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I. INTRODUCTION 

Performance evaluation of processors continues to be an area of interest for military 
applications for a variety of reasons. Processors are ubiquitous in military systems for large scale 
systems (for example, the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor 
System) and small scale systems (for example, the Integrated Hostile Fire Detection System).  
Tracking trends in processor performance will provide designers of such systems with valuable 
knowledge regarding which processors will meet performance requirements as well as improved 
estimates of the performance increase of future generations of processors.  In addition, such 
performance studies will offer insights into which architectural features are most valuable for 
providing improvements. 

In addition to the large number of processors available as options for military systems, the 
number of classes of applications is enormous.  Different processor architectures will offer 
varied levels of performance for different application classes, depending on a variety of factors. 
Cache size, number of on-chip cores, and multi-threading support are a few of the design 
considerations that can have a drastic effect on how well a processor runs a particular code.  For 
this reason, it is important that processor performance studies take into account which 
applications will be run on the final system. 

The purpose of this work is two-fold.  The first objective is to illustrate and analyze trends 
over the last decade in the performance of processors, including the Intel and PowerPC families, 
when running a variety of codes relevant to military applications.  Toward this end, extensive 
results are provided from many processors running both synthetic and Image Processing (IP) 
benchmarks.  The second objective is to illustrate the effectiveness of linear correlation when 
estimating the performance of the IP codes for various processor families. 

II. BACKGROUND 

A large amount of research has been completed in processor performance analysis and 
benchmark characterization.  Among the more comprehensive studies in the area of benchmark 
characterization that have been published recently is a project by Demme and Sethumadhava [1].  
In this work, the authors present a methodology for gauging code similarity by comparing basic 
blocks within functions.  A novelty of this work is that the characteristics they define that are 
used for comparison allow for an estimation on a continuous scale of the similarity of codes, as 
opposed to solely a determination of whether codes are identical as provided in previous work.  
Other studies that are more directly related to this one have considered the question of whether 
correlation exists between the performances of different benchmarks on the same processor.  
Three studies have used Dhrystone in their experiments, which is of interest since this 
benchmark was used in this report.  Kainaga et al. provide data and analyses to support the claim 
that a linear relationship exists between Dhrystone and the Standard Performance Evaluation 
Corporation on the processors studied [2].  However, they offer few details on the systems 
studied and limited discussion to support their conclusion.  Munafo also makes a case for a linear 
relationship between Dhrystone and the Standard Performance Evaluation Corporation 
performance by using the results from many processors and a simple calculation from the 
geometric mean [3].  Aburto uses linear correlation to investigate a linear relationship between 
the two benchmark suites [4], which is related to the approach in this report since linear 
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correlation was employed.  However, the key differences are that IP codes are considered rather 
than only standard benchmark suites.  Also, processors are grouped by architectural design prior 
to performing the comparisons, and the processors compared are much newer. 

III. METHODOLOGY 

The methodology in this report consists of three subsections:  an overview of the work, 
including the approach taken to run the benchmarks and gather data; an overview of the synthetic 
benchmarks and IP codes used for the performance analysis; and characterizations of the various 
processors considered. 

A. Overview 

The overall software benchmarking process was as follows: 

 Source code for the benchmark was obtained (IP benchmarks were defined 
and written).  The exception was the Fast Fourier Transform (FFT) 
benchmark.  Its available functions had previously been compiled for a 
different project and was linked in as a Windows Dynamic Link Library 
(DLL). 

 The code was compiled for the target machine(s).  For example, for Windows 
machines, an .exe file was created.   

 For the IP benchmarks, an image file consisting of random numbers was 
created.  This was the standard image file used to input all IP benchmarks.  It 
consisted of 14-bit unsigned integers and contained 640 columns and 512 
rows (327,680 pixels).  This corresponds to the maximum image size 
envisioned for the next generation of two-color Infrared (IR) sensors. 

 For all of the convolution benchmarks, a 3-by-3 pixel kernel file was created. 

 Each benchmark executable was emailed to participants, (along with the 
standard image and kernel files for the IP and convolution benchmarks) and 
any other necessary files (Windows occasionally required DLLs which were 
not available on all Windows machines).   

 Each participant ran the benchmark.  Each benchmark created a data file 
which contained the timing results of the run. 

 The participant emailed the data file and the particulars of the machine (that 
is, Central Processing Unit (CPU) model number, clock speed, operating 
system version, Random Access Memory (RAM) size) to the benchmark 
coordinator who then compiled the statistics for that benchmark. 

Therefore, benchmark statistics were collected on machines ranging from 
approximately 10 years to 6 months in age.   
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B. Benchmarks 

This section details the software benchmarks which were obtained or written in the  
C programming language.  These were executed on a number of available machines that were 
equipped with a variety of CPUs running either Windows or Linux.  The compilers included 
Microsoft Visual Studio (Windows machines) or GNU Compiler Collection (Linux machines).  
Two classes of benchmarks were executed: 

 Classic benchmarks consisted of Dhrystone 2.1 and Whetstone benchmarks.  
These were undertaken so that benchmark results quoted by Commercial  
Off-The-Shelf (COTS) board manufacturers could be compared to the 
processors accessible for this study.  Another point of interest was to 
investigate whether this information would provide a mechanism which could 
estimate the execution times of these codes on other processors. 

 IP benchmarks were created by the team to measure CPU performance using 
actual IP algorithms. 

1. Synthetic Benchmarks 

The classic software benchmarks were synthetic benchmarks chosen after 
examining a number of manufacturer’s data sheets for board and chip level products.  A 
synthetic benchmark is a program that, when run on a processing system, provides a score that is 
an estimate of the performance of some specific set of applications when run on that same 
system.  Two examples of synthetic benchmarks are the Whetstone [5] and Dhrystone [6] 
benchmarks.  The Whetstone benchmark is intended to be used for estimating the performance of 
numeric-scientific applications, while the Dhrystone benchmark is designed for the estimation of 
systems’ programs.  The two benchmarks have traditionally been widely used for performance 
evaluation of processing systems.  These benchmarks were obtained from Roy Longbottom’s 
website [7] and were used to provide some comparative metrics for the systems considered. 

This following section provides an overview of the theory and design of the 
Whetstone and Dhrystone benchmarks.  For each benchmark, there is a description of its 
purpose, code structure, metrics produced, how the code structure and metric were chosen, 
caveats, and results from the runs. 

a. Whetstones 

The intent behind the design of the Whetstone benchmark was to provide 
an estimate of the performance of numeric-scientific programs.  Numeric-scientific programs are 
compute-intensive codes containing a variety of operation types, such as integer, floating point, 
trigonometric, and others.  The designers of the Whetstone benchmark sampled the instruction 
frequencies of 949 numeric-scientific programs and used these statistics to create the code. 

The Whetstone code consists of a main function that executes eight loops 
or modules.  Each module is assigned a weight factor, which governs the number of times the 
module is executed and was determined using the statistics from the 949 programs sampled.  The 
benchmark prints results reporting the performance of each module.  Three of these results are in 
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megaflops for the floating point-intensive modules and five results are in megaops for the other 
modules.  

