
1

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ANALYSIS AND DEVELOPMENT OF A WEB-ENABLED
PLANNING AND SCHEDULING DATABASE APPLICATION

by

Gary L. Reed

September 2013

Thesis Advisor: Glenn R. Cook
Second Reader: William J. Robinette

2

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2013

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE ANALYSIS AND DEVELOPMENT OF A
WEB-ENABLED PLANNING AND SCHEDULING DATABASE
APPLICATION

5. FUNDING NUMBERS

6. AUTHOR(S) Gary L. Reed
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
government. IRB protocol number _____N/A___________.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
This thesis is in response to the annual requirement for departmental planning and
scheduling of courses and instructors within all departments at NPS. This project
thesis explains the process of analyzing, designing and implementing a web-enabled
database capable of providing an effective and efficient tool for departmental
planners. Using standard systems analysis procedures, this thesis provides a definition
of the current business process, establishes an entity—relationship diagram for the
desired process, constructs an operable database using MySQL, and provides a web-
enabled interface for the population of data elements, creation of annual plans and
reports for the extraction of decision making information.

14. SUBJECT TERMS Information, Systems, IS, database, management,
system, DBMS, DBM, entity-relationship, ER diagram,, E-R diagram,
relational, model, development, develop, design, process, re-
engineering, reengineering, MySQL, structured query language, SQL,
myPHPadmin.

15. NUMBER OF
PAGES

107
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

ANALYSIS AND DEVELOPMENT OF A WEB-ENABLED PLANNING AND
SCHEDULING DATABASE APPLICATION

Gary L. Reed
Lieutenant, United States Navy
B.A., Hampton University, 2004

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2013

Author: Gary L. Reed

Approved by: Glenn L. Cook
Thesis Advisor

William J. Robinette
Second Reader

Dan Boger, PhD.
Chair, Department of Information Sciences

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This thesis is in response to the annual requirement for

departmental planning and scheduling of courses and

instructors within all departments at NPS. This project

thesis explains the process of analyzing, designing and

implementing a web-enabled database capable of providing an

effective and efficient tool for departmental planners.

Using standard systems analysis procedures, this thesis

provides a definition of the current business process,

establishes an entity—relationship diagram for the desired

process, constructs an operable database using MySQL, and

provides a web-enabled interface for the population of data

elements, creation of annual plans and reports for the

extraction of decision making information.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. BACKGROUND ...1

1. Original Database1
2. Statement of the Problem1
3. Assumptions2
4. Methodology3
5. Organization of Thesis3

II. DECISION SUPPORT AND DATABASE MANAGEMENT SYSTEMS
(DSS/DBMS) ..5
A. DECISION SUPPORT SYSTEMS (DSS)5

1. History5
2. Definition7
3. Classifications8

B. DATABASE MANAGEMENT SYSTEMS (DBMS)10
1. DBMS Classification (Data Models)10
2. DBMS Languages12
3. Types of DBMS13

a. Flat File Model14
b. Relational Model16
c. Hierarchical and Network Models17
d. Object-oriented Model19

C. DATABASE ARCHITECTURE21
1. Architectural Importance21
2. Single-Tiered (Centralized)21
3. Two-Tiered22
4. Three-tiered and N-tiered23

D. BEST SELECTION FOR PROPOSED DATABASE24
1. Choosing a Data Model24
2. Choosing an Architecture25
3. Designing the Database25

III. BUSINESS PROCESS ANALYSIS27
A. RE-ENGINEERING27

1. Considerations in Re-engineering a Process ...27
2. Purpose for Re-engineering This Process27

B. CURRENT BUSINESS PROCESS28
1. Identifying Critical Elements28
2. Course Information (First Set of Elements) ...28
3. Faculty Information (Second Element)31
4. Yearly Offering Information (Third Element) ..31
5. Analysis32

C. DESIGNING PROPOSED DATABASE34
1. Database Organization34

viii

2. Operational Design39
D. INSTALLATION OF DBMS TOOLS42

1. Installing MySQL42
2. Installing Macintosh, Apache, MySQL, and PHP

(MAMP) Package44
E. PROPOSED DBMS DESIRED CAPABILITIES46

1. Accessibility via Internet46
2. Importing Capabilities46
3. Cost ...47
4. Performance47
5. Schedule48

F. PROPOSED DBMS ENVIRONMENT49
1. Operating System (OS)49
2. Computer Resources49
3. Restrictions50

IV. PROPOSED OPERATIONAL FUNCTIONS AND CAPABILITIES53
A. GETTING STARTED53

1. Data Description Language (DDL)53
2. Opening MAMP54
3. Generating Database57

a. Generating Tables60
b. Generating Fields61

B. MANAGING THE DATABASE63
1. Data Manipulation Language (DML)63
2. Adding Records64
3. Editing Records65
4. Deleting Records66
5. Importing Records67

C. VIEWS & REPORTS71
1. Creating Views71
2. Reports74

V. CONCLUSIONS AND RECOMMENDATIONS77
A. CONCLUSION ..77

1. Solution77
B. RECOMMENDATIONS78

1. Future Application78
2. Additional Research78

APPENDIX ..81

LIST OF REFERENCES ..87

INITIAL DISTRIBUTION LIST91

ix

LIST OF FIGURES

Figure 1. Taxonomy of Knowledge (From Zeleny, 1987)6
Figure 2. Simple Flat File Example (From Wikipedia, 2011) ...15
Figure 3. Larger Flat File Model Example (From Dhesi, 2011) .16
Figure 4. Example Hierarchical Model (From Zak, 2008)18
Figure 5. Network Data Model Example (From MapsofIndia.com,

2009)...19
Figure 6. Object Data Model Example (From Nordbotten &

Crosby, 1999)...................................21
Figure 7. General Steps Toward Database Design26
Figure 8. Current Data Element Matrix28
Figure 9. Sample Scheduling Spreadsheet30
Figure 10. Sample Section Count33
Figure 11. Proposed Data Element Matrix35
Figure 12. Propose Database ER Diagram38
Figure 13. Proposed Database Relational Schema41
Figure 14. Tabs on MySQL.com Home Page (2011)43
Figure 15. Platform Options on MySQL.com Download Page

(2011)..44
Figure 16. MAMP & MAMP Pro Home Page (2011)45
Figure 17. MAMP Startup Interface with Servers Stopped55
Figure 18. MAMP Startup Interface with Servers Running55
Figure 19. MAMP Preference Options55
Figure 20. MAMP Menu Tabs55
Figure 21. MAMP Main Menu56
Figure 22. MAMP Start Page within Internet Browser56
Figure 23. Sample Layout of PMA Application within MAMP57
Figure 24. Database Design Steps (Completed Steps Lined Out) 58
Figure 25. Proposed Database Generation DDL Script (Example) 59
Figure 26. PMA Home Button Option60
Figure 27. PMA Quick Access to Create New Database60
Figure 28. PMA Quick Access to Create Database Table61
Figure 29. PMA Field Creation Options61
Figure 30. Proposed DBMS Offerings Table DDL63
Figure 31. PMA Insert Tab for Record Adding64
Figure 32. PMA Comment (Insert Tab)65
Figure 33. PMA Insert Tab (Completed Fields)65
Figure 34. INSERT Faculty Table DDL Script Example65
Figure 35. PMA Browse Tab Options66
Figure 36. Faculty Table UPDATE DDL Script Example66
Figure 37. DELETE DDL Script Example67
Figure 38. LOAD DATA DDL Syntax Template (From MySQL, 2011) .67
Figure 39. Sample of PMA Import Tab Wizard68
Figure 40. Original Database Sample (Courses.xls)68

x

Figure 41. Original Database Sample (Courses.csv)69
Figure 42. Proposed Database Sample Post-Import Courses.csv .69
Figure 43. PMA Import DDL Script Using INSERT Function70
Figure 44. PMA Import DDL Script Using LOAD DATA Function ...71
Figure 45. PMA Create View Option72
Figure 46. PMA Create View Screen Option73
Figure 47. CREATE VIEW Syntax Template74
Figure 48. PMA Query Tab74
Figure 49. PMA View Placement (Example)74

xi

LIST OF ACRONYMS AND ABBREVIATIONS

=! Not equivalent

1:1 One-to-one

1:M One-to-many

AI Artificial Intelligence

CBIS Computer-based Information System

CODASYL Conference on Data System Languages Model

CPU Computer Processing Unit

CSV Comma Separated Values

DBA Database Administrator

DBMS Database Management System

DDL Data Definition Language

DML Data Manipulation Data

DoD Department of Defense

DSS Decision Support System

EDP Electronic Data Processing

EIS Executive Information System

ER Entity-Relationship

ESS Expert Support Systems

Excel Microsoft Excel

HSM Human Systems Management

HTML Hypertext Markup Language

ISS Intelligence Support System

KBDSS Knowledge-based Decision Support System

xii

KMS Knowledge Management System

LAN Local Area Network

M:1 Many-to-one

M:M Many-to-many (each sets equal cardinality)

M:N Many-to-many

Mac Macintosh

MAMP Macintosh, Apache, MySQL, and PHP

MSS Management Support System

MBP MacBook Pro

MIS Management Information System

OLAP Online Analytical Processing

ODBMS Object Database Management System

ODMG Object Data Model Group

OO Object-oriented

OODBMS Object-oriented Database Management System

OS Operating System

OSS Open Source Software

PC Personal Computer

PDF Portable Document Format

PMA phpMyAdmin

RDBMS Relational Database Management System

SQL Structured Query Language

TPS Transaction Procession System

xiii

ACKNOWLEDGMENTS

I would like to acknowledge the numerous individuals

who have supported me; many, indirectly, with moral support

or simply allowing for an appropriately conducive

environment; others, more directly, who provided

information, resources, or opportunities for me to complete

my objective.

Specifically, I would like to acknowledge Conner,

Harris, Walton, and Jones from a personal standpoint.

To my database professor, Matthew Kolb, thanks for

taking an intricate subject and making it much simpler. You

provided an excellent foundation and understanding on which

to build. To my thesis advisor, Glenn Cook, thank you for

your infinite patience and foresighted instruction. I think

you already know how this might have turned out without

your assistance.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

1. Original Database

Departments at the Naval Postgraduate School (NPS) are

required to plan and orchestrate the scheduling of courses

which will be offered within their respective set of

curriculums. One scheduling tool in use is the basic Excel

spreadsheet. This is handy and easily accessible tool

though, however powerful, is not meant to serve as much

more than a simple database. The limitations associated

with this form of scheduling tool can make managing the

database very tedious, monotonous and error prone.

2. Statement of the Problem

Scheduling of courses occurs on a continuous basis.

The planning portion includes future projections in

budgeting, tracking, administration, and the like. The

current process is error prone and redundant. Streamlining

the process seems like the obvious solution. Though

streamlining is obvious in the end state, it is not quite

so obvious in the best path to follow to achieve that

state.

One possibility is exploring the benefits of a whole

new tool that could make this process easier to facilitate.

Another may be just simply making revisions to the system

already in place. Regardless of which is chosen, there will

eventually be the question of cost-benefit analysis. This

is basically determining whether any of the solutions are

2

worth the time, currency, and effort (i.e., cost) required

to yield the foreseeable benefits that solution offers.

If achievable, the profits may be further reaching

than just the immediate problem. Such changes would not

only make the aforementioned improvements to the current

system, but would also lend the characteristics necessary

to support future growth of the database, if not also

supplying broader implementation opportunities for similar

systems.

However, it a cost-effective solution is not

discovered, the current system will remain in place along

with all of the ailments that lead to such endeavors for an

alternative.

3. Assumptions

The first assumption is that additional scheduling

tools, outside of the current solution, need to be

explored. Considering that this current scheduling tool has

been in use for years and is still causing operational

angst despite numerous iterations in re-engineering

suggests a different solution may be in order.

The second assumption in conducting this project

thesis is that it must be done quickly. The longer it takes

to develop the less practical it becomes, especially when

considering possible use beyond the original database or

original user. This assumption primarily pertains to the

application of the re-engineering process to the original

database and the transition time required for migration of

content over to the re-engineered database. There is some

expectation of additional time associated with research,

3

design, and fine-tuning. This time is, however, outside of

the scope of this assumption.

The third assumption is that the solution will be

cheap or free. This is not an explicit requirement,

however, sets a developmental bearing at finding the best

possible solution for the least amount of investment.

The fourth assumption is that the system will be fully

functional of the Macintosh Operating System. This is the

platform of the original database and the platform of the

testing system being used to evaluate the solution.

The last assumption is that the solution will be

remotely accessible via the internet. This adds a layer of

convenience that shadows the desire for a more efficient

and streamlined process.

4. Methodology

The process that will be followed in finding a

solution for the current database management system will

coincide with the principles of business process re-

engineering: (1) Identify processes, (2) Review, update and

analyze as-is, (3) Design to-be, (4) Test and implement to-

be, and (5) Repeat (Harlan, 2009).

