

VisIt Python-Based Job Launching

by Richard C. Angelini

ARL-TR-6493 June 2013

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-6493 June 2013

VisIt Python-Based Job Launching

Richard C. Angelini

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2013

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

August 2012–March 2013
4. TITLE AND SUBTITLE

VisIt Python-Based Job Launching

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Richard C. Angelini

5d. PROJECT NUMBER

R.0006163.13

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIH-S

Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6493

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

VisIt is a free interactive parallel visualization and graphical analysis tool that is commonly used at the U.S. Army Research

Laboratory (ARL) for viewing scientific data on Linux, Windows, and OS X (Apple) workstations. An essential element for the

successful implementation of VisIt and similar client-server application packages is the ability to connect a local client

workstation to a remote high-performance computing system where the computed data resides. Prior to VisIt version 2.6.0, job

launching was handled via a single perl script that was distributed as part of the VisIt. This script evolved over time to define

the unique job-launching requirements for many of the systems supported by VisIt developers. However, after many years of

use, this script became unwieldy and difficult to debug or modify because of the number of machine-specific “hacks” added to

the code. VisIt 2.6.0 provided a new Python-based job-launching mechanism that was modular and extensible. This report

describes the implementation of VisIt job launching at ARL.

15. SUBJECT TERMS

VisIt, python, HPC, job launching

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Richard C. Angelini
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-6266

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

Acknowledgments iv

1. Background 1

2. Implementation 2

3. Conclusion 6

Appendix A. Sample customlauncher Script 9

Appendix B. Sample VisIt Host Profile Configuration File 15

Bibliography 19

Distribution List 20

 iv

Acknowledgments

This work was supported in part by a grant of computer time and resources by the Department of

Defense High-Performance Computing Modernization Program. I would like to thank Dr. Hank

Childs of Lawrence Berkeley National Laboratory/University of California Davis for assistance

and guidance in modifying the perl-based internallauncher, and Mr. Brad Whitlock of Lawrence

Livermore National Laboratory for his assistance with implementing the Python-based

customlauncher for VisIt 2.6.0 and for his overall assistance with the VisIt project.

1

1. Background

VisIt is a free interactive parallel visualization and graphical analysis tool commonly used at the

U.S. Army Research Laboratory (ARL) for viewing scientific data on Linux, Windows, and OS

X (Apple) workstations. Users can quickly generate visualizations from their data, animate their

results through time, manipulate the viewpoint or geometric properties, and save the resulting

images for presentations. VisIt contains a rich set of visualization features that allows data to be

viewed in a variety of ways. VisIt can be used to visualize scalar and vector fields defined on

two- and three-dimensional (2-D and 3-D) structured and unstructured meshes. VisIt was

designed to handle very large dataset sizes in the terascale range and yet can also handle small

datasets in the kilobyte range.1

VisIt was developed by the Department of Energy (DOE) Advanced Simulation and Computing

Initiative (ASCI) to visualize and analyze the results of terascale simulations. It was developed

as a framework for adding custom capabilities and rapidly deploying new visualization

technologies. After an initial prototype effort, work on VisIt began in the summer of 2000, and

the initial version of VisIt was released in the fall of 2002. Although the primary driving force

behind the development of VisIt was for visualizing terascale data, it is also well suited for

visualizing data from typical simulations on desktop systems.
1

VisIt has been in use at ARL for

several years and is built from source code and distributed to numerous desktop workstations and

high-performance computing (HPC) systems.

An essential element for the successful production implementation of VisIt and similar

client-server application packages (EnSight, ParaView) is the ability to connect a local client

workstation to a remote HPC system where the computed data resides. Today’s modern

low-cost Linux, Mac, and Windows desktop workstations with a standard commodity graphics

card provide virtually any desktop system with sufficient power to drive these high-end visual

analysis tools. The availability of these low-cost workstations combined with the availability of

production-quality commercial (EnSight) and open-source (ParaView, VisIt) client-server

visualization packages allows for unprecedented access to HPC-sized datasets from the desktop.

These applications are client-server in nature; that is, there is a portion of the code (client-side)

that runs on the local desktop workstation and is responsible for handling the graphical user

interface (GUI)-based interface and the rendering and manipulation of the graphical components.

On the HPC system, the server side of the application is responsible for the computationally

intensive portions of the data postprocessing, such as reading in the simulation results, subsetting

or manipulating the data, and applying advanced computational algorithms. The client and server

1VisIt Web site. About VisIt, https://wci.llnl.gov/codes/visit/about.html (accessed January 2013).