The metric that is most frequently reported with the use of Whetstone is 
Millions of Whetstone Instructions Per Second (MWIPS).  The history behind the design of the 
benchmark reveals that the instruction set of the sampling process was the intermediate code for 
the Whetstone system from the 1960s, which is how the benchmark got its name.  Each module 
in the code is executed a certain number, n1, of iterations.  This number of iterations times ten 
gives the millions of Whetstone Instructions (that is, instructions for the Whetstone System) to 
which the code would compile.  The time required to run all the modules on a system is divided 
into 10n to give that system’s performance in MWIPS. 

In Reference 5, Curnow and Wichmann give some caveats when using the 
benchmark to measure performance.  The authors state that while the benchmark may provide a 
performance estimate for some machine M when running the 949 sample programs, it is not 
intended to provide an estimate of other applications when run on M. 

“The benchmark program described here has been presented as a model of 
the large number of programs originally analyzed.  The intention is that by running it upon a new 
type of machine one may learn something of the performance the machine would have if it ran 
the original programs” [5]. 

When run on machine M, it would be incorrect to assume that the results 
can be used directly to provide insight into the performance of the original codes on some other 
machine. 

“When more is known … it may be possible to produce a typical program 
for particular types of machine.  It will clearly be impossible to produce one valid for any 
conceivable machine” [5]. 

A primary reason for these caveats is that subtleties of the system design 
as a whole can result in significant differences in performance. 

“It may well be true that on the 360/65 the use made by the FORTRAN H 
compiler of the general purpose registers was reasonably typical, although it did manage to 
perform the whole of module 4 in registers” [5].  

Note that these specific caveats should, in general, be taken into 
consideration when using benchmarks to measure performance. 

b. Dhrystones 

The Dhrystone benchmark was designed to provide a performance 
estimate of set of systems programs, which are described as programs that “often use 
enumeration, record, and pointer data types” [6].  To gather statistics for use in the design of 

                                                            
1 This is represented in the code with the variable xtra. 
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Dhrystone, the authors sampled 16 program suites, including compilers, a very large scale 
integration checking program, and a Computer-Aided Design (CAD) tool. 

The Dhrystone code consists of a main loop that calls eight procedures, 
whose content was selected based on the results of the sampling of the program suites.  The loop 
iterates n times, which is the number of iterations the system can execute in t time. The duration t 
is controlled by the code and set to approximately 2 seconds.  The primary metric reported by the 
benchmark is Dhrystones per second, which is simply n/t.  The result is often normalized to the 
performance of a particular Virtual Address eXtension (VAX) machine that was capable of 1757 
Dhrystones per second.  Hence, the VAX Millions of Instructions Per Second (MIPS) for a 
machine is its Dhrystones per second divided by 1,757.  The VAX MIPS score is frequently 
referred to as Dhrystone Millions of Instructions Per Second (DMIPS).  Note that this 
terminology is convoluted.  “MIPS” mean millions of instructions per second, and the 
“instructions” within the VAX MIPS and DMIPS abbreviations don’t correspond to any actual 
architecture (it depends on for which architecture the code is compiled).   This is contrasted with 
MWIPS, where the instruction counts correspond to instructions for the Whetstone architecture.  
The name Dhrystone was chosen to allude to Whetstone, which came earlier.  This point is very 
important when forming an intuition as to the meaning of the terms MWIPS and DMIPS and 
interpreting results that use these metrics. 

One of the caveats when using Dhrystones is that because of the small 
code size, the benchmark may give an unintended advantage to processors with large caches.  A 
processor with a cache above a certain size may be able to fit all code and data needed for the 
benchmark’s execution in the cache, which may drastically reduce execution time. 

“Dhrystone's intended ease of implementation, however, has consequences 
(e.g., cache influences) that must be taken into account if the program is to be used to compare 
different computer architectures or different compilers” [6]. 

Multiple times Weicker emphasizes that using any benchmark to measure 
performance must be done with great care, as there are many subtle factors in system design and 
application characteristics that can influence results. 

“…there are inherent limitations to any single number (like a benchmark 
result) if it is used as the only criterion for the evaluation of processor architectures…” [6]. 

2. IP 

The IP software benchmarks were created to measure execution times of  
real-world IP codes.  This has several advantages (as compared to extrapolation from classic 
benchmarking algorithms) including giving actual execution times (as opposed to an operations 
per second rating), accounting for overhead operations typical of IP operations (for example, 
computation of indices), and the use of large data sets (as compared to the classic benchmarks) 
typical of images.  The particular algorithms chosen are typical IP algorithms.  Each benchmark 
executes its particular algorithm against varying numbers of the pixels in the standard image file.  
In that way, any data size dependencies (especially those that might be associated with limited 
amounts of cache) might be discovered along with an indication of where (at what data size) they 
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occur.  The algorithms were also executed using different numeric representations on available 
machines.  The algorithms chosen are summarized in Table 1, along with the numeric 
representations used for each algorithm in Table 2 and the machines used in Table 3. 

Table 1.  IP Algorithms Chosen  

Algorithm Equation Typical Use 
Brightness 
Adjust 

ܱሺݔ, ሻݕ ൌ ,ݔሺܫ ሻݕ   .Lighten or darken image ܭ

Contrast 
Adjust 

ܱሺݔ, ሻݕ ൌ ܭ ∗ ,ݔሺܫ  ሻݕ
Adjust image dynamic 
range. 

Image 
Difference 

ܱሺݔ, ሻݕ ൌ ,ݔଵሺܫ ሻݕ െ ,ݔଶሺܫ  ሻݕ
Moving Target Indication 
(MTI) or detection. 

Pixel 
Threshold 

ܱሺݔ, ሻݕ ൌ 	 ቄ1		݂݅	 ,ݔሺܫ ሻݕ  ܭ
݁ݏ݅ݓݎ݄݁ݐ	0

 
Detection of light or dark 
objects. 

Image Ratio ܱሺݔ, ሻݕ ൌ ,ݔሺ	ଵܫ /ሻݕ ,ݔଶሺܫ  ሻݕ
Reducing clutter for two-
color IR sensing systems. 

Convolution 
ܱሺݔ, ሻݕ ൌ 	ܫଵሺ݇, ݆ሻ ∗ ଶሺܫ

ଶ

ୀ

ଶ

ୀ

ݔ െ ݇  2,

ݕ െ ݆  2ሻ 

Filtering of images, pattern 
matching, and correlation 
processing. 

FFT 
See the paper “fftw3.pdf” at 
http://www.fftw.org/fftw3.pdf. 

Conversion from 
time/spatial to frequency 
domains, typically prior to 
applying complex filters. 

Conversions N/A 
Conversions from integer 
data type to float and 
double data types. 

Note:  O(x, y) is an output pixel, I1(x,y) is an input pixel from Image 1 (or a kernel pixel for 
Convolution), I2(x,y) is an input pixel from Image 2, and K is a constant. 

