

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2013 2. REPORT TYPE

3. DATES COVERED
 00-01-2013 to 00-02-2013

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 26,
Number 1. Jan/Feb 2013

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS MXDEA,6022 Fir Ave Bldg 1238,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

TABLE OF CONTENTS

2 CrossTalk—January/February 2013

CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Advisor Kasey Thompson
Article Coordinator Lynne Wade
Managing Director Tracy Stauder
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-775-5555
E-mail stsc.customerservice@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF);
and the U.S. Department of Homeland Defense (DHS). USN
co-sponsor: Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National Cyber Security
Division in the National Protection and Program Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Applying the Fundamentals of Quality to Software Acquisition
If we want to improve the quality of our software, a Quality in Depth ap-
proach is needed—introducing quality related measures at every stage of
software acquisition.
by Steve Bygren, Greg Carrier, Tom Maher, Patrick Maurer, David
Smiley, Rick Spiewak, and Christine Sweed

Quality Attributes: Architecting Systems to Meet Customer
Expectations
Using quality attributes as a mechanism for making objective decisions
about architectural tradeoffs can provide reasonably accurate predictions
about how well candidate architectures will meet customer expectations.
by Paul R. Croll

The Whole Is More Than the Sum of Its Parts:
Understanding and Managing Emergent Behavior in Complex
Systems
The application of systems theory to software is becoming increasingly
important as systems become more complex.
by Dean M. Morris and Kevin MacG. Adams, Ph.D.

Developing a Model for Simplified Higher Level Sensor Fusion
Mulitsensor data fusion has been researched for decades yet programs
relying on it to provide a situational, or threat, assessment continue to be
less than successful.
by Mike Engle, Shahram Sarkani, and Thomas Mazzuchi

Basing Earned Value on Technical Performance
EVM can become an effective program management tool if contractors
revised their processes and reports to integrate technical performance with
cost and schedule performance.
by Paul Solomon

Core Estimating Concepts
Understanding the core estimating concepts will help you understand
any of the currently available estimating tools and provide you with the
framework you need when building new models for your particular problem
domains.
by William Roetzheim

Statistical Tune-Up of the Peer Review Engine to Reduce
Escapes
A theory of detecting the defects as close to the injection point as possible
thus reducing the cost and schedule impact.
by Tom Lienhard

9

4

15

20

25

29

33

Software Project Management -
Lessons Learned

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 38 Upcoming Events

 39 BackTalk

CrossTalk—January/February 2013 3

 FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

Since the beginning of early civilization, humanity has
established goals and succeeded in completing remarkable
engineering accomplishments that pushed the boundaries of
what was considered possible. One needs to look no further
than the Great Pyramid of Giza (2584–2561 BC), Lighthouse
of Alexandria, the Parthenon (447-438 BC) or Chichen Itza
(c900 AD), for notable ancient examples. In recent times, we
have gone from creating the monuments of ancient times to
engineering complex architectures, structures, electronic sys-
tems and artificial intelligence, such as multinational undersea
tunnels, artificial archipelagos, the International Space Station,
and IBM’s “Watson” - the new Jeopardy champion.

Major projects are not new, but the way in which we now
manage projects has evolved.

The field of project management has continually transformed
to address new challenges, primarily an ever-increasing growth
in complexity and scope. Innovation has led to new ways of
managing interrelationships between specialists performing
a vast number of different tasks. Hardware and software are
now coordinated in concert within a system design. Systems
of systems deal with our increasing need for instantaneous
information. Compartmentalization of core best practices for
project management activities include integrated planning,
organizing, resourcing, directing, monitoring, and issues resolu-
tion allow for greater reach and control over simultaneous and
multifunctional tasks.

Software system development has brought its own unique
challenges to the table, such as its intangible nature, clear
requirements, feature creep, interoperability, defect detection,
backwards compatibility, and the constant evolution of technol-
ogy. Despite these challenges, the body of knowledge for
managing these projects has grown substantially over the last
few decades with new innovations in our engineering models,
methods, techniques, activities, and especially the automation
of tools.

In this issue, we have taken not only a historical perspective
of past practices but also highlight new innovations that con-
tinue the advancement of project management as a discipline
in its own right. We begin this issue with a collaborate work
based upon a study conducted at The MITRE Corporation.
This article highlights the benefits of including explicit software
quality requirements at the proposal stage of government
contract bids, which in turn would allow for contractor selection
to be influenced by the use of best practices in software de-
velopment. We continue our focus on quality with a fascinating
analysis by Paul Croll in Quality Attributes: Architecting Sys-
tems to Meet Customer Expectations. This article emphasizes
the importance of defining and using a set of quantifiable qual-
ity attributes tied to customer expectations when evaluating
candidate system architectures. With a greater understanding
of the relationship between quality attributes and architecture,
we can better predict how candidate architectures will meet
customer expectations.

Another pressing issue in software project management is
the increasing complexity of projects and the inherent difficul-
ties in managing emergent behavior in software systems. In
The Whole Is More Than the Sum of Its Parts: Understand-
ing and Managing Emergent Behavior in Complex Systems,
the authors provide an overview of the increasing importance
of applying systems theory to software as well as explore some
speculative new methodologies for managing undesirable
emergent behavior in complex systems. To illustrate some of
the complexities we now face in software development, we
now turn to Developing a Model for Simplified Higher Level
Sensor Fusion. In this article, the authors systematically study
the current difficulties faced by multisensory data fusion pro-
grams and ultimately provide an adaptation of models that can
be used to provide an improved assessment while simplifying
the process needed to get there.

In past issues, we have featured many articles that provide
practical guidance to improve the quality of Earned Value Man-
agement (EVM) information and highlighted the value of such
data in managing a project. In Basing Earned Value on Tech-
nical Performance, Paul Solomon readdresses the topic and
proposes new solutions to further enhance the value of EVM.
Continuing down the path of accurate and reliable information,
we need to look no further than William Roetzheim’s work in
Core Estimating Concepts. This article reveals that beneath
the myriad of domain-specific estimation tools available lies a
set of core estimation concepts that can provide a framework
for building new models for your specific needs. We con-
clude our set of articles by stressing the importance of peer
reviews in Statistical Tune-Up of the Peer Review Engine
to Reduce Escapes. In this article, Tom Lienhard identifies
defects passing undetected through peer reviews as a major
source of rework as a major problem and proposes innovative
improvements to the peer review process. As always, be sure
not to miss David Cook’s humorous, yet insightful, look back at
hard-learned lessons to writing good software.

As we begin the new year, we are also beginning the 25th
year of CrossTalk publication as well. I would like to take a
moment to express my sincere thanks to everyone for making
such an accomplishment possible. To our co-sponsors, we
thank you for your generous support and active involvement
in providing an information and educational resource to the
software industry. To the authors, we truly appreciate all of
your time and effort in sharing such valuable information to the
software community. To our readers, thank you for your contin-
ued support and hope that we continue to exceed expectations
by publishing the highest quality articles.

From all of us at CrossTalk, we wish you the best for the
new year!

Justin T. Hill
Publisher, CrossTalk

4 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Steve Bygren, The MITRE Corporation
Greg Carrier, The MITRE Corporation
Tom Maher, The MITRE Corporation
Patrick Maurer, The MITRE Corporation
David Smiley, The MITRE Corporation
Rick Spiewak, The MITRE Corporation
Christine Sweed, The MITRE Corporation

Abstract. Historically, software developed under government contracts often
does not stand up under real-world use, and defects frequently result in cost and
schedule overruns. While proposed development activities from contractors com-
monly list measures to improve quality, these descriptions cannot be used to select
a winning bidder if they are not part of the evaluation criteria. By making software
quality requirements explicit at the proposal stage, contractor selection can be
influenced by criteria based on best practices in software development.

Applying the Fundamentals of
Quality to Software Acquisition

How Do You Measure Software Quality?
Software quality as an outcome is best measured by the num-

ber of defects encountered after development is complete as the
numerator, divided by the “size” of the software as the denomina-
tor. One could also argue that if two different products were to be
compared, some sort of “difficulty factor” could be applied, as well
as references to the software language or development environ-
ment employed, e.g., assembly code versus high order languages,
or object-oriented versus functional languages, etc.

Metrics exist which can be used to estimate the potential
defects in code. These are based on the use of function points
as the measure of “size.” Function points can also be (loosely)
correlated with the commonly used measurement, SLOC.

2. Approach
This article is the outcome of a study the authors conducted

at MITRE. Our approach was to gather information from Subject
Matter Experts (SMEs), contracting officers, and acquisition
experts for recommendations for additions to proposal docu-
ments. Part of this study was conducted through interviews and
SME e-mail group lists. Reference materials from the Air Force
and Navy were found which provided recommendations from
prior work [1, 2]. We then adapted the suggestions to Sections
L and M to more thoroughly describe software quality related
criteria for source selection. Some of these criteria are aimed
at the technical evaluation team, while some can be used by
cost evaluators and past performance evaluators as well as the
technical team.

3. Recommendations for Section L
 (Instructions for Proposal Preparation)

1. The offeror’s proposal shall include a proposed Software
Development Plan (SDP) which describes their approach to
software development, to include the tools, techniques and stan-
dards to be used for development, unit testing and component
testing; integration tools and techniques (including configuration
management) used to ensure the integrity of system builds; the
number and type of reviews that are part of the development
process; and the methods and tools used to manage defect
reports and analysis, including root cause analysis as necessary.
The proposed SDP will form the basis for a completed SDP
to be available after contract award as a Contract Deliverable
Requirements List (CDRL) item, subject to government review
and approval.

2. The offeror shall describe their plan for effective code
reuse in order to minimize the amount of new code to be devel-
oped. Reused code can come from any origin, including previous
efforts by the offeror or as provided by the Government in the
bidders’ library.

3. The offeror shall provide a Basis of Estimate (BOE) de-
scribing the rationale for the proposed staffing. The detail of the
BOE shall include labor hours for each labor category (e.g., sys-
tem engineering staff versus software engineering staff) for the
identified tasks in the Work Breakdown Structure as it relates to
the Statement of Work (SOW).

4. The offeror shall describe the process for orientation and
training for all project employees (e.g. certification and training

If we want to improve the quality of our software, a “Qual-
ity in Depth” approach is needed—introducing quality related
measures at every stage of software acquisition. In a previ-
ous article,1 one of the authors provided recommendations for
improving software quality at the construction phase. This article
discusses how to apply these same principles to the source
selection process.

In order to find a way to include software practices as selec-
tion criteria, the authors set out to identify and recommend
changes to Sections L and M of a government Request for
Proposal (RFP) or Instructions for Proposal Preparation (IFPP)
and Evaluation Criteria (EC) in an attempt to improve software
and system quality. These changes will enable selection teams
to identify contractors whose software development processes
and compliance with software quality standards are more likely
to produce the desired results.

1. Background
 What Is Software Quality?

Quality is often thought of as an absence of defects. With
many software products however, “defect” does not adequately
describe the range of phenomena that affect software quality as
perceived by the customers, end users and other stakeholders.
Using Crosby’s philosophy,2 we define the term “software quality”
to mean conformance to the requirements of the software prod-
uct’s users and other stakeholders. The more closely a software
product conforms to these requirements, the higher its quality.

We are particularly interested in software quality as it affects
the acquisition process for defense related software. While
end user requirements are of prime importance, poor software
development and quality monitoring practices in early- and
mid-stage acquisition can result in failure to provide the desired
results. These failures range from unwanted or missing features
to cost and schedule overruns to critical flaws in system security
or reliability.

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

CrossTalk—January/February 2013 5

Table 1. Sample Rating Scale for SDP Evaluation Criteria5

in software best practices including information assurance and
risk management).

5. The offeror shall describe related systems experience,
including a description of previous experience developing
software of the same nature, and a description of the extent to
which personnel who contributed to these previous efforts will
be supporting this effort.

6. The offeror shall describe proposed development prac-
tices. For example, if spiral/incremental development, they shall
describe the number, duration, and scope of spirals, as well as
how the use of your approach would result in improved product
quality and user satisfaction over time.3

7. The offeror shall provide an Integrated Master Schedule
(IMS) and accompanying narrative that describes all significant
program activities that are aligned with the proposed program
staffing profile. Include a timeline for completion of each activity
identified in the proposed program. Provide details that clearly
describe the purpose for and importance of key activities. Iden-
tify all critical path elements and key dependencies.

4. Recommendations for Section M
 (Evaluation Criteria)

The proposed SDP shall show a complete and comprehen-
sive software development process, which incorporates best
practices as well as standards such as IEEE 12207-2008.
The contractor will be evaluated based on how their processes,
as described in the SDP, incorporate the use of software best
practices.

Evaluation criteria related to the SDP include the following:
• The number and type of peer reviews.
• The use of automated unit testing including test

 coverage requirements.
• The use of automated syntax analysis tools and adherence

 to the rules incorporated by them.4

• The comprehensiveness of integration and test methods,
 including continuous integration tools if used.

• The use of readiness requirements such as unit test and
 syntax analysis for code check-in.

• Configuration management and source code control tools
 and techniques.

• The extent to which root cause analysis of defects is part of
 the development process.

• The selection of software source code to be reused,
 replaced or rewritten from previous implementations or other
 origins, including a description of how it will be ensured that
 reused code meets or is brought up to the same standards
 as newly developed code. Risks associated with reused
 software shall also be discussed. Such software shall include
 government rights to the source code.

The IMS and accompanying narrative will be evaluated for level
of detail and relevance of significant program activities, degree
of alignment, the proposed program staffing profile, and integra-
tion of the proposed SDP into the IMS. Additionally, critical path
elements and key dependencies will be assessed for relevance,
completeness and the manner and level of risk containment.

5. Incorporating Software Quality Measures
 in Contracts

The contract development process includes several steps
at which information can be gathered and requirements set to
include software quality as a measure of vendor performance.

Sections L & M or equivalent from the RFP
>> Add software quality measures as a discriminating factor

 in selecting the contractor
>> Enumerate expectations in this area:
 • Types of methods used
 • Evidence to be provided

Technical Requirements Document, Statement of Objectives,
and SOW

Add requirements in the form of deliverable items—as CDRLs
or Data Accession List items as appropriate. Examples include
the following:

>> Output of automated unit tests showing code coverage
 at or above required minimum.

>> Output of automated syntax analysis showing
 conformance to pre-determined rules.

>> Evidence of accomplishing required peer reviews.
>> Itemized list of tools with version numbers used to

 produce output from each source module.
>> Programmer’s reference manual with examples.

Parameter/rating Unacceptable Marginal Acceptable Superior

The number and type of
peer reviews

none 1 (any) 2 (design, code) 3 or more
(requirements,
design, code, test)

The use of automated
unit testing including test
coverage requirements

none unit tests
written after
manual
testing or
only on
selected
code

automated tests 75%
code coverage on
new or modified code

automated tests 85%
or more code
coverage on all
delivered code. The
use of Test Driven
Development.

The use of automated
syntax analysis tools and
adherence to the rules
incorporated by them

none used
selectively or
with heavily
modified
rules

used consistently with
standard rules

additional rules or
tools specific to
security analysis

The comprehensiveness
of integration and test
methods including
continuous integration
tools if used

ad-hoc formal
integration
and test

automated processes
applied periodically

continuous
integration including
syntax analysis and
unit tests

The use of readiness
requirements such as
unit test and syntax
analysis for code check-
in

none individual
manual
testing

integrated testing by
developer

automated part of
check-in and
continuous
integration process

Configuration
management and source
code control tools and
techniques

manual/paper trail by individual
developer

system-wide
repository

managed tool with
pre-check-in
requirements

The extent to which root
cause analysis of
defects is part of the
development process

none “red-team”
only

serious defects routine periodic
analysis of defect
pool

The selection of software
source code to be
reused, replaced, or re-
written from previous
implementations

none or no
response

replacement
with
contractor’s
previous
work

rework of selected
items showing good
knowledge of base
software

innovative approach
to maximum reuse
and modernization

6 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

style of development methodology (e.g., waterfall, spiral/incre-
mental, agile), then the evaluation team should have experience in
that methodology in order to evaluate the RFP response.

Since a significant portion of the suggested contract language
relates to software quality monitoring, the evaluators should be
familiar with unit testing, peer reviews, CI, static code analysis,
and metrics. Finally, evaluators should have some knowledge of
various practices and approaches of applying these techniques,
for example, when it comes to test-driven development.

The field of software engineering is diverse. It is insufficient
to simply have general software engineering experience on the
evaluation team without further having experience in the appli-
cable domain(s). Examples of these domains include real-time/
embedded, kernel/operating systems, numerical/digital signal
processing, web applications, SOA, information retrieval/search,
security, and human-computer interface.

Finally, the evaluation team should have an understanding of
the CMMI process and rating criteria.

8. Guidance for Evaluating Technical Responses
The recommended contract language in this article includes

Section M of the RFP, also appearing as Evaluation Criteria. The
language is not very specific so as to elicit responses that are more
original than simply claiming to do a long list of things that the gov-
ernment is checking for. In this section, we discuss more specific
guidance for the evaluation team in evaluating the responses.

In advance, the team should define objectives that are sought
after and then define measurable criteria. The more objective the
criteria, the better, though it is recognized that coming up with this
criteria can be a challenge. After defining criteria, they are priori-
tized and then weighted in a scheme the team deems appropriate.

Some general evaluation tips are as follows:
• If key staff are identified in the proposal, how likely are they

to be available during contract execution?
• In reference to quality assurance processes, does the pro-

posal language favor or at least mention “empowerment” of the
quality assurance team over engineering processes?

• Regarding the contractor’s approach to automated unit
testing: Does the contractor require that unit tests be passed
and cover a reasonable percentage of code before code can be
checked in? Does the contractor use test-driven development?

• Regarding the contractor’s approach to automated syntax
analysis: Does the contractor require that syntax analysis be
performed and that all required rules are followed before code
can be checked in?

• Regarding development build and integration: Does the con-
tractor use an automated build process that incorporates syntax
analysis and automated unit testing?

You can expect that the response is going to claim appraisal
at a specific CMMI maturity level (commonly at least level 3).
This can be verified with the Appraisal Disclosure Statement
(ADS) document. Another source is the Standard CMMI Ap-
praisal Method for Process Improvement (SCAMPI). For the
larger contractors, particularly when work is further sub-con-
tracted out, look for further CMMI level compliance information
on the specific division/unit and sub-contractor(s) as applicable.

