datasets
into the same coordinate system so that the measured values are
actual distances. For the implantation axis detection we use an
iterative sampling algorithm to obtain a ranked list of potential
needle tracks in images. The average of the highest ranking few
needle tracks is used to determine the implant axis direction.
This can be done on each dataset independently removing the
need for an exhaustive iterative closest point registration [14]
comparing two datasets at a time.
A newmethod of matching detected needles between datasets

is also presented. Another network flow algorithm is used where
the needles are matched using only the location of the needle
intersections with the transverse plane of implantation, and the
number of seeds in each given needle. The same needle inter-
sections can be used to register ultrasound data to fluoroscopic
data leading to intraoperative dosimetry.
Our registration technique ignores any offset rotations about

the insertion axis itself. However, we have developed a tech-
nique to automatically detect these offset rotations by finding
the rotation that gives the minimum average seed displacement.
The seed displacements must be recomputed for every new rota-
tion until a minimum is found, but the insertion axis remains the
same and the seeds are already matched between datasets and so
the time complexity is increased only by a constant factor.
Since our institution only uses stranded implants for

brachytherapy, this study focuses on measuring seed displace-
ments during and after stranded seed implantation. Although
it is possible to apply our methods to loose seeds, since they
are usually inserted in needle tracks with regular spacers,
studies have shown that stranded seeds provide better dose

coverage [15] and less seed loss [16] without compromising
the biochemical no evidence of disease (bNED) [17]. As a
consequence, stranded seeds are used in about 50% of cases in
the United States and in over 80% of cases around the world.
Therefore methods tuned to work on stranded implants alone
do impact a large proportion of the brachytherapy field.
In this paper, we will refer to the difference between pre-

plan seed locations to intraoperative seed location as “misplace-
ment,” and the difference between intraoperative to postimplant
seed locations as “movement.” The term “displacement” will be
used to describe both differences. Although the term “misplace-
ment” might imply that this method can distinguish between
tissue deformation and physical implant misplacement this is
not the case since we do not have any information about the
tissue. The misplacement is purely the difference in locations
of the seeds from the preplan data to the intraoperative data.
Preliminary results of this work are presented in Lobo et al.

[18]. This paper contains a significantly expanded analysis and
algorithmic details. Furthermore, the matching and registration
details are updated and improved. The paper first describes
the imaging used and the subsequent seed localization. The
methods required to match seeds in different datasets and to
compute the seed displacements are then described. Next,
the results showing average displacements and trends are
presented. Finally, an analysis of the results is given in the
conclusion.

II. DATA COLLECTION AND DISCRETE TOMOGRAPHY
APPROACH

Datasets from eight patients undergoing low-dose prostate
brachytherapy were collected at the British Columbia Cancer
Agency, Vancouver, Canada, after Institutional Research Ethics
Board approval and patient consent were acquired. For each of
the patients, the treatment plan was generated using the Variseed
planning software (Varian Medical, Palo Alto, CA), and the
planned seed positions, referred to as the preoperative plan or
preplan were exported from it. The preplan data is obtained
from the planned brachytherapy template needle position and
depth, and was modified to account for changes made by the ra-
diation oncologists during the procedure.
The postimplant CT was acquired approximately 1 h after the

intervention. The coordinates of the postimplant CT, referred to
as the postimplant, were also exported from the VariSeed plan-
ning software, as described in Chng et al. [9].
Intraoperative seed positions were reconstructed from fluo-

roscopic data acquired immediately after implanting all the re-
quired seeds. A series of five fluoroscopic images were taken,
rotating the C-arm from approximately to 10 , in the
transverse plane. The joint angle was recorded for each image
using a digital protractor secured to the C-arm. Fig. 1 illus-
trates the C-arm set up from the operating room. An example
CT image showing real brachytherapy seeds is also shown in
the inset for comparison.
A seed-projection matching approach with motion compen-

sation was used to obtain seed reconstructions from the intraop-
erative data [19]. The method uses a network flow solution to
minimize the distance between back-projected lines from seed
projections [20], and motion compensation that recovers the
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Fig. 1. Prostate Brachytherapy setup with C-arm used to take intraoperative
fluoroscopic data. The coordinate system that is used is also shown. Inset: An
example 2D CT cross section image for comparison.

C-arm pose without the need for fiducial markers or auxiliary
trackers. Its results were carefully validated in simulations, im-
plant phantoms and patient data [19].

III. METHODS

Seeds arematched between datasets by first finding the needle
tracks they belong to. The minimum cost algorithm described
by Chng et al. [9] is used to find these needles tracks in the dif-
ferent datasets. The intersections of the needles with the trans-
verse insertion plane are computed next and a different min-
imum cost network flow algorithm is used to match these in-
tersections between datasets. With the intersections and there-
fore needles matched, the seeds in each needle are then labeled
and seed displacements are computed. The approach is summa-
rized in Fig. 2. For all the descriptions and results presented in
this paper we employ a conventional right-handed coordinate
system in which the axis is also the insertion axis and runs
inferior to superior and the axis runs posterior to anterior, as
shown in Fig. 1. The terms yaw, pitch and roll refer to rota-
tions about the axis, axis and axis, respectively. Detailed
descriptions of the methods are presented in the following five
subsections.

A. Registration Using Insertion Axis Detection

Previous work has shown that to accurately compute the dis-
placements, it is necessary to put the different datasets into cor-
respondence [9]. Full point to point registration that can remove
local trends is not desired. Instead, we carry out the registration
using average components of the different clusters. Each dataset
is globally translated and rotated so that the seed cluster centroid
position is located at the origin and the average implantation
axis is aligned with the axis.

Fig. 2. Full seed displacement algorithm.

Usmani et al. show that the seed cluster centroid position
can be used to register the datasets since it remains at the same
position even with considerable postimplant migration [12].
Matching the implantation axes in the datasets removes global
pitch and yaw differences. Local pitch and yaw trends are
expected and can be measured since only the average insertion
direction is used. No roll trends are expected so postprocessing
is used to remove any slight roll differences. The axis detection
is carried out on each dataset separately which reduces the
computation that would be required to compute costs from
looking at two datasets simultaneously, as would be carried out
with an iterative closest point method.
The main component of our registration process involves

finding and aligning the average implantation axes in different
datasets. Our iterative best line algorithm to find the axis
of insertion is similar to the RANSAC (RANdom SAmple
Consensus, [21]) algorithm which involves fitting lines to
pairs of randomly chosen points and scoring each line. The
highest scored lines are then kept as needles. However, our
implementation has no random component. This is due to the
fact that an exhaustive search on all possible pairs of points for
this application is not computationally demanding. This gives
an effective way of finding a majority of the needles but does
not consistently detect all of them. However, as we will show,
this allows us to find the implantation axis, which coincides
with the ultrasound transducer axis.
Pairs of seeds are used to fit straight lines that define po-

tential needle directions. Implausible pairs, calculated based on
whether the lines are within a certain angle threshold from the
axis, are rejected immediately saving unnecessary calculations.
Seeds belonging to the same needle may not necessarily lie on
a straight line, as needle tracks can exhibit significant curva-
ture which is not easily parameterizable, as illustrated in Fig. 3.
Therefore, a tolerance region is required when matching seeds
to a single line modeling the needle.
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Fig. 3. Illustration of several possible curvatures that can be detected for a
needle by using a Gaussian cone rather than a tube with fixed radius.

We chose a Gaussian cone as a tolerance region for each po-
tential needle direction line since it applies tight constraints to
potential tracks when they are close to the insertion plane and
relaxes them farther away where there is more deviation. The
depth of focus can be varied to give a sharper cut-off for higher
angles than a simple cone tolerance region gives. A given seed,
, only contributes to the score if it is closer than a distance
to the potential line. is the “waist” of the tolerance which
increases with the distance from the insertion plane, and is
computed as

(1)

where is the minimum waist size and is the distance at
which . They control the waist at the insertion plane
and the rate of expansion of the Gaussian tolerance cone. Fi-
nally, since the spacing in stranded seeds can only be a multiple
of 10 mm we remove any seeds that do not satisfy this require-
ment with a tolerance of mm. The spacing between seed
and an adjacent seed is denoted . This eliminates the cases
when seeds from other needle tracks fall within the Gaussian
cone when the waist size is large.
Letting be the distance of seed from the potential needle

axis, the score becomes

(2)

As shown in Section IV-A, the iterative best line detection al-
gorithm finds a majority of the needles. However, in this work,
we used this algorithm primarily to find the axis of insertion of
needles which is an important piece of information to ensure the
accuracy of the network flow algorithm. By relaxing the con-
straints and therefore allowing needles with a larger deviation
from the axis, we were able to find the implantation axis by
averaging the direction vectors of the highest scoring eight nee-
dles. Eight needles were chosen instead of using a cutoff calcu-
lated for each patient for consistency. Each of the seed clusters
were then rotated so that the implantation axis was parallel to
the axis. The preplan data has the transducer axis already par-
allel to the axis, and obviously did not require any rotation.

B. Assigning Seeds to Needle Tracks

Once the dataset is rotated so that it is aligned with the im-
plantation axis, it is possible to use a needle detection algorithm
with tighter restrictions. The curvature problem, however, still

remains. Therefore, instead of looking at parameterizable lines
the seeds are viewed as nodes within a network that allow a
single unit of flow through them. Each arc between two nodes
carries a cost for a unit flow. The Matlab Toolbox “matlog” de-
veloped by M. G. Kay at the North Carolina State University
was used to determine the flow lines, which were tuned to be
the needle tracks, that resulted in the lowest total cost [22].
To summarize the process: first, two new nodes are created,

one start node to supply all the flow and one end node to sink
it. All the seeds are defined as transshipment nodes, located be-
tween the start and end node, where the inflow must equal the
outflow. Each node is initially given the same negative cost so
that they are all equally likely to be used, while a cost func-
tion is used to define the costs of flow going through every arc
joining two nodes, from the source node to the sink node. This
cost function allows for the correct needle track detection. Since
each arc is independent of the previous one, there are no restric-
tions as to the direction of the flow based on the shape of the
curve before the node which allows for the changes in direction
that sometimes occur. A cost function with two components is
used. These are the angle that a given flow line makes with the
average insertion axis, and the length of the unit of flow—which
should be a multiple of the 10 mm. Although each component
function has a complex form derived in Chng et al. [9] we use
much simpler functions that still give accurate results.
The angle cost component is defined as follows:

(3)

and the spacing component of the cost is

(4)

where is the spacing between node and node and is
the angle the line between the two nodes makes with the axis.
The symbol denotes convolution. The spacing cost is defined
as a Gaussian with a variance of convolved with a train of
delta functions to give negative peaks at integer multiples of
the smallest spacing ( mm). The decaying exponential
with a variance of mm is aimed at penalizing larger
seed spacing. It decreases the magnitude of the spacing cost by
a factor for every successive integer multiple of the spacing
. Note that the contribution of each successive Gaussian peak

to the cost decreases exponentially as increases. However, in
practice, it is extremely unlikely that the seed spacing in a given
needle is 40 mm or more so we only sum until . The
fourth power for the angle cost ensures that the cost increases
rapidly for increasing angles. and are tunable parame-
ters that define how “strict” the function is with respect to the
angle and seed spacing, respectively. For the fluoroscopic data,
was set to 43.0 and to 1.2 mm. A large angle variance

was needed since several needle tracks were visibly curved and
rotated but tighter restrictions on the seed separation ensured
that true tracks were identified. In contrast, for the postimplant
CT data, was set to 31.5 and to 3 mm. Here, the seeds
migrated a little so the seed separation requirement was relaxed.

1http://www.ise.ncsu.edu/kay/matlog/
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Fig. 4. Graphs of the angle (left) and spacing (right) cost functions showing
high costs for higher angles and low costs for multiples of the smallest seed
spacing (10 mm). The tunable parameters for the angle variance, , and the
spacing tolerance, , are shownwith a box around them. The spacing constants,
and are also shown.

Fig. 4 graphically shows the angle and seed spacing cost func-
tions with the different parameters and constants.
The total cost is obtained by summing the two costs with a

weighting parameter, , on the angle cost term. This parameter
controls which component affects the cost most. We found that
increasing the sensitivity of the function to the spacing of the
seeds by decreasing the value of produced the best results.
A lower sensitivity to the angle was needed to allow for the
observed variation in the tracks. Therefore, for the intraopera-
tive fluoroscopic and postimplant CT data, was set to 0.3. For
the preplan data, however, is set to 1.2 so that the function is
weighted more to the angle cost so that any angle deviation from
the axis has a much higher cost. The final objective function is

(5)

C. Needle Matching

The needle detection technique summarized above leverages
intra-strand seed spacing, enforced physically by the stranded
seed product routinely used in our implants, as the classification
characteristic that is least sensitive to noise. This simplifies a
matching of seeds to one of needles. This section
explains how the needle matching across datasets is carried out.
After rotating the seed clusters and grouping the seeds into

needles, the insertion plane intersection of each needle is
computed. The insertion plane is the transverse plane passing
through the most inferior seed (at the apex of the prostate).
Matching is then performed using another minimum cost net-
work flow algorithm. Each node of the network contains the ,
coordinates of an intersection as well as the number of seeds

that were in the needle. In this case, instead of adding a source
and sink node, all the nodes from one type of intersection data
are defined as source nodes and all the nodes from the other
type are defined as the sink nodes (there are no transshipment
nodes). The cost of a unit flow from an intersection from one
data type to that of another one is defined as

(6)

Here is the cost of matching a needle intersec-
tion, , from one dataset to another needle intersection, , in an-
other dataset. is the distance between intersection and in-
tersection , while and are the number of seeds in needle

Fig. 5. Insertion plane intersections for one patient showing why the number
of seeds per needle is also needed in the cost function.

and needle , respectively. We add 1 in the term
to emphasize the difference in seed numbers, even when that
difference is only 1. A low cost is assigned if the corresponding
needle intersection is close by and also has the same number
of seeds in the needles. is the parameter used to control the
effect of the spacing on the cost. Since the number of needles
in the two datasets can now be set a priori the algorithm tries
different pairings until all are matched at the lowest cost. Fig. 5
shows the an example of insertion plane intersections. The red
lines show some of the correct matches. Note that simply using
a closest-to match would not work.

D. Seed Displacement Computation

Each seed position is compared to its corresponding seed
from a different data type to obtain a displacement vector. An
entire dataset of each seed displacement vector in each patient
was computed to find trends. Sets of displacement vectors were
generated both for intraoperative misplacement and for postim-
plant movement.
Scalar distances were used to quantify the motion. The total

average distance was computed for each patient as well as for
all the patients. The average distance was also computed for dif-
ferent regions of the prostate by dividing the entire volume into
27 subregions, where each axis was divided into three sections.
We also looked at the direction of seed motion. This was done

by computing an average displacement vector in each of the
subregions. These displacement vectors were used to analyze
the trends the direction of motion in each region.

E. Postprocessing to Fine Tune Dataset Registration

Section III-A describes the registration used to correct dif-
ferences in the global pitch and yaw which allows local trends
to be measured. These trends are expected to be as a result of
several mechanisms including needle deflection, prostate rota-
tion, oncologist preferences, inflammation and change in pa-
tient pose. None of these, however, are expected to create any
local roll trends. The global differences in roll, due to slight
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Fig. 6. Graphs showing how the average displacement distances varied with
different roll values for the intraoperative data. The preplan to intraoperative
comparisons are shown on the left and intraoperative to postimplant compar-
isons are shown on the right.

TABLE I
NEEDLE TRACK DETECTION USING THE ITERATIVE

BEST LINE DETECTION ALGORITHM

differences in imaging angles, were therefore automatically re-
moved after the displacement calculations. This was done by
computing the average displacement distance for each patient
for different amounts of roll of the intraoperative data, which
is used in both comparisons. Fig. 6 shows how the average dis-
placement distance varied with roll angle for each patient. The
roll angle which gives the minimum average displacement dis-
tance is taken as the value which aligns the roll between the
datasets and the displacements with this roll are reported in this
paper.

IV. RESULTS AND DISCUSSIONS

This section will first present the verification of the individual
processes described in the methods followed by the actual seed
displacement results. These results include quantitative values
for the displacement for each patient and also for each region
of the target volume (the prostate). A qualitative description of
the direction of displacement is given following a numerical
analysis to assess the presence of trends.

A. Finding the Transducer Axis

The iterative best line detection algorithm resulted in needle
detection outcomes reported in Table I. The needle detection
results vary from 79.0% to 93.22% of seeds that were correctly
assigned. Based on the average vector directions of the eight
highest scoring needles, we found the implantation axis and ro-
tated the cluster of seeds so that it was aligned with the axis.
Fig. 7 shows that the alignment of the implantation axis with the
-axis was achieved for both intraoperative fluoroscopic data
and postimplant CT data.

Fig. 7. Finding the implantation axis using an iterative best line detection for
intraoperative fluoroscopic data.

The transducer axis is assumed to have the same pitch as the
most posterior needles. Although Fig. 7 only shows the sagittal
view, it is worth noting that the algorithm performed 3D rota-
tions and not just a single rotation about the axis.

B. Needle Track Detection

The full algorithm was tested on eight patient datasets. The
number of needles and number of correctly assigned seeds were
determined by comparing the result to the preplan (potentially
modified by the oncologist during operation). Fig. 8 shows the
results from a single patient for all three data types.
Intersections of detected needle lines at the insertion plane

were used to compare to the plan, looking at the number of
seeds per needle as well as the expected relative positions. This
simplified the finding of potentially incorrectly assigned seeds.
Fig. 9 shows an example of a plan comparison. The black el-
lipses show how the comparison can be used to identify which
seeds were not assigned correctly.
The needle matching for the preplan data, not surprisingly,

correctly assigned all the seeds in all patients. The results for
the intraoperative and postimplant seed to needle assignment
are summarized in Table II which shows the percentage of seeds
that were correctly assigned.
It is worthwhile to note that patients 3 and 5 had two spe-

cial load needles (needles with irregular seed spacing) each. As
expected, this made it more difficult to find those needles and
accounted for the incorrect seed assignments for both these pa-
tients. Summarizing the results, an average of 99.31% of the
seeds were correctly assigned for the intraoperative data, while
an average of 99.41% of the seeds were correctly assigned for
the postimplant data. Once again, no preplan information is used
in the needle detection and the algorithm takes between 1 to 2.5
s to rotate the cluster and find the needles.

C. Inter-Dataset Needle Matching

Before continuing, the few incorrectly assigned seeds in the
various datasets were manually adjusted to be grouped with the
correct needle. Insertion plane intersections, previously used to
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Fig. 8. Needle detection results for patient 4 for preplan, intraoperative and
postimplant data.

Fig. 9. Comparison of fluoroscopic intersection data with preplan data showing
some incorrectly assigned seeds. The same images were used for CT to preplan
comparison.

verify the needle detection, were then used to perform needle
matching between the datasets. The matching of the preplan to

TABLE II
SUMMARY OF NEEDLE TRACK RESULTS FOR THE BOTH INTRAOPERATIVE

AND POSTIMPLANT DATA, ON EIGHT PATIENTS

Fig. 10. Intraoperative to postimplant needle matching results for one patient.
Matching needles are connected with the red lines.

the intraoperative data and the intraoperative data to the postim-
plant data still required verification since the expected displace-
ment made the insertion plane intersections vary considerably
between datasets. The method described earlier achieved a cor-
rect needle matching for all the datasets, for both comparisons.
Fig. 10 shows how the intersection data displayed in Fig. 5
was correctly matched. The red lines connect needles that are
matched by the algorithm.

D. Calculation of Seed Displacement

With the needles correctly identified and matched in corre-
sponding data sets for a given patient, the seeds themselves
could be directly compared which gave us a measure of the seed
displacements. Figs. 11 and 12 show themovements of the seeds
between the preplan and intraoperative data and between the in-
traoperative and postimplant data for one of the patients, respec-
tively.
1) Average Displacement Magnitude: The 3-D Euclidean

distance that every seed moved between datasets was computed.
For each single patient the average distance was computed as the
sum of all the distances moved divided by the total number of
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Fig. 11. Preplan to intraoperative seed misplacement results for patient 4.

Fig. 12. Intraoperative to postimplant seed movement results for patient 4.

TABLE III
SEED DISPLACEMENT RESULTS FOR BOTH THE PREPLAN TO INTRAOPERATIVE

DATA AS WELL AS THE INTRAOPERATIVE TO POSTIMPLANT DATA

seeds inserted into the patient. The total average over all eight
patients was also computed. Table III summarizes the results.
From Table III the average displacement was significantly

larger for preplan to intraoperative case than intraoperative to
postimplant data ( , ).
The error in our localization of the seeds in intraoperative

fluoroscopy data, is reported to be less than 0.9 mm [19]. The

TABLE IV
INTRAOPERATIVE SEED MISPLACEMENT RESULTS FOR DIFFERENT

REGIONS WITHIN THE PROSTATE VOLUME

TABLE V
POSTOPERATIVE SEED MOVEMENT RESULTS FOR DIFFERENT

REGIONS WITHIN THE PROSTATE VOLUME

calculated displacement is therefore not due to errors in seed
localization. The result suggests seed displacement due to on-
cologist preferences, needle deflection and prostate movement
during needle insertion, seen from preplan to intraoperative mis-
placement as an average of 4.94 mm, is higher than displace-
ment caused by a change in patient pose and immediate inflam-
mation (measured as intraoperative to postimplant movement,
an average of 2.97 mm).
2) Regional Displacement Magnitudes: The average dis-

placement was computed for each of the 27 subregions, defined
by dividing each axis into three sections, to quantify the motion
in each region. Tables IV and V show these distances. In the
table, the different transverse slices presented from inferior to
superior. Each transverse slice has nine distance values.
For the preplan to intraoperative displacement, the seeds near

the medial line of the prostate (the axis) moved slightly more
on average. Note that no directional information can be drawn
from this. For intraoperative to postimplant displacements, there
were no significant differences in the amount of motion be-
tween the different subregions. In agreement with the average
patient data, the intraoperative misplacement was greater than
the postimplant movement in all regions.
3) Displacement Vectors: It was noted that different mag-

nitudes of displacement occurred in different regions of the
prostate. We computed the average displacement vectors for
each of the 27 subregions. Tables VI and VII summarize the
general displacement directions seen. The displacement vec-
tors are visually illustrated in Figs. 13 and 14. The standard
deviation ellipsoids are drawn in separate plots where each
ellipsoid is centered in its respective region. Note that the scale
is doubled for the postimplant vectors and standard deviations
so that they can be seen.
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TABLE VI
PREPLAN TO INTRAOPERATIVE MISPLACEMENT DIRECTION RESULTS.
VALUES WITH A MEAN VALUE TO STANDARD DEVIATION RATIO

GREATER THAN 0.95 ARE IN BOLDFACE

TABLE VII
INTRAOPERATIVE TO POSTIMPLANT MOVEMENT DIRECTION RESULTS.
VALUES WITH A MEAN VALUE TO STANDARD DEVIATION RATIO

GREATER THAN 0.95 ARE IN BOLDFACE

As with the scalar measurements, the directional displace-
ments from intraoperative to postimplant were smaller than in
the preplan to intraoperative case. The significant intraoperative
misplacement results can be summarized as follows: 1) inferior
displacement of lateral anterior seeds, 2) superior displacement
of medial posterior seeds, and 3) anterior misplacement of su-
perior anterior seeds. For the postimplant movement there is: 1)
inward lateral movement of inferior posterior seeds and 2) an-
terior movement of superior anterior seeds.

V. SUMMARY AND CONCLUSION

We have combined several techniques to formulate a new
method to identify seeds from stranded implants in different
datasets and therefore compute their displacements. The com-
plete process involved: implantation axis detection, needle track
detection and needle matching using the insertion plane and the

Fig. 13. Intraoperative misplacement vectors (above) and the standard devia-
tion ellipsoids (below).

Fig. 14. Postimplant movement vectors (above) and the standard deviation el-
lipsoids (below). The units in brackets correspond to the vector lengths and not
the starting positions. Each unit is 1 mm for these.

number of seeds per needle. Our iterative best line detection has
accurately found the implantation axis from rotated data cluster
in all the datasets. With the detected implantation axis, seed as-
signment based on a minimum cost network flow algorithm has
an accuracy of 99.3% and 99.4% in the intraoperative and post-
operative data.
Given our accurate reconstructions, we were able to measure

the magnitude and direction of seed displacements. For the re-
gional displacements, the following conclusions are potential
explanations for the results seen.
For the preplan to intraoperative comparison, several regional

displacements were noted. The larger amount of misplacement
for seeds near the medial line is most likely due to the fact
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that this is the longest part of the prostate giving the oncolo-
gist more leeway to steer the needles. There is no directional
trend to this placement which suggests that it is not due to needle
or prostate movement. Similarly, the inferior misplacement of
anterior seeds and superior misplacement of posterior seeds is
also likely due to oncologist tendencies. There is a lack of im-
plantable tissue in the anterior superior quadrant (close to the
bladder) and so seeds are deliberately placed more inferiorly.
The greater retraction of lateral anterior seeds is due to the pres-
ence of the pubic arch which forces a shallower implant. The
divergence of the rectum from the prostate in the superior pos-
terior quadrant leads to a tendency to “over-plan” the medial
superior region on the posterior side.
The anterior misplacement of superior anterior seeds can be

explained either by prostate rotation or needle deflection. Any
transverse displacement of the seeds could be due to needle de-
flection. We expect that this effect would be most visible with
superior seeds. However, this does not explain the anterior di-
rection of the misplacement. Therefore, if we assume that it is
due to prostate movement, we can conclude that the base tends
to rotate posteriorly away from the pubic arch during insertion.
This leads to anterior displacement as the gland rotates back
after insertion. We will examine the validity of these explana-
tions in our future studies.
For the intraoperative to postimplant comparison the first di-

rectional conclusion can be drawn from the lack of a global out-
ward seed displacement. This suggests that inflammation has
little or no effect for immediate postimplant seed movement.
The only outward motion is seen with anterior movement of su-
perior anterior seeds. This could be due to pressure from the
bladder on the superior side of the gland when the patient pose
changes from dorsal lithotomy horizontal recumbent. Inward
lateral movement of inferior posterior seeds must also be due
to change in patient pose although further analysis of the forces
on the gland during the change is needed to verify this.
Our results show that intraoperative seed misplacement is

larger than postimplant movement. This confirms results from
Chng et al. [9], who explain the large impact that both prostate
rotation and needle deflection have. This also agrees with work
done by Wan et al. to evaluate needle deflection [23] and by
Lagerburg et al. who evaluate prostate rotation during the in-
sertion of needles [24]. Furthermore, our technique could be
used to track seedmisplacement, therefore providing ameasure-
ment-based alternative to studying the sensitivity of delivered
dose to seed misplacement errors. Su et al. performed a study
on the effect of seed misplacement on the delivered dose using
random noise to model the misplacement instead of actual mea-
surements [25] and found minimal changes in the D90 measure
with misplacements of up to 4 mm. However, the random noise
model does not include the trends we found and so the seed iden-
tification methods used here could be used to confirm this result
in a further study.
We have presented regional, directional displacement

measurement techniques for stranded seeds in prostate
brachytherapy which can be used both to influence future
planned treatment and to provide more post surgery informa-
tion to patients and oncologists for quality assurance.