Table 2.  Data Types Used for Each Algorithm in IP Benchmarks 

 Data Type 
Algorithm Integer (32 bit) Fixed Point Float (32 bit) Double (64 bit)

Brightness Adjust X X   
Contrast Adjust X X X  
Image Difference X X X  
Pixel Threshold X X X  
Image Ratio     
Convolution X X X X 
FFT   X X 
Conversions  
(from integer to …) 

  X X 
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Table 3.  Summary of Classic Benchmark Data 

Processor 
Clock Speed 

(GHz) 
# Cores/ 
Threads

Whets Int 
(unoptimized) 

Whets Float 
(unoptimized) 

Dhrystone DMIPS 
(optimized) 

Operating System Release 
Date 

Pentium 4 1.8 1/1 491 379 1774 Linux Q1 2002 

Pentium 4 (520) 2.8 1/1 1571 1187 2949 Linux Q1 2002 

Pentium 4 (550) 3.4 1/2 3439 1304 3734 Windows XP Q2 2004 

Cell Broadband Engine 3.2 1/1 239 441 2006 Linux Q1 2005 

Pentium D (830) 3 2/2 2511 1148 3617 Windows Vista Q2 2005 

Pentium D (830) 3 2/2 2938 1155 3556 Windows XP Q2 2005 

PowerPC 970MP 2 2/2 375 942 4396 Linux Q3 2005 

AMD Athlon Dual  
Core 4400 

2.2 2/2 2699 1772 3869 Windows 7 Q3 2005 

AMD Athlon Dual  
Core 4400 

2.2 2/2 1979 1833 6834 Linux Q3 2005 

Pentium D (950) 3.4 2/2 2898 1307 3872 Windows 7 Q1 2006 

Core 2 Quad 6600 2.4 4/4 3044 1724 4050 Windows 7 Q1 2007 

Core 2 Duo E6550 2.33 2/2 4188 2548 5710 Windows XP Q3 2007 

Core 2 Duo E6750 2.66 2/2 5124 2911 6543 Windows XP Q3 2007 

Core 2 Duo E6750 2.66 2/2 4376 2908 6863 Windows XP Q3 2007 

Core 2 Duo E8500 3.16 2/2 5385 3454 7479 Windows Vista Q1 2008 

Atom N270 1.6 1/2 755 653 2217 Linux Q2 2008 

Core 2 Duo P8400 2.26 2/2 4267 2611 6092 Windows XP Q3 2008 

Core 2 Duo T9600 2.8 2/2 5172 3125 6984 Windows 7 Q3 2008 

Core 2 Duo P8700 2.53 2/2 4499 2834 6135 Windows XP Q4 2008 

Core i7 (620M) 2.67 2/4 5022 3325 7735 Windows 7 Q1 2010 

Core i7 (930) 2.8 4/8 5311 3066 8389 Windows 7 Q1 2010 

Core i5 (650) 3.2 2/4 5924 3465 9473 Windows 7 Q1 2010 
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The single-threaded benchmarks were written for execution on a single CPU 
core.  Therefore, they could be executed on both single- and multi-core processors.  For  
multi-core processors, they give the performance of a single core.  Each algorithm is categorized 
as simple, moderately complex, or very complex, depending on the computational complexity of 
the algorithm and hence its execution time.   

The results of the moderately and very complex benchmarks implied that these 
algorithms would need to be partitioned and executed on multi-core processors or field 
programmable gate arrays if real-time performance was desired.  To investigate the speedup 
possible with multi-core processors, the simple algorithms were rewritten (the 640-by-512 image 
was partitioned into four evenly sized image sections) with each partition assigned to a thread.  
Because of a lack of time, these multi-threaded benchmarks were run only on multi-core or 
hyperthreaded processors using Microsoft Windows.  It was assumed that Windows would 
assign each thread to a different core or thread processor. 

a. Brightness Adjust 

This algorithm takes each pixel in the input image and adds a constant, 
producing an output image of the same size which is brighter (or darker if the constant is 
negative) than the original image.  Since this function is usually used as an intermediate 
operation, no check is made to limit pixel values.  Mathematically, this function can be expressed 
as: 

                                     ܱሺݔ, ሻݕ ൌ ,ݔሺܫ ሻݕ   (1)               ܭ	

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is 
a constant. 

b. Contrast Adjust 

This algorithm takes each pixel in the input image and multiplies it by a 
constant, producing an output image of the same size which has more contrast (or less contrast if 
the constant is less than 1) than the original image.  Since this function is usually used as an 
intermediate operation, no check is made to limit pixel values.  Mathematically, this function can 
be expressed as: 

                          ܱሺݔ, ሻݕ ൌ ܭ ∗ ,ݔሺܫ  ሻ               (2)ݕ

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is 
a constant. 

c. Image Difference 

This algorithm takes two input images of the same size and subtracts each 
pixel in Input Image 2 from the corresponding pixel in Input Image 1.  This produces an output 
image of the same size which represents the difference between the two images.  This algorithm 
is often used for detecting changes in images created at two different times.  Since this function 
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is usually used as an intermediate operation, no check is made to limit pixel values.  
Mathematically, this function can be expressed as: 

                                           ܱሺݔ, ሻݕ ൌ ,ݔଵሺܫ ሻݕ െ	ܫଶሺݔ,  ሻ               (3)ݕ

for all x,y in the Input Images I1 and I2, where O(x, y) is an output pixel, I1(x,y) is an input pixel 
from Image 1, and I2(x,y) is an input pixel from Image 2. 

d. Threshold Algorithm 

This algorithm takes each pixel in the input image and compares it to a 
constant.  If the pixel value is greater than the threshold value, the value 1 is placed in the 
corresponding pixel of the output image.  Otherwise, a 0 is placed in the corresponding pixel of 
the output image.  Mathematically, this function can be expressed as: 

                                           ܱሺݔ, ሻݕ ൌ 	 ቄ1		݂݅		ܫሺݔ, ሻݕ  ܭ
								݁ݏ݅ݓݎ݄݁ݐ	0

                     (4) 

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is 
a constant. 

e. Image Ratio 

This algorithm takes two input images of the same size and divides each 
pixel in Input Image 1 by the corresponding pixel in Input Image 2.  This produces an output 
image of the same size which represents the ratio of the pixel values.  This algorithm can be used 
for reducing clutter in a two-color IR missile sensor.  Since this function is usually used as an 
intermediate operation, no check is made to limit pixel values.  However, to avoid division by 0, 
the function adds 1 to every pixel in both input images prior to performing the division.  This 
simple method avoids the division by 0 problem without significantly affecting the resulting 
ratios.  Mathematically, this function can be expressed as: 

                                          ܱሺݔ, ሻݕ ൌ ,ݔሺ	ଵܫ ,ݔଶሺܫ	/ሻݕ  ሻ               (5)ݕ

for all x,y in the Input Images I1 and I2, where O(x, y) is an output pixel, I1(x,y) is an input pixel 
from Image 1, and I2(x,y) is an input pixel from Image 2. 

f. Convolution 

This algorithm takes two input images (typically called input and kernel 
images) and convolves them.  Convolution is often used for extracting features (such as edges) 
from an input image or in filter operations (such as a low-pass noise filter).  Also, since 
convolution is mathematically very similar to correlation, in certain cases, it can be used as a less 
(computationally) expensive alternative to correlation.   