>> Interface definitions.
>> List of all software components with the following

 information:
 • Purpose and function.
 • Interfaces provided.
 • Language/version for each module.
 • Complete source code.
>> Source from architectural design tool where available.
>> Use cases (text and diagrams).
>> Class diagrams where applicable.
>> Complete list of any third-party components with version

 numbers.
>> Contact information for any outside dependencies.
>> Build procedures, including documentation for building all

 software components from source code.
>> Test procedures—including any automated unit tests with

 source code, test scripts.

6. Rationale for Incorporating Recommended
 RFP Language

The recommended RFP language was derived by the authors
from a variety of sources including MITRE acquisition subject
matter experts, existing guidance documents from the Navy and
Air Force, and also from the authors’ experience. We have tried
to provide a succinct rationale as to why the language asks for
specific information from the contractor in the RFP:

The SDP is a maturity indicator of the bidder’s development
process. By evaluating this, and then putting its provisions under
contract, it becomes possible to select a contractor on the basis
of development methodology and then obligate them to perform
as proposed.

Automated unit tests and comprehensive peer reviews are
widely used best practices. Capers Jones6 has noted that these
are among the required steps to achieve effective defect removal.

Continuous Integration (CI) often includes the automated
invocation of tests and code analysis during the build process.
CI and static analysis expose problems earlier in the develop-
ment process. The earlier problems are discovered, the lower
the cost to resolve.

Root cause analysis prevents the introduction of defects
and is a recognized best practice in all approaches to process
improvement. It is a CMMI® Level 5 practice area. Prevention is
more cost effective than detecting and fixing defects after they
are introduced.

The BOE helps the evaluator understand the bidder’s cost
to compare against industry averages and government cost
models. By examining proposed labor categories, this can be
checked against predicted labor distributions from government
cost models as well.

The IMS can be checked for alignment with required mile-
stone dates, and it supports an independent estimate.

7. Guidance for Evaluation Team Experience
The government’s evaluation team must have relevant software

engineering experience. The experience should cover the full life
cycle of software development from design to development, inte-
gration, testing, and delivery. If the proposal is seeking a particular

CrossTalk—January/February 2013 7

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

9. Development Process
If the proposal declares that a development process will be

used that will involve multiple iterations/spirals/increments
(which is standard practice), then the evaluation team should
look for further details on the process to include the following:

• What is the duration and scope of each increment?
• Are lessons and obstacles from one increment reviewed for

improvement to a subsequent increment?
• Is user (customer) feedback interaction only up front or do

most increments incorporate this? And how is that feedback
prioritized?

• Are multiple increments planned in sufficient detail, or are
only the present and possibly next increment planned?

10. Software Engineering
One key thing to look for in a proposal is to what degree the

contractor has experience in the technology the RFP calls for
them to deliver. The more complex the system, the more impor-
tant applicable contractor experience is.

Many DoD systems have a degree of interoperability and
integration required of them. For integration with particular
systems, verify if the contractor has experience with that system
or has relationships with third parties with integration capabili-
ties that will be used. The contractor should also participate in
applicable Communities of Interest.

Testing processes and technologies that support them are
important. Look for information on a test plan or strategy. If the
proposal is serious about continuous integration and use of
supporting tools, then listing the software to be used for this is a
promising sign. Information on how the tools are used (e.g., by ex-
ception and/or monitored on a periodic basis—and what period) is
also telling. If the proposal includes information on the proposed
system design, then the evaluators could look to see how “test-
able” the design is, particularly as it is incrementally built.

11. Conclusions
While it is important to implement quality measures in

software construction, this is undertaken after a contractor has
been selected. The authors recommend an in-depth approach,
beginning with the process of selecting the contractor. It can be
easy to overlook the importance of including specific language
in the proposal documents in order to be able to select the
right contractor from those responding to an RFP. In order to
accomplish this goal, it is critical to specify the instructions in
Section L (or the IFPP) and the evaluation criteria in Section
M (or the EC) so that these can be used to assign strengths or
weaknesses appropriately. This is an early, but often neglected,
piece of the puzzle involved in building quality software products
for defense applications.

Acknowledgement:
The authors wish to thank Tim Aiken and Carole Mahoney for

their guidance as we conducted our research. Additionally, we
wish to thank the MITRE Systems Engineering Practice Office,
the acquisition community, and our various programs for their
contributions to our survey.

Disclaimers:
CMMI® is registered in the U.S. Patent and Trademark Office by Carnegie

Mellon University.

©2011-The MITRE Corporation. All rights reserved. Approved for public
release: 11-2921. Distribution unlimited.

Steve Bygren is a Principal Information Systems Engineer at
The MITRE Corporation, supporting the Electronics System
Center (ESC) from Peterson Air Force Base, Colorado, where
his focus is on multi-system integration and advanced devel-
opment. Bygren has 28 years of experience in software and
systems engineering, and received his Bachelor of Science in
Computer Science from Montana State University.

The MITRE Corporation
1155 Academy Park Loop
Colorado Springs, CO 80910
Phone: 719-659-3794
E-mail: sbygren@mitre.org

Greg Carrier is a lead software systems engineer at the MITRE
Corporation in Bedford, MA. Greg’s interest in improving
software quality stems from his experience managing software-
related projects for a variety of government contracts.

The MITRE Corporation
202 Burlington Rd.
MS S355
Bedford, MA 01730
Phone: 781-271-5180
E-mail: gcarrier@mitre.org

Tom Maher is a Senior Software Systems Engineer for the
Information and Computing Technologies Division at MITRE
with more than 15 years of hands-on experience in applying
technology to meet the needs of business. Tom’s employers
and clients have ranged from Internet startups to divisions of
multi-billion dollar corporations; he has worked across multiple
domains including retail, financial services, medical information
systems, and homeland defense.

The MITRE Corporation
202 Burlington Rd.
MS 1630T
Bedford, MA 01730
Phone: 781-225-5355
E-mail: tdmaher@mitre.org

ABOUT THE AUTHORS

8 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Patrick Maurer is a lead communications engi-
neer at The MITRE Corporation. He develops
networking and network management technolo-
gies for SATCOM and line-of-sight terminals. His
current work focuses on standardizing network
management interface for terminals. Prior to
joining MITRE, Patrick worked in the telecom-
munications industry developing modems and
networking systems. He has a BSEE from
Northeastern University, MSEE from Massachu-
setts Institute of Technology and an MBA from
Boston University.

The MITRE Corporation
MS D300
202 Burlington Road
Bedford, MA 01730
Phone: 781-271-4698
E-mail: pmaurer@mitre.org

David Smiley is a lead software developer
specializing in search technologies. He has 12
years of experience in the defense industry at
MITRE using Java and various web technologies.
David is the principal author of “Apache Solr 3
Enterprise Search Server” and has presented at
conferences and taught classes about Solr.

The MITRE Corporation
202 Burlington Rd.
MS M330
Bedford, MA 01730
Phone: 781-271-7659
E-mail: dsmiley@mitre.org

ABOUT THE AUTHORS
Rick Spiewak is a Lead Software Systems Engineer at
The MITRE Corporation. Rick works at the Electronic
Systems Center at Hanscom Air Force Base as part of
the Battle Management Group, concentrating on Mission
Planning. He has been focusing on the software quality
improvement process, and has spoken on this topic at
several conferences. Rick has been in the computer
software industry for more than 41 years, and has bach-
elor’s and master’s degrees in Electrical Engineering
from Cornell University. He studied quality management
at Philip Crosby Associates.

The MITRE Corporation
202 Burlington Rd.
MS 1614E
Bedford, MA 01730
Phone: 781-225-9298
E-mail: rspiewak@mitre.org

Christine Sweed is a Lead Networking Systems and
Distributed Systems Engineer at The MITRE Corpora-
tion. She has worked at MITRE for more than 10 years
on various software development projects following 10
years of industry experience. She has a B.A. in chemistry
from SUNY Potsdam, and a M.S. in Computer Science
from Boston University

The MITRE Corporation
202 Burlington Rd.
MS K214
Bedford, MA 01730
Phone: 781-271-3552
E-mail: csweed@mitre.org

1. USAF Weapon Systems Software Management Guide, August 2008. <https://acc.
 dau.mil/adl/en-US/24374/file/49721/USAF%20WSSMG%20%20ABRIDGED.pdf>.
2. Guidebook for Acquisition of Naval Software Intensive Systems, dated September
 2008. <https://acquisition.navy.mil/rda/content/download/5657/25845/version/1/
 file/Guidebook+for+Acquisition+of+Naval+Software+Intensive+SystemsSEP08.pdf>.

REFERENCES NOTES
1. Spiewak, Rick and Karen McRitchie. “Apply the Fundamentals of Quality in Software Construction to
 Reduce Costs and Prevent Defects.” CrossTalk, Dec. 2008.
 <http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-Spiewak.pdf>
2. Crosby, Philip B. Quality Is Free: The Art of Making Quality Certain. McGraw-Hill Companies, 1979.
3. Note that while not part of the technical evaluation, the government evaluation team will examine
 Contractor Performance Assessment Reports (CPARs) for relevant performance by the respondent on
 other contracts.
4. Jones, Capers. Software Engineering Best Practices. McGraw-Hill, 2010
5. Categories suggested by conversation with Jeff Pattee, Chief, Product Definition,
 Airspace Mission Planning Division, Electronic Systems Center, USAF.
6. Jones, Capers. “Measuring Defect Potentials and Defect Removal Efficiency.” CrossTalk, June 2008.
 <http://www.crosstalkonline.org/storage/issue-archives/2008/200806/200806-Jones.pdf>.

CrossTalk—January/February 2013 9

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

It Is About the Architecture
A recent presentation on systemic root cause analysis of

failures in DoD programs [1] pointed out that:
“DoD operational test and evaluation results from October

2001 through September 2006 indicated that of 29 systems
evaluated, approximately. 50% were deemed ‘Not Suitable’, or
‘partially Not Suitable’ and approximately 33% were deemed
‘Not Effective’, or ‘partially Not Effective’.”

The presentation went on to say that one of the top 10
emerging systemic issues, from 52 in-depth program reviews
since March 2004 was inadequate software architectures.

If we are to be successful in delivering systems that meet
customer expectations, we must start as early as possible in
the design process to understand the extent to which those
expectations might be achieved. As we develop candidate
system architectures and perform our architecture tradeoffs, it is
imperative that we define and use a set of quantifiable system
attributes tied to customer expectations, against which we can
measure success.

In 2006, the National Defense Industrial Association (NDIA) con-
vened a Top Software Issues Workshop [2] to examine the current
most critical issues in software engineering that impact the acquisi-
tion and successful deployment of software-intensive systems.

The workshop identified 85 issues for further discussion,
which were consolidated into a list of the top seven. Of those
issues impacting software-intensive systems throughout the
lifecycle, two emerged that were focused specifically on the
relationship between software quality and architecture:

• Ensure defined quality attributes are addressed in
 requirements, architecture, and design.

• Define software assurance quality attributes that can
 be addressed during architectural tradeoffs.

As is true in the defense systems case above, most sys-
tems we encounter today contain software elements and most
depend upon those software elements for a good portion of
their functionality. Modern systems architecture issues cannot
be adequately addressed without considering the implications of
software architecture.

Architecture and Quality
What is an architecture? IEEE Std 1471-2000 [3, 34] defines

an architecture for software intensive systems as:
“The fundamental organization of a system embodied in its

components, their relationships to each other, and to the envi-
ronment, and the principles guiding its design and evolution.”

More recently, Firesmith et al [4], their Method Framework
for Engineering System Architectures (MFESA), have defined
system architecture as:

“The set of all of the most important, pervasive, higher-level,
strategic decisions, inventions, engineering tradeoffs, assumptions,
and their associated rationales concerning how the system meets
its allocated and derived product and process requirements.”

The authors believe that system architecture is a major deter-
minant of resulting system quality.

MFESA instructs that architectures can be represented by
models, views, and focus areas. Models describe system struc-
tures in terms of their architectural elements and the relation-
ships between them. These descriptions can be graphical or
textual and include the familiar data and control flow diagrams,
entity-relationship diagrams, and UML diagrams and associ-
ated use cases. Views are composed of one or more related
architectural models. They use the example of a class view that
describes all architectural classes and their relationships. Focus
areas combine multiple views and models to determine how the
architecture achieves specific quality characteristics.

What is quality and what are quality characteristics? IEEE
Standard 1061-1998 [5], defines software quality as the degree
to which software possesses a desired combination of attributes.

Similarly, ISO/IEC 9126-1:2001 [6], one of a four-part set of
standards on software product quality, defines quality as:

“The totality of characteristics of an entity that bear on its
ability to satisfy stated and implied needs.”

The standard identifies a quality model with six quality charac-
teristics: functionality, reliability, usability, efficiency, maintainabil-
ity and portability. The other three standards in the 9126-series
[7, 8, 9] address metrics for measuring attributes of the quality
characteristics defined in ISO/IEC 9126-1.

It should be noted that the 9126-series is being revised as
part of the Software Product Quality Requirements and Evalu-
ation (SQuaRE) series of standards. ISO/IEC 25010, Software
engineering—SQuaRE—quality model [10] is the revision of
ISO/IEC 9126-1:2001. ISO/IEC 25010 adds security and
interoperability to the list of six quality characteristics defined in
ISO/IEC 9126-1:2001. Additionally ISO/IEC 25030, Software
engineering—SQuaRE)—quality requirements [11] defines the
concept of internal software quality as the “capability of a set
of static attributes (including those related to software archi-
tecture) to satisfy stated and implied needs when the software
product is used under specified conditions.” and the concept of

Paul R. Croll, CSC

Abstract. This paper addresses the use of quality attributes as a mechanism
for making objective decisions about architectural tradeoffs and for providing
reasonably accurate predictions about how well candidate architectures will meet
customer expectations. Typical quality attributes important to many current systems
of interest include performance, dependability, security, and safety. This paper
begins with an examination of how quality attributes and architectures are related,
including some the seminal work in the area, and a survey of the current standards
addressing product quality and evaluation. The implications for both the customer
and the system developer of employing a quality-attribute-based approach to ar-
chitecture definition and tradeoff are then briefly explored. The paper also touches
on the relationship of an architectural quality-attribute-based approach to engineer-
ing process and process maturity. Lastly the special concerns of architecting for
system assurance are addressed.

Quality Attributes
Architecting Systems to
Meet Customer Expectations
© 2008 IEEE. Reprinted, with permission, from the Proceedings of the 2nd Annual
IEEE Systems Conference, April 2008

10 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

software quality in use, which is “the capability of the software
product to enable specific users to achieve specific goals with
effectiveness, productivity, safety and satisfaction in specific
contexts of use.”

Functional properties determine what the software is able to
do. Quality properties determine how well the software performs.
In other words, the quality properties show the degree to which
the software is able to provide and maintain its specified services.

ISO/IEC/IEEE 15288 [12] addresses the confluence of ar-
chitecture and quality in the context of the system lifecycle. The
Architectural Design Process (6.4.3) provides for the creation of
design criteria for quality characteristics and the evaluation of
alternative designs with respect to those criteria. There is also
a Specialty Engineering view of the lifecycle processes in that
focuses on the achievement of product characteristics that have
been selected as being of special interest.

Quality Attribute-based Approaches
to Architecting Systems

In the seminal report on Quality Attributes by Barbacci et al
[13] the authors indicate that:

“Developing systematic ways to relate the software qual-
ity attributes of a system to the system’s architecture provides
a sound basis for making objective decisions about design
tradeoffs and enables engineers to make reasonably accurate
predictions about a system’s attributes that are free from bias
and hidden assumptions. The ultimate goal is the ability to
quantitatively evaluate and trade off multiple software quality
attributes to arrive at a better overall system.”

Franch and Carvallo [14] suggest that for an effective quality
model, the relationships between quality attributes must be
explicitly stated to understand potential attribute clash when de-
fining software architectures. They posit three types of relation-
ships between attributes:

• Collaboration, in which increasing the degree to which one
 attribute is realized increases the realization of another.

• Damage, in which increasing the degree to which one
 attribute is realized decreases the realization of another.

• Dependency, in which the degree to which one attribute is
 realized, is dependent upon the realization of at least some
 sub-characteristics of another.

For example, as Häggander et al [15] point out using the
example of a large telecommunication application, system archi-
tects must balance multiple quality attributes, such as maintain-
ability, performance and availability. Focusing solely on the attri-
bute of maintainability often results in poor system performance
and conversely focusing on performance and availability alone
may result in result in poor maintainability. Explicit architectural
decisions can facilitate optimization among quality attributes.

Architectural Design and Tradeoff
Bass and Kazman [16] suggest five foundational structures

that together completely describe an architecture and that can
serve as the basis for understanding the relationship of archi-
tectural decisions to quality attributes:

• Functional structure is the decomposition of the
 functionality that the system needs to support

• Code structure is the code abstractions from which the
 system is built.

• Concurrency structure is the representation of logical con
 currency among the components of the system.

• Physical structure is just that, the structure of the physical
 components of the system.

• Developmental structure is the structure of the files and the
 directories identifying the system configuration as the
 system evolves.

Bass and Kazman [16] further suggest some likely relation-
ships between the architectural structures described above
and examination of the impact of architectural decisions upon
specific quality attributes. They suggest for example that:

• Concurrency and physical structures are useful in
 understanding system Performance.

• Concurrency and code structures are useful in
 understanding system security.

• Functional, code, and developmental structures are useful
 in understanding system maintainability.

Wojcik et al [17] describe an Attribute-driven Design (ADD)
method in which the approach to defining software architec-
ture is based on software quality attribute requirements. ADD
produces an initial software architecture description from a set
of design decisions that show:

• Partitioning of the system into major computational and
 developmental elements.

• What elements will be part of the different system
 structures, their type, and the properties and structural
 relations they possess.

• What interactions will occur among elements, the
 properties of those interactions, and the mechanisms by
 which they occur.

In the very first step in ADD, quality attributes are expressed
as the system’s desired measurable quality attribute response to
a specific stimulus. Knowing these requirements for each quality
attribute supports the selection of design patterns and tactics to
achieve those requirements.

Kazman et al [18] describe an Architecture Tradeoff Analysis
Method (ATAM) that can be used when evaluating an architec-
ture, including those produced by the ADD method above, in
order to understand the consequences of architectural decisions
with respect to quality attributes. As the authors point out, ATAM
is dependent upon quality attribute characterizations, like those
produced through ADD, that provide the following information
about each attribute:

• The stimuli to which the architecture must respond.
• How the quality attribute will be measured or observed to

 determine how well it has been achieved.
• The key architectural decisions that impact achieving the

 attribute requirement.

CrossTalk—January/February 2013 11

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

ATAM takes proposed architectural approaches and analyzes
them based upon quality attributes, generally specified in terms
of scenarios addressing stimuli and responses. ATAM also iden-
tifies sensitivity points and tradeoff points.

