

TECHNICAL REPORT RDMR-WD-13-11

PPEERRFFOORRMMAANNCCEE EEVVAALLUUAATTIIOONN OOFF

SSYYNNTTHHEETTIICC BBEENNCCHHMMAARRKKSS AANNDD IIMMAAGGEE

PRROCCEESSSIINNGG ((IIPP)) KKERRNNELLSS OON IINNTTEELL

AANNDD PPOOWWEERRPPCC PPRROOCCEESSSSOORRSS

Patrick A. La Fratta
Weapons Development and Integration Directorate

Aviation and Missile Research, Development,
and Engineering Center

August 2013

Distribution Statement A: Approved for public release;
distribution is unlimited.

DESTRRUUCCTTIIONN NOTTICCEE

FFOORR CCLLAASSSSIIFFIIEEDD DDOOCCUUMMEENNTTSS,, FFOOLLLLOOWW TTHHEE PPRROOCCEEDDUURREESS IINN
DooD 522000.22-M,, INDUUSTRIIALL SECUURIITY MMANNUAAL, SSEECCTIOON III--119
OR DooD 5200.1--RR, IINFFORMMATTIION SSEECCURRITTYY PPROOGGRRAMM REGULATION,,
CCHHAAPPTTEERR IIXX.. FFOORR UUNNCCLLAASSSSIIFFIIEEDD,, LLIIMMIITTEEDD DDOOCCUUMMEENNTTSS,, DDEESSTTRROOYY
BY ANNY MMETHOD THATT WILL PPREEVVENTT DISCLOSURE OOFF CONTENTS
OR REECCONSSTTRRUCCTIOONN OF THE DOCUMENT.

DDIISSCLLAIMEER

THE FFINNDIINGGSS IN THISS REPORT AAREE NOT TTOO BE COONNSTRUUED
AASS AANN OOFFFFIICCIIAALL DDEEPPAARRTTMMEENNTT OOFF TTHHEE AARRMMYY PPOOSSIITTIIOONN
UNNLESS SSOO DESIGGNNATTEED BBYY OTHER AUUTHORIIZED DDOCUMENTS.

TTRRAADDEE NNAAMMEESS

USSEE OF TRADE NNAMMES OR MAANUUFAACTTUUREERRS INN TTHHIIS REEPPORT
DOOES NOOTT CONSTTITUTTEE ANN OFFICIAL EENNDOORRSEMEENNT OR
AAPPPPRROOVVAALL OOFF TTHHEE UUSSEE OOFF SSUUCCHH CCOOMMMMEERRCCIIAALL HHAARRDDWWAARREE
OR SOFTTWWAAREE..

i/ii (Blank)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1.AGENCY USE ONLY

2. REPORT DATE

 August 2013
3. REPORT TYPE AND DATES COVERED
 Final

4. TITLE AND SUBTITLE
Performance Evaluation of Synthetic Benchmarks and Image Processing
(IP) Kernels on Intel and PowerPC Processors

5. FUNDING NUMBERS

6. AUTHOR(S)

Patrick A. La Fratta

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Commander, U.S. Army Research, Development, and
 Engineering Command
ATTN: RDMR-WDG-C
Redstone Arsenal, AL 35898-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

TR-RDMR-WD-13-11

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)
 This report presents an in-depth performance characterization of a variety of processors released over the last
decade. The processors considered include Intel and PowerPC and vary widely with respect to architectural
design parameters. The benchmark experiments utilize applications from two different classes of codes. The
first class, consisting of synthetic benchmarks, includes the popular Dhrystone and Whetstone suites. The
second class includes a set of widely used Image Processing (IP) kernels. Following the presentation of the
results from these experiments, a set of techniques for performance prediction is given based on linear
correlation. This report provides an evaluation of the effectiveness of these techniques. The results show that
when processors are categorized by microarchitectural families and certain restrictions to input size are
employed, linear correlation shows promise for being an effective performance predictor for the IP kernels.

14. SUBJECT TERMS

Processor Benchmarking, Performance Prediction Models, Architectural Tradeoffs,
Image Processing (IP), Synthetic Benchmarks, Dhrystone, Whetstone

15. NUMBER OF PAGES

38
16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. Z39-18
 298-102

iii

TABLE OF CONTENTS

Page

 I. INTRODUCTION ... 1

 II. BACKGROUND .. 1

 III. METHODOLOGY .. 2

A. Overview ... 2
B. Benchmarks .. 3
C. Processors ... 10

 IV. PERFORMANCE RESULTS ... 12

A. Synthetic Benchmarks ... 12
B. Image Processing Kernels ... 16

 V. PREDICTING IMAGE PROCESSING PERFORMANCE WITH
SYNTHETIC RESULTS USING LINEAR REGRESSION 20

 VI. CONCLUSIONS AND RECOMMENDATIONS .. 27

 REFERENCES .. 31

 LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 32

iv

LIST OF ILLUSTRATIONS

Figure Title Page

1. Classic Benchmark Results ... 12

2. Results for Single-Threaded “Simple” Benchmarks .. 17

3. Results for Single-Threaded “Moderately Complex” Benchmarks 18

4. Results for Single-Threaded “Very Complex” Benchmarks 19

5. Results for Multi-Threaded Benchmarks .. 20

6. Brightness, Integer (NetBurst Family) .. 22

7. Brightness, Integer (Core Family) ... 22

8. Brightness, Integer (Nehalem Family) ... 23

9. Contrast, Fixed Point (NetBurst Family) .. 23

10. Contrast, Fixed Point (Core Family) ... 24

11. Contrast, Fixed Point (Nehalem Family) ... 24

12. Threshold, Single Precision Floating Point (NetBurst Family) 25

13. Threshold, Single Precision Floating Point (Core Family) 25

14. Threshold, Single Precision Floating Point (Nehalem Family) 26

v/vi (Blank)

LIST OF TABLES

Table Title Page

1. IP Algorithms Chosen ... 6

2. Data Types Used for Each Algorithm in IP Benchmarks 6

3. Summary of Classic Benchmark Data ... 7

4. Summary of Machines Using IP Benchmarks .. 11

5. Classic Benchmark Results (Larger Numbers Indicate
Better Performance) ... 13

1

I. INTRODUCTION

Performance evaluation of processors continues to be an area of interest for military
applications for a variety of reasons. Processors are ubiquitous in military systems for large scale
systems (for example, the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor
System) and small scale systems (for example, the Integrated Hostile Fire Detection System).
Tracking trends in processor performance will provide designers of such systems with valuable
knowledge regarding which processors will meet performance requirements as well as improved
estimates of the performance increase of future generations of processors. In addition, such
performance studies will offer insights into which architectural features are most valuable for
providing improvements.

In addition to the large number of processors available as options for military systems, the
number of classes of applications is enormous. Different processor architectures will offer
varied levels of performance for different application classes, depending on a variety of factors.
Cache size, number of on-chip cores, and multi-threading support are a few of the design
considerations that can have a drastic effect on how well a processor runs a particular code. For
this reason, it is important that processor performance studies take into account which
applications will be run on the final system.

The purpose of this work is two-fold. The first objective is to illustrate and analyze trends
over the last decade in the performance of processors, including the Intel and PowerPC families,
when running a variety of codes relevant to military applications. Toward this end, extensive
results are provided from many processors running both synthetic and Image Processing (IP)
benchmarks. The second objective is to illustrate the effectiveness of linear correlation when
estimating the performance of the IP codes for various processor families.