The kernel was a constant 3-by-3 pixel image file, so the smallest input 
image is also 3-by-3 pixels.  Using the 3-by-3 kernel produces an output image of size (C-2) 
columns x (R-2) rows, where C and R are the number of columns and rows in the input image, 
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respectively.  Despite that this benchmark uses a fixed 3-by-3 kernel, the results are readily 
extensible to other sized kernels.   

Mathematically, the convolution algorithm as written can be expressed as: 

                ܱሺݔ, ሻݕ ൌ 	∑ ∑ ,ଵሺ݇ܫ ݆ሻ ∗ 	 ଶሺܫ
ଶ
ୀ

ଶ
ୀ ݔ െ ݇  2, ݕ െ ݆  2ሻ           (6) 

for all x ≤ (C-2) and y ≤ (R-2) in I2, where O(x, y) is an output pixel, I1(k,j) is a kernel input 
pixel, and I2(x-k+2,y-j+2) is a pixel from the Input Image I2. 

g. FFT 

This algorithm computes the FFT of the input image.  The FFT is a basic 
signal processing tool that is used in a large number of algorithms.  Because of the large amount 
of effort and extensive literature concerning efficient computation of the FFT, the team decided 
to use a readily available package which does the computation [8].  This package computes the 
FFT of input data of arbitrary size using perhaps the most efficient algorithms available.  In the 
benchmark implementation, subimages of various sizes are extracted from the standard image 
and FFT is computed and execution times recorded. 

h. Conversion 

These algorithms measured the time necessary to convert from the 14-bit 
unsigned integer image input data to the float or double data types (both using Institute of 
Electrical and Electronics Engineers (IEEE) 754 representations) used in some algorithms.  In 
these algorithms, each input image pixel is converted to type float or double and placed in the 
corresponding location in an output image using the C-type cast. 

C. Processors 

This work uses numerous processors for experimentation.  The processors are 
characterized in Table 3, which shows the processors on which the classic benchmarks were run, 
and Table 4, which shows the processors on which the IP codes were run.  These processors vary 
across a number of different dimensions, including release date, clock speed, and number of 
cores.  Other variables across the processors not shown in the table include microarchitectural 
family and cache size.  While the Instruction Set Architectures considered included PowerPC 
and x86, there were many more x86 machines used.  The different x86 microarchitectures 
included NetBurst, Core, and Nehalem from Intel and the K7 from Advanced Micro Devices 
(AMD).  In addition to the varying processor designs, the operating systems run on the 
processors varied, as did the compilers used to generate the codes.  Table 3 summarizes the 
results from the classic benchmarks.  Intel defines Thermal Design Power (TDP) as “the 
maximum power a processor can draw for a thermally significant period while running 
commercially useful software.”  Table 4 shows the TDP of each processor, which offers a rough 
estimate of the power consumption under normal operating conditions.
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Table 4.  Summary of Machines Using IP Benchmarks  

Processor 
Clock Speed 

(GHz) 
# Cores/ 
Threads 

Memory 
(Gbytes) 

TDP (Watts) Operating 
System 

Launch 
Date 

Technology 
(nm) 

Machine 
Designator 

Pentium 4 1.8 1/1 0.5 68.1 Li Q1 2002 130 Ild 

Pentium 4 2.8 1/2 1 84 Li Q1 2002 90 Di3 

Pentium 4 (550) 3.4 1/2 1 115 XP Q2 2004 90 GhP4 
Cell Broadband 
Engine 

3.2 1/16 0.207 92 Li Q1 2005 90 Ic 

Pentium D (830) 3 2/2 2 130 V Q2 2005 90 B 

Pentium D (830) 3 2/2 2 130 XP Q2 2005 90 Hgd 

PowerPC 970MP 2 2/2 2 70 Li Q3 2005 90 Dg5 
AMD Athlon Dual 
Core 4400 

2.2 2/2 3 89 W7 Q3 2005 90 Ddbw 

AMD Athlon Dual 
Core 4400 

2.2 2/2 3 89 Li Q3 2005 90 Ddbl 

Pentium D (950) 3.4 2/2 2 130 W7 Q1 2006 65 Di1 

Core 2 Quad 6600 2.4 4/4 2 105 W7 Q1 2007 65 Di2 

Core 2 Duo E6550 2.33 2/2 1.96 65 XP Q3 2007 65 F 

Core 2 Duo E6750 2.66 2/2 3.25 65 XP Q3 2007 65 Cd 

Core 2 Duo E6750 2.66 2/2 3.25 65 XP Q3 2007 65 Gg 

Core 2 Duo E8500 3.16 2/2 4 65 V Q1 2008 45 J1 

Atom N270 1.6 1/2 1 2.5 Li Q2 2008 45 Da 

Core 2 Duo P8400 2.26 2/2 2 25 XP Q3 2008 45 A 

Core 2 Duo T9600 2.8 2/2 8 35 W7 Q3 2008 45 Ghl 

Core 2 Duo P8700 2.53 2/2 2 25 XP Q4 2008 45 M 

Core i7 (620M) 2.67 2/4 8 35 W7 Q1 2010 32 Iw 

Core i7 (930) 2.8 4/8 9 130 W7 Q1 2010 45 Ghi7 

Core i5 (650) 3.2 2/4 4 73 W7 Q1 2010 32 J2 
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IV. PERFORMANCE RESULTS 

This section presents the results from the experiments along with discussions of these 
results.  The first section gives consideration to the results from the synthetic benchmarks in both 
graphical and tabular form, while the second section gives the results from the IP codes.  Each 
section gives a discussion of important trends in these results, followed by a summary of the 
conclusions drawn from them. 

A. Synthetic Benchmarks 

Figure 1 shows a graphical summary of the results from the synthetic benchmarks 
with the processors ordered by release date.  Certain characteristics, such as processor family and 
clock rate, are highlighted for various processors to facilitate easier recognition of trends in the 
graph.  Table 5 shows the results from these experiments but with further detail for each of the 
processors used, including clock speed, number of cores, number of threads, and total memory. 