ATAM describes stakeholders’ interaction with the system.
Stakeholders bring different views to the system and may
include users, maintainers, developers, and acquirers. Scenarios
specify the kinds of operations over which performance needs
to be measured, or the kinds of failures the system will have to
withstand. ATAM uses three types of scenarios:

• Use case scenarios, describing typical uses of the system.
• Growth scenarios, addressing planned changes to

 the system.
• Exploratory scenarios, addressing any possible extreme

 changes that would stress the system.

Making the Case for Architectural Quality
How do stakeholders know that the system will exhibit

expected quality characteristics? Firesmith et al [4] suggest that
one method is the quality case, or more specifically for evaluat-
ing architectures, the architectural quality case. Quality cases
consist of the set of claims, supporting arguments, and support-

ing evidence that provide confidence that the system will in fact
demonstrate its expected quality characteristics. Common types
of quality cases include safety cases [19], and security cases
[20], and the more generalized assurance cases [21]. Architec-
tural quality cases describe the architectural claims, supporting
arguments, including architectural decisions and tradeoffs, archi-
tectural representations, and demonstrations that the architec-
ture will exhibit its expected quality characteristics.

The implications for both the customer and the system
developer of employing a quality-attribute- based approach to
architecture definition and tradeoff, documented in part by a
quality case, are that:

• Customer quality requirements will have been distilled
 into architectural drivers [17] that will have shaped the
 system architecture.

• Tradeoffs will have been made to optimize the realization
 of important quality characteristics, in concert with
 customer expectations.

• The level of confidence that the resultant architecture will
 meet those expectations will be known.

• Customers will be knowledgeable of any residual risk they
 are accepting by accepting the delivered system.

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

12 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

There are also architectural implications regarding sustain-
ment of a system over its lifecycle. Croll [22] cites that with
respect to sustainment, paying insufficient attention to sustain-
ment issues early in the lifecycle, including licensing, and prod-
uct support can lead to problems when commercial products
or components inevitably change or when their suppliers either
discontinue support or go out of business. In the hardware world
Diminishing Manufacturing Sources and Materials Shortage
(DMSMS) analyses are generally done when integrating com-
mercial components as part of an approach for managing the
risk of obsolescence [23]. DMSMS analyses focus on supplier
viability for the product of interest, which could be considered an
attribute of component maintainability. Certainly, such analyses,
where necessary, should be part of the quality case. The speci-
fication and realization of architectures which are resilient with
respect to the substitution of alternate software components
can further enhance system quality through the lifecycle.

Process Maturity Does Not Guarantee Product Quality
We spend much time these days focusing on the maturity

of our engineering processes and heralding process maturity
ratings such as those associated with the CMMI® [24], for
development and the ISO 9000 series [25][26][27], for quality
management systems, as indicators of our ability to deliver
quality products – products that meet the customer’s expec-
tations and that continue to do so throughout their lifecycle.
What our customers have found, however, is that often process
maturity does not guarantee product quality. This is especially
true for the highly software intensive systems we now build,
where performance, dependability, and failure modes are less
well understood.

For example, although the CMMI embodies the process
management premise that, the quality of a system or product is
highly influenced by the quality of the process used to develop
and maintain it [24], Hefner [28] points out:

Several recent program failures from organizations claiming
high maturity levels have caused some to doubt whether CMMI
improves the chances of a successful project.

He goes on to say, “an CMMI appraisal indicates the organiza-
tion’s capacity to perform the next project, but cannot guarantee
that each new project will perform in that way.”

Understanding and Leveraging a Supplier’s CMMI Efforts: A
Guidebook for Acquirers [29] further underscores the problem
and offers several cautions for acquirers, with respect to supplier
claims of process maturity.

• A CMMI rating or CMMI level is not a guarantee of
 program success.

• Organizations that have attained CMMI maturity level
 ratings do not necessarily apply those appraised
 processes to a new program at program startup.

• Organizations that claim CMMI ratings are not always
 dedicated to [maintaining] process improvement [through
 out the development effort].

• Organizations may sample only a few exemplar programs
 and declare that all programs are being executed at that
 CMMI level rating.

• Organizations that claim a high maturity level rating (level 4
 and 5) are not necessarily better suppliers than a level
 3 supplier. Maturity levels 4 and 5, when compared across
 different suppliers, are not created equal.

Although process maturity can in many cases improve project
performance [30], special attention to the engineering processes
is required to ensure that customer quality expectations are real-
ized in resultant products.

A Current Concern: Architecting for System Assurance
Stakeholder discussion over the last several years has dem-

onstrated a reasonably consistent view of the problem space.
System assurance can be viewed as the level of confidence
that the system functions as intended and is free of exploitable
vulnerabilities, either intentionally or unintentionally designed
or inserted as part of the system. The President’s Information
Technology Advisory Committee report entitled Cyber Security:
A Crisis of Prioritization [31] states, “… the approach of patching
and retrofitting networks, computing systems, and software to
‘add’ security and reliability may be necessary in the short run
but is inadequate for addressing the Nation’s cyber security
needs.” The report further suggests, “we simply do not know
how to model, design, and build systems incorporating integral
security attributes.”

As Croll points out [22], the systems engineering challenge,
with respect to assurance, is in integrating a heterogeneous set
of globally engineered and supplied proprietary, open-source,
and other software; hardware; and firmware; as well as legacy
systems; to create well-engineered integrated, interoperable, and
extendable systems whose security, safety, and other risks are
acceptable—or at least tolerable.

Baldwin [32] underscores this challenge for DoD systems by
describing a vision for assurance in which the requirements for
assurance are allocated among the right systems and their criti-
cal components, and such systems are designed and sustained
at a known level of assurance.

The National Defense Industrial Association System Assur-
ance Guidebook [33] describes practices in architectural design
that can improve assurance. The Guidebook suggests some
general architectural principles for assurance:

• Isolate critical components from less-critical components.
• Make critical components easier to assure by making them

 smaller and less complex.
• Separate data and limit data and control flows.
• Include defensive components whose job is to protect

 other components from each other and/or the
 surrounding environment.

• Beware of maximizing performance to the detriment
 of assurance.

CrossTalk—January/February 2013 13

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

The Guidebook also suggests using system assurance
requirements, design constraints and system assurance critical
scenarios for architectural tradeoff analysis, and documenting
the results in the assurance case.

Summary
If we are to be successful in delivering systems that meet

customer expectations, we must start as early as possible in
the design process to understand the extent to which those
expectations might be achieved. As we develop candidate
system architectures and perform our architecture tradeoffs, it
is imperative that we define and use a set of quantifiable quality
attributes tied to customer expectations, against which we can
measure success.

Standards like ISO/IEC TR 9126, Parts 1-4, ISO/IEC 25010,
and ISO/IEC 2530 can help stakeholders define quality at-
tributes from both an internal perspective, useful for addressing
architectural design, and a quality in use perspective addressing
system realization.

Methods have been documented to aid in understanding
the relationship of architectural decisions to quality attributes,
for defining software architecture is based on software quality
attribute requirements, and for understanding the consequences
of architectural decisions with respect to quality attributes.

Architectural quality cases describe the architectural claims,
supporting arguments, including architectural decisions and
tradeoffs, architectural representations, and demonstrations that
the architecture will exhibit its expected quality characteristics.
They are extremely useful in providing customers with an un-
derstanding of any residual risk they are accepting by accepting
the delivered system.

Several recent program failures from organizations claiming
high maturity levels have caused some doubt about whether
process maturity improves the chances of a delivering a suc-
cessful product. This is especially true for the highly software
intensive systems we now build, where performance, depend-
ability, and failure modes are less well understood.

Of special concern these days is architecting systems for sys-
tem assurance. Given our track record in architecting systems
to meet assurance concerns, guidance is needed to support
assurance-specific architectural design and tradeoff analysis, as
well as appropriate documentation of assurance claims, argu-
ments, and supporting evidence, so that customers understand
the degree to which the architecture mitigates assurance risks.

Disclaimers:
© 2008 IEEE. Reprinted, with permission, from the Proceed-

ings of the 2nd Annual IEEE Systems Conference, April 2008
CMMI® is registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

Paul Croll is a Fellow in CSC’s Defense
Group where he is responsible for
researching, developing and deploying sys-
tems and software engineering practices,
including practices for cybersecurity.

 Paul has more than 35 years experi-
ence in mission-critical systems and soft-
ware engineering. His experience spans
the full lifecycle and includes requirements
specification, architecture, design, devel-
opment, verification, validation, test and
evaluation, and sustainment for complex
systems and systems-of-systems. He has
brought his skills to high profile, cutting
edge technology programs in areas as di-
verse as surface warfare, air traffic control,
computerized adaptive testing, and nuclear
power generation.

Paul is also the IEEE Computer Society
Vice President for Technical and Confer-
ence Activities, and has been an active
Computer Society volunteer for more than
25 years, working primarily to engage
researchers, educators, and practitioners
in advancing the state of the practice in
software and systems engineering. He was
most recently Chair of the Technical Coun-
cil on Software Engineering and is also the
current Chair of the IEEE Software and
Systems Engineering Standards Commit-
tee. Paul is also the past Chair and current
Vice Chair of the ISO/IEC JTC1/SC7 U.S.
Technical Advisory Group (SC7 TAG).

Paul is also active in industry organiza-
tions and is the Chair of the NDIA Software
Industry Experts Panel and the Industry
Co-Chair for the National Defense Indus-
trial Association Software and Systems
Assurance Committees. In addition, Paul is
Co-Chair of the DHS/DoD/NIST Software
Assurance Forum Processes and Practices
Working Group advancing cybersecurity
awareness and practice.

CSC
17021 Combs Drive
King George, VA 22485
Phone: 540-644 6224
E-mail: pcroll@csc.com

ABOUT THE AUTHOR

14 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

1. D. Castellano. Systemic Root Cause Analysis. NDIA Systems Engineering Division Strategic
 Planning Meeting, December, 2007.
2. G. Draper (ed.), Top Software Engineering Issues Within Department of Defense and Defense
 Industry. National Defense Industrial Association, Arlington, VA, August 2006.
3. IEEE 1471-2000, IEEE Recommended Practice for Architectural Description of Software-
 Intensive Systems. The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 2000.
4. D. Firesmith, P. Capell, D. Falkenthal, C. Hammons, D. Latimer, and T. Merendino. The Method-
 Framework for Engineering System Architectures (MFESA): Generating Effective and Efficient
 Project-Specific System Architecture Engineering Methods. To be published.
5. IEEE Standard 1061-1992. Standard for a Software Quality Metrics Methodology. New York:
 Institute of Electrical and Electronics Engineers, 1992.
6. ISO/ IEC 9126-1: Information Technology - Software product quality -
 Part 1: Quality model. ISO, Geneva Switzerland, 2001.
7. ISO/ IEC TR 9126-2: Software Engineering - Product quality -
 Part 2: External metrics. ISO/ IEC, Geneva Switzerland, 2003.
8. ISO/ IEC TR 9126-3 Software engineering – Product quality -
 Part 3: Internal metrics. ISO/ IEC, Geneva Switzerland, 2003.
9. ISO/ IEC TR 9126-4: Software engineering – Product quality -
 Part 4: Quality in use metrics. ISO/ IEC, Geneva Switzerland, 2004.
10. ISO/ IEC CD 25010, Software engineering - Software product Quality Requirements and
 Evaluation (SQuaRE) Quality model. ISO/ IEC, Geneva, Switzerland, 2007.
11. ISO/ IEC CD 25030, Software engineering - Software product Quality Requirements and
 Evaluation (SQuaRE) - Quality requirements. ISO/ IEC, Geneva Switzerland, 2007.
12. ISO/ IEC 15288:2002, Systems Engineering - System Life Cycle Processes, ISO/ IEC,
 Geneva Switzerland, 2002.
13. M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock. Quality Attributes, CMU/SEI-95-TR-021.
 Software Engineering Institute, Carnegie Mellon University, December 1995.
14. X. Franch and J. Carvallo. “Using Quality Models in Software Package Selection”, IEEE Software,
 pp. 34-41. New York: Institute of Electrical and Electronics Engineers, 2003.
15. D. Häggander, L. Lundberg, and J. Matton, “Quality Attribute Conflicts - Experiences from a
 Large Telecommunication Application,” Proceedings of the Seventh International Conference
 on Engineering of Complex Computer Systems (ICECCS’01), New York: Institute of Electrical
 and Electronics Engineers, 2001.
16. L. Bass and R. Kazman, Architecture-Based Development, CMU/SEI-99-TR-007. Software
 Engineering Institute, Carnegie Mellon University, April 1999.
17. R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood, Attribute-Driven
 Design (ADD), Version 2.0, CMU/SEI-2006-TR-023. Software Engineering Institute, Carnegie
 Mellon University, November 2006.

18. R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Evaluation, CMU/SEI-
 2000-TR-004, Software Engineering Institute, Carnegie Mellon University, August 2000.
19. W. Greenwell, E. Strunk, and J. Knight, Failure Analysis and the Safety-Case Lifecycle, IFIP
 Working Conference on Human Error, Safety and System Development (HESSD) Toulouse,
 France, August 2004.
20. Systems Security Engineering Capability Maturity Model®, SSE-CMM®, Model Description
 Document Version 3.0. Systems Security Engineering Capability Maturity Model (SSE- CMM)
 Project (Copyright © 1999), June 15, 2003
21. T. Ankrum and A. Kromholz, “Structured Assurance Cases: Three Common Standards,
 Proceedings of the Ninth IEEE International Symposium on High-Assurance Systems
 Engineering (HASE’05). New York: Institute of Electrical and Electronics Engineers, 2005.
22. P. Croll, “Engineering for System Assurance – A State of the Practice Report,” Proceedings
 of the 1st Annual IEEE Systems Conference. New York: Institute of Electrical and Electronics
 Engineers, April 2007.
23. Diminishing Manufacturing Sources and Material Shortages (DMSMS) Guidebook. Office of the
 Under Secretary of Defense Acquisition, Technology, & Logistics, November 2006.
24. CMMI® for Development, Version 1.2, CMU/SEI-2006-TR-008, Software Engineering Institute,
 Carnegie Mellon University, August 2006.
25. ISO 9000:2000, Quality management systems – Fundamentals and vocabulary. ISO,
 Geneva Switzerland, 2000.
26. ISO 9001:2000, Quality management systems – Requirements. ISO, Geneva Switzerland, 2000.
27. ISO 9004:2000 Quality management systems – Guidelines for performance improvements. ISO,
 Geneva Switzerland, 2000.
28. R. Hefner. CMMI Horror Stories: When Good Projects Go Bad. SEPG Conference, March 2006
29. Understanding and Leveraging a Supplier’s CMMI® Efforts: A Guidebook for Acquirers, CMU/
 SEI-2007-TR-004. Software Engineering Institute, Carnegie Mellon University, March 2007.
30. D. Goldenson and D. Gibson, Measuring Performance: Evidence about the Results of CMMI®.
 5th Annual CMMI Technology Conference & User Group. National Defense Industrial Association,
 System Assurance Committee, Arlington, Virginia, November 2005.
31. President’s Information Technology Advisory Committee (PITAC), Cyber Security: A Crisis of
 Prioritization. National Coordination Office for Information Technology, Arlington, VA, 2005.
32. K. Baldwin. DOD Software Engineering and System Assurance New Organization – New Vision,
 DHS/DOD Software Assurance Forum, March 8, 2007.
33. National Defense Industrial Association System Assurance Guidebook, Version 0.89. National
 Defense Industrial Association, System Assurance Committee, Arlington, Virginia February 2008.
34. IEEE Std 1471-2000 has been superseded by ISO/ IEC/ IEEE 42010-2011 -
 Systems and software engineering – Architecture description

REFERENCES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

25th Year Anniversary
Jul/Aug 2013 Issue

Submission Deadline: Feb 10, 2013

Securing the Cloud
Sep/Oct 2013 Issue

Submission Deadline: April 10, 2013

Real-Time Information Assurance
Nov/Dec 2013 Issue

Submission Deadline: June 10, 2013

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

CrossTalk—January/February 2013 15

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Dean M. Morris, Software Engineering Consultant
Kevin MacG. Adams, Ph.D., NCSOSE

Abstract. How does the project or maintenance manager control the unknown?
The unknown in this case is the negative or positive behaviors or properties that
emerge from a complex software system. The application of systems theory to
software is becoming increasingly important as systems become more complex.
Looking at a complex software system through the lens of systems science
can give the manager the insight needed to understand and control negative or
enhance positive emergent behaviors. This article provides an overview of some of
the key terms and concepts of systems theory, complexity, and emergence. Both
the positive and negative effects of emergent behavior on software systems are
considered. Additionally, some speculative and new methodologies for managing
undesirable emergent behavior are explored.

The Whole Is
More Than the
Sum of Its Parts:
Understanding and Managing Emergent
Behavior in Complex Systems

of systems theory [2]. As software systems have become much
more prevalent in government, commercial, and peoples’ daily
lives, so too has the complexity of the systems that support them.
The knowledge and application of systems theory and methodolo-
gies is becoming increasingly important for the management and
maintenance of today’s complex software systems.

A Brief Primer of Systems Theory and Emergence
Systems theory [3] provides the underlying theoretical founda-

tion for understanding systems, and as such, serves as the foun-
dation for the purposeful engineering for all complex systems.
Knowledge of the systems theory axioms is essential for the
modern software project or maintenance manager. While under-
standing all the basic concepts of systems theory is important
in software systems, the concept of emergence or emergent
behavior (both positive and negative) is paramount. By its nature,
a software system usually only exhibits emergent behavior(s)
after the system has been accepted and transitioned to the
software maintenance phase. Thus, the thrust of this article is
toward managing the maintenance of complex software systems
with the potential to exhibit emergent behaviors.

Systems Theory
Systems theory is a unified system of propositions, linked

with the aim of achieving an understanding of systems, while
invoking improved explanatory power and predictive ability. It is
precisely this group of propositions that enables thinking and ac-
tion with respect to systems [3]. A theory does not have a single
proposition that defines it, but is a population of propositions
(a model) that provides a skeletal structure for the explanation
of real-world phenomena. The relationship between theory and
its propositions is not a direct relationship. It is indirect, through
the intermediary of the axioms, where the links in the theory
represent the correspondence through similarity to the empirical,
real-world system. Figure 1 depicts these relationships.