5. Organization of Thesis

The thesis will be organized by first reviewing the

history of decision support systems and database management

systems, the category into which this scheduling tool and

future solution fall. Then there will be some discussion of

what tools are available to meet the criteria expected of

the system solution and, of those, which is best for the

4

job. After this will be an analysis of the current database

and processes it utilizes followed by an analysis of the

proposed solution’s system. Last will be an in-depth look

at the capabilities of the proposed solution as well as

step-by-step guidance on how to utilize its features to

manage the proposed system.

5

II. DECISION SUPPORT AND DATABASE MANAGEMENT
SYSTEMS (DSS/DBMS)

A. DECISION SUPPORT SYSTEMS (DSS)

1. History

The concept of a decision support system (DSS) is one

born of a combination of research in organizational

decision making and technical research to develop

interactive computing systems (Keen & Scott-Morton, 1978).

It falls under the umbrella of computer-based information

systems (CBIS), which also consists of automated systems,

processing systems, management support systems, and so on

(Eom, 2001).

One version of the four-stage model describing the

evolution of knowledge starts with data and gradually makes

its way to wisdom (or expertise). The simplest of these

stages being data, results from nothing more than

observation. Next is information, which seeks to collect,

organize, store, and make data retrievable. Third is

knowledge, which seeks to make sense of the organized data

(or information) and find patterns and relationships; this

is the realm of DSS. Last is wisdom, which attempts to

contrive explicability from the knowledge for the sake of

making a judgment call (Eom, 2001). Figure 1 depicts a

matrix of this four-stage concept and its characteristics

according to Zeleny (1987).

6

Figure 1. Taxonomy of Knowledge (From Zeleny, 1987)

The evolution of DSS takes us through the stages of

knowledge evolution and mirrors the progression of CBIS.

Transaction processing systems (TPS) and electronic data

processing (EDP) were some of the first CBIS. These systems

processed data in a very simple and straightforward manner.

Examples of some EDPs would be mailing list, banking or

point-of-sales transactions, or even purchasing a plane

ticket or older payroll systems. Management information

systems (MIS) go beyond the basic data tracking of data

towards organizing the data in a meaningful way. This

process converts raw data into information. These types of

systems allow the management of information via functions

such as generating reports. Annual performance reports,

weekly sales reports, and inventory status reports are just

a few of the reports more commonly seen on a regular basis.

DSS, expert support systems (ESS), and artificial

intelligence (AI) look to glean knowledge from the

information collected. They present the information to the

user based on some established set of principles programmed

7

into the system in order to support a shared knowledge

within the human-computer interaction by which a more

informed decision can be made. The final decision still

lies with the user and simply draws upon the knowledge and

experience the decision-maker brings along prior to

engaging the system. Human systems management (HSM) and

management support systems (MSS) round things up in still

evolving attempts to actually have the system make

decisions without the human decision-maker component (Eom,

2001).

2. Definition

Defining DSS is not quite as easy as the pairing done

in tracing its evolution. Common definitions are very broad

and cover a wide variety of technologies. All in all, the

definition of a DSS is rather ill-defined (Shim, Warkentin,

Courtney, Power, Sharda, & Carlsson, 2002). However, there

seems to be a consensus that it involves a flexible

computer-based solution to assist decision makers with

unstructured and semi-structured problems (Reich &

Kapeliuk, 2005). An important note is the recognition that

it includes two sub-systems: the computer and the human

decision maker (Eom, 2001).

Another thing that could be agreed upon about DSSs is

that it is a tough beast on which to get a handle. Reich

and Kapeliuk (2005) described DSSs as being some of the

“most complex [information technology] products” in that

they are developed for the express purpose of being

interjected within core business processes simply to alter

them. And since there is such an “abundance of

technologies, tools and developmental methods” available, a

8

DSS developer’s job does not actually become simpler but

instead becomes more difficult in having to wade through

these ever increasing options for the best tool to resolve

his respective problem. The burden of such a task, knowing

that there is no set approach, no tried and true solution,

is therefore only compounded by additional confusion when

coupled with the aforementioned inherently complex nature

of DSSs.

3. Classifications

A classic DSS is equipped with data, information or

knowledge; data management functionality to access that

data; and a user interface that provides for querying,

reporting, and data presentation via that data management

tool. This simple understanding leaves classifying a DSS

open to being determined by the type of data or problem on

which the system is being utilized, and since their

inception they have evolved quite a bit. This means

classifications vary wildly, and from more specific to more

general simultaneously.

More specialized examples, for instance, are the

executive information systems (EIS) made to specifically

assist senior executives to manage their organizations with

timely, accurate, and filtered information (Elam & Leidner,

1993); knowledge management systems (KMS) to support the

theoretical or practical assets obtained from the

organization’s data (Alavi & Leidner, 2001); and

geographical information systems (GIS) designed as spatial

decision support systems (SDSS) (Densham, 1991). More

generalized examples in knowledge-based decision support

systems (KBDSS), which are used to assist in a broad range

9

of functions from amplifying natural tools of the decision

maker (intelligence support systems—ISS), or replacing

human expertise for machine expertise yet still allowing

the human decision-maker a choice in how to continue (ESS).

Furthermore, DSSs have made use of other technologies

like data warehousing, online analytical processing (OLAP),

data mining, and the web to broaden core functionality.

And, yet, after three decades, this is still not the only

taxonomy for classifying DSSs (Shim et al., 2002).

Hättenschwiler (1999) notes taxonomies at the user-

level, conceptual-level, and technical-level. The user-

level classifies DDSs by passive, active, and cooperative

users. Passive provides assistance but gives no explicit

suggestions. Active provides a suggestion. Cooperative

allows the user the option.

The conceptual-level categorizes by communication-,

data-, document-, knowledge-, and model-driven DSS as per

Decision Support Systems: Concepts and Resources for

Managers (2002) by Powers. Communication-driven focuses

processes on sharing between multiple users much like

Microsoft Groove or SharePoint, DropBox, or Google Docs.

Data-driven is centered on accessing and manipulating data

trending over time. Document-driven is oriented in

providing a variety of formats in which to retrieve and

manage the data. Knowledge-driven is focused on some

established set of rules or guidelines which act as

problem-solving machine expertise (Hättenschwiler, 1999).

Hättenschwiler also references Powers (1997), which

breaks up DDSs between enterprise-wide and desktop DSS,

illustrating the technical-level categorization.

10

Enterprise-wide is for large, linked companies with

multiple managers. Desktop is for the single user operating

on a small, individual system.

B. DATABASE MANAGEMENT SYSTEMS (DBMS)

1. DBMS Classification (Data Models)

In any database (DB) there exists a level of data

abstraction. Data abstraction is the suppression, or

hiding, of details allowing for better focus on the

essential portions of the database. This feature makes the

organization of the database easier for the user to

understand (Elmasri & Navathe, 2007).

The level of abstraction can usually be specified to

accommodate the level of sophistication preferred by the

user. For instance, the average end user may just care for

viewing the most basic level of abstraction, while a

developer, designer or DB administrator (DBA) might desire

to include far more detail. Data models provide this

capability. Data models are a collection of representations

describing the structure of the database. The structure

generally refers to the type of data included, the

relationship of the data, and the rules and constraints

governing how the data is to behave within the database

(Elmasri & Navathe, 2007).

Types of data models range from either of two data

model extremes: high-level (conceptual) or low-level

(physical) data models. According to Ambler (2002–2011)

those that fall in-between are classified as logical, or a

type of mid-level model. The mid-level model can also be

called the representational (or implementation) data

11

models, which is the most frequently used type commercially

(Elmasri & Navathe, 2007).

Conceptual models are those that more closely portray

how the average person perceives data. This is for the

typical end user. Classifying conceptual models is

determined by entities, attributes, and relationships of

the data. The entity-relationship (ER) diagram is a very

popular example of a high-level conceptual model. Physical

data models more closely portray how data is actually

stored on the computer or storage mechanism. This is for

the computer specialists. Classification for physical

models is determined by how the data is stored; whether it

be based on the record format, record order, or even the

access path. A record refers to a set or grouped instance

of data. Access path refers to the structure used to search

for a particular record. An index is a type of access path

that leads directly to an indexed term or keyword. It

operates in much that same way as the indices within a book

allow a read to quick find a topic (Elmasri & Navathe,

2007).

In a cinematic analogy comparing the conceptual and

physical model differences, in The Matrix, one data model

would be like being inside the matrix and the other like

being outside of the matrix; allowing viewing of the

underpinnings and how things really work. Right in between

these two extremes exist the representational

(implementation) model, which is a happy medium. End users

can still understand it while the computer folks can still

get a feel for the behind the scenes of it.

12

Data models are at the cores of every DBMS, and

essentially act as a blueprint for developing the DBMS.

DBMS are classified based on the data model used to develop

them. As of 1979, there were more than 40 data models in

existence, though most lacked a stable definition or

complete fulfillment of the perceived role of data models

at the time. A common point of confusion was the

misunderstanding that data models were simply a collection

of data structure types. Such notions failed to realize

that operators and integrity rules were just as essential

to the proper understanding of a structures behavior, and

thus for complete definitions that allow clear distinctions

between each (Codd, 1980).

The first data model to fulfill its role as a proper

data model, primarily to manage formatted data, was the

relational data model. The relational model falls under the

representational side along with hierarchical, network, and

object data models. The relational data model is very

widely used amongst the representational models.

Hierarchical and network are considered to be legacy

models. And though object data models are also within the

representational side of the house, they lie on the cusp of

conceptual and are part of the newer family of higher-level

representational models called the object data model group

(ODMG) (Elmasri & Navathe, 2007).

2. DBMS Languages

After designing a database, the next thing to do is

specify the conceptual and internal schemas. The DBMS

languages are the tools that allow for such specifications.

13

Amongst these tools are the data definition language

(DDL), storage definition language (SDL), view definition

language (VDL), and data manipulation language (DML). These

all makeup what is known as structured query language, or

SQL (Elmasri & Navathe, 2007).

The internal schema refers to the physical parameters

and specification related to data storage. This is

implemented using SDL, which was part of SQL in early

versions but removed to keep SQL at the conceptual and

external levels focused on the data vice the storage

performance or physical storage structures.

The conceptual schema refers to how data is stored

within the DBMS with regards to the DBMS’ data model. DDL

is used to define this schema.

DDL can also be used to define the external schema,

which is what specifies what views an end user has

available to them. In a true three-schema architecture, or

conceptual-external schema only architecture, VDL would be

used to define the external schema (Elmasri & Navathe,

2007).

3. Types of DBMS

The DSS component this document will take a closer

look at, depending on which definition of DSS consulted, is

the DBMS. Even within the varying definitions of a DSS, the

DBMS is one element that appears rather frequently.

Typically, a DBMS performs data access, definition,

structure, security, and recovery. The functions a DBMS

must provide are data persistence, secondary storage

management (e.g., database versus repository, data

14

concurrency, data recovery, and data definition and

manipulation). Data persistence is a trait denoting that

after the execution of a program the data should still

exist. Secondary storage management speaks to the DMBS’

ability to make changes to the non-primary memory, which

generally does not offer direct execution, fetch, load, and

store functionality. Data recovery is somewhat of a backup

feature referring to the ability to salvage data after

damage, corruption, or some similar event rendering it

inaccessible by normal means. Lastly, there is data

definition and manipulation; functions of the DDL and DML,

which are used to instantiate, edit, and delete the data

retained within the database.

The most common logical (or representational) data

models on which a DBMS is based are flat file, relational,

hierarchical, network, and object-oriented. However, since

a flat file does not provide all of the services of a DBMS,

it is not included amongst the most common types of DBMS.

The missing functionality is mainly data naming, redundancy

and concurrency control. It also requires the user to

interact directly with the physical layout of the file

(Minoli, 2008).

a. Flat File Model

Flat file databases are those that store data in

a single file, or table (Trustees of Indiana University,

2006). They are usually plain text files containing one

record per line and some distinctive character, known as a

delimiter, separating the fields. They are by far the

easiest of the databases to setup, however are not DBMS in

15

the truest sense; failing to provide concurrency control

and measure again redundancy to name a few (Minoli, 2008).

One of the simplest examples of a flat file

database would be construction of a database on a sheet of

paper. Figure 2 provides a very basic example of this

concept as pertaining to a team division roster (Wikipedia,

2011). With manually developed rows and columns, it would

essentially be the same implementation as a flat file. It

has the benefit of having a quick initial setup and

requiring very little space or memory, in the case of a

text file. However, the drawbacks include lost efficiency

as the database size increases, greater risk of

inconsistency and errors, and inconvenience; as user must

know the exact location of the data desired in order to

access it (Minoli, 2008). Figure 3 shows an example of a

bit more involved flat file model for a sales order

database (Dhesi, 2011).

Figure 2. Simple Flat File Example (From Wikipedia, 2011)

16

Figure 3. Larger Flat File Model Example (From Dhesi, 2011)

b. Relational Model

Edgar Codd (1980) claims that the relational

model was, in fact, developed in 1969. Though, other

sources have otherwise reported that relational models were

developed in 1973 by, none other than, Edgar Codd (Minoli,

2008). This is likely the year that more formal definitions

of data models were developed thus attributing to another

possible misconception that hierarchical and network models

preceded relational models. Actually, it is stated that

while said systems were developed before 1970, respective

data models were not defined until 1973 after having been

abstracted from observations of those systems (Codd, 1980).