2

communicate with each other using standard network protocols; however, establishing a clear

communication path between the client workstation and the allocated High-Performance

Computing Modernization Program (HPCMP) resources is very challenging.2

These interactive client-server data analysis applications have been used for many years by more

advanced computational researchers; however, use by the general population was limited by the

complexities required to establish a clear communication path between the client and server. An

interactive session required manually launching the client and server processes independently,

establishing the appropriate SSH-tunnels to allow the processes to communicate, and then having

it all come together into a working interactive session. These client-server applications had to be

coerced to work within the HPC environment, overcoming obstacles such as the job queuing

systems and any number of necessary security policies that restricted communication paths

between the allocated back-end computational nodes and the client workstation.
2

Developing automated methods for launching the HPC-side of the client-server connection is not

a trivial process. Additionally, this task is inherently machine dependent, which makes the desire

to develop a common set of launching tools nearly impossible. VisIt and other client-server

applications therefore implement a framework of configuration tools that are customized to

accommodate machine-specific job-launching details. In general, the launch sequence establishes

a network connection to the HPC-side login node, submits a batch job through the local queuing

system, and establishes communication from the allocated compute nodes back through the HPC

login node and ultimately back to the client-side workstation. This job-launching framework

relies on some form of a configuration file that resides on the client side to define the

methodology required to establish the communication path to the desired host. The framework

also relies on an application helper (shell, Python, or perl script) on the HPC login node to start

the batch job and manage communication between the client workstation and the allocated

compute nodes.

2. Implementation

Prior to VisIt version 2.6.0 (fall, 2012), job launching was handled via a single perl script named

internallauncher that was distributed as part of the VisIt. This script evolved over time to define

the unique job-launching requirements for many of the systems supported by VisIt developers.

As new hosts were brought online, VisIt developers or code contributors modified this common

perl script to add functionality required to support that new HPC system. The script included host

information for DOE, the National Science Foundation, and university partners of VisIt. This

information was not necessarily relevant to other computing sites. However, based on this all-

inclusive single-script methodology, the burden of carrying around host information for every

2Angelini, R. Client-Server HPC Job Launching. DOD HPC Insights, Spring 2012, p 3.

3

machine supported by the VisIt developers was unavoidable. This common all-inclusive launch

mechanism was actually beneficial at those HPC centers with systems supported by the VisIt

developers as the software could be built, distributed, and put into use without any modifications

from the local software support staff.

However, after many years of growth through the addition of new hosts and supported HPC

centers, this script became unwieldy and difficult to debug or modify because of the number of

machine-specific “hacks” added to the code. The task of adding a new host was particularly

difficult for VisIt systems that were outside of those typically supported by the VisIt code

developers, such as systems used by ARL and other Department of Defense (DOD) HPC

systems. The ability of local support staff at those “outside” HPC centers to include additional

host definitions required a significant amount of effort to determine not only which parameters

need to be modified within the existing script, but where within the script those changes needed

to be made. This was a challenging task made more difficult by the complexity of the changes to

the script over time.

The internallauncher script sets machine-specific details such as environment variables and

paths to important utilities, and includes “hacks” for more than 20 different HPC systems. A

small subset of code that provides machine-specific customization within the internallauncher

script released with the standard distribution of VisIt 2.5.0 looks like this:

HACK for jaguarpf.ccs.ornl.gov

$IsRunningOnJaguar_ORNL = 0;

if (($parallel) and $exe_name eq "engine" and ($host =~ /jaguarpf/ or $host =~

/jaguar/))

{

 chomp($domain = `hostname -d`);

 if ($domain eq "ccs.ornl.gov")

 {

 $IsRunningOnJaguar_ORNL = 1;

 $remotehost = $host;

 if ($host =~ /jaguarpf/)

 {

 $remotehost =~ s/jaguarpf-//;

 }

 else

 {

 $remotehost =~ s/jaguar/login/;

 }

 if ($ENV{PATH} eq "")

 {

 $ENV{PATH} = "/opt/torque/default/bin";

 $ENV{PATH} = join ':' , ("$ENV{PATH}","/usr/bin");

 }

 else

{

 $ENV{PATH} = join ':' , ("$ENV{PATH}","/opt/torque/default/bin");