The algorithms explained in this paper have been described
for preplan to intraoperative fluoroscopic to postimplant
CT-data. However, they can also be used to compare seed
positions over several days after a surgery to further monitor
inflammation. Another application of the developed algo-
rithms is in real-time dosimetry. Complete ultrasound-based
brachytherapy seed detection is a notoriously challenging
problem. However, Moradi et al. have shown that given a
complete reconstruction of the fluoroscopic data and identi-
fication of the seeds, registration can be performed with an
incomplete reconstruction of the seed cloud in ultrasound data
[13]. Therefore, the complete seed identification (or labeling)
algorithm described here, could make it possible to perform
intraoperative dosimetry.
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a b s t r a c t

C-arm fluoroscopy images are frequently used for qualitative assessment of prostate brachytherapy.
Three-dimensional seed reconstruction from C-arm images is necessary for intraoperative dosimetry
and quantitative assessment. Seed reconstruction requires accurately known C-arm poses. We propose
to measure the C-arm rotation angles and computationally compensate for inevitable C-arm motion to
compute the pose. We compensate the translational motions of a C-arm, such as oscillation, sagging
and wheel motion using a three-level optimization algorithm and obviate the need for full pose tracking
using external trackers or fiducials. We validated our approach on simulated and 100 clinical data sets
from 10 patients and gained on average, a seed matching rate of 98.5%, projection error of 0.33 mm
(STD = 0.21 mm) and computation time of 19.8 s per patient, which must be considered as clinically
excellent results. We also show that without motion compensation the reconstruction is likely to fail.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Prostate cancer continues to be the leading cancer among men
in the United States with an estimated occurrence of 217,730 new
cases in 2010 (Jemal et al., 2010). Low dose rate brachytherapy
(henceforth, brachytherapy) is an effective treatment for localized
prostate cancer that can achieve excellent outcomes (Blasko et al.,
2002; Morris et al., 2009a,b). Brachytherapy entails permanent
placement of radioactive capsules (seeds) of 125I or 103Pd inside
the prostate and periprostatic tissue to kill the cancer with radia-
tion. Brachytherapy seeds are as small as a grain of rice, approxi-
mately 4.5 mm long and 0.8 mm in diameter. The success of the
procedure directly depends on the accuracy of seed placement to
deliver sufficient dose to eradicate the cancer while sparing the
urethra and rectum. The seed positions are preplanned to tailor
the dose to the patient’s anatomy. Generally 40–130 seeds are im-
planted depending on the type of the seeds and the volume of the
prostate. During the procedure, the physician delivers the seeds

using needles that pass through a guiding template, under real-
time visual guidance from transrectal ultrasound (TRUS) (Prestidge
et al., 1998). The guiding template confines the needles to move in
parallel to the long axis of the probe. C-arm fluoroscopy images are
frequently taken during the procedure to qualitatively assess the
implant (see Fig. 1).

Accurate execution of the plan is extremely difficult due to
prostate displacement and deformation (Lagerburg et al., 2005),
needle bending, prostate swelling (Yamada et al., 2003) and, sys-
tem calibration and human errors. As a result, seed misplacements
are still common and may lead to under-dosed regions that neces-
sitate repeated treatment, or over-dosed regions which result in
complications, such as rectal ulceration, urinary incontinence and
sexual dysfunction. Intraoperative dosimetry and planning meth-
ods were introduced to reduce the errors and increase the treat-
ment quality (Nag et al., 2001; Orio et al., 2007; Polo et al.,
2010). These methods intermittently calculate the delivered dose
during the procedure and modify the insertion plan, in real-time,
to compensate for possible errors.

In order to calculate the dose distribution, the position of the
implanted seeds, registered to the prostate anatomy, should be
known. Ultrasound imaging provides sufficient soft tissue contrast
to delineate the prostate; however, despite the efforts (Han et al.,
2003; Holmes and Robb, 2004; Feleppa et al., 2002; McAleavey
et al., 2003; Mitri et al., 2004; Ding et al., 2006; Wei et al., 2006;
Wen et al., 2010), robust seed segmentation in ultrasound is not
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yet possible (up to 25% of seeds can be hidden even after careful
manual segmentation in B-mode images (Han et al., 2003)). X-
ray fluoroscopy images provide excellent seed visualization. How-
ever, fluoroscopy images do not provide sufficient soft tissue con-
trast to segment the prostate boundaries. Fluoroscopy-ultrasound
fusion can provide a solution for real-time intraoperative dosime-
try and has been extensively studied (French et al., 2005; Su et al.,
2006; Orio et al., 2007; Tutar et al., 2008; Fallavollita et al., 2010).
In this scenario, during and/or immediately after the brachyther-
apy procedure, several C-arm images are taken from different an-
gles and segmented for seed centroids. Then, the seeds are
localized in 3D space using the segmented images. By registration
of these seeds to the prostate anatomy localized in ultrasound, the
delivered dose to the prostate can be calculated. Upon observation
of large seed misplacements or cold spots, the physician can mod-
ify the plan and implant new seeds. Reconstruction accuracy and
speed are vital for intraoperative dosimetry using fluoroscopy-
ultrasound fusion.

Three-dimensional seed reconstruction has been widely investi-
gated in the literature (Amols and Rosen, 1981; Tubic et al., 2001a;
Todor et al., 2002; Tutar et al., 2003; Su et al., 2004; Narayanan
et al., 2004; Lam et al., 2004; Jain et al., 2005b; Kon et al., 2006;
Brunet-Benkhoucha et al., 2009; Lee et al., 2009; Lee et al., 2011).
In order to successfully reconstruct the seed positions in 3D, three
major problems must be solved.

(1) C-arm calibration: For an accurate reconstruction, C-arm
intrinsic parameters, such as image resolution, image center,
source to center distance and focal length should be known
(Navab et al., 1996; Brack et al., 1996; Jain et al., 2005a).

(2) Seed matching: After segmentation of the 2D coordinates of
seed projections in the C-arm images, a seed matching prob-
lem should be solved to assign each seed projection in one
image to the corresponding seed projections in the other
images (see Fig. 2 for an example). Since the seed matching
is not known, seed reconstruction using two C-arm images
leads to an ambiguity that can be resolved using a third
image. Therefore, at least three images are required for seed
localization in 3D space. Seed matching has been solved
using various methods, such as simulated annealing (Tubic
et al., 2001a), heuristic rules (Todor et al., 2002) and the
Hungarian algorithm (Jain et al., 2005b). Hidden or overlap-

ping seed projections are common in projection images and
result in incomplete data sets that further complicate the
seed matching problem (see Fig. 2). The hidden seed prob-
lem has been tackled using different approaches, such as
pseudo-seed-matching (Narayanan et al., 2004), adaptive
grouping (Su et al., 2004), Hough trajectories (Lam et al.,
2004), an extension to the Hungarian algorithm using net-
work flow (Kon et al., 2006) and dimensionality reduced lin-
ear programing (Lee et al., 2011). It should be noted that
tomosynthesis-based reconstruction methods have been
proposed that solve the matching problem automatically
(Tutar et al., 2003; Brunet-Benkhoucha et al., 2009; Lee
et al., 2009). However, these methods generally need a larger
number of images.
Jain et al. showed that seed matching is equivalent to a net-
work flow problem which is NP-Hard (Jain et al., 2005b).
However, they proposed a pseudo-polynomial yet practical
solution for seed matching from three images by mapping
the original tripartite problem into three bipartite ones that
could be solved using the Hungarian algorithm. Jain’s
method was abbreviated as MARSHAL (Jain et al., 2005b).
The original MARSHAL assumed complete data sets; how-
ever, it was later extended to address the hidden seed prob-
lem (Kon et al., 2006) (the extended method was
abbreviated as XMARSHAL). This algorithm demonstrated
clinically acceptable reconstruction rates and time perfor-
mance on simulated and phantom data, and has been clini-
cally tested (Song et al., 2011; Jain et al., in press). We will
discuss XMARSHAL in more details in Section 2.1 as it runs
in the core of our algorithm.

(3) Pose recovery: Seed matching and reconstruction are per-
formed using known C-arm poses that provide the relative
positions of the C-arm images in 3D space. The C-arm pose
is generally recovered using radio-opaque fiducials or beads
(Navab et al., 1996; Brack et al., 1996; Zhang et al., 2004; Jain
et al., 2005a), or obtained from electromagnetic and optical
trackers (Peters and Cleary, 2008). Fiducials may interfere
with the image of the anatomy, require segmentation and
can limit the working volume. Auxiliary trackers are expen-
sive, need calibration, optical trackers require line of sight,
electromagnetic trackers are sensitive to interference and
hence, further complicate the intervention. It has been sug-
gested to use the implanted seeds as fiducials to compensate
for C-arm pose computation errors (Tubic et al., 2001a; Jain
and Fichtinger, 2006; Lee et al., 2009). However, a good ini-
tial measurement of the pose is required and is usually
obtained by using fiducials and trackers. Pose recovery with-
out a fiducial or tracker can significantly ease the recon-
struction process and consequently facilitate the transition
of seed reconstruction algorithms from research laboratories
to medical practice. In this work, we introduce a method to
estimate the pose using sole measurement of rotation angles
and computationally compensate for the pose computation
errors without fiducials or external trackers.

It is common practice in brachytherapy to acquire several
images by rotating the C-arm around the patient. Usually, the rota-
tion axis is approximately aligned with the patient’s craniocaudal
axis. In ideal cases, joint angle measurements can yield an accurate
pose of the C-arm. However, C-arm movements, such as oscillation,
sagging and wheel motion are significant and prevent accurate
pose recovery based solely on joint angle measurements (see
Fig. 3). If uncompensated, these C-arm motions can lead to severe
pose computation errors and reconstruction failure.

In this paper, we prove that in the typical case of a C-arm ro-
tated around a single axis within a small angle span, C-arm angle

Prostate

Needle

Guiding template

TRUS probe

Fig. 1. Brachytherapy procedure. The needle passes through the guiding template
in parallel to the long axis of the transrectal probe. The C-arm rotates around the
craniocaudal axis of the patient to acquire images. This figure is reproduced from
Lee et al. (2009) with permission form the authors.
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measurements augmented with a computational method to com-
pensate for C-arm motions suffice for a clinically reliable and accu-
rate seed reconstruction. However, without such a motion
compensation algorithm, the reconstruction is prone to failure.
We employ joint encoders or digital protractors to measure the
rotation angles. The novelty of this work is in the introduction of
an effective motion compensation method that obviates the need
for full pose tracking using external fiducials or trackers. Consider-
ing the simplicity of the implementation, high reconstruction accu-
racy and favorable computational speed, this algorithm is suitable
for clinical translation. The underlying idea and limited prelimin-
ary data was presented at a recent conference (Dehghan et al.,
2010). This manuscript provides a more detailed description of
the methodology and performance analysis on 100 clinical data
sets.

This paper is organized as follows. The algorithms for seed
matching and motion compensation are explained in Section 2.
Numerical simulation, phantom and clinical results are presented
in Section 3, followed by discussion in Section 4. The conclusions
are drawn and the future work is outlined in Section 5.

2. Methods

We propose an iterative three-level algorithm that takes advan-
tage of the constrained movement of a C-arm during coplanar
imaging, compensates for its major translational motions using
reconstructed seeds and, in turn, significantly increases the likeli-
hood of finding the correct matching solution in a clinically accept-
able time. We compensate for C-arm motions that are mostly
translational. That is an approximation of the C-arm motion pat-
tern. However, as our results prove, it is sufficient for successful
reconstructions. Our motion compensation algorithm can be used
with any seed matching algorithm. For seed matching and recon-
struction, we employ XMARSHAL (Kon et al., 2006) that is capable
of solving the matching problem in the presence of hidden seeds
with low computational cost. For the sake of completeness we
briefly outline this method in Section 2.1. As mentioned, tomosyn-
thesis-based reconstruction methods do not require a matching
algorithm. However, they suffer from lack of accurate C-arm pose
too. Therefore, C-arm motion compensation framework applies to
them as well.

2.1. Seed reconstruction using XMARSHAL

Assume that three C-arm images of an implant with N seeds are
available and Ni, i 2 {1,2,3} seed projections are segmented in each
image. In this case, the seed matching problem in the presence of
hidden seeds can be written as the following optimization
problem:

m�ijk ¼ arg min
mijk

XN1

i¼1

XN2

j¼1

XN3

k¼1

cijkmijk; ð1Þ

s:t:

PN2

j¼1

PN3

k¼1
mijk P 1; 8i

PN1

i¼1

PN3

k¼1
mijk P 1; 8j

PN1

i¼1

PN2

j¼1
mijk P 1; 8k

PN1

i¼1

PN2

j¼1

PN3

k¼1
mijk ¼ N;

mijk 2 f0;1g;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

where for each i 2 {1, . . . ,N1}, j 2 {1, . . . ,N2} and k 2 {1, . . . ,N3}, cijk is
the cost of matching seed projections p1

i ;p
2
j and p3

k from the first,
second and third images, respectively, and mijk is a binary variable
showing the correctness of such a match. The constraints in (1) en-
sure reconstruction of N seeds while taking the hidden seeds into
account.

Fig. 2. Three C-arm images taken at different angles. The figure at the middle shows several hidden and overlapping seeds. Three seed matchings are shown using arrows. The
seeds move along an almost horizontal line through the images.

wx

wz

1
2

3
z3

Fig. 3. Initial (gray) and correct C-arm pose (color) for the third C-arm. Transla-
tional error along the up-down direction is only added to C-arm 3. The
reconstructed seeds are shown after motion compensation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

762 E. Dehghan et al. / Medical Image Analysis 15 (2011) 760–771



Assume three rays emanating from each of these seed projec-
tions p1

i ; p2
j and p3

k to its corresponding X-ray source in 3D space.
The point with the minimum average distance from these lines is
considered as their symbolic intersection. We define the average
distance of the symbolic intersection from these lines as their sym-
bolic distance. If we project the symbolic intersection on each im-
age, the summation of the distances between this projection and
the corresponding seed projection on each image is considered as
the matching cost (cijk) (Jain et al., 2005b).

Eq. (1) is a weighted-tripartite matching problem that is equiv-
alent to an NP-Hard combinatorial optimization (Jain et al., 2005b)
with an exponential complexity. An approximate low computa-
tional cost solution to this problem was proposed by Jain et al.
by projecting the tripartite matching problem into three bipartite
problems (Jain et al., 2005b). In this solution, seed projections p1

i

and p2
j can be matched (with a cost cij) only if they have a low cost

counterpart in the third image. In this method:

cij ¼min
k

cijk;8k: ð2Þ

This is based on the observation that although low cij, cjk and cki do
not guarantee a low cijk, a low cijk guarantees cij, cjk and cki to be low.

This solution resembles a network-flow optimization problem
in which each seed projection in an image is represented by a node
(Jain et al., 2005b; Kon et al., 2006). The matching between two
seed projections is represented by a link that flows between them
with a cost equal to the matching cost cij. This network flow prob-
lem was extended in Kon et al. (2006) to address the hidden seeds
problem. This problem can be solved using a cycle canceling algo-
rithm in practically O(N3) times (Kon et al., 2006), producing clin-
ically excellent matching.

Given the correct matching and the C-arm poses, the 3D posi-
tion of the seeds with minimized reconstruction cost is calculated
as:

si ¼
X3

j¼1

I � v ijv 0ij
� �" #�1X3

j¼1

I � v ijv 0ij
� �

qj; ð3Þ

i 2 f1; . . . ;Ng;

where si is the position of the ith seed, qj is the position of the X-ray
source corresponding to the jth image, vij is the unit vector along the
lines Lij that connect the projection of seed i on image j to qj and I is
a 3 � 3 identity matrix. The reconstruction cost for seed i is defined
as the symbolic distance between lines Li1, Li2 and Li3.

2.2. Motion compensation

Let us assume a world coordinate system Oxwywzw centered at
the center of rotation of the C-arm and a source coordinate system
Oxsyszs centered at the X-ray source as shown in Fig. 4. The pose of
the C-arm is defined by a transformation matrix sTw from the world
to the source coordinate system as:

sTw ¼
sRw �sRwdþ

0
0
l

2
64

3
75

00 1

2
6664

3
7775; ð4Þ

where sRw is the rotation matrix from the world to the source coor-
dinate frame, l is the distance from the source to the center of rota-
tion and d = [dx dy dz]0 is the translational motion of the C-arm
caused by oscillation, sagging and wheel motion (see Fig. 3). We
can initialize a pose computation by measuring the C-arm rotation
angles – which define sRw – and setting the unknown d equal to
zero. Assuming d = 0 causes error in the pose computation and sub-

sequent unsuccessful seed reconstruction. Therefore, we should
compensate for this error and improve our pose computation.

An iterative scheme can be implemented where the recon-
structed seeds with given C-arm poses are used to improve the
pose recovery and subsequently enhance the seed reconstruction
results. Such iterative schemes were suggested in the literature
to compensate for the rotational and translational pose errors (6
DOFs) (Tubic et al., 2001a; Jain and Fichtinger, 2006). It is known
that such a problem can be solved up to an unknown scale (Jain
and Fichtinger, 2006). This means that the reconstructed seed
cloud can arbitrarily shrink or expand. As it is shown in Fig. 5,
the X-ray images, C-arm intrinsic parameters, seed matching and
relative C-arm rotations are identical between two sets of recon-
struction solutions; however, the scaled relative translations result
in a scaled seed cloud.

We demonstrate that by making realistic and practical assump-
tions in accordance with clinical protocols, motion compensation
can be reduced to 2 DOFs for mobile C-arms used in brachytherapy.
This approach eliminates the scaling problem and results in a clin-
ically adequate implant reconstruction and computational time
small enough to be carried out intraoperatively. Pose error com-

wx

wz

O

sx

sz

Fig. 4. A C-arm rotating around its primary axis (PA) in a single plane. The angle
around the secondary axis (SA) is fixed. The world coordinate system Oxwywzw is
centered at the center of rotation. The source coordinate system Oxsyszs is centered
at the source.

Fig. 5. The scaling effect results from 3 DOF translational motion of the C-arm. The
X-ray images, C-arm relative rotations and C-arm intrinsic parameters are identical
between the left and right reconstructions. Seed matching solution is independent
of the scaling factor.
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pensation for 2 DOFs requires less complicated algorithms (com-
pare to 6 DOFs) and thus is computationally faster.

We make the following assumptions:

1. The C-arm images are acquired by rotation of a C-arm around
its primary axis (PA) in a small angle span, while the angle
around the secondary axis (SA) is fixed (see Fig. 4).

2. C-arm rotation angles are measured.
3. The intrinsic parameters are known and do not change during

rotation of the C-arm.
4. 2D coordinates of seed projections are available via manual or

automatic segmentation.
5. Most significant C-arm motions are of translational nature, con-

fined to the Oywzw plane – the motion along xw is negligible
(dix = 0, i 2 {1,2,3}).

As mentioned before, acquiring images by rotating the C-arm
around its PA while the angle around SA is fixed is common prac-
tice in brachytherapy. The rotation span around PA is usually lim-
ited to approximately ±15� due to collision of the C-arm with the
operating table, brachytherapy stand or patient’s legs. Mobile C-
arms are available that employ a fixed axis of rotation and are
equipped or can be easily retrofitted with joint encoders (Grzeda
and Fichtinger, 2010).

Limited rotation span in a clinical setting results in an insignif-
icant change in the calibration parameters, such as focal length,
image center and source to center distance. Image resolution is
considered as constant over the lifetime of the device. It has been
shown that in such situations recalibration for each C-arm pose is
not necessary, because small changes in the calibration parameters
do not significantly alter the relative positions of the reconstructed
seeds (Jain et al., 2007). It should be noted that we are interested in
the relative position of the seeds as the seed cloud as a whole
should later be registered to the prostate anatomy.

In this work we relied on manual segmentation to identify the
seed centroids. Since XMARSHAL is capable of addressing the hid-
den seeds problem, it is not required to identify all the implanted
but hidden seeds in every image. The effects of hidden seed per-
centage and seed segmentation error on the performance of XMAR-
SHAL are discussed in Kon et al. (2006).

The last assumption is the cornerstone of our motion compen-
sation algorithm. The most likely source of pose computation error
is the oscillation of the C-arm, which is mostly up-down (along the
zw axis) since the C-arm is connected to the base as a cantilever.
Our observations confirm this assumption that the C-arm primary
motion is in the up-down direction due to oscillation and C-arm
weight. The motion in the other two directions are much smaller;
however, are not always insignificant. As a result, C-arm pose com-
putation error along zw is more significant compared to the inaccu-
racies in the other two directions.

The proposed motion compensation algorithm initializes the C-
arm pose using measured joint angles as shown in Fig. 3 and com-
pensates for the inevitable translational motions by finding the
optimal translational adjustments (offsets) d for each source posi-
tion, by solving the following problem:

m�ijk; d
�
n

� �
¼ arg min

xijk ;dn

XN1

i¼1

XN2

j¼1

XN3

k¼1

cijkðdnÞmijk; ð5Þ

n 2 f1;2;3g;

subject to the constraints of (1). In order to minimize the scaling ef-
fects, we restrict the offsets to be in the Oywzw plane – based on our
assumption - and introduce a three-level optimization method to
identify them.

2.2.1. First-level optimization
At the first level, the algorithm finds a few matching seed pro-

jections in the images to calculate an initial offset estimate with
very low computational cost. Since the fluoroscopy images are ta-
ken with the rotation of the C-arm around its PA, the seed projec-
tions follow almost horizontal lines in the images. Therefore, a seed
at the top or bottom of one image is more likely located at the top
or bottom of the other images (for example see Fig. 2). Based on
this observation, the algorithm automatically selects n seed projec-
tions from the top (seeds with maximum ordinate values in the 2D
image coordinate system) and n seed projections from the bottom
of each image (seeds with minimum ordinate values in the 2D im-
age coordinate system) and solves the matching problem for them,
using the initial estimates of the C-arm poses from joint angle
readings. Since the selected 2n seed projections from one image
do not necessarily correspond to the selected 2n seed projections
in the other images (these 6n seed projections may belong to more
than 2n seeds in 3D), some of the reconstructed seeds have a high
reconstruction cost, are erroneously matched, and cannot be used
to improve the pose recovery. Therefore, the algorithm selects a
subset of p < n reconstructed seeds from the top and p recon-
structed seeds from the bottom of the 2n reconstructed seeds with
the best reconstruction costs for pose recovery. We use n = 5 and
p = 2. In order to estimate the C-arm motion, we assume that the
position of the C-arm source corresponding to the first image
(henceforth, the first source position) in 3D space is fixed (d1 = 0)
and optimize the position of the C-arm sources corresponding to
the second and third images (henceforth, the second and third
source positions) in the Oywzw plane to minimize the reconstruc-
tion cost for the selected 2p seeds. The seed matching and motion
estimation are iteratively performed until there is no change in the
seed matching solution.

Since a small number of seed projections are used at this level,
the matching problem can be solved extremely quickly using
XMARSHAL. With a given matching, 2D offsets for the second
and third C-arm source positions can be found by solving a set of
linear equations. These equations are derived in (A.6)–(A.15).

2.2.2. Second-level optimization
In this step, the C-arm source positions are initialized in 3D

space using the optimal offset values from the first level. Then,
the matching problem is solved for all seed projections and the
seeds are reconstructed. The C-arm source positions are optimized
in 3D space to minimize the average reconstruction cost while the
seeds are fixed in space. The matching and source position optimi-
zations are iteratively solved until the reconstruction cost or its
change between two iterations is smaller than a predefined thresh-
old. The thresholds were empirically assigned as <0.1 mm for the
former and <0.1% for the latter.

The new position of the jth X-ray source at iteration k + 1 is cal-
culated as:

qkþ1
j ¼

XN

i¼1

ðI � v ijv 0ijÞ
" #�1XN

i¼1

ðI � v ijv 0ijÞsk
i ; ð6Þ

where sk
i is the position of the ith seed at iteration k.

Since we employ a 3D optimization at this level, the recon-
structed seed cloud may significantly shrink or expand (see
Fig. 5). However, optimization in 3D increases the likelihood of
finding the correct matching which is independent of the scaling
factor. Therefore, we take advantage of 3D optimization at this le-
vel, find the correct matching and remove the scaling effects at the
next level.
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2.2.3. Third-level optimization
At this step, we assume that the correct matching solution is

available from the second-level optimization. However, the seed
cloud may be scaled due to 3D motion compensation. Therefore,
once more, we assume that the C-arm motion along xw is negligible
and optimize for 2D C-arm motion. The C-arm source positions are
initialized using the joint angle readings. The first source is fixed in
space. Next, 2D offsets of the second and third source positions are
optimized to minimize the reconstruction cost with the given
matching. Similar to the first level, the 3D seed positions and 2D
offsets for the sources have a closed form solution, the equations
for which are derived in (A.6)–(A.15). The three steps of the algo-
rithm are shown in Fig. 6.