17

Like flat files, relational DBMS (RDBMS) utilize

tables of data. Unlike flat files however, relational

models make use of more than one table, which are related

and thus connected through the underpinnings of

mathematical theory of relations (Minoli, 2008).

Relational models are likely the most popular of

the currently defined data models and are extensively used

in the commercial sector. Still, the relational model is

evolving. A more collaborative effort has been pursued

recently. Though not listed amongst the common DBMS

mentioned earlier, there is now an object-relational model

in which are incorporated some concepts developed with

object databases (Elmasri & Navathe, 2007).

c. Hierarchical and Network Models

Hierarchical and network models are very similar.

The main differences pertain to the relationships

maintained between each record stored. The hierarchical

model has a tree-like structure consisting of one-to-many

(1:M) relationships, also known as a set-type. This means

that each parent record may have many children, or

subordinate, records but each child record may have no more

than one parent record (Minoli, 2008). Figure 4 gives an

example of one such model for some language-related

organization (Zak, 2008).

18

Figure 4. Example Hierarchical Model (From Zak, 2008)

The network model is also known as the conference

on data system languages (CODASYL) model. It became popular

around the same time as the hierarchical model. As with the

hierarchical model, the set type is a basic component

within the network model, thus they have a similar

structural arrangement. The exception is that the child

records in the network model are not limited to having only

one parent record as depicted in Figure 5 (MapsofIndia.com,

2009). This type of multi-parent, multi-child relationship

is called a many-to-many (M:N) relationship. This model is

based on mathematical set theory (Minoli, 2008).

19

Figure 5. Network Data Model Example (From MapsofIndia.com,

2009)

Both, the hierarchical and network models, are

historically important models recognized as legacy data

models. These models still have an active following that

includes banks and hospitals (Elmasri & Navathe, 2007).

Though popular at one time, it is conjectured that these

models were displaced by the relational model because their

low-level navigational benefit was eventually surpassed by

relational model productivity and flexibility combined with

hardware speed advances over time.

d. Object-oriented Model

Object data models focus on managing objects vice

just simple data (e.g., strings, integers, booleans). These

objects are essentially constructed of attributes and

methods. Attributes are the properties of the object. They

define and, basically, describe the object and may be

simple data or complex objects (e.g., objects containing

more objects). Methods are operations, or functions, of the

object. They are executable code describing the object’s

behavior (Kim, 1990). A third critical component is

classes. Objects with the same structure and behavior

20

belong to the same class (Elmasri & Navathe, 2007). Classes

are model helpers, object templates that a database can use

to recreate or validate an object. They are setup in

hierarchies called acyclic graphs. Each object can only

belong to one class (“Object Oriented Databases,” 2010).

Figure 6 is an academic example of an OO model (Nordbotten

& Crosby, 1999).

Object-oriented (OO) or, simply, object DBMS

(OODBMS / ODBMS), though utilized in some commercial

sectors, have had a difficult time catching on and gaining

widespread use (Elmasri & Navathe, 2007). As Kim (1990)

alluded to, object models are possibly one of the most

confusing of the data models. Seemingly in direct

competition with relational models, especially for the

commercial market, the degree of confusion surrounding

ODBMS very likely did not help.

ODBMS boast excellent features like data

encapsulation, inheritance, overriding capability, and

computational completeness through general-purpose language

use (Minoli, 2008). Direct advantages over RDBMS even

include reduced coding time, faster performance (i.e.,

execution time), better concurrency control, easier

navigation, and easy internal integration of multimedia.

Still RDBMS remain market leaders likely because greater

efficiency with simple data relationships, greater

upscaling capability at higher volumes, a greater numbers

of tools already in existence (Whatever Happened to Obect-

Oriented Databases?, 2011), more stable standards, and

adaptability (i.e., ability to add-on object model features

21

through software extensions, hence object-relational DBMS)

(Object Oriented Databases, 2010).

Figure 6. Object Data Model Example (From Nordbotten &

Crosby, 1999)

C. DATABASE ARCHITECTURE

1. Architectural Importance

DBMS architecture has everything to do with

performance. For this reason, this concept has gone hand-

in-hand with computing power. In order to get the best

performance out of the DBMS it simply meant having the best

possible computer to manage, process, and distribute the

data for display (Elmasri & Navathe, 2007).

2. Single-Tiered (Centralized)

Centralized DBMS architecture was the first method

utilized to implement DBMS functionality. With no other

connectivity outside of the computer mainframe and

22

terminal, users were at the mercy of the scenario

aforementioned regarding computing processing power. This

type of architecture is considered single-tiered because

everything (i.e., user interface, DBMS operations, and

application operation) took place on a single computer

(Elmasri & Navathe, 2007).

3. Two-Tiered

Two-tiered architecture is known as the client/server

architecture. When machines became smaller and more capable

it yielded personal computers (PCs). Increased connectivity

amongst those computers via networks followed shortly

thereafter. The idea of file servers grew to use as

specialized servers that eventually accommodated the

specific needs of the DBMS. Early versions of this

architecture still had all DBMS functionality provided by

the server side except the user interface capabilities

(Elmasri & Navathe, 2007).

Over time, ingenuity suggested moving more

functionality to the client side. After interface

capabilities, next came application programs (Elmasri &

Navathe, 2007). Before this advent the setup primarily

supported thin clients, or user side computers that simply

depended on the server to provide all of the application

processing needed to access the DBMS (Lai & Nieh, 2006). As

the incorporation of two-tier DBMS on the commercial scene

was increasing, movement from having thin-clients was also

increasing. Sharing the burden data processing allowed

organizations to provide service to more users in a more

superior fashion. In short, it was good for business.

23

4. Three-tiered and N-tiered

The three-tire architecture took the two-tiered,

client/server, architecture and added a third tier called

the middle tier. This tier is sometimes known as the

application server of web server. Adding this tier, in a

way, relieved both the host and client from having to bear

the load of application processing (Elmasri & Navathe,

2007). In the case of an application server, this solution

more or less just separated the application programs from

the database server, which still improved individual server

performance (Kambalyal, n.d.).

The intermediate role played by the middle tier

improved more than just performance, it also improved

security. Moving, once again, back towards the thin client

setup, end users only had the direct access to the

interface capabilities that made requests of the DBMS via

the application or web server. This protocol allows the

middle tier to also conduct a credential check before

forward the user’s request to the database server (Elmasri

& Navathe, 2007).

N-tier architectures do much the same as three-tier

architectures but add one or two tiers making the final

tier count four or five. These additional tiers are

typically used to further divide the business logic layer.

This further relieves any processing burdens of a server or

possibly provides the additional tiers as specialized

servers within the same system. These additional servers

are then free to run the appropriate operating systems (OS)

or use the appropriate processors to meet the needs of that

particular middleware layer (Elmasri & Navathe, 2007).

24

D. BEST SELECTION FOR PROPOSED DATABASE

1. Choosing a Data Model

The primary end user of this database first and

foremost desired more than simply a database, which is what

was being provided by the current process. The most desired

functionality essentially made managing the data in the

database more automated. This meant concurrency control,

for instance not having to track, search for, and

individually change every instance of a professor’s or

course’s name simply to update the database. This meant

developing views such that already inputted data could

seamlessly be used to generate reports that included the

necessary formatting and calculations. This meant being

able to access and safeguard this data at the same standard

or higher than was already being implemented, but including

the potential to expand said features to remote management.

These features were accompanied with two other

important restrictions: time and technical considerations.

The end user needed to be able to implement the new system

within a set amount of time in order to replace the current

system. Next, the end user needed to avoid the technical

side of managing the database, thus allowing this tool to

increase productivity without having to exert a

significantly larger amount of time and effort.

Understanding all of these factors places plans

directly in-line with the relational model. Avoiding the

technical side of managing the data suggests using a

conceptual approach in development. The data models

conducive to a conceptual approach are the relational and

object-oriented models. Knowing that only simple data is

25

planned to be stored in the rather small database favors

the relational approach over the object-oriented. Lastly,

recognizing that the DBMS needed to be developed quickly

sealed the choice of a relational data model in creating

the proposed database.

2. Choosing an Architecture

In this area of designing the proposed DBMS, the

centralized architecture was actually working just fine.

All DBMS functionality was intended to be operated and

maintained on a single computer. Deciding to use a two-tier

architecture with an internet browser interface was more of

a consideration for extensibility. For, using a two-tier

architecture does not take away from the proposed DBMS’

capabilities. This just means that there will be a logical

separation between the database server and the database

application on the host computer; in much the same way as

would be seen with most client/server setups.

Furthermore, having the interface provided through an

internet browser adds even more extensibility, for instance

to a three-tier architecture should it be decided to make a

web server to link remote access to the host computer-

database.

3. Designing the Database

After determining the data model and architecture

comes the designing of the database. A top-down design

method was chosen for this step in design. The top-down

design method is also known as design by analysis (Elmasri

& Navathe, 2007). Having all the data and information

pertaining the current database (i.e., entities,

26

attributes, structure, and relations) this method seemed

the more beneficial and obvious method to select. From this

development of the new database schema can begin.

The steps following are to transition from the current

process to the proposed. In its entirety this is process

re-engineering and new process implementation. Progress can

now be marked by milestones that generate a piece of the

blueprint that will result in the proposed database sought.

Figure 7 shows these milestones and their products.

Figure 7. General Steps Toward Database Design

27

III. BUSINESS PROCESS ANALYSIS

A. RE-ENGINEERING

1. Considerations in Re-engineering a Process

When looking to re-engineer any process, first take a

close look at the original process and determine what is

occurring within that process. The questions asked before

taking on the task of re-engineering that process are

essential in deciding the best solution in redeveloping the

process. Some of those questions are:

• “What are the basic elements of the current
process?,”

• “How do those elements relate to each other?,”

• “How do those elements interact with each
other?,”

• “Within the process dynamics, what elements
should be mutable by users? Which by
administrators?,”

• “How are each of the elements to be referenced
again or put to use outside of the current data
storage?”

2. Purpose for Re-engineering This Process

This project seeks to create a web-enabled scheduling

database from the current scheduling tool, which primarily

consists of a scheduling spreadsheet. The current process

is highly manual, very time-consuming, and prone to error.

These characteristics are the key drivers in reconstructing

the scheduling tool. By correctly identifying the “moving

parts” the components necessary to make the new database

more automated, a bit less laborious, and more robust or

resilient in the event of error.

28

So, before asking the key questions that guided the

development of the new scheduling database, first looking

at the elements and interactions between those elements

within the current process is recommended.

B. CURRENT BUSINESS PROCESS

1. Identifying Critical Elements

The most general categories of the current system are

Course Information, Faculty Information, and Yearly

Offering Information. Each consists of their own set of

elements (Figure 8).

Figure 8. Current Data Element Matrix

2. Course Information (First Set of Elements)

Course Information is composed of the Course Number,

Course Name, Lecture Hours, Laboratory Hours, Course

Format, Funding Source, and Curriculum. The Course Number

is the primary way of identifying the course in question.

This is a unique combination of the curriculum abbreviation

and number code denoting the level and subject of the

course. This is most often delineated with a two-digit

curriculum abbreviation (e.g., IS, and a four-digit number

code [e.g., 3202]). However, the current system is flexible

enough to accept deviations in the naming convention.

29

An example of a course number would be IS3202, which

is a 3000-level course offered within the Information

Systems (IS) curriculum identifying the Web-Enabled

Database Management & Development Course, the course name.

Though, both the Course Number and the Course Name are

supposed to be unique in their designation, the current

system is not setup to enforce this restriction. This is

most likely due to limited size of the current database as

well as the somewhat extensive amount of extra work

required to arrange this type of enforcement protocol on a

Microsoft Excel spreadsheet.

Lecture Hours and Laboratory Hours denote the number

of hours devoted to subject lecturing or spent within the

laboratory setting per week. This is tracked in order to

determine how much time is required to administer the

course as well as better indicate how much effort will be

required of the professor.

Course Format is the manner in which the course is

being administered. This refers to whether the course is

conducted on campus (resident) or through distance learning

(online or via remote site). This is another category

mainly managed by expert knowledge of scheduling system.

Within Figure 9, of the two categories available, only

distance learning courses are obviously marked. To an

expert user, however, it is known that the “courses” and

“electives” are resident courses and, as the norm and

majority, require less noticeable indications than those

that are not the norm.

30

Figure 9. Sample Scheduling Spreadsheet

The Funding Source refers to how the course is paid

for. This can be either directly funded or reimbursed

funds. In the current process, this is primarily determined

by what type of faculty is administering the course. This

characteristic is only noticeable in observing the

automatic adjustment of funding statements due to a pre-

entered equation. This basic, built-in system functionality

is used to make this operation more automated. Though, not

needed in the current system, the system does maintain the

ability to expand the aforementioned functionality to the

introduction of additional funding sources.

