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1 Objectives
Objectives are little changed from the originally proposed objectives: derive algorithms for fusion
and compression of measurements in coherent and distributed sensor arrays, with a view to trading
off resolution, performance and signal-to-noise ratio.

2 Status of Effort: Executive Summary of Accomplishments
During this 3-year research program we have answered a number of fundamental questions in
information fusion, using the methods and insights of communication theory:

1. How are the several time series in a sensor suite to be fused when determining whether or not
the time series are linearly dependent, and what is the distribution of the fused statistic? The
generalized likelihood ratio statistic for this problem is a generalized Hadamard ratio. Under
the null hypothesis that the Gaussian time series are linearly independent, this Hadamard
ratio is distributed as the product of independent beta random variables. When the individual
time series are wide sense stationary, and in the limit as the length of each time series grows
without bound, the Hadamard ratio is a broadband coherence, consisting of narrowband
coherences fused over a broad band of frequencies.

2. How are measurements to be fused into a compressed set of measurements which maxi-
mize the rate at which compressed measurements can bring information about a physical
state? What is the influence of dimension reduction on the information rate? The compres-
sor that maximizes information rate consists of dimension reduction in a system of scaled
and rotated canonical coordinates. Moreover, there is a water-filling rule for selecting the
dimension, under a power constraint.

3. How is a secondary channel of measurements to be designed and fused with an existing pri-
mary channel of measurements to maximize the rate at which the two channels bring infor-
mation about an underlying primary state? For an important class of models, the secondary
channel maximizes a generalized Rayleigh quotient, and it has a water-filling interpretation.
A power constraint limits the dimension of the secondary channel.

4. How are measurements to be detected and then fused in a sensor suite to detect a common
target? What is the asymptotic probability of error for the optimum fusion? The asymptoti-
cally optimum threshold at each sensor is determined by the operating point on an ROC that
maximizes the error exponent in a large deviations solution for the probability of error. A
sub-optimum solution that maximizes mutual information between the binary output of each
sensor and the random binary hypotheses is a useful approximation.

5. Is there a greedy policy for compressing a sequence of vector-valued measurements into
a sequence of scalar measurements that maximize information gain at each compression?
When the measurements are linear maps of an underlying Gaussian state, and the measure-
ment noise is white, the policy selects compressors from pre-computed eigenvectors of a
prior covariance, according to eigenvalues of a posterior covariance. Performance at a given
number of scalar compressions is nearly as good as the performance of a globally optimum
policy for many illustrative problems.
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where the L×L matrix S(e jθ ) is the cross spectral matrix between the L time series, estimated from
M realizations of them. These two forms of multichannel coherence are invariant to uncoupled
linear transformations of the time series, and describe for the first time what it means to fuse
narrowband coherences of the form Smn(e jθ ), at frequency θ , into a broadband coherence among
L channels. The key is to integrate the logarithm of narrowband coherence over the Nyquist band
of frequencies.

Applications of These Results. This result applies to the detection of linearly-dependent time
series in a sensor array. Typically the linear dependence reveals the presence of one or more sources
of radiation or vibration, as in radar, sonar, wireless communication, ground-sensing, geophysics,
or machine monitoring. For example, in cognitive, ad-hoc, radio, where the problem is to detect
the presence or absence of radiation in a particular licensed band, this detector determines when a
band is free for use. In radar, sonar, ground-sensing, and machine-monitoring the detector is used
to detect propagating radiation or vibration.

Extensions and Future Work. An important and useful extension is to the case where the al-
ternative hypothesis consists of periodically-correlated time series, as in periodically-modulated
data transmissions. This would make the results directly applicable to signal intelligence. When
the radiation or vibration to be detected is bandlimited, as in radar and machine monitoring, then
the detector formula should be modified, from first principles, to account for band-limiting and
band-shaping.

3.2 Scaled and Rotated Canonical Coordinates for Fusion and Compression
of Noisy Sensor Measurements

In references [8], [9], [12] we have addressed the problem of compressing noisy sensor measure-
ments into a small number of fused statistics, which are to be transmitted under a power constraint
over a noisy channel. This is the general compression problem, and it subsumes precoding and
reduced-rank filtering as special cases.