II. BACKGROUND

A large amount of research has been completed in processor performance analysis and
benchmark characterization. Among the more comprehensive studies in the area of benchmark
characterization that have been published recently is a project by Demme and Sethumadhava [1].
In this work, the authors present a methodology for gauging code similarity by comparing basic
blocks within functions. A novelty of this work is that the characteristics they define that are
used for comparison allow for an estimation on a continuous scale of the similarity of codes, as
opposed to solely a determination of whether codes are identical as provided in previous work.
Other studies that are more directly related to this one have considered the question of whether
correlation exists between the performances of different benchmarks on the same processor.
Three studies have used Dhrystone in their experiments, which is of interest since this
benchmark was used in this report. Kainaga et al. provide data and analyses to support the claim
that a linear relationship exists between Dhrystone and the Standard Performance Evaluation
Corporation on the processors studied [2]. However, they offer few details on the systems
studied and limited discussion to support their conclusion. Munafo also makes a case for a linear
relationship between Dhrystone and the Standard Performance Evaluation Corporation
performance by using the results from many processors and a simple calculation from the
geometric mean [3]. Aburto uses linear correlation to investigate a linear relationship between
the two benchmark suites [4], which is related to the approach in this report since linear

2

correlation was employed. However, the key differences are that IP codes are considered rather
than only standard benchmark suites. Also, processors are grouped by architectural design prior
to performing the comparisons, and the processors compared are much newer.

III. METHODOLOGY

The methodology in this report consists of three subsections: an overview of the work,
including the approach taken to run the benchmarks and gather data; an overview of the synthetic
benchmarks and IP codes used for the performance analysis; and characterizations of the various
processors considered.

A. Overview

The overall software benchmarking process was as follows:

 Source code for the benchmark was obtained (IP benchmarks were defined
and written). The exception was the Fast Fourier Transform (FFT)
benchmark. Its available functions had previously been compiled for a
different project and was linked in as a Windows Dynamic Link Library
(DLL).

 The code was compiled for the target machine(s). For example, for Windows
machines, an .exe file was created.

 For the IP benchmarks, an image file consisting of random numbers was
created. This was the standard image file used to input all IP benchmarks. It
consisted of 14-bit unsigned integers and contained 640 columns and 512
rows (327,680 pixels). This corresponds to the maximum image size
envisioned for the next generation of two-color Infrared (IR) sensors.

 For all of the convolution benchmarks, a 3-by-3 pixel kernel file was created.

 Each benchmark executable was emailed to participants, (along with the
standard image and kernel files for the IP and convolution benchmarks) and
any other necessary files (Windows occasionally required DLLs which were
not available on all Windows machines).

 Each participant ran the benchmark. Each benchmark created a data file
which contained the timing results of the run.

 The participant emailed the data file and the particulars of the machine (that
is, Central Processing Unit (CPU) model number, clock speed, operating
system version, Random Access Memory (RAM) size) to the benchmark
coordinator who then compiled the statistics for that benchmark.

Therefore, benchmark statistics were collected on machines ranging from
approximately 10 years to 6 months in age.

3

B. Benchmarks

This section details the software benchmarks which were obtained or written in the
C programming language. These were executed on a number of available machines that were
equipped with a variety of CPUs running either Windows or Linux. The compilers included
Microsoft Visual Studio (Windows machines) or GNU Compiler Collection (Linux machines).
Two classes of benchmarks were executed:

 Classic benchmarks consisted of Dhrystone 2.1 and Whetstone benchmarks.
These were undertaken so that benchmark results quoted by Commercial
Off-The-Shelf (COTS) board manufacturers could be compared to the
processors accessible for this study. Another point of interest was to
investigate whether this information would provide a mechanism which could
estimate the execution times of these codes on other processors.

 IP benchmarks were created by the team to measure CPU performance using
actual IP algorithms.

1. Synthetic Benchmarks

The classic software benchmarks were synthetic benchmarks chosen after
examining a number of manufacturer’s data sheets for board and chip level products. A
synthetic benchmark is a program that, when run on a processing system, provides a score that is
an estimate of the performance of some specific set of applications when run on that same
system. Two examples of synthetic benchmarks are the Whetstone [5] and Dhrystone [6]
benchmarks. The Whetstone benchmark is intended to be used for estimating the performance of
numeric-scientific applications, while the Dhrystone benchmark is designed for the estimation of
systems’ programs. The two benchmarks have traditionally been widely used for performance
evaluation of processing systems. These benchmarks were obtained from Roy Longbottom’s
website [7] and were used to provide some comparative metrics for the systems considered.

This following section provides an overview of the theory and design of the
Whetstone and Dhrystone benchmarks. For each benchmark, there is a description of its
purpose, code structure, metrics produced, how the code structure and metric were chosen,
caveats, and results from the runs.

a. Whetstones

The intent behind the design of the Whetstone benchmark was to provide
an estimate of the performance of numeric-scientific programs. Numeric-scientific programs are
compute-intensive codes containing a variety of operation types, such as integer, floating point,
trigonometric, and others. The designers of the Whetstone benchmark sampled the instruction
frequencies of 949 numeric-scientific programs and used these statistics to create the code.

The Whetstone code consists of a main function that executes eight loops
or modules. Each module is assigned a weight factor, which governs the number of times the
module is executed and was determined using the statistics from the 949 programs sampled. The
benchmark prints results reporting the performance of each module. Three of these results are in

4

megaflops for the floating point-intensive modules and five results are in megaops for the other
modules.

The metric that is most frequently reported with the use of Whetstone is
Millions of Whetstone Instructions Per Second (MWIPS). The history behind the design of the
benchmark reveals that the instruction set of the sampling process was the intermediate code for
the Whetstone system from the 1960s, which is how the benchmark got its name. Each module
in the code is executed a certain number, n1, of iterations. This number of iterations times ten
gives the millions of Whetstone Instructions (that is, instructions for the Whetstone System) to
which the code would compile. The time required to run all the modules on a system is divided
into 10n to give that system’s performance in MWIPS.

In Reference 5, Curnow and Wichmann give some caveats when using the
benchmark to measure performance. The authors state that while the benchmark may provide a
performance estimate for some machine M when running the 949 sample programs, it is not
intended to provide an estimate of other applications when run on M.

“The benchmark program described here has been presented as a model of
the large number of programs originally analyzed. The intention is that by running it upon a new
type of machine one may learn something of the performance the machine would have if it ran
the original programs” [5].

When run on machine M, it would be incorrect to assume that the results
can be used directly to provide insight into the performance of the original codes on some other
machine.

“When more is known … it may be possible to produce a typical program
for particular types of machine. It will clearly be impossible to produce one valid for any
conceivable machine” [5].

A primary reason for these caveats is that subtleties of the system design
as a whole can result in significant differences in performance.

“It may well be true that on the 360/65 the use made by the FORTRAN H
compiler of the general purpose registers was reasonably typical, although it did manage to
perform the whole of module 4 in registers” [5].

Note that these specific caveats should, in general, be taken into
consideration when using benchmarks to measure performance.

b. Dhrystones

The Dhrystone benchmark was designed to provide a performance
estimate of set of systems programs, which are described as programs that “often use
enumeration, record, and pointer data types” [6]. To gather statistics for use in the design of

1 This is represented in the code with the variable xtra.

5

Dhrystone, the authors sampled 16 program suites, including compilers, a very large scale
integration checking program, and a Computer-Aided Design (CAD) tool.

The Dhrystone code consists of a main loop that calls eight procedures,
whose content was selected based on the results of the sampling of the program suites. The loop
iterates n times, which is the number of iterations the system can execute in t time. The duration t
is controlled by the code and set to approximately 2 seconds. The primary metric reported by the
benchmark is Dhrystones per second, which is simply n/t. The result is often normalized to the
performance of a particular Virtual Address eXtension (VAX) machine that was capable of 1757
Dhrystones per second. Hence, the VAX Millions of Instructions Per Second (MIPS) for a
machine is its Dhrystones per second divided by 1,757. The VAX MIPS score is frequently
referred to as Dhrystone Millions of Instructions Per Second (DMIPS). Note that this
terminology is convoluted. “MIPS” mean millions of instructions per second, and the
“instructions” within the VAX MIPS and DMIPS abbreviations don’t correspond to any actual
architecture (it depends on for which architecture the code is compiled). This is contrasted with
MWIPS, where the instruction counts correspond to instructions for the Whetstone architecture.
The name Dhrystone was chosen to allude to Whetstone, which came earlier. This point is very
important when forming an intuition as to the meaning of the terms MWIPS and DMIPS and
interpreting results that use these metrics.