Last is the Curriculum, which delineates groupings

into which each course falls. This sub-element primarily

serves as a visual aid for the schedule developer in

addition to the indication denoted within the Course

Number.

31

3. Faculty Information (Second Element)

Faculty Information is composed of the faculty

member’s Last Name, First Name, and Tenure Status. The Last

Name and First Name are rather self-explanatory and are the

primary means of uniquely identifying each faculty member.

The current process’ system relies on expert knowledge in

the actual course scheduling outlay. Classes are listed

with no more than faculty member's last names, while full

first and last name info is listed on a separate

spreadsheet. The two instances of faculty listings are not

connected (i.e., selecting one does not pull from the

listing of the other) nor is the uniqueness requirement

enforced. Such functionality can be inputted with a less

than intuitive and user-friendly manner, and maintaining

its fidelity is quite a bit more involved with regards to

setup and upkeep.

Tenure Status is a denotation of whether the faculty

member is on a tenured track or a non-tenured track. This

applies to civilian faculty only.

4. Yearly Offering Information (Third Element)

Yearly Offering Information is made up of the Fiscal

Year, and Quarter. Fiscal Year is the four-digit number

denoting the year the course is scheduled to be offered.

This is based-on the academic year starting in September of

each year. To better illustrate, the courses offered from

September 2010 to December 2010 would be categorized as the

part of the first quarter of the 2011 fiscal year.

Quarter is either of the four seasons over which a

course is scheduled within three-month intervals of the

32

year (e.g., winter, summer). Following the typical

understanding of the fact that the year consists of four

quarters, there are four options to choose from being that

courses are offered year-round.

5. Analysis

The current process uses very little automated

functionality. The spreadsheets used in the original

process, like depicted in Figure 9, are developed using

Microsoft Excel, which offer some automated functionality

most suited for aiding in running tallies and calculations.

One such automation is found in the calculation of total

faculty utilized per quarter and annually. The numbers are

first broken up by either of the two tenure track status or

military. These are not listed and assigned a value that

the spreadsheet would account for in counting how many of

each are used, but rather counted by hand, entered manually

and from there the counted numbers are totaled via a cell

formula option. This is likely due to the disproportionate

amount of time and effort required to input and track

individual instances in comparison to the perceived return

on investment, which is no more than a simple staff count.

This same reasoning is likely used with regards to the

funding spreadsheet (Figure 10), which is similarly

inputted and tallied.

33

Figure 10. Sample Section Count

In order to archive courses offered previously along

with information about those courses (i.e., faculty

teaching, number of sections offered, course number,

lecture and lab hours) multiple versions of the same

spreadsheet are saved under a different file name denoting

what time period it covers. Using this type of sub-process

has advantages and disadvantages. It requires a lot of

attention in maintaining an organized filing system. It

also exposes the risk of having incomplete archives due to

improper filing (e.g., accidental overwriting, misplaced

documents) or errant naming conventions. On a more positive

side, having each record maintained separately guards

34

against total loss of archives in the event of file

corruption or contamination.

Each of the aforementioned data elements has been

deemed critical in maintaining the functionality of the

scheduling system. So, keeping them and their interactions

in mind, the re-engineering of the original process may

begin with the express goal of adding the convenience of

automation, remote access, and increased user friendliness.

C. DESIGNING PROPOSED DATABASE

1. Database Organization

After identifying the essential elements of the

current business process and identifying the additional

elements desired in the new system, all the tools necessary

to start designing the proposed database are available.

The first step is developing an entity-relationship

(ER) Diagram. This not only lays out the elements in their

most basic form but, provides a great visual blueprint to

how each element relates to the next within the larger

scheme of the database.

In the ER diagram created for the proposed database,

the three main categories of the original database (Course

Information, Faculty Information, and Yearly Offering

Information) were maintained. The two additional categories

(i.e., Curriculums and Tenure) were created to accommodate

the desired elements that were not previously being

provided or tracked in the current database. Figure 11

shows a new element matrix with asterisks next to the sub-

elements post re-engineering.

35

These new elements are Course Coordinator, Course

Price, and Operational Status in relation to Course

Information. Then there is Academic Rank, Qualifications,

Preferred Quarters, and Operational Status in connection

with Faculty Information. Yearly Offerings Information now

includes Section Number and Location. Cost was placed under

Tenure Info and a Requirement Status was added in

association with Curriculum Information.

Figure 11. Proposed Data Element Matrix

Course Coordinator is the sole faculty member

responsible for coordinating the material covered in a

particular course. Each course must be assigned a

coordinator and only one faculty member may be selected.

Despite the number of sections or faculty members

facilitating the course, the course coordinator must be

recognized as being a separate and equally vital role.

Next is Course Price. This denotes the cost of the

course based on whether it is taught by a tenured, non-

tenured. Military faculty members fall under the

classification of non-tenured for the sake of determining

the Course Price.

Course operational status references whether the class

is being offered during a specified time period; usually

36

active scheduling. This element is intended to allow

filtering in options in selecting or displaying courses,

not to necessarily for long-term tracking. An example of a

course status would active or inactive.

Academic Rank refers to the position held by the

faculty member: full professor, associate professor,

assistant professor, research professor, senior lecturer,

lecturer, or military.

Course Qualifications refers to the courses a faculty

member is qualified to teach vice simply the courses a

member may be scheduled to teach.

Preferred Quarters indicates when the faculty members

desire to teach courses being offered.

Faculty Operational Status denotes whether a faculty

member is active or inactive during the current scheduling

period. This is not tracked long-term but used to assist in

active scheduling of courses.

Section is the number indicating how many classes of a

particular course need to be offered in order to

accommodate the demand in student requests. For instance,

if there are 50 students who need to take a class in a

certain quarter, two sections of that course many need to

be offered to keep the number of students per classes down

to a reasonable amount.

Location refers to where each class is held. This data

element is made up of two items of data, the two-digit

building abbreviation and three- or four-digit classroom

number to include a letter. Two examples would be IN263 or

RO200C.

37

Tenure Cost indicates the monetary amount required to

offer a course with regards to the type of faculty teaching

the course.

Curriculum Requirement Status is an element to

indicate whether a particular course is required for a

specified curriculum or merely an elective.

Each of the preceding elements described fall under a

particular category (e.g., Course Information). In the

proposed database, the elements generally maintained their

grouping under similar categories, or umbrella subjects.

Each of these subjects is known as an entity. These

entities mirror the data contained within them

respectively. The individual data items, previously

referred to as data elements, within each entity, are known

as attributes. The break down and organization chosen for

this proposed system is depicted in the diagram shown in

Figure 12.

The entity Courses, abbreviated CRS, is the focal

point for the other entities. CRS are arranged to have a

one-to-many (1:M) relationship with Course Offerings,

abbreviated Offerings, meaning each course offering will

only consist of one course, but each course can be used in

more than one offering. For instance, section one of IS3202

would be considered one offering and thus is made up of one

course. However, IS3202 could be offered again, this time

as section two or some subsequent section within the same

fiscal year and quarter.

38

Figure 12. Propose Database ER Diagram

Another characteristic of this CRS-Offerings

relationship regards its constraints. Notice in Figure 12

there exists bold lines around the dependent entity,

Offerings, and the respective CRS-Offerings relationship,

offered_crs. These, in fact, represent double outlines, as

per the key, and moreover represent that it is mandatory

for each offering within the database to have a course with

which it is associated. It also asserts that this is not

the case for courses, as they can exist within the database

regardless of whether they are being offered.

Faculty also has a relationship with CRS. This

relationship is two-fold and stems from the distinction

39

mentioned earlier between course professors and course

coordinators. The CRS-Faculty relationship pertaining to

course professors is a many-to-many (M:N) relationship,

meaning each course can be taught by more than one faculty

member and each faculty member can administer more than one

course. The CRS-Faculty relationship pertaining to course

coordinators is a many-to-one (M:1) relationship, meaning

each course can only have one coordinator but each faculty

member can act as a coordinator for more than one course.

Familiar bold markings, representing a double line,

connecting CRS to the crs_coord relationship denote that

this is a mandatory relationship for Courses. Each course

must have a course coordinator, which is selected from

among the faculty. However, this double line representation

is not between crs_coord and Faculty because it is not

mandatory that all faculty to course coordinators.

The CRS-Curriculums relationship is a M:N

relationship. Each course can be associated with multiple

curriculums or can exist within the database without an

association. Likewise, curriculums can consist of multiple

courses however do not require them in order to

instantiated within the database.

The Faculty-Tenure_Trk relationship is a M:1

relationship denoting that faculty may only have one tenure

track but may a one of the available tenure tracks can be

assigned to more than one professor.

2. Operational Design

The next step in designing the proposed database is

determining how each entity is connected to the other and

40

how best to represent each relationship within the

database. This can easily be considered the most

conceptually difficult portion of designing a database, as

there are no steadfast rubrics for deciding how the model

should interact with itself—just general rules of thumbs

that can usually narrow best practices down to a couple

sound choices.

Figure 13 illustrates how the proposed database is

designed to interact. Each row represents a table within

the database. Each of the entities are listed and will have

their own tables.

Relationships within a database are usually

represented by migrating an attribute from the related

entity’s table and placing it within the partner entity’s

table. The relationships within the proposed database that

received their own table, vice the aforementioned

arrangement (e.g., crs_taught_by), are permitted so due to

the type of relationship to which they refer. These kinds

of objects are indicated by lines within Figure 13

beginning with lower-case titles. crs_taught_by is a M:N

relationship which must have its own table. crs_coord is a

M:1 relationship which warrants a separate table but can

just as justly be represented with a data attribute from

Faculty referenced within the CRS table. The type of data

attribute being referred to is called a foreign key

(Elmasri & Navathe, 2007). The former approach was chosen

in Figure 12. The latter approach would be illustrated by

subtracting the crs_coord row and rewriting the CRS row as

“CRS(Crs_No, Crs_Name,…, Funding_Src, FacName” where

FacName represents the Name attribute in the Faculty row.

41

Figure 13. Proposed Database Relational Schema

Attributes are also generally included within the

table of the associated entity. The attribute included in

the proposed database’s relational schema with its own

42

table was Crs_Qual. This is a multi-valued attribute much

like Qtr_Prefs. Both can be represented as separated tables

or as some finite number of attributes within their parent

entity’s table (Elmasri & Navathe, 2007). Crs_Qual was

chosen as a separate table due to the unknown and

potentially unbounded number of courses a professor can be

qualified to teach. Qtr_Prefs, on the other hand, is

limited by the numbers of quarters there are in a year and

thus represent a perfectly reasonable number of distinct

attributes including amongst the partner table’s

attributes.

The completed relational schema acts as a roadmap for

directly developing the database. The names for each of the

entities and attributes were thus chosen accordingly.

Consideration was given to length, intelligibility of

abbreviations, uniqueness, and avoidance of reserve words

within the SQL programming language. The next step is

generating the appropriate SQL script, or syntax, from the

relational schema, which is best done after selecting and

installing the SQL processing software of choice. For the

proposed system the software chosen is MySQL.

D. INSTALLATION OF DBMS TOOLS

1. Installing MySQL

There are several key reasons MySQL was chosen as the

database management solution for this particular web-

enabled scheduling system: cost, performance, and schedule.

Each of these will be discussed in more detail later in the

chapter.

43

After having made the decision to use MySQL, the next

step was installing the management tool. To acquire the

software go to the MySQL homepage at http://mysql.com

(Figure 14).

Figure 14. Tabs on MySQL.com Home Page (2011)

Click on the ‘Downloads (GA)’ tab at the top of the

page. Then scroll down, find the ‘DOWNLOAD’ under the MySQL

Community Server heading and select it.

Next scroll down and select the appropriate platform

from the dropdown menu, followed by selecting the

‘Download’ button next to the correct machine description

(Figure 15).

Version 5.1 was used to develop the proposed system.

From here follow the step-by-step instructions for running

and installing.

44

Figure 15. Platform Options on MySQL.com Download Page

(2011)

Now, to install a graphical user interface (GUI) tool

that will improve the ease of use and general user’s

understanding of the MySQL application. To acquire this

program, return to the MySQL Homepage. Select the

‘Downloads (GA)’ tab again and scroll down to the MySQL

Workbench (GUI Tool). As before, select ‘DOWNLOAD’ under

this heading. Then choose the correct platform followed by

the ‘Download’ button next to the appropriate machine

description.

After installation, the basic tools necessary for

running SQL scripts are available.

2. Installing Macintosh, Apache, MySQL, and PHP
(MAMP) Package

MAMP is the application software package chosen to

integrate all of the tools needed to attain a database

server, online extension, and a user friendly GUI for

database management.

45

MAMP; which stands for Macintosh, Apache, MySQL, and

PHP, still utilizes MySQL as the SQL processor. It uses PHP

as the SQL web extension language, which also interacts

with the database for access, maintenance, and

manipulation. And Apache is the web server software. The

proposed DBMS was developed with MySQL 5.1, PHP 5.2, and

Apache 2.0 versions running on version 1.9.4 of MAMP.