 $ENV{PATH} = join ':' , ("$ENV{PATH}","/usr/bin");

4

 }

 }

}

The internallauncher also includes the logic required to submit a job to the remote batch queuing

system. The details of submitting a batch job are machine specific, and even a commonly used

batch utility such as the Portable Batch System (PBS) has host-specific implementation details

that increase the complexity of the internallauncher script. The script uses approximately 380

lines of code to handle just the PBS batch job utility qsub and includes code to support 6

different batch submission methods. A simple code example for the “salloc” batch job

submission script looks like this:

salloc

 elsif (substr($launch,0,6) eq "salloc")

 {

 @parcmd = ("salloc");

 push @parcmd, "-p", $part if $part_set;

 push @parcmd, "-t", $time if $time_set;

 push @parcmd, "-N", $nodes if $nodes_set;

 push @parcmd, "-n", $procs if $procs_set;

 if ($nodes_set)

 {

 $ppn = ceil($procs / $nodes);

 push @parcmd, "--ntasks-per-node=$ppn";

 }

 push @parcmd, "srun","-N1","-n1","--preserve-env","--mpi=none","mpirun";

 if ($nodes_set)

 {

 $ppn = ceil($procs / $nodes);

 push @parcmd, "--npernode", $ppn;

 }

 push @parcmd, @VisItcmd;

 if ($security_key_set) { push @parcmd, "-key", $security_key; }

 push @parcmd, @post_args;

 @printcmd = @parcmd;

 push @printcmd, ("\"".(pop @printcmd)."\"");

 }

In VisIt 2.5.0, the internallauncher included almost 4000 lines of perl code, with numerous

deeply nested control flow statements required to accommodate the many hosts defined in this

single launch file. For reasons previously described, the internallauncher script was quite

difficult to modify and was a topic of numerous e-mail messages and personal discussions

between the ARL principal investigator and members of the VisIt development team regarding

the viability of this launch method. It was generally recognized by the VisIt development team

that the internallauncher required an overhaul, and that it needed to become more modular and

machine independent. Restructuring the job-launching methodology ultimately became an issue

of allocating developer resources to implement a more modern and maintainable solution. The

principal investigator responsible for supporting the client-server applications at ARL was in a

unique position to provide input to the VisIt developers on the general direction of

implementation of a new job launcher as there was extensive experience with job-launching

5

facilities in similar client-server software applications. Both EnSight and ParaView provided a

framework from which automated job launching could be achieved; however, this framework

was implemented in such a way as each host-specific job-launching script was independent, and

the overall design was much more modular. Unlike VisIt, these applications did not rely on a

common job-launching mechanism that contained configuration commands for multiple

machines. The implementation in EnSight and ParaView, while unique for each package,

provided a more maintainable method for job-launching implementation.

In the fall of 2012, VisIt developers were able to address the known issues with the job

launching, and a new modular Python-based job-launching mechanism was introduced with VisIt

2.6.0. The new Python-based job launcher still relies on an internallauncher script as the

underlying driver for client-server connectivity and batch job submission; however, the local site

application specialist no longer needs to modify this script to make host-specific modifications.

The updated internallauncher script does not contain any machine-specific details but establishes

a default framework upon which local customizations can be based. A companion site-specific

customlauncher script is created to include those unique details required to launch a job on a

particular machine. By redefining Python methods that appear in the internallauncher, the

customlauncher contains only those details required by the local site, and the complexity of

supporting multiple HPC systems within the same script has been eliminated. The VisIt

developers maintain the ability to provide job-launching mechanisms for HPC systems that they

support by developing and distributing a unique customlauncher script for each of their

supported systems. During software installation, the user has the ability to select one of these

predefined host profiles, therefore maintaining the support for those systems specifically

supported by the developers.

The new internallauncher script contains various Python classes that help launch VisIt

commands:

• JobSubmitter classes let VisIt submit a parallel compute engine to a job control system.

• Debugger classes help launch VisIt under a debugger.

• MainLauncher class contains methods that are used to effect a launch.

The internallauncher function relies on the MainLauncher object “(or derived class)” to go

through the various steps that are needed to run a VisIt program. The new launch system allows

for a customlauncher file that contains a derived class of MainLauncher. The derived class can

perform its own top-level specific initialization without polluting the main internallauncher

script. Furthermore, since MPI launching is handled by various JobSubmitter classes, the derived

MainLauncher class can return its own JobSubmitter classes that contain site-specific tweaks to

MPI launching.3

3VisIt Users Web site. Visit Launcher. http://visitusers.org/index.php?title=VisIt_Launcher (accessed June 2013).