The Problem. An imperfect sensor produces a noisy and linearly transformed copy of a vector-
valued signal of interest. This measurement is to be compressed into a lower dimensional mea-
surement, for transmission over a noisy channel. The problem subsumes the special cases of
reduced-rank filtering (the channel noise is zero) and precoding (the sensor noise is zero). As a
measure of performance one can consider the trace of the error covariance matrix when estimating
the signal of interest from the noisy channel measurement, or its determinant.

Main Results. The solution for fusion and compression that minimizes the determinant of the
error covariance matrix consists of transformation of the sensor measurement into canonical co-
ordinates, scaling of these coordinates, and transformation of these scaled canonical coordinates
into the sub-dominant modes of the channel transmittance matrix. That is, the signal transmitted
over the channel is

z =UΓw, w = GT Q−1/2
yy y (4)
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In this equation, the sensor measurement y ∈ Rn is a noisy and linearly transformed function
of the signal x ∈Rm of interest, and the transmitted signal z ∈Rr is carried on the sub-dominant
orthogonal channel modes U ∈Rn×r of the channel. The measurement w=GT Q−1/2

yy y is the sensor
measurement y, resolved into its canonical coordinates, and the measurement Γw is the sensor
measurement resolved into its r dominant scaled canonical coordinates. The diagonal scaling
matrix Γ is a function of canonical coordinates, channel noise variances, and the power limitation
on the transmitted signal z.

The net consequence of dimension reduction to r scaled and rotated canonical coordinates is
that the volume of the error covariance for estimating the signal x from the noisy channel transmis-
sion z+n is

det[Qee|z+n] = det[Qxx|y]
min(m,n)

∏
r+1

1
1− k2

i

r

∏
i=1

(1+β
2
i ) (5)

The terms in this formula are illuminating: det[Qxx|y] is the volume of the error concentration

ellipse with no compression or transmission over the noisy channel; ∏
min(m,n)
r+1

1
1−k2

i
inflates this

volume by discarding canonical coordinates, and ∏
r
i=1(1+ β 2

i ) inflates the volume by channel
effects.

Applications of these Results. This is the general problem of fusing and compressing a noisy
sensor measurement into a bandwidth-efficient measurement for transmission over a noisy channel.
As such it addresses fusion and compression in its most general form, making it applicable to
networks of electromagnetic or acoustic sensors.

Extensions and Future Work. These results are parametric, in the sense that they depend on
second-order characterizations of the sensor and the channel. So what is the sensitivity of the
solution to mismatch between the assumed second-order statistics and the actual? What can be said
about adaptive versions of these results that would use estimates of second-order statistics? How
does the performance of random compressions that use no second-order information compare with
these second-order designs? Can this second-order theory be extended to a higher-order theory
through the use of kernel methods, and if so, how are kernels to be selected and what are the
compressed variables?

3.3 Fusing a Secondary Measurement Channel with a Primary Channel
In references [10], [11], [12] we have addressed the problem of designing and fusing a secondary
channel of measurements with an existing primary channel, in order to improve estimator perfor-
mance over what can be achieved with the existing primary channel only. The motivating problem
is to fuse measurements of one sensing modality with measurements of another modality.

The Problem. An existing primary sensor returns measurements which are noisy linear trans-
formations of a primary signal. A secondary sensor is to be designed to bring a noisy linear
transformation of a secondary signal that is known to be correlated with the primary signal. The
outputs of the primary and secondary sensor channels are to be fused to improve estimation of the
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primary signal. The question is how to design the secondary sensor, under a power constraint, to
augment the primary sensor. The objective is to decrease the volume of the error concentration
ellipse for the primary signal.