3. Results

3.1. Simulations

First, the motion compensation algorithm was tested on simu-
lated data. We synthesized four seed clouds based on realistic
dosimetry plans of four patients with 100, 102, 108 and 130 seeds.
Seed images were synthesized by rotation of the C-arm around the
PA at 0�, ±5� and ±10�, while the SA angles were kept constant at
180�. The intrinsic parameters of a GE OEC� 9800 device were used
as the intrinsic parameters of the C-arm in the simulations. The
seeds were reconstructed using every possible combination of
three images out of five. In order to investigate the performance
of our motion compensation algorithm, translational and rota-
tional pose errors were added to one of the C-arm source-image
pairs. The added errors were 0–10 mm along xw and yw, 0–
20 mm along zw with steps of 1 mm and 0–3� around SA and PA
with steps of 0.5�. The effects of these errors were simulated inde-
pendently, as only one error was introduced at each simulation.
During image synthesis, hidden seed projections were created by
merging the seed projections that were close to each other. There
were on average 1.6 hidden seeds per image, with a maximum of
14.

The reconstructed seeds were compared against the ground
truth after a rigid registration of reconstructed seed cloud to the
known seed cloud. The average and standard deviation (STD) of
localization error, defined as the distance between the true and
reconstructed seeds, are shown in Fig. 7 for all the introduced pose
errors. The average and STD of the matching rate are also shown in
Fig. 7. The algorithm has an average matching rate of 99.2% when
the pose error is zero.

As it can be seen in Fig. 7c–f, the algorithm shows consistently
high matching rates and small localization errors over a wide range
of errors along yw and zw as the C-arm motions in these two direc-
tions are compensated. Fig. 7a shows consistently high matching
rates for errors of up to approximately 5mm along xw. However,
the localization error increases monotonically with the error in this
direction as shown in Fig. 7b. This is due to the fact that the match-
ing problem is solved at the second level, using a 3D motion com-
pensation; while we reconstruct the seeds using a 2D motion
compensation at the third level. Therefore, the correct matching
is found at the second level even in the presence of errors along
xw; however, the seed cloud is deformed at the third level, which
leads to a monotonically increasing localization error. The match-
ing and localization errors increase with the rotational pose errors,
since the motion compensation algorithm does not compensate for
rotational errors. However, the average matching rate is above 95%
when rotational pose errors are less than 1.5�. We assume that in a
clinical setting, the angles are measured with errors of less than
±1�.

3.2. Phantom study

We conducted a phantom study on a CIRS Model 053 tissue-
equivalent prostate brachytherapy training phantom. An experi-
enced brachytherapist inserted 26 needles to implant 136 dummy
stranded seeds inside the phantom.

We took five images from the phantom using a GE OEC� 9800
mobile C-arm by rotation of the device around its PA in a 20� rota-
tion span in approximately 5� intervals. A digital protractor was
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Fig. 6. The proposed three-level motion compensation algorithm.
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Fig. 7. Simulation results, showing the average and standard deviation of matching rate and localization error for variable pose errors. The average and STD of matching rate
for errors along xw, yw, zw, PA and SA are shown in (a), (c), (e), (g) and (i), respectively. The average and STD of localization error for errors along xw, yw, zw, PA and SA are shown
in (b), (d), (f), (h) and (j), respectively.
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connected to the source casing of the device to accurately measure
the rotation angles. The seed projections were manually seg-
mented in the images and the seeds were reconstructed in 3D
using every combination of 3 out of 5 images (10 reconstructions)
using motion compensation.

The phantom was also scanned using a Picker PQ5000 CT scan-
ner. The seeds in the CT volume were segmented by thresholding
and assumed as the ground truth. Although the CT and C-arm
images were taken at different times, we assumed that the phan-
tom deformation and seed displacements were negligible. We
compared the seeds reconstructed from C-arm images to the seeds
from CT after a rigid registration of the two seed clouds and re-
ported the difference as localization error in Table 1.

On average, we achieved a matching rate of 99.0% with 0.9 mm
localization error. In order to show the importance of motion com-
pensaion, we also tried to reconstruct the seeds without motion
compensation and achieved an average of 78.3% for matching rate,
which is far below the clinically acceptable level. Su et al. sug-
gested that a seed detection rate of above 95% is required in order
to achieve clinically sufficient estimation of dose distribution for
contemporary 125I prostate implants (Su et al., 2005).

3.3. Performance on clinical data

The performance of the motion compensation algorithm was
also tested on clinical data. Ten patients were implanted with
100–135 125I seeds (average 112) at the British Columbia Cancer
Agency. Five C-arm images were taken from each patient by rota-
tion of the C-arm around the patient’s craniocaudal axis at angles
approximately 0�, ±5� and ±10�, while the SA angle was fixed. A
GE OEC� 9800 mobile C-arm was used for imaging. This is a digital
device with motorized joints. This device has a heavy intensifier
that causes significant sagging and oscillation during image acqui-
sition. For patients 1–8 the rotation angle around the PA was mea-
sured by a digital protractor which was attached to the source
casing. The digital protractor did not interfere with the image of
the anatomy or the working space and did not require precalibra-
tion. For the other 2 patients the rotation angles were measured
using the joint encoders of the device. The digital protractor had
a resolution of 0.1� while the device joint encoders had a resolution
of 1�. We expect higher accuracy from the measurements of the
protractor. The C-arm joint angle encoders showed a variation of
1� around the SA. This deviation was taken into account for initial-
ization of the C-arm poses. The C-arm intrinsic parameters were
once identified in a preoperative calibration and were assumed
to be constant for all the rotation angles and all the patients. For
each patient, we reconstructed the seeds for every combination
of three images out of available five, thus obtaining 100 recon-
structions in total. The seeds were manually segmented in the
images. There were an average of 2 and maximum of 8 hidden
seeds in the images.

The reconstructed seeds were reprojected on the images (see
Fig. 8) and were meticulously inspected for matching errors. These
images were also used to measure the projection error – defined as
the distance between the segmented seed centroid and the pro-
jected location of the reconstructed seed - to quantify the recon-
struction accuracy.

Fig. 9a shows the seed matching rate with motion compensa-
tion for each case. Overall, we achieved an average matching rate
of 98.5% which is above the clinically accepted level. A perfect
reconstruction was accomplished in 54% of the cases, while in
76% and 92% of the cases the matching rate was greater or equal
to 98% and 95%, respectively.

In order to demonstrate the necessity of motion compensation,
seed reconstruction was performed without motion compensation
as well. As it can be seen in Fig. 9b, XMARSHAL without motion
compensation achieved an average matching rate of 46.1%, which
is a completely inadequate performance. Moreover, calculations
show that motions of more than 30 mm in the up-down direction
were compensated. This proves our hypothesis that it is necessary
to use motion compensation, when only C-arm rotation angles are
measured.

Fig. 9b directs us to another important role of the first-level
optimization – other than increasing the speed. As it can be seen
in Fig. 9b, an initial reconstruction without application of the
first-level optimization can result in very unsuccessful matching
results in which mismatched seeds are significantly abundant
and can even outnumber the correctly matched seeds. In such
cases, sole application of the second-level optimization can result
in erroneous pose estimations since the large group of mismatched
seeds can misguide the optimization algorithm. However, in the
first-level optimization, the algorithm selects a handful of seeds
from the top and bottom of the images that are very likely to cor-
rectly match. These few correctly matched seeds provide a good
initial pose computation for the second level. Therefore, the first-
level optimization not only shortens the computation time but also
increases the robustness of the algorithm.

The mean and the standard deviation of the projection error are
shown in Fig. 9c and d for correctly and erroneously matched
seeds, respectively. The overall average and standard deviation of
the projection error for correctly matched seeds are 0.33 mm and

Table 1
Matching rates and mean and standard deviation of localization error for phantom.

Rec. # Matching rate (%) Localization error mean ± STD (mm)

1 100.0 1.0 ± 0.6
2 100.0 0.9 ± 0.5
3 100.0 0.7 ± 0.4
4 99.2 0.9 ± 0.6
5 98.5 0.8 ± 0.4
6 98.5 0.8 ± 0.5
7 98.5 1.0 ± 0.6
8 98.5 0.8 ± 0.7
9 99.2 0.8 ± 0.4
10 97.8 0.9 ± 0.5

Fig. 8. Reprojected seeds overlaid on a C-arm fluoroscopy image, showing small
projection errors.
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0.21 mm, respectively, which demonstrates high reconstruction
accuracy. The mean and standard deviation of projection errors
are 1.12 mm and 1.93 mm, respectively, for mismatched seeds.

It should be noted that the projection error cannot be used to
measure the scaling factor. Therefore, we use seed spacing to pro-
vide additional confidence in our reconstruction accuracy. The pa-
tients in our study were implanted using stranded 125I seeds. In
such a case, the seeds that are implanted by a common needle
are connected to each other by a bio-degradable strand that keeps
them at a fixed center-to-center distance of 10 mm. We measured
the center-to-center distances of the seeds that were inserted
using a common needle and reported the results for each patient
in Table 2. The overall seed spacing was 10.3 mm, which shows
that significant scaling did not occur.

4. Discussion

We achieved matching rates comparable to the results reported
in Lee et al. (2009), Brunet-Benkhoucha et al. (2009), Lee et al.
(2011). In particular, similar matching rates are reported in the ori-
ginal MARSHAL and XMARSHAL papers (Jain et al., 2005b; Kon
et al., 2006). However, it should be noted that in all these works
the C-arm pose was accurately known by using either a radio-opa-
que fiducial (Jain et al., 2005b; Kon et al., 2006; Lee et al., 2009; Lee
et al., 2011) or a precisely calibrated and accurately tracked radio-
therapy simulator in Brunet-Benkhoucha et al. (2009)(It should be
noted that therapy simulators are extinct in contemporary radia-
tion oncology). In other words, the C-arm was fully tracked and
accurate poses were available. Due to availability of accurate C-
arm poses in these works, motion compensation was not neces-
sary. However, in our approach no external tracker was used to
estimate the pose. Therefore, the initial pose recovery without mo-
tion compensation in our case was not sufficiently accurate for a

successful reconstruction (see Fig. 9b). However, with the pro-
posed computational motion compensation method we achieved
high matching rates without full pose tracking using any external
tracker or fiducial (see Fig. 9a). This, in particular, explains the dis-
crepancy between the successful results reported in Jain et al.
(2005b), Kon et al. (2006) and our unsuccessful results with the
same matching algorithm when motion compensation was not
used.

In current brachytherapy practice, implant geometry is assessed
using CT, one or several days after the procedure. However, the
fluoroscopy images are taken at the end of the procedure while
the patient is still in treatment position and additions to the im-
plant are still possible to patch up cold spots. The prostate swells
during and after the procedure which results in a seed displace-
ment over time (Yamada et al., 2003) and even during the proce-
dure (Jain et al., in press). The seeds also tend to migrate after
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Fig. 9. Clinical results showing the matching rate (a) with and (b) without motion compensation, the mean and STD of the projection error for (c) correctly and (d)
erroneously matched seeds. In (c) and (d), the length of the green bars shows the mean, and the length of the orange bars shows the STD.

Table 2
The average and standard deviation of the distance
between two consecutive seeds implanted by one
needle.

Patient # Seed spacing (mm) Mean ± STD

1 10.4 ± 0.6
2 10.4 ± 0.6
3 10.3 ± 0.4
4 10.3 ± 0.3
5 10.3 ± 0.3
6 10.2 ± 0.4
7 10.3 ± 0.4
8 10.1 ± 0.4
9 10.4 ± 0.5
10 10.3 ± 0.4

Overall 10.3 ± 0.5
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implantation (Fuller et al., 2004). Moreover, for our patients, the
fluoroscopy images were taken while the ultrasound probe was
still partially inside the rectum. The probe can deform the prostate
and displace the seeds. Therefore, the physical position of the seeds
during the CT scan is likely to be different from the position of the
seeds when the C-arm images are taken. Hence, CT images of the
patient can not be used as a confident ground truth to measure
the localization error. Therefore, we relied on the projection error
to validate the reconstruction in our clinical study. For the same
reason, we had to rely on reprojected images to identify the mis-
matches. It was shown that seed localization errors of less than
2 mm result in less than 5% deviation in the prostate D90 (the min-
imum dose delivered to 90% of the prostate volume) (Lindsay et al.,
2003; Su et al., 2007). Although it was not possible for us to mea-
sure the localization error in our clinical study, the localization er-
rors in our simulations and phantom study were significantly
lower than this threshold.

Although the mean and STD of the projection error for mis-
matched seeds are significantly larger than those of the correctly
matched seeds (see Fig. 9c and d), the range of the projection error
for correctly and erroneously matched seeds overlap. Therefore, a
fixed threshold for the projection error cannot be used as a crite-
rion to reliably detect the mismatches. However, it should be noted
that, in some cases, a seed projection is mistakenly matched to a
seed projection which is located very close to the correct one. In
such cases, the projection error is small. Such mismatches result
in small errors in seed localization. This suggests that if the seeds
with large projection errors are removed, the rest of the mis-
matches may result only in an insignificant change in the dosime-
try. Statistically, only 17.3% of mismatched seeds had a projection
error larger than 2 mm. This is 0.2% of all the reconstructed seeds.

We used three C-arm images for seed reconstruction. While
more could have been used, the fewer images used in the OR the
better, primarily because it saves time and also reduces radiation
exposure to OR staff. The matching rate is likely to improve by
using more than three images at the expense of computational
complexity (Kon et al., 2006). The motion compensation algorithm
and the seed matching method are valid for an arbitrary number of
images. Alternatively, seeds can be reconstructed for every combi-
nation of three out of all available images for a patient and the best
reconstruction can be chosen. The reconstruction algorithm is suf-
ficiently fast to allow for such a scheme in clinical settings. It
should be noted that for all the patients, except patient 3, there
is at least one reconstruction with perfect matching (see Fig. 9a).

The motion compensation algorithm can be combined with
other seed matching algorithms, such as REDMAPS (Lee et al.,
2011) as reported in Dehghan et al. (2010). In comparison to
XMARSHAL, REDMAPS provides the optimal matching solution.
Therefore, slightly better results – in term of matching rate – are
expected. However, XMARSHAL is computationally faster than
REDMAPS. Since, our matching rates using XMARSHAL are above
the clinically acceptable threshold, we prefer XMARSHAL due to
its speed.

In our results on clinical data, 8% of reconstructions have a
matching rate of less than 95%. Although Su et al. suggested that
a detection rate of at least 95% is required for an accurate dose esti-
mation (Su et al., 2005), it should be noted that seed detection and
matching rate are not completely equivalent. As mentioned above,
many of the mismatches occur when a seed projection is mistak-
enly matched to a wrong seed projection, which is closely located
to the correct seed projection. In this case the reconstructed seed is
considered a mismatch but the localization error may be small.
Therefore, all of the mismatched seeds cannot be categorized as
undetected seeds. As explained, by using more than three images
or employing a matching algorithm with optimal outcome such
as REDMAPS (Lee et al., 2011), we can increase the matching rate.

We implemented our algorithm using MATLAB on a PC with an
Intel 2.33 GHz Core2 Quad CPU and 3.25 GB of RAM. We achieved
an average time of 19.4 s per data set, which is more than sufficient
for clinical implementation. The first level of the optimization is
very fast since only 10 seeds per image are used in the reconstruc-
tion and XMARSHAL runs on an O(N3) runtime. The second level of
the algorithm is the most time consuming part, since a full match-
ing problem must be solved at each iteration. However, using the
outcomes of the first-level optimization to initialize the second le-
vel, significantly decreases the number of iterations necessary for
convergence. We used the convergence of the reconstruction error
as the stopping condition for the second level, which is a conserva-
tive criterion. As an alternative, the convergence of the matching
solution can be used – similarly to the first-level optimization. In
this case, if the matching solution does not change in two itera-
tions, the optimization will terminate. This stopping condition is
satisfied in significantly fewer iterations. However, it was observed
during the simulations – although rarely - that a matching solution
can change to a better one after three or more iterations. Since, the
runtime for the algorithms is already acceptable, we decided to
choose the more conservative criterion, in order to increase the
seed matching rate. As mentioned before, the third-level optimiza-
tion and seed reconstruction can be solved using (A.3) and (A.4)
with low computational cost.

In our clinical studies, stranded seeds were used. We used the
constant center-to-center distance of stranded seeds to show that
no significant scaling occurred during motion compensation. It
should be noted that our motion compensation and reconstruction
algorithms do not rely on any information limited to stranded
seeds and can be applied for loose seeds without algorithmic
modifications.

In this work the seeds were manually segmented in the
images by one observer without extensive efforts to identify all
the hidden seeds. Since XMARSHAL is capable of maintaining
above 97% matching rate for up to 1mm segmentation error
(Kon et al., 2006), our motion compensated reconstruction meth-
od can successfully reconstruct the seeds as long as the manual
seed segmentation error is below this threshold. Considering the
small dimensions of seed projections, this level of accuracy is
easily achievable. However, manual seed segmentation is a te-
dious task due to the large number of implanted seeds. Auto-
matic seed segmentation methods are available that have a
high success rate in identification of 125I (Tubic et al., 2001b)
or 103Pd seeds (Kuo et al., 2010), even in the presence of over-
lapping seed projections. These methods can be used to segment
the majority of seeds in the images. The missing seeds can be
identified and the false positives can be removed with manual
intervention. Integration of an automatic segmentation algorithm
could facilitate the use of intraoperative dosimetry in a clinical
environment.

We assumed that the C-arm rotates around its PA. This assump-
tion – resulting in a horizontal motion of the seed projections in
the images - was used in the first-level optimization to justify
the selection of seeds from the top and bottom of every image as
candidates for matching seeds. If the C-arm rotates around its SA,
the seeds move vertically in the images. Therefore, the seeds that
appear at the left or right side of one image are more likely to ap-
pear at the left or right side of other images. In this case, these
seeds can be selected as candidates for matching seeds in the
first-level optimization. Similarly to our case, the motion along
the up-down direction, and perpendicular to the plane of rotation
would be compensated.

Since we did not use radio-opaque fiducials, the C-arm could be
positioned to capture the seeds close to the center of the detector.
In this situation, the seed segmentation error caused by geometric
distortion is below the tolerance level of XMARSHAL (Kon et al.,
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2006). Therefore, we did not correct for the geometric distortion. If
necessary, the dewarping parameters can be estimated using a sin-
gle image captured at the center of the rotation span. Jain et al.
showed that for small rotation spans, the dewarping parameters
obtained from a center image can effectively correct the geometric
distortions of all the images (Jain et al., 2007).

5. Conclusions and future work

We demonstrated that the sole measurement of rotation angles
of a C-arm with a small angle span in a single plane, combined with
a motion compensation algorithm, can result in successful prostate
implant reconstruction. For motion compensation, we introduced a
three-level optimization method to compensate for C-arm transla-
tional motions in the Oywzw plane using a small subset of seeds as
fiducials to gain an initial estimate of the C-arm pose. This ap-
proach obviates the need full pose tracking with external trackers
or fiducials.

In a clinical study of 100 data sets from 10 patients, an off-
the-shelf digital protractor or C-arm joint encoders were used
to measure the rotation angle around the PA of a C-arm, while
the deviations in the angle around the left-right axis were mea-
sured using the C-arm joint encoders. Combined seed recon-
struction and motion compensation led to on average seed
matching rate of 98.5%, projection error of 0.33 mm and 19.8 s
computational time. The high matching rate, insignificant scaling
effect, low projection error and computation time show the fea-
sibility of our method for intraoperative dosimetry in a clinical
setting.

We assumed an insignificant motion of the C-arm along xw

axis. This assumption was validated by high matching rates
and small projection errors in our clinical study. However, if
on some C-arms this motion is considerably large, a 3D motion
compensation is necessary. This, however, may suffer from the
scaling problem. An object with a known length can be used
to estimate the scale. Investigation on exploiting the length of
125I seeds or seed spacers to recover the scaling factor is part
of our future work.
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Appendix A. Equations for simultaneous reconstruction and
motion compensation

In order to find the optimal 2D offsets of M sources (M images)
and at the same time, find the 3D position of N implanted seeds, we
solve the following optimization problem.

ðs�i ; d
�
j Þ ¼ arg min

s;d
J ðA:1Þ

J ¼
XN

i¼1

XM

j¼1

ðsi � qj � djÞ0 I � v ijv 0ij
� �

ðsi � qj � djÞ; ðA:2Þ

where J is the total reconstruction cost, qj is the initial position of jth
source calculated form the joint angle readings, and dj is its corre-
sponding offset. The minimality necessary conditions imply that:
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Vij

" #
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Vijdj ¼
XM

j¼1

Vijqj; ðA:3Þ

�
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XN

i¼1

Vij

" #
qj; ðA:4Þ

where

Vij ¼ I � v ijv 0ij
� �

: ðA:5Þ

Eqs. (A.3) and (A.4) can be concatenated into a matrix form as
below.

Ax ¼ b; ðA:6Þ

x ¼ s01 � � � s0N d01 � � � d0M
� �0

; ðA:7Þ

A ¼
A11
ð3N�3NÞ A12

ð3N�3MÞ

A21
ð3M�3NÞ A22

ð3M�3MÞ

" #
; ðA:8Þ

b ¼ b01 b02
� �0

; ðA:9Þ

where,
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0 0 . .
.
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At this point, the set of linear equations in (A.6) is under-deter-
mined and the matrix A in (A.8) is singular. However, we fixed
the first source in space; hence d1 = 0. In addition, we assumed that
the C-arms move only in Oywzw plane. This places another con-
straint on the equations in the form of djx = 0, j 2 {1, . . . ,M}. By
removing the rows and columns corresponding to these known
variables from A and removing the corresponding entries in x and
b, Eq. (A.6) can be solved.
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Purpose: Accurate localization of prostate implants from several C-arm images is necessary for

ultrasound-fluoroscopy fusion and intraoperative dosimetry. The authors propose a computational

motion compensation method for tomosynthesis-based reconstruction that enables 3D localization

of prostate implants from C-arm images despite C-arm oscillation and sagging.

Methods: Five C-arm images are captured by rotating the C-arm around its primary axis, while

measuring its rotation angle using a protractor or the C-arm joint encoder. The C-arm images are

processed to obtain binary seed-only images from which a volume of interest is reconstructed. The

motion compensation algorithm, iteratively, compensates for 2D translational motion of the C-arm

by maximizing the number of voxels that project on a seed projection in all of the images. This

obviates the need for C-arm full pose tracking traditionally implemented using radio-opaque fidu-

cials or external trackers. The proposed reconstruction method is tested in simulations, in a phan-

tom study and on ten patient data sets.

Results: In a phantom implanted with 136 dummy seeds, the seed detection rate was 100% with a

localization error of 0.86 6 0.44 mm (Mean 6 STD) compared to CT. For patient data sets, a detec-

tion rate of 99.5% was achieved in approximately 1 min per patient. The reconstruction results for

patient data sets were compared against an available matching-based reconstruction method and

showed relative localization difference of 0.5 6 0.4 mm.

Conclusions: The motion compensation method can successfully compensate for large C-arm

motion without using radio-opaque fiducial or external trackers. Considering the efficacy of the

algorithm, its successful reconstruction rate and low computational burden, the algorithm is feasible

for clinical use. VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3633897]

Key words: tomosynthesis, brachytherapy, seed reconstruction, motion compensation, C-arm

I. INTRODUCTION

Since its advent in the early 1980s, ultrasound-guided pros-

tate brachytherapy (hereafter brachytherapy) has become a

definitive treatment option for prostate cancer—the leading

cancer among men in the United States in 2010 (Ref. 1)—

with outcomes comparable to the radical prostatectomy that

is considered as the gold standard.2–4 The goal of brachy-

therapy is to kill the cancer in the prostate gland with radia-

tion by permanently implanted radioactive 125I or 103Pd

capsules (seeds). Seed positions are carefully planned to

deliver a lethal radioactive dose to the cancerous prostate,

while maintaining a tolerable dose to the urethra and rectum.

The brachytherapist delivers the seeds using needles under

visual guidance from transrectal ultrasound (TRUS) and

qualitative assessment from frequently acquired fluoroscopy

images.5

The success of brachytherapy depends on accurate place-

ment of the seeds. However, prostate motion and deforma-

tion,6 needle bending, prostate swelling,7 seed migration,8

and human and system calibration errors can result in seed

misplacement which, in turn, can lead to underdosed regions

or over-radiation of the surrounding healthy tissue. In current

brachytherapy practice, the implant is quantitatively assessed

using CT, postoperatively. In case of major underdosing,

external beam radiation is applied as an adjunct. Intraopera-

tive dosimetry can provide the physicians with quantitative
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dose assessment in the operating room and enable them to

adjust the position and number of the remaining seeds to

compensate for the developing cold spots.9–11

Three dimensional localization of the implanted seeds,

registered to the prostate anatomy, is required for dose calcu-

lation. TRUS provides sufficient soft tissue contrast to delin-

eate the prostate boundaries. However, despite significant

efforts in seed localization from ultrasound,12–18 robust seed

segmentation in ultrasound is not yet possible. It was shown

that up to 25% of the seeds can be missed even through man-

ual segmentation of B-mode images.12

Mobile C-arms are routinely used in the contemporary

prostate brachytherapy for implant visualization. However,

the prostate cannot be visualized in the C-arm images.

Therefore, TRUS-fluoroscopy fusion offers itself as a practi-

cal solution for intraoperative dosimetry.10,19–22 In these

methods, the seeds reconstructed from C-arm images are

spatially registered to the prostate volume visible in TRUS

images. The delivered dose to the prostate is evaluated and

the plan is modified, accordingly.

