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1. Summary 
The META language and tool flow has been developed to support model-based, component-centric 
development of complex cyber-physical systems.  This report describes the basic concepts driving the 
approach, the language implementation, and the tools developed to implement the design flow.   

The overall process is described, showing how components are used in a successive refinement of 
design spaces to converge upon a set of feasible designs.  The core concepts and semantic foundations 
of the language are described, along with an overview of the language.   Design space exploration is 
presented as implemented in the DESERT tool.  Composition of models to supported analysis tools is 
described, along with the concept of executable requirements in the form of Test Benches. 

Mechanisms to support multi-fidelity/multi-abstraction representation and analysis of system models 
are described, along with the tools implementing the balance between accuracy and cost of 
computations.  Analysis of system dynamics using Modelica and Bond Graphs is described for lumped 
parameter analysis.  Geometric analysis tools using automated analysis of CAD models are described, 
along with analysis using Finite Element Methods. 

 An overall execution infrastructure was developed to manage execution of computationally intensive 
analyses on parallel computers, along with visualization techniques.  Verification methods are described. 

Finally, experiences using the tools in FANG and the user threads are described. 
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2. Introduction 
The META-X Toolset has been developed to support component-based design of complex cyberphysical 
systems. These systems include military vehicles, as exemplified by the systems defined by the 
requirements for the Fast Adaptable Next-Generation Ground Vehicle (FANG) Competition. 

The tools implement a set of concepts formulated under the META and AVM program to dramatically 
reduce the cost and schedule required to achieve the first limited production of a target vehicle. The 
primary concepts are: 

• Component-Based Design is defined as a deep, complete set of components being developed via 
the C2M2L program, to include full, multi-domain, producible components. The components 
are, by design, composable to produce subsystems and systems that can be analyzed, simulated, 
assembled in 3D, and verified. 

• Domain-Specific Modeling Languages (DSML) and modeling tools (developed outside this SOW) 
to support construction of designs and design spaces to represent cyberphysical systems in 
terms of architectures of interconnected components, multi-physical interactions, and multi-
dimensional spaces of design options. As there are three primary options for META-X tools and 
design data need to be communicated with the AVM manufacturing tools, an interchange 
format has been defined to support translation of designs and components between vendors. 

• Design flow tools, to support composition of the component-based designs for a variety of 
analyses, including: 

o Constraint-based design space exploration, 
o Dynamics simulation,  
o 3D structural/thermal analysis with finite element analysis (FEA). 

• Leverage off-the-shelf open source and commercial tools.  
• Support scoring of designs by computing Key Performance Parameters on the system and 

scoring designs against requirements and stakeholder preferences (via MAUF). 
• Complexity analysis tools help the designer rapidly assess the structural and parametric 

complexity of the design, providing comparison of architectures for future developmental 
success. Lower complexity leads to less design effort, reduced risk, and fewer unintended 
problems. 

• Verification tools help to identify potential problems prior to build. Multiple approaches are 
being applied to system verification, ensuring scalability and coverage. Qualitative and 
Relational abstractions are used to explore system behavior. Probabilistic state machines are 
used for evaluation of potential system faults and culprit analysis. Probabilistic verification 
techniques are used to create a Probabilistic Certificate of Correctness, identifying the impact of 
component property variation on the ability of the system to meet requirements. The PCC is 
intended to help reduce the level of testing needed to establish confidence in delivered system 
performance. 

• Manufacturing composition tools produce design snapshots for evaluation of manufacturability 
by iFAB/Foundry, and the final Technical Data Package needed to produce the target system. 
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The META design tools are evolving to produce an increasing fraction of the data needed to 
manufacture the system and integrate manufacturability tests in the design flow 

• Vehicle Forge interfaces permit the seamless interaction with the repository, which houses the 
global component library, as well as the project collaboration for teams of designers. The META 
tools must import curated components and export new/experimental components for curation 
to incorporate and produce components. For project collaboration, the tools must upload and 
download designs (intermediate and complete) for intra-team collaboration and exchange of 
results. For scoring, the META tools must upload analysis results in a controlled manner to 
provide relative comparison of competing designs. 

This report describes the development of the META tools under the META Design Flow FA8650-10-C-
7082 contract.  
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3. META X Design Flow and Tools 
The META X Design Flow methodology and tools that were developed to support this methodology are 
described in the sections below. 

3.1.  META Design Flow and Design Abstractions 
META design flow supports analysis of target designs over a range of domains and abstractions.  

• Physical domains are selectable in the META composition process, to suit the needs of an 
analysis: 

o Understanding and evaluation of CyberPhysical designs requires analysis in many 
physical domains. As there are interactions between domains (e.g., Mechanical friction 
generates heat), multiple physical domains must be evaluated concurrently. 

o Any specific evaluation is toward a purpose, computing metrics on a design to a needed 
fidelity and range of interactions. Evaluating against a greater set of physical domains 
typically results in greater computation, taking more time in the best case, or resulting 
in intractable analyses at worst. 

 

Figure 1: META Target Domains and Abstractions 

- Abstractions are supported on axes of the evaluation space 
o Model abstraction permits the user to select the appropriate level of detail in the 

component to achieve an analysis goal. Modeling a vehicle suspension is an example. 
For rough performance and speed across a nominal terrain, the suspension can be 
abstracted to a simple rolling resistance. To compute the power transmitted from the 
terrain or obstacle, a fidelity level capturing spring-damper responses of the suspension 
is required. 

o Hierarchical abstractions permit using a single model representing the combined 
behavior of all subsystems, when feasible. This can result in greatly simplified 
computation and can be used to support in-the-loop computation. 
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Figure 2 illustrates multiple levels of abstraction, representative size of the problem, and mechanisms 
for support of the abstraction under CyPhy/META design flow tools. 

Traversing along the Physical Domains, the models represent behavior and interfaces appropriate to the 
component and the level of detail needed for a range of applications. For example, motor generates 
mechanical power, uses electrical energy, and produces thermal energy as waste heat. Simple analysis 
may ignore heat for 1st order analysis. 

Traversing along Model Abstraction, a model can use a variety of mathematical representations for 
capturing the behavior of the component. The figure below shows a few of these for the electrical 
motor, from a Qualitative representation of basic input/output and states, thru ordinary differential 
equations, to full geometrical/distributed structural, force, and electromagnetic field representations. 
Each of these abstractions is appropriate for certain evaluations, at a certain computational cost. 

 

Figure 2: Example Electric Motor with META Abstractions 

Typically, an electrical motor within a context is represented by the schematic on the top line of the 
table. The motor is treated as a 3 terminal component, conducting electrical power thru inductive and 
resistive loads, and producing a torque with inertia and rotating resistance. 
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Qualitative representations of the motor are concerned with the direction and acceleration of the 
device, using two state discrete variables. The qualitative computational complexity is order N. With this 
approach, we can explore the discrete space of the system. 

Relational abstractions linearize the system dynamics, again using two variables, but continuous 
representations. Equations can be computed with a worst-case Order N cubed, with simplification 
possible. We can rapidly explore the continuous state space of the system. 

Ordinary Differential Equation/Hybrid System Models capture the nonlinear behavior of the system with 
a lumped parameter model. These equations are amenable to simulations, which, with proper stimuli, 
can explore trajectories of system behavior over timeframes related to the inertial time constants of the 
system 

Finally, a Partial differential Equation formalism captures the full three-dimensional (3-D) 
electromagnetic current and flux interactions of the motor’s stators and rotors and windings. Forces can 
be computed at specific angular positions, and geometrical parameters can be evaluated. Much higher 
resolution models are required, along with complex gridding and spatial solvers. The complexity of this 
calculation is orders of magnitude greater than the others. 

META also supports hierarchical abstraction of a system, capturing system/subsystem, part-whole 
hierarchies. In addition to allowing gradual refinement of systems at design time, the computation time 
and accuracy of a system analysis can be controlled by representing peripheral subsystems at an 
aggregated level, while critical systems are analyzed in detail. The META Language and Tool Flow 
projects have been developed to fully support these abstractions, both in representing a system and in 
automatic composition of analysis of these systems in a computationally efficient manner. 

META design flow support of these abstractions and phenomena is described in the detailed sections 
below.  

3.2.  META and the AVM Design Flow 
The conceptual design flow for AVM is shown in Figure 3. 
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Figure 3: AVM Overall Information Flow Diagram 

This flow diagram was conceived by DARPA with input from META and other AVM participants. The 
diagram has been color coded to show the state of the META tools in supporting the AVM goals. 

Semantic Integration is a task of the META Design Language, which is used by the Design Flow. It is 
currently developed, however in a flexible manner to allow expansion as new requirements evolve. 
META Design Flow is closely coupled with this effort, as composition of analyses relies on a full and strict 
alignment with model semantics. 

Component and Context models are the physical instantiation of the model semantics, capturing 
component multiphysics behavior. These are integrated and continue to evolve and expand in content, 
but formats and semantics are integrated into the flow. 

Design space exploration tools allow rapid evaluation and constraint-based reduction of large design 
spaces into feasible sets. DESERT implements a static constraint solver using BDD techniques, the 
implementation under META Design Flow (described below), are fully integrated into the tools. 

Qualitative Reasoning explores the system’s performance space with the envisioned qualitative model 
and has been integrated into the design flow. These tools have been developed and adapted to AVM by 
PARC. While the tools are integrated, implementation of C2M2L models prevented the widespread use 
of these tools in FANG 1. 
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Relational Abstractions, also explores the system’s performance space, but using an employing 
relational model abstraction, has been integrated into the design flow. These tools have been developed 
and adapted to AVM by SRI. While the tools are integrated, implementation of C2M2L models 
prevented the widespread use of these tools in FANG 1. 

Ordinary Differential Equation-based analysis/Dynamics Analysis forms the core of the dynamics 
analysis capabilities implemented in META and used in FANG 1. These capabilities have progressed thru 
two phases during the META design flow project. Initially, Bond Graph-based dynamics simulations were 
used for acausal component behavior modeling. Models were translated to a Simulink-based execution 
platform. As a result of C2M2L component supplier decisions, an additional Modelica-based execution 
platform was added. This had impacts on both language and tools. Both were developed and integrated 
into the design flow. 

The Controller modeling and simulation capability was integrated into the META design flow, 
supporting both state machine and signal flow specification of controllers, with a code-synthesis and co-
simulation with the dynamics simulation. This is integrated and used in FANG. 

Nonlinear Analysis, in the form of Finite Element Analysis has been integrated into the tools, with the 
ability to compute static stress for a CyPhy system model. This tool has been integrated and 
demonstrated, however no FANG 1 requirements needed this analysis for the competition. This 
capability implements a composition of geometry files, with gridding and composition of 
Abaqus/NASTRAN input files and post-processing of results. 

CAD composition tools have been developed and integrated into the META tool flow. These permit 
creation of an assembled 3D model of the system geometry, using the geometry of the components. 
This tool has been heavily used in the FANG competition. 

Mobility Simulation has been developed and integrated in an experimental mode. The use in FANG was 
limited by component capabilities, primarily the ability to compose kinematic joints from the models. 
The tool permits co-simulation of the 3D physics with dynamics models. 

Complexity Metrics were developed and integrated into the tools. Two types of complexity metrics 
were created under subcontracts with MIT. A structural complexity metric computes the graph-energy 
of a design, combining component complexity with interaction graph-arc strength from Oli DeWeck’s 
team. An information uncertainty-based complexity metric uses the uncertainty encountered in 
simulation of the system. The information uncertainty metric was developed by Karen Wilcox’s team at 
MIT. 

3.3.  META Design Flow and Integration of Languages, Design Processes, 
and Tools 

The META Tool flow maps to a variety of tools and technologies. Figure 4 summarizes these concepts. 
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Figure 4: Mapping of Language, Design Flow, and Tools 

META Design Flow leverages many concepts and tools from research and industry. It also strives to 
support the conventional phases of design flow, from conceptual/architectural to detailed design flow. 
Below is a brief summary of the concepts expressed: 

• Architecture design or Conceptual phase uses CyPhy and its sublanguages to express 
components used and component/architectural/parametric design space options. 
Exploration occurs based on static evaluation of component and system properties. (e.g., 
weight/parts costs, interface compatibility, et cetera). The GME/CyPhy and DESERT tools 
support these operations. 

• Integrated Multi-Physics/Cyber Design phases implement a modeling/ simulation/ 
Verification & Validation loop focused on refining designs to achieve target system 
requirements with a satisfactory design. Specific tools and associated languages include: 
o Design Modeling/Specification: CyPhy/GME for system architecture, CAD (ProE) for 

geometry, Bond Graph & Modelica (Dymola, OpenModelia) for dynamics Behavior, SEER 
for costing, StateFlow, SignalFlow Language for control algorithms (ESMOL) 

o Simulation Analysis: Test Bench (CyPhy), FMI for coupled multi-sims, C2WindTunnel 
(C2WT) for simulation integration, along with other domain tools. 

o Verification and Validation leverages the dynamics simulations to compute Probabilistic 
Certificate of Correctness using OSU probabilistic computations in dynamics simulation 
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models, under the runtime of OpenMDAO. Other exploration of performance state 
space is accomplished with reduced fidelity models of Qualitative Reasoning, Relational 
Abstraction (for continuous dynamics) and the SIFT tools for probabilistic models of 
failure.  

• Detailed Design completes the design process and computes deeper domain analyses, with 
the goal of providing more accuracy and discovery of unintended interactions or black 
swans, that is, the “extreme impact of certain kinds of rare and unpredictable events 
(outliers) and humans' tendency to find simplistic explanations for these events 
retrospectively” (Wikipedia). Specific tools include: 
o Modelica/StateFlow/SignalFlow Language for coupled dynamics with detailed TrueTime 

computational simulations, and Finite Element-Based computations for structural, 
thermal, and Fluids. 
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4. META Design Flow Tool Architecture 
The META Design Flow tools for CyPhy computational architecture is shown below. Each block is a 
subsystem that integrates with models, and/or domain tools. 

 

Figure 5: META Design Flow Computational Architecture 

The external tools are shown on the top line of the diagram. They were not developed under META 
Design Flow, but are shown for context. Abbreviations (e.g., MX.CLM) are references to the internal 
design process task tracking/schedule, and can be ignored for the purpose of this report. 

The CyPhy Model Editor provides the user interface, model repository, and backplane for tool 
integration. It provides a structured, programmatic interface to models, and a mechanism to enforce 
domain-specific language semantics on the models. The editor provides bindings for several languages 
for model access and manipulation, which are used by the various composition engines (C#, C++, 
Python, Java) 

Desert operates on the CyPhy model, converting from a design space alternative structure to a set of 
design points based on constraint satisfaction. This tool performs in-place modification of the CyPhy 
model, adding a specification that  

The Master Interpreter executes design flow operations on models and DESERT generated constrained 
design configuration models, coordinating execution of tools in the correct order. Typically, the 
component tools are not manually accessed by the user. In addition to coordinating execution, the 
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Master Interpreter manages the flow of results and the coordination of test bench results into a logical, 
consistent structure. 

