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ABSTRACT 

 

   The theoretical model for the dynamic response of multi-directional functionally graded thin 

plates under an in-air blast loading from a Friedlander type pressure loading is presented. The 

theory is presented in the context of the classical linear plate theory (CPT) which is based on the 

Kirchoff-Love assumptions. The plate is assumed to be thin, in-plane strains are small compared 

to unity, and the transverse and normal strains are considered to be negligible. Additionally, the 

theoretical model assumes that the material properties of the two constituent materials vary in all 

three coordinate directions. This implies in-plane as well as through the thickness grading 

according to 3 independent power law distributions. Simply supported boundary conditions are 

assumed along all four edges. The governing equations of motion are derived through the use of 

Hamilton’s Principle. The dynamic response is determined through the use of numerical 

integration, using the Gaussian-Quadrature Method, the Galerkin Method, and the Fourth-Order 

Runge-Kutta Method with zero initial conditions. Results are presented using the technique of 

spatial tailoring to determine the optimization of the 3D-Grading from a response standpoint. 

Finally, validations are made with simpler cases found within the literature. 

 

Key Words: Functionally Graded; Dynamic Response; Blast; Transient Response; Multi-

directional; Plates 

 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
11 NOV 2013 

2. REPORT TYPE 
Journal Article 

3. DATES COVERED 
  10-03-2013 to 23-10-2013  

4. TITLE AND SUBTITLE 
The Dynamic Response of Multidirectional Functionally Graded Plates
Impacted by Blast Loading 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Terry Hause 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC,6501 East Eleven Mile Rd,Warren,Mi,48397-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
#24325 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000 

10. SPONSOR/MONITOR’S ACRONYM(S) 
TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
#24325 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Submitted to journal of engineering science 

14. ABSTRACT 
The theoretical model for the dynamic response of multi-directional functionally graded thin plates under
an in-air blast loading from a Friedlander type pressure loading is presented. The theory is presented in
the context of the classical linear plate theory (CPT) which is based on the Kirchoff-Love assumptions. The
plate is assumed to be thin, in-plane strains are small compared to unity, and the transverse and normal
strains are considered to be negligible. Additionally, the theoretical model assumes that the material
properties of the two constituent materials vary in all three coordinate directions. This implies in-plane as
well as through the thickness grading according to 3 independent power law distributions. Simply
supported boundary conditions are assumed along all four edges. The governing equations of motion are
derived through the use of Hamilton?s Principle. The dynamic response is determined through the use of
numerical integration, using the Gaussian-Quadrature Method, the Galerkin Method, and the
Fourth-Order Runge-Kutta Method with zero initial conditions. Results are presented using the technique
of spatial tailoring to determine the optimization of the 3D-Grading from a response standpoint. Finally,
validations are made with simpler cases found within the literature. 

15. SUBJECT TERMS 
Functionally Graded; Dynamic Response; Blast; Transient Response; Multi-directional; Plates 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

Public Release 

18. NUMBER
OF PAGES 

28 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



UNCLASSIFIED: Distribution Statement A. Approved for public release 

 

 

Page 2 of 28 

 

UNCLASSIFIED: Distribution Statement A. Approved for public release 
 

1. Introduction 

With the demand for protection from the effects of war, combat military vehicles need to be 

fully armored to protect the soldier from such things as gun fire (and or penetration), land mines, 

IED’s, Fire, etc., One of the most daunting tasks is to engineer a military vehicle to withstand 

blast from an IED or land mine. The most important areas of the vehicle are the hull which 

resides underneath the vehicle and armor plating surrounding various key locations of the vehicle 

to protect the occupants inside. In the case of the hull, a structurally sound hull would protect the 

occupants from large crushing floor accelerations impacting the lower part of the body. For this 

reason, such new materials as multidirectional functionally graded materials should be explored 

to determine any possible advantages over other types of materials.  

   Multidirectional materials are materials which exhibit properties which are a function of all 

three coordinate directions as opposed to just the transverse direction found in conventional 

functionally graded materials. This leads to the concept of spatial tailoring whereby by one can 

manipulate the distribution of the constituent materials in all three coordinate directions to 

achieve an optimum distribution which will provide the desired structural response. This is the 

focus of this paper.  