The reconstruction of the implanted seeds in 3D space

from several x-ray images has been widely studied.23–38

These efforts can be categorized into two major groups. In

the first group, 2D coordinates of the seed projection centers

are identified in the images and a matching problem is

solved to identify the corresponding projections of each seed

in different images.23,25–32 These methods should be pre-

ceded with a complicated seed segmentation method to pre-

cisely localize the seed projection centroids.39–41 It is

difficult, or sometimes impossible, to localize the centroid of

each individual seed projection in an image due to presence

of hidden and overlapping seed projections (see Fig. 1).

Therefore, manual intervention is usually necessary in the

seed segmentation phase. However, even after manual inter-

vention, some seed projections can remain hidden. Although

some seed matching algorithms can address the hidden seed

problem,27–29,31,32 the performance of these algorithms usu-

ally degrades with increasing number of hidden seeds.

The second group of seed reconstruction methods consists

of tomosynthesis-based algorithms.24,33–37 The tomosynthesis-

based reconstruction methods have two advantages over

the seed matching methods. First, the matching problem in

the presence of hidden or overlapping seed projections is

inherently solved by tomosynthesis. Therefore, these methods

do not need a seed matching algorithm. Second, the

tomosynthesis-based reconstruction methods require a much

simpler seed segmentation algorithm, as they do not rely on

localization of seed projection centroids in every image. A bi-

nary image that only separates the seed projections from the

background—without localization of their centers—suffices

for a tomosynthesis-based seed reconstruction.

Tomosynthesis-based seed reconstruction is especially

attractive for reconstruction of 125I seeds, which have a

larger projection compared to 103Pd seeds. Due to their rela-

tively larger seed projections, overlapping and hidden seed

projections are more abundant in the C-arm images of 125I

implants. Therefore, seed segmentation for matching-based

reconstruction is considerably more difficult for 125I seeds.

This makes tomosynthesis, the preferred method for 125I

seed reconstruction. However, it should be noted that

tomosynthesis-based reconstructions can be used to recon-

struct 103Pd seeds without any restrictions.

Pokhrel et al.38 introduced a seed reconstruction method

based on forward projection using cone-beam CT (CBCT).

Similarly to tomosynthesis-based methods, their algorithm

does not rely on identification of seed projection centroids.

However, their method is computationally more extensive

compared to tomosynthesis-based algorithms. Also, impor-

tantly, CBCT requires a high-end digitally encoded C-arm

that is typically not available in brachytherapy. In addition,

CBCT demands many C-arm images, exposing the patient

and OR crew to more toxic radiation.

C-arm pose—the relative positions of images in 3D

space—must be known prior to seed reconstruction.

Although, external electromagnetic or optical trackers can

yield the C-arm pose,42 they are not practically viable due to

their cost and added complexity. The C-arm pose can be also

computed using radio-opaque fiducials.24,43–47 However,

fiducials require segmentation,41 may overlap with the anat-

omy of interest, occupy precious real estate in the image,

and are not part of the standard operating room.

C-arm images are generally acquired by rotating the

C-arm around the patient. In ideal cases, C-arm rotation

angles can yield accurate pose. However, in real cases,

unmeasured C-arm translational motions caused by oscilla-

tion and sagging lead to errors in the pose computation and

in turn, failure of seed reconstruction.

FIG. 1. A typical C-arm image of an implant showing some of the overlap-

ping and hidden seeds. Localization of the seed projection centroids for

hidden or overlapping seeds is difficult or sometimes impossible for seed

segmentation methods.
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Researchers have developed approaches to reconstruct

the seeds and use them to improve the pose computation,

iteratively.25,48,49 In these methods, the seeds are recon-

structed in 3D using an initial estimate of the pose. Then, a

motion compensation method uses the reconstructed seeds to

compensate for the errors in pose computation. In Ref. 49,

we compensated for 2D translational motion of the C-arm

using the reconstructed seeds, in a matching-based recon-

struction scheme. The initial pose was obtained from meas-

urements of C-arm rotation angles without external trackers

or fiducials.

The aforementioned motion compensation methods,

including our own work,49 were all developed for matching-

based seed reconstruction and hence, cannot be applied to a

tomosynthesis-based reconstruction method. Lee et al.37

were the first to use a motion compensation method within a

tomosynthesis-based reconstruction. They used a radio-

opaque tracking fiducial [called FTRAC Ref. (46)] to ini-

tially estimate the pose of a C-arm. At the beginning, three

images with the best corresponding pose computation qual-

ity—based on the residual error of the pose recovery using

FTRAC—were used to reconstruct some candidate seeds.

Then, the reconstructed candidate seeds were used to

improve on the pose and calibration parameters for the

remaining images in a process they called “autofocus.”

Finally, the seeds were reconstructed using all the images. If

FTRAC is not used, the quality of the initial pose computa-

tion is not known. Therefore, the three images with the best

pose cannot be selected to initialize the reconstruction. In

addition, without FTRAC, a tomosynthesis-based seed

reconstruction may fail to reconstruct an adequate number of

candidate seeds for pose correction, since initial pose com-

putation may not be sufficiently accurate.

In this paper, we introduce a new computational motion

compensation algorithm for tomosynthesis-based seed

reconstruction. This method compensates for the C-arm

motion by maximizing the number of seed voxels in a vol-

ume of interest. In contrast to the previous work, this method

does not rely on reconstructed seeds to compensate for C-

arm motion. Therefore, it can be used to compensate for

large motions that prohibit initial reconstruction of a suffi-

cient number of seeds for seed-based motion compensation.

The proposed motion compensation method is especially tar-

geted for tomosynthesis-based reconstruction. Therefore, our

method inherits the advantages of a tomosynthesis-based

reconstruction—such as requiring a simple segmentation and

inherently solving the hidden seeds problem—which make it

the preferred choice for reconstruction of 125I seeds. How-

ever, this method is not limited to reconstruction of 125I

seeds and can be used to reconstruct 103Pd seeds as well.

Similarly to Ref. 49, we initialize the pose by sole mea-

surement of C-arm rotation angles. On the one hand, this

obviates the need for full pose tracking using radio-opaque

fiducials or external trackers. But, on the other hand, this ini-

tial pose estimation can fail to provide us with an adequate

number of seeds for seed-based pose correction through

tomosynthesis. As we will show in Sec. III, maximizing the

number of seed voxels in a volume of interest, without

explicit reconstruction of any seeds, surmounts this obstacle

and yields accurate C-arm pose computations for successful

seed reconstruction.

In Ref. 49, we demonstrated that by making realistic and

practical assumptions in defining the imaging protocol in ac-

cordance with clinical limitations, a 2D motion compensa-

tion scheme will result in a clinically acceptable seed

reconstruction. In this paper, we build our motion compensa-

tion on the same assumptions.

We assume that:

1. The images are taken by rotating the C-arm around its pri-

mary axis PA (yw axis in Fig. 2) in a limited angle span,

while the angle around the secondary axis (SA) is fixed

(see Fig. 2).

2. C-arm rotation angles are measured.

3. The intrinsic parameters of the C-arm, such as source to

image distance, source to center of rotation distance,

image center and image resolution are known and do not

change during the C-arm rotation.

4. Significant C-arm motions are translational motions in the

Oywzw plane and motion along xw is negligible.

Single-axis rotation of the C-arm around its PA is com-

mon practice in contemporary brachytherapy. Usually, the

PA is approximately aligned with the patient’s craniocaudal

axis. C-arm rotation angles can be measured using the device

joint encoders (if available), digital protractors or accelerom-

eters.50 Our results in Sec. III C suggest that an accuracy

of 6 1�, which is provided by C-arm joint encoders, is suffi-

cient for successful reconstructions. The intrinsic parameters

of the C-arm can be measured preoperatively. Since the span

of C-arm rotation in a clinical setting is generally restricted

to 6 10� due to space limitations, the intrinsic parameters do

not significantly change. Jain et al.51 showed that recalibra-

tion is unnecessary since small changes in the calibration

FIG. 2. Schematic of a C-arm rotating around its PA (rotation �). Rotation

� shows rotation of the C-arm around its SA. The homogeneous world coor-

dinate system Oxwywzw is centered at the center of rotation. The homogene-

ous source coordinate system Oxsyszs is centered at the source position

corresponding to each image.
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parameters do not have a significant effect on the relative

position of the reconstructed seeds. Note that we are inter-

ested in the relative position of the seeds, since the recon-

structed seeds will be registered to the prostate anatomy for

dosimetry.22

The C-arm forms a cantilever at its connection to the

body of the device. The intensifier is heavy and its weight

creates a significant torque around the connection point that

can lead to significant sagging along the z axis. In addition,

due to the length of the C-arm, forces along the y and z axes

can create significant torques around this joint (connection to

the body) and can cause oscillation in the C-arm. However,

the forces along the x axis cannot produce significant torque

around this joint. Therefore, the motion caused by the forces

along the x axis can only result in translation of the whole

C-arm and its body along the x axis. Due to the heavy weight

of the C-arm, small forces along this axis cannot cause sig-

nificant motion when the C-arm wheels are locked.

Assume that images Ii; i 2 f1;…;Mg were acquired from

a set of seeds located at sj ¼ ½sjx; sjy; sjz�T ; j 2 f1;…;Ng,
while the C-arm source positions were located at

qi ¼ ½qix; qiy; qiz�T ; i 2 f1;…;Mg, where (.)T denotes the

transpose of a vector or a matrix. It can be shown that, using

the same set of images Ii with the same rotation angles, any

C-arm source position configuration q0i ¼ ½q0ix; q0iy; q0iz�
T ;

i 2 f1;…;Mg that satisfies ðq0i � q1Þ ¼ kðqi � q1Þ will result

in a set of reconstructed seeds ðs0iÞ in which, ðs0i � q1Þ
¼ kðsi � q1Þ. In other words, a 3D translational motion com-

pensation can result in a reconstruction with an arbitrary

scale (k). If a fiducial is used, a known length on the fiducial

can be used to recover the scale.48 In order to avoid the scal-

ing problem without a fiducial, we take advantage of the

confined motion of the C-arm and assume that the C-arm

motion along xw is negligible. Therefore, we assume that our

initial C-arm pose estimations are accurate along the xw axis

(qix) and we add the constraint ðq0ix � q1xÞ ¼ ðqix � q1xÞ to

our equations.

Our assumption about 2D motion of a C-arm is an

approximation to the C-arm motion pattern. However, we

show in Sec. III, that this approximation is sufficiently accu-

rate for successful reconstruction of brachytherapy implants

and results in a negligible error in the estimation of the scale

(Table II).

In Sec. II, the methods for tomosynthesis-based seed

reconstruction and motion compensation are outlined. Sec-

tion III shows our numerical simulation, phantom, and clini-

cal results. We discuss our results in Sec. IV, followed by

conclusions and future work in Sec. V.

II. MATERIAL AND METHODS

II.A. Image processing and labeling

We use seed-only C-arm images to reconstruct the seeds.

A seed-only image is a binary image in which each pixel has

a value of 1, if it belongs to a seed projection and zero other-

wise. An example of such an image is shown in the left side

of Fig. 3. Note that in contrast to seed segmentation for

matching-based reconstruction methods, we do not require

the seed projection centroids to be localized. We relied on

local thresholding and morphological filtering to produce the

seed-only images as explained in Refs. 19 and 52. There are

several other methods that can be used to produce the seed-

only images.18,34,36,39–41 Therefore, we do not discuss image

processing in more details in this paper. It should be noted

that a false positive projection does not result in a false posi-

tive seed, unless there are corresponding false positives in all

the other images, and this is very unlikely to occur. How-

ever, a missing seed projection in one image, results in a

missing seed in the reconstructed seed cloud. Therefore,

manual identification of missing seed projections is neces-

sary; however, removal of false positives is precautionary.

In order to increase the likelihood of seed detection and

compensate for small pose computation errors, the seed-only

images are dilated with a disk structural element of radius r
(2–3 pixels in this work).

The dilated seed-only images are then labeled using the

connected component labeling algorithm.53 These labeled

images are later used to detect and remove false posi-

tives.35,37 More details are discussed in Sec. II D. A portion

of a labeled image is shown in Fig. 3. Note that one or more

seed projections can be associated with one label.

II.B. Volume of interest reconstruction

Figure 2 shows the geometry of a C-arm rotated around

its primary axis (PA). Every point s in the world homogene-

ous coordinate system—centered at Oxwywzw—can be pro-

jected on a point p on the ith segmented image homogeneous

coordinate system using the following equation:

p ¼
�f=qx 0 cx 0

0 �f=qy cy 0

0 0 1 0

2
4

3
5sTi

ws ¼ Pis; (1)

where sTi
w is the transformation matrix from the world ho-

mogeneous coordinate system to the source homogeneous

coordinate system centered at the x-ray source location that

corresponds to the ith image, f is the source to image dis-

tance, qx and qy are pixel spacings along the horizontal and

vertical axes of the image, cx and cy are the coordinates of

the image center and s represents the coordinates of s in the

world homogeneous coordinate system. Pi is a 3� 4

FIG. 3. Left: a dilated seed-only image, right: labeled seed-only image.
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projection matrix from the world homogeneous coordinate

system to the image i homogeneous coordinate system. The

point p has a pixel value wi(p) equal to 1, if p is inside a seed

projection and equal to 0, otherwise.

We assume a volume of interest (VOI) in the 3D space.

For every voxel v in the VOI with coordinates v in the world

coordinate system, the voxel value is defined as:

WðvÞ ¼
XM

i¼1

wiðPivÞ; (2)

where M is the number of images. A voxel is assumed to

belong to a seed cluster in 3D space, if

WðvÞ ¼ M: (3)

This means that voxel v belongs to a seed cluster, if it

projects on a seed projection in all of the images. We define

S as a set that contains all the seed voxels.

After populating the VOI, the seed clusters are labeled

using the connected component labeling algorithm.53 We

use these labeled clusters, their relation with the labeled

images, and their centers and volumes in Sec. II D to find the

seed centroids and remove the false positives.

Since we are only interested in voxels with a value of M,

we can significantly increase the computational speed for

VOI reconstruction using the following procedure.

At the beginning, all the voxels are initialized with a

voxel value equal to zero. In the first iteration, all the voxels

in the VOI are projected on the first image using Eq. (1). If a

voxel projects on a seed projection in this image, its voxel

value is increased by 1, otherwise its voxel value is kept

unchanged (see Fig. 4). The voxels that have a value of zero

after this iteration do not have the opportunity to acquire a

value of M after projection on the subsequent M�1 images.

Therefore, in the second iteration, only the voxels with a

voxel value of 1 are projected on the second image and their

voxel values are updated in the same manner. Likewise, in

the ith iteration (i � M), only the voxels with a value of

(i� 1) are projected. This decreases the number of projected

voxels significantly after each iteration and increases the

computational speed that is very important for clinical seed

reconstruction. Since every voxel is projected on M images

only, the maximum voxel value is equal to M. This forward-

projection approach removes the risk of cross-talk between

voxels that may occur in back-projection.

II.C. Motion compensation

The pose computation problem is equivalent to finding

the transformation matrix sTw in Eq. (1). This matrix can be

defined using the following equation:

sTw ¼
sRw �sRwd�

0

0

l

2
4
3
5

0T 1

2
664

3
775; (4)

where s
Rw is the rotation matrix from the world to the source

coordinate frame, l is the distance from the source to the cen-

ter of rotation, and d¼ [dx dy dz]
T is the translational motion

of the C-arm caused by oscillation and sagging. We can initi-

alize a pose estimation by measuring the C-arm rotation

angles that define sRw, and setting the unknown C-arm trans-

lational motion (d) equal to zero. The error caused by assum-

ing d¼ 0 can result in significant pose computation errors

and consequently in unsuccessful reconstructions. Therefore,

we should compensate for translational motions and improve

on our pose computation.

As mentioned, Lee’s autofocus method37 is not applicable

to our problem, due to the absence of the FTRAC. Therefore,

we propose a different motion compensation schemes.

We observed that the cardinality of S—the total number

of seed voxels in the VOI—is maximized when the pose is

accurately known. Figure 5 shows the cardinality of S as a

function of C-arm translational pose errors in the up–down

direction (along zw) and perpendicular to the plane of rota-

tion (along yw). This figure shows a simulated case, in which

the poses of 4 images are accurately known, and the errors

FIG. 4. Projection of two voxels on a seed-only image. In this projection, the

voxel value of Voxel 1 is increased by one since Voxel 1 projects on a seed

projection in this image. The voxel value of Voxel 2 is unchanged.

FIG. 5. The total number of seed voxels in a VOI as a function of pose esti-

mation errors. Errors are in the up–down direction (along zw) and perpendic-

ular to the plane of rotation (along yw).
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are added to the 5th pose. Note that the cardinality of S is an

integer-valued function.

In the motion compensation algorithm, we assume that

the position of the C-arm corresponding to the first image

(henceforth the first C-arm) is fixed in the 3D space and

compensate for 2D motion of the rest of the C-arm positions

by solving the following problem:

d�i ¼ arg max
di

Sk k;

s:t: dxi ¼ 0;

i 2 f2;…;Mg;

(5)

where k:k denotes the cardinality of a set.

Note that unlike motion compensation methods intro-

duced in the previous work,25,37,48,49 this method does not

require seeds to compensate for pose errors.

The optimization function in Eq. (5) is integer-valued.

Furthermore, it has several local maximums, as can be seen

in Fig. 5. In order to remedy these problems, we exploit the

covariance matrix adaptation evolution strategy (CMA-

ES).54 This is a stochastic and gradient-free numerical opti-

mization method suitable for nonlinear and nonconvex

problems.

Although we benefit from a fast forward-projection

method explained in Sec. II B, populating the VOI in every

iteration can be time consuming depending on its size and

resolution and the number of images. In order to reduce the

computational time, the motion compensation is performed

on a smaller VOI with a lower resolution. In addition, only a

portion of each image is used to populate the smaller VOI.

Rotation of the C-arm around its PA results in horizontal

motion of the seeds between images in a way that seed pro-

jections located at the top or bottom of one image appear at

the top or bottom of the other images. Therefore, we use a

narrow band from the top of each seed-only image to popu-

late the smaller VOI during the motion compensation. The

size of the VOI during motion compensation is adjusted

according to the width of the band. We also observed that

extra dilation of the band images increases the capture range

of the optimization algorithm and also decreases the number

of iterations required to obtain a sufficient motion compensa-

tion. Figure 6 shows a sample of a band image used for

motion compensation. Note that this image is more dilated

compared to the image in Fig. 3.

II.D. Seed detection and false positive removal

After motion compensation, the VOI is populated using

the improved pose computations. The seed voxels are labeled

into different clusters using the so called connected com-

ponent labeling algorithm.53 Unfortunately, tomosynthesis-

based seed reconstruction is prone to producing false positive

(FP) seeds, due to the small number of images used (see

Fig. 7). These false positive seeds should be removed before

dose calculation to avoid overestimating the radiation dose.

The FPs are generated when M cone-shaped back projec-

tions from M seed projections intersect or touch in a voxel,

which is not a true seed voxel. Therefore, the FP clusters

usually have small volumes. However, due to errors in the

pose computation (even after motion compensation) and cal-

ibration parameters, the clusters in the VOI have a wide

range of volumes as shown by a histogram of the cluster vol-

umes after motion compensation for a real patient in Fig. 8.

Indeed, some of true seed clusters can have small volumes

comparable to volume of a false positive cluster. Thus, an

FP removal method purely based on the volume of clus-

ters34,36 can also remove some of the true seeds. Lee et al.37

used an optimal coverage problem approach and a greedy

search to remove the FP seeds. They found the minimum

subset of the reconstructed seeds that covers all the seed pro-

jections in all the images. Looking at Fig. 7, one can see that

if we remove any of the true seeds from the reconstructed

seeds, we cannot cover all the seed projections in the seed-

only images. Therefore, the three true seeds are the only

subset of the reconstructed seeds that cover all the seed

projections. However, it should be noted that due to seed

projection overlap in the images, the smallest subset of the

reconstructed seeds that cover all the projections has signifi-

cantly fewer members than the number of implanted seeds.

Therefore, we use information about the cluster volumes to

add a necessary number of seeds to the covering subset to

reconstruct all the implanted seeds.

FIG. 6. A band image used for motion compensation.

FIG. 7. A false positive seed (white circle) and three true seeds (black

circles). If any of the true seeds are removed, one cannot cover all the seed

projections in the images.

5295 Dehghan et al.: Prostate implant reconstruction using motion-compensated tomosynthesis 5295

Medical Physics, Vol. 38, No. 10, October 2011



We take the following steps to identify and remove the

false positives:

1. Clusters with large volumes are separated into multiple

clusters. These clusters are generated when two seeds are

located very close to each other. Although the seed posi-

tions are planned to be at least 5 mm away from each

other, due to the seed misplacements, two seeds can be

sufficiently close to each other to form a combined clus-

ter. In this paper, we examine all clusters that have a vol-

ume greater than the median volume with a 6-neighbor

connected component labeling (the initial labeling is per-

formed using 26-neighbor connection). Usually, clusters

that are barely touching can be separated into their con-

stituent clusters. In addition, we divide the clusters that

have a volume larger than avm (a¼ 2 in this work), where

vm is the median volume.

2. The centroids of the seed clusters are calculated as seed

candidates and reprojected on the labeled seed-only

images.

3. At this point, we generate a Nt�M assignment table,

where Nt is the total number of reconstructed seed cent-

roids (N is the number of implanted seeds). Entry (i,j) of

the assignment table shows the label of the seed projec-

tion in image j where the ith seed centroid is projected.

4. If two or more seed centroids project on similar seed pro-

jections in all the images (have identical rows in the

assignment table), the one with the largest cluster volume

is saved and the rest are removed, unless the seeds are

from a separated large cluster. The seeds that are sepa-

rated from a large cluster in step 1 are marked and will

not be removed.

5. The seed centroids that project on at least one unique seed

projection in one image are marked as unique seed cent-

roids and are preserved regardless of their cluster volume.

If we remove any of these seeds, we cannot cover all the

seed projections.

6. Seed centroids that have a cluster volume smaller than a

threshold (20% of the median volume in this work) and

are not one of the unique seeds are removed.

7. The list of unique seeds is updated after removal of small

clusters. Assume Nu unique seeds are available at this

stage. The rest of the seeds share all of their seed projec-

tions with other seed centroids. Due to the seed projection

overlap (see Figs. 1 or 3), the number of unique seeds is

less than the number of implanted seeds.

8. Finally, we add N�Nu seeds with maximum cluster vol-

umes from the remaining seeds to the unique seeds to

reconstruct N seeds in total.

II.E. Numerical simulations

Four seed clouds were simulated based on four realistic

implant plans with 100, 108, 110, and 130 seeds. Seeds were

simulated as capsules with diameter of 1 mm and length of

4.5 mm, approximately equal to the radio-opaque size of 125I

seeds. The relative positions of the seed centroids were

imported from the plan. We assumed that the long axis of the

capsules is parallel to the yw axis. Seed-only images were syn-

thesized by rotating the C-arm around its PA by angles of

0�, 6 5�, and 6 10�, while the SA angle was kept constantly

at 180�. Translational errors of 0–5 mm along the yw axis with

steps of 1 mm and 0–20 mm along the zw with steps of 2 mm

were independently applied to one of the C-arm poses. All of

the five images were used to reconstruct the seeds, with and

without motion compensation. Intrinsic parameters of a GE

OEC
VR

9800 mobile C-arm were used in the simulations.

II.F. Phantom validation

A CIRS Model-053 prostate brachytherapy training phan-

tom (CIRS Inc., Norfolk, VA) was used in our phantom

study. An experienced brachytherapist implanted 136

dummy stranded seeds using 26 needles, based on a realistic

implant plan prepared by a board-certified medical physicist.

A motorized GE OEC 9800 mobile C-arm was used to ac-

quire five images by rotating the device around its PA in a

20� rotation span in approximately 5� intervals. Rotation

angles were measured using a digital protractor attached to

the C-arm source casing. In order to establish a ground truth,

the phantom was also scanned with a Picker PQ5000 CT

scanner. We segmented the seeds in the CT volume by

thresholding.

II.G. Patient study

Ten patients were implanted with 100–135 (average 112)

stranded 125I seeds at the British Columbia Cancer Agency

(Vancouver, BC, Canada). The patients had a prescribed dose

of 144.0 Gy and an average prostate target volume (PTV) of

54.5 cc. For each patient, five images were taken using a

motorized GE OEC 9800. This device has a heavy intensifier

that causes significant sagging and necessitates motion com-

pensation for seed reconstruction. The C-arm was rotated

around its PA, which was aligned with the craniocaudal axis

of the patient. The images were taken at angles of

FIG. 8. Histogram of the seed cluster volumes for a real patient. Due to the

wide range of cluster volumes, a predefined volume threshold cannot

remove the FPs.
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approximately 0�, 6 5�, and 6 10�. Rotation angles were

measured using a digital protractor or the device joint

encoders. The digital protractor had a resolution of 0.1� and

the joint encoders had a resolution of 1�. The rotation angle

around SA was fixed at 180�. However, deviations of 1� were

observed according to the C-arm joint encoders. These devia-

tions were taken into account during the seed reconstruction.

The C-arm was calibrated preoperatively. We assumed

that the C-arm intrinsic parameters were constant for all

the rotation angles and patients. The seeds were reconstructed

in a 65� 80� 70 mm3 VOI with a voxel size of 0.25

� 0.5� 0.5 mm3 and image dilation radius of 2 or 3 pixels.

During the motion compensation, band images with band

width of 150 pixels and dilation radius of 6 pixels were used

for all the patients. A 65� 10� 70 mm3 VOI with a voxel

size of 1� 1� 1 mm3 was used to achieve higher speeds.

III. RESULTS

III.A. Numerical simulations

For numerical simulations, the localization error was

measured as the distance between the reconstructed and syn-

thesized seeds after a rigid registration. Figure 9 shows the

seed detection rate and localization error of the reconstructed

seeds versus the introduced pose error. As it can be seen,

motion-compensated seed reconstruction is able to maintain

high seed detection rates and low localization errors, despite

the presence of translational pose errors, while the recon-

struction without motion compensation fails.