The Dynamics Interpreter converts the design architecture and component models as a system under 
test (SUT) along with the test bench containing scenarios, environments, and post processing into an 
executable Modelica model with surrounding metrics extraction operators. The targets for the Dynamics 
interpreter are OpenModelica and Dymola, using Python 2.7 for post processing. 

The CAD interpreter evaluates models for their structural connections and produces a connectivity 
specification file. Another service interprets the connectivity and constructs the target CAD file via the 
automation interface of Creo/ProE to apply assembly constraints, produce standard CAD file outputs, 
and compute a set of metrics for evaluations such as bounding box/transportability and center of 
gravity. 

Finite Element analysis composition leverages CAD composition to create geometric representations of a 
design, followed by preparation of the finite element analysis (FEA) input deck (Grids, Boundary 
conditions, Forcing functions). FEA codes are executed and results extracted (e.g., max Von Mises 
stress). This tool leverages NASTRAN, Abaqus, and Calculix. 

The PET/PCC interpreter evaluates PET models and constructs a configuration for execution under 
OpenMDAO. OpenMDAO is an open-source toolkit for implementing Analysis chains under the control 
of a DOE or parameter optimization service. For the purposes of the META design flow tools, the OSU 
PCC methods have been incorporated into the OpenMDAO framework to support computation of 
Probabilistic Certificate= of Correctness data.  

4.1.  Design Space Exploration 
The DESERT Tool is a highly scalable mechanism for managing large-scale design spaces, such as those 
that can be easily represented in the CyPhy language. Design space is expanded by including structural 
alternatives, via CyPhy language constructs. The nominal semantics of a component or assembly 
alternative is to include the all permutations of all choices in the model. Consequently, with even a few 
component alternatives, design spaces can grow well beyond the capability to simulate or even 
elaborate design options. 

DESERT uses the technique of Multi-Terminal Binary Decision Diagrams to compactly represent the 
design alternatives. Once represented, constraints can be defined as operators on the MTBDD to reduce 
the open space of the design. The design space does not need to be elaborated until after all constraints 
are applied, and design point instances are needed for further analysis. 

The design space representation is captured in the schema below. The design architecture and 
alternatives are represented in Spaces and Elements, with associated properties and values. 

Constraints are captured in relations, sets, and formulas. 

The DESERT engine converts these into internal BDD representations, and provides facilities for applying 
constraints to spaces. 
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Figure 6: DESERT Constraint Engine Input 

The output of DESERT is a set of configurations, which contains constrained architectures of the system 
after iterative application of system constraints. 
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Figure 7: DESERT Tool Output Schema 

The tool is integrated into the CyPhy editor. The figures below show an example execution of the 
DESERT tool. 

The first figure shows a set of constraints available for application. Constraints can be one of several 
types (See CyPhy Language for description of constraint models): 

• User Defined Constraints: these can be formulas, with simple operators on component 
properties (e.g., Sum on Mass) 

• Relationship Constraints: relating the selection of one option to a constraint on another. For 
example, a symmetry constraint would require left and right components to match. 

• Compatibility Constraints: automatically generated by DESERT, requiring a property on one 
side of an interface to match the other side. For example, this is used to ensure that two 
mechanical interfaces are compatible. 

• Property Constraints: automatically generated by DESERT, requires parameters of a 
component to be within the stated range of those properties.  
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Figure 8: Example System Constraints 

These constraints can be individually selected and applied, or applied all at once. The tool allows 
constraint application to be rolled back, to support exploratory application of individual constraints or 
sets of constraints. 

 

Figure 9: Viewing and Exporting Constrained Design Space Configurations 
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4.2.  Composition of System Model Analyses 
The META design flow tools focus on automated composition of analyses from a common model. The 
figure below summarizes the span of analyses implemented during the META X project. The common 
model is CyPhy, developed under a parallel META X effort, which supports multi-physics, multiple levels 
of abstraction modeling of components, assemblies of components into systems, and design spaces of 
components, assemblies, and parameters. 

 

Figure 10: Composition of Analyses Supported by META 

META Design Flow composition paths are shown in the figure above, along with the intermediate 
representations and the external tools that are leveraged to accomplish the specific domain analysis.  

Note that one of the major objectives with META Design Flow is to build a completely Open Source tool 
flow. This goal is sometimes at odds with tool quality in terms of scalability, performance, and/or 
compatibility with the component space. For this reason, multiple similar target tools have been 
integrated to support open/free software and robust solutions. Ideally, these two coincide, or can be 
encouraged to converge with additional development. This has been the case with Modelica, in 
particular. The commercial Dymola package is often able to execute a larger fraction of the Modelica 
Standard Library and C2M2L library. The open source OpenModelica, while behind in terms of MSL 
support, is rapidly catching up, especially considering the modest resources applied under this contract. 

Support for open source CAD packages has not progressed as rapidly, due to the advantage in required 
features for the FANG analyses available in PTC Creo vs. open source (e.g., OpenCascade). Specifically, 
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these include constraint managers, gridding and integration support with FEA, and ability to 
export/import from other commercial packages. 

FEA packages have been integrated, with the commercial solvers supporting advanced capabilities such 
as adaptive gridding, but experiments have found good accuracy with Calculix and OpenFOAM. 

Early experiments with optimization infrastructures such as iSight and ModelCenter showed 
disadvantages in terms of openness and integration support when compared to OpenMDAO. As a NASA-
supported tool, with a growing user base, we anticipate OpenMDAO to have a better long-term growth 
path. 

It should be noted that some of these techniques rely on other composition tools. The META Design 
Flow supports user defined series of test benches, allowing complex computations to be specified and 
executed. Arbitrary topologies of analyses can also be implemented in a PET optimization or DOE loop.  

4.3.  Test Bench Concepts 
The test bench concept was created for the META Design Flow project and implemented in a 
semantically well-founded manner within the CyPhy Language. In general, a Test Bench is an executable 
specification of a requirement. Test benches are used throughout the system as shown in the figure 
below.  

Test Benches in META are a reusable, succinct, complete, and executable representation of an analysis 
specification. Test Benches Contain: 

• SUT - This is a reference (link) to a design OR design space of the system or subsystem to be 
tested. The system will typically have a standard set of interfaces and parameters to allow 
different designs to be placed in the test bench for reuse of the test bench 

• Drivers and Boundary Conditions - This is the set of signals that stimulate the system to set 
conditions under which the system models will be measured, or drive the system through a 
state trajectory of interest. These drivers are Test Components, following many of the same 
semantics that are used for META components. 

• Environment Specification - This specifies any environmental conditions under which the system 
will be evaluated. 

• Metrics, Requirements, and Evaluation - These are components that process system outputs to 
compute quantities of interest (e.g., time-to-accelerate, power absorbed, average temperature, 
maximum stress. Metrics identify the quantities of interest, and requirements are the links to 
the system requirements tested by the test bench. 

• Analysis Tool Settings - These set the parameters for the analysis, such as simulation time, solver 
method, maximum time step, etc. 

The test benches are tied to specific workflows. Currently, CyPhy/OpenMETA implements test benches 
for: 
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• Dynamics - using a lumped parameter model executed in the Modelica language. Dynamics 
covers mechanical, electrical, hydraulic, and thermal domains. 

• Structural - using 3D CAD assemblies to evaluate the physical compatibility of parts, locate 
potential interferences, and compute physical properties including center of gravity, bounding 
box, and assembled location of specific points on the system. 

• Finite Element - using Finite element techniques to compute stress/strain, thermal propagation, 
computational fluid dynamics, etc. 

• Mobility - using the NATO Reference Mobility Model (NRMM) to predict vehicle mobility based 
on aggregate system properties, 

• Cyber - co-simulating dynamics with a time-based software, processor and network simulation. 
• Manufacturability - creating the 3D CAD file, a set of properties for each manufactured join 

between parts, and an electronic bill of materials. From this design package, iFAB can predict a 
cost and schedule to manufacture the system.  

• Complexity - evaluating the graph-energy complexity of the system based on its component 
complexity and structure of its connections. The complexity metric will correlate with system 
cost and schedule. 

 

Figure 11: Test Bench Applications within META Design Flow 

The test bench core supports an analysis topology, focusing on a System Under Test, SUT. The SUT can 
be a single design point, or more importantly, a design space. 
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Test benches are used to compute specific metrics, which can be linked to system requirements. In the 
use case of FANG, these can be Key Performance Parameters (KPPs) or any other priority requirements. 
Test bench results can be visualized via the SimViz tool (described below). 

Test benches can be used in isolation, connected in a workflow a Suite of Testbenches (SOT) tool, or 
employed by the Parametric Exploration Tool and/or PCC tool under OpenMDAO. 

While all test benches follow a general pattern, test benches are customized to the analysis domain, 
supporting the analysis domain concepts and, where necessary, details of the tools. 

4.4.  Multiple Abstraction Simulation Controls 
As a Test Bench is created to evaluate a specific requirement, the test bench must capture the required 
physics domains and level of abstractions of a component behavior model. This capability is controlled 
via the Fidelity Selector form below.  

 

Figure 12: Selection of Model Fidelity/Component Abstraction 

The fidelity selector locates all components within a design which have multiple fidelity options. It 
presents the test bench designer with a form to allow selection of a component fidelity/phenomena 
representation, by component class. 

The abstraction/phenomena selection is stored with the test bench, so that all future executions of the 
test bench will be composed with the specified fidelity and resultant accuracy/phenomena. Note that 
this is supported only for the Dynamics composition, but is planned for the PDE-based analyses in a 
future version. 
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4.5.  Design Flow Master Interpreter 
The design flow Master Interpreter (MI) is an integration driver for all system test benches, and test 
bench suites. The MI supports the following tasks in orchestration of a test bench execution: 

• Elaboration of design space within a test bench: This effectively walks through all valid design 
points, and prepares an “Instance Model”, where design space concepts are replaced with 
specific component selections. 

• Execution of precursor interpreters, such as the Formula Evaluator, which resolves any 
mathematical dependencies between component properties and parameters or system 
parameters. 

• Preparation of results templates, where the test benches store metrics results, and various 
index files maintaining test bench status and history. 

• Preparation of any files in the execution directory, including pre/post processing of results. 

 

Figure 13: Overall Tool Architecture 

4.6.  Dynamics Composition 
Dynamics composition is a core capability of the META Design Flow tools. It is an extreme method of 
evaluating a system under a specified set of conditions. The system and specification of simulation 
conditions are defined in a test bench. An example of a dynamics test bench is shown in the figure 
below. 
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Figure 14: Example Dynamics Test Bench 

The key components of the dynamics test bench are: 

• The SUT is typically at the center of the model. It describes a design or design space model, with 
any parameters that can control the system, exposed as ports for manipulation by the test 
bench or external tool. In the example above, the system under test is a powertrain/suspension 
subsystem. The mass of the other parts of the system (Hull, weapons, stores, etc.) are passed in 
as a VehicleMass parameter. 

• The scenario controls the test (in this case, max acceleration from 0 to 32 kilometers per hour). 
Driver_ScenaroD provides a simulated driver to set the target speed, control brakes, and control 
transmission mode. For any test bench, it is the responsibility of the test scenario to excite the 
system into the desired state. 

• Post-processing services monitor the outputs of the system under test and computes metrics 
from the inputs and outputs of the system. In this example, Speed Sensor Distance calculates 
the distance the system has travelled, and DriverBusBreakout extracts signals from a control 
bus. 

• Metrics are the outputs of the test bench, the purpose for executing the simulation. These can 
be tied to requirements specs, which state the threshold and objective values of the metrics. For 
FANG, the requirement management is done outside META, but the metrics are coordinated: 
computed in META and accumulated externally in the GT/ASDL MAUF scoring function.  
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• All limits specified in the CyPhy model are also checked as a post-processing task. Limit 
conformance or exceptions are noted in the results file. 

 

Figure 15: Composition of Simulations and Calculation of Metrics 

4.6.1. Bond Graphs and Simulink Target 
Control design involves two distinct paradigms: the discrete specification of the controller and 
continuous processes governed by the laws of physics. While a discrete controller can naturally be 
modeled as signal flows, the key to modeling physics is the use of an acausal modeling framework [13]. 
Using causal models (e.g., signal data flows) to represent interactions between components that share 
physical variables can be complex. Typically, acausal physics models have power ports, which represent 
a simultaneous, bidirectional energy exchange between components [10] [8]. A well-formed model in an 
acausal framework represents a well-formed set of dynamic equations. Acausal models typically must 
interface with causal models to represent the integration of a controller function into a physical system. 
This requires carefully directed variable sharing between cyber and physical system components (e.g., 
through sensors and actuators). This is one of the key issues of this paper. In the following, we discuss 
the two most important acausal modeling paradigms. 
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4.6.2. Hybrid Bond Graph Modeling 
Bond Graphs [8] are a physics-based, domain-independent graphical notation for describing the 
behavior of components and systems which can be modeled using differential algebraic equations. 
Bond graphs generically model the energy exchange between different types of energy storage and 
con- version components, analogously to a circuit diagram in the electrical domain. Bond graphs 
are composed of the following primitive elements: source of effort (Se), source of flow (Sf ), 
resistor (R), capacitor (C ), inertia (I ), transformer (T F ), gyrator (GY ), one-junction (1), and 
zero-junction (0). These primitive elements are connected through junctions, which correspond 
to either common flow (one-junction) or common effort (zero-junction). For example, in 
electrical circuits, one-junctions (common flow) represent series connections and zero-junctions 
(common effort) represent parallel connections. The connections between the primitive Bond 
Graph elements and the junctions are called bonds, each of which represents an effort and a 
flow variable. The product of the effort and flow variables is the power flowing between the 
connected elements. 

In our previous work, we have extended Bond Graphs in multiple ways to include modulated 
elements, domain- specific power ports, and hierarchical modeling support [8]. Domain-specific 
power ports (e.g., electrical power port) connect quantities in one component with another, and 
each includes two variables: a domain specific effort (e.g., Voltage) and a domain specific flow (e.g. 
current). Power ports can be connected to either a one-junction or a zero-junction only. Bond 
Graphs easily and uniformly represent electrical, rotational, translational, thermal, and other 
types of power domains. Input signals are either control parameters (e.g., Modulate an effort 
or a flow source) or directly influence the system behavior through functions on the physical 
variables (i.e., Determine the parameter value of a modulated element). The Hybrid Bond Graph 
Language (HBGL) includes the ability to resolve causality and create a Simulink model from a 
Bond Graph model. HBGL also supports domain specific power ports for valid component 
composition. 