One of the caveats when using Dhrystones is that because of the small
code size, the benchmark may give an unintended advantage to processors with large caches. A
processor with a cache above a certain size may be able to fit all code and data needed for the
benchmark’s execution in the cache, which may drastically reduce execution time.

“Dhrystone's intended ease of implementation, however, has consequences
(e.g., cache influences) that must be taken into account if the program is to be used to compare
different computer architectures or different compilers” [6].

Multiple times Weicker emphasizes that using any benchmark to measure
performance must be done with great care, as there are many subtle factors in system design and
application characteristics that can influence results.

“…there are inherent limitations to any single number (like a benchmark
result) if it is used as the only criterion for the evaluation of processor architectures…” [6].

2. IP

The IP software benchmarks were created to measure execution times of
real-world IP codes. This has several advantages (as compared to extrapolation from classic
benchmarking algorithms) including giving actual execution times (as opposed to an operations
per second rating), accounting for overhead operations typical of IP operations (for example,
computation of indices), and the use of large data sets (as compared to the classic benchmarks)
typical of images. The particular algorithms chosen are typical IP algorithms. Each benchmark
executes its particular algorithm against varying numbers of the pixels in the standard image file.
In that way, any data size dependencies (especially those that might be associated with limited
amounts of cache) might be discovered along with an indication of where (at what data size) they

6

occur. The algorithms were also executed using different numeric representations on available
machines. The algorithms chosen are summarized in Table 1, along with the numeric
representations used for each algorithm in Table 2 and the machines used in Table 3.

Table 1. IP Algorithms Chosen

Algorithm Equation Typical Use
Brightness
Adjust

ܱሺݔ, ሻݕ ൌ ,ݔሺܫ ሻݕ .Lighten or darken image ܭ

Contrast
Adjust

ܱሺݔ, ሻݕ ൌ ܭ ∗ ,ݔሺܫ ሻݕ
Adjust image dynamic
range.

Image
Difference

ܱሺݔ, ሻݕ ൌ ,ݔଵሺܫ ሻݕ െ ,ݔଶሺܫ ሻݕ
Moving Target Indication
(MTI) or detection.

Pixel
Threshold

ܱሺݔ, ሻݕ ൌ 	 ቄ1		݂݅	 ,ݔሺܫ ሻݕ ܭ
݁ݏ݅ݓݎ݄݁ݐ	0

Detection of light or dark
objects.

Image Ratio ܱሺݔ, ሻݕ ൌ ,ݔሺ	ଵܫ /ሻݕ ,ݔଶሺܫ ሻݕ
Reducing clutter for two-
color IR sensing systems.

Convolution
ܱሺݔ, ሻݕ ൌ 	ܫଵሺ݇, ݆ሻ ∗ ଶሺܫ

ଶ

ୀ

ଶ

ୀ

ݔ െ ݇ 2,

ݕ െ ݆ 2ሻ

Filtering of images, pattern
matching, and correlation
processing.

FFT
See the paper “fftw3.pdf” at
http://www.fftw.org/fftw3.pdf.

Conversion from
time/spatial to frequency
domains, typically prior to
applying complex filters.

Conversions N/A
Conversions from integer
data type to float and
double data types.

Note: O(x, y) is an output pixel, I1(x,y) is an input pixel from Image 1 (or a kernel pixel for
Convolution), I2(x,y) is an input pixel from Image 2, and K is a constant.

Table 2. Data Types Used for Each Algorithm in IP Benchmarks

 Data Type
Algorithm Integer (32 bit) Fixed Point Float (32 bit) Double (64 bit)

Brightness Adjust X X
Contrast Adjust X X X
Image Difference X X X
Pixel Threshold X X X
Image Ratio
Convolution X X X X
FFT X X
Conversions
(from integer to …)

 X X

7

Table 3. Summary of Classic Benchmark Data

Processor
Clock Speed

(GHz)
Cores/
Threads

Whets Int
(unoptimized)

Whets Float
(unoptimized)

Dhrystone DMIPS
(optimized)

Operating System Release
Date

Pentium 4 1.8 1/1 491 379 1774 Linux Q1 2002

Pentium 4 (520) 2.8 1/1 1571 1187 2949 Linux Q1 2002

Pentium 4 (550) 3.4 1/2 3439 1304 3734 Windows XP Q2 2004

Cell Broadband Engine 3.2 1/1 239 441 2006 Linux Q1 2005

Pentium D (830) 3 2/2 2511 1148 3617 Windows Vista Q2 2005

Pentium D (830) 3 2/2 2938 1155 3556 Windows XP Q2 2005

PowerPC 970MP 2 2/2 375 942 4396 Linux Q3 2005

AMD Athlon Dual
Core 4400

2.2 2/2 2699 1772 3869 Windows 7 Q3 2005

AMD Athlon Dual
Core 4400

2.2 2/2 1979 1833 6834 Linux Q3 2005

Pentium D (950) 3.4 2/2 2898 1307 3872 Windows 7 Q1 2006

Core 2 Quad 6600 2.4 4/4 3044 1724 4050 Windows 7 Q1 2007

Core 2 Duo E6550 2.33 2/2 4188 2548 5710 Windows XP Q3 2007

Core 2 Duo E6750 2.66 2/2 5124 2911 6543 Windows XP Q3 2007

Core 2 Duo E6750 2.66 2/2 4376 2908 6863 Windows XP Q3 2007

Core 2 Duo E8500 3.16 2/2 5385 3454 7479 Windows Vista Q1 2008

Atom N270 1.6 1/2 755 653 2217 Linux Q2 2008

Core 2 Duo P8400 2.26 2/2 4267 2611 6092 Windows XP Q3 2008

Core 2 Duo T9600 2.8 2/2 5172 3125 6984 Windows 7 Q3 2008

Core 2 Duo P8700 2.53 2/2 4499 2834 6135 Windows XP Q4 2008

Core i7 (620M) 2.67 2/4 5022 3325 7735 Windows 7 Q1 2010

Core i7 (930) 2.8 4/8 5311 3066 8389 Windows 7 Q1 2010

Core i5 (650) 3.2 2/4 5924 3465 9473 Windows 7 Q1 2010

8

The single-threaded benchmarks were written for execution on a single CPU
core. Therefore, they could be executed on both single- and multi-core processors. For
multi-core processors, they give the performance of a single core. Each algorithm is categorized
as simple, moderately complex, or very complex, depending on the computational complexity of
the algorithm and hence its execution time.

The results of the moderately and very complex benchmarks implied that these
algorithms would need to be partitioned and executed on multi-core processors or field
programmable gate arrays if real-time performance was desired. To investigate the speedup
possible with multi-core processors, the simple algorithms were rewritten (the 640-by-512 image
was partitioned into four evenly sized image sections) with each partition assigned to a thread.
Because of a lack of time, these multi-threaded benchmarks were run only on multi-core or
hyperthreaded processors using Microsoft Windows. It was assumed that Windows would
assign each thread to a different core or thread processor.

a. Brightness Adjust

This algorithm takes each pixel in the input image and adds a constant,
producing an output image of the same size which is brighter (or darker if the constant is
negative) than the original image. Since this function is usually used as an intermediate
operation, no check is made to limit pixel values. Mathematically, this function can be expressed
as:

 ܱሺݔ, ሻݕ ൌ ,ݔሺܫ ሻݕ (1) ܭ	

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is
a constant.

b. Contrast Adjust

This algorithm takes each pixel in the input image and multiplies it by a
constant, producing an output image of the same size which has more contrast (or less contrast if
the constant is less than 1) than the original image. Since this function is usually used as an
intermediate operation, no check is made to limit pixel values. Mathematically, this function can
be expressed as:

 ܱሺݔ, ሻݕ ൌ ܭ ∗ ,ݔሺܫ ሻ (2)ݕ

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is
a constant.