III.B. Phantom study

The seeds reconstructed using the motion-compensated

tomosynthesis were compared with the seeds segmented in

CT after a rigid registration. Although the CT and fluoros-

copy images were taken at different times, we assumed that

the phantom deformation and seed displacements were neg-

ligible. We achieved a 100% seed detection rate with

0.86 6 0.44 mm (Mean 6 STD) localization difference

between CT and C-arm-based reconstructions.

III.C. Clinical results

For our clinical data sets, we reprojected the recon-

structed seeds on the C-arm images as shown in Fig. 10. As

it can be seen, hidden and overlapping seeds were success-

fully reconstructed. The images were meticulously inspected

for missing seeds. The seed detection rate for each patient is

reported in Table I.

Since the real positions of the seeds were unknown, we

compared our results with the results of an available motion-

compensated matching-based seed reconstruction method49

after a rigid registration and reported the registration error in

Table I.

We achieved an average seed detection rate of 99.5%,

which is a clinically excellent result. Su et al.55 showed that in
125I prostate implants a seed detection rate of above 95% is

sufficient to achieve clinically accurate dose calculations. Our

seed detection rates are above this threshold for all the

patients. The seed detection rate without motion compensation

FIG. 9. Simulation results, showing the average seed detection rate and localization error for variable pose errors. The average of seed detection rate for errors

along yw and zw are shown in (a) and (b), respectively, for reconstructions with and without motion compensation. The mean and STD of localization error for

errors along yw and zw are shown in (c) and (d), respectively, for reconstruction with motion compensation.
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was on average below 50%. This shows the necessity of

motion compensation, when only C-arm rotation angles are

measured.

We used five images for eight of the patients. For patients

9 and 10, seed detection using four images was more suc-

cessful. This was due to inaccurate rotation angle measure-

ment for one of the images, most likely caused by inaccurate

reading of the encoder or protractor while the C-arm was still

oscillating. Grzeda and Fichtinger50 used accelerometers to

measure the C-arm rotation angles with high accuracy. In

addition, the accelerometer can sense the C-arm oscillation

and send a signal to the operator when the oscillation is suffi-

ciently decayed. Therefore, using accelerometers results in

more accurate rotation angle measurement and sharper

images.

In the case of the stranded 125I seeds used in our clinical

study, the seeds in a strand are kept at a fixed center-to-center

distance of 10 mm. In order to gain more confidence in the

reconstruction results and confirm that no significant scaling

occurred, we calculated the center-to-center distance of the

reconstructed seeds in the different strands.56 Figure 11 shows

a reconstruction, in which seeds are grouped based on their

strand. Table II shows the mean and STD of interseed spacing

for all the patients. The interseed spacing has an overall aver-

age of 10.3 mm, demonstrating an insignificant scaling effect.

IV. DISCUSSION

IV.A. Large cluster separation

In a brachytherapy plan, seeds are located at least 5 mm

apart from each other. Due to a seed misplacement or migra-

tion, two seeds may be located sufficiently close to each

other to create a combined seed cluster in the VOI. In the

case of stranded seeds, two consecutive seeds cannot move

toward each other to create a combined cluster. Neverthe-

less, two adjacent seeds that are not on the same strand may

be located sufficiently close to each other to create a com-

bined cluster.

FIG. 10. Reconstructed seed centroids projected on the C-arm image.

TABLE I. The clinical results. The reconstruction rate is assessed visually based on the projection of the reconstructed seeds on the images. The difference

reports the registration error between seed locations computed using the proposed method and an available seed reconstruction method.

Patient # Number of seeds Detection rate (%) Difference (mm) mean 6 STD Dilation radius (pixel)

1 105 100.0 0.4 6 0.3 2

2 105 100.0 0.3 6 0.4 2

3 135 100.0 0.4 6 0.3 3

4 102 99.0 0.4 6 0.3 2

5 122 100.0 0.6 6 0.4 2

6 113 100.0 0.5 6 0.3 2

7 100 98.0 0.5 6 0.5 2

8 120 99.2 0.9 6 0.5 3

9a 104 98.1 0.5 6 0.3 2

10a 115 99.2 0.6 6 0.4 2

aFor patients 9 and 10, only four images were used.

FIG. 11. Reconstructed seed centroids. Seeds on the same strand are con-

nected to each other.
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Due to C-arm calibration and pose computation errors

(even after motion compensation), the seed clusters have a

wide range of volumes (see Fig. 8). In addition, if two seeds

are very close to each other, the volume of the merged clus-

ter will not be significantly larger than a single-seed cluster.

Therefore, detection of multiple-seed clusters is not possible

by using a uniform threshold on the volume.

As mentioned, 125I seeds have larger seed projections

compared to 103Pd seeds, which lead to more overlapping

seed projections in the images, which in turn increase the

likelihood of having combined clusters in the VOI. In addi-

tion, the seed density can affect the likelihood of formation

of combined clusters. Our patients had a seed density of

approximately 2 seeds per milliliter (total number of seeds

divided by PTV), with more concentration at the posterior-

peripheral region.3 In treatment plans with a lower seed den-

sity, the seeds are more separated and merged clusters are

less likely to form.

IV.B. Determination of seed dilation radius

Even after motion compensation, the reconstruction may

suffer from minor errors in the rotation angle measurement,

calibration parameters, and geometric distortion as well as

from motion along the xw axis. Since seed clusters are

formed at the intersection of rays that emanate from a seed

projection toward the x-ray source, seed-only image dilation

can decrease the effects of the aforementioned errors as it

can increase the likelihood of seed detection by increasing

the size of the seed projections. However, if the dilation ra-

dius is too large, the seed clusters will grow in size and ulti-

mately merge. Therefore, the best dilation radius should be

chosen specifically based on the pose and parameter estima-

tion errors. We used a dilation radius of 2 pixels in the nu-

merical simulations and phantom study and a radius of 2 or

3 pixels for the patient data sets (see Table I). However, it

should be noted that a fixed dilation radius of 6 pixels was

used during the motion compensation phase in simulation,

phantom, and clinical studies. Since motion compensation is

the most time consuming part of the seed reconstruction

algorithm, it is possible to use a fixed dilation radius for

motion compensation, then adjust the dilation radius during

final VOI reconstruction and seed detection. The final VOI

reconstruction and seed detection take approximately 5 s of

runtime.

A variable dilation radius can be helpful in increasing the

detection rate without increasing the large clusters. In such a

method, the dilation radius will be larger for images or part

of images that are affected more by the aforementioned

errors, while a small dilation radius can be applied where the

errors are small. Investigation on variable dilation radius is

part of the future work.

IV.C. Localization error

In contemporary brachytherapy, implants are assessed

using CT, one or several days after the procedure. C-arm

images are, however, taken during or at the end of the proce-

dure, while the patient is still in treatment position. In addi-

tion, in our case, the TRUS probe was still partially inside

the rectum during C-arm imaging, while the CT scan was

performed without the TRUS. Due to prostate swelling dur-

ing and after brachytherapy,7 postimplant seed migration,8

and probe pressure, seed positions during CT scan were dif-

ferent from the position of the seeds when the C-arm images

were taken. Therefore, CT images of the patient could not

be used to establish a confident ground truth for the position

of the seeds in 3D. For this reason, we relied on the pro-

jection of the reconstructed seeds on the images and on the

comparison with the results of another reconstruction

method to assess our reconstructions.

It was shown that a localization uncertainty of less than 2

mm results in less than 5% deviation in the prostate D90 (the

minimum dose delivered to 90% of the prostate).57,58

Although we could not measure the seed localization error

for our clinical data sets, the localization errors in our nu-

merical simulations and phantom studies were significantly

lower than this threshold.

IV.D. Computation time

We implemented our algorithm using MATLAB on a PC

with an Intel 2.33 GHz Core2 Quad CPU and 3.25 GB of

RAM. MATLAB implementation of CMA-ES algorithm

was provided by N. Hansen.59 The CMA-ES algorithm

shows faster convergence if the parameter search region is

limited. Thus, we limited the search region to 6 30 mm

along the zw axis and 6 3 mm along yw. We used the center

of mass of the seed-only images to initialize the displace-

ment along yw. Therefore, displacements of larger than 3

mm in this direction could be recovered in the simulation

studies. This search region was sufficiently large for all clini-

cal data sets.

The criterion to terminate the optimization was set to

2000 function evaluations. This resulted in a constant recon-

struction time of approximately 1 min per patient (excluding

the production of seed-only images). Our code was not opti-

mized for computational speed. We expect to gain faster per-

formance using an optimized Cþþ implementation. Band

images and a smaller VOI with lower resolution were used

during the motion compensation phase to decrease the

TABLE II. The mean and STD of the distance between two consecutive seeds

on a strand.

Patient # Seed spacing (mm) mean 6 STD

1 10.3 6 0.4

2 10.3 6 0.3

3 10.3 6 0.3

4 10.3 6 0.3

5 10.3 6 0.5

6 10.2 6 0.4

7 10.4 6 0.6

8 10.0 6 0.5

9 10.4 6 0.3

10 10.2 6 0.4

Overall 10.3 6 0.4
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computation time. Investigation on the optimal image band

width and the size and resolution of the VOI for the least

computational cost are part of our future work.

On our patient data sets, we achieved an average seed

detection rate of 99.5% with computational time of approxi-

mately 1 min per patient. Similar detection rates were

reported using previously published tomosynthesis-based

reconstruction methods. In particular, Lee et al.37 reported an

average detection rate of 98.8% in approximately 100 s per

patient and Brunet-Benkhoucha et al.36 reported an average

detection rate of 96.7% with 36.5 s average computational

time. Brunet-Benkhoucha et al. used a radiotherapy simula-

tor, which is a precisely calibrated and accurately tracked de-

vice. Hence, they did not require motion compensation.36 As

discussed before, Lee et al.37 used the FTRAC (Ref. 46) to

initialize a pose estimation and also choose the best images to

reconstruct some seeds for seed-based motion compensation.

The same radio-opaque fiducial was also used by Jain et al.,30

Kon et al.,31 and Lee et al.32 to reconstruct the seeds using a

matching-based approach. In these works, the pose computa-

tion accuracy provided by the FTRAC was sufficient for high

detection rates without motion compensation. As mentioned,

employing such a fiducial requires an additional segmentation

task. Furthermore, image acquisition in presence of this fidu-

cial is more complicated in order to avoid an overlap between

the fiducial image and the seed projections.

In our previous work,49 we achieved an average seed

reconstruction rate of 98.5% with average computational

time of 19.8 s per patient using three images in a motion-

compensated matching-based reconstruction. Although the

detection rate in the current paper is only slightly better than

our previous work, the true advantage of the current work is

in enabling motion compensation with tomosynthesis-based

reconstruction. As discussed earlier, matching-based seed

reconstruction methods require a more complicated seed

segmentation algorithm as they require the seed projection

centroids, which are difficult to localize in the presence of

hidden and overlapping projections. Especially for 125I seeds

that have relatively longer seed projections, overlapping

seeds are more common in the projection images. For this

reason, in our previous work, we relied on manual seed seg-

mentation which is a time consuming task. Compared to

matching-based reconstructions, tomosynthesis-based recon-

struction methods require a simple image processing step to

separate the seed projection regions from the background.

Therefore, our current work introduces an alternative solu-

tion for seed reconstruction, which is especially attractive

for reconstruction of 125I seeds. We should emphasize that

the motion compensation method proposed in our previous

work is not applicable to tomosynthesis.

As mentioned in Sec. II C, rotation of the C-arm around

its PA results in horizontal movement of the seed projections

between images. If the C-arm rotates around its SA, the seed

projections move along vertical lines in the images. There-

fore, vertical bands from the sides of the images can be used

for motion compensation. Similarly to our case, the motion

in the up–down direction and perpendicular to the plane of

rotation should be compensated.

We used the constant center-to-center distance of the

stranded seeds to show that no significant scaling occurred.

However, the motion compensation and reconstruction

methods do not rely on any information limited to stranded

seeds. Therefore, we expect similar performance for non-

stranded seeds.

The motion compensation method can be extended to use

more images at the expense of computational time. Increas-

ing the number of images can reduce the number of false

positives and increase the seed detection rate. It can also

decrease the likelihood of formation of merged clusters by

decreasing the volume of seed clusters. The same effect can

be achieved by using a wider rotation span.

In our case, we assumed that the image geometric distor-

tion was negligible as we positioned the C-arm to capture

the seed projections close to the center of the image. How-

ever, correction of the geometric image distortion can

increase the seed detection rate and improve the localization

accuracy. Although image distortion is pose dependent, Jain

et al.51 showed that in small rotation spans, the correction

parameters obtained from an image acquired in the center of

the rotation span can considerably correct for the distortion

of all the images with insignificant relative deviation in

reconstructed seed positions.

V. CONCLUSIONS AND FUTURE WORK

We introduced a computational 2D motion compensation

algorithm for tomosynthesis-based seed reconstruction from

C-arm images. We initialized the C-arm pose using sole

measurements of rotation angles, and we compensated for

C-arm motions in the up–down direction and perpendicular

to the plane of rotation by maximizing the number of seed

voxels in the volume of interest. Our method does not

require reconstructed seeds for motion compensation. There-

fore, it can be used to recover from severe pose errors that

inhibit reconstruction of a sufficient number of initial seeds.

In a clinical study on ten patients, we measured the C-arm

rotation angle around its PA using a digital protractor and

C-arm joint encoders. Seed reconstruction with motion com-

pensation achieved an average seed detection rate of 99.5%,

which is a clinically excellent result, with a 1 min per patient

reconstruction time. We also achieved 100% seed detection

rate with 0.86 6 0.44 mm localization error in a phantom

study.

Our motion compensation algorithm obviates the need for

full pose tracking with radio-opaque fiducials or other exter-

nal trackers. Considering the simplicity of implementation

and high seed detection rates, our algorithm appears to be

feasible for clinical application.

Two dimensional motion of the C-arm was an essential

assumption in this work. Extension of our motion compensa-

tion to 3D and removing the scaling effect using the inter-

seed spacing are part of the future work.
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a b s t r a c t

In this paper, vibro-elastography (VE), an ultrasound-based method that creates images of tissue visco-
elasticity contrast, is evaluated as an imaging modality to visualize and segment the prostate. We report
a clinical study to characterize the visibility of the prostate in VE images and the ability to detect the
boundary of the gland. Measures for contrast, edge strength characterized by gradient and statistical
intensity change at the edge, and the continuity of the edges are proposed and computed for VE and
B-mode ultrasound images. Furthermore, using MRI as the gold standard, we compare the error in the
computation of the volume of the gland from VE and B-mode images. The results demonstrate that VE
images are superior to B-mode images in terms of contrast, with an approximately six fold improvement
in contrast-to-noise ratio, and in terms of edge strength, with an approximately two fold improvement in
the gradient in the direction normal to the edge. The computed volumes show that the VE images provide
an accurate 3D visualization of the prostate with volume errors that are slightly lower than errors com-
puted based on B-mode images. The total gland volume error is 8.8 ± 2.5% for VE vs. MRI and 10.3 ± 4.6%
for B-mode vs. MRI, and the total gland volume difference is �4.6 ± 11.1% for VE vs. MRI and �4.1 ± 17.1%
for B-mode vs. MRI, averaged over nine patients and three observers. Our results show that viscoelastic
mapping of the prostate region using VE images can play an important role in improving the anatomic
visualization of the prostate and has the potential of becoming an integral component of interventional
procedures such as brachytherapy.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Prostate cancer is the most prevalent type of cancer among men
and is projected to affect 24,600 men in Canada (Canadian Cancer
Society, 2010) and 217,730 in the United States (National Cancer
Institute, 2010) in 2010. It is the most numerous cancer diagnosed
in European men (382,000 cases in 2008) (Ferlay et al., 2010). Com-
mon treatment options include brachytherapy and radical prosta-
tectomy. Low dose rate (LDR) prostate brachytherapy is generally
used for early stage, intra-capsular prostate cancer and has rapidly
gained acceptance due to its highly successful clinical results (Mor-
ris et al., 2009). In this treatment, 40-150 small radioactive seeds
(Iodine-125 or Palladium-103) are inserted through the perineum
and permanently implanted into the prostate and periprostatic tis-
sue. In high dose rate (HDR) brachytherapy, temporary catheters
are placed inside the prostate which allow the placement of high
dose rate sources delivering the radiation treatment over a number
ll rights reserved.

lectrical and Computer Engi-
Main Mall, Vancouver, BC,

22 5949.
avi), moradi@ece.ubc.ca (M.
cancer.bc.ca (W.J. Morris),
of fractions, typically over a few days. Radical prostatectomy is a
surgical option in which the prostate is removed either by laparo-
scopic or open surgery. The surgical margin within which the pros-
tate is removed depends on the stage of the disease.

Effective treatment of prostate cancer, regardless of the treat-
ment method used, requires accurate visualization of the gland
and its surrounding region. Accurate delineation of the prostate
and appropriate visualization of the prostatic region has the poten-
tial to reduce some of the possible side-effects of the current treat-
ment methods. These complications include urinary incontinence,
impotence, and damage to the rectum and urethra (Thompson
et al., 2007).

Ultrasound is the most commonly used modality for imaging of
the prostate. This is due to its availability, safety and ease of use.
However, ultrasound B-mode images do not always delineate the
prostate reliably. As a result, prostate boundary extraction becomes
a highly subjective process (Smith et al., 2007). This is observed
specifically at the base of the gland, where the prostate merges with
the bladder neck, and the apex, where it blends into the pelvic floor
muscles. It has been shown that user segmentation variability is
large in these areas (Choi et al., 2009; Tong et al., 1998).

Many attempts have been made to improve the visibility of the
prostate in ultrasound B-mode images. These vary from the
processing of the images (Sahba et al., 2005; Pathak et al., 2000),



590 S. Sara Mahdavi et al. / Medical Image Analysis 15 (2011) 589–600
to the use of additional information from other modalities such as
MR (Daanen et al., 2006). Another recently developed option is the
use of ultrasound elastography.

Elastography (Ophir et al., 1991, 1996) is a promising technique
for imaging soft tissues and relies upon measuring tissue strain in
response to a mechanical excitation. Indeed, when compressed by
an external mechanical exciter, e.g., by the inward motion of the
ultrasound transducer in the image axial direction, softer tissue
will compress more than stiffer tissue, and therefore experience
larger strain, which can be measured and displayed by processing
the ultrasound echo data. Alternatively, tissue vibration induced by
the exciter can be measured with Doppler ultrasound (Lerner et al.,
1988), with larger vibrations corresponding to softer tissue. In
transient elastography, the propagation of a shear wave is imaged
with parallel receive ultrasound (Tanter et al., 2002). When the
excitation is dynamic, the shear modulus can be estimated as a
complex function of frequency, thus providing information on
the viscoelastic properties of tissue. In the last few years various
clinical applications of elastography have been reported in the lit-
erature. These include, but are not limited to, breast lesions (Garra
et al., 1997; Sinkus et al., 2000; Kadour and Noble, 2009; Li et al.,
2009), liver fibrosis (Castéra et al., 2005; Huwart et al., 2008; Yin
et al., 2007), vascular vulnerable plaque (Schaar et al., 2003), elastic
properties of skeletal muscle (Dresner et al., 2001), thyroid gland
tumors (Lyshchik et al., 2005), and assessment of thermal tissue
ablation (Wu et al., 2001) and for the detection of prostate cancer
(Cochlin et al., 2002; Souchon et al., 2003; Miyagawa et al., 2009;
Zhang et al., 2008; Pallwein et al., 2007; Gravas et al., 2009; Kamoi
et al., 2008; Fleming et al., 2009).

Elastography has been shown to be promising in improving the
visibility of the prostate gland and the cancer within it. In Egorov
et al. (2006) the stress pattern on the rectal wall is directly mea-
sured with the use of a transrectal probe equipped with a pressure
sensor array. Temporal and spatial changes in the stress pattern
provide information for calculating prostate features such as size,
shape and hardness. Phantom and in vivo results show that such
a method has the potential to replace digital rectal examination
(DRE). The usefulness of elastography was evaluated on 311 pa-
tients in Miyagawa et al. (2009). They showed that the sensitivity
of elastography and elastography + TRUS imaging in detecting can-
cer (confirmed by biopsy) is higher than that of DRE or TRUS only.
A higher prostate-specific antigen (PSA) level and smaller prostate
Fig. 1. Schematic representation of vibro-elastography imaging. From left to right, a b
motion xjk(t) of a tissue block indexed axially by j and laterally by k within the ultrasoun
reference to each of the tissue blocks are estimated, with the illustration showing the ref
norm of the difference in transfer functions.
volume are reported to increase the sensitivity of elastography and
elastography + TRUS. However, the high frequency of false-positive
elastography results and difficulty in the detection of cancer in the
peripheral zone are two main problems reported in their work.

Vibro-elastography is a dynamic ultrasound elastography meth-
od (Turgay et al., 2006) which models viscoelastic properties of tis-
sue. The approach is illustrated in Fig. 1. The technique relies on
the continuous real time acquisition of unprocessed ultrasound
echo data as a time series of ‘radio-frequency’ (RF) data images,
while, simultaneously, tissue is externally vibrated with a broad-
band mechanical excitation. A time series of tissue displacements
or strain images are computed from consecutive RF data images.
The tissue displacement as a function of time at a given spatial
location can be viewed as the output of a linear system whose in-
put is the motion of the exciter as a function of time. Therefore a
frequency response or Transfer Function (TF) that relates the tissue
motion at any spatial location with the exciter motion as a refer-
ence can be computed in the frequency domain. Alternatively, if
the exciter motion is not measured, a tissue region, typically in
the focal area of the ultrasound beam, can be selected as the refer-
ence. For display, the change in the transfer functions from one
spatial location to another can be computed, for example as the
L2-norm of the difference between the transfer functions over the
vibration frequency range.

In Salcudean et al. (2006) we introduced prostate ultrasound vi-
bro-elastography. The signal processing used to obtain the transfer
function images used in this paper are presented in detail in Salcu-
dean et al. (2006), together with phantom images and initial
in vivo prostate imaging data from three patients. We showed
qualitatively that this method has the potential to improve the vis-
ibility of the prostate. In this article, our goal is to evaluate quanti-
tatively the ability of vibro-elastography to visualize the prostate
in comparison to the commonly used B-mode imaging.

Toward this goal, two groups of evaluation measures are pro-
posed: image-based and volume-based measures. We first
evaluate the quality of the images, by computing the standard
measure of ‘contrast-to-noise ratio’ (CNR) in VE and B-mode
images. Since the CNR measure does not effectively assess edge
quality, we also analyze the quality of edges based on edge
strength and edge continuity. For edge strength, we use a gradi-
ent-based edge filter and a statistical edge detector. For edge con-
tinuity, we compute the similarity of adjacent edge points using a
road-band external mechanical excitation x0(t) is applied to the sample; the axial
d image is obtained from RF images at time t and t � Dt; transfer functions from a

erence being the motion xjk(t) of block jk; images are produced by displaying the L2-



Fig. 2. System setup for vibro-elastography data acquisition.
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correlation-based measure. We compare the edge evaluation re-
sults in VE vs. B-mode images. Then, in order to assess whether
the delineated prostate boundary in VE images is indeed the pros-
tate, we use volume-based measures to compare the overall shape
and size of the gland as seen in VE and B-mode ultrasound images,
with MR images as the gold standard.

The quality assessment criteria used in this paper are based on
both standard measures (percentage volume difference, percent-
age volume error, CNR, gradient filter results) and on new mea-
sures, such as changes in image statistics at edges and edge
continuity. These new measures had to be developed to deal with
the particular situation of prostate segmentation, which requires
the identification of a thin capsule within a background of rela-
tively uniform echogenicity.

A preliminary version of the results presented in this paper,
however with limited details and analyses, and fewer patients,
has appeared in Salcudean et al. (2009) and Mahdavi et al. (2009).

The paper is organized as follows: In Section 2 we summarize
the patient data acquisition and the vibro-elastography imaging
method used in this study. In Section 2.1, our data acquisition
and the resulting images are described. The proposed evaluation
measures of this paper are presented in Section 2.2. The results
of applying these measures to the collected MRI, B-mode ultra-
sound and VE data are described in Section 3. Finally, conclusions
and a discussion of our results are found in Section 4, which also
provides avenues for future research.
Fig. 3. Details of the motorized cradle.
2. Materials and methods

2.1. Data acquisition

The B-mode ultrasound, VE, and MR images used in this paper
were acquired from patients going through the standard LDR pros-
tate brachytherapy procedure at Vancouver Cancer Center, BC Can-
cer Agency, or radical prostatectomy at the Vancouver General
Hospital. The institutional ethics approval and informed patient
consent were obtained prior to data collection.

The MR images were collected between one and two weeks
prior to treatment. T2-weighted transverse MR images (slice spac-
ing 4 mm, pixel size 0.27 mm � 0.27 mm) were collected at the
UBC MRI research centre, Vancouver, with a Philips Medical Sys-
tems Achieva 3.0 Tesla MRI scanner. To minimize the deformation
of the gland and for patient comfort, imaging was carried out in a
supine position and a cardiac coil was used.