   Currently, there is a disparity of research and information on this topic. Very little exists in 

the literature. Due to the complexity of the theoretical development, considering a thorough 

treatment of the theoretical model, which most likely, would require advanced numerical 

solution procedures, a simplified model based on the linearized theory is adopted to serve as a 

basic foundation upon which to build upon. Three independent power law distributions are 

presented which describe mathematically the grading in all three coordinate directions. The 
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transverse or through-the-thickness grading as well as the in-plane grading is assumed to be 

symmetric on both the top and bottom faces.  

The present linear theory includes damping effects, transverse inertia, and a transient normal 

loading, due to a Friedlander-type pressure-time impact.  

   It should be emphasized that this theoretical model is only valid within the elastic region of the 

material. To remain in the elastic region, the magnitude of the transverse pressure acting on the 

plate would most likely need to be of a low to moderate intensity. The stresses and strains would 

have to be evaluated to determine if they reside beyond the elastic limit.  

2. Basic Assumptions and Preliminaries 

   Shown, in Figure 1, is a pictorial representation of a multidirectional functionally graded plate 

referred to an Orthogonal Cartesian Coordinate System ),,( zyx , where z  is measured positive 

in the upwards direction from the mid-surface of the plate. While, h is the uniform thickness of 

the plate. Let any two constituent materials comprise a functionally graded plate. Then by 

applying the rule of mixtures, a generic property P ),,( zyx  can be expressed as 

                               ),,(),,(),,( 2211 zyxVPzyxVPzyxP   (1) 

Where P represents the Young’s Modulus, Density, Poisson’s Ratio, Coefficient of Thermal 

Expansion, Etc., while, 1V , 2V  represent the volume fractions of the two constituent materials 

which must obey the following relationship 

                                                1),,(),,( 21  zyxVzyxV . (2) 

With the use of Eq. (2), Eq. (1) can be expressed as 

                                           2121 ),,(][),,( PzyxVPPzyxP  . (3) 

Expressing Eq. (3) in variable separable form gives  
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                                  221 )()()(][),,( PzVyVxVPPzyxP czcycx  , (4) 

Where the chosen functional relationships for the volume fractions, ),(),( yVxV cycx  and )( zVcz

are given in a polynomial and power form as 
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The Signum function is defined as 
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MNN and,, 21 are referred to as the volume fraction indexes providing a measure of the 

variation of the material profile through the structure in all three coordinate directions. This 

chosen grading of the constituent materials throughout the plate leads to a symmetric distribution 

in all three coordinate directions. It should be noted, depending on the 3D grading desired that 

other possible functional relationships for the volume fraction could be utilized.  

   The chosen constituent materials for this paper are ceramic and metal. This leads to the 

expression of the material properties given by 

                       ],[),,(],[)],,(),,,([ 1 mmcmcm ρEzyxVρEzyxρzyxE   (7) 

Where, 
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                                            mccmmccm ρρρEEE  , . (8) 

It should be noted that the variation of Poisson’s ratio, ),,( zyx , is approximated as being 

constant throughout the material grading of the structure with the assumption that the effect of 

any point-wise variation on the dynamic structure response would be minimal and or negligible 

for a thin plate.  

3. Kinematic Equations 

3.1 The Displacement Field 

Based on the classical plate theory, the 3-D displacement relationships are expressed as 
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Where,  wu ,,  are the 3-D displacement quantities and  000 ,, wυu  are 2-D displacement 

quantities of the mid-surface of the plate. 

3.2 Linear Strain-Displacement Relationships 

Assuming the transverse and normal strains are negligible, The linear strain displacement 

relationships for plane stress are given by  
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0 zzyzxz eγγ  (10d) 

With the use of the displacement relationships, Eqs. (9a-c), the strain-displacement relationships, 

Eqs. (10a-c,) can be expressed in terms of 2-D displacement quantities as 
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Where 

x

υ

y

u
γ

y

υ
ε

x

u
ε xyyyxx





















0000000
,,  (12a) 

yx

w
κ

y

w
κ

x

w
κ xyyyxx
















0
2

2

0
2

2

0
2

2,,  (12b) 

In the above expressions,  000
,, xyyyxx γεε are known as the membrane strains; While, 

),,( xyyyxx κκκ are the bending strains.  