 
4.6.3. Modelica Target 

Modelica is a modeling language for dynamic systems that is equation-based and uses signals to 
express physical constraints imposed by physical connections in the system [10] [2]. Modelica is an 
object-oriented mathematical modeling approach to systems modeling. The building blocks of 
the models are stereotyped classes, of which the most important constructs are models, blocks, 
and connectors. Models can describe hybrid models, which are composed of discrete and 
continuous variables. Blocks are similar to models with a restriction that they can only expose 
those connectors that are tagged as input or output. Connectors are ports representing 
causal/acausal signal variables. The behavior of the building blocks is defined by equations. 
Modelica does not strive for the uniformity of representation that Bond Graphs provide, but 
provides a library of standard components for each physical modeling domain called Modelica 
Standard Library (MSL). Also, Modelica simplifies connecting physical variables by its 
interconnection model. Interconnections among components are made using connections (i.e., 
Connect statements) between connectors, which directly represent physical connections (e.g., 
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Attaching a wire to a pin of an electronic device), enabling the compositional definition of system 
behaviors. Each connector that represents a physical interface has the same number of flow and 
potential variables. For instance, an electrical pin connector has voltage (potential) and 
current (flow) variable. For a well- formed model, Modelica compilers translate all of the model 
subsystems and connections into equations suitable for simulation or analysis. Unlike Bond 
Graphs, the Modelica language is an international standard that has well-supported 
commercial tools. Modelica is an open-source language and has some level of open-source 
compiler support as well as an open-source standard library (MSL). 

 

Figure 16: Example Test Bench for Dynamics Evaluation 

 

Figure 17: Example Dynamics Output 
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4.6.4. OpenModelica Maturation 
 
While the initial goal for FANG use, Dymola was the only available simulator that was capable of 
executing C2M2L models. Mid-contract, an effort was started to expand the maturation of the 
OpenModelica compiler/simulator. The full report on this effort is in the META Language report, but the 
primary accomplishments are shown here for reference: 

• Achieved simulation of more than 90 percent of MSL 3.2.1 example models. 

• Achieved flattening of whole MSL 3.2.1 library including the Fluid library. 

• Achieved simulation of more than 70 percent of the AVM test cases. 

• Achieved much more efficient simulation compared to OpenModelica 1.8.1. 

• Fluid flattening achieved.  

• More than 90 percent MSL 3.2.1 example models achieved.  

• Significantly improved simulation performance. 

4.6.5. Cyber/Controller Composition 
The CyPhy language and design flow supports co-design of physical and controller systems. While 
controller design software is commonly available, the META design flow offers the ability to produce 
high fidelity simulations of the physical system, in addition to high-fidelity computer hardware/software 
simulations. This co-simulation allows a much higher level of developmental testing and 
software/system interaction discovery over a design-to-spec approach common in many software 
approaches. Typically, high-fidelity testing cannot occur until brassboard hardware and/or physical test 
rig is available.  
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Figure 18: Design Flow for Cyber/Controllers 

The figure below shows the META design flow of a cyber/controller test bench. The specification of a 
controller is described in the META Design Language, consisting of state-transition diagrams for discrete 
state controllers, and a signal flow paradigm for continuous signal control (e.g., PID controllers). 

Cyber analysis uses the same test bench structure as a Dynamics test bench, and is invoked 
automatically for any system that contains a cyber-controller component. The design flow is shown in 
the figure above. 

Cyber models are extracted (Hybrid Dynamics Models) and synthesized into executable code. Worst 
case execution time is computed for use in scheduling and schedulability analysis.  

Synthesized software can be integrated with a Modelica dynamics model for behavioral checkout. Under 
this mode, software timing allocations based on aggregate WCET’s and system dynamics needs to 
execute at an idealized sample rate. Under this mode, the algorithm and system dynamics can be tested, 
assuming idealized real-time scheduling and communication. 

The next level of abstraction uses the system platform model to include compute resource limitations, 
real-time scheduling effects, and communications latencies. The deeper abstractions models can be 
simulated using the TrueTime simulator coupled with Modelica dynamics model to validate behavior 
prior to a hardware build. These model are also planned to be used with verification techniques  
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Figure 19: Tool Flow for Cyber Analysis Test Benches 

4.7.  CAD Composition 
CAD composition forms a key capability in composing the 3 dimensional representation of the system 
that maintains consistency with the dynamics model. In addition, coupled with the design space 
representation and exploration, the CAD composition allows wide scale evaluation of alternative 
geometries and physical constraints on system assemblies. 

Using the CAD assembly design flows, a user can execute a CAD assembly operation and specify a 
geometric measurement set and reasoning on that geometry via a test bench. An example test bench is 
shown below.  
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Figure 20: Example CAD Composition Test Bench 

The example test bench references a system design space as the system under test. The CAD workflow 
in the test bench specifies that a geometric assembly is required. The FANG Drivetrain is the SUT. A CAD 
Computation Block specifies geometric calculations are required, in this case bounding box length, 
width, and Height. The test bench below computes the FANG metric for Well Deck Transportability: 
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Figure 21: Well Deck Transportability Requirement Evaluation 

As an intermediate result, the test bench generates a 3-D CAD model in a variety of formats. The highest 
level of detail and model content retention is with the ProE/Creo output options. Figure 22 shows the 
resulting CAD model of the FANG seed design. 

 

Figure 22: CAD Assembly Results 

Note that CAD composition requires all interfaces to be compatible between attached components. For 
the purposes of design space exploration, a wild-card and adapter capability was created. These allow a 
character-by-character matching relaxation, to support selective matching. The above model includes 
several adapters, (e.g., PTM to Hydraulic Pump) which appear as red cylinders. 
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The CAD composition uses CyPhy structural interfaces to associate connections. The CyPhy structural 
interfaces reference datum within the CAD file (planes, Axes, Points, Coordinate Systems). Within the 
CAD composition, algorithms are encoded to break constraint loops, detect islands, and support under-
constrained joints. CAD tool drivers enforce constraints between these datum to enable PTC Creo to 
properly position parts and assemblies. 

4.8.  FEA Composition 
FEA composition design flow is shown in the figure below. The testbench contains the system under test 
(which can be the entire system, or a part (e.g., Suspension A-Arm). For FEA, the test bench language 
allows the system under test to expose geometric handles: points, areas, and volumes. The test bench 
operators are (for structural) forcing functions and constraints. Forcing functions can be applied to any 
of the geometric handles, and can represent the force of gravity on an attachment point, the forces of a 
weapon firing, etc. Constraints also apply to the handles and will be applied at the physical geometry 
referenced by the handles. 

 

Figure 23: Test Bench Concept for FEA 

The figure above shows a single forcing function (Yellow) applied to a surface of the A-Arm, with 3 
constraints holding the arm at its attachment points. The computation will calculate maximum shear 
stress, maximum bearing stress, maximum Von Mises stress, and apply an overall factor-of-safety to the 
assembly based on the materials properties of the component. 

The basic META Design flow is shown in the figure below. 
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Figure 24: Information Flow from FEA Test Bench 

The basic steps are: 

• A META CAD assembly operation occurs, using the CAD assembly tool. 
• The META Tools use the CAD tool to create a grid of the system under test. 
• Based on the test bench forcing functions and constraint locations, the grid objects are located 

geometrically by the META Tools. 
• Constraints and forcing functions are applied to the grid objects (surfaces, points). The grid deck 

is modified with these annotated objects by the META tools. 
• The FEA tool is called on the modified deck to compute stresses, and the result files are 

generated. 
• The META tools post process the results files, extracting the requested metrics. Metrics are 

stored in an AVM compatible results file. 

FEA Stress analysis has been the primary focus of the META FEA tools, and statics are the most 
developed tool. 

Thermal analysis experiments have also been done, determining the heat profile for an engine-
transmission model. 
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Figure 25: Example Thermal Analysis 

4.9.  Static Calculations with CyPhyPython 
A python-based facility allows simple calculations to be implemented. The CyPhyPython tool allows a 
python code to traverse the model, accessing models, connections, attributes, or other parts of the 
model. These can calculate results based on the structure, or can modify the model itself. 

For FANG, test benches were implemented to calculate nominal vehicle weight, and special-purpose 
completeness metric.  

4.10. Suite of Test Benches 
The Suite of Test Benches supports automation of composite analyses. For instance, a static test bench 
using the CyPhyPython facility calculating mass can drive the dynamics test benches for acceleration, 
speed, etc. This example is shown in the figure below. 
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4.11. Execution Infrastructure 
The META tool flow can support automatic composition of a large number of test benches, across a 
large number of design alternatives. 

While powerful, and labor saving in terms creating the executable analyses, large computational tasks 
can be created. These tasks can easily overwhelm an engineering workstation. Additionally, manually 
managing these job runs and organizing the results can be a difficult task. 

To address these needs, the Job Manager was developed. The job manager has several functions: 

• Interface with the Master Interpreter to receive tasks as they are composed. 
• Manage the tasks received, keeping track of their state and displaying that state to the user 
• Launching tasks to the compute resources 

o Local resources: starting tasks that can leverage all the processors and hyperthreads on 
the local workstation (Typical laptops can execute 8 simultaneous tasks with little loss in 
performance) 

o Remote resources:  
 negotiate with a remote job server (e.g., Jenkins META Compute service 

deployed on any compute farm or cloud),  
 create jobs and upload all necessary information required for that job, 
 Start jobs 
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 Monitor progress 
 Download job results and maintain results in the proper locations for other tools 

(Visualization and results analysis) 
 Collect and visualize the state of the job servers. 

 

Figure 26: META Design Flow Job Manager 

The job manager UI is shown above, with a list of jobs (Green = succeeded, Blue = in progress, Red = 
Failed) 

4.12. Visualization Methods 
As a result of the automation to analyze multiple metrics across large design spaces, a large amount of 
data can be generated across many different designs. The META dashboard has been designed and 
implemented to help understand the analysis results and the span of the design spaces. 

The full report for the dashboard is detailed in the subcontractor report from Georgia Tech ASDL. 

In summary, the dashboard consumes all the metrics from all designs and visualizes these results to help 
locate the best designs. Several key plots are supported.  
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Figure 27: Parallel Axis Plot, Colors by Rank 

The Parallel Axis Plot shows individual designs as a line that traverses horizontally across a series of 
metrics. These lines can be colorized by the weighted rank, set in another panel. 

 

Figure 28: Parallel Axis Plot, Red=Limit Exceeded 

The same plot can be visualized, with design axes colored Red where limits were exceeded during 
dynamics simulations 
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Figure 29: Pair-size Metrics Plots 

 

Figure 30: Dashboard visualization of PCC Results 

4.13. Complexity Metrics 
Complexity metrics are also calculated via a test bench. The test bench is shown in Figure 31. 

Technical details for the Complexity metrics are shown in Appendix C. 
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Figure 31: Complexity Test Bench 

4.14. Verification Methods 
The correct-by-construction of the META design process is the key to the AVM approach. Verification 
techniques are integrated with the CyPhy/OpenMETA system. Currently, the primary method is a 
simulation-based, probabilistic certificate of correctness. 
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Figure 31: Example Probabilistic Certificate of Correctness 

The Probabilistic Certificate of Correctness, or PCC, is configured by the model shown in the figure 
above. The PCC model builds upon a testbench, typically of the dynamics type. The parameters of a test 
bench will map to a system variable, such as environmental or component property that has 
manufacturing variations. The PCC calculation will modify all specified parameters while doing a 
statistical analysis of input vs. output metrics. The results of all experiments can be combined to 
compute parametric sensitivities and an overall probability that system metrics will stay within the 
allowable ranges. PCC uses Monte Carlo techniques, as well as more sophisticated methods to reduce 
the required number of samples. 

A related tool, the Parametric Exploration Tool (PET), allows the designer to explore a range of numbers 
to help find acceptable values of adjustable parameters. Using Design of Experiment techniques, CyPhy 
can help to find good values of these parameters for a single architecture. 

4.15. Qualitative Reasoning 
See appendix B for QR. 
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5. Results and Discussions 

5.1.  Execution Threads for META Design Flow and FANG 
META Tools form the core of activities in the FANG 1-3 competitions. The figure below shows the 
relationships between META and other AVM primary activities. 

 

Figure 32: META Tool Interactions within FANG Competition Flow 

The Competitor is the focal point, and primary target for support, who executes the competition 
activities. The competitor interacts directly with two of the primary entities: 

• Vehicleforge is the host web site for secure collaboration, hosting facilities for issue reporting 
tickets (similar to TRAC/Redmine/JIRA), forums for collaboration, repositories (SVN/GIT), and a 
repository to allow searching and downloading of components. Other FANG-specific services 
include hosting a design scoring function and a gateway to the iFAB servers. VF also hosts cloud 
resource used by META compute servers. 

• META tools implement the design flow, described in the vignettes and threads below, providing 
the capabilities described in this report. 

o Via META, a designer produces designs and design spaces. These can be shared via the 
SVN/GIT repositories (hosted on VF) between team members. 

o Via META, a designer composes analyses for execution on META compute servers 
hosted on the VF cloud, also providing access to proprietary/license-locked software 
(Dymola & ProE) and receives results. 
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o Results can be visualized locally or on a META visualizer hosted on VF. 
o Results can be submitted to the scoring facility. 
o META composes queries for Manufacturability Analysis, which is serviced by the iFAB 

Foundry manufacturability analysis. 

Other Entities include: 

• C2M2L produces components for integration with META. Components flow thru curation and 
onto the VF component repository. 

• The FANG performer creates the requirements, requirement evaluation specifications, and seed 
designs, along with documentation and competition rules, guidance, and oversight. 

The role of META in FANG is described in more detail in the figure below: 

 

Figure 33: Detailed META-Related FANG Competitor Activities 

5.2.  META Tool Capability Planning Via Execution Threads 
In preparation for the FANG competition, a set of competitor threads was created to ensure capabilities 
would be sufficient to support all design activities. The process of allocating capabilities with 
development activities is described in the figure below. 
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Figure 34: Capability Mapping Process 

Vignettes were created to accomplish the main tasks that the competitors will require for the 
competition. These are broken down into individual threads that describe step-by-step tasks within the 
tools. These tasks are mapped to tools and tool capabilities. Tools and tool capabilities are allocated 
resources and assigned a schedule in the WBS. 

The individual products in this chain are also used to define and drive tutorials (Vignettes and threads) 
and testing (Threads X Tools). 