The ultrasound data were collected intra-operatively, just prior
to the actual brachytherapy or prostatectomy intervention, using
the hardware described in Section 2.1.1 and the signal processing
described in Section 2.1.2.
Fig. 4. An illustration of the longitudinal planes at which data is collected, with
respect to the prostate and TRUS probe. Here, the mid-sagittal plane, at 0�, and two
other planes at angles of �20� and +10� are shown. The orientation of a transverse
plane in the mid-gland is also displayed.
2.1.1. VE system hardware
Fig. 2 shows the transrectal ultrasound (TRUS) VE actuation sys-

tem developed in our research group for VE imaging of the pros-
tate. An LDR brachytherapy stepper (EXII, CIVCO Medical
Solutions) was modified to enable acquisition of RF data volumes.
The rotation of the cradle was motorized to enable smooth rotation
of the TRUS transducer and a shaker was mounted on the trans-
ducer cradle in order to radially vibrate the TRUS probe. Fig. 3 dis-
plays a close-up view of the motorized cradle. A PC-based control
interface allows the user to control the rotation motion range
(�45� to 50�, 0� being the mid-sagittal plane), the amplitude, and
frequency range of the transducer vibration. Synchronized with
the motion of the probe, frames of RF data are collected from a Son-
ixRP ultrasound machine with the sagittal array of a dual-plane lin-
ear/microconvex broad-band 5–9 MHz endorectal transducer
(Ultrasonix Medical Corp.). The RF sampling frequency is 20 MHz.
The vibrating TRUS probe, with a vibration range of 2–10 Hz (for
the first 14 cases) and 2–5 Hz (for the last six cases) and vibration
amplitude of approximately 1 mm, was swept from �45� to 50�
covering a fan of longitudinal planes passing through the trans-
ducer axis with a predefined angular separation of 2�. At each an-
gle, one B-mode image and frames of RF data were collected
continuously for 2 s at an approximate frame rate of 40 fps. Imag-
ing depth was set to 5 cm (or 6 cm for large prostates). Fig. 4 dis-
plays the orientation of the fan of longitudinal planes at which
data is collected, with respect to the prostate and the TRUS probe.
These planes, which we will simply refer to as ‘longitudinal’, pass
through the transducer axis and include the mid-sagittal plane at
angle 0�.
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2.1.2. VE system signal processing
The RF data were processed to obtain longitudinal VE transfer

function images. Single DOF axial motion estimation was used in
processing the RF data. Each RF data frame has 128 lines of RF data,
each having 1296 samples (1424 for larger prostates). The col-
lected RF data lines are split into blocks of 26 samples, or equiva-
lently 1 mm, with 50% block overlap. The axial displacement xjk(t)
of each block at axial location k and lateral location (line) j, and
subsequently the axial strain, were computed from one RF data
frame to the next by using a correlation-based method, as de-
scribed in Zahiri-Azar and Salcudean (2006), resulting in axial dis-
placement images of 128 lines by 100 blocks.

An image-based reference was used to compute the transfer
function images. It was computed as the average strain, at half
the tissue imaging depth, of all the 128 lines. This specific depth
was chosen due to two reasons. First, the ultrasound imaging focal
point is usually set at this depth, resulting in a more accurate mo-
tion estimation. Second, in our images, the half depth line is more
likely to be enclosed entirely within the prostate, resulting in more
uniform mechanical properties along the line.

The transfer functions Hjk
ref ðj2pf Þ

� �
from this reference to each

of the blocks in the strain images were computed using standard
signal processing methods described in Salcudean et al. (2006).
Transfer function images were generated by computing:

TFjk ¼
1

f2 � f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ f2

f1

Hjk
ref ðj2pf Þ � Hj�1;k

ref ðj2pf Þ
� �2

df

s
ð1Þ

where [f1, f2] describes the frequency range of interest, which in this
paper coincides with the range of the broad-band vibration applied
to tissue.

If we assume that the Fourier transform of the reference de-
scribed above is unity, then the contrast in the transfer function
image from one spatial location (e.g. a reference) to another corre-
sponds to the strain energy difference between these locations in
the frequency range f1 to f2. By computing the ‘difference’ between
transfer functions of consecutive blocks j and j � 1 on line k, with
respect to reference ref (Eq. (1)), changes in stiffness, including
the prostate boundary, are highlighted. Throughout this paper,
we will refer to these vibro-elastography transfer function images
as VE images. An approach to obtain both elasticity contrast and
relaxation-time/viscosity contrast using a Voigt tissue model to
represent the transfer functions is presented in Eskandari et al.
(2008).
Fig. 5. Transverse B-mode (left), VE (middle) and MRI (right) prostate images of two patie
From these sets of longitudinal images, 3D VE volumes were
generated by interpolation (slice spacing in transverse direction,
0.43 mm, pixel size 0.5 mm � 0.5 mm). Similarly, the 3D B-mode
volume (slice spacing in transverse direction 0.43 mm, pixel size
0.37 mm � 0.37 mm) was created from the collected longitudinal
B-mode images. Various approaches to creating 3D volumes are
described in detail in Fenster et al. (2001). Our method of con-
structing a 3D volume by interpolating longitudinal images suffers
from a decrease in image resolution as the depth increases. How-
ever, the resolution can be increased by using finer angle incre-
ments at the expense of scan time. Another alternative is to use
the transverse (convex) array of the TRUS probe to generate a 3D
sector view by changing the depth of the transducer with respect
to the prostate. This approach also has the issue of decreasing res-
olution at increased depth because the scan is acquired with a con-
vex array. Furthermore, such a transverse plane sweep changes the
TRUS position in the rectum causing the prostate to move as a
function of probe depth, which is clearly undesirable. The analysis
performed in this paper uses the transverse plane of the con-
structed 3D volumes for evaluation. This choice was made because
of the preference of the transverse view by the clinicians, and also
for agreement with the transverse MRI images.

Fig. 5 shows transverse VE, B-mode and MRI images of the pros-
tate mid-gland of two patients. Half of the prostate boundary is
delineated in one of the image sets. In Fig. 6 mid-sagittal VE (top
row) and B-mode (bottom row) prostate images of three different
patients can be seen. The prostate is the stiffer region as outlined in
the VE image.

Table 1 describes the image types and number of cases used in
this paper. VE and B-mode images were obtained from 20 patients.
Among these 20 cases, which consist of 178 co-registered VE and
B-mode image pairs, 107 images are in the transverse plane and
are used for edge evaluation. The remaining 71 images are in the
longitudinal plane at multiples of 5� intervals with the mid-sagittal
plane and are used along with the 107 transverse images, for CNR
analysis. MRI data was also available for nine of the patients. These
nine data sets are used for volume evaluation. The initial study
started by recruiting patients for VE imaging at the time of the vol-
ume examination. However, we found that the patients were ner-
vous and very uncomfortable with the additional time required to
take the images with a different ultrasound machine. In some cases
we were able to collect US data, but the same patients were not
available for MRI, due to illness, ineligibility for MRI, and difficulty
traveling for the additional medical exam. For the data acquired
nts. The boundary of the prostate is partially segmented in the second set of images.



Fig. 6. VE (top) and B-mode (bottom) sagittal images of the prostate of three different patients. The boundary of the prostate is outlined in one of the patients.

Table 1
Description of the data used in this paper.

Data set size Image type Image plane

Volume analysis 9 cases MRI, VE, transverse
B-mode

CNR analysis 178 images VE, B-mode 107 transverse,
(20 cases) 71 longitudinal

Edge analysis 107 images VE, B-mode transverse
(11 cases)
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during the volume study, the acquisition time had to be mini-
mized. Therefore the number of MRI scans that we have used in
our study is limited. Nevertheless, this number is similar to that
used in Smith et al. (2007) that compares B-mode based prostate
segmentation to MRI. Furthermore, in Smith et al. (2007) and most
of the studies cited therein, post-operative MRI is compared with
TRUS. However, tissue will change as a result of treatment. We be-
lieve that comparison based on pre-operative images is necessary
for general assessment of the gland’s visibility and treatment
planning.
1 For interpretation of color in Figs. 1–3, 8, 9 and 13–15, the reader is referred to the
web version of this article.
2.2. Evaluation methods

In order to assess the visibility of the prostate in VE images, we
utilize several evaluation measures. These include image-based
measures, which consist of contrast-to-noise ratio, edge continuity
and edge strength, and volume-based measures, which consist of
volume error and volume difference. For more accurate region-
based evaluation, the results of these measures will be reported
for nine sectors of the gland. To do so, as shown in Fig. 7, the pros-
tate is divided into the base, mid, and apex regions. Then, each re-
gion is further divided into posterior, anterior and lateral parts.
Quadrant-based division of the prostate is a common approach in
the literature (Sidhu et al., 2002; Thomas et al., 2007). However,
for our application, this subdivision scheme provides more detailed
reporting of results for different regions of the gland. This is moti-
vated by the difference in the importance of the prostatic and per-
iprostatic tissue in various regions. For example, various clinical
studies have shown that in LDR brachytherapy, overdosing the
posterior region of the prostate results in rectal complications
(Snyder et al., 2001).

2.2.1. Image-based measures
Accurate delineation of the prostate is affected by how the pros-

tate is visualized. A ‘‘good’’ image of the prostate is one in which
the prostate has high contrast relative to the background and has
well-defined edges. A good edge should be both ‘‘continuous’’
and ‘‘strong’’. In this analysis, VE images of the prostate are com-
pared to B-mode ultrasound images using the measures of con-
trast, edge strength, and edge continuity as described below.

2.2.2. The contrast-to-noise ratio
To compare the contrast of VE and B-mode images, the contrast-

to-noise ratio (CNR) was calculated using the following equation
(Bilgen and Insana, 1997):

CNR ¼ 2 mt �mbð Þ2

r2
t þ r2

b

ð2Þ

in which m and r2 are the mean and variance of pixel intensities of
the target, t, and background, b, in a region of interest (ROI). The ROI
of the target and background were manually selected in four re-
gions of the prostate (lateral left, lateral right, anterior and poster-
ior). The target is an area inside the prostate while the background
is an area outside the prostate close to the target ROI (respectively
yellow1 and blue boxes in Fig. 8). The physical size and position of
the ROI in VE and B-mode images were similar. Additionally, to en-
sure similarity between the intensity range in both set of images,
histogram stretching [0–255] was initially applied to the images.

The contrast between the prostate and its background is typi-
cally low in B-mode ultrasound images (see Fig. 5). However, due
to the presence of a visible edge, delineation of the prostate is still
possible. Therefore, CNR alone can not evaluate the visibility of an
object in an image and edge evaluation is also required.

2.2.3. Edge strength
An edge can be defined as the boundary between two regions in

an image that are different from each other with respect to some



Fig. 7. Division of the prostate into nine sectors.

Fig. 8. Selection of inside (yellow boxes) and outside (blue boxes) regions of the prostate for CNR computation in (a) B-mode and (b) VE images. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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local property (Kitchen and Rosenfeld, 1981). While conceptually
clear, this definition is difficult to quantify. However, for the pur-
pose of this study we need quantitative measures. Two different
measures of edge strength are presented here. One is a conven-
tional gradient-based edge filter and the second one is a test that
identifies the statistical changes in image intensity. The edge
strength measures are computed for radial edge profiles formed
as follows: On each transverse image, we extended radii at
hi = i � 30�, i = 1, . . . , 12 in polar coordinates originating from a
manually selected center point, C, inside the prostate. The intersec-
tions rhi

; i ¼ 1; . . . ;12, of these radii with the prostate boundary
were manually identified for each angle hi. For each edge point, a
radial edge intensity profile Ihi

ðrÞ was extracted. The measures of
edge strength were calculated for the window of r 2 ½rhi

� Dd;
Fig. 9. (a) The radii used for edge profile extraction in a VE image, originating from C and
are also illustrated. (b) A close-up view of one of the rays used for extracting the ed
r 2 ½rhi

� Dd; rhi
þ Dd�, where rhi

is a manually selected edge point along the ray. The neigh
continuity measure.
rhi
þ Dd�, where Dd is half the length of the edge intensity profile

(see Fig. 9).
Gradient-based measure of edge strength: The following gradient

formulation, also used in Abolmaesumi and Sirouspour (2004), was
used as the edge filter acting on a radial edge intensity I(r), where
we remove, for convenience, the hi index of I:

fedgeðrÞ ¼ 1=3� ½Iðr þ 2DrÞ þ Iðr þ DrÞ þ IðrÞ � Iðr � DrÞ � Iðr

� 2DrÞ þ Iðr � 3DrÞ�2 ð3Þ

where Dr is the physical size of the image pixel.
M, our measure of edge strength, is the sum of the filter outputs

on windows of size n pixels (n an odd integer) normalized to the
sum of edge filter values on the entire edge profile:
with angles hi = i � 30�, i = 1, . . . , 12. For one of the radii, the two neighboring radii
ge profile Ihi

ðrÞ. The measures of edge strength are calculated for the window of
boring edge profiles Ihi�dh , are extracted similarly and used along with Ihi

in the edge
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MðrÞ ¼
Xj¼rþðn�1ÞDr=2

j¼r�ðn�1ÞDr=2

fedgeðjÞ
, Xj¼rhi

þDd

j¼rhi
�Dd

fedgeðjÞ ð4Þ

The normalization is performed so that we can compare results
for different areas. M is computed along r 2 ½rhi

� Dd; rhi
þ Dd�, and

is expected to have a strong peak at the edge. In our implementa-
tion, parameter values were set to Dd = 0.5 cm and n = 5 pixels.

DF statistical test: The performance of the gradient-based edge
detector can be plagued by local minima in US images. Therefore,
we present a new approach that models the difference of the radial
edge intensity profile as an autoregressive process. The edge
strength is characterized based on the degree of stationarity of this
process. The stationarity of the edge profile is tested using the
statistical test proposed by Dickey and Fuller (1979). Each radial
intensity profile, was considered as a time series Ihi

ðkÞ : ¼ Ihi

ðkDrÞ, where the discretized radial distance k, such that
kDr 2 ½rhi

� Dd; rhi
þ Dd�, replaces the usual time index.

The edge profiles, Ihi
ðkÞ, can be modeled as a first order autore-

gressive AR(1) processes as follows:

Ihi
ðkÞ ¼ qIhi

ðk� 1Þ þ er ð5Þ

where q is a real number and er is a sequence of independent nor-
mal variables with mean 0 and variance r2. In order to show that an
AR(1) model is sufficient for modeling the edge profiles, we com-
puted the partial autocorrelation function (PACF) of Ihi

ðkÞ. The PACF
of an AR(1) process has significant values only at lag = 1. In 78% of
the edge profiles extracted from both B-mode and VE images, at
the significance level of 0.05, the PACF function only has significant
values at lag = 1.

Ihi
ðkÞ is stationary if jqj < 1. If a unit root exists (jqj = 1), then the

variance of Ihi
ðkÞ is rr2, and therefore Ihi

ðkÞ is non-stationary. In
many economics applications, the existence of the unit root, which
is an indication of a ‘‘trend’’ or a ‘‘shock’’, is important for modeling
and forecasting the future observations of a time series. Dickey and
Fuller (1979) provided a statistical method to test an AR model for
the null hypothesis of the existence of a unit root. If we re-write (5)
as follows:

DIhi
ðkÞ ¼ Ihi

ðkÞ � Ihi
ðk� 1Þ

¼ ðq� 1ÞIhi
ðk� 1Þ þ er

¼ cIhi
ðk� 1Þ þ er

then the DF test is formulated as follows:

H0 : q ¼ 1$ H0 : c ¼ 0 ð6Þ
H1 : q < 1$ H0 : c < 0 ð7Þ

Note that the test is performed on the residuals and not the
time series samples. Therefore, the standard t-distribution cannot
be used. Dickey and Fuller provide a non-standard statistic s,
which depends on the number of observations, and provide tables
of critical values for it. In other words, based on the calculated va-
lue of s, they provide the significance level at which the null
hypothesis above can be rejected. We used the implementation re-
ported in Kanzler (1998) to perform the DF test.

The statistical properties of the intensity profile are altered at
the edge. The existence of a strong edge in the time series is an
obvious trend. A signal with a trend cannot be stationary, since
its statistical moments depend on time, or in our model, on dis-
tance. In other words, if one traces the image in the radial direc-
tion, the intensity profile tends to become non-stationary upon
passing through an edge. To evaluate the edge quality, we compute
and report the percentage of edge profiles for which, according to
the DF test, the stationarity hypothesis is strongly rejected
(p < 0.05) for the edge profile. For an image with strong edges,
one expects to see a high percentage of edge profiles for which
the unit root exists and the stationarity hypothesis is strongly
rejected.

2.2.4. Edge continuity
Detecting an edge point on a single edge profile can not guaran-

tee the presence of an edge. Continuity of the presence of such a
point within a neighborhood is an important factor for the visibil-
ity of the edge. We measure this continuity by measuring the sim-
ilarity of the edge region within a neighborhood.

For a continuous edge, two neighboring edge profiles are ex-
pected to be similar, although slight differences may be present
due to image noise or in the case of ultrasound, speckle. The nor-
malized cross-correlations Rhi ;hi�dhðrÞ of the two neighboring edge
intensity profiles Ihi

ðrÞ and Ihi�dhðrÞ, r 2 ½rhi
� Dd; rhi

þ Dd� and the
average cðhiÞðrÞ ¼ 1

2 ½Rhi ;hiþdh þ Rhi ;hi�dh� were calculated for each
point, rhi

, at which the radius rhi
intersects the edge (see Fig. 9).

The parameters we used for this implementation were hi = i � 30o,
i = 1, . . . , 12, Dd = 0.2 cm, and dh such that the arc length between
the two adjacent edge profiles is 0.2 cm.

For a large similarity between adjacent edge profiles, chi
should

have a shape similar to the shape of a Gaussian function with large
peak at the edge point and a small standard deviation. Thus, we
propose that the following edge continuity measure, K(hi), be
calculated:

Khi
¼ P2ðhiÞ

rðhiÞ
ð8Þ

in which P(hi) and r(hi) are the peak and standard deviation of a
Gaussian function fitted to chi

.

2.2.5. Volume-based measures
The volume of the prostate is an important parameter in plan-

ning the dose distribution in LDR brachytherapy. A well-defined
3D shape can also aid prostatectomy. To evaluate the shape and
size of the prostate created from VE images, we compare them
with the shape and size extracted from the commonly used B-
mode ultrasound images. Since MR images of the prostate provide
more anatomical details including visualizing the boundaries, the
3D surface extracted from MR images is used as the gold standard.
Contouring in all three image types was performed manually and
by three observers: one radiation oncologist and two trained by ex-
perts. The ‘volume difference’ and ‘volume error’ between surfaces
created from MR and VE/B-mode images (i.e. MR vs. VE or MR vs.
B-mode) provide shape and size similarity errors that can be used
to compare to the gold standard provided by MRI.

The percent volume difference provides a measure of the differ-
ence in the size of the total gland and each of the nine sectors in
VE/B-mode images compared to the gold standard MRI. It is de-
fined as:

Vdiff % ¼ 100� VVE=B-mode � VMRI
� ��

VMRI ð9Þ

The percent volume error is the volume of the non-overlapping
region between the surface of the prostate generated from VE/B-
mode images and that of MR, divided by the sum of the two vol-
umes. This is defined as:

Verr%¼100� VVE=B-modeþVMRI�2ðVVE=B-mode
T

MRIÞ
� ���� ���. VVE=B-modeþVMRI

� �
ð10Þ

In other words, it provides a measure of the difference in the
shape of the gland compared to the gold standard. This definition
is equivalent to 1 � DSC, in which DSC is the Dice Similarity Coef-
ficient (Dice, 1945).

The 3D shape of the prostate, in each modality, was extracted by
manually segmenting the 2D images with the use of the Stradwin
(Treece et al., 2000) software. This software was then used to



Fig. 10. Registration of B-mode/VE prostate surfaces to MRI.

Table 2
CNR comparison of VE and B-mode images.

Base Mid Apex

CNR VE 10.25 ± 12.83 13.73 ± 5.85 20.51 ± 23.13
CNR B-mode 2.07 ± 1.06 1.43 ± 0.75 1.56 ± 1.16
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Fig. 12. The values of the gradient-based edge strength measure (M) along the edge
profiles for VE and B-mode images. Error bars represent the inter-patient standard
deviation of the M values.

Table 3
The percentage of non-stationary prostate edge profiles in different areas of the B-
mode and VE images. Standard deviations reported characterize inter-patient
variations.

% VE B-mode ultrasound

Base Mid Apex Base Mid Apex

Ant. 67.9 ± 4.6 99.2 ± 1.1 99.9 ± 0.2 71.4 ± 2.8 80.8 ± 4.1 76.6 ± 7.5
Lat. 79.5 ± 3.1 98.8 ± 0.9 98.1 ± 1.7 66.1 ± 3.5 81.3 ± 2.5 88.9 ± 5.1
Post. 78.6 ± 3.5 99.2 ± 1.9 99.8 ± 0.2 67.9 ± 3.2 80.8 ± 4.1 84.1 ± 8.1
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transform the 2D contours into a 3D surface which could be
opened in MATLAB�. MATLAB� is the environment in which we
performed all our calculations.

To register the MRI and ultrasound images we opted for a rigid
registration approach, as opposed to a deformable registration one.
Indeed, these images were not acquired at the same time and the
patients were in the dorsal lithotomy position during B-mode
and VE acquisition and supine position during MR acquisition. Fur-
thermore, the patients were anaesthetized and relaxed prior to the
procedure, while they were awake and possibly tense during the
MRI exam. A non-rigid (deformable) registration is not a suitable
registration option since the goal is to understand the differences
between the manually segmented surfaces. A deformable registra-
tion which maps one surface to the other will conceal these
differences.

We assume that the main cause of mis-registration of the sur-
faces is the angle of the prostates’ base-apex axis with the TRUS
probe. This is mainly a result of the patient’s orientation during
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Fig. 11. The values of the normalized gradient-based edge strength measure (M) in arbit
prostate gland.
imaging. We also assume that the size of the prostate does not
change between data collection sessions and the prostate does
not rotate around its base-apex axis by a large angle. For each sur-
face, this axis was obtained by fitting a line to the centers of the
prostate contours in each image slice.

With these assumptions, to register the prostate surfaces PB (the
VE or B-mode surface) to PA (the MRI surface), a translation~tAB is
first applied in order to match their geometric centers CA and CB.
A rotation Rh around the matched geometric center is then applied
to rotate the base-apex axis of the translated prostate PB to the
B−mode
VE
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S. Sara Mahdavi et al. / Medical Image Analysis 15 (2011) 589–600 597
main axis of PA. h is the angle between the base-apex axis of the
two surfaces, obtained as described above. Finally a six degree-
of-freedom Iterative Closest Point (ICP) method (Besl and McKay,
1992) translates ~tICP

� �
and rotates (RICP) the resulting surface to

fine-tune the registration, resulting in PB-registered (Fig. 10), is de-
scribed as:

PB-registered ¼ RICP Rh PB þ~tAB
� �

þ~tICP
	 


ð11Þ

The volume error and volume difference is calculated for the
rigidly registered surfaces.
3. Results

3.1. Image comparison

3.1.1. The contrast
The CNR of VE and B-mode images, averaged over the three sec-

tions of the prostate, is shown in Table 2. Data from 178 images
(from 20 patients) were used in this analysis. In all three regions
the CNR of VE is significantly higher than that of B-mode
(p < 0.05 for base, and p < 0.001 for the mid-gland and apex
regions).

3.1.2. Edge strength: gradient-based measure
The gradient-based measure of edge strength, M, was computed

for edge profiles in the nine regions described in Section 2.2
(Fig. 7). The VE and B-mode images have different resolutions. This
is due to the fact that the window size used for displacement esti-
mation in VE images is larger than the B-mode pixel. Therefore, the
choice of n (the window size), affects the value computed for M.
We examined values of window sizes in the range of n = 2 to
n = 10 and in all cases, the results of edge analysis were consistent.
The reported results were acquired for n = 5. The result, extracted
from 107 images of 11 patient datasets, is illustrated in Fig. 11
for the nine regions and in Fig. 12 for all regions combined. As illus-
trated in Fig. 11, the VE edges are notably stronger than B-mode
edges with the exception of the anterior base and the posterior
apex. The other observation of note is that the values of M show
an evident peak in all areas of VE images, with the exception of
Table 4
Average edge continuity measure, K, for the nine regions of the gland.

K(hi) VE

Base Mid Apex

Ant. 0.64 ± 0.37 0.87 ± 0.33 0.84 ± 0.37
Lat. 0.84 ± 0.39 1.15 ± 0.36 0.85 ± 0.27
Post. 0.99 ± 0.44 0.82 ± 0.35 0.60 ± 0.55

Fig. 13. Comparison of VE (magenta) vs. MRI (blue) 3D surfaces, on the left, and B-mo
interpretation of the references to colour in this figure legend, the reader is referred to
the anterior base. In the case of B-mode images, in some areas such
as the lateral and anterior apex and the lateral mid-gland, the
edges are very weak and are not represented by a dominant peak
in the gradient values. In the posterior region of the prostate (the
last row in Fig. 11) the B-mode edge strength appears to be similar
or slightly higher than the VE edge strength.

It is evident from Fig. 12 that, overall, edges in VE images are
stronger. At the edge point, the normalized M value is 2.2 times lar-
ger in VE images compared to B-mode images.

3.1.3. Edge strength: DF test of stationarity
Table 3 shows the percentage of edge profiles for which the DF

test strongly shows a unit root (p < 0.05), and therefore, non-sta-
tionarity. 107 images from 11 patient datasets and 12 edge profiles
within each image, were used in this analysis. This result is re-
ported separately for the nine regions. The edges appear stronger
in VE images in all areas, with the exception of the anterior base
(matching the result from the gradient-based edge strength). In
general, the edges in the base region are relatively weak in both
modalities.

3.1.4. Edge continuity
Table 4 shows the edge continuity value, K, computed for VE

and B-mode images in nine regions of the gland. 107 images from
11 patients were used in this analysis. The edge continuity of VE in
all regions except for the anterior base and posterior apex is shown
to be superior to that of B-mode images. This is also in agreement
with the results of the gradient-based measure of edge strength
(Fig. 11).

3.2. Volume comparison

Fig. 13 shows an example of VE (magenta) and B-mode (green)
3D surfaces compared to that of MRI (blue) for one of the patients.
Figs. 14 and 15 compare the percent volume error and volume dif-
ference between B-mode and MRI and between VE and MRI pros-
tate surfaces manually created by one radiation oncologist (Figs. 14
and 15b) and two individuals trained by experts (Figs. 14, 15a and
Figs. 14, 15c). Images from nine patient data sets were used. From
Fig. 14 it can be seen that in most regions of the prostate, the mean
K(hi) B-mode ultrasound

Base Mid Apex

0.71 ± 0.52 0.69 ± 0.41 0.50 ± 0.32
0.63 ± 0.40 0.48 ± 0.23 0.39 ± 0.29
0.52 ± 0.38 0.51 ± 0.32 0.75 ± 0.55

de (green) vs. MRI (blue) 3D surfaces, on the right, from one of the patients. (For
the web version of this article.)
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Fig. 14. A comparison between VE vs. MRI volume error and B-mode vs. MRI
volume error, showing the mean and inter-patient standard deviation of Verr% for
three observers. Sample data points are also shown as gray dots.

