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1. Introduction 

The research plan of this proposal was to test a hypothesis that alterations of bone marrow 

microenvironment contribute to metastatic prostate cancer growth in bone.  The specific aims were 

designed to investigate the contribution of hematopoietic cellular compartment in the bone marrow to 

the development of prostate cancer skeletal metastasis.  The postdoctoral training plan was to provide 

the PI with opportunities to conduct scientific research on prostate cancer bone metastasis under the 

supervision of the mentor, Dr. Laurie K. McCauley in collaboration with other leading prostate cancer 

scientists in the University of Michigan.  

 

2. Body 

1. Training Accomplishments 

This training grant has clearly contributed to the successful career development of the PI as an 

independent scientist dedicated to prostate cancer research. Based on the training supported by this 

award, the PI completed his postdoctoral training in prostate cancer skeletal metastasis with a recent 

employment as a tenure-track assistant professor in the Department of Medicine, Vanderbilt University 

School of Medicine.  The PI will start an independent laboratory to extend his current research on the 

metastatic bone microenvironment of prostate cancer patients.  In addition, the PI obtained a next-

level independent research grant from the DOD-PCRP (FY2011 Exploration-Hypothesis Development 

Award).  These outcomes strongly support the productive accomplishments of this training grant. 

 

2. Research Accomplishments 

The research accomplishments of this award over the course of 2-year support are described point-by-

point according to the original Statement of Work (SOW).  Because majority of the research outcomes 

are included in a recent publication in Cancer Research first-authored by the PI, detailed description of 

specific aspects of the research accomplishments is substituted with the published article. 

  

Task 1: Quantitative analysis of the disrupted bone marrow sinusoidal vasculature (Specific Aim 2) 

Timeline: months 1-2 

Methods: Preliminary micro CT results will be quantitatively analyzed with computer software.   

Outcomes: micro-vascular diameter, vascular distance, vascular density and volume 

Results: Completed.  Details of the results are described in the Figure 2 of the manuscript published 

in Cancer Research (Appendix No. 3). 
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Task 2: To determine the optimal dose of cyclophosphamide to specifically suppress the bone marrow 

cell population in vivo (Specific Aim 1) 

Timeline: months 3-6 

Methods: Mice will be pre-treated with varying doses of cyclophosphamide (25, 50, 100, 200, 200, 300 

and 400 mg/kg), 7 days prior to analysis.  At the time of analysis, the bone marrow cells will be flushed 

and the suppression of hematopoietic stem/progenitor cell will be determined by flow cytometry 

(Lineage-Sca-1+c-Kit+ population) along with complete blood counting (WBC differential).  In addition, 

bone marrow blood vasculature will be imaged to determine the integrity of the sinusoidal vascularity, 

and bone marrow vascular permeability will be measured. 

Outcomes: Flow cytometric results of hematopoietic stem/progenitor cell population.  Complete Blood 

Count.  CT images of the bone marrow sinusoidal structure.  Optical density of Evans Blue dye in the 

bone marrow extra-vascular space for vascular permeability.  

Results: Completed.  

 

Male C57BL6 mice were treated with increasing doses of cyclophosphamide, followed by CBC and flow 

cytometric analyses of Lin-Sca-1+cKit+ (LSK) cell populations after 7 days.  All three doses (50, 100 

and 350 mg/kg) of cyclophosphamide suppressed WBC, lymphocytes and LSK cells.   However, only 

350mg/kg significantly increased neutrophil counts.  The subsequent experiments confirmed the 

causal role of the spike of neutrophils in cyclophosphamide-induced skeletal metastasis.  

 

Micro-CT scanning and vascular permeability assay (using Evans blue dye) were not performed, based 

on the experimental results of Tasks 4.  Briefly, the experiments in Task 4 tested whether the vascular 

disruption contributes to the increased metastasis and/or tumor growth in bone.  Contrary to the 

expectation, disruption of the vascular integrity in the bone marrow was not the primary factor in 



6 

cyclophosphamide-induced skeletal metastasis (Figure 3, Appendix No. 3).  On the other hand, 

350mg/kg cyclophosphamide significantly increased neutrophil counts after 7 days (see the above data 

figure), and our subsequent studies demonstrated that alterations in the neutrophils and the progenitor 

cells (myeloid-lineage cells) in the bone marrow contribute to the chemotherapy-induced skeletal 

metastasis.  Accordingly, the research direction was adjusted to determine the role of myeloid cells in 

prostate cancer skeletal metastasis.  Detailed description and discussion about the data are included 

in the Cancer Research publication (Appendix No. 3)  