 

Figure 1.  Classic Benchmark Results 
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Table 5.  Classic Benchmark Results (Larger Numbers Indicate Better Performance) 

Measured Data 

Processor 

Clock 
Speed 
(GHz) 

# Cores/ 
Threads

Memory 
(Gbytes)

Dhrystone 
DMIPS 

(optimized) 
Whets Int 

(unoptimized) 
Whets Float 

(unoptimized)
Pentium 4 1.8 1/1 0.5 1774 491 379 

Pentium 4 2.8 1/2 1 2949 1571 1187 

Pentium 4 (550) 3.4 1/2 1 3734 3439 1304 
Cell Broadband 
Engine 

3.2 1/1 0.207 2006 239 441 

Pentium D (830) 3 2/2 2 3617 2511 1148 

Pentium D (830) 3 2/2 2 3556 2938 1155 

PowerPC 970MP 2 2/2 2 4396 375 942 

AMD Athlon Dual 
Core 4400 

2.2 2/2 3 3869 2699 1772 

AMD Athlon Dual 
Core 4400 

2.2 2/2 3 6834 1979 1833 

Pentium D (950) 3.4 2/2 2 3872 2898 1307 

Core 2 Quad 6600 2.4 4/4 2 4050 3044 1724 

Core 2 Duo E6550 2.33 2/2 1.96 5710 4188 2548 

Core 2 Duo E6750 2.66 2/2 3.25 6543 5124 2911 

Core 2 Duo E6750 2.66 2/2 3.25 6863 4376 2908 

Core 2 Duo E8500 3.16 2/2 4 7479 5385 3454 

Atom N270 1.6 1/2 1 2217 755 653 

Core 2 Duo P8400 2.26 2/2 2 6092 4267 2611 

Core 2 Duo T9600 2.8 2/2 8 6984 5172 3125 

Core 2 Duo P8700 2.53 2/2 2 6135 4499 2834 

Core i7 (620M) 2.67 2/4 8 7735 5022 3325 

Core i7 (930) 2.8 4/8 9 8389 5311 3066 

Core i5 (650) 3.2 2/4 4 9473 5924 3465 
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The first noteworthy point about the results is that although there is a general trend of 
increasing performance with release date, there are clear exceptions to this trend.  While some 
exceptions have straightforward explanations, the reasons for these exceptions may not be 
immediately obvious.  An example of a simple explanation is the Atom N270, which was 
released in the second quarter of 2008 but showed a lower performance than the Pentium 4 that 
was released more than 6 years earlier.  The Atom family of processors was designed for mobile 
devices with low power as a primary design constraint.  In general, processors trade power for 
performance.  The Atom has the lowest TDP by a large margin among the processors considered.  
Its TDP is 2.5 watts, and the next lowest power processors (the Core 2 Duo P8400 and the  
Core 2 Duo P8700) have TDPs of 10 times that.  Note that performance does not always increase 
with TDP, even within a processor family.  The Core i5 has a TDP of 73 watts but outperforms 
the Core i7 that has a TDP of 130 watts on all classic benchmarks although both are Nehalem-
based processors.  Other cases are more difficult to explain, such as the relative performance of 
the Pentium D 830 and the Pentium 4 550.  The Pentium D 830 has a higher TDP and is newer 
than the Pentium 4 550, but the Pentium 4 550 outperformed it on all benchmarks.  Note that a 
higher clock rate does not always translate into better performances across processor families.  
The data show that performance generally follows clock rate, but there are exceptions such as the 
Core 2 Duo E6550 running at 2.33 gigahertz and the Core 2 Duo P8400 running at 2.26 
gigahertz, with the latter outperforming the former on all benchmarks. 

Another point worth considering is that while the data reflect that multi-core 
processors have become more prominent in recent years, performance does not always improve 
with increased cores.  The Core 2 Quad 6600 is a processor with four cores but is outperformed 
on all benchmarks by all of the dual-core processors in subsequent years.  It is even 
outperformed by one of the single-core processors on one benchmark from a previous year (the 
Pentium 4 550 running Integer Whets).  These benchmarks were not implemented to utilize 
multiple cores, and since the team ran them with negligible loads on other cores (other than the 
core running the benchmark itself)2, performance was primarily a function of design parameters 
rather than the number of cores (such as design of individual cores, cache size, cache controller 
design, and so forth). 

This previous point explains, to some extent, why multiple cores do not necessarily 
translate into higher performance.  However, there is a general trend of increasing performance 
with later release dates which warrants further consideration.  Note that the newer processors 
tend to have larger caches.  The oldest processor considered (a Pentium 4) has at most a  
256 kilobyte L2 cache, while the newer Core i7 930 has an 8 megabyte L3 cache.  Although this 
may be a first consideration for explaining performance increases for data-intensive applications, 
Whetstones and Dhrystones are relatively small codes with small working sets that can most 
likely fit into the older processors’ caches.  However, the speed of these caches and other 
components outside of the processing logic could definitely come into play because the codes 
cause activity in these components, such as during compulsory cache misses that are included in 
the timing data.  Other components that have likely improved with newer processors that could 
have an effect on performance are branch predictor accuracy, number of functional units per 

                                                            
2 The operating system is running in the background, and its utilization of the processor can vary widely.  It is 
assumed that the load that the operating system places on the processor is negligible, although this may be an 
inaccurate assumption for more in-depth discussions. 



15 

core, and instruction scheduling hardware and configuration.  A route for getting a clearer 
answer on what are the biggest factors which are effecting performance within and across 
processor families would be profiling and simulation-based analyses.  

A final point is that there are other factors that are independent of the processor that 
have effects on performance.  Other factors that may come into play are the operating systems, 
libraries, run-time instrumentation, and software build options.  To consider the first of these, the 
benchmarks were run on a machine (the AMD Athlon Dual Core 4400) with both Windows 7 
and Ubuntu Linux installed.  The results show that even though the benchmarks were run on the 
same processor, performance under different operating systems varied.  The use of Linux over 
Windows 7 resulted in a significant increase in performance for Dhrystone (a 77-percent 
improvement).  On the other hand, Windows 7 outperformed Linux on Integer Whets (a 36-
percent improvement).  They performed about the same on Float Whets.  Note that different 
compilers were used for different operating systems (Visual Studio for Windows and GNU 
Complier Collection for Linux), so further study would be needed to determine which factors 
contributed primarily to the disparity in performance.  These results reveal that other components 
besides the processor and application can have significant effects on performance. 

To summarize the important observations from this data: 

 The overall trend indicates newer processors have larger ratings (are faster).   

 In most cases, the ratings appear to be correlated.  When comparing two 
processors, if processor A has a higher Dhrystone rating than processor B, 
then usually the Whetstone ratings for processor A will also be higher than 
that of processor B.  This is especially true for newer processors whose launch 
date is the first quarter of 2007 and later.  However, there are exceptions to 
this.  The Core i7 620M has a higher Whet Float rating than the Core i7 930, 
but the Core i7 930 outperformed the Core i7 620M on Dhrystones. 

 When comparing the performance of newer processors (launch date is the first 
quarter of 2007 and later), it appears that Dhrystone performance has 
continued to improve with time, but Whetstone performance has improved at 
a slower rate. 

 The AMD Athlon Dual Core processor is a dual-boot machine whose 
benchmarks were compiled under Linux (GNU compiler) and Microsoft 
Visual Studio version 8.  The results give an interesting view into the role of 
the compiler and/or operating system in use.  The Float Whets for both are 
almost identical, but the integer performance is significantly higher  
(2,699 versus 1,979) for the Visual Studio 8 compilation run under  
Windows 7.  However, the Dhrystone performance is significantly higher 
(6,834 versus 3,869) for the GNU compiler run under Linux.  
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B. Image Processing Kernels 

The IP kernels are split into three categories: simple, moderately complex, and very 
complex.  The simple kernels in general consist of a simple loop containing a primitive operation 
that takes as input pixels from one or two images.  The moderately complex codes consist of 
either a more computationally expensive operation (such as ratio), a more complex data type 
(such as single-precision floating point numbers), or an algorithm of higher order complexity 
(such as FFT).  The very complex kernels include the FFT with double-precision floating point, 
along with other codes implementing higher-complexity algorithms.  The simple codes were 
implemented with multi-threading. 