4. Constitutive Equations 

The constitutive equations for a point-wise isotropic material are given by 
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                                                  0 zzyzxz   

Where the material stiffnesses ),,( zyxQ ij , (i, j=1,2,6) are given by 
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5. Equations of Motion 

Adopting an energy approach, the equations of motion are derived through the use of Hamilton’s 

Principle. It is provided as 

                                                      
1

0

0)(
t

t

dtVUTδJδ  (15) 

 

Where 10 , tt are two arbitrary instants in time. U denotes  the strain energy, V denotes the work 

done by surface tractions, edge loads, body forces, and damping forces. For this paper, there are 

only surface tractions in the form of a transient transversal loading and damping forces. T 

denotes the kinetic energy of the structure, while δ is the variational operator. The strain energy, 

U is given by 
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Ω denotes the mid-surface area of the plate. The work done by the transverse pressure and 

damping forces is given by 

 

                                            
 dwwyxtyxPV t 00 )]),(),,([    (17) 

In the above expression, tP
 
is the distributed force at the top surface, and ),( yx  is the damping 

coefficient per unit area of the plate. It should also be noted that although ),,( zyx  , the 

damping coefficient is approximated as being constant through the thickness of the thin plate but 

can vary across the 2D plane of the plate. The transverse kinetic energy is given by  
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                                                         
t

dtdwδwyxρTδ
0 Ω

00 Ω),(   (18) 

Where, ),( yx , the inertia term is given by 

                                                      dzzyxρyxρ
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where ),,( zyxρ is the mass per unit volume. 

   With the expressions for the strain energy, Eq. (16), the work, Eq. (17), and the kinetic energy 

Eq. (18), in hand and considering Eqs. (11), (12a,b), (15), carrying out the integration throughout 

the thickness, integrating by parts where ever feasible, and taking into consideration the arbitrary 

and independent character of variations results in the equations of motion and the associated 

boundary conditions which are provided in terms of stress resultants and stress couples as 
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The associated boundary conditions become: 
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The quantities with over-carets are prescribed quantities along the boundary of the plate. It is 

desired to express the governing equation of motion and the associated boundary conditions in 

terms of displacements. To achieve this end, the stress resultants and stress couples are defined 

and expressed in terms of displacements as presented below. 

   The stress resultants and stress couple resultants are defined as 
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where ),(, yx . Substitution of the constitutive Eqs. (13) and the strain-displacement 

relations Eqs. (11), results in a relationship between the stress resultants and stress couples in 

terms of the mid-surface and bending strain components expressed as 
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Where, the global stiffness quantities are defined as 
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It should be noted that in the case of symmetric grading in all three coordinate directions 

0][ ijB . As a result, these quantities are excluded from Eqs. (32) and (33). With the use of Eqs. 

(7) and (14), and carrying out the indicated integration within Eq. (34), the global stiffness 

quantities can be expressed as                 
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   Making use of Eqs. (12a,b), (32), (33) with Eqs. (20)-(22) and adopting some basic algebraic 

techniques, yields the equations of  motion and boundary terms, in terms of displacements as, 
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with the associated boundary terms as, 
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. By observation, it is seen that the first two equations of motion, Eqs. (20) and (21) governing 

the in-plane motion are decoupled from the third equation of motion, Eq. (22), which governs the 

transverse or bending motion of the plate. As a result of the decoupling, the governing system 

(The equations of motion and boundary terms) is reduced to one governing equation of motion 

and two boundary conditions along each edge of the plate (Note: a fourth-order differential 

equation requires two boundary conditions along each edge). This reduces the governing system 

to 
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   For the problem at hand, simply supported boundary conditions are chosen. This leads to the 

following choice of boundary constraints expressed as: 

Along the edges ),0(
1

Lx   
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6. Solution Methodology 

   To facilitate a solution of Eq. (48), the Galerkin Method is chosen which requires that both the 

essential (kinematic) and natural boundary conditions be fulfilled. To achieve this requirement, 

the transverse displacement, ),(0 yxw , is expressed in functional form as, 

                                                 )sin()sin()(),,(
0

yxtWtyxw
nm

  (55) 

Where 21 , LnLm nm   and (m ,n) are the number of sine half-waves in the 

corresponding directions. A suitable representation for ),,( tyxPt is given in terms of a Navier 

representation as 

                                                  )sin()sin()(),,( yxtPtyxP nmmnt   (56) 

Integrating both sides of the above expression over the plate area gives 
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The pressure loading is given by the Friedlander expression as 
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Substituting into Eq. (57) and integrating gives 
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2
)(16)( mntPtP tmn   (59) 

In Eq. (58), 𝑃𝑆0 is the peak overpressure above ambient pressure, 𝑃0 is the ambient pressure, 𝑡𝑎 is 

the time of arrival, 𝑡𝑝 is the positive phase duration of the blast wave, 𝑡 is the time, and   is 

known as the decay parameter which is determined by adjustment to a pressure curve from a 

blast test. 