c. Image Difference

This algorithm takes two input images of the same size and subtracts each
pixel in Input Image 2 from the corresponding pixel in Input Image 1. This produces an output
image of the same size which represents the difference between the two images. This algorithm
is often used for detecting changes in images created at two different times. Since this function

9

is usually used as an intermediate operation, no check is made to limit pixel values.
Mathematically, this function can be expressed as:

 ܱሺݔ, ሻݕ ൌ ,ݔଵሺܫ ሻݕ െ	ܫଶሺݔ, ሻ (3)ݕ

for all x,y in the Input Images I1 and I2, where O(x, y) is an output pixel, I1(x,y) is an input pixel
from Image 1, and I2(x,y) is an input pixel from Image 2.

d. Threshold Algorithm

This algorithm takes each pixel in the input image and compares it to a
constant. If the pixel value is greater than the threshold value, the value 1 is placed in the
corresponding pixel of the output image. Otherwise, a 0 is placed in the corresponding pixel of
the output image. Mathematically, this function can be expressed as:

 ܱሺݔ, ሻݕ ൌ 	 ቄ1		݂݅		ܫሺݔ, ሻݕ ܭ
								݁ݏ݅ݓݎ݄݁ݐ	0

 (4)

for all x,y in the Input Image I, where O(x, y) is an output pixel, I(x,y) is an input pixel, and K is
a constant.

e. Image Ratio

This algorithm takes two input images of the same size and divides each
pixel in Input Image 1 by the corresponding pixel in Input Image 2. This produces an output
image of the same size which represents the ratio of the pixel values. This algorithm can be used
for reducing clutter in a two-color IR missile sensor. Since this function is usually used as an
intermediate operation, no check is made to limit pixel values. However, to avoid division by 0,
the function adds 1 to every pixel in both input images prior to performing the division. This
simple method avoids the division by 0 problem without significantly affecting the resulting
ratios. Mathematically, this function can be expressed as:

 ܱሺݔ, ሻݕ ൌ ,ݔሺ	ଵܫ ,ݔଶሺܫ	/ሻݕ ሻ (5)ݕ

for all x,y in the Input Images I1 and I2, where O(x, y) is an output pixel, I1(x,y) is an input pixel
from Image 1, and I2(x,y) is an input pixel from Image 2.

f. Convolution

This algorithm takes two input images (typically called input and kernel
images) and convolves them. Convolution is often used for extracting features (such as edges)
from an input image or in filter operations (such as a low-pass noise filter). Also, since
convolution is mathematically very similar to correlation, in certain cases, it can be used as a less
(computationally) expensive alternative to correlation.

The kernel was a constant 3-by-3 pixel image file, so the smallest input
image is also 3-by-3 pixels. Using the 3-by-3 kernel produces an output image of size (C-2)
columns x (R-2) rows, where C and R are the number of columns and rows in the input image,

10

respectively. Despite that this benchmark uses a fixed 3-by-3 kernel, the results are readily
extensible to other sized kernels.

Mathematically, the convolution algorithm as written can be expressed as:

 ܱሺݔ, ሻݕ ൌ 	∑ ∑ ,ଵሺ݇ܫ ݆ሻ ∗ 	 ଶሺܫ
ଶ
ୀ

ଶ
ୀ ݔ െ ݇ 2, ݕ െ ݆ 2ሻ (6)

for all x ≤ (C-2) and y ≤ (R-2) in I2, where O(x, y) is an output pixel, I1(k,j) is a kernel input
pixel, and I2(x-k+2,y-j+2) is a pixel from the Input Image I2.

g. FFT

This algorithm computes the FFT of the input image. The FFT is a basic
signal processing tool that is used in a large number of algorithms. Because of the large amount
of effort and extensive literature concerning efficient computation of the FFT, the team decided
to use a readily available package which does the computation [8]. This package computes the
FFT of input data of arbitrary size using perhaps the most efficient algorithms available. In the
benchmark implementation, subimages of various sizes are extracted from the standard image
and FFT is computed and execution times recorded.

h. Conversion

These algorithms measured the time necessary to convert from the 14-bit
unsigned integer image input data to the float or double data types (both using Institute of
Electrical and Electronics Engineers (IEEE) 754 representations) used in some algorithms. In
these algorithms, each input image pixel is converted to type float or double and placed in the
corresponding location in an output image using the C-type cast.

C. Processors

This work uses numerous processors for experimentation. The processors are
characterized in Table 3, which shows the processors on which the classic benchmarks were run,
and Table 4, which shows the processors on which the IP codes were run. These processors vary
across a number of different dimensions, including release date, clock speed, and number of
cores. Other variables across the processors not shown in the table include microarchitectural
family and cache size. While the Instruction Set Architectures considered included PowerPC
and x86, there were many more x86 machines used. The different x86 microarchitectures
included NetBurst, Core, and Nehalem from Intel and the K7 from Advanced Micro Devices
(AMD). In addition to the varying processor designs, the operating systems run on the
processors varied, as did the compilers used to generate the codes. Table 3 summarizes the
results from the classic benchmarks. Intel defines Thermal Design Power (TDP) as “the
maximum power a processor can draw for a thermally significant period while running
commercially useful software.” Table 4 shows the TDP of each processor, which offers a rough
estimate of the power consumption under normal operating conditions.

11

Table 4. Summary of Machines Using IP Benchmarks

Processor
Clock Speed

(GHz)
Cores/
Threads

Memory
(Gbytes)

TDP (Watts) Operating
System

Launch
Date

Technology
(nm)

Machine
Designator

Pentium 4 1.8 1/1 0.5 68.1 Li Q1 2002 130 Ild

Pentium 4 2.8 1/2 1 84 Li Q1 2002 90 Di3

Pentium 4 (550) 3.4 1/2 1 115 XP Q2 2004 90 GhP4
Cell Broadband
Engine

3.2 1/16 0.207 92 Li Q1 2005 90 Ic

Pentium D (830) 3 2/2 2 130 V Q2 2005 90 B

Pentium D (830) 3 2/2 2 130 XP Q2 2005 90 Hgd

PowerPC 970MP 2 2/2 2 70 Li Q3 2005 90 Dg5
AMD Athlon Dual
Core 4400

2.2 2/2 3 89 W7 Q3 2005 90 Ddbw

AMD Athlon Dual
Core 4400

2.2 2/2 3 89 Li Q3 2005 90 Ddbl

Pentium D (950) 3.4 2/2 2 130 W7 Q1 2006 65 Di1

Core 2 Quad 6600 2.4 4/4 2 105 W7 Q1 2007 65 Di2

Core 2 Duo E6550 2.33 2/2 1.96 65 XP Q3 2007 65 F

Core 2 Duo E6750 2.66 2/2 3.25 65 XP Q3 2007 65 Cd

Core 2 Duo E6750 2.66 2/2 3.25 65 XP Q3 2007 65 Gg

Core 2 Duo E8500 3.16 2/2 4 65 V Q1 2008 45 J1

Atom N270 1.6 1/2 1 2.5 Li Q2 2008 45 Da

Core 2 Duo P8400 2.26 2/2 2 25 XP Q3 2008 45 A

Core 2 Duo T9600 2.8 2/2 8 35 W7 Q3 2008 45 Ghl

Core 2 Duo P8700 2.53 2/2 2 25 XP Q4 2008 45 M

Core i7 (620M) 2.67 2/4 8 35 W7 Q1 2010 32 Iw

Core i7 (930) 2.8 4/8 9 130 W7 Q1 2010 45 Ghi7

Core i5 (650) 3.2 2/4 4 73 W7 Q1 2010 32 J2

12

IV. PERFORMANCE RESULTS

This section presents the results from the experiments along with discussions of these
results. The first section gives consideration to the results from the synthetic benchmarks in both
graphical and tabular form, while the second section gives the results from the IP codes. Each
section gives a discussion of important trends in these results, followed by a summary of the
conclusions drawn from them.

A. Synthetic Benchmarks

Figure 1 shows a graphical summary of the results from the synthetic benchmarks
with the processors ordered by release date. Certain characteristics, such as processor family and
clock rate, are highlighted for various processors to facilitate easier recognition of trends in the
graph. Table 5 shows the results from these experiments but with further detail for each of the
processors used, including clock speed, number of cores, number of threads, and total memory.