A full set of vignettes were delivered at the Preliminary Design review at Camp Pendleton. An example 
of a thread is shown below. 
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Figure 35: Example Thread Diagram  
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6. Conclusions & Tools Completed  
The following tools have been completed, delivered to several targets, and used in Beta Test and the 
FANG Competition. See the Tool Data Sheets in the attached appendix for more information on each 
tool. 

6.1.  DESERT Design Space Exploration Tool  
Integrated into the META design flow tool, supporting the full CyPhy language, with user specified 
constraints and derived constraints (e.g., component limits, structural compatibility) 

Delivered on: ALL RELEASES 

6.2.  Master Interpreter Tool 
Master interpreter manages the execution of all types of test benches across all selected configurations 
in a design space, greatly automating an analysis process. 

Delivered on: ALL RELEASES Post Aug, 2012 

6.3.  Design Space Elaborator 
Design space elaborator converts a design space with a set of selected configurations to a set of fully 
elaborated design point models, suitable for test bench composition tools below. 

Delivered on: ALL RELEASES  

6.4.  Fidelity Selector Tool 
Fidelity Selector Tool allows specification of the fidelity/abstraction of components within a design 
space and saves settings to the testbench. It also allows configuration of fidelity/abstraction per-test 
bench. 

Delivered on: ALL RELEASES Post December 

6.5.  Job Manager Tool 
The Job manager executes test benches locally and remotely, and manages result files. 

Delivered on: ALL RELEASES Post August. 

6.6.  Dynamics Composition Tool (CyPhy2Modelica)/ (CyPhy2Simulink) 
The Dynamics Composition Tool takes a dynamics test bench with a design point system under test and 
composes a simulation job which can be executed locally or remotely. The job consists of scripts to 
execute dymola, post-processing of results to create metrics, and general management of the job 
sequence. An earlier version created Simulink executable jobs. 

Delivered on: ALL RELEASES Post March, 2012 

Uses: MODELICA (OpenModelica, Dymola) 
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Deprecated (SIMULINK/STATEFLOW) 

6.7.  CAD Composition Tool 
Constructs CAD in Creo and STEP, computes geometric properties of the assembled model 

Uses: ProE/Creo 

6.8.  Cyber Composition and Runtime 
Constructs combined cyber controller and dynamics simulation 

Delivered: All Releases Post March 2012 

Uses: Modelica, TrueTime 

6.9.  PET Tool 
Executes parametric optimization tasks on dynamics simulation testbenches, running on OpenMDAO. 

Delivered: All Releases, Post March 2012 

Uses: OpenMDAO 

6.10. PCC Tool 
Executes Probabilistic Certification on dynamics test benches, running on OpenMDAO. Supports several 
OSU algorithms, ranging from a general but inefficient Monte Carlo to an extremely efficient algorithm 
that computes PCC’s for systems obeying certain conditions. 

Delivered: All Releases, Post March 2012 

Uses: OpenMDAO 

6.11. Complexity Tool - Structural 
Computes structural complexity on CyPhy models based on graph Energy (MIT DeWeck). 

Delivered: All Releases, Post March 2012 

6.12. Complexity Tool - Uncertainty 
Computes complexity on CyPhy models based on simulation uncertainty. (MIT – Alaire/Wilcox) 

Delivered: All Releases, Post March 2012 

6.13. Completeness Tool 
Computes metrics associated with connecting matching structural/power ports, fully connecting 
structural supports, and minimizing adapters in a design.  

Delivered: All Releases Post Feb 2013 

Uses: CyPhyPython. 
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6.14. QR Composition Tool and QR Envisionment Runtime Tool 
QR Tools from PARC were integrated into META Design Flow for simplified component models. 

Delivered: All Releases Post Mar 2012 

Uses: PARC Quantitative Envisionment Tools. 

6.15. SIMVIZ 
SimViz is a collaborative visualization tool for analysis and understanding of simulation results. 

Delivered: All Releases Post Nov 2012 

6.16. DASHBOARD 
Dashboard is a design space visualization tool that portrays the range of results from multiple 
testbenches across a design space. 

Delivered: All Releases Post July 2013 

Requires: Georgia Tech/ASDL Dashboard Software 
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Appendix A: Subcontractor Final Reports 
 
PCC Final Report from OSU 
 
 

Oregon State University Meta X 
Report 

 

For Period Through Sept 30, 
2012 

 

Christopher Hoyle 
PI Irem Tumer PI 

 

 
1. Summary 

 
The deliverables during this period consisted of a methodology for computing the 
Probabilistic Certificate of Correctness (PCC) for a given design, methods for Sensitivity 
Analysis (SA), and integration of the methods into the Vanderbilt GME tool. The 
deliverables are summarized as follows: 

 
1.1. Methods for PCC and SA 

 
Eight methods (originally written in Matlab) have been implemented in order to enable PCC 
and SA to be conducted on an arbitrary system design: Monte Carlo Simulation (MCS), 
Taylor Series Method (TSM), Most Probable Point (MPP), Full Factorial Numerical 
Integration (FFNI), and Univariate Dimension Reduction (UDR) as Uncertainty Propagation 
methods (for PCC computation), and Sobol Method (SOBOL), Fourier Amplitude 
Sensitivity Test (FAST), and Extended Fourier Amplitude Sensitivity Test (EFAST) as 
Sensitivity Analysis methods. Simple test models and results published by other researchers 
studying these methods were utilized to verify correct implementation of the methods. 
These methods are described in more detail in Section 2. 

 
1.2. Conversion to Python and Implementation as an OpenMDAO Driver 

 
The eight PCC and SA methods have been converted from Matlab to Python (2.7) in order 
to comply with the open source requirements of the project and enable integration into the 
Vanderbilt GME. Simple test models and results published by other researchers studying 
these methods were utilized to verify correct implementation of the methods. To ensure 
consistency across the entire project, as well as allow different modeling languages and/or 
simulation software to be used (Dymola), the entire module was implemented as an 
OpenMDAO driver. Georgia Tech helped in the development of a template for converting 
the PCC/SA code to an OpenMDAO driver. Thus, the verification methods themselves no 
longer call, for instance, OpenModelica; they instead rely upon OpenMDAO to facilitate 
communication between programs. This has greatly simplified the integration with the 
Vanderbilt GME tool since OpenMDAO was already integrated with GME and thus effort to 
integrate the PCC/SA tools was greatly reduced. This also allows the PCC/SA tools to be 



47 
Approved for public release; distribution unlimited. 

applied to models simulated in a variety of software packages, such as Dymola, using the 
OpenMDAO wrappers. 

 
1.3. Integration with MIT Complexity Measure 

 

We have integrated the MIT complexity measure within our code (and thus within the 
OpenMDAO driver) since the MIT complexity measure also requires quantification of 
uncertainty and thus could be integrated with the PCC/SA methods. 

 
1.4. Integration with the Georgia Tech Dashboard 

 
The input/output is now integrated with the Georgia Tech Dashboard. This was enabled 
by changing the input/output format to JSON. For example, previously uncertainty 
distributions were stored in SQL database; they are now handled within the JSON format. 
This enables all input/output to be displayed in the Dashboard. More details regarding the 
specific inputs and outputs of the methods are provided in Section 3. 

 
2. Performance Verification Methodology Overview 

 

This section provides more detail on the methodology. The purpose of the Performance 
Verification module is to estimate how well a component meets a set of requirements. The 
Performance Verification does this by estimating a Probability of Correctness for the 
component. 

 

2.1. Probability of Correctness Computation 
For mission-critical design applications, a key consideration is the ability of the designed 
system to meet the specified performance requirements. In the META X project, the 
estimation of the PCC is enabled using methods for uncertainty propagation (UP), which is 
then used to verify the correctness of the proposed designs with respect to a set of specified 
requirements. In general, the goal of each UP method is to determine the probability that the 
performance function, g(x) is less than (or greater than) the requirement, c. This can 
alternately be stated as ensuring the limit state function z(x) is less than or equal to zero (all 
requirements are converted to format): 

                                                              (𝑥) ≤ 𝑐 ≡ (𝑥) − 𝑐 ≤ 0                                                                 (1) 

As seen in Eq. (1), the limit-state function is z(x) = g(x) - c. To compute the PoC, the goal is 
to estimate the multidimensional integral over the set of input variable distributions: 

 

    𝑃𝑜𝐶 = ∫Ω … ∫ (𝑥)(𝑋)𝑑𝑥                          (2) 
 
Where ∫(𝑥) is the joint probability density function, x is the set of random inputs, and Ω= {x | 
z(x) = 0}. Because the integration cannot typically be performed analytically due to the 
number of stochastic inputs, x, the form of g(x) , or because the performance function is 
embedded in a black box simulation in which only inputs or outputs are known, numerical 
methods are used to approximate the integral. (These methods are generally classified as 
methods for uncertainty propagation.) As part of our project, we have implemented and 
compared six UP methods for PCC estimation: Monte Carlo Simulation (MCS), Taylor 
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Series Method (TSM), Most Probable Point (MPP), Full Factorial Numerical Integration 
(FFNI), and Univariate Dimension Reduction (UDR). For brevity, in this report, we only 
provide a short summary of our study of different UP methods and subsequent PCC 
estimation. The system models are built in Modelica; however, because Modelica is a system 
modeling language as opposed to a programming language, Python is used to code the various 
UP methods. The Python scripts call the black box Modelica model using OpenMDAO, 
requiring only that the input and output variables be known from the Modelica model, but not 
the functional relationships coded in Modelica. The first step in the performance verification 
process to compute the PCC of each requirement individually (i.e., the marginal probability 
of correctness of each requirement). The second step in the performance verification process 
is to compute the joint probability of meeting the complete set of requirements. Note that the 
joint probability cannot be obtained by simply multiplying the two marginal probabilities. 
Instead, we need to compute the covariance matrix for the marginal probabilities. 

 

                                      (3) 
 
If the marginal probabilities in each dimension are normal, we can use a multivariate normal 
distribution to compute the PPC. In the case in which the marginal distribution is not normal 
in each dimension, we use the Gaussian Copula function to approximate a true multivariate 
distribution. Using the Copula function, we can join different types of distributions (normal 
and beta, etc.) 

 

           (4) 
As mentioned in the previous section, the methods for UP can be classified into four broad 
categories as follows: 

 

1. Simulation-based methods such as Monte Carlo simulation (MCS). 
 

2. Local expansion-based methods like the Taylor series method (TS) or perturbation 
method. 

 

3. The most probable point (MPP)-based methods. The first-order reliability method 
(FORM) and second-order reliability methods are two popular methods in this 

category. 
 

4. Numerical integration-based methods, where the statistical moments are first 
calculated by direct numerical integration, and then the probability density or the tail 
region probability is approximated using an empirical distribution system based on the 
calculated moments. The two methods considered from category five in this work 
are Full Factorial Numerical Integration (FFNI) and Univariate Dimension Reduction 
(UDR). 

 

In the early phase design, MCS is used when only qualitative or hybrid qualitative-
quantitative models are available because MCS is the only method compatible with 
qualitative models. If quantitative models are available, first-order MPP is proposed at this 
stage when the number of stochastic input variables is small to moderate. If, for the 
quantitative models, the set of stochastic inputs is large, TS can be utilized, but only if the 
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system can be reasonably quantified with a linear approximation at the failure surface. 
 

In later phases of design, more advance methods can be utilized. A consideration in this stage 
is the number of stochastic inputs. For a small number of inputs, the FFNI is recommended 
due to its accuracy and its ability to handle correlated inputs and interaction effects. The output 
distribution can be characterized using the Pearson system, and is therefore not limited to a 
single parametric distribution type, such as a normal distribution. For a moderate to large 
number of stochastic inputs, the UDR or second-order MPP method is recommended. 
While neither method can handle correlated inputs, the UDR method has the advantage that 
neither inputs nor outputs are required to follow a normal distribution; the second-order MPP 
method requires all inputs and outputs be normally distributed but accounts for input 
interactions better than UDR. 

 

For the final verification stage, MCS is recommended because it can handle both parametric 
and non-parametric input uncertainties and makes no assumptions on the output distribution. 
A key issue with MCS is the computation expense: it is assumed that there are very few or 
a single system design to evaluate at this phase of the design process. 

 

A summary of the methods is provided in Table 1. 
 

Table 1: Summary of PoC Methods 
 

Method Scalability Accuracy Model Type Function Type # Inputs Input f(x) Output f(x) 
MCS  Varies Flexible Flexible High Flexible Flexible 
TS O(n) Low Quant Low Order High Normal Normal 
MPP O(n) Med Quant Low Order Med Normal Normal 
FFNI O(m^n) High Quant Flexible Low Parametric Parametric 
UDR O(n) Med Quant Flexible High Parametric Parametric 

 

In the MCS method, samples of input variables x are generated based on their probability 
density functions. The system performance function, g(x) is then evaluated at each xi sample. 
The CDF of g(x) at requirement limit, c, is estimated by the frequency of g(x) samples less 
than c. MCS is flexible for any type of input distribution and any form of model function. 
Neglecting the algorithmic error caused by simulations, if a sufficient number of 
simulations n is used, MCS results in solutions with a high accuracy. Compared with other 
numerical methods, MCS has a desirable feature that its computational cost does not 
generally depend on the dimension of the random model input variables (for a given number 
of simulations n); however, if there are rare events as a result of interactions, this may 
necessitate the use of a greater number of simulations. 

 

The Taylor Series (TS) method approximates the performance function, g(x) with a p-
order Taylor series truncation. Typically, the Taylor series is truncated at the first or second 
order terms to create first and second order Taylor Series approximation, respectively. Once 
the TS approximation of g(x) is computed, the first two moments can be computed to estimate 
the mean and variance of g(x). The first-order Taylor Series method is typically utilized for 
uncertainty propagation due to its straightforward implementation. 

 

The MPP method was originally developed in the field of reliability analysis. The MPP 
is formally defined in a coordinate system of an independent and standardized normal vector. 
The input variables x (in the original design space) are transformed into the standard normal 
space u. The MPP is defined as the shortest distance from the origin to a point on the limit-



50 
Approved for public release; distribution unlimited. 

state surface in u space. Mathematically, finding the shortest distance is a minimization 
problem with an equality constraint: The solution u of this minimization problem is called the 
most probable point (MPP). At the MPP, the joint probability density function on the 
limit-state surface has its highest value; therefore, the MPP in the standard normal space 
has the highest probability of producing the value of limit-state function z (u). The MPP is the 
point on z (u) that contributes the most to the integral for probability estimation.  
The FFNI method performs the numerical integration of Eq. (2) using the Gaussian 
quadrature numerical integration technique. This method is used to compute the moments of 
the g(x) output distribution, which are then used to construct a parametric distribution of the 
output to compute the PCC. With this approach, the statistical moments of the 
performance function g(x) are calculated through direct numerical integration using an 
appropriate quadrature formula. In numerical analysis, a quadrature formula is an 
approximation of the definite integral of a function, usually expressed as a weighted sum of 
function values at specified points in the domain of integration. These sampling points are 
called the nodes and the weighting factors are the weights. 