   Applying the Galerkin Method to Eqs (48), with the use of Eqs (55), (56), and (59), gives 

                                   
4
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tWKtWCtWI
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mnmnmnmnmnmn
  , (60) 

Where )(tW mn  is the amplitude of deflection, mnI is the plate inertia, mnC is the overall damping 

coefficient of the plate, and mnK is the overall stiffness of the plate all of which are given as 
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Within the above expressions, 
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)cos( 1Lxmcmx  ,     )sin( 1Lxms mx   (64a,b) 

)cos( 2Lyncny  ,     )sin( 2Lynsny   (65a,b) 

Eq. (60) can be normalized by dividing through by mnI which results in, 

                                 

)(
~

)()(2)(
2

tPtWtWtW mnmnmnmnmnmnmn     (66) 

where mnmnmn IK is the natural frequency of the plate, mnmnmnmn IC 2 is the 

overall normalized damping coefficient, and 
mntmn

ImntPtP
4

)(16)(
~

 is the normalized 

transverse pressure. 

7. Results and Discussion 

   After a thorough literature search was conducted, it was found that there is none to very little 

work commenced on multidirectional functionally graded materials and or plates. This area of 

research is very sparse at least. A couple of papers were found that introduce the subject such as 

[1] Birman and Byrd and [2] Birman et al. As a result, nothing can be found in terms of the 

theoretical developments to validate the deformation of the plates. On the other hand, some 

validations can be made with the natural frequency of the multidirectional functionally graded 

plates where the theory is simplified down to simpler cases. For this reason, The governing 

differential equation, Eq. (66), which governs the structural dynamic response of multidirectional 

functionally graded plates is utilized to determine the natural frequency for the special case of a 

unidirectional functionally graded plate at either the fully metal and or fully ceramic 

compositions. For all cases of comparisons, Ti-6Al-4V/Aluminum Oxide was used. 

   In Table 1., A comparison is made between the present theory and those reported by [3] 

Befarani et al. and [6] Bishop, for a simply supported square isotropic plate, at various modes 
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where the frequency is non- dimensionalized. Very good agreement is seen. For this isotropic 

case, ( ,0,0
1
 NM 0

2
N ). In table 2., comparisons are made for the natural frequency in 

Hertz of a unidirectional functionally graded plate. Comparisons are made for both the fully 

metal (Ti-6Al-4V) and fully ceramic (Aluminum Oxide) compositions for two modes of 

vibration between the present theory and those reported by [3]-[6]. These comparisons are 

presented for the case of fully metal ( ,0,0
1
 NM 0

2
N ) and for the case of fully ceramic (

,,1
1

 NM 
2

N ). Very good agreement can be seen. The material properties utilized for 

Ti-6Al-4V/Aluminum Oxide are provided as, 

Ti-6Al-4V:      3
/4429,298.0,

9
107.105 mkgPaE    

         Aluminum Oxide:      3
/3750,260.0,

9
102.320 mkgPaE    

     For the present case, various relationships between the geometrical and or material parameters 

and their effect on the structural response due to blast have been studied. Fig 2. Which compares 

the central deflection as a function of time for the isotropic cases (Ceramic and metal) as well as 

for 2 types of functionally graded materials (Bi-directional and multidirectional). It clearly shows 

that the metal composition has higher amplitudes and lower frequencies of oscillations in the 

absence of damping than for the cases. Ceramic appears to be the best performer from an 

amplitude standpoint but has the highest frequency of oscillation. The Multidirectional and 

Bidirectional case fall in between with multidirectional being the best performer between the 

two. 