6

An example of using the customlauncher to redefine initialized values can be seen in this simple

example. In the internallauncher, there is a method defined to determine how a particular flag is

formatted to be included as part of a command line argument:

def SetupPPN(self, nodes, procs, ppn, use_vis):

 if use_vis:

 args = ["-l", "nodes=%s:ppn=%s:vis" % (nodes, ppn)]

 elif self.useppn:

 args = ["-l", "nodes=%s:ppn=%s" % (nodes, ppn)]

 else:

 args = ["-l", "nodes=%s" % nodes]

 return args

These values can be customized in the site-specific customlauncher using a derived class:

def SetupPPN(self, nodes, procs, ppn, use_vis):

We could use nodes, procs, ppn to construct the arguments if a

variable number of nodes or processors would be appropriate.

 args = ["-l", "place=scatter:excl","-l","select=%s:mpiprocs=%s" %(nodes,ppn)]

 if self.launcher.IsRunningOnHarold():

 args = ["-l", "place=scatter:excl", "-l", "select=

 %s:ncpus=8:mpiprocs=%s" % (nodes,ppn)]

 if self.launcher.IsRunningOnPitch():

 args = ["-l", "place=scatter:excl", "-l", "select=

 %s:ncpus=16:mpiprocs=%s" % (nodes,ppn)]

 return args

A functioning customlauncher example can be found in appendix A of this document. This file,

when placed in the same directory as the unedited internallauncher script, automatically includes

those local customizations required to define the job-launching parameters for a specific host

when VisIt is launched. In addition, appendix B includes a sample of a VisIt host profile that is

created through the GUI interface and can be saved out in an Extensible Markup Language

(XML) format. The host profile provides specific details required to define the parameters

required to connect to a remote server system and allows for the definition of details required to

submit a batch job to the queuing system on that remote system. Once defined, a host profile can

be shared within the VisIt software distribution so that a particular machine definition can be

included and shared among the user community.

3. Conclusion

The Python-based job-launching solution implemented in VisIt 2.6.0 eliminates many of the

issues associated with the perl-based internallauncher script by creating a modular framework

for local customizations. This new implementation allows an experienced application Python

programmer to extend and customize the launch methods in a modular way, independent of the

7

supplied internallauncher script. Unlike the perl-based solution, there is no confusion associated

with supporting all of the known HPC systems in a single, complicated command file.

Creation of the Python-based customlauncher requires an extensive working knowledge of

Python and a thorough understanding of how the existing internallauncher works. The ability to

use derived Python classes or to modify predefined Python methods is not necessarily an

intuitive process. Generating the code modifications required to support local systems without

reviewing customlauncher examples developed at other locations, or an extensive amount of

assistance from VisIt developers, is intimidating for the casual Python code developer or for

someone not familiar with the general philosophy of VisIt job launching. However, once the

general framework for a locally developed customlauncher is developed, it is possible to

leverage that code for use in the support of additional HPC systems.

The implementation of the Python-based internallauncher script made available in VisIt 2.6.0 is

a significant improvement over the perl-based all-inclusive job-launching script. The modularity

and extensibility of the framework implemented in the updated internallauncher provides a basis

to develop a maintainable application code. These improvements are a step in the right direction,

and hopefully future releases of the VisIt will focus attention on reducing the complexity of

developing a site-specific customlauncher script. In keeping with a machine-independent

solution, perhaps a directives-based XML approach can be considered an adjunct to the

customlauncher script. The ability to easily develop and implement a job-launching mechanism

is essential for subject matter experts to provide site-specific application support. As it stands,

however, the current Python-based implementation has greatly improved this ability.

8

INTENTIONALLY LEFT BLANK.

9

Appendix A. Sample customlauncher Script

10

This customlaunch script defines host-specific launching parameters for high-performance

computing systems located at ARL, including MJM, Harold, Pitch and Pershing.