Introduction
Imagine a hypothetical scenario where you were contracted

to manage the development and maintenance of a new multi-
server, web-based software system for the Defense Finance
and Accounting Service. The system was tested vigorously and
passed all acceptance tests. After several months of opera-
tion, the system users noticed increasing lag in the system
until it finally locked up. Tests of the individual components of
the system indicated there were no problems. It only displayed
the lock-up problem when the entire system was online and
operating. So, what happened? Why did the system exhibit this
negative behavior only after being in operation for some time?

 A real-world variation of this scenario at another organization
was presented by Mogul [1]. After much troubleshooting by the
maintenance team, it was diagnosed that the database server
load balancer was set incorrectly. As data was being received,
routed, and stored in the databases, the databases’ response
time increased. The unexpected effect was the system load
balancer interpreted the increased database delays as a
failure. After the timing expectations of the load balancer were
lowered (i.e. the expected response time from the servers was
increased), the system functioned well.

In hindsight, it was concluded that the behavior of the load bal-
ancer was totally unexpected as it only manifested itself when the
entire system was operating. This type of unexpected or emer-
gent behavior in a complex system is one of the key concepts

Figure 1: Propositions, Axioms, Theory and the Real
World System

16 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Figure 2: Axioms of Systems Theory

Systems theory provides explanations for real world systems.
The explanations increase our understanding and provide
improved levels of explanatory power and interpretation for the
real world systems we encounter. Our view of systems theory is
a model of linked axioms that are represented through similar-
ity to the real system [4]. Figure 2 is a model of the axioms of
systems theory. The axioms presented in Figure 2 are called the
theorems of the system or theory [5] and are the select set of
propositions, presumed true by systems theory, from which all
other propositions in systems theory are deducible.

The axioms of systems theory [6] are as follows:
• The Centrality Axiom states that central to all systems are

two pairs of propositions; emergence and hierarchy, and com-
munication and control.

• The Contextual Axiom states that system meaning is
informed by the circumstances and factors that surround the
system. The contextual axiom’s propositions are those which
give meaning to the system by providing guidance that enable
an investigator to understand the set of external circumstances
or factors that enable or constrain a particular system.

• The Goal Axiom states that systems achieve specific
goals through purposeful behavior using pathways and
means. The goal axiom’s propositions address the pathways
and means for implementing systems that are capable of
achieving a specific purpose.

• The Operational Axiom states that systems must be ad-
dressed in situ, where the system is exhibiting purposeful
behavior. The operational axiom’s propositions provide guid-
ance to those that must address the system in situ, where the
system is functioning to produce behavior and performance.

• The Viability Axiom states that key parameters in a system
must be controlled to ensure continued existence. The viability
axiom addresses how to design a system so that changes in
the operational environment may be detected and affected to
ensure continued existence.

• The Design Axiom states that system design is a pur-
poseful imbalance of resources and relationships. Resourc-
es and relationships are never in balance because there are
never sufficient resources to satisfy all of the relationships
in a systems design. The design axiom provides guidance
on how a system is planned, instantiated, and evolved in a
purposive manner.

• The Information Axiom states that systems create, possess,
transfer, and modify information. The information axiom provides
understanding of how information affects systems.

Emergence
Central to the discussion of system theory is the centrality

axiom and the principles of emergence and hierarchy. Hier-
archy and emergence contribute to complexity because new
and interesting properties that cannot be found in the parts
emerge and add a whole new dimension to understanding [2].
The father of modern systems theory, Ludwig von Bertalanffy
explains that the meaning of the somewhat mystical expres-
sion, “The whole is more than the sum of its parts,” is simply
that constitutive characteristics are not explainable from the
characteristics of isolated parts. The characteristics of the
complex, therefore, compared to those of the elements, appear
as new or emergent [7].

However, Odell [8] noted that complex systems do not have
to be complicated to display emergent behavior. In fact, the
agents (i.e., the elements) of the system can all be homog-
enous, follow a simple set of rules, and still exhibit emergent
properties. To illustrate the point, Odell [8] described an ant
colony computer simulation where each ant agent behaved by
the following rules:

Figure 3: Snapshots from an Ant Colony Simulation [7]

CrossTalk—January/February 2013 17

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

1. Wander randomly.
2. If food is found, take a piece back to the colony and leave

 a trail of pheromones that evaporate over time; then go
 back to rule 1.

3. If a pheromone trail is found, follow it to the food and then
 go to rule 2.

Figure 3 shows the simulation display at four stages. The
anthill is represented by the purple circle in the center and the
three blue dots are the food piles. The ants are the small red
dots and their pheromone trails are the white and green areas.

Notice that in Figure 3.a, the ants have individually begun
moving away from the colony in a random way. Later in the
sequence, in Figure 3.b, some ants have located the food on the
right and have started marking their path back to the anthill with
pheromones as they carry bits of food. By the time of Figure 3.d,
the entire right food pile has been moved to the colony and they
are rapidly consuming the other two piles of food.

Relating back to systems theory, while the ants individually
behave by a simple rule set, collectively as a colony system, they
act in a complex way. They communicate with each other via the
pheromone trails, while the pheromones also serve to exert over-
all system control. That is, when an ant encounters a pheromone
trail, it is obligated to follow it to the food, get some food, and
return to the anthill marking the path with more pheromones. The
resulting emergent property for the ant colony system is a full
food storage area. This emergent property cannot be discerned
by observing the behavior (via the simple rule set) of individual
ants. Only once the ants begin interacting in an environment
where there is food and a storage area (i.e. the colony) does the
emergent property of food storage become evident.

Effects of Complexity and Emergence
on Software Systems

This section moves systems theory into the realm of software
systems. Before getting into some positive and negative impli-
cations of complexity and emergence within software systems,
a more abstract view of the software and its stakeholders will
be discussed in a systems theory context.

Evolution of Software
Rajlich and Bennett [9] developed a versioned, staged model

for software maintenance because they believed that the more
traditional models of maintenance did not accurately capture the
evolutionary nature of the software lifecycle. Rajlich and Bennett’s
[9] maintenance model consists of the following five stages:

1. Initial development: Not maintenance yet.
2. Evolution: Significant changes may be made to a given

 version to meet changing user needs. The experience of
 the development team and an adaptable architecture are
 being leveraged to accommodate the major changes.
 This stage is iterative for the given version.

3. Servicing: As team experience and knowledge for the
 version is lost and the code starts to decay; only minor
 updates are made to the system. This stage is
 also iterative.

4. Phaseout: No more updates are performed as the system
 continues to operate.

5. Closedown: The system is retired from service.
In this model, after the initial development, the first version

enters the evolution stage where significant updates are made
in an iterative fashion. Even as the current version is being
supported through the various stages, the development team
is evolving the system to the next major version that will enter
its own set of stages upon release. For an example, Rajlich and
Bennett [8] pointed out that the Microsoft Corporation uses this
model for the production, evolution, and support of its operating
systems (e.g. Windows XP, Vista, 7, etc.).

Examining this model from a systems perspective, a few obser-
vations can be made. Independent of whether or not the actual
software exhibits emergent behavior in its operation, the fact that
the system is being evolved both within each version and to the
next version indicates that there is a complex system involved. The
system where the evolution is occurring is at least one hierarchal
level up from the software system and includes human agents (i.e.
stakeholders such as developers, maintainers, users, etc.) interact-
ing with each other. Also, the environment outside of the open
system may be changing (e.g. competition with rival organizations,
advancements in technology, etc.), thus causing the system to
adapt and evolve.

Positive Emergent Behavior
Moving back down to the software system level, positive

emergent behavior represents great potential. Ideally, a devel-
oper can design a system so that desired properties emerge
while undesired behaviors can be suppressed. This is a difficult
task, as emergent behavior is unpredictable by nature. In one
research paper, Maciaszek [10] prescribed a meta-architecture
for complex software systems that was known to produce the
desirable emergent property of adaptability while preventing
other properties from emerging. This strategy can be applied to
using design patterns to repeat positive results from previous
proven systems.

In other research, Olaru, Gratie, and Florea [11] developed a
data distribution scheme using a cognitive Multi-agent System
(MAS). The overall concept is that simple cognitive agents that
have basic goals and behaviors are connected in a network or
matrix configuration. Data can be introduced into the system
through any of the agents. After the data is introduced into the
MAS, it is propagated throughout the system so that it is avail-
able to be read from any agent in the system. Thus, individual
cognitive agents interacting on the local level produce the emer-
gent property of distributing the data throughout the system
without any central control.

Negative Emergent Behavior
Even though positive emergent behavior in software systems

holds great promise for the future, the maintenance manager or
developer of today will more than likely have to deal with mitigat-
ing the undesirable or negative emergent behaviors in complex
software systems. How does the maintainer troubleshoot and
repair a problem that does not originate in the code, but instead

18 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

originates in the interactions between agents in the system?
Mogul [1] proposed a research agenda to come to grips with
the negative emergent property (i.e. misbehavior) problem in the
software industry. Agenda items include:

1. Creating a taxonomy of emergent misbehavior.
2. Creating a taxonomy of typical causes.
3. Developing detection and diagnosis techniques.
4. Developing prediction techniques.
5. Developing amelioration techniques.
6. Developing testing techniques.

Mogul [1] provided preliminary taxonomies of emergent
misbehavior and typical causes in the paper, but indicated that
the other four technique categories would be much more chal-
lenging to develop and implement. Work in these categories is
ongoing as is evident with the following.

Managing Negative Emergent Behavior in Software
Software maintenance is already difficult enough in regular

systems, let alone in complex software systems with emergent
behavior. Software project managers can benefit by keeping up
with the software industry literature to gain insight into potential
methods for mitigating negative emergent behavior.

Toward Self-maintaining Systems
Pertaining to the software systems of the near future, Gabriel

and Goldman [12] wrote:
“Future innovations in software will need to produce systems

that actively monitor their own activity and their environment,
that continually perform self-testing, that catch errors and
automatically recover from them, that automatically configure
themselves during installation, that participate in their own
development and customization, and that protect themselves
from damage when patches and updates are installed. Such
systems will be self-contained, including within themselves
their entire source code, code for testing, and anything else
needed for their evolution.”

To meet these goals, Gabriel and Goldman [12] proposed a
hypothetical hybrid autopoietic and allopoietic system. Accord-
ing to Gabriel and Goldman [12], an autopoietic system is one
that is continually re-creating itself and allopoesis is the process
whereby a system produces something other than the system
itself. In essence, the autopoietic part of the system would con-
centrate on keeping the system viable via monitoring the system
health and taking corrective action if a system-threatening
problem developed (e.g. a negative emergent behavior). The al-
lopoietic part of the system would operate as programs do today
(i.e., perform the functions of the system).

Verifying Complex Systems Through Formal Methods
NASA’s answer for dealing with undesirable emergent behavior

in a complex system may lie with verification through a formal meth-
ods cocktail. Rouff, Hinchey, Truszkowski, and Rash [13] reported
on research into the viability of utilizing formal methods to verify the
emergent behavior of the Autonomous Nano-Technology Swarm
(ANTS) mission that may be used to explore the asteroid belt.

Basically, the mission entails 1,000 two-pound autonomous
space vehicles that will be transported to the edge of the as-
teroid belt. From there the ANTS will self-organize into explora-
tion teams with leaders. Various instruments will be used to
collect data from asteroids that will be periodically transmitted
back to earth. For autonomous operation, the ANTS will need
to exhibit the properties of self-configuration, self-optimization,
self-healing, and self-protection. Because the ANTS mission
will potentially depend on certain positive emergent behaviors
to operate while not developing any negative attributes, many
formal methods and techniques were considered for the verifica-
tion of this intelligent swarm. After the evaluation, the research
team settled on a combination of four current formal methods
that they plan to integrate into one method that is best suited to
verifying the behavior of intelligent swarms. It is conceivable that
a similar combination of formal methods could be used to verify
other complex software systems to prevent negative properties
from emerging while grooming desired emergent behaviors.

Repairing Emergent Behaviors
Through Runtime Feedback

Lewis and Whitehead [14] have conceded that many emer-
gent behaviors simply cannot be detected using testing or other
verification techniques. To combat this problem, they developed
a system for detecting and repairing undesirable emergent
behavior at runtime. The main component of the system is a
runtime monitor named Mayet. The program they experimented
with was a variation of the game Super Mario Brothers.

For the system to work, rules were input into Mayet so it
would know what undesirable behaviors to look for (e.g. the
character gets stuck in an on-screen object, jumps too high,
etc.). Upon detecting an error, Mayet sends a message to the
game. After the game receives the message, the game repairs
the problem almost instantaneously. A major catch is that the
repair routines have to be built into the game. This seems prob-
lematic because the developer has to anticipate the possible
repairs that may be required while the types of behavior that
are supposed to be fixed are emergent, thus difficult to predict.
Regardless, the concept of repairing an emergent problem in a
software system as it is operating is a step in the right direction.

Conclusion
The knowledge and application of systems theory and meth-

odologies has become increasingly important for the manage-
ment and maintenance of today’s increasingly complex software
systems. The promise and the problem of emergent behavior
in complex software systems is a double-edged sword. Those
that chose to ignore the implications of systems science and
emergent behavior will be relegated to a reactionary role. Project
and maintenance managers who embrace the systems sci-
ence viewpoint will be much better prepared to be proactive in
controlling their software systems. The government and civilian
software engineering communities will need to gain a deeper
understanding of how to capitalize on the synergies that positive
emergent properties can provide while reliably excluding nega-
tive emergent behaviors from software systems.

CrossTalk—January/February 2013 19

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Dean M. Morris is a software engineering
consultant who recently developed soft-
ware supporting research at the National
Centers for System of Systems Engineer-
ing (NCSOSE). He retired from the Air
Force after serving in the communications-
electronics maintenance field for 21 years.
Morris holds a B.S. in Computer and Infor-
mation Science (with a minor in Finance)
and an M.S. in Software Engineering from
the University of Maryland University Col-
lege.

2765 Hamilton Road
Waldorf, MD 20601
E-mail: deanmorris@ieee.org

Dr. Kevin MacG. Adams is a Principal
Research Scientist at the National Cen-
ters for System of Systems Engineering
(NCSOSE). Dr. Adams is a retired Navy
submarine officer and information systems
consultant. He was on the faculty at Old
Dominion University from July 2007 until
coming to NCSOSE in January 2009. Dr.
Adams holds a B.S. in Ceramic Engineering
from Rutgers University, an M.S. in Naval
Architecture and Marine Engineering and
an M.S. in Materials Engineering both from
MIT, and a Ph.D. in Systems Engineering
from Old Dominion University.

4111 Monarch Way, Suite 406
Norfolk, VA 23508-2563
E-mail: kmadams@odu.edu

ABOUT THE AUTHORS
1. Mogul, Jeffrey C. “Emergent (Mis)Behavior vs. Complex Software Systems.” ACM SIGOPS Operating
 Systems Review 40.4 (2006): 293-304.
2. Flood, Robert, and E. Carson. Dealing with Complexity: An Introduction to the Theory and Application of
 Systems Science (2nd Ed.). New York: Plenum Press, 1993.
3. Adams, K. MacG. “Systems Principles: Foundation for the SoSE Methodology.” International Journal for
 System of Systems Engineering 2.2/3 (2011): 120-55.
4. Giere, Ronald N. Explaining Science: A Cognitive Approach. Chicago: University of Chicago Press, 1988.
5. Honderich, T., ed. The Oxford Companion to Philosophy (2nd Ed.). New York: Oxford University Press,
 2005.
6. Adams, K. MacG., Hester, P. T., Meyers, T. J., Bradley, J. M. and Keating, C. B. Systems Theory as the
 Foundation for Understanding Systems (NCSOSE Position Paper 2012-001). Norfolk, VA: National
 Centers for System of Systems Engineering, 2012.
7. Bertalanffy, L. von. General System Theory: Foundations, Development, Applications (Rev. Ed.).
 New York: George Braziller, 1968.
8. Odell, James. “Agents and Complex Systems.” Journal of Object Technology 1.2 (2002): 35-45.
9. Rajlich, V. T., and K. H. Bennett. “A Staged Model for the Software Life Cycle.” Computer 33.7 (2000):
 66-71.
10. Maciaszek, Leszek A. “Modeling and Engineering Adaptive Complex Systems.” Tutorials, posters, panels
 and industrial contributions at the 26th international conference on Conceptual modeling - Volume 83.
 1386961: Australian Computer Society, Inc., 2007.
11. Olaru, Andrei, Cristian Gratie, and Adina Magda Florea. “Emergent Properties for Data Distribution in a
 Cognitive Mas.” Computer Science & Information Systems 7.3 (2010): 643-60.
12. Gabriel, Richard P., and Ron Goldman. “Conscientious Software.” ACM SIGPLAN Notes 41.10 (2006):
 433-50.
13. Rouff, Christopher, et al. “Experiences Applying Formal Approaches in the Development of Swarm-Based
 Space Exploration Systems.” International Journal on Software Tools for Technology Transfer (STTT) 8.6
 (2006): 587-603.
14. Lewis, C., and J. Whitehead. “Repairing Games at Runtime or, How We Learned to Stop Worrying and
 Love Emergence.” Software, IEEE 28.5 (2011): 53-59.

REFERENCES

To learn more about the DHS Office of Cybersecurity
and Communications, go to www.dhs.gov/cybercareers.
To find out how to apply for a vacant position, please go
to USAJOBS at www.usajobs.gov or visit us at
www.DHS.gov; follow the link Find Career
Opportunities, and then select Cybersecurity under
Featured Mission Areas.

20 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

MSDF programs have long been a goal of the DoD and the
warfighter. It promises to combine information from multiple
sensors in order to determine what traditionally could not be
determined by one sensor alone either because of technological
limitations or geographic restrictions. These multisensor systems
can be used to increase geolocation accuracy, reduce uncertainty,
automatically extract man made features, and quickly identify
potential targets. When expanded to include higher-level fusion
capabilities, MSDF tools can help anticipate future actions of
these potential targets or provide recommendations for antici-
pated decision points. It is no longer enough to simply provide
image registration or to combine sensor level information when
higher-level fusion based software promises improved situational
awareness and autonomous decision-making aids.

The demand for MSDF systems has only increased in the
era of near ubiquitous sensors. With more sensors, especially
with the move into persistence, come more data and the need
for more analysts to review the data. The problem has long
since arrived that there is too much data for too few analysts.
The goal is not to replace the analyst but to better enable them
to use the information that is already available. How often has
the world been surprised by a significant incident only later to
find that there were indicators available to prevent it? Events
like the 2009 Christmas Day Bombing or the Ft Hood shooting
were preceded by sufficient indicators; all that was needed was
someone to piece together the parts in a timely manner.