The following graphs plot execution time.  Note that a lower value indicates better 
performance.  The overall trends in these results look in some ways similar to those for the 
synthetic benchmarks, which suggest that there may be correlations between the two.  We 
consider this question in detail in the next section.  As with the synthetic kernels, it is difficult to 
make any generalizations about correlations between performance and processor characteristics.  
For example, it is clear that neither clock rate nor number of cores imply better performance.  
Also, the results suggest that other factors, such as operating system or compiler used, can have a 
non-negligible impact on performance. 

1. Single-Threaded “Simple” Results 

Several interesting trends are shown in Figure 2:   

 Better performance (lower execution time) is available from newer 
processors, despite that clock rates for the newer processors are not 
generally higher than many older processors.  Remember that these 
numbers are for single-threaded benchmarks and therefore do not take 
advantage of multi-core or multi-threaded CPUs.  It is likely that the 
newer processors (having more transistors according to Moore’s law) 
have architectural improvements that translate into better performance. 

 Within a particular family, faster clock rates generally—but not 
always—translate into better performance. 

 Again, processors designed for low power applications (for example, the 
Pentium M and Atom processors designed specifically for laptops) 
sacrifice computing performance to achieve their low power attributes. 

 The cell processor is an interesting combination of a 64-bit PowerPC 
core with eight Synergistic Processing Elements (SPEs) [10].  Because 
of the single-threaded nature of the benchmarks, the SPEs are inactive.  
The poor performance of the PowerPC core within the cell implies that 
the designers used the available chip area (that is, available transistors) 
to implement the SPEs as opposed to using them for architectural 
enhancements to the PowerPC core. 
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 For most of these simple algorithms, most of the newer processor 
families (Core 2, Core i5, and Core i7) can execute the algorithms in 
under 0.5 milliseconds.  This implies essentially real-time processing of 
a video frame (at the given 2.0 millisecond frame time) with less than a 
50-percent processor loading. 

 Floating point performance of most of the processors rivals that of 
integer and fixed point operations. 

 

Figure 2.  Results for Single-Threaded “Simple” Benchmarks 

2. Single-Threaded “Moderately Complex” Results 

Figure 3 shows a plot of execution times for various “moderately complex,” 
single-threaded benchmarks, which includes information on the processors and their release 
dates.  Many of the previously noted trends are apparent but with the following important 
exception:  algorithms of this complexity will generally not execute within the image frame time 
(2.0 milliseconds) on a single core.  However, recently released dual- and quad-core processors 
may be able to execute them in time if the algorithm can be efficiently partitioned among the 
cores.  This was the impetus behind the creation of the multi-threaded benchmarks discussed in 
following sections of this report. 
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Figure 3.  Results for Single-Threaded “Moderately Complex” Benchmarks 

3. Single-Threaded “Very Complex” Results 

Figure 4 shows a plot of execution times for various “very complex”  
single-threaded benchmarks, including information on processors and their release dates.  Many 
of the trends previously noted are again apparent, but it is clear that algorithms of this 
complexity will certainly not execute within the image frame time (2.0 milliseconds) on a single 
core.  Execution of these algorithms in real time will require the full resources of a quad-core 
processor or a specialized processing engine such as a field programmable gate array. 
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Figure 4.  Results for Single-Threaded “Very Complex” Benchmarks 

4. Multi-Threaded Results 

Figure 5 shows the results from the multi-threaded implementations of the 
simple benchmarks, and it gives both the average performance for the single-threaded 
implementation and multi-threaded implementations of the codes to offer an easy comparison. 
Clearly, the optimal speedup was not often obtained.  One possible explanation was that this was 
an artifact of the Windows scheduling algorithm.  These results make clear that careful algorithm 
partitioning and control over thread-to-processor assignments are critical to achieve speedups 
close to the theoretical maximums.  Balancing the per-processor load is not trivial and will 
require a talented and knowledgeable software team. 
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Figure 5.  Results for Multi-Threaded Benchmarks 

V. PREDICTING IMAGE PROCESSING PERFORMANCE WITH SYNTHETIC 
RESULTS USING LINEAR REGRESSION 

This section disscusses performance results from the various applications and provides an 
in-depth analysis of the data to answer questions regarding the estimation of the performance of 
the IP codes.  Graphs showing the results for the IP codes versus image size form the basis for 
the discussions.  A model of the performance of the processors within a given family when 
running the IP codes through multiple regression is given.  The conclusions consider the question 
of whether there are relationships between trends in the performance of the IP applications with 
respect to this regression model and the synthetic benchmarks. 

This section considers whether the IP code execution time on a particular processor could 
be expressed as a function of four variables: 

 The execution time of the Whetstone for the processor 
 The execution time of Dhrystone for the processor 
 The number of pixels in the image being processed 
 The family in which the processor falls3 

An equation is generated for each processor family for estimating the execution time of IP 
codes.  Multiple regression was used with Whetstone execution time, Dhrystone execution time, 

                                                            
3 “Family” refers to the processor’s microarchitectural family. 
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and number of image pixels as independent variables to generate a linear approximation for each 
processor family for various IP codes.  In the following equations, the variable tx_y represents an 
estimate of the execution time (in seconds) for application x when run on a processor in family y.  
The codes considered are brightness with integer data (BI); contrast with fixed point data (CF); 
and threshold with single-precision, floating-point data (TH).  The processors considered are 
from three families of Intel processors: NetBurst, Core, and Nehalem.  The W is the average time 
(in milliseconds) per loop for the Whetstone benchmark for the processor, the D is the average 
time (in milliseconds) per loop for the processor, and the p is the number of pixels in the image 
being processed4. 

ூ_ே௧௨௦௧ݐ          ൌ 	െ1.72910ିݔଷ  10ିହݔ5.601 ∗ ܹ  4.429 ∗ ܦ  10ିଽݔ3.320 ∗  (7)         

ூ_ݐ       ൌ 	െ1.21010ିݔସ  10ିହݔ2.715 ∗ ܹ െ 10ିଵݔ8.470 ∗ ܦ  10ିଵݔ9.115 ∗  (8)      

ூ_ேݐ         ൌ 	െ1.62010ିݔସ  10ିହݔ3.973 ∗ ܹ െ 1.065 ∗ ܦ െ 10ିଽݔ1.096 ∗  (9)           

ி_ே௧௨௧ݐ         ൌ 	െ1.50310ିݔଷ  10ିହݔ4.736 ∗ ܹ  3.831 ∗ ܦ  10ିଽݔ3.434 ∗  (10)         

ி_ݐ           ൌ 	െ1.40210ିݔସ  10ିହݔ4.093 ∗ ܹ െ 1.469 ∗ ܦ  10ିଵݔ9.865 ∗  (11)          