To acquire this application, visit the MAMP Homepage

at http://www.mamp.info (Figure 16). Then scroll down to

click on the ‘Download now’ button beneath the MAMP

personal web server logo.

Figure 16. MAMP & MAMP Pro Home Page (2011)

From here simply follow step-by-step directions and

first session and server startups can be initiated upon

completion.

46

E. PROPOSED DBMS DESIRED CAPABILITIES

1. Accessibility via Internet

An important feature driving the development of the

propose DBMS is the capability to access and manage the

system via the web. This capability maintains a critical

factor of convenience, which is available in the current

business process; a feature that should not have to be

sacrificed in order to supply the additional capabilities

requested.

PHP is a general-purpose scripting language designed

for web development and embedding in hypertext markup

language (HTML) (The PHP Group, 2001). This is the language

chosen to extend the MySQL-based DBMS, adding the

aforementioned functionality.

2. Importing Capabilities

It can be a hassle to have to reenter all of the data

from even the smallest database into another database.

Importing ideally allows verbatim capturing of data in the

new database with far more convenience and less likelihood

of error resulting from reprocessing. The general language

exists within SQL to allow such functionality, however the

particulars may vary depending on the SQL processing

program being used.

MySQL contains a LOAD DATA function that provides the

importing capability. With the current system’s data being

stored within an Excel spreadsheet, an .xls file, MySQL’s

LOAD DATA function is available to import data saved as a

.csv (comma separated value) file (Oracle, 2013).

47

When saving an Excel file as a CSV file, the values

entered within the spreadsheet are essentially saved to a

form of text file with all the cell data separated by

commas (Import Excel Data, 2011). Lines or rows within

Excel are separated within the CSV file by some other

standard character. These characters are known as

delimiters (MySQL, 2011).

Several SQL processors, including MySQL, can read and

process documents like CSV files. With some user input,

these processors can properly interpret the data and place

it within the appropriate tables in the importing database.

3. Cost

One huge driving factor in this re-engineering project

was cost; a criterion that has been well accommodated.

MySQL is not only one of a handful of database

applications available on the Mac, but is also free. Yes,

it is free software, as in freeware, being that the source

code was developed under the GNU General Public License.

However, MySQL has both definitions of ‘free’ covered; free

in the developer’s rights in distributing source code and

free of financial requirements (Kennedy, 2010).

MAMP is another freeware application bundle that

integrates additional open source software like MySQL.

Apache and PHP both fall into this category of software.

4. Performance

For such a great price on the actual tools implemented

to build and management the propose DBMS, it might be

expected that there would be some tradeoff in quality or

48

functionality. This is, however, not the case with the

tools chosen. MySQL and Apache alone have made significant

marks on their respective industries.

MySQL has become increasingly more popular in the

development of the web applications. In fact, it boasts of

having exceeded 100 million downloaded copies since its

first release up through version 5.1 (Kennedy, 2010). Such

a positive outlook on the software can very likely be

attributed to the low tradeoff of power and quality despite

the price. Moreover, as the product further increases in

popularity, there will be an increase in developers focused

on making the most of such capable, open source software

(OSS).

Apache is credited with playing a significant role in

growing the web (Netcraft, 2011). And while remaining to be

freeware, was the first web server software to be used by

over 100 million web sites (Netcraft, 2009).

Neither is likely to have gained such widespread use

if the necessary quality were not provided. Consider that

the world seems to be riddled with free products,

especially software, which still cannot find a niche in

mainstream usage.

5. Schedule

Schedule is another big driver, especially in this

particular DBMS project. The proposed system has a very

practical use that could be applied on a much bigger scale.

However, considering the rather limited size of the current

system data, a product that takes a great deal of time to

49

create does not seem “cost effective” in terms of benefit

versus effort or time required

The bulk of the time spent in bringing the proposed

database to fruition was accrued in the conceptual planning

and documentation of the system. The building of the

database took significantly less time, especially when the

documentation was well organized. This trend suggests that

with some familiarization with the tools used and some

expert assistance in areas of inexperience, there could be

a drastic increase in the time efficiency ratio and thus

even more increase in returns on investment (ROIs).

F. PROPOSED DBMS ENVIRONMENT

1. Operating System (OS)

The proposed database and the current scheduling

system are being run on an Apple iMac. This is running Mac

OS X version 10.6, also known as Snow Leopard. It is

essential that the proposed system be able to run and be

effectively managed via this machine with the

aforementioned OS.

Testing and development of the proposed system were

done on an Apple MacBook Pro running Mac OS X version 10.5,

also known as Leopard, with incremental verification done

using the iMac on which the system is intended to run.

2. Computer Resources

Both systems used in the development and operation of

the proposed DBMS, the MBP and the iMac respectively, have

very similar specifications. Both are fairly new machines

in the personal computer (PC) marketing industry. Both have

50

Intel processors, allowing such convenient functions as

running a Windows OS on each as virtual machines (VM). The

MPB is dual-core while the iMac is quad-core. This will not

cause a problem since the computer used to develop the

database actually has less processing power than the

intended operation-computer. Additionally, tests have shown

that MySQL still performed well on limited-resource

computer processing units (CPUs) running OSs like Fedora

and Ubuntu (Ahmed, Uddin, Azad, & Haseeb, 2010).

The hard drive (HD) capacity was not deemed

negligible, as the proposed solution required less than 200

MB to install both the free and proprietary versions.

Slightly more HD space is required for the sake of computer

processing and data storage, however considering the

limited size of the current data, each machine maintained

more than enough space for running and managing the

proposed DBMS.

Both computers are also utilizing versions of Mozilla

Firefox web browsers and have access to the Macintosh (Mac)

native browser, Safari. The desired web browser for

managing the system is Firefox, the second most widely used

web browser according to February 2011 W3Counter Global

Stats and possibly first on Apple computers since Internet

Explorer’s development for Mac was discontinued in 2003

(Dairymple, 2003).

3. Restrictions

The most pressing restrictions in developing all the

desired system capabilities are (1) availability of

preferred DBMS interfacing software and (2) availability of

the data to authorized users from remote sites. These

51

restrictions are primarily due to the location of the data

being accessed by the proposed DBMS. The iMac on which the

system will be operating is connected to a Department of

Defense (DoD) owned and managed local area network (LAN).

This characteristic does not affect the functionality of

the DBMS’ data management operation while working locally,

at the original computer for which it was designed. And,

although MySQL databases can be managed offline, meaning

without being connected to a network or internet source,

the desired functionality includes access and management

via internet and more specifically includes compatibility

with Firefox web browser.

It appears that the variety of software applications

on DoD networks can be quite limited. With respect to the

validity of such an assertion, it would not be unheard of

that programs like Firefox might not be available on a

government-owned Apple Computer being that Firefox Browser

is not native to Macs. If not for this reason alone, it is

nice to know that such restrictions in operation due to

variations in web browsers are mitigated by the universal

nature of the DBMS chosen. It not only functions with

Firefox 3.6, the version being run by the iMac, but it also

works with Firefox 4.0 beta and Safari 5.0, which are being

run on the MBP and were used for testing and development.

The next restriction considers the network firewall(s)

and virtual private network (VPN) protocols. Direct access

from a remote computer to the host computer, the iMac, via

the DoD network would not be available.

An alternative method for gaining access would be via

the network’s VPN. This detracts from some of the systems

52

intended convenience in that remote access to the system

would be consequent on the proxy computer’s acquisition of

the DoD network’s VPN software and permissions granted

through a login account in addition to whatever security

measures are added to the DBMS by its administrator.

However, on a positive note, it supplements this drawback

with increased security merely through association with the

DoD network. This has in itself the added convenience of

security that is already in place and is maintained by

resources other than those directly added in the

development of this system.

Yet another alternative to local access and management

would be hosting the database on a web server existent

outside of the DoD LAN, which is accessible to the host

computer and authorized remote computers. There are

numerous free or commercial web hosting service providers

available from which to choose. This can also be done from

a remote computer, for instance a home computer.

53

IV. PROPOSED OPERATIONAL FUNCTIONS AND CAPABILITIES

A. GETTING STARTED

1. Data Description Language (DDL)

DDL is the DBMS scripting language that will be use to

generate and define the proposed database. The primary uses

of the DDL are to access the database for the sake of

adding data, modifying data, or deleting data. The most

common SQL commands for accomplishing these tasks are:

CREATE TABLE, CREATE INDEX, ALTER TABLE, RENAME TABLE, DROP

TABLE, and DROP INDEX (Elmasri & Navathe, 2007).

Other noteworthy features in the realm of DDL are

constraints. For the moment, focus will be directed towards

ON UPDATE / ON DELETE, which defines the behavior of data

in one table that is linked to data in another table with

what is called a foreign key. This feature allows for four

options if that particular data instance is modified or

deleted. Those options are: CASCADE, SET NULL, SET DEFAULT,

or NO ACTION (or RESTRICT). CASCADE changes the dependent

data instance to reflect the change as it appears in the

parent table. SET NULL makes the value of the data null, or

undefined, in the dependent table. SET DEFAULT changes the

value of the dependent data whatever value is set as the

default in the table’s definition of that particular

attribute. NO ACTION and RESTRICT are essentially the same

(Oracle, 2012). These commands leave the data in the

dependent table the same as before the change was made in

the parent table. In standard SQL, using RESTRICT may

result in an error message as well as reject the change in

the parent table. If using NO ACTION, the change would

54

still not occur in the dependent table but may not result

in an error message or stoppage of change in parent table;

making this, for all intents and purposes, like unlinking

the data, except in their namesake. In MySQL, since

constraints are checked immediately, the update or delete

operation would be rejected for the parent table regardless

of using NO ACTION or RESTRICT.

2. Opening MAMP

After having installed the chosen DBMS, run it and

configure it to perform the tasks for which it was

selected. To do this, search for the DBMS, MAMP, within the

applications folder. From here, double click on MAMP to

execute the run code. Following these actions should result

in display of the startup interface for MAMP. This

interface is depicted in Figure 17 with the servers

stopped. Figure 18 depicts MAMP with the servers on. As a

default, configuration may be set for MAMP to ‘Start

Servers when starting MAMP’ and ‘Open start page at

startup.’ These options (shown in Figure 19) can be

accessed inside of the preferences menu located under the

MAMP tab (Figure 20 and Figure 21).

55

Figure 17. MAMP Startup Interface with Servers Stopped

Figure 18. MAMP Startup Interface with Servers Running

Figure 19. MAMP Preference Options

Figure 20. MAMP Menu Tabs

56

Figure 21. MAMP Main Menu

Once the DBMS servers are running, the start page will

either open automatically or will require selection of the

‘Open start page’ button on the startup interface. This

action will open the specified internet browser on the MAMP

start page (Figure 22). MAMP is designed to operate within

the host’s default browser. This allows for seamless

configuration in using MAMP remotely via the Internet.

Figure 22. MAMP Start Page within Internet Browser

57

From here, the primary way to interact with the

database is through phpMyAdmin (PMA). Click on this tab in

order reach developer options. This will be where the

database is setup & configured. Figure 23 shows an average

layout of a database within PMA.

Figure 23. Sample Layout of PMA Application within MAMP

3. Generating Database

Up to this point the road map for how to develop a

database has been followed through to the last step. This

road map and the steps included within it are revisited in

Figure 24, indicating what has been completed up to this

point.

58

Figure 24. Database Design Steps (Completed Steps Lined Out)

The next step is using the relational model to

determine the script necessary to generate the proposed

database. This script is called data definition language.

It will be used to define the data as it is to exist within

the database. Figure 25 is an example of one such script

for the proposed database. However, SQL has some

flexibility in the formatting of this script, which allows

for a bit more variation than some traditional programming

languages. Regardless of this feature, SQL does still have

firmly defined syntax to which must adhered.

59

Figure 25. Proposed Database Generation DDL Script (Example)

A convenient feature of the PMA application included

in MAMP is the easy to navigate GUI, which allows

specification and generation of desired script without

having to know SQL.