It should already be clear why data fusion has been researched
for decades. Still today, there are dozens of contractors and uni-
versities dealing with multiple agencies who continue searching
for solutions [1, 2]. The National Geospatial-Intelligence Agency
(NGA) outreach lists multi-source and multi-INT fusion as priority
for research and has asked for help in tackling what they con-
sider a hard problem [3]. In fact, the NGA has increased research
into different fusion technologies to such an extent that other
agencies have reduced their funding [4].

Unfortunately, many of these fusion programs have been less
than successful and the golden age of sensor fusion has not yet
arrived [3, 4]. Several factors can be attributed to this issue. At
the sensor level, these systems must combine data with vary-
ing temporal, spatial, spectral and radiometric characteristics.
They, “may be heterogeneous, possibly asynchronous, and not
identically georeferenced due to motion, limited fields of view, or
constraints on power and/or the GPS signal [4].” At the program
level, problems have arrived from too grand a goal to start with,
the requirements of a wide range of disciplines not traditionally
used in systems or software engineering, and the use of what
are traditionally very stove-piped, isolated tradecraft.

Sensor Fusion Defined
There may be as many interpretations about what defines data

fusion as there are people who are trying to solve it. The sensor
fusion domain not only includes combining the outputs of single-
modal, single-phenomenology sensors but also the predictive
assessments provided by systems relying on multi-platform (dif-
ferent unmanned aerial vehicles for example), mult-INT (combin-
ing multiple intelligence types such as imagery intelligence and
electronic signals derived data. An instructive way to define DF
while conveying its wide scope is to use a process model. The
most referenced model within the DoD appears to be the Joint
Director of Labs (JDL) data fusion model shown in Figure 1 [5].

The JDL, is an organization which no longer exists but in
the 1980s they were tasked to develop a model for data fu-
sion. This JDL model, revised in 1999, was created to show a
general process of data fusion with wide applicability for both
government and academia. It standardizes communications
between engineers but does not dictate the actual steps of per-
forming fusion nor which levels must be used. The model shows
multiple potential data sources on the left that can be directed
to any of a number of processes within the fusion domain then
the resulting output provided on the right. Table 1 provides a
description of the most common fusion levels [6].

As an example, detecting a manmade object at a specific lo-
cation, classifying it as a tank and even identifying it specifically
as a T-72 tank is all covered under Object Assessment (level-1).
Situation assessment (level-2) can use priory information to
indicate that this Soviet-designed main battle tank is possibly a
friendly unit of the Iraqi Army. The number found and location
would further indicate unit size, if not the exact unit, and possibly
the unit’s disposition such as movement to contact. The impact
assessment (level-3) could use this information then indicate
that the explosions detected by acoustic sensors may not have
been an attack directly on coalition forces; however units should
be moved to support the Iraqi Army.

Though this model does not indicate a process where one level
must be met before the next, programs traditionally start at level-1
then determine what must be accomplished in order to reach the
next level on up. This has led to a large number of programs which
have worked through level-1 processing while not too many have
successfully developed level-3 [2]. When working through each level
in this manner level-3 becomes an increasingly complex goal. This
complexity is further increased when the need for increased situ-
ational awareness necessitates moving from the fusion of different
single-INT sensors to the fusion of different multi-INT sensors.

Mike Engle, The George Washington University
Shahram Sarkani, The George Washington University
Thomas Mazzuchi, The George Washington University

Abstract. Mulitsensor data fusion (MSDF) has been researched for decades yet
programs relying on it to provide a situational, or threat, assessment continue to
be less than successful. In order to alleviate the too-much-information, too-few-
analysts issue, a better approach must be determined. A survey of recent and
current data fusions programs was conducted along with a literature review on how
different organizations handle a fusion-based assessment. Key points found in this
study were used to develop an adaption of models that can be used to provide an
improved assessment while simplifying the process needed to get there.

Developing a Model
for Simplified Higher
Level Sensor Fusion

CrossTalk—January/February 2013 21

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

 The assumption was that the majority of the programs
would concentrate on both a single intelligence gathering
discipline (INT) and lower-level sensor fusion techniques. Once
the information was collected, 11 of these selected projects
concentrated on a single INT although most did span across
multiple phenomenologies. Seven programs were described
as multi-INT, while most of these simply provided a common
geospatial reference to a specific type of non-geospatial intel-
ligence data. The remaining six included support items such as
database development and were determined to not be directly
applicable to this breakdown. Figure 2 shows that of the 18
represented projects, nine were considered level-1 fusion,
seven were considered level-2 and the final two were consid-
ered level-3 fusion.

Resource
Management

External

Distributed

Local

Sensors/
Databases

Sources Data Base Management System

Fusion DBSupport DB

Level 3
Threat

Assessment

Level 2
Situation

Assessment

Level 1
Object

Assessment

Level 0
Signal

Assessment

Level 4
Process

Assessment

Human/
Computer
Interface

Data Fusion Domain

	
Figure 1 The revised JDL Data Fusion Model (Hall, Liggins, & Llinas, 2009)

Level Name Description
0 Subobject/ Signal

Assessment
Preconditioning Data to correct biases, perform spatial and temporal
alignment. Also can include feature extraction or signal detection.

1 Object
Assessment

Association of data to estimate an objects or entity’s position, kinematics, or
attributes (including identity)

2 Situation
Assessment

Aggregation of objects/events to perform relational analysis and estimation of
their relationships in the context of the operational environment.

3 Impact /Threat
Assessment

Projection of the current situation to perform event prediction, threat intent
estimation, own force vulnerability, and consequence analysis.

4 Process
Assessment

Evaluation of the ongoing fusion process to provide user advisories and
adaptive fusion control or to request additional sensor/source data (resource
management)

 Table 1 JDL Fusion Levels 1-4 with descriptions

	
	
	

9	
50%	 7	

39%	

2	
11%	

Represented	 Programs	 by	 JDL	 Fusion	 Level	 -‐	
1st	 Review	 	

Level-‐1	 Level-‐2	 Level-‐3	

Figure 2 Represented programs broken down by JDL
fusion level IAW project description

An Analysis of Recent Projects
 An existing initiative already offers a concise summery of

current technology-based programs, the National Technology
Alliance (NTA). One of the benefits provided by the NTA is
simplifying USG access to commercial technology; specifically
dual-use technology where cost-sharing can be attained. It
also provides an independent assessment and evaluation of
government users’ needs and identifies optimum technology
solutions to technical challenges [1]. Several of these analyses
have covered data fusion research but in 2009 the multi-
source and multi-INT Fusion Technology Survey and Analysis
report conducted in conjunction with the Pennsylvania State
University directly aligns with the type of work needed. Though
this report covered several hundred government and COTS
sensor fusion solutions, 24 separate projects ranging from
basic research to tool development were picked for additional
study. These projects represent the work funded by a single
R&D office whose goal was the advancement of available sen-
sor fusion based tools.

First, information was collected from their project summa-
ries as a starting point to show the breakdown of what was
included in this sample space. Then a more in-depth analysis
into each project was made in order to provide an indepen-
dent look while ensuring each was evaluated by a single
person. This was done to remove any bias or at least provide a
consistent bias across all 24 projects. Finally, a third look was
attempted after approximately one year in order to determine a
status update.

The independent audit of the 18 represented projects
showed that a total of 15 were likely level-1 fusion technolo-
gies. This left only one of the original seven level-2 projects
in place to support situational assessment. The two projects
originally indicated as level-3 fusion remained level-3 (Figure 3).
Of these final two, one turned out to be a study. This study was
not rejected as a level-3 project because it potentially laid out
important groundwork for follow-on multi-INT work. However,
it did not provide for any actual data fusion in itself. This left a
single project out of a total of 24 to possibly become a higher-
level data fusion based software tool.

During the review several issues were noted. It was found that
that a large percentage of the level-1 fusion projects required
multiple separate hard problems to be answered in order to be
successful. Some of these problems were the same but ap-
proached separately between the separate projects and were
therefore redundant efforts. In one instance a problem was
worked though using a supporting technology that was known
to be untested and at a very low technology readiness level.
Though there was testing as part of the normal tool develop-
ment process, none of it was meant to test performance of in-
dividual technologies before being integrated into the tool. This
shows that projects were initiated without determining existing
capability gaps and continued using high-risk methodologies

22 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

After all work was initially planned to be complete a third round
of review was undertaken. This review was less successful. It was
not possible to find the exact status of any individual project the
organization was working on. It was only possible to find artifacts
of work leaving the organization. This included projects being sent
out for independent testing or transitioning to a semi-operational
status. From what was found, the initial 24 projects were roughly
correlated to only three available MSDF tools. These conclusions
also support previously cited literature stating that these types of
programs tend to mostly be lower-level data fusion based with
few successful higher-level programs.

Evaluating Alternative Approaches to Data Fusion
After reviewing the types of existing sensor fusion programs, the

next step was to evaluate the process other organizations used
to attain what could be interpreted as level-3 data fusion. Areas
covered included legacy military, finance, and weather projects. This
investigation converged on one manually intensive procedure that
closely parallels the MSDF process discussed earlier. It is described
in the Army’s Field Manual on Intelligence, FM 2-0 [7].

The Army defines a procedure through the military deci-
sion making process (MDMP) to help identify the most
important information to a commander. This is important
because it is likely that there will always be too much

information available and the commander does not need to
track the status and update from each individual information
source. FM 2-0 includes this process in the key intelligence
task “conduct ISR” summarized in Figure 4. This is an
exhaustive and iterative procedure that involves several key
personnel with an in-depth understanding of the environ-
ment, unit capabilities, and what needs to happen to affect
mission success.

This process starts with an understanding of the mis-
sion that needs accomplished. Then different courses of
action are developed which are analyzed against the threat
and environmental factors to produce a set of intelligence
requirements and Priority Intelligence Requirements (PIR).
Information deemed sufficiently important but not necessarily
mission impacting are Intelligence Requirements. Information
on hostile forces essential to support key decisions that must
be made in order to accomplish a mission is classified as
PIR. The process continues with an analysis of all available
ISR (intelligence, surveillance and reconnaissance) assets
and their capabilities. This, along with the initial MDMP, helps
identify collectable indicators of threat intentions and objec-
tives which can then be used to task subordinate units and
ISR collection platforms.

Combining New Technology with Proven Process
A method to simplify building a set of fusion algorithms

to take into account any number of sensory input and to try
to think through possibly infinite scenarios is to start at the
traditional end point (level-3 DF) to determine what actually
needs to be assessed then move backwards by determin-
ing what must be obtained in order to get what is needed. In
other words, if the traditional progression of data fusion is
reversed and combined with the Army’s Intelligence Synchro-
nization discussed in the previous section, then a skeleton
process of simplified multisensor data fusion starts to take
shape (Figure 5).

	
	
	

15	
83%	

1	
6%	

2	
11%	

Represented	 Programs	 by	 JDL	 Fusion	 Level	 -‐	
2nd	 Review	 	

Level-‐1	 Level-‐2	 Level-‐3	

Figure 3 Represented programs broken down by JDL fusion
levels determined by independent audit

Figure 5 The Reverse Data Fusion Model shown over the initial
JDL fusion model with traditional workflow indicated

Figure 4 Army ISR Task Development Process from FM 2.0
which takes the mission, threat and environment into account
to determine the most significant intelligence requirements

Mission Analysis

COA Analysis

Indicators

Information
Requirements

Priority Intelligence
Requirements (PIR)

Intelligence
Requirements (IR)

Threat and
Environment

Support
Commander’s
Decision

	

	

	

	

	

	

ISR	 CR	 Indicator	 PIR	

Object	
Level	 1	

Situa8on	
Level	 2	

Threat	 	 	 	 	
Level	 3	

CrossTalk—January/February 2013 23

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Conclusion
Higher level multisensor data fusion programs allow for a

solution that is more significant than the sum of the data sup-
plied to them. In this case, they take new and known informa-
tion and provide a level of data abstraction in order to help
understand what is going on and to do this quicker then what
would normally be possible. This allows for timely decisions to
be made as events occur or statuses change, instead of after
analysts have had time to analyze each situation manually.

Care should be taken to limit work that is too similar to
work already funded or completed. This includes anything
from basic R&D initiatives to acquisition programs placing
major end items into combat. Care should also be taken to
limit the overall scope of what a MSDF program may cover.
If the intent is to develop a new MSDF system for a specific
purpose then do not add new and unrelated capabilities.
Many very capable systems already exist but varying missions
and the effects of rapid fielding initiatives have limited their
capabilities and interconnections into other systems. Using
principles of modular systems engineering and borrowing
from aspects of different levels of sensor fusion (fusion at
the sensor, object or decision level) and a simplified method
of improving the common operation picture may be possible
while leveraging on existing capabilities.

Though many MSDF programs have met with limited suc-
cess it seems entirely possible that simply reversing the order
in which most programs run may affect positive outcomes. By
taking what absolutely must be known (facts), finding ways to
first characterize then indicate these facts through available
sensor detections, then to provide an output largely based
on relatively simple Boolean math and a whole new model
for future programs is created. When taken in the traditional
lower to higher level DF order, advanced processing must be
developed in order to account for countless possible com-
binations of unknown future indications. The reverse model
alleviates the need of this advanced methodology, such of
cognitive engineering and neural networks, and simply waits
for detections that can answer the commander’s priority
information requirements.

Taken a step further, IRs can be analyzed using knowl-
edge of the organization’s existing intelligence capabilities
to determine which could be met using an automated fusion
process. These would be labeled as Fusion Information
Requirements (FIRs). FIRs are the intelligence requirements
that can be autonomously processed by current and poten-
tial sensor and used in fusion processing. These FIRs are
broken down into indicators that support the FIRs and can
be labeled as facts. These facts are the actual observations
that can be detected by any of the available intelligence
sensors and matched against priory information. In other
words, these indicators are used to support any one of a
number of situation assessments that have been predeter-
mined as necessary in order to match a threat assessment
or answer a PIR.

Next, the most likely methods to observe these indicators
are thought through. Each may have multiple methods of de-
tection. Depending on timeliness requirements, available sen-
sors and the environment, each reasonable detection is used
to create a Collection Requirement (CR). CRs are the tasking
to the specific intelligence collector such as aircraft, soldiers or
ground sensors that are most likely to observe what is needed
in the time frame that it is needed. Each CR is added to the
existing requirements management process. An example is
shown in Figure 6 where three separate FIRs are broken down
into their applicable facts. FIR-1 needs three Facts meet in
order to be satisfied. Each fact can be met through a set of
detections using Boolean logic.

Figure 7 shows how the FIRs (previously PIRs), Facts
(indicators), and CRs loosely align with but move opposite of
the more traditional object, situation, and threat assessment
functions of the JDL MSDF model. This process continues in
cycles as the threat evolves, new PIRs are determined, or the
availability of different ISR platforms change. This creates both
a synchronized collection effort and a modular approach to
MSDF. It also provides a basis for real-time information collec-
tion and processing without creating any redundant processes
to an organization. Even if the result is only an alert in an
operations center or an email sent to the responsible analyst,
pertinent and timely information is sent to the specific person
in need, in near real-time, without having to monitor countless
hours of data feeds.

PIR FIR

Fact 1 – Detection 1 or 2 & 3
Fact 2 – Detection 1 or 4
Fact 3 – Detection 5 & 6

FIR
1

FIR
3

FIR
2

Fact 1 + Fact 2 + Fact 3

Fact 4 + Fact 2 + Fact 5

Fact 6 + Fact 7

	

	
	
	
	

	
	
	
	
	
	
	
	

	

	

Detec&on	 Fact	 	 	 	 	 FIR	 CR	

Processing/	 Assessment	

HCI	

Figure 7 Reverse higher level data fusion model

Figure 6 PIRs that can be used as fusion information requirements
are further broken down into Facts and Detections

24 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Mike Engle has a Bachelor of Science in
Mechanical Engineering from the Penn-
sylvania State University and a Master’s
of Science in Systems Engineering from
the George Washington University. He has
provided systems engineering support to a
variety of R&D and software engineering
organization over the past 10 years. Prior
to graduate school, Mike Engle was a US
Army aviation officer.

The George Washington University
1776 G Street, NW Suite 101
Washington, DC 20052

E-mail: tme110@gwu.edu

Dr. Shahram Sarkani joined the faculty of
the School of Engineering and Applied
Science (SEAS) at The George Washington
University in 1986. He currently serves
as the faculty advisor for Off-Campus
Programs in the Department of Engineer-
ing Management and Systems Engineering.
From 1994 to 1997, he served as chair of
the Civil, Mechanical, and Environmental
Engineering Department. From 1997 to
2001, he was SEAS interim associate dean
for Research and Development. Dr. Sarkani
holds a BS and MS in Civil Engineering
from Louisiana State University and a PhD
in Civil Engineering from Rice University.

The George Washington University
1776 G Street, NW Suite 101
Washington, DC 20052
E-mail: sarkani@gwu.edu

Dr. Thomas Mazzuchi is a professor of
Operations Research and Engineering
Management at The George Washington
University. His current research interests
include reliability and risk analysis, Bayes-
ian inference, quality control, stochastic
models of operations research, and time
series analysis. Dr. Mazzuchi earned a BA in
Mathematics from Gettysburg College, and
an MS and DSC in Operations Research

The George Washington University
1776 G Street, NW Suite 101
Washington, DC 20052
E-mail: mazzu@gwu.edu

ABOUT THE AUTHORS
1. National Technology Alliance. (2009). Rosettex NTA project portfolio. No. TR-001-072709-554). Retrieved

13 March 2011 from <http://www.rosettex.com/nta/Rosettex%20Project%20
Portfolio%20Sept%202009%20v1-1a.pdf>.

2. National Technology Alliance. (2009). Multi-source and multi-INT fusion technology survey and analysis,
version 3. No. FR-001-085-052609-538PR). Retrieved 13 March 2011 <http://portal.opengeospatial.
org/files/?artifact_id=38981>

3. NGA. (2009). Cooperative research and development agreement (CRADA) handbook. No. 10-008). Va:
National Geospatial Intelligence Agency.

4. National Research Council. (2006). Priorities for GEOINT research at the national geospatial-intelligence
agency. Washington, DC: The National Academies Press.

5. Hall, D. L., Liggins, M. E., & Llinas, J. (2009). Handbook of multisensor data fusion : Theory and practice
(2nd ed.). Boca Raton, FL: CRC Press.