 

The UDR method is similar to the FFNI method in that it utilizes numerical integration; 
however, it approximates the multivariate function with multiple univariate functions used 
to calculate the multivariate statistical moments. This method reduces computational cost by 
approximating the performance function g(x) by a sum of univariate functions, which depend 
on only one random variable with the other variables fixed to their mean values. 

 

2.2. Hierarchal Sensitivity Analysis 
 

Global Sensitivity is a variance-based method to quantify the amount of variance that each 
input factor contributes with on the unconditional variance, V, of the output response. This 
analysis assumes a model of the form Y = f(X), where Y is the output and X = (X1, X2, …, 
Xm) are m independent input factors, each one varying as defined by a probability density 
function. Unlike conventional global sensitivity analysis, in this proposal we consider that the 
output Y is a set of n output responses Y = (Y1, Y2, …, Yn) and therefore the goal is to 
determine the amount variance and covariance each input factor contributes to the 
unconditional variance-covariance matrix, Vij, of the n output responses. The goal then of 
the analysis is a ranking of the input factors according to the amount of variance that would 
disappear, if we knew the true value of a given input factor Xi. The methods utilized for this 
analysis allow computation of contribution of both main effects, i.e., the effect of the 
individual Xi, as well as the contribution of interaction effects, i.e., Xi·Xj, Xi·Xj·Xk, etc. 

 

Three methods for global sensitivity analysis have been developed and implemented as part 
of the Meta II project. The methods are summarized in Table 2. 

 

Table 2: Summary of Sensitivity Methods 
 

Method Scalability Accuracy Model Type Function Type # Inputs Input f(x) Output f(x) 
Sobol'  Varies Flexible Flexible High Flexible Flexible 
FAST O(n) Med Quant Flexible High Parametric Parametric 
EFAST O(n) Med Quant Flexible Low Parametric Parametric 

 

Sobol’ introduced the first order sensitivity index by decomposing the model function f 
into summands of increasing dimensionality. The approach has been expanded by subsequent 
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researchers to include computation of the total sensitivity index. The integrals utilized in the 
analysis can be computed with Monte Carlo methods. 

 

The main idea underlying the FAST method is to convert the k-dimensional integral into a 
one dimensional integral. Each uncertain input factor is related to a frequency ω and 
transformed by X(s) = Gi(sin(ωs)), where Gi is a suitably defined parametric equation which 
allows each factor to be varied in its range, as the parameter s is varied. The set {ω1,…, ωk} 
are linearly independent integer frequencies. 

 

In 1999, researchers proposed an improvement of the FAST method. They called it the 
Extended Fourier Amplitude Sensitivity Test (EFAST). With this method they could 
estimate the total effect indices, as in the Sobol method, by estimating the variance in the 
complementary set. This is done by assigning a frequency ω for the factor X (usually high) and 
almost identical frequencies to the rest ωi (usually low). 

 

The performance verification also provides the capability of hierarchical sensitivity analysis 
to decompose the complex system design into separable subsystems based on its hierarchy. A 
built- in example of ramp system can be followed for conducting hierarchical sensitivity 
analysis. 

 

3. Requirements 
3.1. Inputs (all inputs specified through the Dashboard) 

 
• System model: a black-box type of model (i.e., Modelica) which has outputs of 

system performance based on component inputs parameters. 
 

• Stochastic component input parameters: these are the list of input parameters of 
the system model to be varied and their uncertainty distributions. 

 

• Component output requirements: the list of output parameters of the system 
model and their lower and upper limits based upon a requirements document. 

 

3.2. Outputs (all inputs specified through the Dashboard) 
• Marginal PCC for each requirement 

 
• Joint PCC for the set of requirements 

 
• First Order (and optionally Total) Sensitivity of the output variance to 

input variances. 

• Graphical representation of results. 
 

3.3. Format 
 

• System model: Constructed in the Generic Modeling Environment (GME) 
 

• Stochastic component input parameters: Specified in the Parametric Exploration 
Tool in GME 

 

• Component output requirements 
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3.4. Running Performance Verification 
 
PCC/SA can be run from within GME. See GME documentation for running PCC/SA 
from within GME. 

 
4. Limitations 

 
4.1. Implementation 

1. The methods have not been tested extensively on complex models (i.e., Ricardo Dymola 
Models). 

2. Distribution fitting is only based on the first four statistical moments. 
 
 

4.2. Method Selection 
 
It is important to use appropriate method for uncertainty analysis. The most accurate method 
in uncertainty propagation is the Monte Carlo Simulation for any system independent of its 
complexity or nonlinearity. However, the computational cost increases directly with the 
complexity, nonlinearity and the number of design variables. Therefore for extremely large 
scale and complex system often the designer have very few samples for the system. This 
limitation makes it even harder to study the behavior of the system and also in deriving 
an accurate probability of failure. There are several improvements for lowering the cost of 
MCS for more complex systems. These improvements include both importance sampling and 
also meta-models as surrogate systems to be used instead of the original systems 

 
In the local expansion based methods such as Taylor Series, perturbation, FORM and SORM 
the accuracy is highly dependent on the degree of nonlinearity of the limit state function. But 
these methods will be reliable for simpler systems with small number of design variables with 
relatively acceptable convex limit state function. 

 
The UDR and FFNI methods are appropriate when the moments of the system exist. The 
limit state functions (i.e., Modelica system model) can be nonlinear. In case of heavy tail 
phenomena, the moments do not exist for the system and it is recommended that MCS to be 
used instead. 

 
In general the appropriate method in uncertainty propagation highly depends on the dynamic 
of the system, existence of heavy tail phenomena, and the degree of nonlinearity and also 
complexity of the system. Therefore it is recommended for the designer to have an 
understanding of such concepts. 

 
5. Proposed Future Work: Tail Study 

 
Calculating the probability of failure is a challenging task in a large scale and complex system. 
It is mainly because of large number of random variables and their interactions. The 
common methods to calculate probability of failure are sampling methods (MCS), Most 
Probable Point (MPP) based methods (FORM, SORM), Taylor Series (TS) methods, Full 
Factorial Numerical Integration method (FFNI), Univariate Dimension Reduction (UDR) 
method, polynomial Chaos Expansion (PCE) method. 
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The exhaustive Monte Carlo Simulation method is very expensive and almost impossible for 
a complex system. The rest of these methodologies are based on calculating the moments of 
the limit state function. However these moments might not exist in reality. Therefore the 
question arise how confident the results are in these methods. 

 
In order to answer this question, we focus more on the tail of the distribution of the limit 
state function. Since the probability of failure is defined as the area of the tail of the 
distribution. At first, we test if we have heavy tail phenomena at the tail. One well-known 
graphical method is using QQ-plot. In this plot, the quantiles of the limit state function is 
compared to the quantiles of the standard normal distribution. If the quantiles of the data are 
above the standard normal 
line, then the real tail is heavier than the normal distribution. However, if the quantiles are 
below the y = x line, then the standard normal tail is heavier than the real tail . 

 
Thus by using the conventional methods, we might have underestimated the probability of 
failure or also over-estimated the value for some of the design variables based on the 
analysis of their tail. It is notable to mention that for a complex system these plots are based 
on a very small sample of the limit state function. This might be the case for large scale 
and complex systems where each attempt to propagate uncertainties will be costly and almost 
impossible. 

 
We propose developing methods which quantify the tail of the output distribution and use 
this information in both the fitting of the output distribution as well as to place bounds on 
the estimated PCC. 
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Appendix B: QR Description 
 
GUIDING AND VERIFYING EARLY DESIGN USING QUALITATIVE SIMULATION 

 

ABSTRACT 

Design of a system starts with functional requirements and expected  contexts  of  use.  Early  design  
sketches   create   a topology of components that a designer expects can satisfy the requirements.   The   
methodology   described   here   enables   a designer to test an early design qualitatively against 
qualitative versions of  the  requirements  and  environment.   Components can  be  specified  with  
qualitative  relations  of  the  output  to inputs,  and   one   can   create   similar   qualitative   models   of 
requirements, contexts of use and the environment. No numeric parameter  values  need  to  be  
specified  to  test  a  design.  Our qualitative  approach  (QRM)  simulates  the  behavior  of   the design, 
producing an envisionment (graph of qualitative states) that represents all qualitatively distinct 
behaviors of the system in  the  context  of  use.  In  this  paper,  we   show  how  the envisionment can 
be used to verify the reachability of required states, to  identify implicit  requirements  that should  be  
made explicit,   and   to    provide   guidance   for   detailed   design. Furthermore, we illustrate the utility 
of qualitative simulation in the context of a topological design space exploration tool. 

 

INTRODUCTION 

The field of qualitative reasoning has its roots in capturing human  reasoning  about  the  physical  world.  
Such  reasoning about the interactions of connected elements  is at the heart of an  early  design  
process,  where  a  designer  is  attempting  to achieve some desired overall  behaviors, and avoid 
unwanted interactions.  Consider  the  drivetrain  model  in  Figure  1.  A qualitative analysis  will  show  
that it can  move  smoothly  up through the gears,  increasing speed over level terrain.   But it will also 
show  that the engine may stall because of excessive load for certain combinations of design 
parameters, and driving and   terrain  patterns,  This  qualitative  analysis  can  provide guidance   for   
parameter   and   component   selection   during detailed design. By linking our qualitative reasoning 
system to a standard tool for interactive graphical design (Open Modelica, 

  

http://www.openmodelica.org/),  we  are  enabling  designers  to use qualitative analysis as part of their 
standard work practice. 
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FIGURE 1: MODELICA MODEL OF A VEHICLE DRIVETRAIN 

While developing models of systems with fully  specified parameters,  engineers  frequently  have  to  
determine  whether their numerical results conform to expected behaviors or are in fact errors in their 
modeling or  simulation. This process relies on an understanding of all constraints on possible dynamics 
of the system (e.g., when the engine is running, and the vehicle is in a forward gear it should not go 
backwards, it is possible for the engine to  stall, etc.).   Qualitative reasoning automates this form of 
reasoning. 

Many new designs of systems are instantiations of previous successful   designs   that   leverage   new   
components   and/or capabilities of materials. For innovative  results, it is useful to explore a larger 
space of designs  including new topologies of components. Doing detailed parametric design for each 
element of the space is costly; qualitative verification helps prune  the space by  efficiently  analyzing  
component  topologies  without the  need  to  specify  all  component  parameters   needed  for numeric  
simulation.  Qualitative  modeling  supports  the  rapid exploration   of   designs   that   are   only   
specified   using   the mathematical form of the relationships between a component’s inputs and 
outputs. The systems do  not need to be piece-wise linear; non-linear models are fine.  Given a model, 
qualitative simulation generates all possible  behavioral trajectories of the system’s variables. Analyzing  
these trajectories can determine whether with appropriate  parameter selection, a design could satisfy 
the requirements, or whether it can never fulfill certain requirements. 

This paper begins by introducing qualitative simulation, its representation  and  semantics.  We  then  
discuss  our   design architecture QRM  and  our  approach  to  creating  models.  We illustrate this using 
an example of a door  system based on an infantry   fighting   vehicle,   and    highlight   how   qualitative 
simulation verifies requirements and guides detailed design by identifying implicit failures. In a second 
example dealing with electric circuits, we show how qualitative simulation drastically prunes a design 
search  space. We close with a discussion of related approaches, scaling and future work. 
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QUALITATIVE SIMULATION 

Qualitative   simulation  [1][2][3]  or  envisioning,  is   the process of projecting forward, from an initial 
situation  and a model, all possible qualitative states that may occur. Qualitative representations of 
continuous quantities (e.g., the voltage across a diode) are central to this process.   In our  familiar 
Newton- Liebnitz calculus we use variables to  represent quantities that can take any value from the real  
number line, and vary with time. Variables   can   have   arbitrarily   many   higher-order 
derivatives.  Likewise, in qualitative reasoning, these variables and their derivatives take on values – 
except that the values are qualitative.  Each  variable (or derivative) has a quantity space consisting of an  
ordered set of landmark values representing important  points  for understanding the behavior of the 
model (e.g.,  the  turn-on voltage for a diode). A qualitative value is either a landmark or the open 
interval denoted by two adjacent landmarks. For a door, there are two landmark  values: Closed and  
Open.  The  doors  position  can  be  at  one  of  these  two landmarks,  or  between  the  (Closed,  Open).    
The  qualitative value   also   has   a   direction   (a   qualitative   derivative)   of increasing, decreasing or 
steady.  The most common quantity space uses just the sign of the real quantity.  We represent the 
interval x<0 as Q-, x=0 as Q0, and x>0 as Q+). 

A qualitative state is an assignment of qualitative values to variables in the model.  We represent 
equations as  qualitative constraints. Consider the equation governing a resistor, V=I*R, where voltage, 
V, and current, I, are quantities and R is a fixed parameter with  a positive  value.  The  resulting  
multiplication constraint ensures that the qualitative product of I and R is V. Because R is a positive 
constant value, if I is a negative value, then  V  must  also   be   a  negative  value.  Furthermore,  their 
derivatives  must   also  match.   Figure  2  defines   qualitative addition and multiplication for sign 
values. 

 

FIGURE 2: QUALITATIVE ARITHMETIC TABLES 

One of the most significant consequents of the coarseness of  qualitative  values  is  that  variables  may  
be  qualitatively constant for long periods  of  time (perhaps  infinite).   Hence, qualitative simulation 
need only  consider the instants of time at which there is a possible  change in qualitative value,. The 
passage of time is represented as an alternating sequence of instants and intervals. A qualitative state 
can either describe an instant  or  an  interval.  Qualitative  simulation  determines  all trajectories 
through the qualitative state space from an  initial state.   Given a state, qualitative simulation computes  
possible successors  for  each  quantity  value  and  uses   constraints  to determine how they may be 
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combined to  form a next, if any, state or states. The rules for generating  successor values and 
directions are based on the mean  value  theorem from calculus [4]. 

Consider  a position quantity that was between open  and closed  and  moving  toward  closed.  There  
are  four  possible successors for this quantity. Its value may remain in the interval or reach the closed 
landmark and it may continue increasing or become steady (its derivative stays positive or  becomes 
Q0). Figure 3 illustrates the qualitative integration rule for an instant to the following interval where are 
variables are continuous. 