Figure 1. Classic Benchmark Results

13

Table 5. Classic Benchmark Results (Larger Numbers Indicate Better Performance)

Measured Data

Processor

Clock
Speed
(GHz)

Cores/
Threads

Memory
(Gbytes)

Dhrystone
DMIPS

(optimized)
Whets Int

(unoptimized)
Whets Float

(unoptimized)
Pentium 4 1.8 1/1 0.5 1774 491 379

Pentium 4 2.8 1/2 1 2949 1571 1187

Pentium 4 (550) 3.4 1/2 1 3734 3439 1304
Cell Broadband
Engine

3.2 1/1 0.207 2006 239 441

Pentium D (830) 3 2/2 2 3617 2511 1148

Pentium D (830) 3 2/2 2 3556 2938 1155

PowerPC 970MP 2 2/2 2 4396 375 942

AMD Athlon Dual
Core 4400

2.2 2/2 3 3869 2699 1772

AMD Athlon Dual
Core 4400

2.2 2/2 3 6834 1979 1833

Pentium D (950) 3.4 2/2 2 3872 2898 1307

Core 2 Quad 6600 2.4 4/4 2 4050 3044 1724

Core 2 Duo E6550 2.33 2/2 1.96 5710 4188 2548

Core 2 Duo E6750 2.66 2/2 3.25 6543 5124 2911

Core 2 Duo E6750 2.66 2/2 3.25 6863 4376 2908

Core 2 Duo E8500 3.16 2/2 4 7479 5385 3454

Atom N270 1.6 1/2 1 2217 755 653

Core 2 Duo P8400 2.26 2/2 2 6092 4267 2611

Core 2 Duo T9600 2.8 2/2 8 6984 5172 3125

Core 2 Duo P8700 2.53 2/2 2 6135 4499 2834

Core i7 (620M) 2.67 2/4 8 7735 5022 3325

Core i7 (930) 2.8 4/8 9 8389 5311 3066

Core i5 (650) 3.2 2/4 4 9473 5924 3465

14

The first noteworthy point about the results is that although there is a general trend of
increasing performance with release date, there are clear exceptions to this trend. While some
exceptions have straightforward explanations, the reasons for these exceptions may not be
immediately obvious. An example of a simple explanation is the Atom N270, which was
released in the second quarter of 2008 but showed a lower performance than the Pentium 4 that
was released more than 6 years earlier. The Atom family of processors was designed for mobile
devices with low power as a primary design constraint. In general, processors trade power for
performance. The Atom has the lowest TDP by a large margin among the processors considered.
Its TDP is 2.5 watts, and the next lowest power processors (the Core 2 Duo P8400 and the
Core 2 Duo P8700) have TDPs of 10 times that. Note that performance does not always increase
with TDP, even within a processor family. The Core i5 has a TDP of 73 watts but outperforms
the Core i7 that has a TDP of 130 watts on all classic benchmarks although both are Nehalem-
based processors. Other cases are more difficult to explain, such as the relative performance of
the Pentium D 830 and the Pentium 4 550. The Pentium D 830 has a higher TDP and is newer
than the Pentium 4 550, but the Pentium 4 550 outperformed it on all benchmarks. Note that a
higher clock rate does not always translate into better performances across processor families.
The data show that performance generally follows clock rate, but there are exceptions such as the
Core 2 Duo E6550 running at 2.33 gigahertz and the Core 2 Duo P8400 running at 2.26
gigahertz, with the latter outperforming the former on all benchmarks.

Another point worth considering is that while the data reflect that multi-core
processors have become more prominent in recent years, performance does not always improve
with increased cores. The Core 2 Quad 6600 is a processor with four cores but is outperformed
on all benchmarks by all of the dual-core processors in subsequent years. It is even
outperformed by one of the single-core processors on one benchmark from a previous year (the
Pentium 4 550 running Integer Whets). These benchmarks were not implemented to utilize
multiple cores, and since the team ran them with negligible loads on other cores (other than the
core running the benchmark itself)2, performance was primarily a function of design parameters
rather than the number of cores (such as design of individual cores, cache size, cache controller
design, and so forth).

This previous point explains, to some extent, why multiple cores do not necessarily
translate into higher performance. However, there is a general trend of increasing performance
with later release dates which warrants further consideration. Note that the newer processors
tend to have larger caches. The oldest processor considered (a Pentium 4) has at most a
256 kilobyte L2 cache, while the newer Core i7 930 has an 8 megabyte L3 cache. Although this
may be a first consideration for explaining performance increases for data-intensive applications,
Whetstones and Dhrystones are relatively small codes with small working sets that can most
likely fit into the older processors’ caches. However, the speed of these caches and other
components outside of the processing logic could definitely come into play because the codes
cause activity in these components, such as during compulsory cache misses that are included in
the timing data. Other components that have likely improved with newer processors that could
have an effect on performance are branch predictor accuracy, number of functional units per

2 The operating system is running in the background, and its utilization of the processor can vary widely. It is
assumed that the load that the operating system places on the processor is negligible, although this may be an
inaccurate assumption for more in-depth discussions.

15

core, and instruction scheduling hardware and configuration. A route for getting a clearer
answer on what are the biggest factors which are effecting performance within and across
processor families would be profiling and simulation-based analyses.

A final point is that there are other factors that are independent of the processor that
have effects on performance. Other factors that may come into play are the operating systems,
libraries, run-time instrumentation, and software build options. To consider the first of these, the
benchmarks were run on a machine (the AMD Athlon Dual Core 4400) with both Windows 7
and Ubuntu Linux installed. The results show that even though the benchmarks were run on the
same processor, performance under different operating systems varied. The use of Linux over
Windows 7 resulted in a significant increase in performance for Dhrystone (a 77-percent
improvement). On the other hand, Windows 7 outperformed Linux on Integer Whets (a 36-
percent improvement). They performed about the same on Float Whets. Note that different
compilers were used for different operating systems (Visual Studio for Windows and GNU
Complier Collection for Linux), so further study would be needed to determine which factors
contributed primarily to the disparity in performance. These results reveal that other components
besides the processor and application can have significant effects on performance.

To summarize the important observations from this data:

 The overall trend indicates newer processors have larger ratings (are faster).

 In most cases, the ratings appear to be correlated. When comparing two
processors, if processor A has a higher Dhrystone rating than processor B,
then usually the Whetstone ratings for processor A will also be higher than
that of processor B. This is especially true for newer processors whose launch
date is the first quarter of 2007 and later. However, there are exceptions to
this. The Core i7 620M has a higher Whet Float rating than the Core i7 930,
but the Core i7 930 outperformed the Core i7 620M on Dhrystones.

 When comparing the performance of newer processors (launch date is the first
quarter of 2007 and later), it appears that Dhrystone performance has
continued to improve with time, but Whetstone performance has improved at
a slower rate.

 The AMD Athlon Dual Core processor is a dual-boot machine whose
benchmarks were compiled under Linux (GNU compiler) and Microsoft
Visual Studio version 8. The results give an interesting view into the role of
the compiler and/or operating system in use. The Float Whets for both are
almost identical, but the integer performance is significantly higher
(2,699 versus 1,979) for the Visual Studio 8 compilation run under
Windows 7. However, the Dhrystone performance is significantly higher
(6,834 versus 3,869) for the GNU compiler run under Linux.

16

B. Image Processing Kernels

The IP kernels are split into three categories: simple, moderately complex, and very
complex. The simple kernels in general consist of a simple loop containing a primitive operation
that takes as input pixels from one or two images. The moderately complex codes consist of
either a more computationally expensive operation (such as ratio), a more complex data type
(such as single-precision floating point numbers), or an algorithm of higher order complexity
(such as FFT). The very complex kernels include the FFT with double-precision floating point,
along with other codes implementing higher-complexity algorithms. The simple codes were
implemented with multi-threading.