Class: JobSubmitter_qsub_ARL

Purpose: Custom qsub launcher for ARL & DOD HPCMP

Programmer: Rick Angelini

Modifications:

class JobSubmitter_qsub_ARL(JobSubmitter_qsub):

 def __init__(self, launcher):

 super(JobSubmitter_qsub_ARL, self).__init__(launcher)

 def TFileLoadModules (self, tfile):

 if self.launcher.IsRunningOnPitch():

 print "IsRunningOnPitch: Adding modules to tfile"

 tfile.write("eval `modulecmd sh purge`\n")

 tfile.write("eval `modulecmd sh load pbs Master`\n")

 tfile.write("eval `modulecmd sh load compiler/gcc/4.4`\n")

 tfile.write("eval `modulecmd sh load mpi/openmpi/1.6.0`\n")

 tfile.write("eval `modulecmd sh list` \n")

 tfile.write("cat $PBS_NODEFILE\n")

 if self.launcher.IsRunningOnPershing():

 print "IsRunningOnPershing: Adding modules to tfile"

 tfile.write("eval `modulecmd sh purge`\n")

 tfile.write("eval `modulecmd sh load pbs Master`\n")

 tfile.write("eval `modulecmd sh load compiler/gcc/4.4`\n")

 tfile.write("eval `modulecmd sh load mpi/openmpi/1.6.0`\n")

 tfile.write("eval `modulecmd sh list` \n")

 tfile.write("cat $PBS_NODEFILE\n")

 if self.launcher.IsRunningOnUtill():

 print "IsRunningOnUtilityServer: Adding modules to tfile"

 tfile.write("source /app/modules/init/sh\n")

 tfile.write("module switch compiler compiler/gcc/4.1\n")

 tfile.write("module switch mpi mpi/gnu/openmpi/1.4.3\n")

 tfile.write("module list\n")

 tfile.write("cat $PBS_NODEFILE\n")

 if self.launcher.IsRunningOnHarold():

 print "IsRunningOnHarold: Adding modules to tfile"

 tfile.write("eval `modulecmd sh purge`\n")

 tfile.write("eval `modulecmd sh load modules pbs Master`\n")

 tfile.write("eval `modulecmd sh load visit/2.6.0`\n")

 tfile.write("eval `modulecmd sh list`\n")

 tfile.write("cat $PBS_NODEFILE\n")

 def mpirun_args(self, args):

 # Change mpi launch command on MJM

 if self.launcher.IsRunningOnMJM():

 mpicmd = ["openmpirun.pbs"]

 mpicmd = mpicmd + ["-np", self.parallel.np]

 else:

11

 mpicmd = ["mpirun"]

 mpicmd = mpicmd + ["-np", self.parallel.np]

 if self.parallel.sublaunchargs != None:

 mpicmd = mpicmd + self.parallel.sublaunchargs

 if self.parallel.machinefile != None:

 mpicmd = mpicmd + ["-machinefile", self.parallel.machinefile]

 mpicmd = mpicmd + self.VisItExecutable()

 mpicmd = mpicmd + ["-plugindir", GETENV("VISITPLUGINDIR")]

 mpicmd = mpicmd + args

 # Return the mpicmd list

 return mpicmd

 def SetupPPN(self, nodes, procs, ppn, use_vis):

 # We could use nodes, procs, ppn to construct the arguments if a

 # variable number of nodes or processors would be appropriate.

 args = ["-l", "place=scatter:excl", "-l", "select=%s:mpiprocs=%s" %

 (nodes,ppn)]

 if self.launcher.IsRunningOnHarold():

 args = ["-l", "place=scatter:excl", "-l", "select=

 %s:ncpus=8:mpiprocs=%s" % (nodes,ppn)]

 if self.launcher.IsRunningOnPitch() or

 self.launcher.IsRunningOnPershing():

 args = ["-l", "place=scatter:excl", "-l", "select=

 %s:ncpus=16:mpiprocs=%s" % (nodes,ppn)]

 return args

Class: ARLLauncher

Purpose: Custom launcher for ARL & DoD HPCMP Systems

Programmer: Rick Angelini

Modifications:

class ARLLauncher(MainLauncher):

 def __init__(self):

 super(ARLLauncher, self).__init__()

 self.pitch = -1

 self.pershing = -1

 self.utill = -1

 self.harold = -1

 self.mjm = -1

 def IsRunningOnPitch(self):

 if self.pitch == -1:

 self.pitch = 0

 if self.parallelArgs.parallel and \

 self.generalArgs.exe_name == "engine" and \

 (self.sectorname() == "pitch-login" or self.sectorname()