 

FIGURE 3: CONTINUITY OF NEXT VALUES FROM AN INSTANT 

 

From basic calculus if a variable is non-zero at an instant, it will remain at that qualitative value in the 
following interval. If  the  variable  is  0,  it  will  have  the  qualitative  value  of  its derivative over the 
following interval.  There is one ambiguous case: if a variable and its derivative are both 0, the 
qualitative value on the following interval is  ambiguous (but the variable and its derivative must be 
qualitative equal during the interval). 

Consider x=t^2 when t=0.   The qualitative values x and  dx/dt are both Q0, but x=Q+ on the following 
interval. 

 Cyber-physical systems include dynamics that are discrete as well as continuous (e.g., an input signal to 
open the door, the changing of gears in a drive train, a diode switching from off to on). We model such 
changes through modes, which include an entry condition, initial values for variables,  and equations 
that are valid within that mode. During simulation, discrete changes occur at instants when mode entry 
conditions are satisfied. The initial values and equations govern the behavior of quantities in the   
following   interval   and   subsequent   states.   Modes   are different than the  operating regions in that 
they allow for the modeling of hysteresis. 

 

QUALITATIVE SIMULATION SEMANTICS 

For  qualitative  reasoning  to  be  useful  for  verification  it must have a well-defined semantics. One can 
prove a theorem: Given a qualitative model with the appropriate abstractions for the ODE’s used in, say 
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Modelica, to define continuous behavior for a numeric simulation, the qualitative simulation will contain 
a path which describes the trajectory of the numeric simulation [3]. 

 

FIGURE 4: QUALITATIVE SIMULATION SEMANTICS 

DESIGN ARCHITECTURE 

In this section, we describe our view of an automated,  or semi-automated, design process (shown in 
Figure 5). A human designer or an automated Design Space Exploration tool starts with a high level 
functional specification of the desired system to be designed.   This search produces  tentative 
topologies for analysis. These  topologies  are  expressed  in  the  Modelica connection  language  only   
specifying  components  and  their connections; it need not contain any parameter values. 

 This  is  illustrated  more  concretely  in  Figure  4.  This particular example is of an electric vehicle, 
but the details  of the model are irrelevant here. Qualitative simulation  produces envisionments from 
qualitative models (left  downarrow).   An envisionment  corresponds  to  a  real  system  in  the  
following way.  First, the qualitative models describe an infinite number of  possible  systems  (all  
possible  numerical  assignments  to parameters  as  well  as  all  possible  conventional  component 
models  which  satisfy  the  qualitative  model,  including  non- linear  ones).  Each  of  those  systems  
will  have  a  particular behavior (right downarrow).  Each such behavior will map to a sequence of  
qualitative states (leftarrow).   Each possible real behavior  occurs  in  the  envisionment.  Hence,  
if  a  desired behavior does not appear in an envisionment, it cannot occur in with  any  possible  
assignment  of  parameters  to  this  system. This is an extremely important property. 

One  would  also like the converse to be  true: that  every state in the envisionment can actually occur in 
a real  system. Although  this  property  often  holds,  and  there  are  complex conditions under which it 
holds. However, we cannot guarantee it in general [6].  Elimination of spurious transitions and states has 
been an active research area in  the  qualitative  reasoning community. 
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FIGURE 5: QRM SYSTEM ARCHITECTURE 

Given   the   qualitative   models   and   the   topology   the envisioner  constructs  the  envisionment  of  
the  system. The requirements  (converted  to  qualitative  terms)  are   evaluated against  the  
envisionment. Some  requirements  may  be  met, some  may  not.  If  the  requirements  are  not  
satisfied,  this analysis identifies which requirements fail to be met and why. This is then presented to 
the designer or the automated Design Space Exploration tool.  If the requirements are adequately met, 
subsequent  analysis  selects  parameter  values  which  optimize the   requirements.   This    
optimization   may   discover   no assignment   of   values   to   parameters   meets   the   numerical 
requirements in which case this analysis will be fed back to the designer or DSE.)  This paper focuses on 
the fully implemented qualitative reasoning aspect of this process which we call  the Qualitative 
Reasoning Module (QRM). 

The design space explorer uses component models from a standard  library.  The  vast  majority  of  our  
qualitative  model library is obtained from Modelica models which are abstracted only  once,   and  
comprise  ‘well  written’   Modelica  models abstract  directly. More  complex  Modelica   models  
require human  intervention.  Inclusion  of  Modelica  function  blocks, algorithm  blocks  or  complex   
conditionals  are  difficult  to translate automatically. These  abstractions need be done only once and 
form the qualitative component model library. 
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BUILDING QUALITATIVE MODELS 

Component-based   modeling   is   becoming    increasingly popular in industry (e.g., Modelica [5]) due to 
savings incurred by reusing existing models  for new  applications. Component modeling efforts take lots 
of resources; therefore, we align our models  as  much  as  possible  with  Modelica  to  facilitate  our 
ongoing  automatic   translation  efforts.  The  composition  of models  occurs  through  connections  
that  are  domain  specific (e.g.,  electrical pin). The composition of the models creates additional 
constraints on the flow and effort variables of  the models governed by Kirchhoff’s current and voltage 
laws. One area where  we  differ  from  Modelica  representation  concerns our use of modes instead of 
conditional equations. Modes offer the  following  advantages:  (1)  they  localize  the  definition  of 
hybrid  behavior  for  the  component,  and  (2)  they  provide  a natural way to model various faulty 
behaviors. 

To illustrate our modeling approach, Figure 6 contains our definition of an ideal-diode. We present this 
here in our internal S-expression syntax which highlights this  localization. 1    This model  is  a  subclass  
of  the  electrical  one  port  model,  which 

defines two electrical connections, a positive pin and a negative pin, and variables for the current and 
voltage of the diode. The redefinition of the voltage variable v is essential  to define the quantity space 
including Q0, representing 0V,  and OnVoltage, representing the turn on voltage for the  diode. The 
diode has two modes,  off and on. The component is in a mode until the entry conditions for  another  
mode have been satisfied, in this case, if the diode was off, the equation stating that no current was 
passing through the diode would be enforced. This persists until the instant when the voltage 
transitioned to OnVoltage, at which point the equation holding the voltage constant would be enforced  
and  current  would  be  allowed  to  flow  through  the diode. 

(defprototype ideal-diode :extends (one-port) 

:variables ((v voltage :landmarks (Q0 OnVoltage))) 

:mode (off :entry ((= i Q0)) 

:equations ((= i Q0))) 

:mode (on :entry ((= v OnVoltage)) 

:equations ((= v OnVoltage)))) 

FIGURE 6: DIODE MODEL WITH TWO MODES 

We have defined a standard template for expressing  modes that is acceptable to current Modelica 
compilers, but do not include it here.1 
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FIGURE 7: ARCHITECTURAL OF THE DOOR SYSTEM 

QUALITATIVE SIMULATION FOR VERIFICATION 

In   addition   to   specifying   a   topology   of   connections between qualitative component  models,   it  
is   necessary  to encode requirements in a formal language.  We work with a variety of temporal  logic  
specifications   [7].  While Linear Temporal Logic is common in verification, Computational Tree Logic is 
an extension of LTL that is better suited to qualitative verification of requirements over multi-trajectory 
envisionments.   Requirements   may   be   evaluated   over   an individual qualitative state in the 
envisionment (e.g., a variable should never exceed a particular level); requirements may also take into 
account a sub path of a trajectory. 

Success   and   failure   conditions   for   our   envisionment algorithm can terminate simulation along a 
trajectory when one of the conditions is met. The  requirement, “the door shall not overshoot the closed  
position” a, can consider a state a failed terminal  state  if   the  door’s  position  is  below  the  closed 
landmark. 

After  the  envisionment  graph  has  been  created,   QRM provides  the  following  analysis.  If  none  of  
the  trajectories violate requirements, then all possible numeric  values for the system  parameters  will  
satisfy  all  requirements.  (Recall  the completeness  guarantee  of  the  envisionment  graph.)  If  some 
trajectories  violate  requirements  and  others  do  not,  then  the design    may    satisfy    the    
requirements    with    appropriate constraints on parameter values. In this case, detailed design is 
required  to determine an assignment of parameter values that will  satisfy the requirements. If all of the 
trajectories violate requirements, detailed design is not necessary because no set of parameter values 
will satisfy the requirement. 
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VERIFICATION EXAMPLE: VEHICLE DOOR LINKAGE 

To   illustrate   qualitative   simulation   consider   the   door system  shown  in  Figure  7.  The  
architectural  model  shows quantity spaces for the positions of the piston that  moves the door,  and  
the  door   itself.  The   system   consists   of  a  PD controller, which uses position and  velocity sensors 
from the door,  a  piston,  whose  linear  motion  applies  a  torque  on  the door, and finally the door  
slab  itself. An  input signal to the controller specifies  the  desired  position  for  the  door.  In  this case,  
the  door  has   two  landmarks  in  the  angular  position. 

FIGURE 8: THE ENVISIONMENT GRAPH FOR THE DOOR SYSTEM MODEL 

THE ENVISIONMENT COMPUTED BY QRM IS ON THE LEFT, AND A SIMPLIFIED VERSION ON THE RIGHT 

quantity  space,  closed  and  open,  and  the  piston  has   one landmark on the linear position quantity 
space, piston parallel, representing the position where the piston acts in parallel with the hinge. We will 
evaluate this design against the requirements that the door should always be able to be  closed, the 
door’s position should operate between the door open and door closed position  inclusively.  For  a  
context   of  use,  from  an  initial situation  in  which  the  door  is  closed,  we  will  consider  two 
discrete transitions: (1) the command is given to open the door, and  (2)  when  the  door  has  reached  
the  open  position,  the command will be given to close the door. 

QRM  produces  the  envisionment  (shown  in  Figure   8) providing the following feedback to the 
designer. The  design may reach a successful situation (shown in green). Each of the requirements that 
may be violated is shown in  red. Therefore, appropriate parametric assignment will be needed to 
ensure that trajectory   for   each   failed   state   is   avoided. A   metric   for estimating how difficult it 
will be  to  verify the design is the ratio of successful states to terminal states, in this case 1/3. 

Further analysis of the envisionment provides  additional guidance for the detailed design. There is a  
terminal situation, 6, that does not satisfy the success or failure conditions of the system.  This  dead-
end  state  implies  the  need  for  additional requirements to guide the designer to avoid this  state. In 
this case, this situation results from a kinematic  singularity in the piston door connection. That is, when 
the  acting angle of the piston is parallel to the angle of the  door, the piston produces no torque. While 
this is part of the piston component model, it is  only  leads  to  a  quiescent  (terminal)  state  if  the  
door  is stationary at this point. To identify this risk requires simulating the system with a use case where 
the door first opened and then closed. This analysis happens very early in the design process, when 
alternative system topologies are being considered. In the next  section,  we  illustrate  how  this  
process  could  be  used within an automated design space exploration system. 
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QUALITATIVE  VERIFICATION  IN  TOPOLOGICAL DESIGN SPACE EXPLORATION 

Innovative design exploration searches for  configurations of existing components (new topologies) to  
achieve specified functionality. Consequently, this search  space is exponentially large in the number of 
components  in  the design. Qualitative verification prunes the design space in two ways.   The first  is 
use of qualitative models of components, where the component models  capture  only  significantly  
different  behaviors  of  the models. The second is use of a qualitative simulation to identify bad 
topologies from which no choice of parameters will satisfy the requirements, and to guide  parameter 
selection in detailed design.  Qualitative  simulation  graphs  are  much  smaller  than those  that   
explore   parameter  spaces.  Therefore,  qualitative verification   can   eliminate   designs   for   large   
parts   of   the parameter space. 

Consider the following example of designing a system that turns on a light after a short delay of a switch 
being flipped. If the available components include batteries,  switches, resistors, capacitors, inductors, 
and diodes, the  topological design space includes every configuration of these components. To illustrate 
the utility of qualitative verification, we will consider a design space exploration tool that searches the 
design space by taking one of  the  following  design  actions:  adding  a  component  in parallel  or  
series  with  an  existing  component,  removing  a component, or  flipping  a  component  in  the  circuit.  
Figure  9 illustrates  the  starting  design,  which  includes  just  a  battery, switch and diode. 

 

FIGURE 9: STARTING POINT FOR TOPOLOGICAL DESIGN SPACE EXPLORATION 

After each design action, we attempt to build a qualitative model and simulation for the current design  
candidate. Now many of these candidates are actually  shorted  or open circuits and QRM identifies 
them because  their initial conditions are inconsistent.  If  the  design   candidate  has  consistent  initial 
conditions, QRM generates  an envisionment and analyzes the results. Consider a circuit with a resistor 
in place of the cloud in Figure 9. The  envisionment of  this will  begin  with  both  the switch and diode 
off, and has two trajectories for the instant the switch is turned on. In one, the diode is on, and, in the  
other, the diode is off. The trajectory of the actual system depends on the ordinal relationship between 
the on voltage  for the diode and the battery’s voltage. Because neither of  these trajectories satisfies  
the  requirement  that  there  exists  a delay  before  the light turns on, qualitative verification  
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eliminates this topology without   considering   all   possible   combinations   of   battery voltages, 
resistances and on voltages. 

 

FIGURE 10: THE ENVISIONMENT ON THE RIGHT PROVES THAT THE TOPOLOGY ON THE LEFT CAN SATISFY 
THE DESIGN REQUIREMENTS 

Now consider the design in Figure 10. QRM produces an envisionment with  two trajectories. They are  
identical in  the interval after the switch is turned on, the capacitor is charging and  the  voltage  across  
the  diode  is  increasing.  This  interval terminates in one of two instants: (1) the current ceases flowing 
into the capacitor and the system reaches a steady state, and (2) the voltage across the diode reaches 
the  on voltage landmark causing a mode transition (shown in  magenta) resulting in the diode   turning   
on.    This    second    trajectory   satisfies   the requirement.   Therefore,   this   topology   is   a   
candidate   for parameter selection and  care should be taken that the battery voltage should be greater 
than the turn on voltage of the diode. 

SCALING 

One of the promises of Qualitative Reasoning applied  to design  is  its  performance. By  answering  
simple  questions, requirements   can   be   evaluated   for   surprisingly   complex systems very quickly.   
We draw on  decades of experience on building fast qualitative envisioners.  In particular, we draw on 
advances developed in the recent DARPA Deep Green program [8]. 

Qualitative Reasoning has the advantage it only needs  to address  qualitative  distinctions  –  that  alone  
often   severely contracts the search  space. The complexity of QRM  is not driven by the number of 
variables in the system – it  is more determined by the dynamics of the system.  If the dynamics are 
simple, analysis will be simple.   We can  successfully analyze systems of tens of thousands of  variables 
in seconds. On the other hand, we can construct a pathological example with a few dozen  components  
that  cannot  be  solved  (e.g.,  the  voltage across a series of unsynchronized oscillators). 
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One important way QRM improves its performance  (first developed in Deep Green) is to include 
requirement evaluation during envisioning.  If a state or a combination of states do not meet the 
requirements, QRM immediately cuts  off generation of  any  subsequent  states:  after  all  there  is  no  
necessity  to analyze   the   consequences   of   states    that    do   not   meet requirements. 