 

Task 3: To determine the effects of bone marrow suppression induced by cyclophosphamide on 

prostate cancer skeletal metastasis in vivo using an intra-cardiac PCa model (Specific Aim 1) 

Timeline: months 7-10 

Methods: male athymic mice will be pre-treated with cyclophosphamide (dose determined in Task 2) 7 

days before the experiment.  Mice will be anesthetized with the Ketamine/Xylazine mixture.  Mice will 

be placed in a supine position, and the thorax will be cleansed with 70% ethyl alcohol.  Human 

prostate cancer cells detached from the sub-confluent culture will be suspended in Hank’s balanced 

salt solution (200,000 cells in 100µl).  Cell suspension will be injected into the left heart ventricle over 1 

minute.  Mice will be monitored for the vital signs until complete recovery from the anesthesia.  

Metastatic tumor incidence and growth will be measured by weekly in vivo bioluminescence imaging for 

six weeks.  Tumors and serum will be harvested at the end of the experiment. 

Outcomes: bioluminescence (tumor growth and incidence of metastasis), bone and tumor 

histomorphometry, serum biochemistry 

Results: Completed.  Details of the results are described in the Figure 1 of the manuscript published 

in Cancer Research (Appendix No. 3). 

 

Task 4: To determine direct contribution of bone marrow cells to tumor growth using an intra-tibial 

prostate cancer injection model (Specific Aim 1) 

Timeline: months 11-14 

Methods: male athymic mice will be pre-treated with cyclophosphamide (dose determined in Task 2) 7 

days before the intra-tibial tumor cell inoculation.  Mice will be anesthetized with the 

Ketamine/Xylazine mixture.  Mice will be placed in a supine position, and the right hind limb will be 

cleansed with 70% ethyl alcohol.  A hole will be made in the proximal tibia parallel to the long axis of 

the tibia, by drilling motion of 27½G needle attached to 1ml syringe.  Human prostate cancer cell 
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suspension (100,000 cells in 20µl Hank’s balanced salt solution) will be injected through the hole, and 

cotton will be applied to the injection site for 30 seconds.  Mice will be monitored for vital signs until 

complete recovery from the anesthesia.  Metastatic tumor incidence and growth will be measured by 

weekly in vivo bioluminescence imaging for six weeks.  Tumors and blood serum will be harvested at 

the end of the experiment. 

Outcomes: bioluminescence, bone and tumor histomorphometry, serum biochemistry  

Results: Completed.  Details of the results are described in the Figure 3 of the manuscript published 

in Cancer Research (Appendix No. 3). 

 

Task 5: To determine vascular permeability induced by bone marrow disrupted agent(s) using Evans 

Blue in vivo permeability assay (Specific Aim 2) 

Timeline: months 15-17 

Methods: mice will be pre-treated with cyclophosphamide (dose determined in Task 2) 7 days before 

the experiment.  Mice will then be anesthetized with the Ketamine/Xylazine mixture.  Evans Blue dye 

(30mg/ml in PBS) will be injected intra-venously (through tail vein, 45mg/kg).  After 5 minutes, mice 

will be perfused with Linger’s lactate solution supplemented with heparin for 5 minutes and femurs will 

be dissected.  Bones will then be completely dried by vacuum dryer and dry weight will be measured.  

Extravasated Evans Blue dye in the bone will be eluted with 400µl formamide (at 70°C overnight).  

Optical absorbance at 620nm will be measured. 

Outcomes: optical density 

Results: Incomplete, and an alternative approach was employed. The experimental results of Task 4 

showed that the vascular disruption minimally affects the cyclophosphamide-induced bone metastasis.  

Accordingly, we decided not to perform this Task 5.  Alternatively, we determined the effects of 

cyclophosphamide on the bone marrow endothelial cell apoptosis. Briefly, we flushed the bone marrow 

of the saline- or cyclophosphamide-treated mice via TriZol reagent, followed by quantitative PCR for a 

CD31 endothelial cell marker.  Cyclophosphamide-treated bone marrow had significantly reduced 

Cd31 gene expression.  In addition, we cultured the human bone marrow endothelial cells, and treated 

the cells with 4-hydroperoxycyclophosphamide (4-HC, a metabolite of cyclophosphamide with in vitro 

biological activity), followed by flow cytometric assay of apoptotic cells.  4-HC induced apoptosis of the 

bone marrow endothelial cells, suggesting the cyclophosphamide-induced vascular disruption is 

mediated by apoptosis of the bone marrow endothelium.  The data are presented and detailed in the 