DROP SCHEMA IF EXISTS WebSkedDB;
CREATE SCHEMA WebSkedDB;
USE WebSkedDB;

CREATE TABLE Course (
 Crs_No VARCHAR(8) PRIMARY KEY,
 Crs_Name VARCHAR(40) NOT NULL,
 Lect_Hrs INTEGER,
 Lab_Hrs INTEGER,
 Format VARCHAR(10),
 Funding_Src VARCHAR(12))
ENGINE = InnoDB;

CREATE TABLE FacultyMembers (
 Lname VARCHAR(20) NOT NULL,
 Fname VARCHAR(20) NOT NULL,
 Acad_Rank VARCHAR(20),
 Tenure_Trk VARCHAR(3),
 Op_Status VARCHAR(7) NOT NULL,
 1stQtr_Pref BOOLEAN,
 2ndQtr_Pref BOOLEAN,
 3rdQtr_Pref BOOLEAN,
 4thQtr_Pref BOOLEAN,

 CONSTRAINT Faculty_pk PRIMARY KEY (Lname, Fname)
) ENGINE = InnoDB;

CREATE TABLE CourseQuals(
 FacLname VARCHAR(20),
 FacFname VARCHAR(20),
 Crs_No VARCHAR(8),

 CONSTRAINT Crs_Quals_pk PRIMARY KEY (FacLname, FacFname, Crs_No)
) ENGINE = InnoDB;

CREATE TABLE TaughtBy(
 Crs_No VARCHAR(8),
 FacLname VARCHAR(20),
 FacFname VARCHAR(20),

 CONSTRAINT taught_by_pk PRIMARY KEY (Crs_No, FacLname, FacFname)
) ENGINE = InnoDB;

CREATE TABLE CourseOfferings(
 Crs_No VARCHAR(8),
 FY INTEGER,
 Qtr CHAR(3),
 Sect INT,
 Location VARCHAR(7),

 CONSTRAINT Offerings_pk PRIMARY KEY (Crs_No, FY, Qtr, Sect)
) ENGINE = InnoDB;

CREATE TABLE CrsCoord(
 Crs_No VARCHAR(8),
 FacLname VARCHAR(20),
 FacFname VARCHAR(20),

 CONSTRAINT CRS_Coord_pk PRIMARY KEY (Crs_No, FacLname, FacFname)

) ENGINE = InnoDB;

60

From the Home screen, to which can be returned by

pressing the Home Button (Figure 26), there is a quick

start wizard underneath the Actions area (Figure 27).

Figure 26. PMA Home Button Option

Figure 27. PMA Quick Access to Create New Database

Using this option to instantiate a database, let us

call it MyDatabase, PMA would execute the following DDL:

CREATE DATABASE `MyDatabase` ;

a. Generating Tables

This step is also very straightforward. After

clicking to select the desired database within which to

create the table, the first tab available will be the

Structure tab. This will make available an option to create

a table and specify the number of fields that table should

have (Figure 28). This information can be taken directly

from the relational schema created in the last step. The

heading of each line will be the name of the table (e.g.,

CRS), and each of the attributes listed will make up one of

the fields, or columns, to be included. No code is executed

in this step until after the details about each field are

61

specified in the next step. Once the code is executed,

changes to the tables, like renaming, can be found under

the Operations tab.

Figure 28. PMA Quick Access to Create Database Table

b. Generating Fields

This part of creating the database is a bit more

involved. The characteristics of the fields are based on

the intended values of the record elements. A portion of

this information is indicated on the relational schema. The

rest is user-declared. Some basic understanding of database

architecture is required to properly complete this step. An

example of the PMA-provided interface can be seen in Figure

29.

Figure 29. PMA Field Creation Options

62

The name of each field is placed within the Field

column. The type of data contained in the field is selected

from the list in the Type column. The allowable length of

the data (i.e., digits or characters), or the list or set

from which the user will be able to choose is set in the

Length/Value column. The Default column permits the

designer to set a default value when not specified by user.

The Collation column specifies the character set and

language. The Attribute column provides three options for

how the inputted data is stored. ‘BINARY’ stores the string

of data byte-by-byte vice character by character. This

action makes spaces in the data string significant and

differentiates letter case, for instance [‘A’ =! ‘a’] and

[‘a’ =! ‘ a’]. ‘UNSIGNED’ restricts numeric data inputted

to being positive, so all negative numbers are defaulted to

‘0’. ‘UNSIGNED ZEROFILL’ does the same as ‘UNSIGNED,’

however it places ‘0’s in all value bits up to the maximum

allowed length, so ‘-1’ would be represented as ‘0000’ if

that field’s length restriction is set to four digits. The

Null column, if selected, permits the user specified value

to be blank. If not selected, a blank input from user will

yield an error message. The Index column allows the DBMS to

search the database more efficiently. If specified, the

DBMS will be able to locate specific column values without

first having to read through the entire row of information.

Very frequently data in one table references data from a

different table within the database. Indexes allows for

this type of referencing. The table with the indexed term

offers its contents as a set from which the referencing

table can choose. The A_I column represents auto increment.

Selecting this column will have the DBMS to generate a

63

unique identification number for each row created. And last

is the Comment column, which can be used to provide the

user with a message (e.g., ‘Example format $12.34’). Figure

30 is an example of the type of code that PMA would execute

for our proposed system’s Offerings table.

Figure 30. Proposed DBMS Offerings Table DDL

B. MANAGING THE DATABASE

1. Data Manipulation Language (DML)

DML is the DBMS scripting language used to manipulate,

or perform functions on, the data within the database. Some

typical functions include retrieval, insertion, deletion,

and modification of the data. Some common commands used to

carry out these operations are: SELECT, UPDATE, INSERT, &

DELETE; which are very easily associated with the purposes

they fulfill within DML.

The two main types of DML are high-level and low-level

DML. High-level DML is also known as nonprocedural DML.

Languages considered to be high-level DML are declarative

languages and set-oriented. They declare what data is to be

retrieved vice how or what procedures by which that data is

to be retrieved. These languages can be utilized by

CREATE TABLE `CourseOfferings` (

`Crs_No` varchar(8) NOT NULL,

`FY` int(4) NOT NULL COMMENT 'e.g. 2010',

`Qtr` set('FA1','WI2','SP3','SU4') NOT NULL,

`Sect` int(2) NOT NULL COMMENT 'e.g. 01',

`Location` varchar(7) DEFAULT NULL COMMENT 'e.g. IN263, RO200C',

PRIMARY KEY (`Crs_No`,`FY`,`Qtr`,`Sect`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

64

themselves or embedded within a general-purpose programming

language like C++ or Java. SQL, a relational language, is

one type of High-level DML.

Low-level, or procedural, DML is retrieves data one

record at a time vice as a set. Language of this type must

be embedded within general-purpose programming languages

(Elmasri & Navathe, 2007).

2. Adding Records

To add records within the database, PMA offers an

Insert tab option. This is visible after selecting a

particular table to modify (Figure 31). The interface

provided utilizes dropdown lists to facilitate limited

choice options and free-select options to facilitate

attributes with the possibility of multiple values. All

other field input areas are set based on specification in

the DDL Script executed. Notice, in Figure 31, FacName also

has a dotted underlining. This indicates a comment, which

appears when the mouse hovers over that field name (Figure

32).

Figure 31. PMA Insert Tab for Record Adding

65

Figure 32. PMA Comment (Insert Tab)

After entering record data, as shown in Figure 33, PMA

will generate the appropriate SQL script to implement the

addition. An example of this INSERT script for the Faculty

table of the proposed database is shown in Figure 34.

Figure 33. PMA Insert Tab (Completed Fields)

Figure 34. INSERT Faculty Table DDL Script Example

3. Editing Records

Making modifications to a record can be done by

selecting the table in which the record resides, then by

choosing the Browse tab. This action will display all of

INSERT INTO `ThesisDB_3b`.`FacultyMembers` (
`FacName` ,
`Acad_Rank` ,
`Tenure_Trk` ,
`Op_Status` ,
`Qtr_Prefs`

)

VALUES (
'Griffith, Peter', 'Professor', 'Tenured', 'Active', 'WI2,SU4'

);

66

the records within that table. Next to each record is shown

a Selection box, Pencil tool (to edit) and a red X (to

delete) to corresponding record. Each of these tools can be

seen in Figure 35 within the aforementioned Browse tab.

Figure 35. PMA Browse Tab Options

Selecting the Pencil tool will redirect to the Insert

tab with that record’s fields pre-completed. After making

the desired modifications, pressing Go will execute the

Update script appropriate to execute the changes within the

database. Figure 36 depicts an example of the DDL script

executed.

Figure 36. Faculty Table UPDATE DDL Script Example

4. Deleting Records

Deleting records is done in much the same fashion as

updating or modifying records with an exception to the last

UPDATE `ThesisDB_3b`.`FacultyMembers`

SET `FacName` = 'Smith, Joseph'

WHERE `FacultyMembers`.`FacName` = 'Smith, Joe';

67

step. From the Browse tab, instead of selecting the Pencil

tool, select the red X. Next confirm DELETE execution

(Figure 37) and the records will be redisplayed minus that

record.

Figure 37. DELETE DDL Script Example

5. Importing Records

The import feature can be a very useful option in

transitioning in-between any database, especially as

content increases in quantity. MySQL makes this option

available through variations of the LOAD DATA INFILE syntax

as seen in (Figure 38).

Figure 38. LOAD DATA DDL Syntax Template (From MySQL, 2011)

PMA offers a more user friendly solution with a GUI

available under the Import Tab (Figure 39). Several

document types are accepted for import including CSV files,

which can easily be generated directly from Excel files.

LOAD DATA [LOW_PRIORITY | CONCURRENT]

[LOCAL] INFILE 'file_name'

 [REPLACE | IGNORE]

 INTO TABLE tbl_name

 [CHARACTER SET charset_name]

 [{FIELDS | COLUMNS}

 [TERMINATED BY 'string']

 [[OPTIONALLY] ENCLOSED BY 'char']

 [ESCAPED BY 'char']

]

68

Figure 39. Sample of PMA Import Tab Wizard

Simple structure importing is rather straightforward.

Figure 40, Figure 41, and Figure 42 show simplified

examples of our original database represented as an Excel

file, CSV file, and within PMA after importing to our

proposed DBMS, respectively.

Course Lecture Lab Name Format Funding Source
IS2020 2 3 VB Resident
IS3001 4 2 Comp & S/W Resident
IS3210 4 0 IM & KM in Defense Resident
IS4700 4 0 Phil of Science Resident
IO4300 3 0 Planning/Targeting Resident

Figure 40. Original Database Sample (Courses.xls)

69

Figure 41. Original Database Sample (Courses.csv)

Figure 42. Proposed Database Sample Post-Import Courses.csv

The complexity of importing becomes more apparent when

attempting to import data into a database with entities

(tables) enforcing foreign key constraints. The delicacy of

this operation is due to strict adherence to accuracy

demanded of most programming languages.

When importing data under the conditions

aforementioned, the user must make sure that data content

within the original database meets the criteria of the new

database. For example, if the Course attribute Lecture

Hours within the DBMS is expecting an input of integers

only, importing a data instance of “2” represented as the

string “two” or character “2” will cause an error upon

executing the code. Equally, if data from the original

database is imported into a field (column) that draws its

inputs from a limited set of data, an error will result if

the imported data does not match an item from that set.

70

This also implies that the order of importing matters. If

the set of data to be referenced within a field has not yet

been populated, importing data into the dependent field

will yield an error.

Figure 43 is the code that PMA executes in order to

import the data from the CSV file in Figure 41 to the DBMS

in Figure 42. This is an alternative code to using the LOAD

DATA version. Figure 44 depicts PMA’s LOAD DATA INFILE code

which is also an option under PMA’s Import Tab.

Figure 43. PMA Import DDL Script Using INSERT Function

71

Figure 44. PMA Import DDL Script Using LOAD DATA Function

C. VIEWS & REPORTS

1. Creating Views

Views offer a customized perspective, or view, of the

content contained within the same database for multiple

users with differing requirements. These views can show

data from a single table; present compiled data from

several tables; or even display derived data, not

explicitly stored in the database, from multiple instances

of data that are explicitly stored in the database (Elmasri

& Navathe, 2007). For example, a view could be designed to

display ‘Costs 36.00’ derived from Tenure_Trk.Cost of

’12.00’ with three instances in the Offerings Table. This

would utilize the multiplication function built into the

mySQL’s DML. This is just one of many including absolute

value (ABS), pi (PI), radians (RADIANS), sine (SIN),

natural logarithm (LN), etc. (MySQL, 2011).

Most operations within PMA have a relatively simple

interface that allows users & designers to interact with

the database and DBMS. The view function exists as an

option at the bottom of a selected table’s Browse Tab

(Figure 45). However, unlike most other PMA interfaces,

PMA’s create view option requires the designer to be more

72

than just a little familiar with mySQL syntax, especially

regarding CREATE VIEW DDL. Figure 46 shows the layout of

PMA’s CREATE VIEW screen and Figure 47 shows the CREATE

VIEW Template provided by MySQL (MySQL, 2011).

Figure 45. PMA Create View Option

One shortcut to designing the desired view is through

generation of a query. To create a query, select the

database of interest and go to the Query tab (Figure 48).

The Column dropdown menu will allow the user to select from

the range attribute fields, or columns, within the

database. The sort option is pretty self-explanatory. Show

allows the use of a column to set criteria while making it

optional for the column to display in the query results.

Criteria boxes allow the user to specify a type of

filtering option for what is displayed in the query

results. The SQL syntax used in this input field is very

sensitive to accuracy and SQL protocol in accordance with

the user’s version of mySQL. For instance, when specifying

the Cost field within the Tenure_Trk table, the user must

take care to use the prime symbol (`), which can be found

73

above the Tab Button on the keyboard’s Tilde key vice the

apostrophe (‘); the two of which can be easily mistaken.