 == "pitch" or \

 self.sectorname() == "pitch-l"):

 print "I AM ON PITCH"

 self.pitch=1

 self.generalArgs.host = self.nodename() + "-ib"

12

 self.generalArgs.host = "pitch-login1-ib" #HACK

print "Changing self.generalArgs.host=" +

 self.generalArgs.host

 return self.pitch

 def IsRunningOnPershing(self):

 if self.pershing == -1:

 self.pershing = 0

 if self.parallelArgs.parallel and \

 self.generalArgs.exe_name == "engine" and \

 (self.sectorname() == "pershing-login" or

 self.sectorname() == "pershing" or \

 self.sectorname() == "pershing-l"):

 print "I AM ON PERSHING"

 self.pershing=1

 self.generalArgs.host = self.nodename() + "-ib"

print "Changing self.generalArgs.host=" +

self.generalArgs.host

 return self.pershing

 def IsRunningOnUtill(self):

 if self.utill == -1:

 self.utill = 0

 if self.parallelArgs.parallel and \

 self.generalArgs.exe_name == "engine" and \

 self.sectorname()[2:] == "utill-":

 print "I AM on a UTILITY SERVER: " +

 self.nodename()

 self.utill = 1

 return self.utill

 def IsRunningOnHarold(self):

 if self.harold == -1:

 self.harold = 0

 if self.parallelArgs.parallel and \

 self.generalArgs.exe_name == "engine" and \

 self.sectorname() == "harold-l":

 print "I AM ON Harold: " + self.nodename()

 self.harold = 1

 return self.harold

 def IsRunningOnMJM(self):

 if self.mjm == -1:

 self.mjm = 0

 if self.parallelArgs.parallel and \

 (self.generalArgs.exe_name == "vcl" or

self.generalArgs.exe_name == "engine") and \

 self.sectorname() == "l":

 print "I AM ON MJM: " + self.nodename()

 self.mjm = 1

 return self.mjm

 def Customize(self):

 # ----

 # Pitch @ ARL

 # ----

 if self.IsRunningOnPitch ():

 paths = self.splitpaths(GETENV("LD_LIBRARY_PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.4.0/openmpi-

 1.6/lib:/opt/pbs/default/lib"]

 SETENV("LD_LIBRARY_PATH", self.joinpaths(paths + addedpaths))

 paths = self.splitpaths(GETENV("PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.4.0/openmpi-1.6/bin"]

13

 SETENV("PATH", self.joinpaths(paths + addedpaths))

 # ----

 # Pershing @ ARL

 # ----

 if self.IsRunningOnPershing ():

 paths = self.splitpaths(GETENV("LD_LIBRARY_PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.4.0/openmpi-

 1.6/lib:/opt/pbs/default/lib"]

 SETENV("LD_LIBRARY_PATH", self.joinpaths(paths + addedpaths))

 paths = self.splitpaths(GETENV("PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.4.0/openmpi-1.6/bin"]

 SETENV("PATH", self.joinpaths(paths + addedpaths))

 # ----

 # All DSRC Utility Servers

 # ----

 if self.IsRunningOnUtill ():

 paths = self.splitpaths(GETENV("LD_LIBRARY_PATH"))

 addedpaths = ["/app/openmpi/gnu/1.4.3/lib:/usr/lib64"]

 SETENV("LD_LIBRARY_PATH", self.joinpaths(paths + addedpaths))

 paths = self.splitpaths(GETENV("PATH"))

 addedpaths = ["/app/cwjm/20110609/bin"]

 SETENV("PATH", self.joinpaths(paths + addedpaths))

 # ----

 # Harold @ ARL

 # ----

 if self.IsRunningOnHarold ():

 paths = self.splitpaths(GETENV("LD_LIBRARY_PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.1/openmpi-1.4.1/lib"]

 SETENV("LD_LIBRARY_PATH", self.joinpaths(paths + addedpaths))

 paths = self.splitpaths(GETENV("PATH"))

 addedpaths = ["/usr/cta/unsupported/openmpi/gcc/4.1/openmpi-1.4.1/bin"]

 SETENV("PATH", self.joinpaths(paths + addedpaths))

 # ----

 # MJM @ ARL

 # ----

 if self.IsRunningOnMJM ():

 paths = self.splitpaths(GETENV("LD_LIBRARY_PATH"))

 addedpaths =

["/opt/compiler/gcc/4.4/lib64:/opt/compiler/gcc/4.4/lib:/opt/mpi/x86_64/gcc/4.4/

openmpi-1.3/lib"]