Figure 2 E and F of the manuscript published in Cancer Research (Appendix No. 3). 
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Task 6: To determine vascular permeability induced by bone marrow disrupted agent(s) using a human 

gene (Alu) probe-quantitative RT PCR (Specific Aim 2) 

Timeline: months 18-20 

Methods: mice will be pre-treated with cyclophosphamide (dose determined in Task 2) 7 days before 

the intra-cardiac PCa tumor cell injection.  Subsequently, five mice per group (pre-treatment vs. 

control) will be harvested weekly for six weeks.  Bone marrow cells from the hind limbs will be flushed, 

and total RNA will be extracted using Trizol solution.  cDNA will be synthesized by reverse 

transcription, and quantitative PCR with a human gene probe (Alu probe) will be performed.  

Outcomes: Quantitative PCR measurement of a human gene (Alu probe) 

Results: Incomplete. This task was contingent on the experimental results of the above Tasks 4 and 5 

that produced negative results.  Accordingly, Task 6 was determined not to pursue, and the alternative 

approaches (detailed in the Results of Task 5) were performed and presented.  

 

Task 7: To determine angiogenic gene expression changes in the bone marrow and serum induced by 

bone marrow disruptive agent(s) by quantitative RT-PCR (Specific Aim 2) 

Timeline: months 21-22 

Methods: mice will be pre-treated with cyclophosphamide (dose determined in Task 2, n=10 each 

group) 7 days before analysis.  Animals will be sacrificed and serum and bone marrow flush will be 

harvested.  Complete blood counting (with white blood cell differential) will be performed.  Serum 

VEGF-A will be measured by ELISA.  Total RNA will be extracted from the bone marrow flush cells, 

and quantitative RT-PCR will be performed to measure expression of angiogenic genes (VEGF-A, IL-6 

and MCP-1).  

Outcomes: Blood counts, ELISA and quantitative PCR measurement 

Results: Completed.  Details of the results are described in the Figure 4 of the manuscript published 

in Cancer Research (Appendix No. 3). 

 

Task 8: Data analysis, review, repetition as needed.  Manuscript preparation. 

Timeline: months 23-24 

Methods: Repeat and/or reanalyze experiments from all tasks as needed. Prepare manuscript for 

publication. 

Outcomes: As described in the various tasks.  A manuscript. 

Results: Completed.  An original research manuscript covering the tasks in this proposal was recently 

accepted for publication in Cancer Research. 
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3. Key Research Accomplishments 

• Cyclophosphamide enhanced experimental prostate cancer skeletal metastasis in vivo  

• A single dose of cyclophosphamide significantly disrupted bone marrow vascular integrity  

• Cyclophosphamide pre-treatment promoted orthotopic prostate tumor growth in bone  

• Cyclophosphamide transiently expanded myeloid lineage cells 

• Cyclophosphamide-induced skeletal metastases overlap temporally with bone marrow myeloid 

cell expansion 

• Neutralizing host-derived murine CCL2, but not murine IL-6, inhibited cyclophosphamide-

induced prostate cancer bone metastasis 

• An alternative chemotherapeutic drug, docetaxel, did not promote skeletal metastases 
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4. Reportable Outcomes 

The successful outcomes of this postdoctoral training grant are readily apparent through one review 

paper, two original research papers, two oral presentations in international conferences, and four 

awards to the PI.  More importantly, during the later period of this grant support, Dr. Park was awarded 

with an independent research grant from the DOD PCRP (FY 2011 Exploration-Hypothesis 

Development Award).  In addition, Dr. Park is recently appointed as a tenure-track assistant professor 

in the Department of Medicine, Vanderbilt University School of Medicine, indicating his successful 

career progression in the field of prostate cancer research.    

 

One review paper 

1. A review article published in Cancer Microenvironment: “Roles of Bone Marrow Cells in Skeletal 

Metastases: No Longer Bystanders”   This review article was written by the PI (as the first 

author) in collaboration with the mentor (the corresponding author), with an acknowledgement 

of funding supports from this grant. 

 

Two original research papers 

2. An original research article published in Endocrine-Related Cancer: “Nuclear Localization of 

Parathyroid Hormone-related Peptide Confers Resistance to Anoikis in Prostate Cancer Cells”   

Works in this manuscript were partly supported by this postdoctoral fellowship grant, which was 

acknowledged in the text.  The PI is the first author of this publication. 

3. An original research article accepted for publication in Cancer Research: “Cyclophosphamide 

Creates a Receptive Microenvironment for Prostate Cancer Skeletal Metastasis”, which was 

partly supported by this grant.  The manuscript is currently in press, of which the PI is the first 

author. 