QRM also includes a qualitative solver which  determines when qualitative variables are locked (state 
dependent) together and thus can be completely eliminated.   For this, it uses a form of qualitative 
algebra.   This greatly  reduces the complexity of most analyses. 

 

COMPARISON TO OTHER APPROACHES 

There is a broad literature on formal verification of hybrid systems.   However, almost all approaches 
require  quantitative models and numerical parameters.   Such  information is often not   available   in   
early. In   contrast   to   our   approach   of constructing   a   model   from   components,   verification   
with HybridSAL[10] begins with  a  set of equations, with numeric values  chosen. HybridSAL   
[10],  is  also  limited  to  linear models. 

HybridSAL  has  the  advantage  of  being  able  to  answer quantitative  questions  about  a  design  (e.g.,  
will  the  vehicle reach 30 mph in 6 seconds). Answering such  queries for fully specified designs is an 
important part of  our future work; we believe that the QRM envisionment can improve the efficiency of  
our  version  of  this  analysis.  It  is  an  open  question  what classes of non-linear equations can be 
analyzed. 

Other researchers have explored the use of PRISM [9]  to perform verification of cyber-physical systems. 
PRISM models have the advantage  that they can  consider  probabilistic  state transitions. Probabilistic 
 state transitions  make  PRISM particularly useful for  verifying requirements about the 
likely reliability of  systems  given failure  rates of components (e.g., “what  is  the  probability  that  
vehicle  will  be  able  to  operate continuously  for  570  hours”).  A  challenge  for  doing   this analysis  is  
that  there  is  no  automatic  way  to  move   from equations   specifying   components   to   the   models   
used   by PRISM. 

As we have shown in this paper, even when we know  all the models and values, QRM can help verify 
requirements very quickly.   Almost all formal verification tools are very  general and  their  performance  
scales  very  poorly  with   number  of variables or components.   For  more  complex  systems, QRM can 
verify requirements when formal  methods  cannot.   QRM has   the   advantage   of    algorithms   
specifically   tuned   to continuous   systems    developed   over   decades   in   the   AI community. 

 

DISCUSSION 

We have presented  our  QRM  approach  for  early  design verification using qualitative simulation. In 
particular, we have illustrated  how  envisionments  can  verify  requirements   and guide  detailed  
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design  by  identifying  implicit   requirements. Furthermore, we have shown that qualitative verification 
using QRM is able to eliminate large areas of the intractable search space of design from components. 

Our   initial   explorations   have   opened   a   number   of promising directions   for future work. As   
stated   earlier, automatically incorporating available quantitative  information about  parameters  
would  allow  us  to  verify  a   large  set  of requirements.   We intend to build on existing work on semi- 
quantitative   simulation   [11]. Another    important   future direction   concerns   the   interaction   
between   design   space exploration and qualitative simulation.  In the case of design flaws, QRM could 
use the envisionment to produce diagnoses guiding topological search. In the case of potentially 
successful designs, the envisionment could provide guards, or inequalities, to guide parameter selection. 
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1.0 SUMMARY 
 
The primary objective of our effort is to develop a fundamental theory to quantify the inherent 
uncertainties and risks in complex system design and development processes. These theoretical 
developments will help enable the achievement of the META goal of devising, implementing, 
and demonstrating in practice a radically different approach to the design, 
integration/manufacturing, and verification of complex systems. Our approach to meeting this 
objective is: to adapt the entropy concepts of information theory to create a metric for system 
complexity; to apply estimation theory to characterize inherent uncertainty in system 
development processes; and to utilize this theoretical base to develop efficient methods for 
resource allocation so as to manage uncertainty and mitigate risk in complex system 
developments.  

 

Our specific innovative claims for this project, building on our previous DARPA META project, 
are as follows: 

 

1. Viewing system development as a problem of Bayesian estimation leads to a 
theoretical framework for complex system development. 

2. Quantifying complexity in terms of information theoretic concepts permits the 
treatment of the complexity metric with the tools of estimation theory. This enables a 
systematic approach to quantitative modeling of system development as a resource 
investment procedure in the presence of uncertainty. 

3. A stochastic model for system development facilitates quantification of the uncertainty 
reduction that is necessary for success and can be used as a tool to monitor the actual 
development process. 

4. Our proposed theoretical framework for uncertainty quantification provides the 
bedrock upon which the methods and tools, enabling orders of magnitude improvement 
in complex system developments, can be built. 

 

In this research we achieved our objectives through further development and demonstration of 
the complexity metric defined under our previous META project. This includes demonstrating 
our approach on the Vanderbilt University bond graph model of an infantry fighting vehicle, 
establishing a correspondence between complexity-based sensitivity analysis and variance-based 
sensitivity analysis for additive functions with Gaussian distributions, creating a compositional 
UQ methodology, creating an expert elicitation procedure for model discrepancy quantification, 
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and creating a resource allocation methodology for redesign and refinement decisions. Some of 
the material found in this report may also be found in Ref. 40. 

2.0 INTRODUCTION 
 

Over the years, engineering systems have become increasingly complex, with astronomical 
growth in the number of components and their interactions. With this rise in complexity comes a 
host of new challenges, such as the adequacy of mathematical models to predict system behavior, 
the expense and time to conduct experimentation and testing, and the management of large, 
globally-distributed design teams. These obstacles contribute uncertainties to system design, 
which can have serious, often disastrous, implications for program outcome. A notable example 
is the Hubble Space Telescope which, when first launched, failed its resolution requirement by 
an order of magnitude. A Shuttle repair mission, costing billions of additional dollars, was 
required to remedy the problem [1]. The V-22 Osprey tilt-rotor aircraft is another example: over 
the course of its 25-year development cycle, the program was fraught with safety, reliability, and 
affordability challenges, resulting in numerous flight test crashes with concomitant loss of crew 
and passenger lives [2]. More recently, the Boeing 787 Dreamliner transport aircraft program has 
experienced a number of major prototype subsystem test failures, causing budget overruns of 
billions of dollars and service introduction delays of about three years. One major source of 
blame for Boeing's setbacks is its aggressive strategy to outsource component design and 
assembly, which created heavy program management burdens and led to unforeseen challenges 
during vehicle integration [3]. 

In these cases and numerous others, the design program was unaware of the mounting risks in 
the system, and was surprised by one or more unfortunate outcomes. Although these examples 
are extreme, they are suggestive that current system design practices are unable to recognize 
performance, cost, and schedule risks as they emerge. Such unanticipated or emergent behavior 
is often attributed to the complexity of the underlying system [4]. This has led to a desire to 
measure system complexity in a manner that will enable design trades and improve 
parameterization of cost and schedule. Thus, our objectives are to quantitatively define system 
complexity in terms of system quantities of interest and to formulate a complexity-based 
sensitivity analysis. The resulting methodology identifies the key contributors to system 
complexity and provides quantitative guidance for resource allocation decisions aimed at 
reducing system complexity. 

We define system complexity as the potential for a system to exhibit unexpected behavior in the 
quantities of interest. A background discussion on complexity metrics, uncertainty sources in 
complex systems, and related work presented in Section 3.0 We measure this complexity as the 
exponential information entropy of the probability distribution of the quantities of interest 
associated with a given system. Exponential entropy has been established by Ref. [5] as a 
rigorous measure of the extent of a probability distribution and is described in more detail in 
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Section 3.0, which also includes the development of our sensitivity analysis procedure, which 
may be used to direct a design refinement process [6]. We apply our methodology to a design of 
an infantry fighting vehicle (IFV). The quantity of interest for the application is the range of the 
vehicle. The application is described in more detail in Section 4.0. A demonstration of the use of 
our methodology is presented in Section 4.0 as well, where two IFV options are considered and 
general conclusions are drawn in Section 5.0. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 

Complexity in system design is an elusive concept for which many definitions have been 
proposed, though none formally adopted. Early work in the field of complexity science by 
Warren Weaver posited complexity as the nebulous middle ground between order and chaos, a 
region in which problems require “dealing simultaneously with a sizeable number of factors 
which are interrelated in an organic whole” [7]. Another interpretation of this idea considers a set 
of “phase transitions” during which the fundamental features of a system undergo drastic 
changes [8]. As an illustrative example, consider the phase transitions of water [9]. On one end 
of the spectrum, water is frozen into a simple lattice of molecules whose structure and behavior 
are straightforward to understand. At the other extreme, water in gaseous form consists of 
millions of molecules vibrating at random, and the study of such a system requires methods of 
statistical mechanics or probability theory [10]. In between the two lies the complex liquid state, 
wherein water molecules behave in a manner neither orderly nor chaotic, but at once enigmatic 
and mesmerizing, which has captured the imagination of fluid dynamists past and present. 
 
Though the above example makes the idea of complexity relatable to a large audience, the debate 
over its definition still persists. However, many researchers agree that there are several properties 
that complex systems tend to share [11, 12, 13, 14, 15] (1) they consist of many parts; (2) there 
are many interactions among the parts; (3) the whole exceeds the sum of the parts, that is, the 
parts in combination produce synergistic effects that are not easily predicted and may often be 
novel, unexpected, even surprising; and (4) they are difficult to model and to understand. 
 
In addition to qualitative descriptions of complexity, there have also been many attempts to 
explain complexity using quantitative measures. These definitions can be classified into two 
general categories, structure-based metrics and process-based metrics. Structure-based metrics 
quantify the complexity associated with the physical representation of a system [16]. They 
typically involve counting strategies: in software engineering, the source lines of code (SLOC) 
can be used to describe a computer program [17]; in mechanical design, analogous measures 
include the number of parts [18], functions [19], or core technologies [20] embodied in a 
product. Though appealing, these counting metrics may be susceptible to different interpretations 
of what constitutes a distinct component - depending on the level of abstraction; a component 
may be as high-level as an entire subsystem, or as basic as the nuts and bolts holding it together. 
More sophisticated structure-based metrics also attempt to address the issue of component 
interactions through an analysis of the topology and connectivity of the system [21, 22]. For 
example, Thomas J. McCabe proposed the idea of cyclomatic complexity in software 
engineering, which uses graph theory to determine the number of control paths through a module 
[23]. Numerous others have also recommended approaches to estimate system complexity by 
characterizing the number, extent, and nature of component interactions, which govern the 
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interconnectedness and solvability of the system [24, 25, 26]. Overall, structure-based 
complexity metrics are usually easy to understand and to implement, but they may not be 
meaningful except in the later stages of design, after most design decisions have been made, and 
the system is well-characterized [27]. 
 
A second class of complexity metrics quantifies system uncertainty in terms of processes 
required to realize the system. One metric in this category is algorithmic complexity, or 
Kolmogorov complexity, which measures the compactness of an algorithm needed to specify a 
particular message [28, 29, 30]. Similar definitions include the number of basic operations 
required to solve a problem (computational complexity), or the amount of effort necessary to 
design, modify, manufacture, or assemble a product [31, 32]. Another possible interpretation of 
complexity is related to the information content of a system. The concept of information entropy 
was originally proposed by Claude E. Shannon to study lossless compression schemes for 
communication systems [33]. Information entropy, or Shannon entropy, measures the uncertainty 
associated with a random variable. It also has an intuitive and appealing analogy to entropy in 
the thermodynamic sense, as a measure of a system's tendency toward disorder [34]. In this 
work, we propose a complexity metric based on exponential information entropy, which is 
described in the next section. It is important to note here that there are many different metrics of 
complexity and each can be useful in different ways and thus, all are important. 
 
We intend our complexity metric to be used in simulation-based design activities where limited 
information is known about quantities of interest relevant to the design of a complex system. 
Given our context, our metric is based on the information content in our estimates of quantities 
of interest. Thus, our metric reflects a correspondence between uncertainty in a system and the 
complexity of the system, as consistent with our complexity definition stated in Section 2. This 
correspondence does not exist for many of the other complexity metrics noted, particularly the 
structure-based metrics. 
 
3.1 Complexity Metric Theoretical Development 
In this section we define our complexity metric and develop a quantitative measure of it. We 
then develop a sensitivity analysis procedure designed to identify the key contributors to system 
complexity in an effort to identify how to best allocate resources for complexity reduction. 

3.1.1 Complexity Metric.  
We define complexity as the potential of a system to exhibit unexpected behavior in the 
quantities of interest, which are the quantities characterizing the performance, cost, schedule and 
other relevant attributes of the system. Thus, we wish to characterize the amount of knowledge 
we have with respect to our quantities of interest. To measure this amount of knowledge, or level 
of information, we define a metric of complexity based on exponential information entropy. For 
a discrete random variable 𝑌 with probability mass function 𝑝(𝑦), the information entropy of 𝑌 
is defined as 

        𝐻(𝑌) =  −∑ 𝑝(𝑦𝑖) log𝑝(𝑦𝑖),𝑖             (1) 
 
Where 𝑦1,𝑦2, … are values of 𝑦 such that 𝑝(𝑦) ≠ 0. For a continuous random variable 𝑋 with 
probability density function𝑓𝑋(𝑥), the differential information entropy of 𝑋 is defined as 

ℎ(𝑋) =  −∫ 𝑓𝑋(𝑥) log 𝑓𝑋(𝑥)𝑑𝑥∞
−∞ ,           (2) 
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where the integrand is taken to be zero when 𝑓𝑋(𝑥) = 0. Our work here focuses on continuous 
random variables. For both the discrete and continuous case the base of the logarithm is chosen 
by the user. We will deal exclusively in this work with the natural logarithm. Thus, our 
quantitative metric of system complexity is given as 
 

𝐶(𝑄) =  exp�-∫ 𝑓𝑄(𝑞) ln 𝑓𝑄(𝑞)𝑑𝑞∞
−∞ �          (3) 

 
Where 𝑄 is the random variable associated with a quantity of interest of a given system. 
 
The exponential entropy of a uniform random variable can be interpreted as the length of the 
support of the random variable (and area, volume, and hyper volume for 2, 3, and n-dimensional 
jointly distributed uniform random variables). To this end, the exponential entropy of any 
arbitrarily distributed random variable can be related to the length of the support of an 
information-entropy-equivalent uniform distribution. In this sense it has some similarities to 
Kolmogorov complexity. 
 