6. Hall, D. L., & Llinas, J. (2002). An introduction to multisensor data fusion. Proceedings of the IEEE, 85,
6-23.

7. Department of the Army. (2008). FM 2-0 intelligence (C1 ed.). Washington, DC: Department
of the Army.

REFERENCES

CrossTalk—January/February 2013 25

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Paul Solomon, PMP

Abstract. Previous articles in CrossTalk and the Journal of Software Technol-
ogy provided practical guidance to improve the quality of Earned Value Manage-
ment (EVM) information [1, 2, 3, 4]. This update recommends contract language
and project monitoring techniques to ensure that contractors integrate technical
performance, including software functionality, with EVM. The key enablers are
the Integrated Master Plan (IMP) and linkage to Systems Engineering (SE) work
products and best practices.

SE Process and Products
EVM can be an effective program management tool only if the:
• EVM processes are augmented with a rigorous SE process
• SE products are costed and included in EVM tracking.
If the SE lifecycle management method is integrated with the

planning of the PMB, then EVM will accurately measure techni-
cal performance and progress.

Contractual Impediments to Effective EVM
Neither the Defense Federal Acquisition Regulation Supple-

ment (DFARS) nor the Data Item Descriptions (DID) require
contractors to tie EV to technical performance. The DFARS
Earned Value Management System (EVMS) clauses cite compli-
ance with the ANSI-748 EVMS guidelines. However, the use of
TPMs is optional per EVMS. Per the defense acquisition pro-
gram support methodology, “EVMS has no provision to measure
quality. Use TPMs to determine whether your percent comple-
tion metrics accurately reflect quantitative technical progress
and quality toward meeting key performance parameters.”

EVMS focuses on the work scope and is silent on product
scope. It also states, “EV is a direct measurement of the quantity
of work accomplished. The quality and technical content of work
performed is controlled by other processes.” These loopholes
create a “quality gap.” The quality gap enables contractors
to submit misleading management information. EV and the
cost performance may be overstated when it is based on the
percentage of drawings or code completed without regard to
the technical maturity of the evolving design. As a result, the
estimate at completion may be understated.

Useful guidance to link EVM with TPMs, the technical base-
lines, IMP accomplishment criteria, and SE work products is
found in many DoD guides, as summarized at <http://www.pb-
ev.com/Pages/DoDGuidance.aspx>. However, acquisition man-
agers are not able to implement this guidance if the contractors
fail to provide needed information. Even the IMP is optional in
DoD guidance and not contractually required in DFARS.

Better Buying Power: Suppler Incentives
The DoD is striving to deliver better value to the taxpayer and

warfighter by improving the way the it does business via the
Better Buying Power (BBP) initiatives. BBP 2.0 includes the
initiative to, “Institute a superior supplier incentive program.” To
support that initiative, the Navy is currently developing a pilot
program for DoD with the intent to recognize and reward con-
tractors who demonstrate superior performance by focusing on
cost, schedule, performance, quality, and responsiveness.

The following opportunities and solutions should be consid-
ered when developing BBP 2.0 supplier incentives.

Opportunities and Solutions
The following guidance seizes four opportunities that underlie

the EVM challenges, as shown in Figure 1. Solutions to improve
contractual requirements and acquisition management follow.

Basing Earned
Value on Technical
Performance

EVM can become an effective program management tool and
deliver better value to the taxpayer and warfighter if contrac-
tors revised their processes and reports to integrate technical
performance and quality with cost and schedule performance.
However, there are no contractual requirements within the
acquisition regulations or contract data requirements to require
that contractors:

1. Tie the technical baseline to the EV Performance
 Measurement Baseline (PMB).

2. Tie technical progress to the Technical Performance
 Measures (TPM) of the program, including progress

 towards achieving planned functionality.

EVM Challenges
The guidance in this article meets EVM challenges that were

addressed in the DoD report to Congress; DoD EVM: Perfor-
mance, Oversight & Governance Report that was required by the
“Weapon Systems Acquisition Reform Act of 2009.” The chal-
lenges concern technical performance and SE, as follows.

Technical Performance
• EVM can be an effective program management tool only if

 it is integrated with technical performance
• The engineering community should establish TPMs that

 enable objective confirmation that tasks are complete;
• If good TPMs are not used, programs could report 100%

 of earned value (or credit for work performed), even though
 they are behind schedule in terms of validating require
 ments, completing the preliminary design, meeting weight
 targets, or delivering software releases that meet
 the requirements.

• The EV completion criteria must be based on technical
 performance, the quality of work must be verified, and
 criteria must be defined clearly and unambiguously.

• The PM should ensure that the EVM process measures
 the quality and technical maturity of technical work
 products instead of just the quantity of work performed.

26 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Base EV on Technical Performance
This opportunity has two components. First, do top down plan-

ning that includes defining milestones for achieving technical
objectives. Then measure interim progress towards those meet-
ing those objectives.
Top Down Planning

The solution for basing EV on technical performance has two
components. First, develop integrated plans from the top down,
starting with the technical baseline. Second, track progress
towards meeting technical objectives.

The elements of effective, top down planning are:
1. Contractually-required IMP.
2. Use the Integrated Baseline Review (IBR) to reach

 agreement on IMP accomplishment criteria and to verify
 that contractor integrates technical performance and SE
 work products with the Integrated Master Schedule (IMS)
 and EVM.

3. Use major technical reviews and EVMS compliance
 reviews to verify that contractor maintains traceability from
 IMP to IMS to Control Account/Work Packages.

First, make the IMP a contractual requirement with require-
ments-based accomplishment criteria that are tied to the
technical baseline. The criteria should include the completion
of performance measures such as Measures of Effectiveness
(MOE), Measures of Performance (MOP) and TPMs at key IMP
events such as the System Functional Review (SFR), Prelimi-
nary Design Review (PDR), and Critical Design Review (CDR).
Examples of accomplishment criteria are shown in Figure 2.

Second, use the IBR to forge agreements and to verify the
degree of integrated program management. Verify implementa-
tion of the following during IBR:

• Requirements traceability from the requirements data base
 to the IMS and from the IMS to work package completion
 criteria.

• IMS includes interim and final milestones for development
 of SE work products with criteria that are consistent
 with the Contract Work Breakdown Structure (CWBS).
 The milestones include derived requirements, definition
 of required functionality and quality attributes, and
 verification methods and criteria.

• Milestones for establishing product metrics. MOEs and
 MOPs are defined at the SFR. TPMs are defined at the PDR.

• Milestones with technical maturity success criteria including
 TPM planned values, meeting requirements, and percent of
 designs complete.

• Define success criteria for event-driven technical reviews/
 IMP events.

• Revise/clarify criteria for CDR and subsequent events
 based on knowledge of revised and derived requirements
 to be met and TPM planned values.

• Flow down of SE milestones to work packages.

Figure 1

SFR PDR CDR

Functional Baseline Allocated Baseline Product Baseline

Accomplishment Criteria

1. Completed definition of the required
system functionality

• Functional and interface
characteristics of overall system

• Verification required to demonstrate
their achievement
includes

• Detailed functional performance
specification for the overall system
• Tests necessary to verify and

validate system performance.
2. Completed definition of MOEs and

MOPs
3. All definitions above statused as

complete in Requirements Data Base.

1. Completed definition of the configuration
items (CI) making up a system
• All functional and interface

characteristics allocated from the
top level system or higher-level CIs

• Derived requirements
• Performance of each lower level CI in

the allocated baseline
• Tests necessary to verify and validate

CI performance.
A technical performance baseline is in

place down to the subsystem level, from
which the system performance thresholds
can be compared and tracked

2. All TPMs defined and allocated to
Interface Control Documents and sub-
systems).

3. All Key Performance Parameters (KPP),
MOPs, and MOEs allocated to sub-
systems

4. All definitions above statused as
complete in Requirements Data Base

1. Completed definition of the required system
functionality

• Functional and interface characteristics of
overall system

• Verification required to demonstrate their
achievement
includes

• Detailed functional performance specification
for the overall system
• Tests necessary to verify and validate

system performance.
2. Completed definition of MOEs and MOPs
3. All definitions above statused as complete in

Requirements Data Base.

Figure 2. Specified IMP Reviews, Baselines, Accomplishments/Criteria

Measure Interim
Performance

The solution to basing EV on
interim, technical performance
includes the following actions. First,
establish objective linkage between
TPM planned values and EVM. For
physical objectives, use TPMs. For
planned functionality, base EV on
achieved functional requirements.

Next, compare the EV schedule
variance (converted to duration) with
the technical performance schedule
variance. If the variances are inconsis-
tent, perform a root cause analysis to
determine reasons for the inconsis-
tency. Then revise EV to be consistent
with technical performance.

If technical performance is behind
schedule, perform variance analysis
and develop corrective actions.
Then, revise the estimate to com-
plete forward for work packages
with corrective actions.

CrossTalk—January/February 2013 27

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Finally, correct EV to reflect the technical performance status.
A backwards adjustment to EV is appropriate for work packages
with corrective actions. This technique enables the use of EV to
track corrective actions to resolution and closure.

Account for Deferred Functionality
In practice, contractors seldom account for deferred functionality

when functional requirements are deferred from one build, release,
or block to another. Normally, the numbered build and its respective
work package are “closed” and 100% of the EV is taken, based on
being finished with the build. When this happens, EV fails to disclose
the true schedule variance. Also, cost performance is overstated.

The solution is to account for deferred functionality. If the
build is released short of its planned functionality, the preferred
technique is to take partial EV and close the work package.
Then, transfer the deferred scope and Budgeted Cost of Work
Remaining (BCWR) to the first month of the work package of
the next increment. When this is done, EV mirrors technical
performance and the schedule variance is retained.

Track SE Tasks Discretely
SE tasks are sometimes incorrectly planned as level of effort.

Even when SE is discretely planned, EV is often based on interim
milestones of progress towards completing a document such as a
specification. These techniques fail to show objective progress to-
wards completing requirements-based SE tasks such as require-
ments analysis and validation, definition of technical measures,
or completion of trade studies. Getting behind schedule on these
tasks is an early indicator that an IMP event, such as SFR, PDR,
or CDR, will slip.

The solution for measuring SE tasks discretely has several
elements. First, include significant accomplishments and ac-
complishment criteria for SE tasks and work products in the
IMP. Next, show progress towards completing those SE work
products in IMS and work packages. Typical SE work products
include the system architecture (functional and physical), inter-
face controls, specifications, trade studies, and test procedures.

For SE tasks such as defining and approving the product
requirements, including derived requirements and allocated
requirements, develop a requirements-based, time-phased
budget that is based on the planned schedule for those require-
ments. Then base EV on the progress towards completing those
requirements as recorded in the requirements data base. Typical
examples of requirements status include defined, early validated,
determined verification method, approved, allocated, and traced
to a test procedure.

For work packages that result in SE work products that are
technical measures (MOEs, MOPs, and TPMs), base EV on
progress towards meeting the IMP criteria for their completion.

Plan Rework and Track it Discretely
Rework is frequently not adequately planned in the PMB and IMS.

The rework can include rework of requirements analysis, design, and
test tasks. Even if rework is belatedly budgeted from management
reserve, it is often measured as level of effort, or if measured discretely,
as a percent of the planned iterations. Neither technique reports prog-

ress towards developing or meeting the technical requirements.
The solution for better understanding and management of

rework begins the proposal and the negotiated contract value.
The program should verify realistic that rework assumptions
and estimates are included in suppliers’ proposals and negoti-
ated values. The estimates should include productivity/quality
measures such as rework percent and defect density.

The program should review the adequacy of budget and
schedule for rework in the PMB. Rework should be planned
in a separate planning package from the original task. When
converted to a work package, it should be measured discretely
based on technical maturity targets.

Establish interim milestones for rework with associated TPM
planned values or quantified functionality based on meeting
requirements. Then take interim EV based on net achieved
technical performance. Make a negative adjustment to EV when
necessary for accurate status reporting.

If rework is not in a separate work package and if EV had
been taken for achieving a technical milestone, correct EV and
the IMS when there is subsequent knowledge that the mile-
stone completion criteria are now unmet. The milestone should
be re-opened and a negative adjustment should be made to EV.
Cumulative EV must reflect net technical progress.

New Contractual Requirements
New contractual requirements should be included in the

Statement of Work (SOW) to communicate program needs.
Some of the requirements are tantamount to tailoring several of
the EVMS guidelines. The primary objective is to refocus man-
agement attention from the work scope to the product scope
and to provide EV that truly reflects technical performance.
Recommendations for acquisition reforms, including a revision
to DFARS, are in a Defense AT&L article [5]. However, program
offices can accomplish the same objectives by implementing the
specific recommendations that follow.

1. For top down planning, make the IMP a contractual
 requirement and use a tailored CWBS DID.

2. Use tailored EVMS guidelines or specify EVM techniques
 in the SOW to:

a. Incorporate the product scope or technical baseline
 in the PMB.

b. Tie EV to technical performance.
c. Account for deferred functionality.
d. Track specified SE tasks discretely.
e. Plan rework and track it discretely.

IMP and SE Work Products
Require that an IMP be a contract deliverable. Start with the

DoD IMP and IMS Preparation and Use Guide that is tailored to
specify SE work products and accomplishment criteria. The IMP
DID should be developed by the program SE organization.

An excellent source for specifying the SE tasks and work prod-
ucts is the Air Force Space and Missile Command Standard, SE
Requirements and Products [6]. For example, it states that required
SE products are: the SE accomplishments, accomplishment criteria,

28 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

and narrative in the IMP; tasks in the IMS; and work packages in
the EVMS, and such other specific plans (such as tradeoff plans)
as may be needed to achieve the attributes required above.

CWBS DID, DI-MGMT-81334C
 In practice, the CWBS does not include or point to the quanti-

fied technical or functional performance requirements that are in
the specifications. Contractors will have to reference the functions
at the CI level in the allocated functional baseline and product
specifications in the product baseline. The contractual language is:
The CWBS Dictionary for the appropriate CWBS elements must be
updated to include or reference, at PDR, the functions allocated to
one or more system CIs and, at CDR, the product specifications for
each CI in the system.

Product Scope
With regard to Guideline 2.1a, authorized work, add contrac-

tual language to: “Include the work necessary to produce the
product scope of the program, including rework (when applica-
ble). The product scope is the technical baseline. It includes the
features and functions that characterize a product or result.”

Technical Performance
With regard to Guideline 2.2b, measure performance, add

contractual language to specify that “All TPMs that have been
identified at PDR shall be used to measure progress in ap-
propriate work packages. Compare product and process metrics
data against plans and schedule using trend analysis to deter-
mine technical areas requiring management attention.”

Deferred Functionality
With regard to Guideline 2.5b, revisions, add contractual lan-

guage to specify, “When work scope that is behind schedule is
internally re-planned from the work package that is being closed to
another open work package, the BCWR in the work package that
is being closed shall be transferred to the first open period of the
receiving work package The objective is to prevent arbitrary elimi-
nation of existing schedule variances. The time-phased estimate
to complete of the receiving work package must be based on an
analysis of remaining tasks in the IMS and projected resource plan.”

Rework
With regard to Guideline 2.1a, authorized work, add contrac-

tual language to specify that: “The work scope includes rework.
Rework includes corrective actions to hardware/software defi-
ciencies, including deficiencies in the underlying requirements.
Rework shall be planned, estimated, and included in the initial
PMB. Rework shall be measured discretely and use technical
performance goals to measure progress.

Conclusion
DoD has identified challenges to improve the usefulness and

validity of EV information by integrating technical performance
and systems engineering work products with EVM.

Implementation of the recommended acquisition management
processes and new contractual requirements will provide the
following benefits:

• Close the EVMS Quality Gap
• Insightful IBRs and technical reviews
• Valid contract performance reports
- Objective technical/schedule status
- Credible EAC
• Early detection of problems
- Program performance
- EV measurement and compliance

Incentives for suppliers to implement these process improve-
ments can be implemented through the BBP 2.0 initiatives.

Paul J. Solomon, PMP, is co-author of the
book, Performance-Based Earned Value.®
He supported the B-2, Global Hawk, and
F-35 programs at Northrop Grumman. He
co-authored the EVMS Standard and re-
ceived the DoD David Packard Excellence
in Acquisition Award. He was a Visiting
Scientist at the Software Engineering Insti-
tute and published “Using CMMI to Improve
EVM.” His web site, <www.PB-EV.com>,
contains EVM best practices. He holds a
BA and an MBA from Dartmouth College.

ABOUT THE AUTHOR

1. Solomon, Paul J. “Practical Software Measurement, Performance-Based Earned
 Value.” CROSSTALK Sept. 2001: 25-29 <http://www.crosstalkonline.org/storage/
 issue-archives/2001/200109/200109-Solomon.pdf>.
2. Solomon, Paul J. “Performance-Based Earned Value.” CROSSTALK Aug. 2005:
 25-26 <http://www.crosstalkonline.org/storage/issuarchives/2005/200508/200508-
 Solomon.pdf>.
3. Solomon, Paul J. “Practical Performance-Based Earned Value.”
 CROSSTALK May 2006: 20-24
 <http://www.crosstalkonline.org/storage/issue-archives/2006/200605/200605-
 Solomon.pdf>.
4. Solomon, Paul J. “Improving the Quality of EVM Information” JOURNAL OF
 SOFTWARE ENGINEERING Aug. 2011 <http://journal.thedacs.com/issue/58/195>.
5. Solomon, Paul J. “Path to EVM Acquisition Reform.” DOD AT&L May 2011:25-27
 <http://www.dau.mil/pubscats/ATL%20Docs/May-June11/Solomon.pdf>.
6. Air Force Space Command , Space and Missile Systems Center (SMC) Standard
 SMC-S-001, “SE Requirements and Products.” July 2010.
 <http://www.everyspec.com/USAF/USAF+-+SMC/SMC-S-
 001_12JUL2010_21522/>

REFERENCES

CrossTalk—January/February 2013 29

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Estimating Concepts
Most estimating articles, and tools, focus on domain specific

models, benchmark data, and approaches. But for all labor
related activities there are some generic concepts that underlie
estimates for any of the types of work to be performed. These
fundamental concepts apply whether you are using commercial
parametric estimating tools or home-built Excel based models.
User configurable cost estimating tools can be configured using
these core concepts to support estimates for any labor driven
work, or even for projects consisting of fundamentally different
types of activities, even if the tool originally ships pre-initialized
for a given domain.

William Roetzheim, Level 4 Ventures, Inc.

Abstract. Understanding the core estimating concepts will help you understand
any of the currently available estimating tools and provide you with the framework
you need when building new models for your particular problem domains. This ar-
ticle strips off the domain specific layers to get at the basic skeleton that underlies
estimation in general.