Ant.B Ant.M Ant.A Lat.B Lat.M Lat.A Post.B Post.M Post.A Total
−80

−60

−40

−20

0

20

40

60

80

Vd
iff

− 
O

bs
 3

VE vs. MRI
B−mode vs MRI

Ant.B Ant.M Ant.A Lat.B Lat.M Lat.A Post.B Post.M Post.A Total
−80

−60

−40

−20

0

20

40

60

80

Vd
iff

− 
O

bs
 1

VE vs. MRI
B−mode vs MRI

Ant.B Ant.M Ant.A Lat.B Lat.M Lat.A Post.B Post.M Post.A Total
−80

−60

−40

−20

0

20

40

60

80

Vd
iff

− 
O

bs
 2

VE vs. MRI
B−mode vs MRI

Fig. 15. A comparison between VE vs. MRI volume difference and B-mode vs. MRI
volume difference, showing the mean and inter-patient standard deviation of Vdiff%
for three observers. Sample data points are also shown as gray dots.
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volume error between VE and MRI is less than that between
B-mode and MRI.
Over the total gland, a volume error of 8.8 ± 2.5% for VE vs. MRI
and 10.3 ± 4.6% for B-mode vs. MRI, and a volume difference of
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�4.6 ± 11.1% for VE vs. MRI and �4.1 ± 17.1% for B-mode vs. MRI,
averaged over nine patients and three observers, were obtained.
However, a one-sided analysis of variance does not show any sta-
tistically significant difference, which may also be due to the lim-
ited number of patients. In general because the prostate is not
discernible at the base and apex, a larger error in shape (volume er-
ror) and size (volume difference) between VE or B-mode surface
and the gold standard in these two regions compared to the mid-
gland is expected. However, in general, and over the three observ-
ers, VE errors are smaller than those from B-mode.
4. Discussion and conclusions

In this paper ultrasound vibro-elastography was evaluated as an
imaging modality for the visualization of the prostate. VE transfer
function (TF) images were qualitatively and quantitatively com-
pared with the commonly used B-mode ultrasound. The evaluation
measures used were both image-based (CNR, edge continuity and
edge strength) and volume-based (volume error and volume differ-
ence). A nine sector analysis was used for more detailed character-
ization. The results on 178 images suggest that the VE images are
significantly superior to B-mode images in terms of contrast of the
gland. The gradient-based and the DF-based measures of edge
strength and the edge continuity measure, on 107 images, all show
that on average VE images provide stronger edges as well. It is
important to emphasize that the statistically significant outcomes
of our analysis of edge continuity and gradient-based edge
strength are consistent: the edges in base-lateral, mid-lateral,
mid-anterior, and lateral apex are significantly stronger and more
continuous (p < 0.05 for the one-sided analysis of variance) in VE
images compared to B-mode images. The K and M values, in addi-
tion to the visual inspection of the images, show that on average
the anterior base and posterior apex of the prostate has weak edges
on VE images.

The B-mode data used in this paper was collected simulta-
neously with the RF data used for creating the VE images. In other
words, B-mode and VE images were acquired under exactly similar
conditions and are co-registered.

The comparison of volumes calculated from VE and B-mode
prostate images show that VE volumes are closer to the MRI gold
standard in most regions of the prostate, both in terms of shape
and size. This confirms that the outlined region used in the im-
age-based evaluation of VE, is indeed the prostate. In this compar-
ison, prostate images from 9 patients were manually delineated by
three observers (one expert and two trained by experts). The total
gland volume error for VE vs. MRI was 8.4 ± 2.9%, 8.3 ± 1.8%, and
9.8 ± 2.8% for the three observers. For B-mode vs. MRI, these values
were 8.6 ± 4.8%, 11.3 ± 4.7%, and 11.0 ± 4.4%. The total gland vol-
ume difference for VE vs. MRI was �5.3 ± 11.7%, �8.1 ± 8.8%, and
�0.3 ± 12.1% for the three observers. For B-mode vs. MRI, these val-
ues were �8.7 ± 13.8%, �1.4 ± 20.2%, and �2.1 ± 17.7%.

It is also worth noting that Vdiff (see Eq. (9)) measures the pros-
tate volume ratios for B-mode/MRI and VE/MRI (Vdiff = VB-mode/
VMRI � 1). Smith et al. (2007) report a MR/US prostate volume ratio
of 1.11 ± 0.10 averaged over prostate surfaces from 10 patients
outlined by seven observers, repeated twice. Similar results from
other work have been listed in a table therein. The MR/US prostate
volume ratios for the nine patients in our database are 1.12 ± 0.18,
1.05 ± 0.21, and 1.05 ± 0.19, for the three observers, which support
previous work. For MR/VE, these values are 1.07 ± 0.13, 1.10 ± 0.10,
and 1.02 ± 0.13. However, the volume ratio or Vdiff only report dif-
ferences in the size of the prostate, whereas two prostate surfaces
can be greatly different in shape but have equal volumes. Verr,
which we have included in this paper, can provide useful charac-
terization of the shape difference.
Currently, one dimensional axial motion estimation is used for
creating the VE images. Any out of plane motion, including the lat-
eral motions caused by the slippage between the protective sheath
on the probe and the surface of the rectum during VE data collec-
tion, can affect the VE images. This can be improved upon by using
2D motion estimation techniques to account for lateral tissue mo-
tion. We have not used 2D motion tracking because most of the
displacement estimates between consecutive frames of RF data
are sub-sample. We have shown that the gain based from 2D mo-
tion estimation in such cases is not significant enough to warrant
its use (Zahiri-Azar et al., 2010) unless beam-steering is employed,
such that the lateral motion is estimated from two axial measure-
ments at different beam angles, e.g. ±10�. The increase in the num-
ber of axial measurements lowers the sampling rate and we opted
not to do that in this set of experiments.

One should also keep in mind that the presence of the TRUS
probe results in deformation of the posterior region of the gland
in both VE and B-mode surfaces. For more accurate registration
of these surfaces with those from MRI, this deformation could be
accounted for. However, since the B-mode and VE images that
we use in this paper are exactly registered to each other, this defor-
mation will only result in a bias in the volume error and volume
difference, especially in the posterior region, with MRI surfaces.
The result of such a bias can be seen to be a generally larger mean
and standard deviation in the volume error and volume difference
of the posterior region in all three observers, compared to that of
the lateral and anterior regions.

It is important to note that several papers have reported in vivo
and in vitro studies on healthy vs. cancerous human prostate tissue
showing that prostate tumors are stiffer than normal tissue (Parker
et al., 2011; Zhang et al., 2008; Kamoi et al., 2008; Salomon et al.,
2008). In a study by Kallel et al. (1999) elastography images
showed contrast between anatomical structures of freshly excised
canine prostates. The central gland was consistently softer than the
peripheral gland. In the current work we addressed in vivo valida-
tion of ultrasound elastography as a tool for delineation of the hu-
man prostate gland itself.

As a final note, the best validation of the prostate gland segmen-
tation could be a comparison to pathology, the undisputed gold
standard. Such a study requires access to the whole mount pathol-
ogy, and viable solutions to the open problem of how to register
the shrunk, misaligned pathology slices to pre-operative images.

We have quantitatively shown that VE is a promising imaging
modality for delineation of the prostatic region and the use of such
data along with B-mode ultrasound can improve the visualization
of the gland. Determination of the clinical value of VE in cancer
detection is the subject of our future research.
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Introduction – With an estimated 240,890 cases to be diagnosed in 2011, prostate cancer (PCa) remains among the most common male malignancies 
with an annual death toll of 33,270 men. Prostate tumors are not visible in the transrectal ultrasound (TRUS) B-mode images used for the guidance of 
routine biopsies. Therefore, TRUS biopsy is not targeted. There is strong evidence that multiparametric MRI (mpMRI) including Diffusion Weighted 
(DW) and Dynamic Contrast-Enhanced imaging (DCE) in addition to the T2-weighted MRI can improve the accuracy of PCa localization and 
staging [1]. We have reported transperineal MR-guided prostate biopsy with highly accurate targeting as a solution to improve the accuracy of the 
biopsy process in detection of prostate cancer [2, 3]. The targets are selected by a team of three radiologists, based on pre-operative mpMRI (Fig. 1). 
The objective of the work presented here is to assess the feasibility of quantitative analysis of mpMRI aided by a machine learning approach to assist 
the target selection process. The idea is to train a classifier on the mpMRI data from radical prostatectomy patients with histologically confirmed 
PCa. The resulting classifier is used retrospectively on the data from patients that have undergone MR-guided prostate biopsy, in the areas selected as 
targets by the radiologists, to compute a measure of the probability of cancer and compare with the histological analysis of the core biopsy samples. 

Materials and Methods – Data: All patients were enrolled in a 
prospective clinical study approved by the institutional review board. All 
patients underwent mpMRI exams in a GE 3T MR scanner using an 
endorectal coil and included T1w, T2w, DWI and DCE sequences. The 
training group (N=13) comprised of the patients that had confirmed PCa and 
underwent radical prostatectomy. In this group, an expert radiologist 
contoured areas of the prostate peripheral zone (PZ) that were cancerous as 
reported in the histopathology report and suspicious on T2W (low SI), raw 
DCE (rapid enhancement and wash out after gadolinium agent 
administration) and Average Diffusion Coefficient ADC maps (low SI) 
sequences. The opposite characteristics were considered true of normal 
prostate PZ. This yielded 16 cancerous and 5 normal regions with a total 
voxel count of 1499. The second group of patients included all of the cases 
that have undergone 3T MR-guided biopsy with our current protocol in 
place as of January 2011, and have at least one biopsy target in the PZ. 
This amounted to five cases with a total of ten PZ biopsies. 

Classification approach: The values of ADC from DWI b0-500, 
and Ktrans, ve, time to peak (TTP) and area under the curve (AUC) from 
perfusion imaging were available for each pixel. It was observed that only 
the values of ADC formed distinctly different distributions in the cancer vs. 
normal regions in the training dataset (Figure 2). We employed two machine 
learning approaches. First we used our previously reported multi-feature 
support vector machine (SVM) for mpMRI classification [4] with all possible combinations of the five 
available parameters. Training and cross-validation was performed on the prostatectomy dataset with a 
leave-one-patient-out validation scheme. The best outcome was achieved when only ADC was used as the 
sole feature. Guided by this outcome, we then used a single-feature Bayesian framework using only ADC 
to build a machine learning solution to predict the outcome of the biopsies. In the Bayesian approach, 
based on the bell-shaped distributions of the ADC values in the two classes, we assumed Gaussian 
distributions for the likelihood of ADC values in cancer P(ADC=a | C) and normal areas P(ADC=a | N). 
The mean and standard deviations for these distributions were derived from a Gaussian fit to the ADC in 
each class. The priors for cancer and normal were set to P(C) = P(N) = 0.5. Using the Bayes rule, we 
computed the posterior probability of cancer Pc = P(C|a) = P(a|C)P(C) / [P(a|C)P(C)+P(a|N)P(N)]. 

Results – The leave-one-patient-out cross validation in the prostatectomy dataset yielded an 
area under the ROC curve of 0.966 using SVM with ADC as the only feature. It was noted that adding the 
other features to ADC did not improve this results. In a similar cross-validation, the Bayesian classifier 
resulted in an area under ROC curve of 0.964. Then, using the Bayesian classifier, with the likelihoods 
estimated on all the 13 training cases, we created maps of Pc values for the patients in the second group. 
The results are listed in Table 1 and show that in eight of the ten PZ targets, the classification outcome 
was confirmed by the biopsy finding (Pc close to 1 for cancer and Pc < 0.5 for benign findings). All three 
cancer outcomes are correctly classified. Five of the seven benign outcomes are also correctly identified. This outcome suggests that the classification 
method, if validated on a larger sample size, has the potential to be used to improve the biopsy yield by testing the regions of the proposed targets, 
maintaining a high sensitivity and removing some of the false suggested targets.  

Conclusions and limitations – In this retrospective feasibility study, we conducted a preliminary evaluation of a classifier in identifying 
cancer areas in the prostate peripheral zone. Our results show that classification results in the majority of cases agree with the histopathology analysis 
of the collected sample. The process of ROI selection for training in this work was guided by approximate histology location, the ADC maps and raw 
DCE data. Among the five parameters we considered, only ADC was used directly for visual differentiation in the training stage which likely 
explains the strong separation in distributions we observed. Our results confirm the value of ADC in PCa characterization and suggest that the 
supervised classification approach may have assistive value in target selection for biopsy planning. In the future, we will move towards using 
wholemount histopathology as the gold standard for ROI selection in the training stage. This might also enable us to extend the methodology beyond 
the peripheral zone. The number of patients in both training and testing stages will increase as we continue our 3T MR guided biopsy program.  

Acknowledgments – NIH: R01 CA111288 (BRP), P41 RR019703 (NCIGT), P01 CA067165, U01 CA151261; and US Army Medical 
Research and Materiel Command under W81XWH-10-1-0201.  References – [1] Padhani AR, et al., Clin Radiol 2000; 55:99–109.  [2] Tuncali, K. 
et al., ISMRM 2011, p. 53.  [3] Tokuda J., et al., ISMRM 2011, p. 3761. [4] Moradi, M, et al., ISMRM 2011, P 2638.  

Samples Finding Pc 
P1 – RPZ Benign 0.0 
P1 – LPZ Benign 0.4 
P1 – LPZ Benign 0.9 
P2 – LPZ Benign 0.4 
P2 – LPZ Benign 0.0 

P3 – Mid RPZ 3 + 4 1.0 
P4 – Mid LPZ Benign 0.9 

P5- RPZ (Apex) 3+3 0.9 
P5- RPZ (Base) 3+3 0.8 

P5 – LPZ Benign 0.1 

500 1000 1500 2000 2500 3000 3500 400
0

10

20

30

40

50

60

70

ADC-500

n

Normal

Cancer
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Fig 1. Sample T2 (left) and ADC (right) images for target selection.

Table 1. The biopsy findings and the 
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Abstract. Intraoperative dosimetry during prostate brachytherapy is
a long standing clinical problem. We propose a novel framework to ad-
dress this problem by reliable detection of a subset of seeds from 3D
transrectal ultrasound and registration to fluoroscopy. Seed detection in
ultrasound is achieved through template matching in the RF ultrasound
domain followed by thresholding and spatial filtering based on the fixed
distance between stranded seeds. This subset of seeds is registered to the
complete reconstruction of the implant in C-arm fluoroscopy. We report
results, validated with a leave-one-needle-out approach, both in a phan-
tom (average post-registration seed distance of 2.5 mm) and in three
clinical patient datasets (average error: 3.9 mm over 113 seeds).

1 Introduction

Low dose rate brachytherapy is a minimally invasive therapeutic procedure for
prostate cancer that has rapidly gained acceptance due to highly successful clini-
cal results. In this procedure, a number of small radioactive sources or seeds (125I
or 103Pd) are permanently implanted into the prostate using brachytherapy nee-
dles. The aim is to deliver a sufficient radiation dose to kill cancerous tissue
while limiting the dose in radio-sensitive regions such as the bladder, urethra
and rectum. Transrectal ultrasound (TRUS) is used to intraoperatively guide
the transperineal insertion of needles. As a result of prostate edema, motion of
the gland due to needle forces, and possible intra-operative changes to the plan
due to various factors such as interference with the pubic arch, the locations of
the implanted seeds do not necessarily match with the initial treatment plan.
Hence, for quality assurance, intra-operative dosimetry is highly beneficial.
� Corresponding authors.
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Researchers have approached ultrasound-based seed detection [1]. However,
accurate seed localization based on ultrasound has proven to be a very difficult
task due to clutter from other highly reflecting objects such as calcifications re-
sulting in false positive appearances, seed specularity and shadowing, and limited
field of view. Even when hand-segmented, up to 25% of the seeds remain hid-
den in ultrasound images [2]. Therefore, C-arm fluoroscopy is commonly used
for visual assessment of the implanted seeds. However, the prostate gland is
not discernible in fluoroscopy images. Fusion of the fluoroscopy images and ul-
trasound is therefore considered as a possible solution [3–6]. If complete seed
localization and implant reconstruction from fluoroscopy images is available, the
registration of the result to ultrasound will enable dosimetry. In recent years,
the fluoroscopy reconstruction problem has been extensively addressed. Given
3-5 fluoroscopy images, and the relative pose of the C-arm in each acquisition,
the back-projection technique can be used to reconstruct the 3D implant [7].
For registration, attaching fiducial markers to the ultrasound probe [8], using
the ultrasound probe itself as a fiducial [4], or using the seeds as fiducials [9]
have been mentioned. Due to patient and equipment motion between the acqui-
sition of ultrasound and fluoroscopy, registration based on static markers is not
reliable. Furthermore, the use of fiducial markers is an unwelcome addition to
the ordinary setup in the operating room due to time and space limitations.

In this work we propose using a subset of seeds extracted from ultrasound
images to perform point-based registration between the seed clouds from fluo-
roscopy and 3D ultrasound. We present several technical innovations. Instead of
conventional B-mode ultrasound, we use RF signals processed to enhance seed
contrast. Template matching with a variety of in vivo and ex vivo seed tem-
plates is reported. To enable dosimetry, we have devised a two stage strategy
consisting of first 2D registration of needle projections from the ultrasound and
fluoroscopy, followed by the 3D registration of only the seeds in the matched
needles. We provide the results of this approach on both clinical and phantom
data. This novel methodology targets a complicated and long standing problem,
with no addition to the routine therapeutic procedure. We show that our method
has good promise to address this clinical challenge.

2 Methods

The outline of our methodology is presented in Figure 1. For reconstruction of
the implant in fluoroscopy, we implemented and used the method described in
[7]. The steps for acquiring the fluoroscopy reconstruction included C-arm pose
estimation from rotation angle and compensation for sagging, followed by back-
projection of the seeds, and finally seed to needle assignment using a minimum
cost flow (MCF) algorithm. The outcome was validated in terms of number of
seeds, needles, and seed to needle assignments based on the brachytherapy plans,
both in patient and phantom datasets. In this article we focus on ultrasound-
based partial seed detection, needle matching and registration from ultrasound
to fluoroscopy.
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2.1 Seed Detection

3D Ultrasound Setup and Data: We developed a 3D ultrasound system
based on a brachytherapy stepper (EXII, CIVCO Medical Solutions) modi-
fied by motorizing the cradle rotation. The sagittal array of a dual plane lin-
ear/microconvex broadband 5 − 9 MHz endorectal transducer (Ultrasonix) was
used. RF data was recorded at a frame rate of 42 fps, during the probe rotation
from -45◦ to 50◦ (0◦ corresponded to the probe aligned with the central sagittal
cross section of the prostate gland). 2D frame size was 5×5.5 cm. We present
the results of our work on data collected immediately after seed implantation
in the OR, from three brachytherapy patients in Vancouver Cancer Center. We
also present data from a CIRS Model 053 tissue-equivalent ultrasound prostate
phantom (CIRS, Inc., Norfolk, VA). For this phantom, a plan consisting of 135
seeds and 26 needles was created which was carried out by a radiation oncologist.

RF Signal Processing: In order to improve the seed to background contrast,
we averaged the signal power over windowed blocks of the RF signals. In other
words, we replaced a segment of length n at depth d of an RF line with the
reflected power Pd computed as:

Fig. 1. Workflow of the seed detection method
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Pd =
∑n

k=1 w(k)x(k)2

n
(1)

where x(k) (k = 1, ..., n) are the samples in the RF segment, and w(k) are
Hamming window weights. This step was applied with n =10 and a 50% over-
lap between consecutive blocks. We have previously reported that this process
doubles the contrast to noise ratio (CNR) between the seed regions and the
background [10]. Furthermore, the resulting five fold reducion in the size of the
RF signals improved the speed of the template matching step.

Seed Templates: Simple thresholding of the contrast enhanced RF data results
in a large number of seed candidates and seed-like clutter. In order to reduce false
positive detections, we computed the normalized cross correlation of the seed
regions with seed templates. We experimented with three groups of templates
and will provide a comparison.

Ex vivo templates: We created a 3D template acquired by imaging a seed in
water, placed parallel to the probe at the center of the ultrasound probe. The
3D template was formed by rotating the probe and acquiring 21 sagittal images.

In vivo templates: In the clinical situation, the existence of background tis-
sue, blood and edema significantly alters the appearance of seeds on ultrasound
images compared to the described ex vivo templates, resulting in low normal-
ized cross correlation values. Therefore, we created a second set of templates
extracted from in vivo data. These were extracted from different cases to ensure
that the template extracted from a specific patient dataset, was not used for seed
detection in that dataset. They were acquired by manually clicking the center
of a visually distinct seed in in vivo 3D data.

In vivo and ex vivo two-seed templates: We also created templates, both in
vivo and ex vivo, in which the template area contained two seeds. The two-
seed templates were examined as a potential solution to reduce the number of
false positives, given the fact that in stranded brachytherapy performed in our
institution, the distance between seeds is fixed at 1 cm with very few excep-
tions. Therefore, the existence of two strong seed candidates, 1 cm apart, is an
indication of a true detection.

NCC-Based 3D Template Matching: The normalized cross correlation of
the 3D template g and a cropped area of the image f equal in size with g and
centered at location (i, j, k) can be computed as:

f � g(i, j, k) =
(
∑

x,y,z fi,j,k(x, y, z) − fi,j,k).(g(x, y, z) − g)
√

[
∑

x,y,z(fi,j,k(x, y, z) − fi,j,k)2
∑

x,y,z(g(x, y, x) − g)2]
(2)

where x, y and z represent the directions in the image coordinate system. Com-
putation of f �g results in a new image of the same size as f , with values in range
of [0,1] with largest values representing the centers of areas most similar to the
template. The frequency domain implementation of NCC was completed in under
six minutes on a regular PC with MATLAB for template size of 30×60×21, and
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image size of 128×258×391. Note that NCC is not invariant to scale. However,
in our case, the images and the templates were acquired with similar imaging
parameters, therefore the scales matched.

Thresholding, Spatial Filtering, and Grouping in the NCC Image: The
NCC image was thresholded. Starting from the point with the highest NCC, a
neighborhood of the size of the seed was cleared around each non-zero voxel.
This was necessary because each seed consists of several bright voxels, while we
need a single voxel to represent the seed. The remaining voxels were grouped
into needles using the Hough transform [11] followed by eliminating single seeds
that could not be grouped into lines. Using the knowledge of the fixed 1 cm
distance between the seeds in our data, we applied an additional trimming step.
On each needle, starting from the seed with the highest NCC value, any other
seed candidate that was within 0.8 cm was removed.

2.2 Matching and Registration

After applying a transformation that matched the centers of mass of the two
datasets, we applied a 2D needle matching process. This provided an initial
alignment and reduced the risk of local minima due to the unbalanced number
of seeds in ultrasound and fluoroscopy. Matching was performed by applying a 2D
rigid registration between the needle projections on the transverse plane passing
through the prostate mid-gland in the fluoroscopy implant. Assuming that X is
the set of n projection points from ultrasound, and Y is the set of m projection
points from fluoroscopy, the rotation and translation parameters of the transfor-
mation T were found to minimize

∑
i=1:n dc[T (Xi), Y ] where dc[T (Xi), Y ] is the

Euclidean distance of the ultrasound projection point Xi from its closest match
in the point set Y . After the matching step, the fluoroscopy needles without a
match in ultrasound were removed and the standard 3D point-based Iterative
Closest Point (ICP) registration algorithm [12] was applied.

3 Results and Conclusions

We quantified the outcome of our ICP seed registration method based on 1)
the post-registration distances between ultrasound seeds and their closest fluo-
roscopy counterparts, 2) the stability of needle matches and the recorded regis-
tration errors subject to the removal of any of the detected needles.

Registration Errors: Table 1 presents the results of ultrasound seed detection
and registration for the CIRS phantom. The best outcome was achieved when
the two-seed ex vivo template set was used. The post-registration seed distances
from ultrasound to the closest matching fluoroscopy seed was 2.48 mm. Note
that the best registration result was obtained when the lowest number of seeds
(73 out of 135, 17 needles out of 26) were detected. The result of the 2D matching
and 3D registration of the seed clouds for the phantom data, using the two-seed
ex vivo template, is depicted in Figure 2.
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Fig. 2. Phantom results: 2D matching of needle projections in transverse plane (left),
3D seed cloud registration using the matched needles from fluoroscopy and ultrasound

Table 1. Phantom result: # of detected seeds, registration errors with all detected
needles, and average registration error for the leave-one-needle-out validation test

dist. er.(mm) dist. er. # fl # fl seeds, # of detected
Phantom all needles (mm) seeds in matching seeds in

L.O.O Total needles ultrasound

1-seed, ex vivo templ. 2.69±2.03 2.71±1.98 135 95 86
1-seed, in vivo templ. 4.33±2.21 4.40±2.24 135 101 95
2-seed, ex vivo templ. 2.48±1.52 2.48±1.41 135 82 73

Table 2 presents the results for the three patient datasets. The one-seed and
the two-seed templates did not result in significantly different error values. We
obtained errors of 3.36 mm, 3.73 mm, and 4.76 mm for the three cases on in
vivo templates. With ex vivo templates, we witnessed a decrease in the number
of detected seeds for all cases and an error increase in two patients with a slight
improvement in case 3 in terms of registration error (to 4.38, 4.08 and 4.22 mm).
For case 2, Figure 3 illustrates the results of 2D matching and 3D registration.
In both Figures 2 and 3 one can see that the unmatched needles tend to be from
the anterior side (top of the images), while the posterior seeds that are closest
to the probe are accurately detected. This is likely due to signal attenuation and
the depth dependent reduction in the resolution of our 3D ultrasound system.