3.1.2 Background Material on Information Entropy. Here we present some brief background 
material on information entropy. For the discrete case, consider a random variable Y with 
probability mass function p(y). The entropy of Y is then defined as  
 

 

 

H(Y ) = − p(yi)log p(yi),i∑  (4) 

 

Where y1,y2,… are the values of y such that p(y) does not equal zero. For the continuous case, consider a 
random variable X with probability density function fX(x). The differential entropy of X is then defined as 

 

 

 

h(X) = − fX (x)log fX (x)dx,
ΩX

∫  (5) 

 

Where ΩX is the support of X. Examples of the information entropy for typical distributions are as 
follows: 

 

Normal Distribution: 

 

h(N(µ,σ 2)) =
1
2

ln(2πeσ 2), (6) 

 

Uniform Distribution: 

 

h(U[a,b]) = ln(b − a), (7) 
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Triangular Distribution: 

 

h(T(a,b,c)) =
1
2

+ ln b − a
2

 
 
 

 
 
 ,  (8) 

 

where µ is the mean and σ2 is the variance of the normal distribution, a is the minimum and b is the 
maximum of the uniform distribution, and a is the minimum, b is the maximum, and c is the mode of the 
triangular distribution. 

3.1.3 Complexity Estimation. Defining complexity in terms of exponential entropy implies that 
we are concerned with uncertainty associated with quantities of interest. In modeling a potential 
system, which is typically done with numerical simulation models, there are many potential 
sources of uncertainty that can impact quantities of interest, and thus system complexity. Among 
these are parametric uncertainty, parametric variability, code uncertainty, observation error, and 
model inadequacy. Following Ref. [35], parametric uncertainty refers to uncertain inputs or 
parameters of a model, parametric variability refers to uncontrolled or unspecified conditions in 
inputs or parameters, code uncertainty refers to the uncertainty associated with not knowing the 
output of a computer model given any particular configuration until the code is run, observation 
error is uncertainty associated with actual observations and measurements, and model 
inadequacy relates to the fact that no model is perfect. For the application considered here we do 
not incorporate experimental data, therefore, our focus is on parametric variability, parametric 
uncertainty, code uncertainty, and model inadequacy.  
 
A simulation model, or simulator, is a function 𝑔(⋅) that maps inputs x into an output 𝑞 = 𝑔(x). 
In our work, we incorporate the presence of simulator model inadequacy by adding noise to 
simulator output. Thus, the true value of a quantity of interest that has been estimated by a 
simulator is in the form  
 

𝑞 = 𝑔(x) + 𝜖(x),              (9) 
 
where 𝜖(x) is additive noise that is permitted to vary throughout the input space. In the 
demonstrations provided in Section 4, we notionally account for model inadequacy by assuming 
normally distributed noise. The purpose of this is to ensure that we are taking into account some 
form of model inadequacy in the complexity estimation process and the sensitivity analysis 
methodology. However, our approach does not require that the model inadequacy term be 
normally distributed. The need to quantify model inadequacy in simulation models was 
originally addressed in Ref. [35]. More general approaches to the quantification of model 
inadequacy that incorporate both data and expert opinion is an important topic of future work. 
 
When analyzing quantities of interest with computer models, it is often necessary to approximate 
the input/output relationships of expensive simulators using less expensive surrogate models. For 
this, we employ the well-known technique of Gaussian process regression [36, 37, 38, 39]. 
Gaussian process regression is based on emulating a simulator with a stochastic process model. 
Emulating with a stochastic process ensures there is a complete statistical approximation of the 
simulator, which enables the code uncertainty associated with the use of the emulator in place of 
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the simulator to be quantified. This is essential for situations where the code uncertainty of the 
emulator is a key driver of complexity.  
 
When using an emulator, the true value of a quantity of interest is in the form  
 

 𝑞 = 𝐺(x) + 𝜖(x),              (10) 
Where 𝐺~𝑔𝑝(𝑚(x),𝑘(x,x')), 𝑚(x) is the mean function of the Gaussian process 𝑔𝑝(⋅,⋅), and 
𝑘(x,x') is the covariance kernel of the Gaussian process. A Gaussian process emulator is built 
with a set of training runs of the simulation model. This training set is treated as data that are 
used to estimate the simulation model. An example of one-dimensional Gaussian process 
regression is shown graphically in Figure 36, where three data points from a simulator have been 
used as training points for the emulator.  
 

 
Figure 36. Example of Gaussian process emulation with three training points. 

 
 
The emulator itself is a stochastic process, which is represented on the figure as a mean function 
(dashed line) and plus and minus two standard deviation bounds (grayed area). The grayed area 
is a representation of the code uncertainty associated with the use of this emulator in place of the 
underlying simulator. The fitting of such an emulator is a machine learning task that involves the 
estimation of several hyperparameters. Details on how this may be accomplished can be found in 
Ref. [38].  
 
To estimate complexity with respect to a quantity of interest, we require an estimate of the 
probability density function of the quantity of interest. We estimate this using Monte Carlo 
simulation followed by kernel density estimation. We then discretize this density to estimate the 
entropy given in Equation 5. For situations where an emulator must be used in place of a 
simulator to compute quantities of interest, the complexity estimate must also account for code 
uncertainty. In this case, the procedure described in the preceding paragraph is conducted for 
each sample of the emulator stochastic process. To be conservative we take the maximum 
complexity estimate of the emulator samples as the overall complexity. 
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3.1.3 Sensitivity Analysis. For situations where the system complexity is large, it is desirable to 
identify factors of the system, which include inputs, parameters, components, subsystems, 
simulators, and emulators that are the largest contributors to the complexity.  
Thus, we have developed a rigorous sensitivity analysis procedure for identifying the most 
significant factor contributors to the system complexity associated with the quantities of interest.  
 
The approach taken here is similar to that of variance-based sensitivity analysis as described in 
Ref. 41. In the variance-based case the goal is to apportion the variance of a quantity of interest 
among its various factor contributors. This apportionment is based on the law of total variance, 
which for a given quantity of interest 𝑄 and a given factor 𝑋𝑖 is written as 
 

𝑣𝑎𝑟(𝑄) = 𝐸[𝑣𝑎𝑟(𝑄|𝑋𝑖)] + 𝑣𝑎𝑟(𝐸[𝑄|𝑋𝑖]).        (11) 
 
 
From this, a main effect sensitivity index, 𝑆𝑖, for factor 𝑋𝑖 can be written as 
 

𝑆𝑖 = 𝑣𝑎𝑟(𝐸[𝑄|𝑋𝑖])
𝑣𝑎𝑟(𝑄) ,              (12) 

  
Which is the expected fraction of the variance of 𝑄 that is removed if the true value of 𝑋𝑖 was 
known. In analogous fashion, we consider the expected complexity of the system that would 
remain if the true value of some factor 𝑋𝑖 was known. This quantity is given as 𝐸[𝐶(𝑄|𝑋𝑖)], 
where the random variable associated with the quantity of interest for the system is 𝑄. Thus, to 
identify the expected fraction of complexity that can be removed if the true value of a given 
factor 𝑋𝑖 is known, we define complexity-based sensitivity indices as 
 

𝜂𝑖 = 𝐶(𝑄)−𝐸[𝐶(𝑄|𝑋𝑖)]
𝐶(𝑄) ,               (13) 

 
Where here the uncertainty associated with 𝑋𝑖 is attributable to either parametric variability or 
parametric uncertainty.  
 
The information gained from our sensitivity analysis procedure can be used as part of a resource 
allocation strategy aimed at reducing system complexity. It is important to note here that the 
system complexity we are referring to is that of our proposed definition based on the potential for 
unexpected behavior. For other definitions of system complexity different means should be taken 
for complexity reduction. For example, if structural complexity is a concern for a particular 
design, increased modularity could be a viable means for complexity reduction. In this work, we 
deal exclusively with our proposed definition, and hence aim to increase knowledge of the 
system quantities of interest via identification of key sources of uncertainty in the system.  
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4.0 RESULTS AND DISCUSSION 
 

We demonstrate the use of the complexity metric and sensitivity analysis developed in Section 
3.0 on a simulation-based design of an infantry fighting vehicle using models developed at 
Vanderbilt University. The quantity of interest for this demonstration is the range of the vehicle.  
 

4.1 IFV Simulation Emulators 
 
A single simulation of an IFV design for the range calculation takes approximately 1500 seconds 
on a standard laptop computer. The estimation of the complexity metric and the subsequent 
sensitivity analysis involves the estimation of several potentially high dimensional integrals, 
which could require thousands of function evaluations if Monte Carlo simulation is employed. 
Thus, for the IFV application, we wish to generate Gaussian process models of the candidate IFV 
design to emulate the simulation of the vehicle. The Gaussian process model of the potential IFV 
design constructed here is shown in Figure 37. The Gaussian process was trained with 20 
training points from the bond graph simulation model.  

 

 

 

Figure 37: Emulator of a candidate IFV design 

4.2 IFV Sources of Uncertainty 
 
As noted previously, there are many sources of uncertainty that affect estimates of quantities of 
interest for a complex system. For the IFV range application, we are considering parametric 
uncertainty, parametric variability, code uncertainty, and model inadequacy. Thus, for the stages 
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of complex system design that involve computer simulation models, we have included all 
sources of uncertainty.  
 
The parametric uncertainty we consider here is the result of an uncertain amount of trapped fuel 
that cannot be used by the IFV. The uncertainty in the amount of trapped fuel is captured by 
considering the available fuel at the beginning of the mission to be uniformly distributed from 
360 to 400 liters. Thus, we are assuming between 0 and 10% of the fuel will be unusable. In 
general, such information should be obtained from expert opinion or historical data [42]. Here 
we have assigned the distribution for demonstration purposes only. The parametric variability we 
consider here is the result of different possible human operators of the IFV driving at different 
speeds. We assume that each operator is attempting to operate the tank at 50 kph, however, each 
operator may be more or less skilled at achieving this objective. To account for this, we allow the 
target velocity of the vehicle to be uniformly distributed between 45 and 55 kph. If this 
uncertainty is found to be a major contributor to complexity, an obvious next step in the design 
process is to ensure adequate feedback information to the operator to ensure the operator is 
capable of maintaining the vehicle at the target velocity. The model inadequacy we consider here 
is assumed to be normally distributed with mean 0 and a standard deviation of 10 km. This 
uncertainty is added to the output of the emulator. We have assumed that the model inadequacy 
is constant throughout the input space. The code uncertainty we consider here is captured by the 
variability between training points in the Gaussian process model. There are of course many 
other parameters that would be uncertain at an early stage of the design of a complex vehicle 
such as the IFV considered here. However, our goal is to demonstrate our methodology rather 
than perform a complete complexity analysis of the IFV design.  
 
4.3 Complexity Estimation 
 
Following the procedure outlined in Section 3, we estimate the complexity of the IFV design. 
The result is a complexity of 104 km. Distributions of the range of the IFV is shown in Figure 
38. Here, two distributions are shown in solid black lines that were estimated using two different 
samples of the Gaussian process emulator shown in Figure 37. The dashed gray lines are the 
output distributions from the same two samples of the Gaussian process emulator, however, for 
these distributions, model inadequacy has been included. 
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Figure 38: Probability density functions of the range of the IFV 

 
4.4 IFV Sensitivity Analysis 
 
Following the procedure outlined in Section 3, we estimate the sensitivity indices of the average 
velocity, usable fuel, model inadequacy, and code uncertainty with respect to the quantity of 
interest, IFV range. The results of the sensitivity analysis are shown in Figure 39. As shown on 
the figure, the sensitivity indices are 𝜂𝐴𝑉 = 0.46, 𝜂𝑈𝐹 = 0.44, 𝜂𝑀𝐼 = 0.15, 𝜂𝐶𝑈 = 0.16 for the 
average velocity, usable fuel, model inadequacy, and code uncertainty respectively.  
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Figure 39: Sensitivity indices for IFV example 

 
5.0 CONCLUSION 

 

We have developed an demonstrated a methodology for estimating system complexity with 
respect to quantities of interest, as well as estimating sensitivity indices designed to indicate key 
contributors to system complexity. Our complexity metric can be used to compare and rank 
different candidate designs of complex systems with respect to quantities of interest. In situations 
where designs are too complex, our sensitivity analysis methodology can be used to identify key 
contributors to the complexity, which may then be used to inform a resource allocation process. 
The incorporation of model inadequacy in our approach ensures that complexity arising from the 
use of low fidelity models be accounted for, and provides direction, in a resource sense, for a 
multifidelity approach to complex system design. The incorporation of code uncertainty ensures 
that uncertainty associated with the use of inexpensive surrogate models be accounted for, and 
the sensitivity index associated with code uncertainty can potentially be used in the future as part 
of an adaptive approach to train the emulators. The work described here assumed the existence of 
quantified uncertainty in the form of parametric variability, parametric uncertainty, model 
inadequacy, and code uncertainty. In general, it is critical in the design of complex systems that 
these uncertainties be rigorously quantified. Systematic methods for achieving this goal are an 
important topic of future work. Once such methods exist, the use of metrics such as the 
complexity metric described here, as well as the sensitivity analysis developed here, can be used 
as part of a design verification strategy aimed at producing probabilistic certificates of 
correctness for designs through simulation. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
C (Q) complexity of a system with quantity of interest Q 
H(Y) information entropy of random variable Y 
IFV infantry fighting vehicle 
P   probability measure 
Q   quantity of interest   
T (a, b, c) triangular distribution with minimum a, maximum b, and mode c 
U [a, b] uniform distribution with minimum a, maximum b 
d   design variable vector 
h (Q) differential entropy of the distribution of the quantity of interest Q 
p(y) probability mass function of random variable Y 
y (d) true output 
z (d) model output 
F   sigma field 
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List of Acronyms, Abbreviations, and Symbols 
 

Acronym Description 
AVM Adaptive Vehicle Make 

BDD binary decision diagram 

C2M2L Component, Context, and Manufacturing Library 

C2WT C2 Wind Tunnel 

CAD Computer Aided Design 

CyPhyML Cyber-Physical Modeling Language 

DOE Design of Experiments 

DSM Design Structure Matrix 

FANG GV Fast Adaptable Next-Generation Ground Vehicle 

FEA Finite Element Analysis 

GME Generic Modeling Environment 

HBGL Hybrid Bond Graph Language 

HDM Hybrid Dynamics Model 

iFAB Instant Foundry Adaptive through Bits  

MAUF Multi-Attribute Utility Function 

MDAO Multi-Domain Analysis and Optimization 

MI Master Interpreter 

MSL Modelica Standard Library 

NRMM NATO Reference Mobility Model 

PCC Probabilistic Certificate of Correctness 

PDE pulse detonation engine 

PET Parametric Exploration Tool 

PID proportional-integral-derivative 

PTM phonetically tied mixture 

SUT System under Test 

WBS Work Breakdown Structure  
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