Core Estimating
Concepts

testing/validation only of existing components. Various formulas
or simplifying assumptions may be used for this purpose. For ex-
ample, in the case of reuse the original Constructive Cost Model

 (COCOMO) I model reduced the HLO size to:

Figure 1: Core Estimating Concept

Figure 1: Core Estimating Concept, provides an overview of
the estimating process at a sufficiently high level to ensure that
it applies to estimating within any labor driven problem domain.

Step one in the process is to identify one or more High-level
Objects (HLOs) that have a direct correlation with effort. The
HLOs that are appropriate are domain specific, although there
is sometimes an overlap. Examples of HLOs include yards of
carpet to lay, reports to create, help desk calls to field, or claims
to process. In activity-based costing, these would be the cost
drivers. HLOs are often assigned a value based on their relative
implementation difficulty, thereby allowing them to be totaled
into a single numeric value. An example is function points, which
are a total of the values for the function point HLOs.

HLOs may have an assigned complexity or other defining
characteristics that cause an adjustment in effort (e.g., simple
report versus average report). It is also typically necessary to
have a technique for managing work that involves new develop-
ment, modifications or extensions of existing components, or

HLO = HLO ∗ . 4DM+ .3CM+ .3IT 	

Where DM is the percent design modification (1% to 100%);
CM is the percent code modification (1% to 100%); and IT is
the percent integration and test effort (1% to 100%).

Step two is to define adjusting variables that impact either
on productivity, or on economies (or diseconomies) of scale.
The productivity variables tend to be things like the character-
istics of the labor who will be performing the work or the tools
they will be working with; characteristics of the products to be
created (e.g., quality tolerance) or the project used to create
them; and characteristics of the environment in which the work
will be performed. The variables that impact on economies
or diseconomies of scale are typically things that drive the
necessity for communication/coordination, and the efficiency
of those activities. These adjusting variables are important both
to improve the accuracy of any given estimate, and also to
normalize data to support benchmarking across companies or
between application areas.

Step three involves defining productivity curves. These are
curves that allow a conversion between adjusted HLO sizing
counts and resultant effort. They are typically curves (versus
lines) because of the economies or diseconomies of scale that
are present. Curves may be determined empirically or approxi-
mated using industry standard data for similar domains. Curves
may also be adjusted based on the degree to which the project
is rushed. In any event, procedures are put in place to collect the
necessary data to support periodic adjustment of the curves to
match observed results, a process called calibration.

The outputs of the process are driven by the needs of the
organization. These outputs can be broken down into three
major categories:

1. Cost (or effort, which is equivalent for this purpose):
In addition to the obvious total value, most organizations are
interested in some form of breakdown. Typical breakdowns
include breakdowns by organizational unit for budgetary or re-
source planning purposes; breakdowns by type of money from a
generally accepted accounting principles perspective (e.g., opex
versus capex); or breakdown by work breakdown structure ele-
ments in a project plan. These outputs will also typically include
labor needed over time, broken down by labor category. These
outputs are generated using a top down allocation.

2. Non-cost Outputs: Non-cost outputs are quantitative
predictions of either intermediate work product size, or non-
cost deliverable components. Examples include the number
of test cases (perhaps broken down by type), the engineering
documents created with page counts, the number of use-case
scenarios to be created, or the estimated help desk calls broken
down by category. These outputs are typically created using
curves similar to the productivity curves, operating either on the
HLOs or on the total project effort.

30 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

3. Lifecycle Costs: If the estimate is for a product to be cre-
ated, delivered, and accepted then the cost and non-cost items
above would typically cover the period through acceptance. In
most cases there would then be an on-going cost to support
and maintain the delivered product throughout its lifecycle.
These support costs are relatively predictable both in terms
of the support activities that are required and the curves that
define the effort involved. For many of them, the effort will be
high immediately following acceptance, drop off over the course
of one to three years to a low plateau, then climb again as the
product nears the end of its design life.

Understanding these basic concepts, it is clear that for a
given system there may be many different estimates that need
to be prepared and combined. Each aspect of the work that
involves different HLOs, different adjusting variables, or differ-
ent productivity curves is really a different model. But all of the
models rest within a consistent framework, and in fact, can run
within the same tool. There is another dimension of the estimate
we need to consider: project lifecycle, or time.

For most projects, it is impossible to completely and accu-
rately define the end product to be delivered. In fact, I would
argue that the only way to completely avoid uncertainty in the
end product is to have an exact model of the desired results be-
fore you start, and it is unusual to have such a model available.
In fact, most of the effort spent on projects is on a progressive
elaboration of the baseline description of what is to be ultimate-
ly delivered. As shown in Figure 2: Progressively Elaborated
Baseline,” the baseline of what will ultimately be delivered is
progressively elaborated throughout the life of the project. Using
software as an example, the requirement specification elabo-
rates the functional baseline; the design elaborates the require-
ment specification; and the code elaborates the design.

As a project moves through this process of progressive elabo-
ration, the estimation models also progress forward (see Figure 3:
Estimating Lifecycle). At the most obvious level, as you under-
stand the problem more you can more accurately decompose the
work to be performed and prepare an estimate. However, there
is another phenomenon at work. The actual estimation model
components will change as you move through the process. For
example, the HLOs that are used to define the product(s) will
change, becoming more and more granular as you move forward.
At the high-level estimate stage you might think in terms of a new
screen including supporting back-end processing and middleware
communication components; at the scope estimate you might
be looking at a screen, a table, and a new service; and at the
validation estimate stage you might be talking in terms of stored
procedures to be written. They are all different perspectives of the
same functionality that will ultimately be delivered, but with differ-
ent levels of granularity. However, the core components of Figure
1 are the same for all of these estimates.

Not only are better estimates possible as you move through
the project life, but the primary reason for doing the estimate will
change over time. Take a look at Figure 4: Estimating Purposes.
Early lifecycle high-level estimates are often used for demand
management. Projects are examined for feasibility and selected
based on ROI or other financial measures that require estimates
to perform the calculations. Scarce resources are allocated to

Figure 2: Progressively Elaborated Baseline

Figure 3: Estimating Lifecycle

support planned projects based on these demand estimates.
One characteristic of high level estimates is that a significant
percentage of the projects that are estimated (as high as 90%
in some cases) are never started. Once a project is at least
partially funded and the requirements are better understood
and defined (i.e., the baseline has been progressively elaborated
one level), then a scope level estimate can be prepared. In many
organizations, this is called a “commit” estimate because this will
be the estimate used as a basis for measuring project success
going forward. The scope level estimate defines the project
baseline estimate. Changes in scope are then estimated and,
if approved, those estimates are used to modify the baseline.
When the project is complete, an as-built sizing is performed to
update the organization historical database and for calibration.

Figure 4: Estimating Purposes

CrossTalk—January/February 2013 31

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

One final core concept of cost estimating is worth discussing:
The difference between an estimate and a budget. An estimate is
defined as the most likely outcome of a probabilistic event, taking
into consideration everything that is currently known about the
project. However, the estimate does not include risk, an important
component of the project budget. As shown in Figure 5: Estimating
versus Budgeting, the estimate defines a starting baseline. Your
risk management process (shown at the top of the figure) will then
determine the necessary funds for contingency funds and risk
response funds. Risk response funds are planned expenditures
designed to reduce negative risk or enhance positive risk (oppor-

Figure 5: Estimating versus Budgeting

tunities). Risk Response Funds will always be a cost to the project.
Contingency funds are monies set aside to deal with risks that are
known but uncertain. Generally, these will be a net cost to a project,
although in some situations where risk management has identified
some significant positive risks, they may actually reduce the project
budget. Finally, the organization will normally want to include a
management reserve to allow for unknown-unknowns, or risks that
are not discovered until later in the project life.

Putting it All Together
Let us take a look at how all of this fits, starting with a slide

prepared by the Naval Center for Cost Analysis and presented by
Mr. Bryan Flynn at the 43nd Annual DODCAS [1]. As shown in
Figure 6: DON Cost Estimating Standard, the DON standard ap-
proach aligns well with the approach just described. We will look
at it step-by-step, using some examples to explain the process.

Step 1: Establish Needs With Customer
While not directly addressed in this article, this project initiation

step is actually the most critical, yet the most often overlooked.
I often say that good software cost analysis is 90% stakeholder
management, and 10% math. And the key to stakeholder man-
agement is understanding the needs of the stakeholders.

Step 2: Establish a Program Baseline
Here we are reviewing the business requirements and acquisi-

tion strategy (perhaps captured in a cost analysis requirements
description), identifying cost drivers or HLOs of this article; and
identifying risk areas (the start of risk analysis). For example, in

	
	
	

 START

OUTPUT
• Briefing
• Documentation

OUTPUT
• CERs
• Cost Model

OUTPUT
• Life-Cycle Estimate

OUTPUT
• Technical Baseline
• Ground Rules
• Risk Areas

OUTPUT
• Plan of Action and Milestones
• Stakeholder Consensus
• Cost Team Formation

1.1 Establish Needs with Customer
Activities:
- Define purpose and scope
- Manage expectations

1.3 Develop Baseline Cost Estimate
Activities (often iterative):
- Select methods and models
- Collect, normalize, and analyze data
- Develop CERs and analyze risk and

uncertainties at the cost-element level
- Develop aggregate cost model

1.4 Conduct Risk & Uncertainty Analysis
Activities:
- Generate probability distribution for total cost
- Select mean, median, or other point for best estimate

1.5 Validate and Verify Estimate
Activities:
- Perform top-level reasonableness checks

1.6 Present & Defend Estimate
Activities:
- Develop briefings
- Present estimate to customers

1.2 Establish a Program Baseline
Activities:
- Review Cost Analysis Requirements Description

(CARD) or CARD-like documents
- Identify cost drivers (e.g., speed, weight, SLOC)
- Identify risk areas

Initial
Review

Proceed

Re-visit

Midcourse
Review

On

Final
Review

ProceedRe-work

Off-track

Subject
Matter Experts

Subject
Matter Experts

Subject Matter Experts

START

OUTPUT
• Briefing
• Documentation

OUTPUT
• CERs
• Cost Model

OUTPUT
• Life-Cycle Estimate

OUTPUT
• Technical Baseline
• Ground Rules
• Risk Areas

OUTPUT
• Plan of Action and Milestones
• Stakeholder Consensus
• Cost Team Formation

1.1 Establish Needs with Customer
Activities:
- Define purpose and scope
- Manage expectations

1.3 Develop Baseline Cost Estimate
Activities (often iterative):
- Select methods and models
- Collect, normalize, and analyze data
- Develop CERs and analyze risk and

uncertainties at the cost-element level
- Develop aggregate cost model

1.4 Conduct Risk & Uncertainty Analysis
Activities:
- Generate probability distribution for total cost
- Select mean, median, or other point for best estimate

1.5 Validate and Verify Estimate
Activities:
- Perform top-level reasonableness checks

1.6 Present & Defend Estimate
Activities:
- Develop briefings
- Present estimate to customers

1.2 Establish a Program Baseline
Activities:
- Review Cost Analysis Requirements Description

(CARD) or CARD-like documents
- Identify cost drivers (e.g., speed, weight, SLOC)
- Identify risk areas

Initial
Review

Proceed

Re-visit

Midcourse
Review

On

Final
Review

ProceedRe-work

Off-track

Subject
Matter Experts

Subject
Matter Experts

Subject Matter Experts

Figure 6: DON Cost Estimating Standard

32 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

conducting an analysis of a large DoD ERP implementation, we
looked at the available requirement document and determined that
the most logical HLOs would be Reports, Interfaces, Conversions,
Enhancements, and Workflows. We not only collected together the
count of each, but also assigned a complexity value to each (very
low, low, average, high, very high) and differentiated between those
that were new versus those that were modified. For the modified
objects, we estimated the extent of the modification (low, medium,
high). In this case, we had historic information that allowed us to es-
timate both the relative effort for each type of HLO, plus the spread
between very low to very high complexity for each type of HLO.

Step 3: Develop Baseline Cost Estimate
The methods and models that are mentioned here are our

productivity curves. What we want is models or methods that will
allow us to convert between HLOs and effort. Or more broadly,
we might say that we are looking at cost curves to convert
between HLOs and cost, assuming that we can develop models
encompassing non-labor cost driver equations.

The activity of normalizing data discussed here actually
happens at multiple points in the process. First, HLO types
are normalized relative to each other through some form of
relative weighting in terms of effort (or cost). Second, the cost
curves are normalized through project specific adjustments,
our adjusting variables.

The cost estimating relationships from the figure are at the
heart of the allocation process used to generate our cost and
non-cost related outputs.

For the ERP estimate that we are using as our example, we
first want to estimate the total effort. For this we start with a
suitable productivity model based on the lifecycle being used
and the historic data set used for the analysis. The resultant
equation is of the form:

Where α and β are the constants of the model and Size is the
normalized total of the HLO values. We then look at project and
organizational specific adjustments to α and β. What we are real-
ly interested in here are differences between this project/orga-
nization and the historic projects that we used. A couple of good
sources to look for potential changes and their likely impact on
the variables are the COCOMO II environmental variables and
the IFPUG General System Characteristics, although those are
by no means the only valid sources.

Step 4: Conduct Risk and Uncertainty Analysis
The activities described here deal with probabilistic variances

in the cost estimate based on uncertainty in the estimation
process itself. While these are certainly one source of risk, they
are not the only source of risk. It is probably more generically
correct to follow the PM-BOK approach described in this article,
in which an allowance is added to the estimate to allow for
risk mitigation activities, risk contingency funds based on the
expected value of the risk factors at work, plus some form of
management reserve based on the risk tolerance of the organi-
zation and the nature of the project.

Effort = α ∗ Size!	

ABOUT THE AUTHOR

1. Flynn, Bryan: “DoD/DON Acquisition Instructions and DON Cost Estimating
 Standard,” presented at the Department of Defense Cost Analysis Symposium,
 The Lodge at Williamsburg, Virginia, 19 February 2010.

REFERENCES

William Roetzheim is founder and CEO of
Level 4 Ventures, Inc. He has written 27
published books, more than 100 articles,
and three columns. He has been a frequent
lecturer and instructor at multiple technol-
ogy conferences and two California uni-
versities. Mr. Roetzheim has an MBA, is an
IFPUG certified function point counter, is a
Certified Cost Estimation Analyst (CCEA),
and has both a PMP and RMP designation
by the Project Management Institute.

Step 5: Validate and Verify Estimate
A key mistake many novice estimators make is to bury their head

in their spreadsheets and end up with results that go against com-
mon sense. In the Naval Aviation field, we would have talked about
the necessity for a pilot to, “Get their head out of the cockpit.”

Of course, just because an estimate goes against common
sense does not mean it is wrong. I have seen many situations
where the models were right and common sense was wrong.
But it does mean that you should take another look to make
sure you are not making an error of some kind.

And of course, the validation of an estimate may go beyond a gut
check. It is often possible (and useful) to attack the problem using
two or more different approaches and to then see if the results
converge. For example, you might compare a parametric estimate
with a bottom up estimate, or you might prepare two estimates
using different HLOs as the sizing input. An estimate by analogy is
often a good validation approach. This basically involves finding one
or more other projects that is similar to this project, adjusting for
any differences, and comparing the adjusted historical values to the
current estimate. Another approach that is sometimes used is to
compare the results from two or more commercial estimating tools.

Step 6: Present and Defend Estimate
Yes, of course this is necessary. But what is also necessary

is the step of updating the estimate as additional information
becomes available throughout the life of the project.

Conclusions
My goal in writing this article was to define estimating in

terms of the fundamental concepts that would pertain no-matter
what type of estimate you were creating and no matter what
tool you were employing. This understanding of the big picture
is useful both in understanding how estimating models and tools
work, and also in developing new models or tools for domains
where existing models do not exist.

CrossTalk—January/February 2013 33

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Tom Lienhard, Raytheon Missile Systems

Abstract. Peer reviews are a cornerstone to the product development process.
They are performed to discover defects early in the lifecycle when they are less
costly to fix. The theory is to detect the defects as close to the injection point as
possible reducing the cost and schedule impact. Like most, if not all companies,
peer reviews were performed and data collected allowing characterization of
those reviews. Data collected across the organization showed that more than
30% of the engineering effort was consumed by reworking products already
deemed fit for purpose. That meant for every three engineers a fourth was hired
just to rework the defects. This was unacceptable!

Statistical Tune-Up of
the Peer Review Engine
to Reduce Escapes

Having been an engineer and process professional for more
than 20 years, I knew (or thought I knew) what influenced the
peer review process and what needed to be changed in the
process. But when we began the process, I kept an open mind
and used Six Sigma tools to characterize and optimize the peer
review process.

The Thought Process Map was needed to scope the
project, keep the project on track, identify barriers, and docu-
ment results. It was useful to organize progress and eliminate
scope-creep.

Figure 1

The major contributor to this rework was defects that escaped
or “leaked” from one development phase to a later phase. In
other words, the peer reviews were not detecting defects in the
phase during which they were injected. Defect leakage is cal-
culated as a percentage, by summing the defects attributable to
a development phase that are detected in later phases divided
by the total number of defects attributable to that phase. Defect
leakage leads to cost and budget over-runs due to excessive

rework. For some development phases, defect leakage was as
high as 75%. By investigating the types of defects that go unde-
tected during the various development phases, corrections can
be introduced into the processes to help minimize defect leak-
age and improve cost and schedule performance. An organiza-
tional goal was then set at no more than 20% defect leakage.

To perform this investigation and propose improvements, a
suite of Six Sigma tools were used to statistically tune-up the
peer review process. These tools included Thought Process
map, Process Map, Failure Mode and Effect Analysis, Product
Scorecard, Statistical Characterization of Data, and a Design
of Experiments.

Figure 2

The Process Map was used to “walk the process” as it is
implemented—not as it was defined in the command media.
Inputs, outputs, and resources were identified. Resources were
categorized as critical, noise, standard operating procedure and
controllable. The Process Map was extremely useful because
it quickly highlighted duplicate activities, where implementation
deviated from the documented process, and was used as an in-
put to the Failure Mode and Effect Analysis (FMEA) and Design
of Experiments (DOE).

The FMEA leveraged the process steps from the Process
Map to identify potential failure modes with each process step,
the effect of the failure, the cause of the failure, and any current
detection mechanism. A numerical value was placed on each of
these attributes and a cumulative Risk Priority Number (RPN)
was assigned to each potential failure. The highest RPNs were
the potential failures that needed to be mitigated or eliminated
first and would eventually become the factors for the DOE.