The following graphs plot execution time. Note that a lower value indicates better
performance. The overall trends in these results look in some ways similar to those for the
synthetic benchmarks, which suggest that there may be correlations between the two. We
consider this question in detail in the next section. As with the synthetic kernels, it is difficult to
make any generalizations about correlations between performance and processor characteristics.
For example, it is clear that neither clock rate nor number of cores imply better performance.
Also, the results suggest that other factors, such as operating system or compiler used, can have a
non-negligible impact on performance.

1. Single-Threaded “Simple” Results

Several interesting trends are shown in Figure 2:

 Better performance (lower execution time) is available from newer
processors, despite that clock rates for the newer processors are not
generally higher than many older processors. Remember that these
numbers are for single-threaded benchmarks and therefore do not take
advantage of multi-core or multi-threaded CPUs. It is likely that the
newer processors (having more transistors according to Moore’s law)
have architectural improvements that translate into better performance.

 Within a particular family, faster clock rates generally—but not
always—translate into better performance.

 Again, processors designed for low power applications (for example, the
Pentium M and Atom processors designed specifically for laptops)
sacrifice computing performance to achieve their low power attributes.

 The cell processor is an interesting combination of a 64-bit PowerPC
core with eight Synergistic Processing Elements (SPEs) [10]. Because
of the single-threaded nature of the benchmarks, the SPEs are inactive.
The poor performance of the PowerPC core within the cell implies that
the designers used the available chip area (that is, available transistors)
to implement the SPEs as opposed to using them for architectural
enhancements to the PowerPC core.

17

 For most of these simple algorithms, most of the newer processor
families (Core 2, Core i5, and Core i7) can execute the algorithms in
under 0.5 milliseconds. This implies essentially real-time processing of
a video frame (at the given 2.0 millisecond frame time) with less than a
50-percent processor loading.

 Floating point performance of most of the processors rivals that of
integer and fixed point operations.

Figure 2. Results for Single-Threaded “Simple” Benchmarks

2. Single-Threaded “Moderately Complex” Results

Figure 3 shows a plot of execution times for various “moderately complex,”
single-threaded benchmarks, which includes information on the processors and their release
dates. Many of the previously noted trends are apparent but with the following important
exception: algorithms of this complexity will generally not execute within the image frame time
(2.0 milliseconds) on a single core. However, recently released dual- and quad-core processors
may be able to execute them in time if the algorithm can be efficiently partitioned among the
cores. This was the impetus behind the creation of the multi-threaded benchmarks discussed in
following sections of this report.

18

Figure 3. Results for Single-Threaded “Moderately Complex” Benchmarks

3. Single-Threaded “Very Complex” Results

Figure 4 shows a plot of execution times for various “very complex”
single-threaded benchmarks, including information on processors and their release dates. Many
of the trends previously noted are again apparent, but it is clear that algorithms of this
complexity will certainly not execute within the image frame time (2.0 milliseconds) on a single
core. Execution of these algorithms in real time will require the full resources of a quad-core
processor or a specialized processing engine such as a field programmable gate array.

19

Figure 4. Results for Single-Threaded “Very Complex” Benchmarks

4. Multi-Threaded Results

Figure 5 shows the results from the multi-threaded implementations of the
simple benchmarks, and it gives both the average performance for the single-threaded
implementation and multi-threaded implementations of the codes to offer an easy comparison.
Clearly, the optimal speedup was not often obtained. One possible explanation was that this was
an artifact of the Windows scheduling algorithm. These results make clear that careful algorithm
partitioning and control over thread-to-processor assignments are critical to achieve speedups
close to the theoretical maximums. Balancing the per-processor load is not trivial and will
require a talented and knowledgeable software team.

0.0E+00

5.0E‐03

1.0E‐02

1.5E‐02

2.0E‐02

2.5E‐02

3.0E‐02

3.5E‐02

4.0E‐02

4.5E‐02
Ex
e
cu
ti
o
n
 T
im

e
 (S
e
c)

Launch Date

FFT (dbl)

Convolution (int)

Convolution (Fxd Pt)

Convolution (flt)

NUC (flt)

0.080109 0.0409454

2.
8

G
H

z
(W

7)

2.
26

 G
H

z
(X

P
)

2.
53

 G
H

z
(X

P
)

2.
66

G
H

z
(X

P
)

2.
66

 G
H

z
(X

P
)

2.
33

 G
H

z
(X

P
)

Pentium D
3.4 GHz (W7)

AMD Athlon
Dual Core

1.
8

G
H

z
(L

i)

2.
8

G
H

z
(L

i)

3.
4

G
H

z
(X

P
)

3
G

H
z

(V
)

3
G

H
z

(X
P

)

2.
2

G
H

z
(W

7)

2.
2

G
H

z
(L

i)

2.
8

G
H

z
(W

7)

Core
i7

Core 2
Duo

Atom
N270

1.6 GHz (Li)

Core 2 Quad
2.4 GHz (W7)

3.
16

 G
H

z
(V

)

Core 2
Duo

2.
67

 G
H

z
(W

7)

Core
i5

Dual,
3.2

GHz
(W7)

PPC970MP
2.0 GHz (Li)

Pentium D

Cell
3.2 GHz (Li)

Pentium 4

20

Figure 5. Results for Multi-Threaded Benchmarks

V. PREDICTING IMAGE PROCESSING PERFORMANCE WITH SYNTHETIC
RESULTS USING LINEAR REGRESSION

This section disscusses performance results from the various applications and provides an
in-depth analysis of the data to answer questions regarding the estimation of the performance of
the IP codes. Graphs showing the results for the IP codes versus image size form the basis for
the discussions. A model of the performance of the processors within a given family when
running the IP codes through multiple regression is given. The conclusions consider the question
of whether there are relationships between trends in the performance of the IP applications with
respect to this regression model and the synthetic benchmarks.

This section considers whether the IP code execution time on a particular processor could
be expressed as a function of four variables:

 The execution time of the Whetstone for the processor
 The execution time of Dhrystone for the processor
 The number of pixels in the image being processed
 The family in which the processor falls3

An equation is generated for each processor family for estimating the execution time of IP
codes. Multiple regression was used with Whetstone execution time, Dhrystone execution time,

3 “Family” refers to the processor’s microarchitectural family.

0.0E+00

5.0E‐04

1.0E‐03

1.5E‐03

2.0E‐03

2.5E‐03

Q4'04 Q2'05 Q2'05 Q3'05 Q1'06 Q1'07 Q3'07 Q3'07 Q3'07 Q3'07 Q1'08 Q3'08 Q3'08 Q4'08 Q1'10 Q1'10 Q1'10

Pentium 4
1 Core/ 2 Threads

3
G

H
z

(V
)

3
G

H
z

(X
P

)

Pentium D
2 Cores/ 2 Threads

AMD Athlon
Dual Core

2 Core/ 2 Threads

2.
2

G
H

z
(W

7)

Pentium D
3.4 GHz (W7)
2 Core/ 2 Threads

Core 2 Quad
2.4 GHz (W7)

4 Core/ 4 Threads Core 2 Duo
2 Cores/ 2Threads

2.
66

G
H

z
(X

P
)

2.
66

 G
H

z
(X

P
)

2.
33

 G
H

z
(V

)

3.
16

 G
H

z
(V

)

2.
33

 G
H

z
(X

P
) 2.