Leave-one-needle-out Validation of the Registration Process: In order
to study the stability of our matching and registration procedure, we also ran
a leave-one-needle-out experiment. For each patient and the phantom case, as-
suming that n ultrasound needles were identified, we repeated the matching and
registration procedure n times, each time with n− 1 needles. This amounted to
the removal of three to seven (10% to 20%) of the seeds in each round for patient
cases. The idea is that if the registration is valid, and not just a local minimum,
the removal of any specific needle should not drastically change the outcome.

The average of the errors in the leave one out experiments (column 3 in
Tables 1 and 2) were close to the errors when all detected seeds were used in
the registration step (column 2). We also examined the stability of the needle
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Fig. 3. A patient case: 2D matching (left), registered seeds in matched needles (right)

Table 2. Number of the detected seeds, registration errors and leave-one-needle-out
errors for the 3 patient datasets

dist. er.(mm) dist. er. # fl # fl seeds, # of detected
Case all needles (mm) seeds in matching seeds in

L.O.O Total needles ultrasound

P1 1-seed in vivo templ. 3.72±1.86 3.85±1.96 102 51 35
P1 2-seed in vivo templ. 3.36±1.78 3.44±1.95 102 57 37

P1 ex vivo templ. 4.07±2.10 4.38±1.87 102 30 16

P2 1-seed in vivo templ. 3.98±2.50 3.77±2.27 115 74 56
P2 2-seed in vivo templ. 3.73±1.86 3.79±1.94 115 71 49

P2 ex vivo templ. 3.74±2.8 4.08±2.58 115 55 37

P3 1-seed in vivo templ. 4.76±1.87 4.90±2.12 100 35 27
P3 2-seed in vivo templ. 4.88±1.95 4.79±2.25 100 33 23

P3 ex vivo templ. 4.52±1.65 4.22±1.49 100 26 16

matching step subject to removal of needles. In the case of the phantom data,
and case 1 among the patient datasets, it was noted that regardless of which
needle was removed in the leave one out experiment, the matched fluoroscopy
needle for the rest of ultrasound needles remained the same (number of detected
needles: n=17). In patient cases 2 and 3, on average, the match for one needle
changed due to the removal of a needle (n =14 and n =12).

4 Conclusions

We showed that it is feasible to use contrast enhanced RF ultrasound data, tem-
plate matching, and spatial filtering to detect a reliable subset of brachytherapy
seeds from ultrasound to enable registration to fluoroscopy. Real-time implemen-
tation requires the matching process to be computationally improved though
parallelization to enhance the current computation time of around six minutes.
More robustness analysis and additional registration approaches will be imple-
mented in future work. The 3D ultrasound system used in this work acquired
sagittal images while rotating radially. This results in a significant decrease in
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spatial resolution at increasing distances from the probe. The use of a com-
prehensive depth dependent set of templates can improve our results. It is also
possible to perform the ultrasound seed detection after only a part of the im-
plant, for example the top row of needles, is completed. This will reduce the
shadowing effects. Clinical data is being acquired to test these possibilities.
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Prostate Cancer Probability Estimation Based on DCE-DTI Features and Support Vector Machine Classification 
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Introduction: Prostate cancer is the most common noncutaneous malignancy among men. The clinical routine for diagnosis is biopsy under 
ultrasound guidance. However, as a result of the multi-focal nature of the disease, clinically significant cases of cancer can be missed, resulting in 
repeated biopsies. We have previously shown that Diffusion Tensor Imaging (DTI) and Dynamic Contrast Enhanced (DCE) MRI provide a high 
degree of sensitivity in detecting prostate cancer [1,2]. In this study we present a framework of classification using multi-parametric MRI feature 
vectors and Support Vector Machines (SVMs) to detect prostate cancer and to create cancer probability maps that highlight areas of tissue with high 
risk of cancer. The correlation of this probability with Gleason Grade is also studied.  
Data: Twenty nine men with a high clinical suspicion for prostate adenocarcinoma were included in this study. All MRI exams were carried out on a 
3T Philips Achieva MRI scanner. Twelve axial slices (4 mm, no gap) across the prostate gland were acquired for both DTI and DCE MRI data with 
FOV of 24 cm. The DTI data were processed off-line to generate maps of Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) [2]. 
Three DCE-based pharmacokinetic parameters, namely volume transfer constant Ktrans, fractional volume of the extra-vascular extra-cellular space ve, 
and fractional plasma volume vp, were calculated by fitting the Gd concentration vs. time curves to the extended Kety model [3]. After imaging, from 
8 to 12 needle biopsies were collected from each subject depending on the size of the prostate. The dataset included a total of 240 negative biopsy 
cores and 29 positive biopsy cores. The histology was interpreted with assignment of the Gleason score by a number of different anatomic 
pathologists who practice general and subspecialty uropathology 
Classification and mapping method: Each biopsy core in the dataset was represented by a feature vector consisting of the average values of the five 
DCE-DTI features (X = [Ktrans, ve, vp, ADC, FA]) in its corresponding area in the MRI data. Following [2], for negative biopsies, this corresponding 
area was set to be the entire biopsy target volume (e.g. mid-left-lateral), while for positive cores, this area was determined from a combination of 
manual segmentation and thresholding based on biopsy (see [2] for details). SVM classification with radial basis kernel function [4] was used to 
separate the data into “normal” and “cancer” classes based on these feature vectors. The parameters of the SVM kernel function were chosen in a 
grid-based search [5,6]. The training-testing validation was performed in leave-one-patient-out manner. For each patient, we trained the SVM based 
on biopsy cores from all other patients and tested it on the cores from the patient in question. To acquire post-classification cancer probabilities (Pc = 
P(cancer|X)), the extension of the SVM training proposed by Platt [7] was used. The Pc value acquired for each biopsy core was used as a decision 
threshold for cancer detection. The Receiver Operating Characteristic (ROC) curve was obtained by setting this detection threshold to values in the 
range of [0,1]. Given X for all pixels in one MRI slice, cancer probability maps were created by calculating and plotting the values of Pc - using the 
SVM trained on data from all other subjects - for the entire prostate region in the slice.  
Results and discussion: The ROC curves were obtained separately for DCE features XDCE = [Ktrans, ve, vp], for DTI features XDTI = [ADC, FA], and 
for the combined feature vector X = [Ktrans, ve, vp, ADC, FA] resulting in area under ROC curve (AUC) values of 0.867, 0.919 and 0.956 respectively 
(Fig.1 ). The combined feature vector resulted in higher AUC than DCE (p=0.002) and DTI (p=0.01). With the combined feature vector, at the 
decision threshold of Pc = 0.5, three of the 29 tumors were misclassified while a specificity of 91% was obtained.  At the decision threshold of Pc = 
0.7, only one tumor was misclassified, while a high specificity of 87% was maintained. We also noted a correlation between the Pc value and the 
Gleason grade of the tumors. The average Pc value was 0.555 for tumors of grade 3+3 (number of tumors=7), 0.778 for tumors of grade 3+4 and 4+3 
(n=19), and 0.963 for grade 4+5 (n = 3). The increase in Pc values was significant from Grade 6 to 7 (p=0.01). The small number of tumors in grade 
4+5 did not warrant an analysis of statistical significance. None of the 4+5 tumors were misclassified in any of the experiments. The T2W image and 
the cancer probability map obtained for the mid slice MRI data of a patient with positive biopsy cores in the mid-left-lateral and mid-left-medial 
regions of the prostate are illustrated in Fig. 2.  
Conclusions: Our result is in agreement with the previous work that shows the diagnostic power of combined DTI and DCE MRI [2]. The developed 
SVM-based probabilistic approach to cancer detection provides a high level of sensitivity while maintaining high specificity. The observed increase 
in cancer probability with increasing Gleason grade is promising. This suggests that multi-class SVM-based classification is a potential tool for non-
invasive grading, given a sufficiently large dataset to enable training on tumors of different grades. 
Acknowledgments: This work was supported by a research grant from the Canadian Institutes for Health Research and a Prostate Cancer Training 
Award from the Congressionally Directed Medical Research Program, United States Department of Defense.  
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Figure 2 – Left: T2W image of mid region of a patient with biopsy confirmed 
cancer in mid-left region. Right: The SVM-based cancer probability map, 

with hot colors corresponding to higher Pc. The tumor is distinguished.   
Figure 1- ROC curves, for different groups of features 

acquired by changing the decision threshold, Pc, from 0 to 1.  
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Abstract. In this paper we propose a fully automatic 2D prostate seg-
mentation algorithm using fused ultrasound (US) and elastography im-
ages. We show that the addition of information from mechanical tissue
properties acquired from elastography to acoustic information from B-
mode ultrasound, can improve segmentation results. Gray level edge sim-
ilarity and edge continuity in both US and elastography images deform
an Active Shape Model. Comparison of automatic and manual contours
on 107 transverse images of the prostate show a mean absolute error of
2.6±0.9 mm and a running time of 17.9±12.2 s. These results show that
the combination of the high contrast elastography images with the more
detailed but low contrast US images can lead to very promising results
for developing an automatic 3D segmentation algorithm.

1 Introduction

Low dose rate (LDR) prostate brachytherapy is a common method for treating
patients with low risk prostate cancer. In this treatment, 40-100 small radioactive
seeds are permanently inserted in the prostate and its periphery. Treatment
planning and delivery relies on transrectal ultrasound (TRUS) imaging. In order
to create the treatment plan, a pre-operative volume study is carried out in
which a set of transverse ultrasound images are collected. These images are then
manually segmented to extract the prostate boundaries. A plan is devised to
deliver sufficiently high radiation dose to the cancerous tissue while maintaining
a tolerable dose to healthy tissue. Reliable segmentation and visualization of the
prostate is a vital step in dose planning. Manual segmentation is time consuming
and, due to the low signal to noise ratio of ultrasound images, inter and intra-
observer variabilities are high. Even though various 2D prostate segmentation
methods and some 3D methods have been proposed in the literature [1,2,3,4,5],
the effective automatic segmentation of ultrasound images of the prostate has
remaining challenges such as user initialization and limited accuracy.

In this paper, we propose a prostate segmentation method based on intra-
modality fusion of ultrasound B-mode and elastography. Elastography [6], in
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which mechanical properties of tissue are characterized, has shown to be promis-
ing in improving the visibility of the prostate gland [7,8]. In a recent study, we
have shown that ultrasound dynamic elastography images of the prostate have
superior object-background contrast compared to B-mode ultrasound, especially
at the base and apex [9]. This is due to the fact that prostate tissue is gener-
ally stiffer than the surrounding tissue. We utilize this advantage and combine
elastography and US image data for 2D segmentation of the prostate. The elas-
tography images are acquired using a system described in [9] which enables the
simultaneous registered acquisition of B-mode and elastography images, thereby
eliminating the concerns about image registration and cost.

We use an Active Shape Model (ASM) [10] approach which starts with an
initial shape extracted from a large number of elastography and B-mode prostate
images. The deformation of this initial shape is restricted to conform to the
statistical model and is guided by edge detection from both elastography and
B-mode images based on edge gradient similarity and continuity. The use of a
statistically created model ensures the compliance of the resulting contours with
the overall shape of the organ. Additionally, the restricted deformation results
in robustness to poor image quality. The use of a measure of edge continuity [9]
in addition to gradient similarity, reduces the effects of strong speckle-induced
local edges on the algorithm which improves the rate of convergence. We provide
a statistical analysis of the accuracy of our 2D image segmentation method and
show that the combined use of elastography and B-mode images improves the
accuracy and the convergence rate. Further, we describe a preliminary framework
for extending the proposed method to an automatic 3D segmentation algorithm
and present an example.

2 Methods

The US and elastography images used in this paper were acquired from pa-
tients going through the standard LDR prostate brachytherapy procedure at
Vancouver Cancer Center, BC Cancer Agency. Intra-operatively, prior to the
procedure, RF data and US images were simultaneously collected using the sys-
tem described in [9]. In this system RF data is collected at approximately 40 fps
from the sagittal array of a vibrating (amplitude 0.5-2 mm, frequency range 2-
10 Hz) and rotating (−45◦ to 50◦) TRUS probe (dual-plane linear/microconvex
broadband 5 - 9 MHz endorectal transducer, Ultrasonix Medical Corp.). The
RF data were processed [11] to obtain sagittal elastography strain images from
which conventional transverse images of the prostate were achieved.

Our 2D segmentation approach combines the information from elastography
and US images within an Active Shape Model (ASM) which deforms based
on gray level similarity and edge continuity. We follow the approach from [10].
First, we construct a training set by manually selecting 30 specific points on
the prostate boundary in N = 25 mid-gland images from 7 patients. The set
of images used for creating the training set does not include the images to be
segmented. The manually segmented contours are aligned by using least-squares-
based iterative scaling, rotation and translation and the average of the resulting
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contours, x̄, is used as the initial contour. Then, in order to capture the statistics
of the training set, we calculate the covariance matrix, S =

∑N
i=1 dxidxT

i , where
dxi in the training phase is the distance between each point on the manual
contour and the corresponding point on the mean shape. The modes of variation
of the shape are described by the eigenvalues, λi, and eigenvectors, pi, of S,
from which the t largest eigenvalues are selected as the most significant modes
of variation. We selected t such that for i = 1, · · · , t, λi/

∑
λ > 5%. A shape

instance consistent with the training set can thus be created using Eq.(1):

x = x̄ + Pb (1)

where P = (p1 · · · pt) is the matrix of the first t eigenvectors and b = (b1 · · · bt)T is
a vector of weights. Hence, in the shape fitting phase, given a shape deformation,
dx, the shape parameter adjustments, db, can be calculated using Eq.(2).

db = PT dx (2)

To calculate the movement, dxi, for each model point i, a measure of edge gray
level similarity was used in [10]. For each point i of each image j of the training
set, a normalized edge derivative profile, gij normal to the boundary, centered at
the model point and of length np is extracted. gij is averaged over all images from
which the covariance matrix Sgi is calculated to obtain a statistical description
of the gray level appearance for every point. During the shape fitting, at each
iteration and for every point, sample edge derivative profiles hi(d) of distance
d (d = −l, · · · , l) from the boundary point and length np are extracted in a
similar manner. The square of the Mahalanobis distance of these profiles from
the model profile, gi, give a measure of edge gray level similarity. For each point,
the d resulting in the least Mahalanobis distance suggests the required point
movement along a line normal to the boundary. The physical values of l and np

are set to 8 and 5 mm, respectively.
In our data set, we observed that the gray level edge similarity measure alone,

gives many false positives due to ultrasound speckle or sharp edge-like structures
since only 1D information (normal to the edge) is being analyzed. Therefore, in
our approach, we incorporate our edge continuity measure [9] which measures
the continuity of the edge in a direction orthogonal to the edge profile. At a dis-
tance d from each point, we compute the average normalized cross-correlation,
ci(d), between the edge intensity profile ei(d) (obtained similar to gij), of length
np, with its two neighboring left and right edge intensity profiles. For a contin-
uous edge (i.e. large similarity between ei(d) and its left and right neighboring
profiles), ci(d) should have a shape similar to a Gaussian function with a large
peak and a small standard deviation. We define the edge continuity measure,
Ki(d) = P 2

ci
/σi(d) in which Pci characterizes the peak and σi is the standard

deviation of a Gaussian function fitted to ci(d). For each point, the d resulting in
the maximum continuity measure suggests the required point movement along
a line normal to the boundary.

We define un to be the vector normal to the boundary at the boundary point,
dgE , to be the distance from the boundary point suggested by the gray level
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similarity, and dKUS , and dKE to be the distances from the boundary point
computed from the edge continuity measures in US and elastography images,
respectively. Based on the above equations, at each iteration, k, the following
steps are performed to deform the current shape points, xcurrent into the next
shape, xnext.

1. Find the required shape deformation:
dx = xnext − xcurrent = dfun

df = α1dgE + α2dKUS + α3dKE

2. Calculate the optimum pose parameters: scaling, translation and
rotation, corresponding to dx, apply this transformation to obtain
T (xcurrent). Adjusting the pose is required to align xcurrent to be as
close as possible to xnext before adjusting the shape [10].
3. Calculate db = P T (xnext − T (xcurrent))

α = [α1 α2 α3] are corresponding weights. Due to the large amount of noise
in US images, gray level similarity matching in these images does not improve
results but degrades convergence, and therefore, it is not included. Our criteria
for convergence is when 94% of the contour points have a dx of less than np/2.
Fig. 1 illustrates how dgE and dKE are obtained in an elastography image.

We will provide a comparison of segmentation results using gray level similar-
ity from elastography images, combined edge continuity and gray level similarity
from elastography images and finally edge continuity and gray level similarity
from both elastography and US images.

Fig. 1. An illustration of how dgE (top point) and dKE (bottom point) are obtained
in an elastography image. The gray level similarity measure is compared to that of the
model for each corresponding point. The edge continuity measure is maximized over
the line normal to the boundary. For clarity, these measures are shown on two different
points, whereas they are calculated for single points.
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3 Results

To evaluate our 2D segmentation results we measure the mean absolute dis-
tance (MAD) and maximum distance (MaxD) between 2D automatic and man-
ual contours. Table 1 provides the mean and standard deviations of MAD and
MaxD between 107 manual and automatic contours selected from 7 patients.
The results are presented separately for elastography gray level similarity only
(αa=[1 0 0]), elastography gray level similarity and edge continuity (αb=[0.5
0 0.5]), and elastography gray level similarity and edge continuity plus US edge
continuity (αc=[0.5 0.25 0.25]). Fig. 2 shows an example of segmentation results
for the three sets of weight parameters.

The most accurate segmentation results were acquired when αc=[0.5 0.25 0.25].
By using this selection of weight parameters, deformation is mainly guided by
the coarser elastography images but also refined by the finer US images. It is
specifically seen in the posterior region of the prostate, where elastography im-
age quality is low, that the addition of edge continuity in US images improves
segmentation results. This can be observed in Fig. 2. The choice of αc also results
in the convergence of the algorithm in an average of 22 iterations vs. 37 and 98
iterations for αb and αa. The maximum number of iterations was set to 50 for
αb and αc and 100 for αa. In the case of αa, 95% of the cases did not converge
within 100 iterations.

Fig. 2. 2D automatic segmentation results using elastography gray level similarity
(yellow dashed line), elastography edge continuity and gray level similarity (blue line),
and elastography gray level similarity and edge continuity plus US edge continuity (red
line) on US (left) and elastography (right) images. The manual contour is shown as a
blue/white dotted line.

4 Discussion

By visual inspection of the automatic segmentation results, we observed that
most of the 2D segmentation error of the mid-gland slice was in the anterior
and posterior regions. In elastography images, the blood vessels which lie on the
anterior of the prostate appear as stiff tissue and are not always distinguishable
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Table 1. Comparison of 2D manual and automatic segmentation showing the Mean
Absolute distance (MAD) and Maximum Distance (MaxD - positive sign meaning
larger automatic contour) between manual and automatic prostate contours, the num-
ber of iterations and duration of the algorithm. K: edge continuity measure, dg: gray
level similarity measure.

dg in elast. dg and K in elast. dg and K in elast.
and K in US

MAD (mm) 3.4 ± 1.8 3.4 ± 1.7 2.6 ± 0.9
MaxD (mm) 1.0 ± 9.8 −6.5 ± 7.0 −4.9 ± 4.7
no. of iter. 98 ± 13 37 ± 17 22 ± 15
duration (s) 10.7 ± 1.4 17.3 ± 0.8 17.9 ± 12.2

from the prostate itself. In such cases, the automatic contour extends beyond
the actual boundary. In the posterior, due to the relatively low contrast in this
region, the automatic contour converges to the darker tissue inside the prostate.
By including edge continuity data from US images this problem has been par-
tially resolved. We attribute this low contrast to mainly the slippage between
the protective sheath on the probe and the surface of the rectum during elas-
tography data collection. By replacing the 1D axial strain computation with
2D axial/lateral and by increasing the resolution of elastography imaging such
problems can be subsided.

Our current elastography data acquisition system has the benefit of collecting
inherently registered elastography and US data. Currently the TRUS rotation
range is within ±50◦ which may result in missing data in the mid-lateral regions
of large prostates. Also, the quality of the B-mode US images acquired along
with the elastography data is affected by the computational limitations of the
real-time data acquisition system and the ultrasound machine. We are currently
working on resolving these problems to improve segmentation results.

The proposed 2D prostate segmentation method using fused elastography and
US image information can be extended into 3D by modifying the method that
we proposed in [12] which was based on fitting an a priori shape to a set of
parallel transverse ultrasound images. The algorithm was initialized by the user
manually selecting some initial boundary points on the mid-slice. These points
were used to un-warp and un-taper all images resulting in a set of elliptical
prostate shapes. With the aid of the Interacting Multiple Model Probabilistic
Data Association (IMMPDA) [13] edge detector and ellipse fitting, a tapered
ellipsoid was fitted to all contours which was then sliced at image depths. The
resulting 2D contours were reversely tapered and warped to match the initial
images. We showed [12] that the method is fast, and produces smooth contours
that are in agreement with the brachytherapy requirements. However, the need
for manual initialization limits its use for real-time applications and makes it
user dependent. Also, the poor visibility of the boundary at the base and apex
complicates segmentation of these regions.
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Fig. 3. An example of 3D surface of the prostate created manually (red) and by the
automatic algorithm (blue)

To resolve these issues we replace the manual initialization of the 3D semi-
automatic segmentation with the described 2D segmentation. Additionally, we
employ elastography along with US images for propagating the mid-gland seg-
mentation to the rest of the images. This is done by including an additional
IMMPDA edge detection on the coarser elastography images to guide the edge
detection on the finer US images. The described framework for automatic 3D
prostate segmentation was applied to one patient data set. Fig. 3 shows 3D
surfaces created from automatic (blue) and manual (red) segmentation of the
prostate for this patient. 11 images were used to construct this surface model.
The volume of the manually created surface is 33.9 ml, the volume of the au-
tomatically created surface is 34.4 ml, and the volume of the non-overlapping
region between the two surfaces is 4.9 ml. A thorough clinical study is required
to evaluate this 3D segmentation framework.

5 Conclusions

In this paper we outlined a novel 2D method of prostate segmentation that
combines ultrasound elastography imaging with B-mode data. This is the first
instance of using such a combination for prostate segmentation and reinforces
efforts to improve US segmentation outcomes using elastography data [14]. With
the fusion of information from elastic properties of tissue provided by elastogra-
phy with the acoustic properties of tissue provided by B-mode we developed an
automatic and accurate segmentation of the prostate which gives good results in
2D. The automatically generated 2D contours can be used to initialize the mid-
slice for 3D segmentation and remove user variability. Additionally, the method
can be utilized to register pre and intra-operative prostate images and has the
potential of improving intra-operative dosimetry.
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ULTRASOUND-BASED TECHNIQUES FOR ENHANCING DIAGNOSTIC AND THERAPEUTIC 

PROSTATE INTERVENTIONS

Mehdi Moradi, Septimiu E. Salcudean, Purang Abolmaesumi, Sara Mahdavi, Alexander Yuen, Ramin 

Sahebjavaher, Anthony Koupparis, Silvia D. Chang, Edward C. Jones, Robert Rohling, Piotr Kozlowski, 

Christopher Nguan, and S. Larry Goldenberg

University of British Columbia

Background and Objectives: In virtually all diagnostic and treatment interventions related to the prostate, new 

imaging tools that can combine accurate visualization of the prostate region and the cancerous tumors could 

reduce the rate of complications and have an enormous impact. We have developed ultrasound-based imaging 

techniques that have potential in improving the visualization of prostate gland and detection of cancer. These are 

ultrasound vibro-elastography (VE) for visco-elastic imaging of the prostate and RF time series analysis for 

tissue typing. Within our 2009 proposal to Department of Defense Prostate Cancer Research Program, we have 

proposed to use these methods for real-time visualization and detection of the boundaries of the prostate gland 

and to enhance the prostatectomy and brachytherapy procedures by detecting cancer and the extent of extra-

capsular extension of prostate cancer. 

Brief Description of Methodologies: An LDR brachytherapy stepper was modified to enable the collection of 

radio frequency (RF) data volumes for VE and time series imaging. After acquisition of the institutional ethics 

approval and informed consent, patients undergoing radical prostatectomy at the Vancouver General Hospital 

are registered into this study and go through pre-operative magnetic resonance imaging (MRI) and intra-

operative ultrasound imaging. The ultrasound RF data are analyzed offline to acquire VE images and RF time 

series feature maps. The extracted prostate specimens are subjected to whole mount histopathology analysis to 

acquire gold standard cancer maps. Both VE and pathology images are registered to MRI images, which act as a 

link between VE and pathology data sets. The registration approach is intensity-based with mutual information 

as the similarity measure.

Results to Date: Based on data acquired from 12 patients, VE images improve the visualization of the prostate 

gland. VE images are superior to B-mode images in terms of contrast (with an approximately sixfold 

improvement in contrast-to-noise ratio) and edge strength (with an approximately twofold improvement in 

gradient in the direction normal to the edge). In terms of cancer detection, we have received three sets of 

histopathology data, which show that prostate tumors appear as dark areas on VE images due to their increased 

stiffness. 

Conclusions: VE imaging significantly enhances the visualization of the prostate gland. In terms of cancer 

detection, our results are preliminary, and we expect to increase the specificity of cancer detection by the 

addition of the RF time series analysis based on supervised training, and combining it with visco-elastic features 

of tissue provided by VE. 

Impact Statement: If successful, the combination of VE and RF time series analysis will drastically improve 

image-based treatment guidance. In particular, surgical resection planes could be defined to avoid damaging 

critical anatomical structures.

This work was supported by the U.S. Army Medical Research and Materiel Command under W81XWH-10-1-0201 and the 
Natural Sciences and Engineering Research Council of Canada.
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