 SETENV("LD_LIBRARY_PATH", self.joinpaths(paths + addedpaths))

 paths = self.splitpaths(GETENV("PATH"))

 addedpaths = ["/opt/mpi/x86_64/gcc/4.4/openmpi-1.4/bin"]

 SETENV("PATH", self.joinpaths(paths + addedpaths))

 #

 # Override the JobSubmitterFactory method so the custom job submitter can

 # be returned.

 #

 def JobSubmitterFactory(self, launch):

 if launch[:4] == "qsub" or launch[:4] == "msub":

 return JobSubmitter_qsub_ARL(self)

 return super(ARLLauncher, self).JobSubmitterFactory(launch)

 # DAAC LOGGING

14

 #

 # Determine when we're doing server side logging.

 def ServerSideLogging(self):

 print "self.generalArgs.exe_name=" + self.generalArgs.exe_name

 comp = self.generalArgs.exe_name in ["engine", "engine_ser",

"engine_par"]

 print "comp=" + str(comp)

 return comp

 # Override the Logging() method. This method gets called from self.call when

 # we launch a program and we're doing logging.

 def Logging(self, args):

 logger_cmd = []

 self.logging=1

 if self.logging:

 if self.ServerSideLogging():

 print "ServerSideLogging discovered"

 short_host = self.nodename()

 nodes = "0"

 if self.parallelArgs.nn != None:

 nodes = self.parallelArgs.nn

 procs = "0"

 if self.parallelArgs.np != None:

 procs = self.parallelArgs.np

 time = "0"

 if self.parallelArgs.time != None:

 time = self.parallelArgs.time

 # Only log server-side usage if it's on a defined HPC resource

 if self.IsRunningOnPitch () or \

 self.IsRunningOnPershing () or \

 self.IsRunningOnUtill () or \

 self.IsRunningOnHarold () or \

 self.IsRunningOnMJM ():

 logger_cmd = ["%s%s" %

 (os.path.dirname(GETENV("VISITHOME")),"/utils/daac_logger"), "remote",

 "visit_server", self.visitver, short_host, nodes, procs, time]

 os.system(" ".join(str(x) for x in logger_cmd))

 elif self.generalArgs.exe_name == "viewer":

 logger_cmd = ["%s%s" % (os.path.dirname(GETENV("VISITHOME")),

 "/utils/daac_logger"), "local", "LINUX_Visit", self.visitver]

 os.system(" ".join(str(x) for x in logger_cmd))

Launcher creation function

def createlauncher():

 return ARLLauncher()

15

Appendix B. Sample VisIt Host Profile Configuration File

16

The host profile provides specific details required to define the parameters required to connect to

a remote server system and allows for the definition of details required to submit a batch job to

the queuing system on that remote system. This particular example defines a serial connection

that would run on a login node on the remote system, while the parallel machine profile submits

a parallel job through the queuing system.