ி_ேݐ         ൌ 	െ1.46810ିݔସ  10ିହݔ4.313 ∗ ܹ െ 1.442 ∗ ܦ  10ିଽݔ1.086 ∗  (12)        

ு_ே௧௨௦௧்ݐ    ൌ 	െ1.57710ିݔଷ  10ିହݔ6.449 ∗ ܹ  10ିଵݔ2.732 ∗ ܦ  10ି଼ݔ1.400 ∗  (13)  

ு_்ݐ              ൌ 	െ8.66210ିݔସ  10ିସݔ1.628 ∗ ܹ െ 4.536 ∗ ܦ  10ିଽݔ7.101 ∗  (14)         

ு_ே்ݐ      ൌ 	െ2.38010ିସ  10ିହݔ2.689 ∗ ܹ  10ିଵݔ1.634 ∗ ܦ  10ିଽݔ1.830 ∗  (15)  

Figures 6 though 14 show the execution time of each of the processors for the different IP 
codes versus image size in number of pixels.  The legend for each chart shows the average time 
per loop for Whetstone and Dhrystone for each processor.  The graphs also show lines generated 
from the previous equations for each processor.  These lines represent approximations of the 
actual performance curves.  Note that only a portion of these lines are shown to make the graphs 
more readable because it is straightforward to mentally extrapolate the lines back to the Y-axis 
and out to the right edge of the graph. 

 

 

 

                                                            
4 The time per loop for the Whetstone and Dhrystone benchmarks can be calculated from the scores from each 
benchmark and is inversely proportional to these scores. 



22 

 

 

Figure 6.  Brightness, Integer (NetBurst Family) 

 

 

Figure 7.  Brightness, Integer (Core Family) 
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Figure 8.  Brightness, Integer (Nehalem Family) 

 

Figure 9.  Contrast, Fixed Point (NetBurst Family) 
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Figure 10.  Contrast, Fixed Point (Core Family) 

 

 

Figure 11.  Contrast, Fixed Point (Nehalem Family) 
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Figure 12.  Threshold, Single Precision Floating Point (NetBurst Family) 

 

 

Figure 13.  Threshold, Single Precision Floating Point (Core Family)
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Figure 14.  Threshold, Single Precision Floating Point (Nehalem Family) 

The first objective is to determine a method for using the quantities available to draw 
conclusions about the relative performance of processors within a family.   

The question is whether the execution times of the IP codes for different processors within 
a family monotonically increase with respect to Whetstone execution time, Dhrystone execution 
time, and the value of the estimation function. 

To determine whether the execution time of an IP code is increasing monotonically with 
respect to another quantity, there must first be an ordering of IP code execution times for a group 
of processors.  Consider Figure 6, for example.  For the NetBurst family of processors, it is fairly 
clear that for larger image sizes, there is a clear ordering of processors in terms of performance 
(since the data for the Pentium D 830s showed similar results, the average of the points are taken 
along this line and considered a single case for the purposes of this discussion).  For instance, the 
Pentium 4 550 shows the worst performance, the Pentium D 830 shows the next worst 
performance, and the Pentium D 950 performed the best.  Based on this data, the performance of 
the Brightness Integer is not, strictly speaking, monotonically increasing with respect to 
Whetstone.  The Pentium 4 550 performed the worst on the Brightness Integer; however, one of 
the Pentium D 830s performed the worst on Whetstone.  Neither were the Brightness Integer 
results monotonically increasing with respect to Dhrystone, as the Pentium D 950 performed the 
best on the Brightness Integer, but the same Pentium D that showed the poorest Whetstone 
performance showed the best Dhrystone performance.  However, assuming that these data points 
for the Pentium D 830 were anomalous, then the monotonic relationship does hold.  The graph 
shows that the Brightness Integer results are monotonically increasing with respect to the 
estimation function (the estimation functions coalesced the two Pentium Ds into a single curve).  
However, this pertains only to only large image sizes.  If the image were zoomed in on the left 
side of the graph, the data might exhibit different characteristics.  The results in Figure 9 
showing contrast fixed points for the NetBurst are similar to the results in Figure 6.  Hence, 
similar conclusions can be drawn about those processors and their performance with these 
applications.
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In the other graphs, other complexities arise.  For example, while the data in Figures 6 and 
9 can be easily divided into two sections for which at least one of those sections has a clear 
ordering of processors in terms of performance, other graphs cannot be so easily divided in this 
manner.  Figure 7 shows how the Core 2 Duo P8400 changes in its ranking at least twice as 
image size increases.  For medium size images, in general, the bottom three performing 
processors—starting with the worst—are the Core 2 Duo T7600, the Core 2 Duo R6550, and the 
Core 2 Duo P8400.  However, for the largest image sizes, the P8400 drops below the 
performance of the other two for many image sizes, including the largest size.  Hence, ordering 
relationships must be given with respect to specific image sizes.  However, it is clear that the 
Brightness Integer performance is not monotonically increasing with respect to Whetstone or 
Dhrystone for any case on the right half of the graph.  The R6550 performed the worst on 
Whetstone and Dhrystone; however, it did not perform the worst on the Brightness Integer for 
medium and large image sizes.  The estimation function appears to be a better ordering for most 
image sizes, but it is not always correct.  For example, for the largest image size, the P8400 
performed the worst, whereas the estimation function reports that the T7600 was the worst.  
Several other graphs present this difficulty—to varying degrees—of changing rankings of 
processors as image size changes:  Brightness Integer for Nehalem, Contrast Fixed Point for 
Core, Contrast Fixed Point for Nehalem, and Threshold for Nehalem.  However, some of these 
cases could be remedied by the application of a noise reduction filter. 

Another perspective on evaluating the estimation functions is their relative error.  It is clear 
that because non-linear performance curves are being fit with linear functions, the error may vary 
widely.  This is indeed the case for some image sizes.  For large and small images, the error is 
generally larger.  However, for the middle-size images, there are some cases for which the fit is 
quite good.  Note that the accuracy of the fit also depends on which processor is considered.  For 
example, the Core 2 Duo R6550 is a much flatter curve, especially for the Brightness Integer, 
and as a result it is a much better candidate for approximation with a linear function.  

A point of interest in future work will be to attempt to fit the curves with non-linear or 
piece-wise functions.  It is likely that a more accurate fit exists for a particular algorithm if it is 
determined that the algorithm is normally used only on a restricted range of image sizes.  
Another task for future work is to determine if these approaches will predict the performance of 
future processors.  Although the approach shows promise within a family, its usefulness across 
families is an open question.  The processors in the Core family generally outperformed the 
Nehalem.  The current models do not have a method for taking into account how major 
differences between microarchitectural designs will affect performance. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

Classic benchmarks (Dhrystones and Whetstones) are, in some cases, good processor speed 
comparison tools.  In many cases, their results mapped well into the results of the real-world 
imaging algorithms that were discussed in this report.  Higher Dhrystone and Whetstone results 
often mapped well into smaller execution times for IP codes.  However, they are not good tools 
for estimating the execution time of real-world algorithms.  Note that these benchmarks are valid 
comparison tools only if these guidelines are followed: 
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 The same compiler is used for each processor. 