8
G

H
z

(W
7)

2.
26

 G
H

z
(X

P
)

2.
53

 G
H

z
(X

P
)

2.
67

 G
H

z
(W

7)
2

C
o

re
s/

 4
 T

h
re

ad
s

2.
8

G
H

z
(W

7)
4

C
o

re
s/

 8
 T

h
re

ad
s

3.
2

G
H

z
(W

7)

Core
i7

Core i5
2 Cores/ 4 Threads

 Simple Image Processing
Benchmark Average

 Multithread Image Processing
Benchmark Average

– Max/Min

Processor Launch Date

S
im

p
le

 B
en

ch
m

ar
k

T
im

es
 A

ve
ra

g
ed

 (
S

ec
)

3.
4

G
H

z
(X

P
)

21

and number of image pixels as independent variables to generate a linear approximation for each
processor family for various IP codes. In the following equations, the variable tx_y represents an
estimate of the execution time (in seconds) for application x when run on a processor in family y.
The codes considered are brightness with integer data (BI); contrast with fixed point data (CF);
and threshold with single-precision, floating-point data (TH). The processors considered are
from three families of Intel processors: NetBurst, Core, and Nehalem. The W is the average time
(in milliseconds) per loop for the Whetstone benchmark for the processor, the D is the average
time (in milliseconds) per loop for the processor, and the p is the number of pixels in the image
being processed4.

ூ_ே௧௨௦௧ݐ ൌ 	െ1.72910ିݔଷ 10ିହݔ5.601 ∗ ܹ 4.429 ∗ ܦ 10ିଽݔ3.320 ∗ (7)

ூ_ݐ ൌ 	െ1.21010ିݔସ 10ିହݔ2.715 ∗ ܹ െ 10ିଵݔ8.470 ∗ ܦ 10ିଵݔ9.115 ∗ (8)

ூ_ேݐ ൌ 	െ1.62010ିݔସ 10ିହݔ3.973 ∗ ܹ െ 1.065 ∗ ܦ െ 10ିଽݔ1.096 ∗ (9)

ி_ே௧௨௧ݐ ൌ 	െ1.50310ିݔଷ 10ିହݔ4.736 ∗ ܹ 3.831 ∗ ܦ 10ିଽݔ3.434 ∗ (10)

ி_ݐ ൌ 	െ1.40210ିݔସ 10ିହݔ4.093 ∗ ܹ െ 1.469 ∗ ܦ 10ିଵݔ9.865 ∗ (11)

ி_ேݐ ൌ 	െ1.46810ିݔସ 10ିହݔ4.313 ∗ ܹ െ 1.442 ∗ ܦ 10ିଽݔ1.086 ∗ (12)

ு_ே௧௨௦௧்ݐ ൌ 	െ1.57710ିݔଷ 10ିହݔ6.449 ∗ ܹ 10ିଵݔ2.732 ∗ ܦ 10ି଼ݔ1.400 ∗ (13)

ு_்ݐ ൌ 	െ8.66210ିݔସ 10ିସݔ1.628 ∗ ܹ െ 4.536 ∗ ܦ 10ିଽݔ7.101 ∗ (14)

ு_ே்ݐ ൌ 	െ2.38010ିସ 10ିହݔ2.689 ∗ ܹ 10ିଵݔ1.634 ∗ ܦ 10ିଽݔ1.830 ∗ (15)

Figures 6 though 14 show the execution time of each of the processors for the different IP
codes versus image size in number of pixels. The legend for each chart shows the average time
per loop for Whetstone and Dhrystone for each processor. The graphs also show lines generated
from the previous equations for each processor. These lines represent approximations of the
actual performance curves. Note that only a portion of these lines are shown to make the graphs
more readable because it is straightforward to mentally extrapolate the lines back to the Y-axis
and out to the right edge of the graph.

4 The time per loop for the Whetstone and Dhrystone benchmarks can be calculated from the scores from each
benchmark and is inversely proportional to these scores.

22

Figure 6. Brightness, Integer (NetBurst Family)

Figure 7. Brightness, Integer (Core Family)

23

Figure 8. Brightness, Integer (Nehalem Family)

Figure 9. Contrast, Fixed Point (NetBurst Family)

24

Figure 10. Contrast, Fixed Point (Core Family)

Figure 11. Contrast, Fixed Point (Nehalem Family)

25

Figure 12. Threshold, Single Precision Floating Point (NetBurst Family)

Figure 13. Threshold, Single Precision Floating Point (Core Family)

26

Figure 14. Threshold, Single Precision Floating Point (Nehalem Family)

The first objective is to determine a method for using the quantities available to draw
conclusions about the relative performance of processors within a family.

The question is whether the execution times of the IP codes for different processors within
a family monotonically increase with respect to Whetstone execution time, Dhrystone execution
time, and the value of the estimation function.

To determine whether the execution time of an IP code is increasing monotonically with
respect to another quantity, there must first be an ordering of IP code execution times for a group
of processors. Consider Figure 6, for example. For the NetBurst family of processors, it is fairly
clear that for larger image sizes, there is a clear ordering of processors in terms of performance
(since the data for the Pentium D 830s showed similar results, the average of the points are taken
along this line and considered a single case for the purposes of this discussion). For instance, the
Pentium 4 550 shows the worst performance, the Pentium D 830 shows the next worst
performance, and the Pentium D 950 performed the best. Based on this data, the performance of
the Brightness Integer is not, strictly speaking, monotonically increasing with respect to
Whetstone. The Pentium 4 550 performed the worst on the Brightness Integer; however, one of
the Pentium D 830s performed the worst on Whetstone. Neither were the Brightness Integer
results monotonically increasing with respect to Dhrystone, as the Pentium D 950 performed the
best on the Brightness Integer, but the same Pentium D that showed the poorest Whetstone
performance showed the best Dhrystone performance. However, assuming that these data points
for the Pentium D 830 were anomalous, then the monotonic relationship does hold. The graph
shows that the Brightness Integer results are monotonically increasing with respect to the
estimation function (the estimation functions coalesced the two Pentium Ds into a single curve).
However, this pertains only to only large image sizes. If the image were zoomed in on the left
side of the graph, the data might exhibit different characteristics. The results in Figure 9
showing contrast fixed points for the NetBurst are similar to the results in Figure 6. Hence,
similar conclusions can be drawn about those processors and their performance with these
applications.

27

In the other graphs, other complexities arise. For example, while the data in Figures 6 and
9 can be easily divided into two sections for which at least one of those sections has a clear
ordering of processors in terms of performance, other graphs cannot be so easily divided in this
manner. Figure 7 shows how the Core 2 Duo P8400 changes in its ranking at least twice as
image size increases. For medium size images, in general, the bottom three performing
processors—starting with the worst—are the Core 2 Duo T7600, the Core 2 Duo R6550, and the
Core 2 Duo P8400. However, for the largest image sizes, the P8400 drops below the
performance of the other two for many image sizes, including the largest size. Hence, ordering
relationships must be given with respect to specific image sizes. However, it is clear that the
Brightness Integer performance is not monotonically increasing with respect to Whetstone or
Dhrystone for any case on the right half of the graph. The R6550 performed the worst on
Whetstone and Dhrystone; however, it did not perform the worst on the Brightness Integer for
medium and large image sizes. The estimation function appears to be a better ordering for most
image sizes, but it is not always correct. For example, for the largest image size, the P8400
performed the worst, whereas the estimation function reports that the T7600 was the worst.
Several other graphs present this difficulty—to varying degrees—of changing rankings of
processors as image size changes: Brightness Integer for Nehalem, Contrast Fixed Point for
Core, Contrast Fixed Point for Nehalem, and Threshold for Nehalem. However, some of these
cases could be remedied by the application of a noise reduction filter.

Another perspective on evaluating the estimation functions is their relative error. It is clear
that because non-linear performance curves are being fit with linear functions, the error may vary
widely. This is indeed the case for some image sizes. For large and small images, the error is
generally larger. However, for the middle-size images, there are some cases for which the fit is
quite good. Note that the accuracy of the fit also depends on which processor is considered. For
example, the Core 2 Duo R6550 is a much flatter curve, especially for the Brightness Integer,
and as a result it is a much better candidate for approximation with a linear function.

A point of interest in future work will be to attempt to fit the curves with non-linear or
piece-wise functions. It is likely that a more accurate fit exists for a particular algorithm if it is
determined that the algorithm is normally used only on a restricted range of image sizes.
Another task for future work is to determine if these approaches will predict the performance of
future processors. Although the approach shows promise within a family, its usefulness across
families is an open question. The processors in the Core family generally outperformed the
Nehalem. The current models do not have a method for taking into account how major
differences between microarchitectural designs will affect performance.