Main Results. In the case of a scalar-valued secondary channel, the optimum secondary channel
maximizes a standard Rayleigh quotient. More generally, when the secondary channel carries a
linear version of the signal in the primary channel, plus white noise, the solution for the linear map
G of the secondary channel maximizes the generalized Rayleigh quotient [10], [11]

D(G) =
1
2

logdet[I +Q−1/2
ξ ξ

QωωQ−1/2
ξ ξ

] (6)

where Qξ ξ the covariance of what might be called noise and Qωω is the covariance of the signal
component of the secondary channel that brings information about the primary signal. Both co-
variances depend on the secondary channel matrix G. There is an analytical, water-filling, solution.
For more general problems, we propose two numerical algorithms to approximate the optimal de-
sign, one of which exploits the geometry of the unit sphere and the other of which does not enforce
this geometry, but enforces the power constraint after each step of the algorithm. A discussion of
the choice of dimension for the secondary channel is given.

Applications of these Results. These results give a framework for designing and fusing a sec-
ondary measurement channel and determining when the design of such a secondary channels brings
enough extra performance gain to warrant the effort. By considering practical problems for which
channel matrices and noises can be characterized, these results can guide the decision of whether
or not to design and fuse.

Extensions and Future Work. The theory we have developed so far requires linear sensors.
When sensors return detected measurements, as opposed to complex measurements, then the the-
ory would require modification to account for nonlinearities.

3.4 Globally Optimum Fusion in Distributed Sensor Networks
In references [13], [14], [15] we consider the problem of setting local decision thresholds in a
sensor suite that is designed to test the presence or absence of a radiating or scattering signal in its
environment. Each sensor makes a binary decision. Each decision is unreliable and governed by
a Receiver Operating Characteristic (ROC), which is determined by physics and electronics. At a
fusion center, binary decisions from each sensor are fused into a global decision about the presence
or absence of a signal.

The Problem. The problem is to determine the optimum threshold setting, or equivalently the
optimum operating point on the ROC of each sensor, for optimum performance of the globally-
fused decision. Performance is measured by probability of error.
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Main Results. We have derived two thresholds: the threshold that maximizes mutual informa-
tion between the sensor decision (a binary random variable) and the hypothesis (a binary random
variable), and the threshold that maximizes the error exponent in a large deviations formula for
probability of error. Each of these is found with a simple one-dimensional search along the ROC
curve for the local detector. Each of these thresholds outperforms previously-derived ad-hoc solu-
tions to this problem. The key formula for the asymptotically (in the number of sensors) optimum
operating point (P∗f ,P

∗
d ) on the ROC is

(P∗f ,P
∗
d ) = argmax(Pf ,Pd)DKL(

1

1+ log(Pf /Pd)

log(1−Pd)/(1−Pf )

||Pf ) (7)

where DKL is the Kullback-Leibler distance DKL(a,b) = alog(a/b)+(1−a)log(1−a)/(1−b).
This large deviation (LD) solution for the local threshold has a number of nice features:

• The asymptotically optimal local decision strategy is independent of the total number of
sensors L and the priori probabilities that the signal will be present or absent. It depends
only on the ROC that governs each sensor.

• Asymptotically, the large deviations solution is minimax. In other words, the LD solution
has a constant error exponent under any apriori probabilities of the null and alternative hy-
potheses.

• As the pair (P f ,Pd) is constrained by the ROC of the local detectors, the search for a max-
imum of Kullback-Leibler divergence is a one-dimensional search that can be implemented
by scanning through detector thresholds.

Applications of these Results. These results are generally applicable to threshold setting in large
distributed sensor arrays, requiring only the theoretical or experimental specification of the com-
mon ROC for each sensor. They render moot any discussion of the ad-hoc solutions previously
proposed. The thresholds for maximizing local mutual information are near enough to optimum
to suggest that this principle might be more generally applicable for setting detection thresholds in
related problems.

Extensions and Future Work. The natural extension of these results is to multiple hypothesis
testing problems, where the aim is to classify signals measured in a sensor array, rather than simply
to detect them. The calculation of mutual information becomes more challenging, but the use of
large deviations to derive thresholds might still produce tractable results.

3.5 Greedy Fusion and Compression in Signal-Plus-Noise Models
Multiple snapshots of a noisy, vector-valued signal are measured. What is the optimum greedy rule
for compressing each vector into a scalar, when the objective is to maximize information gain at
each compression?