This will result in SQL code like:

`Tenure_Trk`.`Cost`=’36.00’, where the prime symbol

encloses field and table names and the apostrophe encloses

string characters. The first set of ‘Ins, Del, And, Or’

clusters underneath Criteria allow the addition or

subtraction of And or Or Statements to a column. The second

set along the Modify Row allow the addition or subtraction

of And or Or between query columns. Columns and rows can

also be added and deleted using the dropdown menus below

the aforementioned set of query options (Figure 48).

After generating the query with the desired data

displayed, simply press the Create view option below the

query results and the appropriate code will be generated in

order to create the respective view (Figure 46).

Figure 46. PMA Create View Screen Option

74

Figure 47. CREATE VIEW Syntax Template

Figure 48. PMA Query Tab

2. Reports

Essentially, views can act as reports generated from

the database. They are designed to be customized to show

the data a user would like to see and they are saved along

with tables in the DBMS (Figure 49).

Figure 49. PMA View Placement (Example)

Once the views are designed as preferred, there is

also an export feature available within a selected view.

75

Although, not the most robust report-generating option, it

does provide a neatly assembled output in several file

formats including Portable Document Format (PDF) and CSV.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSION

1. Solution

The proposed database and its re-engineered DBMS

addressed the problems associated with the original

database. It adds a great deal more concurrency control and

streamlined usage.

The proposed database is fairly easy to duplicate.

Development takes a bit of time, which is reduced with

experience using PMA. Most of the time associated with this

development is rooted in quality assurance. As with any

form of computer programming, the developer must check and

check again to verify mistakes are minimized and general

user operation will be as smooth as possible. It took

approximately 20–40 hours to design the database from

conceptual understanding of desired database through

development of the relational schema. Generating the DDL

Script and programming required about half the time, not

accounting for fine-tuning and bug fixing.

Many reiterations were required to truly reach the

desired database. Since the methodology followed a cyclical

re-engineering process, many more iterations are expected.

These reiterations are no different than typical software

updates and programs changes in order to keep the

application relevant.

As stated in the assumptions, or general expectations,

the proposed solution was to explore available scheduling

tools operational on the Macintosh Operating System with

78

the smallest practical price tag. The solution was also to

be quickly implementable and remotely web-enabled. Each of

the aforementioned elements of functionality were

accommodated.

B. RECOMMENDATIONS

1. Future Application

SQL is a language made to manage data in databases.

Databases are prevalent in maintaining order in almost

every walk of civilization from banking, education,

entertainment. Most industries of any type rely on

databases and subsequently create a market for SQL.

MySQL is the self-proclaimed “world’s most popular

open source database.” Regardless, if not, it only seems to

be rivaled by one other, PostgreSQL. Their continued use is

a testament to their powerful design outside of their

freeware price. Also, since they are open source, third

parties are free to modify them as they see fit. SQL has

even proven itself good enough for government work with use

by Defense Security Cooperation Assistance amongst others

(What We Do, n.d.).

2. Additional Research

Aside from the expected iterations to maintain the

database, additional research on report generations is

necessary. Report generating was broadly covered within the

scope of this thesis; however the products are not very

robust and customizable in appearance. There are a number

of relatively standard outputs PMA can generate via its

export feature which may naturally lend themselves to

adaptations with PDF or Microsoft Word.

79

There is more to look into regarding MAMP’s use of

“the cloud,” which references the data storage universally

accessible on the internet. In this thesis project, inputs

files located on “the cloud” were utilized but it is

unknown whether the database and its contents being managed

by PMA can be actively located on “the cloud.”

Lastly, this particular database was being maintained

on a DoD computer. Since all the content was locally

maintained on the computer, the security aspect was not

much of a concern. However, since the DBMS is also design

to be web-capable, or remotely accessible via internet, the

question still remains whether web access can be

established securely in accordance with the government VPN

protocols. Delving more deeply into the native security

features of PMA and ascertaining whether web use is

plausible under the aforementioned conditions would open a

new line of possibilities in mobile and home database

access.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX

This is the actual mySQL code generated by PMA when

the desired database specifications are entered. Some

changes were made after several iterations of the re-

engineering process discussed throughout this thesis.
--
-- Database: `IS Dept DB`
-- DDL for Actual Proposed Database (Reformatted for structure illustration)
-- Creator: Reed, Gary
-- Creation Date: January 10, 2011
--
CREATE DATABASE `IS Dept DB` DEFAULT CHARACTER SET latin1 COLLATE latin1_swedish_ci;
USE `IS Dept DB`;

-- --

--
-- Stand-in structure for view `2011 Course Offerings (by Curriculum then Quarter)`
--
CREATE TABLE `2011 Course Offerings (by Curriculum then Quarter)` (
 `Curriculum` enum('IS','Elective','IS PhD','IO/IW','CC','DL','HLS'),
 `Course` varchar(8),
 `Lecture` int(2),
 `Lab` int(2),
 `Name` varchar(40),
 `Quarter` enum('FA1','WI2','SP3','SU4'),
 `Instructor` varchar(40),
 `# of Sections` int(2)
);
-- --

--
-- Stand-in structure for view `2011 Course Offerings (by course no)`
--
CREATE TABLE `2011 Course Offerings (by course no)` (
 `Courses` varchar(8),
 `Lecture` int(2),
 `Lab` int(2),
 `Name` varchar(40),
 `Quarter` enum('FA1','WI2','SP3','SU4'),
 `Instructor` varchar(40),
 `# of Offerings` int(2)
);
-- --

--
-- Stand-in structure for view `2011 Offered Section Count`
--
CREATE TABLE `2011 Offered Section Count` (
 `Track` enum('Tenure','Non-Tenure','Military'),
 `Instructor` varchar(40),
 `# of Sections` decimal(32,0)
);
-- --

--
-- Stand-in structure for view `2011 Section Costs (by Track)`
--
CREATE TABLE `2011 Section Costs (by Track)` (
 `Track` enum('Tenure','Non-Tenure','Military'),
 `Total Sections` decimal(54,0),
 `Total Cost` decimal(60,2)
);
-- --

--
-- Table structure for table `COST`

82

--

CREATE TABLE `COST` (
 `Track` enum('Tenure','Non-Tenure','Military','') NOT NULL,
 `Price (per section)` decimal(6,2) DEFAULT NULL COMMENT 'e.g. 12.34',
 KEY `Track` (`Track`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `COURSES`
--

CREATE TABLE `COURSES` (
 `CourseNumber` varchar(8) NOT NULL COMMENT 'e.g. IS0810',
 `LectureHours` int(2) DEFAULT NULL COMMENT 'e.g. 2',
 `LabHours` int(2) DEFAULT NULL COMMENT 'e.g. 2',
 `CourseName` varchar(40) NOT NULL COMMENT 'e.g. Thesis Research',
 `Coordinator` varchar(40) DEFAULT NULL COMMENT 'e.g. Doe, John; Doe',
 `AssociatedCurriculum(s)` enum('IS','Elective','IS PhD','IO/IW','CC','DL','HLS') NOT NULL,

 PRIMARY KEY (`CourseNumber`,`AssociatedCurriculum(s)`),
 KEY `Coordinator` (`Coordinator`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `FACULTY`
--

CREATE TABLE `FACULTY` (
 `FacultyName` varchar(40) NOT NULL COMMENT 'e.g. Doe, John; Doe',
 `OperationalStatus` enum('Active','Inactive') DEFAULT NULL,
 `AcademicRank` enum('Professor','Assistant Professor','Research Professor','Senior Lecturer','Lecturer','Military') DEFAULT
NULL,
 `TenureTrack` enum('Tenure','Non-Tenure','Military') DEFAULT NULL,
 `QuarterPreferences` set('FA1','WI2','SP3','SU4') DEFAULT NULL,
 `AdditionalNotes` varchar(256) DEFAULT NULL,

 PRIMARY KEY (`FacultyName`),
 KEY `TenureTrack` (`TenureTrack`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `LOCATIONS`
--

CREATE TABLE `LOCATIONS` (
 `CourseNumber` varchar(8) NOT NULL COMMENT 'e.g. IS0810',
 `SectionNumber` int(2) NOT NULL DEFAULT '0' COMMENT 'e.g. 01',
 `Location` varchar(7) NOT NULL COMMENT 'e.g. RO202C',

 PRIMARY KEY (`CourseNumber`,`SectionNumber`),
 KEY `CourseNumber` (`CourseNumber`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `OFFERINGS`
--

CREATE TABLE `OFFERINGS` (
 `CourseNumber` varchar(8) NOT NULL COMMENT 'e.g. IS0810',
 `FiscalYear` int(4) NOT NULL COMMENT 'e.g. 2010',
 `Quarter` enum('FA1','WI2','SP3','SU4') NOT NULL,
 `Instructor` varchar(40) NOT NULL DEFAULT '' COMMENT 'e.g. Doe, John; Doe',
 `SectionAmount` int(2) DEFAULT NULL COMMENT 'e.g. 2, i.e. # of sections instructor offers',

 PRIMARY KEY (`CourseNumber`,`FiscalYear`,`Quarter`,`Instructor`),
 KEY `CourseNumber` (`CourseNumber`,`Instructor`),
 KEY `Instructor` (`Instructor`),
 KEY `FiscalYear` (`FiscalYear`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

83

-- --

--
-- Table structure for table `QUALIFICATIONS`
--

CREATE TABLE `QUALIFICATIONS` (
 `FacultyName` varchar(40) NOT NULL COMMENT 'e.g. Doe, John; Doe',
 `CourseNumber` varchar(8) NOT NULL COMMENT 'e.g. IS0810',

 PRIMARY KEY (`FacultyName`,`CourseNumber`),
 KEY `CourseNumber` (`CourseNumber`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Structure for view `2011 Course Offerings (by Curriculum then Quarter)`
--
DROP TABLE IF EXISTS `2011 Course Offerings (by Curriculum then Quarter)`;

CREATE ALGORITHM=UNDEFINED VIEW `2011 Course Offerings (by Curriculum then Quarter)` AS select
 `COURSES`.`AssociatedCurriculum(s)` AS `Curriculum`,
 `COURSES`.`CourseNumber` AS `Course`,
 `COURSES`.`LectureHours` AS `Lecture`,
 `COURSES`.`LabHours` AS `Lab`,
 `COURSES`.`CourseName` AS `Name`,
 `OFFERINGS`.`Quarter` AS `Quarter`,
 `OFFERINGS`.`Instructor` AS `Instructor`,
 `OFFERINGS`.`SectionAmount` AS `# of Sections`

 from (
 `COURSES` join `OFFERINGS`
)

 where ((
 `OFFERINGS`.`CourseNumber` = `COURSES`.`CourseNumber`
)
 and (
 `OFFERINGS`.`CourseNumber` = `COURSES`.`CourseNumber`
)
 and (
 `OFFERINGS`.`FiscalYear` = '2011'
))

 order by
 `COURSES`.`AssociatedCurriculum(s)`,
 `OFFERINGS`.`Quarter`;

-- --

--
-- Structure for view `2011 Course Offerings (by course no)`
--
DROP TABLE IF EXISTS `2011 Course Offerings (by course no)`;

CREATE ALGORITHM=UNDEFINED VIEW `2011 Course Offerings (by course no)` AS
 select
 `COURSES`.`CourseNumber` AS `Courses`,
 `COURSES`.`LectureHours` AS `Lecture`,
 `COURSES`.`LabHours` AS `Lab`,
 `COURSES`.`CourseName` AS `Name`,
 `OFFERINGS`.`Quarter` AS `Quarter`,
 `OFFERINGS`.`Instructor` AS `Instructor`,
 `OFFERINGS`.`SectionAmount` AS `# of Offerings`

 from (
 `COURSES` join `OFFERINGS`
)

 where ((
 `OFFERINGS`.`CourseNumber` = `COURSES`.`CourseNumber`
)
 and (
 `OFFERINGS`.`CourseNumber` = `COURSES`.`CourseNumber`
)
 and (

84

 `OFFERINGS`.`FiscalYear` = '2011'
));

-- --

--
-- Structure for view `2011 Offered Section Count`
--
DROP TABLE IF EXISTS `2011 Offered Section Count`;

CREATE ALGORITHM=UNDEFINED VIEW `2011 Offered Section Count` AS
 select
 `FACULTY`.`TenureTrack` AS `Track`,
 `2011 Course Offerings (by Curriculum then Quarter)`.`Instructor` AS `Instructor`,

 sum(
 `2011 Course Offerings (by Curriculum then Quarter)`.`# of Sections`
) AS `# of Sections`

 from (
 `2011 Course Offerings (by Curriculum then Quarter)` join `FACULTY`
)

 where (
 `FACULTY`.`FacultyName` = `2011 Course Offerings (by Curriculum then Quarter)`.`Instructor`
)

 group by
 `2011 Course Offerings (by Curriculum then Quarter)`.`Instructor`

 order by
 `FACULTY`.`TenureTrack`,`2011 Course Offerings (by Curriculum then Quarter)`.`Instructor`;