VI. CONCLUSIONS AND RECOMMENDATIONS

Classic benchmarks (Dhrystones and Whetstones) are, in some cases, good processor speed
comparison tools. In many cases, their results mapped well into the results of the real-world
imaging algorithms that were discussed in this report. Higher Dhrystone and Whetstone results
often mapped well into smaller execution times for IP codes. However, they are not good tools
for estimating the execution time of real-world algorithms. Note that these benchmarks are valid
comparison tools only if these guidelines are followed:

28

 The same compiler is used for each processor.

 The same optimization parameters are used during the compile process.

 If possible, we highly recommend using the same executable on each processor to
be compared.

If good timing information is required for a given code, it is highly recommended that the
execution time for that code be measured on the processor it will reside on. It is likely that
Moore’s Law will continue to provide designers with more transistors for new processor designs,
and it is likely that this will result in more processors per chip. Programming these devices to
get maximum throughput will require careful algorithm partitioning and control over thread-to-
processor assignment. Balancing the per-processor load is not trivial and will require a talented
and knowledgeable software team.

From classic benchmark (Dhrystone and Whetstone) data, the following was observed:

 The overall trend indicates that newer processors have larger ratings and are faster.

 In most (but not all) cases, the ratings appear to be correlated. In comparing two
processors, if processor A has a higher Dhrystone rating than processor B, then
usually the Whetstone ratings for processor A will also be higher than that of
processor B. This is especially true for newer processors whose launch dates are
the first quarter of 2007 and later.

 In comparing the performance of newer processors (launch dates that are in the first
quarter of 2007 and later), it appears that Dhrystone performance has continued to
improve with time, but Whetstone performance has improved at a slower rate.

 The AMD Athlon dual-core processor is a dual-boot machine where benchmarks
were compiled under Linux (GNU compiler) and Microsoft Visual Studio Version
8. The results give an interesting view into the role of the compiler and/or
operating system in use. The Float Whets for both are almost identical, but the
integer performance is significantly higher (2699 versus 1979) for the Visual Studio
8 compilation run under Windows 7. However, the Dhrystone performance is
significantly higher (6834 versus 3869) for the GNU compiler run under Linux.

From the IP benchmark data, the following was observed:

 Within a particular family, faster clock rates usually translate into a better
performance.

 Processors designed for low power applications (for example, the Pentium M and
Atom processors designed specifically for battery operated netbook and notebook
computers) sacrifice computing performance to achieve their low power attributes.

29/30 (Blank)

 Modern (the third quarter of 2007 and newer) dual- and quad-core processors are
capable of executing the full-frame (640-by-512 pixels), “simple” IP algorithms
provided in real time (less than 2.0 milliseconds) on a single processor. Some of
these processors (especially some in the Core 2 Duo family) dissipate power low
enough to make them candidates for incorporation into military systems using 3U
size cards.

 Modern dual- and quad-core processors appear capable of executing moderately
complex full-frame IP algorithms given here in real time but will likely require the
full resources of the processors.

 Modern quad-core processors appear capable of executing “very complex”
full-frame IP algorithms given in real time but will likely require the full resources
of all four cores. Given the electrical power required for these processors, this does
not appear to be a good solution.

 Most modern processors appear to be quite capable of processing small subimage
areas for the complex tasks given here. For example, the convolution of an
18-by-18 image using a 3-by-3 kernel can be done on the low power Core 2 Duo
P8400 in 11.1 milliseconds on a single core. This implies that many complex tasks,
such as tracking potential targets after they have been separated from clutter, can be
accomplished in real time by modern processors.

 Floating point performance of many processors rivals that of integer and fixed point
operations.

 For some (dual-core) processors, there were some experiments showing speedups
nearly equal to the number of cores. However, in general this was not the case and
we were not able to achieve a speedup near four for any of the quad-core
processors.

Observations from the attempts to use classic benchmark data to predict IP execution times
included in the following:

 Measured IP benchmark execution times and predicted (using classic benchmark
data) IP benchmark execution times were often highly correlated for modern
processors (those with a launch date of the first quarter of 2007 or earlier) but less
so for older processors.

 Because of the nonlinear nature of some of the performance plots shown in Figures
6 through 14, it is likely that better fits could be obtained with a nonlinear curve fit.

Given the observed data, in general, it is not possible to reliably and accurately predict IP
execution times with only Dhrystone and/or Whetstone performance data.

31

REFERENCES

1. Demme, J. and Sethumadhavan, S., “Approximate Graph Clustering for Program
Characterization,” ACM Transactions on Architecture and Code Optimization, Volume 8,
New York, NY, January 2012.

2. Kainaga, M.; Yamada, K.; and Inayoshi, H., “Analysis of Spec Benchmark Programs,”
TRON Project Symposium Proceedings, pp. 208 –215, November 1991.

3. Munafo, R., “The SPEC Benchmarks,” June 2012,
http://mrob.com/pub/comp/benchmarks/spec.html

4. Aburto, A., “Geometric Mean or Median,” June 2012,
http://groups.google.com/group/comp.benchmarks/msg/728793aebd69097b?pli=1

5. Curnow, B. A. and Wichmann, H. J. “A Synthetic Benchmark,” Computer Journal,
Volume 19, pp. 43-49, 1976.

6. Weicker, R. P., “Dhrystone: A Synthetic Systems Programming Benchmark,” Computing
Practices, Volume 27, pp. 1013-1030, 1984.

7. Longbottom, Roy, “Roy Longbottom’s PC Benchmark Collection,” June 2012,
http://homepage.virgin.net/roy.longbottom/index.htm

8. Frigo, Matteo, and Johnson, Steven G., FFTW.org Home Page, FFTW, June 2012,
http://www.fftw.org/

9. “Measuring Processor Power,” June 2012,
http://www.intel.com/content/www/us/en/benchmarks/resources-xeon-measuring-
processor-power-paper.html?wapkw=tdp

10. Wikipedia, “Cell (Microprocessor),” October 2011,
http://en.wikipedia.org/wiki/Cell_(microprocessor)

32

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

Number

AMD Advanced Micro Devices

Avg Average

CAD Computer-Aided Design

CD Compact Disk

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

Dhry Dhrystone

DMIPS Dhyrstone Millions Of Instruction Per Second

DLL Dynamic Link Library

FFT Fast Fourier Transform

Gbyte gigabyte

GHz gigahertz

IEEE Institute of Electrical and Electronics Engineers

INT Integer

IP Image Processing

IR Infrared

ISA Instruction Set Architecture

Li Linux

MIPS Millions of Instructions Per Second

ms millisecond

MWIPS Millions of Whetstone Instructions Per Second

N/A Not Applicable

nm nanometer

ns nanosecond

PC Personal Computer

Q Quarter

RAM Random Access Memory

SPE Synergistic Processing Element

TDP Thermal Design Power

V Vista

33

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS (CONCLUDED)

VAX Virtual Address eXtension

vs. versus

W7 Windows 7

Whet Whetstone

Dist-1/Dist-2 (Blank)

INITIAL DISTRIBUTION LIST

 Copies
Weapon Systems Technology Ms. Gina Nash Electronic
Information Analysis Center gnash@alionscience.com
Alion Science and Technology
201 Mill Street
Rome, NY 13440

Defense Technical Information Center Mr. Jack L. Rike Electronic
8725 John J. Kingman Rd., Suite 0944 jrike@dtic.mil
Fort Belvoir, VA 22060-6218

AMSAM-L Ms. Anne C. Lanteigne Electronic
 hay.k.lanteigne.civ@mail.mil
 Mr. Michael K. Gray Electronic
 michael.k.gray7.civ@mail.mil

RDMR Electronic

RDMR-CSI Electronic

RDMR-WDG-C Mr. Kenneth W. Pruitt Electronic
 kenneth.w.pruitt2.civ@mail.mil
 Dr. Patrick A. La Fratta Electronic/Hardcopy
 patrick.a.lafratta.civ@mail.mil

	Untitled