The problem. A sensor returns a sequence of noisy, vector-valued measurements, each of which
is to be fused into a scalar linear statistic. The objective at each fusion is to maximize information
gained about the underlying physical state that produced the vector-valued measurements.
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Main Results. When the measured signal is Gaussian and the measurement noise is white Gaus-
sian, the answer is that the optimum scalar statistic is an inner product between the measure-
ment and an eigenvector of an apriori signal covariance. That is, the greedy scalar measure-
ment zk = aT

k yk, where yk = Hx+ nk, is determined by the ak that maximizes the Rayleigh quo-
tient [16], [17]

R =
aT

k HPk−1HT ak

||ak||2 +σ2 (8)

In this equation Pk−1 is the error covariance for estimating the state x from all previous greedy
compressions and σ2I is the covariance of each of the iid white noises nk. The eigenvectors of
HPk−1HT are those of HP0HT , so the policy for selecting which eigenvector to use at a particular
stage of the fusions depends only on the eigenvalues of the posterior covariance HPk−1HT . The
key result is that eigenvectors may be computed apriori and eigenvalues may be easily updated to
compute the selection policy. There is a water-filling interpretation. Performance is very close to
optimum, even though generally sub-optimum.

Applications of these Results. These results apply to any monitoring or data collection problem
where multiple measurements may be made of a stationary physical system. These multiple mea-
surements may then be dramatically compressed with linear fusions to achieve performance near
to that of an optimum fusion that would treat the sequence of vector-valued measurements as one
large vector to be compressed. The only qualifier is that additive noise in each measurement is
assumed to be white.

Extensions and Future Work. We do not yet know how colored noise at each vector-valued
measurement will affect the near optimality of our results. This is a question worth answering.

3.6 Resolving Hypotheses with Multiple Sensors: The Tradeoff between
SNR, Resolution, and Probability of Error

It is a commonplace to resolve questions at increasingly fine levels of resolution. But this raises
the question of how finely hypotheses can be resolved, when there is a signal-to-noise ratio budget
and a constraint that the probability of error not exceed a specified value. So, what is the trade-
off between resolution, SNR, and P(E), when making measurements in an n sensor array? In
references [18], [19], we address and answer this question.

The Problem. Consider a sensor suite in which each measurement consists of a linearly trans-
formed state variable plus additive, possibly non-Gaussian noise. We are interested in how finely
the state variable can be resolved subject to a constraint on the probability of error. We then inves-
tigate the tradeoffs among signal-to-noise ratio (SNR), desired error probability, and the number
of hypotheses to be resolved.

Main Results. We give formulas that show how the SNR required to resolve M = 2L hypotheses
at a specified probability of error P(E) scales with M, and how the number of resolvable hypotheses
M at a given error probability P(E) scales with the available SNR. The key formula is

7



L≤ 1
2

log2 SNR− log2 G+
n (P(E)) (9)

Here 1
2L is the granularity of resolution per dimension of the underlying p-dimensional parameter

space, SNR is signal-to-noise ratio, and Gn is a non-increasing function of the specified probability
of error, indexed by the n, the number of sensors that are making d-dimensional measurements
of the p-dimensional parameter. By fixing two of the three parameters, L, SNR, and P(E), the
third may be solved for, thus providing the trade-off between resolution, signal-to-noise ratio, and
probability of error.

Applications of these Results. These results establish the tradeoff among SNR, probability of
error, and resolution level for a large class of multi-sensor detection problems. To this extent, the
results comprise design rules for the number of sensors, dimensionality of the sensor measure-
ments, and the SNR required to resolve hypotheses about a state variable at a specified probability
of error. The sensor suite may be a radar suite, a suite of hyper-spectral imagers, a suite of acoustic
sensors, etc.

Extensions and Future Work. To this point, the map from parameter to measurement is given
and known. However, there are other possibilities. For example, we could view the map as a
precoding matrix to be designed. How should we do this for minimum probability of error? Al-
ternatively, the linear map could be viewed as a channel matrix to be estimated. How would this
impact the probability of error or the scaling laws?