   Fig 3. Depicts how various aspect ratios effects the deformation-time response of a 

multidirectional functionally graded plate (MDFGP). The optimum response appears to reside 

with an aspect ratio of 1. As the aspect ratios get smaller the deflections become larger with a 
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lower frequency. As the aspect ratios become larger the deflections again appear to be larger but 

smaller than the case of smaller aspect ratios. Also, the frequencies are lower.  

   In Fig 4. The effcet of various amounts of damping on the structural response provides results 

as you would expect. As the amount of damping is increased, the oscillations decay faster over 

time.  For a fixed amount of damping, comparisons on the central deflection for the cases of fully 

metal, fully ceramic, bidirectional, and multidirectional are presented in Fig 5. It is apparent 

again that like the response in Fig 2. That ceramic is the best performer. With metal inherently 

being the worst. Again the bidirectional and multidirectional cases are in between with 

multidirectional superseding the bidirectional behavior from a performance standpoint in regards 

to the severity of the amplitude of deflection the frequency of oscillation. As previously seen 

metal has higher amplitudes with lower frequencies and vice versa for ceramic with all other 

cases in between. In the last figure, Fig 6., the effect of the amount of decay of the blast pressure 

has on a MDFGP is depicted. As the amount of decay is increased it shows that the response is 

diminished somewhat. To substantially diminish the amount of decay for a MDFGP, a much 

larger decay parameter would have to be used.    

8. Conclusions 

   In conclusion, a linear theory of thin multidirectional functionally graded plates has been 

provided where the grading occurs in all three Orthogonal Cartesian Coordinate directions. 

Comparisons have been made between plates of other types of grading such as isotropic (metal 

and ceramic) and bidirectional. It has been found that ceramic is the best performer under blast. 

Although the frequency of oscillation is higher the deformation is greatly reduced. Ceramic due 

to its stiffness id very rigid. On the other hand depending on how brittle the ceramic is could also 
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play a factor. Within the functionally graded family, multidirectional functionally graded plates 

seem to perform the best as compared with bidirectional functionally graded plates. Further study 

should demand a determination of the stress distribution within these types of structures and 

material makeup to be the subject of further research. It is hoped that this current study will lay 

the ground work for more complex theoretical cases and other types of boundary conditions. 

Most likely all other cases will require advanced numerical techniques as part of the solution 

process. 
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Figure Captions 

 

 
Fig 1.  A pictorial representation of a simply supported multidirectional functionally graded plate 

            exposed to a spherical blast above the plate. 

 
Fig 2.  Comparison of the amplitude of center deflection as a function of time for various types 

            of functionally graded plates. 

 

Fig 3.  The amplitude of deflection as a function of time for a multidirectional functionally 

            graded plate for various aspect ratios. 

 



UNCLASSIFIED: Distribution Statement A. Approved for public release 

 

 

Page 21 of 28 

 

UNCLASSIFIED: Distribution Statement A. Approved for public release 
 

Fig 4.  The amplitude of deflection as a function of time for a multidirectional functionally 

            graded plate for various amounts of damping. 

 

Fig 5.  Comparison of the amplitude of center deflection as a function of time for various types 

            of functionally graded plates for a fixed amount of damping. 

 

Fig 6.  The amplitude of deflection as a function of time for a multidirectional functionally 

            graded plate for various amounts of decay of the blast pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 

 

Table 1. Comparison of the non-dimensional frequency 
32

0

2
/)1(12 EhL   for    

               simply supported boundary conditions of a square plate ( ,4.0
21

mLL  m) 002.0h  

𝜔𝑚𝑛 Present Reference[6] Reference[3] 

𝜔11 19.71 19.74 19.76 

𝜔12 49.27 49.35 49.37 
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𝜔13 98.55 98.70 98.74 

 

 

 

Table 2.   Comparison of the natural frequency  (Hz) for a simply supported square Ti- 

                 6Al-4V/ Aluminum Oxide functionally graded plate ( ,4.0
21

mLL  m) 002.0h                      

 Mode Present Reference[3] Reference[5] Reference[6] Reference[4] 

Fully Metal m=1,n=1 144.89 143.4 143.67 145.04 144.66 

 m=1,n=2 362.23 358.42 360.64 362.61 360.53 

Fully Ceramic m=1,n=1 270.93 273.906 268.60 271.23 268.92 

 m=1,n=2 677.33 685.003 674.38 678.06 669.40 

 

 

 

 

 

 

 

 

 

Figures (In numerical Order) 
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