The Product Scorecard contained all of the quantifiable data
relating to the peer reviews. It showed the number of defects in-
troduced and detected by phase, both in raw numbers, percent-
age, and by effort. Using Pareto Charts, it was easy to determine
where defects entered the process, where defects were found
by the process, and even which phases had the most impact
(rework) to the bottom line. Surprisingly, 58% of the total de-
tects were found in test, well after the product is deemed “done”.
Additionally, three phases accounted for greater than 92% of
rework due to defects.

Reduce SW
Defect Leakage

Minimize Defects
from entering into

the SW
development

process

Improve the in-
phase defect

detection process

What is the
process?

Process Map
current process What are the

possible
weaknesses?

FMEA/CE
Postmortems

What is the current
leakage ? Gather data What data?

My GreenBelt
Other BlackBelts

What about older projects?
No, data not available

unless using SSDP Rev C

Data from
Program Tracking

System

Organize data to
effectively analyze

What data?
What want to know?

Estimate rework
by phase

% Leakage by Phase/Total
by Phase/Tota
effort by Phase/Tota
$ by Phase/Tota
Where introduced
Where found

How do we
measure the
process?

Look for different
requirements
Different customers
Multiple perspective

Involve multiple projects
Multiple disciplines

Use modified S/W Workshhet
Want more than just overall

percentage leaked
(Scorecard.xls)

Defect #s, Types,
Phase intro/Detected

Defined in SSDP Rev C

BARRIER-
Lack of data?

Red - Question or expected result Blue - Answer or actual result

Out Of Scope

What is a defect?
What is leakage?
(Use definitions
from Scorecard)

Effort associated for
each cell of worksheet

BARRIER-
Lack of data?

Use Industry Numbers
 for effort by phase
(Bob Rova - Motorola,
TI, Hughes)

How?

Is there one?
SW4205760, Rev C How Determine? What are

x's, y's?
How
tell?

Severity, Occurrence, Detection
Highest RPN

What's important to "customer"
What have we learned?

Data for
FMEA

Underlined - Barrier

How well is it
working now?

(Org/RJ/NGC Scorecard.xls)

(Industry Costs.xls)

What is data
showing us?

Refine estimate as site data
becomes available

Drill down into the
data/NEM/Control

Charts

Is the data any
good?

How good classification?
How good categorize?

Validate Measurement
System MSE(KAPPA/ICC

or Nested Design)

DOE

Update process to
ensure data has

higher confidence
rate/ train

Not
Adequate

Improve the definition/
classif ication of defects
Train reviewers

What are
important factors?

BARRIER-
People's time

Time?
Training?

Eval criteria?
Process?

Attendees?

Determine action
Based on data Make and

communicate
improvements

Did change cause
improvement?

Set up control
plan and Use

Control Charts to
Monitor

Effectiveness of
Improvements

Adequate

Newsletters
Liaison Meetings

Common checklists
SQA Process Evals.
Updated training
Req't people
Roles/respons.

BARRIER-
Projects not

 required to follow?

Roles& Respons upfront
Standard checklists

Better data collection system
Concentrate upfront

Resonable product size
Right moderator

Appropriate team
Adequate checklists
Process knowledge

(FMEA.xls)

X Bar R Chart shows prediction range by phase
Shows variation within/between phases
Pareto charts show defect types, where intro, found
(X Bar Range and Pareto.xls)

BARRIER-
People's time

BARRIER-
People's time

Choice of factors

Design new process
Redesign existing process

Stable process

Yes

Remove Common cause

Identify and
Remove Special

Causes

No C Chart for process
C Chart for phases

Characterize
Optimize
Process

Updated training, Common checklists, # of people, Moderator

Green - Update

ICC .88

Training
Experience
No Criteria

34 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

$0	

$50,000	

$100,000	

$150,000	

$200,000	

$250,000	

$300,000	

$350,000	

$400,000	

Phase Detected	

C
um

ul
at

iv
e

C
os

ts
	

Existing Detection	
Improved Detection	

Baseline defect cost profile	

Goal defect cost profile	

Same	 number	 of	 total	 defects	 introduced	 in	 the	 same	 phases	

IMPACT	 ON	
BOTTOM	 LINE	

Planning	 Customer	 Rqmts.	 	
Analysis	

Design	 Implement	
a8on	

Test	 Formal	 	
Test	

Customer	 	
Before	 TOTAL	 Leaked	

Planning	
2.03	 0	 0	 0	 0	 0	 0	 0	 2.03	 0	

Customer	
0	 1.8	 1.4	 0	 4.06	 0	 16.15	 0	 23.41	 21.61	

Rqmts.	 	
Analysis	 0	 0	 7.32	 12.04	 32.77	 41.6	 56.09	 0.79	 150.61	 143.29	
Design	

0	 0	 0.13	 41.99	 8.2	 23.2	 118.94	 5.28	 197.74	 155.75	
Implement	

a8on	 0	 0	 0.17	 0.5	 154	 90.3	 88.88	 23.3	 357.15	 203.15	
Test	

0	 0	 0	 0.16	 0.03	 19.92	 4.5	 0	 24.61	 4.69	
Formal	 	
Test	 0	 0	 0	 0	 0	 2.34	 149.25	 0	 151.59	 2.34	

Customer	 	
Before	 0	 0	 0	 0	 0	 0	 2.7	 13.6	 16.3	 13.6	

TOTAL	 2.03	 1.8	 9.02	 54.69	 199.06	 177.36	 436.51	 42.97	 923.44	 544.43	

Phase	 Detected	
Ph

as
e	
In
tr
od

uc
ed

	

Figure 3

An improvement goal was set by the organization. The immedi-
ate goal was set around finding the defects earlier in the lifecycle
rather than trying to reduce the number of defects. If the process
could be improved to find the defects just one phase earlier in the
lifecycle, the result would be many hundreds of thousands of dol-
lars to the bottom line!

Figure 4

The data from the Product Scorecard was plotted to create a
distributional characteristic of the process capability. Visually, this
highlighted the lifecycle phases that were well below our goal of
finding 80% of defects in phase, as seen in the figure below.

Going into this project, my belief was that a program could
be identified that was conducting peer reviews effectively
across the entire lifecycle and that program’s process could be
replicated across the organization. The Control Chart showed
something quite different. All the programs were conducting
peer reviews consistently, but the variation between lifecycle
phases ranged widely. When the data was rationally sub-
grouped by phase, the data became stable (predictable) within
the subgroups, but there was extensive variation between the
subgroups. This meant the variation came from the lifecycle
phases not the programs. It would not be as simple as finding
the program that conducted effective peer reviews and replicat-
ing its process across the organization.

1	 0	 0	

9	 0	

8	 0	

7	 0	

6	 0	

5	 0	

4	 0	

3	 0	

2	 0	

Pe
rc
en

t	 D
ef
ec
ts
	 F
ou

nd
	 In
	 P
ha
se
	

Goal	

Pl
an
ni
ng
	

Cu
st
.	 P
la
n	

Re
q’
ts
	

De
sig

n	

Im
pl
em

.	

Te
st
	

Fo
rm

al
	 T
es
t	

Cu
st
om

er
	 	

These	 3	 phases	 account	
for	 >	 92%	 of	 rework	

Figure 5 Figure 6

321

0.55

0.45

0.35

0.25

0.15

0.05

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.3020

3.0SL=0.5198

-3.0SL=0.08420

321

1.005

0.995

0.985

0.975

0.965

0.955

0.945

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.9787

3.0SL=1.000

-3.0SL=0.9492

321

1.0

0.5

0.0

Sample Number

P
ro

po
rti

on

P Chart for In Phase

P=0.8000

3.0SL=1.000

-3.0SL=0.00E+00

CrossTalk—January/February 2013 35

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

The Analysis of Variation confirmed that 72% of the process
variation was between the subgroups (lifecycle phases) and only
28% was within the subgroup (programs). Since the data was
only a sample of the population, Confidence Intervals were con-
ducted to find out the true range of the population. This quickly
showed that for the Requirements Phase, the best the process
was capable of achieving was detecting 37% of defects in
phase. In fact, if no action was taken it was 95% certain that the
Requirements Phase will find between 21% - 37% of defects
in phase, the Design Phase will find between 42% - 88% of
defects in phase, the Implementation Phase will find 59% - 78%
of defects in phase. This helped focus where to concentrate the
improvement resources.

Figure 7

Remember the high RPNs from the FMEA? These were used
as the factors in a DOE. There were four factors (experience,
training, review criteria, and number of reviewers). The response
variable for the DOE was the percentage of defects found in a
peer review. There were 16 runs, which made it a half-factorial
DOE.

There were some limitations with this DOE. The products
reviewed were different for each run; there were restrictions on
randomization; and by the latter runs it was hard to find a peer
review team that fulfilled the factor levels. For example, once
somebody was trained they could not be untrained.

When analyzing data, always think golf (PGA = practical,
graphical, and analytical). Practical analysis looked at the result
of each for anything of interest. It was not until then the runs
were sorted by response did any trends appear. The highest five
runs all had no criteria, the lowest four consisted of inexperi-
enced team members and six of the top seven were trained
teams.

Figure 8

Graphical analysis included a normal probability plot and a
Pareto chart of the main effects, two-way and three-way effects.
This clearly showed that training, criteria, and experience were the
influential factors.

Figure 9

Analytical analysis not only showed the same influential factors
but also quantified the effect and indicated whether to set the fac-
tor high or low. Training was the most influential, followed closely by
experience. The process was relatively robust with respect to the
language and number of people. If peer reviews are just as effec-
tive with half the people, this alone could have a big savings to the
bottom line. The eye-opener here was that the peer review process
was more effective without criteria. This went against intuition, but
was based on data.

Figure 10

36 CrossTalk—January/February 2013

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Figure 11

Figure 12

CrossTalk—January/February 2013 37

SOFTWARE PROJECT MANAGEMENT - LESSONS LEARNED

Further investigation revealed that the use of criteria was re-
stricting what the reviewers were looking for in the peer reviews.
Training was developed to educate the reviewers on how to use the
criteria. The criteria became a living document and as defects were
found the checklist were updated.

The results showed remarkable improvements. The number of
defects introduced before and after improvements were in the
same order of magnitude (1947 vs. 1166) so that comparisons
could be made between the “before” and “after” states. If you only
look at the percentage of defects found in phase, as a lot of organi-
zations do, the results can be misleading. It shows that five of eight
phases actually found fewer defects in phase. Analyzing the data
this way assumes all defects are created equal (it takes the same
amount of effort to fix the defect) and does not take into effect the
number of phases the defect leaked.

If the defects are transformed into the amount of rework, a
completely different profile is observed. In those five phases that
found a smaller percent of defects in phase the amount of rework
decreased by 75%. Looking at the three phases that accounted for
92% of the rework, the improvements are dramatic. It can be con-
fidently stated that two of the three phases will exceed the goal of
finding 80% of defects in phase. The third phase only allowed 1%
of the defects to make it to test, whereas before the improvements,
14% made it to test. This reduced the rework from 156 days to a
mere 13. Remember, measure what are you trying to improve—is it
number of defects or rework?

The bottom line savings exceeded the goal by more than 20%.
There was a nominal increase in cost in the early stage but, as
can be seen by the graph, the cost of rework leveled off after the
implementation phase. This means almost no defects leaked into
the testing phase or beyond. Imagine your organization having no
defects leak beyond the implementation phase. It can be done!

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trade-

mark Office by Carnegie Mellon University.

Figure 13

ABOUT THE AUTHOR
Tom Lienhard is a Sr. Principal Engineer at
Raytheon Missile System’s Tucson facility
and a Six Sigma BlackBelt. Tom has partici-
pated in more than 50 CMM® and CMMI®
appraisals both in DoD and Commercial
environments across North America and
Europe and was a member of Raytheon’s
CMMI Expert Team. He has taught Six
Sigma across the globe, and helped various
organizations climb the CMM and CMMI
maturity levels, including Raytheon Missile
System’s achievement of CMMI Level 5.

He has received the AlliedSignal Quest
for Excellence Award, the Raytheon Tech-
nology Award and the Raytheon Excellence
in Operations and Quality Award. Tom has a
BS in computer science and has worked for
Hughes, Raytheon, AlliedSignal, Honeywell
and as a consultant for Managed Process
Gains.

38 CrossTalk—January/February 2013

UPCOMING EVENTS

Annual Computer Security Applications Conference
3-7 December 2012
Orlando, FL
http://www.acsac.org

International Conference on Computing
and Information Technology
14-15 Jan 2013
Zurich, Switzerland
http://www.waset.org/conferences/2013/zurich/iccit/

Technology Tools for Today (T3) Conference
11-13 Feb 2013
Miami, FL
http://www.technologytoolsfortoday.com/conference.html

Strata Conference: Making Data Work
26-28 Feb 2013
Santa Clara, CA
http://strataconf.com/strata2013

Software Assurance Forum - March 2013
5-7 March 2013
Gaithersburg, MD
https://buildsecurityin.us-cert.gov/bsi/events/1417-BSI.html

Government Contracting
12-13 March 2013
Washington, DC
http://publiccontractinginstitute.com/events

Conference on Systems Engineering Research
19-22 March 2013
Atlanta, GA
http://cser13.gatech.edu

7th International Symposium on Service
Oriented System Engineering
25-28 March 2013
San Francisco, CA
http://sei.pku.edu.cn/conference/sose2013

Symposium of Mobile Cloud, Computing
and Service Engineering
25-28 March 2013
Redwood, CA
http://www.engr.sjsu.edu/gaojerry/
IEEEMobileCloud2013/index.htm

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Software Technology Conference
8-11 April 2013
Salt Lake City, UT
http://www.sstc-online.org

7th Annual IEEE Systems Conference
15-18 April
Orlando, FL
http://ieeesyscon.org

Systems Engineering, Test and Evaluation Conference
29 April – 1 May 2013
Canberra, Australia
http://sapmea.asn.au/conventions/sete2013

IBM Edge 2013
10-14 Jun 2013
Las Vegas, NV
http://www.ibm.com/edge

23rd Annual INCOSE International Symposium
24-27 Jun 2013
Philadelphia, PA
http://www.incose.org/symp2013

CrossTalk—January/February 2013 39

BACKTALK

In 1986, I was one of the founders of the Advanced Soft-
ware Engineering Education and Training (ASEET) team. We
were composed of members from all four services, plus civilian
contractors. Our mission was to spread the word about software
engineering and how it was much more than just programming.
ASEET is long gone, but I still teach, present, and consult. After
years of working with universities, military organizations and
DoD contractors, I started to learn (often the hard way) what the
elements of good software engineering really are.

I boil it down to four attributes—software must be reliable,
understandable, modifiable, and efficient.

You can easily add other items; affordable, usable, delivered
on time, fault tolerant, and more. However, I have found that the
above framework covers the attributes I expect in “good” code.
When I teach software engineering, I use the above list. I find it
so important that I put some form of question about this list on
every test I give. This list is not my creation. I got this framework
from Software Engineering with Ada, by Grady Booch, back in
1983. Mr. Booch was Chief Scientist for Rational Computers,
one of the developers of the Unified Modeling Language, and
now is with the IBM Thomas J. Watson Research Center, serv-
ing as Chief Scientist for Software Engineering. If this list was
good enough for him, it is good enough for me. (As a side note,
he also taught at the USAF Academy. I brag that I was the last
person to hold the “Booch Chair of Software Engineering” when
I taught at the Academy. It was not really a formal position. One
day, somebody mentioned to me that I was using Grady Booch’s
old chair and office. The chair was replaced while I was there—
so nobody else held the chair after me.)

I want to include 15 lessons I have learned over the years.
Some lessons were easy to learn; some are ones I paid dearly
for. Some are my own; some are lessons that I was wise enough
to learn from others.

1. Always follow the Attributes of Good Software listed above.
2. You need a coding standard and the self-discipline to

follow it.
3. Document why, not what.
4. Code as if the next person to maintain your code is a

homicidal maniac who knows where you live. (John F. Woods)
5. A software engineering expert is a person who knows

enough about what is really going on to be scared. (Adapted
from P. J. Plauger)

6. The foolish learn from experience. The wise learn from
the experience of others.

Writing Good Software
7. Want to be a good programmer? Maintain your own

code after letting it sit for a few months.
8. Want to be a really good programmer? Maintain somebody

else’s code (and everybody else’s code will always be “bad”.)
9. Want to make your code foolproof? Not likely. They are

breeding a better quality of foolish users at an amazing rate.
10. Need the code really bad? We can deliver it that way if

you do not quit rushing us. (Courtesy of many friends –thanks
to Gene, Les, Lindy, and all of the other founding members of
the ASEET team. And thanks to all of the members during the
15 years the ASEET existed.)

11. You cannot have too many backups.
12. If you can overload basic operations (such as “+”,

“-”, etc.), then your language values “cool” over maintain-
ability. I do not want to see “x = x+1” and have to debug for
hours to find out that it is not adding 1, but instead invok-
ing a user-defined “+” function with bizarre side effects.
“DoSomeWeirdOperation(x)” makes debugging and mainte-
nance a lot easier. (Discovered independently by legions of
Ada and C++ programmers. In one program I was debugging,
I eventually discovered “a < b” was calling a user-defined
function, but “a>b” was not. Given 12 programmers for a jury, I
thought I could get off with “justifiable homicide.”)

13. In many languages “float_num = integer_num1 / inte-
ger_num2” does integer division, truncates, and then converts
to a float. “y = 3/2;” is always going to be 1, even if “y” is a
float. (This is why I like strongly typed languages, which flag it a
syntax error. I really learned this the hard way!)

14. Indexing strings and arrays? If you switch from languag-
es that start indexing at 0 to languages that start at 1 (or vice
versa) you are going to write loops with an “off by 1” error. (Re-
learned every time I switch from Ada to C/C++ to Ada…….)

15. Always carry a short extension cord when you travel.
When you need to charge your computer, tablet and phone all
at the same time, inevitably the single outlet in the hotel room
will be behind the TV stand. (Nothing to do with software, but
truly a lesson I have learned the hard way.)

E-mail me your own Lessons Learned The Hard Way. I will try
and publish them in a later column.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Lessons Learned The Hard Way

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads
Coming Soon
 �Ground Theater
Air Control System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Contact Us:
Email: 309SMXG.SODO@hill.af.mil

Phone: (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

	Front Cover
	Table of Contents
	From the Sponsor
	Applying the Fundamentals of Quality to Software Acquisition
	Quality Attributes: Architecting Systems to Meet Customer Expectations
	The Whole Is More Than the Sum of Its Parts:
	Developing a Model for Simplified Higher Level Sensor Fusion
	Basing Earned Value on Technical Performance
	Core Estimating Concepts
	Statistical Tune-Up of the Peer Review Engine to Reduce Escapes
	Upcoming Events
	Back Cover