 The same optimization parameters are used during the compile process. 

 If possible, we highly recommend using the same executable on each processor to 
be compared. 

If good timing information is required for a given code, it is highly recommended that the 
execution time for that code be measured on the processor it will reside on.  It is likely that 
Moore’s Law will continue to provide designers with more transistors for new processor designs, 
and it is likely that this will result in more processors per chip.  Programming these devices to 
get maximum throughput will require careful algorithm partitioning and control over thread-to-
processor assignment.  Balancing the per-processor load is not trivial and will require a talented 
and knowledgeable software team. 

From classic benchmark (Dhrystone and Whetstone) data, the following was observed: 

 The overall trend indicates that newer processors have larger ratings and are faster.   

 In most (but not all) cases, the ratings appear to be correlated.  In comparing two 
processors, if processor A has a higher Dhrystone rating than processor B, then 
usually the Whetstone ratings for processor A will also be higher than that of 
processor B.  This is especially true for newer processors whose launch dates are 
the first quarter of 2007 and later. 

 In comparing the performance of newer processors (launch dates that are in the first 
quarter of 2007 and later), it appears that Dhrystone performance has continued to 
improve with time, but Whetstone performance has improved at a slower rate. 

 The AMD Athlon dual-core processor is a dual-boot machine where benchmarks 
were compiled under Linux (GNU compiler) and Microsoft Visual Studio Version 
8.  The results give an interesting view into the role of the compiler and/or 
operating system in use.  The Float Whets for both are almost identical, but the 
integer performance is significantly higher (2699 versus 1979) for the Visual Studio 
8 compilation run under Windows 7.  However, the Dhrystone performance is 
significantly higher (6834 versus 3869) for the GNU compiler run under Linux.  

From the IP benchmark data, the following was observed: 

 Within a particular family, faster clock rates usually translate into a better 
performance. 

 Processors designed for low power applications (for example, the Pentium M and 
Atom processors designed specifically for battery operated netbook and notebook 
computers) sacrifice computing performance to achieve their low power attributes.
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 Modern (the third quarter of 2007 and newer) dual- and quad-core processors are 
capable of executing the full-frame (640-by-512 pixels), “simple” IP algorithms 
provided in real time (less than 2.0 milliseconds) on a single processor.  Some of 
these processors (especially some in the Core 2 Duo family) dissipate power low 
enough to make them candidates for incorporation into military systems using 3U 
size cards. 

 Modern dual- and quad-core processors appear capable of executing moderately 
complex full-frame IP algorithms given here in real time but will likely require the 
full resources of the processors. 

 Modern quad-core processors appear capable of executing “very complex”  
full-frame IP algorithms given in real time but will likely require the full resources 
of all four cores.  Given the electrical power required for these processors, this does 
not appear to be a good solution.  

 Most modern processors appear to be quite capable of processing small subimage 
areas for the complex tasks given here.  For example, the convolution of an          
18-by-18 image using a 3-by-3 kernel can be done on the low power Core 2 Duo 
P8400 in 11.1 milliseconds on a single core.  This implies that many complex tasks, 
such as tracking potential targets after they have been separated from clutter, can be 
accomplished in real time by modern processors. 

 Floating point performance of many processors rivals that of integer and fixed point 
operations. 

 For some (dual-core) processors, there were some experiments showing speedups 
nearly equal to the number of cores.  However, in general this was not the case and 
we were not able to achieve a speedup near four for any of the quad-core 
processors. 

Observations from the attempts to use classic benchmark data to predict IP execution times 
included in the following: 

 Measured IP benchmark execution times and predicted (using classic benchmark 
data) IP benchmark execution times were often highly correlated for modern 
processors (those with a launch date of the first quarter of 2007 or earlier) but less 
so for older processors. 

 Because of the nonlinear nature of some of the performance plots shown in Figures 
6 through 14, it is likely that better fits could be obtained with a nonlinear curve fit.  

Given the observed data, in general, it is not possible to reliably and accurately predict IP 
execution times with only Dhrystone and/or Whetstone performance data. 

 



 

31 

REFERENCES 

1. Demme, J. and Sethumadhavan, S., “Approximate Graph Clustering for Program 
Characterization,” ACM Transactions on Architecture and Code Optimization, Volume 8, 
New York, NY, January 2012. 

2. Kainaga, M.; Yamada, K.; and Inayoshi, H., “Analysis of Spec Benchmark Programs,” 
TRON Project Symposium Proceedings, pp. 208 –215, November 1991. 

3. Munafo, R., “The SPEC Benchmarks,” June 2012, 
http://mrob.com/pub/comp/benchmarks/spec.html 

4. Aburto, A., “Geometric Mean or Median,” June 2012, 
http://groups.google.com/group/comp.benchmarks/msg/728793aebd69097b?pli=1 

5. Curnow, B. A. and Wichmann, H. J. “A Synthetic Benchmark,” Computer Journal, 
Volume 19, pp. 43-49, 1976. 

6. Weicker, R. P., “Dhrystone: A Synthetic Systems Programming Benchmark,” Computing 
Practices, Volume 27, pp. 1013-1030, 1984. 

7. Longbottom, Roy, “Roy Longbottom’s PC Benchmark Collection,” June 2012, 
http://homepage.virgin.net/roy.longbottom/index.htm 

8. Frigo, Matteo, and Johnson, Steven G., FFTW.org Home Page, FFTW, June 2012, 
http://www.fftw.org/ 

9. “Measuring Processor Power,” June 2012, 
http://www.intel.com/content/www/us/en/benchmarks/resources-xeon-measuring-
processor-power-paper.html?wapkw=tdp  

10. Wikipedia, “Cell (Microprocessor),” October 2011, 
http://en.wikipedia.org/wiki/Cell_(microprocessor) 

 



 

32 

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

#  Number  

AMD  Advanced Micro Devices 

Avg  Average 

CAD  Computer-Aided Design 

CD  Compact Disk 

COTS  Commercial Off-The-Shelf 

CPU  Central Processing Unit 

Dhry  Dhrystone 

DMIPS Dhyrstone Millions Of Instruction Per Second 

DLL  Dynamic Link Library 

FFT  Fast Fourier Transform 

Gbyte  gigabyte 

GHz  gigahertz 

IEEE  Institute of Electrical and Electronics Engineers 

INT  Integer 

IP  Image Processing 

IR  Infrared 

ISA  Instruction Set Architecture 

Li  Linux 

MIPS  Millions of Instructions Per Second 

ms  millisecond 

MWIPS Millions of Whetstone Instructions Per Second 

N/A  Not Applicable 

nm  nanometer 

ns  nanosecond 

PC  Personal Computer 

Q  Quarter 

RAM  Random Access Memory 

SPE  Synergistic Processing Element 

TDP  Thermal Design Power 

V  Vista 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (CONCLUDED) 

VAX  Virtual Address eXtension 

vs.  versus  

W7  Windows 7 

Whet  Whetstone 
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