<?xml version="1.0"?>

<Object name="MachineProfile">

 <Field name="hostNickname" type="string">HAROLD</Field>

 <Field name="host" type="string">harold.xx.xx.mil</Field>

 <Field name="userName" type="string">notset</Field>

 <Field name="hostAliases" type="string">harold Harold HAROLD</Field>

 <Field name="directory" type="string">/usr/local/visit</Field>

 <Field name="shareOneBatchJob" type="bool">false</Field>

 <Field name="sshPortSpecified" type="bool">false</Field>

 <Field name="sshPort" type="int">0</Field>

 <Field name="clientHostDetermination" type="string">MachineName</Field>

 <Field name="manualClientHostName" type="string"></Field>

 <Field name="tunnelSSH" type="bool">true</Field>

 <Object name="LaunchProfile">

 <Field name="timeout" type="int">240</Field>

 <Field name="numProcessors" type="int">2</Field>

 <Field name="numNodesSet" type="bool">true</Field>

 <Field name="numNodes" type="int">2</Field>

 <Field name="partitionSet" type="bool">true</Field>

 <Field name="partition" type="string">debug</Field>

 <Field name="bankSet" type="bool">true</Field>

 <Field name="bank" type="string"></Field>

 <Field name="timeLimitSet" type="bool">true</Field>

 <Field name="timeLimit" type="string">00:15:00</Field>

 <Field name="launchMethodSet" type="bool">true</Field>

 <Field name="launchMethod" type="string">qsub/mpirun</Field>

 <Field name="forceStatic" type="bool">true</Field>

 <Field name="forceDynamic" type="bool">false</Field>

 <Field name="active" type="bool">false</Field>

 <Field name="arguments" type="stringVector"></Field>

 <Field name="parallel" type="bool">true</Field>

 <Field name="launchArgsSet" type="bool">true</Field>

 <Field name="launchArgs" type="string">"-l application=visit -N

VisIt"</Field>

 <Field name="sublaunchArgsSet" type="bool">false</Field>

 <Field name="sublaunchArgs" type="string"></Field>

 <Field name="sublaunchPreCmdSet" type="bool">false</Field>

 <Field name="sublaunchPreCmd" type="string"></Field>

 <Field name="sublaunchPostCmdSet" type="bool">false</Field>

 <Field name="sublaunchPostCmd" type="string"></Field>

 <Field name="machinefileSet" type="bool">false</Field>

 <Field name="machinefile" type="string"></Field>

 <Field name="visitSetsUpEnv" type="bool">false</Field>

 <Field name="canDoHWAccel" type="bool">false</Field>

 <Field name="havePreCommand" type="bool">false</Field>

 <Field name="hwAccelPreCommand" type="string"></Field>

 <Field name="havePostCommand" type="bool">false</Field>

 <Field name="hwAccelPostCommand" type="string"></Field>

 <Field name="profileName" type="string">HAROLD Parallel</Field>

 </Object>

17

 <Object name="LaunchProfile">

 <Field name="timeout" type="int">240</Field>

 <Field name="numProcessors" type="int">2</Field>

 <Field name="numNodesSet" type="bool">true</Field>

 <Field name="numNodes" type="int">2</Field>

 <Field name="partitionSet" type="bool">true</Field>

 <Field name="partition" type="string">debug</Field>

 <Field name="bankSet" type="bool">true</Field>

 <Field name="bank" type="string"></Field>

 <Field name="timeLimitSet" type="bool">true</Field>

 <Field name="timeLimit" type="string">00:15:00</Field>

 <Field name="launchMethodSet" type="bool">true</Field>

 <Field name="launchMethod" type="string">qsub/mpirun</Field>

 <Field name="forceStatic" type="bool">true</Field>

 <Field name="forceDynamic" type="bool">false</Field>

 <Field name="active" type="bool">false</Field>

 <Field name="arguments" type="stringVector"></Field>

 <Field name="parallel" type="bool">false</Field>

 <Field name="launchArgsSet" type="bool">true</Field>

 <Field name="launchArgs" type="string">"-l application=visit"</Field>

 <Field name="sublaunchArgsSet" type="bool">false</Field>

 <Field name="sublaunchArgs" type="string"></Field>

 <Field name="sublaunchPreCmdSet" type="bool">false</Field>

 <Field name="sublaunchPreCmd" type="string"></Field>

 <Field name="sublaunchPostCmdSet" type="bool">false</Field>

 <Field name="sublaunchPostCmd" type="string"></Field>

 <Field name="machinefileSet" type="bool">false</Field>

 <Field name="machinefile" type="string"></Field>

 <Field name="visitSetsUpEnv" type="bool">false</Field>

 <Field name="canDoHWAccel" type="bool">false</Field>

 <Field name="havePreCommand" type="bool">false</Field>

 <Field name="hwAccelPreCommand" type="string"></Field>

 <Field name="havePostCommand" type="bool">false</Field>

 <Field name="hwAccelPostCommand" type="string"></Field>

 <Field name="profileName" type="string">HAROLD Serial</Field>

 </Object>

 <Field name="activeProfile" type="int">0</Field>

</Object>

18

INTENTIONALLY LEFT BLANK.

19

Bibliography

Angelini, R. EnSight HPC Job Launching. DOD HPC Insights, Spring 2011, p 10.

Hand, R. ParaView Client-Server on Crays at the ERDC DSRC. DOD HPC Insights, Spring

2010, p 17.

Martin, J.; Angelini, R.; Vickery, R. Simplified SSH Tunnels for ParaView Client/Server. DOD

HPC Insights, Spring 2009, p 27.

NO. OF

COPIES ORGANIZATION

20

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 1 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 IMAL HRA

 1 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

ABERDEEN PROVING GROUND

 1 DIR USARL

 (PDF) RDRL CIH S

 R C ANGELINI