 

Six presentations with four awards 

4. Poster presentation 

1. The 9th International Meeting on Cancer-Induced Bone Disease 

2. October 27-29, 2009, Arlington, VA 
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3. Title: Chemotherapy-induced alterations of the bone marrow microenvironment contribute to 

prostate cancer skeletal metastasis 

4. Authors: Serk In Park, Jinhui Liao, Xin Li, Jan Berry, Matthew Eber, and Laurie K. McCauley 

5. Poster presentation 

1. 2010 American Association for Cancer Research Annual Meeting 

2. April 17-21, 2010, Washington DC 

3. Title: Novel insight into mechanisms of parathyroid hormone-related protein (PTHrP) action 

in prostate cancer growth and skeletal metastasis: altered anoikis and angiogenesis 

4. Authors: Serk In Park, Xin Li, Janice E. Berry, Amy J. Koh, Jingcheng Wang, Russell S. 

Taichman, and Laurie K. McCauley 

6. Poster presentation 

1. 2011 IMPaCT Meeting 

2. March 9-12, 2011, Orlando, FL 

3. Title: Cyclophosphamide-induced expansion of CD11b+ myeloid cells contribute to prostate 

cancer skeletal metastasis 

4. Authors: Serk In Park, Jinhui Liao, Janice E. Berry, Xin Li, Fabiana N. Soki, Sudha Sud, 

Kenneth J. Pienta, and Laurie K. McCauley 

7. Oral presentation 

1. 2011 Annual Meeting of the American Society of Bone and Mineral Research (ASBMR) 

2. September 16-19, 2011, San Diego, CA 

3. Title: Parathyroid Hormone-related Peptide (PTHrP) Up-regulates Myeloid-Derived 

Suppressor Cells (MDSC) in the Bone Marrow, Contributing to Prostate Cancer Growth and 

Angiogenesis 

4. Authors: Serk In Park, Willam D. Sadler, Amy J. Koh, Fabiana N. Soki and Laurie K. 

McCauley 

8. Young Investigator Travel Award from the ASBMR 

9. Poster presentation 

1. Endocrine Fellows Foundation Forum 

2. September 14-15, San Diego, CA 

3. Title: Parathyroid Hormone-related Peptide (PTHrP) Up-regulates Myeloid-Derived 

Suppressor Cells (MDSC) in the Bone Marrow, Contributing to Prostate Cancer Growth and 

Angiogenesis 

4. Authors: Serk In Park, Willam D. Sadler, Amy J. Koh, Fabiana N. Soki and Laurie K. 

McCauley 
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10. Travel award from the Endocrine Fellows Foundation 

11. Oral presentation 

1. The 11th International Conference on Cancer-Induced Bone Disease 

2. November 30-December 3, Chicago, IL 

3. Title: Potentiation of Myeloid-Derived Suppressor Cells (MDSCs) within the Bone Marrow by 

Tumor-Derived Parathyroid Hormone-related Peptide (PTHrP) 

4. Authors: Serk In Park, Willam D. Sadler, Amy J. Koh, Fabiana N. Soki, and Laurie K. 

McCauley 

12. Young Investigator Travel Award and a “Short Talk Presentation Award” from the International 

Conference on Cancer-Induced Bone Disease  

 

One research funding 

13. FY2011 Department of Defense Prostate Cancer Research Program, Exploration-Hypothesis 

Development Award 

 

Employment  

14. Employment as a tenure-track Assistant Professor in the Department of Medicine, Vanderbilt 

University School of Medicine, Nashville, TN.  The PI has a joint appointment in the 

Department of Cancer Biology.   
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5. Conclusions 

This study demonstrated for the first time that alterations induced by cyclophosphamide, one of the 

most widely used chemotherapeutic drugs, enhanced bone metastasis in a prostate cancer animal 

model.  Furthermore, this study showed that the pro-metastatic effects of cyclophosphamide were 

significantly reversed by suppression of CCL2, which suggests the causal role of bone marrow myeloid 

lineage cell expansion in promoting metastasis in the mouse model used in this study.  We 

demonstrated that a single dose of cyclophosphamide administration increased myelogenic cytokines, 

and correspondingly expanded the myeloid cell population in the bone marrow, as well as the numbers 

of monocytes and neutrophils transiently in the peripheral blood. 
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7. Appendices 

1. A review article published in Cancer Microenvironment: “Roles of Bone Marrow Cells in Skeletal 

Metastases: No Longer Bystanders”    