3.7 Optimization of Exponential Error Rates for a Suboptimum Fusion Rule
in Wireless Sensor Networks

A simple fusion rule in a multi-sensor suite would average M-ary decisions from individual sensors
to classify a target in the environment. The decisions are, themselves, transmitted imperfectly over
a noisy channel to a fusion center. The question is whether thresholds may be set locally and
globally to ensure exponential decay in error probability as the number of sensors grows large.
Perhaps there is a threshold that maximizes the error exponent. In references [20], we show that
thresholds may be set, optimally.

The Problem. Consider a wireless sensor network used to make a decision about an M-ary hy-
pothesis testing problem. In this system, the kth sensor (out of n) uses its measurement to generate
an M-ary message Uk to be sent over its own channel to the fusion center, where Uk is decoded as
Lk. In contrast to the common assumption that the data is conditionally independent and identi-
cally distributed, we assume only conditional independence under each hypothesis. This allows us
to model situations in which different sensors have different local detection probabilities as well as
situations in which different sensors have communication links of different qualities or signal-to-
noise ratios (SNRs). We study the performance of a simple fusion rule that compares the numerical
average of the decoded messages to a sequence of thresholds.
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Main Results. In [20], [?] we prove a theorem that says we can select the thresholds indepen-
dently in a manner that maximizes the asymptotic decay rate of the average probability of error.
Furthermore, it is easy to compute these individual thresholds numerically.

Applications of these Results. These results apply to any network of sensors, each of which
makes an M-ary decision, to be transmitted unreliably over an imperfect channel.

Extensions and Future Work. The results in [20], [?] require knowledge of the moment gen-
erating functions of the channel outputs given the sensor outputs for each class of sensor/channel
pair. We conjecture that by developing upper and lower bounds on these functions, we can obtain
suboptimal thresholds that require less information about the sensors and channels. This would
make the results applicable to problems where little is known about an imperfect channel.
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• E. Liu, E.K.P. Chong, and L.L. Scharf, “Greedy Adaptive Measurements with Signal and
Measurement Noise,” Proc. 46th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, Nov 4-7, 2012.

• E. Liu, E.K.P. Chong, and L.L. Scharf, ”Greedy Adaptive Compression in Signal-Plus-Noise
Models,” IEEE Trans Inform Theory, submitted, July 2012 and re-submitted, June 2013.

• J.A. Gubner and L.L. Scharf, “Resolving a Variable Number of Hypotheses with Mul-
tiple Sensors, IEEE Workshop on Statistical Signal Processing, 2012, IEEE Workshop on
Statistical Signal Processing, Ann Arbor, MI, Aug 5-8, 2012.

• J.A. Gubner and L.L. Scharf, “Resolving Hypotheses with Multiple sensors: The Trade-
off between SNR, Resolution, and Probability of Error,” IEEE Trans Inform Theory, to be
submitted Aug 2013.

• J.A. Gubner, L.L. Scharf, and E.K.P. Chong, “Optimization of Exponential Error Rates
for a Suboptimum Fusion Rule in Wireless Sensor Networks,” 45th Asilomar Conf on Sign,
Syst, Computers, Pacific Grove, CA, Nov 6-9, 2011.

6 Interactions/Transitions
Participations and presentations at conferences and workshops are indicated in bold letters in the
previous section. No transitions to report.
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7 New Discoveries, Inventions, or Patent Disclosures
The many new discoveries from this program are reviewed in the section on Accomplishments/New
Findings. There have been no inventions for which patents have been disclosed or filed.

8 Honors/Awards
Yuan Wang has received three prestigious awards during her PhD studies at Colorado State Univer-
sity: Madison Memorial Award for outstanding graduate student in Statistics, 2012; Remmenga
Scholarship for excellence in applied statistics and statistical consulting, 2010; Graybill Award
for excellence in linear models, 2010. She successfully defended her dissertation, Linear System
Design for Fusion and Compression, on Aug 13, 2013. Her work was supported by AFOSR.

Louis Scharf is Life Fellow of IEEE and Recipient of several awards from IEEE. Edwin Chong
is Fellow of IEEE and recipient of several awards from IEEE.
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