-- --

--
-- Structure for view `2011 Section Costs (by Track)`
--
DROP TABLE IF EXISTS `2011 Section Costs (by Track)`;

CREATE ALGORITHM=UNDEFINED VIEW `2011 Section Costs (by Track)` AS
 select
 `2011 Offered Section Count`.`Track` AS `Track`,

 sum(
 `2011 Offered Section Count`.`# of Sections`
) AS `Total Sections`,

 (`COST`.`Price (per section)` * sum(`2011 Offered Section Count`.`# of Sections`)
) AS `Total Cost`

 from (
 `2011 Offered Section Count` join `COST`
)

 where (
 `COST`.`Track` = `2011 Offered Section Count`.`Track`
)

 group by
 `2011 Offered Section Count`.`Track`;

--
-- Constraints for dumped tables
--

--
-- Constraints for table `COST`
--
ALTER TABLE `COST`
 ADD CONSTRAINT `COST_ibfk_2` FOREIGN KEY (`Track`) REFERENCES `FACULTY` (`TenureTrack`)
 ON DELETE NO ACTION ON UPDATE CASCADE,
 ADD CONSTRAINT `COST_ibfk_1` FOREIGN KEY (`Track`) REFERENCES `FACULTY` (`TenureTrack`)
 ON DELETE NO ACTION ON UPDATE CASCADE;

--
-- Constraints for table `COURSES`
--

85

ALTER TABLE `COURSES`
 ADD CONSTRAINT `COURSES_ibfk_2` FOREIGN KEY (`Coordinator`) REFERENCES `FACULTY` (`FacultyName`)
 ON UPDATE CASCADE,
 ADD CONSTRAINT `COURSES_ibfk_1` FOREIGN KEY (`Coordinator`) REFERENCES `FACULTY` (`FacultyName`)
 ON UPDATE CASCADE;

--
-- Constraints for table `LOCATIONS`
--
ALTER TABLE `LOCATIONS`
 ADD CONSTRAINT `LOCATIONS_ibfk_2` FOREIGN KEY (`CourseNumber`) REFERENCES `OFFERINGS` (`CourseNumber`)
 ON DELETE CASCADE ON UPDATE CASCADE,
 ADD CONSTRAINT `LOCATIONS_ibfk_1` FOREIGN KEY (`CourseNumber`) REFERENCES `OFFERINGS` (`CourseNumber`)
 ON DELETE CASCADE ON UPDATE CASCADE;

--
-- Constraints for table `OFFERINGS`
--
ALTER TABLE `OFFERINGS`
 ADD CONSTRAINT `OFFERINGS_ibfk_3` FOREIGN KEY (`CourseNumber`) REFERENCES `COURSES` (`CourseNumber`)
 ON DELETE CASCADE ON UPDATE CASCADE,
 ADD CONSTRAINT `OFFERINGS_ibfk_4` FOREIGN KEY (`Instructor`) REFERENCES `FACULTY` (`FacultyName`)
 ON UPDATE CASCADE,
 ADD CONSTRAINT `OFFERINGS_ibfk_1` FOREIGN KEY (`CourseNumber`) REFERENCES `COURSES` (`CourseNumber`)
 ON DELETE CASCADE ON UPDATE CASCADE,
 ADD CONSTRAINT `OFFERINGS_ibfk_2` FOREIGN KEY (`Instructor`) REFERENCES `FACULTY` (`FacultyName`)
 ON UPDATE CASCADE;

--
-- Constraints for table `QUALIFICATIONS`
--
ALTER TABLE `QUALIFICATIONS`
 ADD CONSTRAINT `QUALIFICATIONS_ibfk_3` FOREIGN KEY (`FacultyName`) REFERENCES `FACULTY` (`FacultyName`)
 ON DELETE NO ACTION ON UPDATE CASCADE,
 ADD CONSTRAINT `QUALIFICATIONS_ibfk_4` FOREIGN KEY (`CourseNumber`) REFERENCES `COURSES` (`CourseNumber`)
 ON DELETE NO ACTION ON UPDATE CASCADE,
 ADD CONSTRAINT `QUALIFICATIONS_ibfk_1` FOREIGN KEY (`FacultyName`) REFERENCES `FACULTY` (`FacultyName`)
 ON DELETE NO ACTION ON UPDATE CASCADE,
 ADD CONSTRAINT `QUALIFICATIONS_ibfk_2` FOREIGN KEY (`CourseNumber`) REFERENCES `COURSES` (`CourseNumber`)
 ON DELETE NO ACTION ON UPDATE CASCADE;

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

LIST OF REFERENCES

Ahmed, M., Uddin, M. M., Azad, M. S., & Haseeb, S. (2010).
MySQL performance analysis on a limited resource
server: Fedora vs. ubuntu linux. Proceedings of the
2010 Spring Simulation Multiconference, 99, 1-7.

Alavi, M., & Leidner, D. (2001). Review: Knowledge
management and knowledge management systems:
Conceptual foundations and research issues. MIS
Quarterly, 25 (1), 107-136.

Ambler, S. (2002-2011). Data Modeling 101 (Ambysoft).
Retrieved from
http://www.agiledata.org/essays/dataModeling101.html

Dairymple, J. (2003, June 13). Macworld. Retrieved February
2011, from
http://www.macworld.com/article/24898/2003/06/explorer
.html

Densham, P. (1991). Spatial decision support systems. In M.
Goodchild, D. Maguire, M. Goodchild, & D. Rhind
(Eds.), Geographical information systems: Principles
and applications (vol. 2, pp. 403-412). London:
Longman.

Dhesi, R. (2011). Prevalent Database Models. Retrieved
March 2011, from
http://www.randipdhesi.com/project/images/fig1-2.jpg

Elam, J., & Leidner, D. (1993). Executive information
systems: their impact on executive decision making.
Journal of Management Information Systems—Special
issue: Organizational impact of group support systems,
expert systems, and executive information systems, 10
(3), 139-155.

Elmasri, R., & Navathe, S. (2007). Fundamentals of database
systems (5th ed.). Boston, MA: Pearson & Addison
Wesley.

Eom, S. (2001). Decision support systems. International
Encyclopedia of Business and Management (2). (M.
Warner, Ed.) London: International Thomson Business
Publishing.

88

Harlan, E. (Ed.). (2009, October 8). Pages: Creating
business processes in SharePoint. Retrieved from
http://www.baltimoresug.org/Resources/videos/Pages/BSU
G%20Introduction%20to%20Workflow%20Process%20Modeling%
20in%20SharePoint.pptx

Hättenschwiler, P. (1999). Neues anwenderfreundliches
konzept der entscheidungsunterstützung. Gutes
entscheiden in wirtschaft, politik und gesellschaft.
Zurich, vdf Hochschulverlag AG: 189-208.

Import Excel data into MySQL in 5 easy steps. (2011).
Retrieved February 2011, from
http://blog.tjitjing.com/index.php/2008/02/

Kambalyal, C. (n.d.). 3-Tier Architecture. Retrieved March
2011, from
http://channukambalyal.tripod.com/NTierArchitecture.pd
f

Keen, P., & Scott-Morton, M. (1978). Decision support
systems: An organizational perspective. Reading, MA:
Addison-Wesley Publishing Company.

Kennedy, M. (2010, August). Evaluating open source
software. Defense AT&L, 42-45.

Kim, W. (1990). Object-oriented databases: Definition and
research directions. Knowledge and Data Engineering,
IEEE Transactions on, 2 (3), 327-341.

Lai, A., & Nieh, J. (2006). On the performance of wide-area
thin-client computing. ACM Transactions on Computer
Systems, 24 (2), 175-209.

MapsofIndia.com. (2009). Attribute data models. Retrieved
March 2011, from
http://www.mapsofindia.com/images/network-model.jpg

Minoli, D. (2008). Enterprise architecture A to Z:
frameworks, business process modeling, soa, and
infrastructure technology. Boca Raton, FL: Auerbach
Publications.

MySQL. (2011). MySQL 5.1 reference manual. Retrieved
February 2011, from
http://dev.mysql.com/doc/refman/5.1/en/load-data.html

89

Netcraft. (2009, February 18). February 2009 web server
survey. Retrieved February 2001, from
http://news.netcraft.com/archives/2009/02/18/february_
2009_web_server_survey.html

Netcraft. (2011). Web server survey: Top servers across all
domains. Retrieved 2011, from
http://news.netcraft.com/archives/category/web-server-
survey/

Nordbotten, J., & Crosby, M. (1999, July). An experiment in
data model perception. Retrieved March 2011, from
http://nordbotten.com/joan/dmp/Oodm-prj.jpg

Object oriented databases. (2010, March 27). Retrieved
March 2011, from
http://www.comptechdoc.org/independent/database/basicd
b/dataobject.html

Oracle. (2012). 13.6.4.4. FOREIGN KEY constraints.
Retrieved from
http://dev.mysql.com/doc/refman/5.1/en/innodb-foreign-
key-constraints.html

Oracle. (2013). 13.2.6. LOAD DATA infile syntax. Retrieved
from http://dev.mysql.com/doc/refman/5.1/en/load-
data.html

The PHP Group. (2001-2011). What is php?. Retrieved from
http://php.net/

Power, D. (1997). What is a DSS? The On-Line Executive
Journal for Data-Intensive Decision Support, 1(3).

Power, D. (2002). Decision support systems: Concepts and
resources for managers. Westport, CT: Quorum Books.

Reich, Y., & Kapeliuk, A. (2005). A framework for
organizing the space of decision problems with
application to solving subjective, context-dependent
problems. Decision Support Systems, 41(1), 1-19.

Shim, J., Warkentin, M., Courtney, J., Power, D., Sharda,
R., & Carlsson, C. (2002). Past, present, and future
of decision support technology. Decision Support
Systems, 33(2), 111-126.

90

Trustees of Indiana University. (2006, April 24). What are
flat file and relational databases? Retrieved March
2011, from http://kb.iu.edu/data/ahrp.html

W3Counter. (2011, February). W3Counter. Retrieved February
2011, from http://www.w3counter.com/globalstats.php

Whatever happened to obect-oriented databases? (2011).
Retrieved 2011, from
http://www.leavcom.com/db_08_00.htm

What we do. (n.d.). Retrieved 2011-2013, from
www.dsca.mil/jobs/positions.htm

Wikipedia. (2011, March). Flat file database. Retrieved
March 2011, from
http://en.wikipedia.org/wiki/Flat_file_database

Zak, N. (2008, January 7). Hierarchical data and scope
checking in detail. Retrieved March 2011, from
http://www.nolanzak.com/whitepapers/HierarchicalData/n
zHier1.JPG

Zeleny, M. (1987). Management support systems: Towards
integrated knowledge management. Human Systems
Management, 7(1), 59-70.

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	THESIS
	I. introduction
	A. background
	1. Original Database
	2. Statement of the Problem
	3. Assumptions
	4. Methodology
	5. Organization of Thesis

	II. Decision support and Database management systems (dss/dbms)
	A. Decision support systems (DSS)
	1. History
	2. Definition
	3. Classifications

	B. Database management systems (dbms)
	1. DBMS Classification (Data Models)
	2. DBMS Languages
	3. Types of DBMS
	a. Flat File Model
	b. Relational Model
	c. Hierarchical and Network Models
	d. Object-oriented Model

	C. Database architecture
	1. Architectural Importance
	2. Single-Tiered (Centralized)
	3. Two-Tiered
	4. Three-tiered and N-tiered

	D. Best selection for proposed database
	1. Choosing a Data Model
	2. Choosing an Architecture
	3. Designing the Database

	III. BUSINESS PROCESS Analysis
	A. Re-engineering
	1. Considerations in Re-engineering a Process
	2. Purpose for Re-engineering This Process

	B. Current business process
	1. Identifying Critical Elements
	2. Course Information (First Set of Elements)
	3. Faculty Information (Second Element)
	4. Yearly Offering Information (Third Element)
	5. Analysis

	C. designing proposed database
	1. Database Organization
	2. Operational Design

	D. Installation of dbms tools
	1. Installing MySQL
	2. Installing Macintosh, Apache, MySQL, and PHP (MAMP) Package

	E. proposed dbms desired capabilities
	1. Accessibility via Internet
	2. Importing Capabilities
	3. Cost
	4. Performance
	5. Schedule

	F. proposed DBMS environment
	1. Operating System (OS)
	2. Computer Resources
	3. Restrictions

	IV. proposed operational functions AND capabilities
	A. getting started
	1. Data Description Language (DDL)
	2. Opening MAMP
	3. Generating Database
	a. Generating Tables
	b. Generating Fields

	B. Managing the database
	1. Data Manipulation Language (DML)
	2. Adding Records
	3. Editing Records
	4. Deleting Records
	5. Importing Records

	C. Views & Reports
	1. Creating Views
	2. Reports

	V. conclusions and recommendations
	A. Conclusion
	1. Solution

	B. Recommendations
	1. Future Application
	2. Additional Research

	APPENDIX
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