2. An original article published in Endocrine-Related Cancer: “Nuclear Localization of Parathyroid 

Hormone-related Peptide Confers Resistance to Anoikis in Prostate Cancer Cells”    

3. An original article accepted for publication in Cancer Research: “Cyclophosphamide Creates a 

Receptive Microenvironment for Prostate Cancer Skeletal Metastasis.”  Because the 

manuscript is currently in press, a copy of author proof was provided, and this is not to be 

released to the public.   
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Abstract Bone serves one of the most congenial metastatic
microenvironments for multiple types of solid tumors, but
its role in this process remains under-explored. Among
many cell populations constituting the bone and bone
marrow microenvironment, osteoblasts (originated from
mesenchymal stem cells) and osteoclasts (originated from
hematopoietic stem cells) have been the main research
focus for pro-tumorigenic roles. Recently, increasing evi-
dence further elucidates that hematopoietic lineage cells as
well as stromal cells in the bone marrow mediate distinct
but critical functions in tumor growth, metastasis, angio-
genesis and apoptosis in the bone microenvironment. This
review article summarizes the key evidence describing
differential roles of bone marrow cells, including hemato-
poietic stem cells (HSCs), megakaryocytes, macrophages
and myeloid-derived suppressor cells in the development of
metastatic bone lesions. HSCs promote tumor growth by
switching on angiogenesis, but at the same time compete
with metastatic tumor cells for occupancy of osteoblastic
niche. Megakaryocytes negatively regulate the extravasating
tumor cells by inducing apoptosis and suppressing prolifera-
tion. Macrophages and myeloid cells have pro-tumorigenic
roles in general, suggesting a similar effect in the bone
marrow. Hematopoietic and stromal cell populations in the
bone marrow, previously considered as simple by-standers in

the context of tumor metastasis, have distinct and active roles
in promoting or suppressing tumor growth and metastasis in
bone. Further investigation on the extended roles of bone
marrow cells will help formulate better approaches to
treatment through improved understanding of the metastatic
bone microenvironment.

Keywords Bone marrow.Metastasis . Hematopoietic stem
cells .Megakaryocytes .Macrophages .Myeloid-derived
suppressor cells

Introduction

The majority of cancer patients ultimately develop metastatic
lesions, contributing to excessive morbidity and mortality,
even though metastasis is a very selective and extremely
inefficient process, with less than 0.1% of the intravasated
tumor cells surviving cascades of events to form metastatic
lesions in distant sites [1, 2]. More importantly, tumor
metastasis is determined not by locoregional anatomy of
draining vasculature (i.e. hemodynamic factors), but by
highly specific interactions between disseminating tumor
cells (“seed”) and the microenvironment of the target organ
(“soil”) [3]. This seminal concept of “seed and soil” was
originally proposed by Stephen Paget in the 19th century [4],
but soon challenged by Ewing and many others proposing
that mechanical forces and hemodynamic factors determine
the metastatic patterns [1, 5, 6]. Later, the “seed and soil”
hypothesis was revisited by central evidence that the primary
tumor is comprised of biologically heterogeneous cell
populations (i.e. subpopulations of different metastatic
potentials), and also that metastases selectively develop in
congenial microenvironments regardless of hemodynamic
trafficking [7, 8]. In addition, Tarin et al. provided clinical
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evidence that the specific organ microenvironment is a
critical determinant in metastasis, independent of vascular
anatomy, rate of blood flow and the number of tumor cells
delivered to the organ [9, 10]. Indeed, the current cancer
statistics clearly show that the primary tumors of individual
organs have strong preference for their metastatic sites [11,
12]. For example, colon and pancreatic tumors preferentially
metastasize to liver; and renal cell carcinoma and bladder
cancer frequently spread to lungs. Therefore, tumor metastasis
occurs in a predictable manner, tightly regulated by the
microenvironment of the recipient organ.

Interestingly, bone is the predominant metastatic soil for
a number of human cancers, including prostate, breast and
lung cancers as well as multiple myeloma [11, 13, 14].
Skeletal metastasis is the major cause of mortality and
morbidity of afflicted patients. For example, approximately
90% of advanced stage prostate cancer patients develop
bone lesions, resulting in morbidities such as severe bone
pain, immobility, hematopoietic complications and spinal
cord compression [12, 15]. Current treatment modalities for
bone metastatic lesions are not curative, and the average
time from the surgery (for bone lesions, such as pathologic
fracture) to death is only 1.5±1.9 years for prostate cancer
patients. To overcome this urgent clinical problem, better
understanding of the metastatic bone microenvironment is
critically important. Bone is an intriguing microenvironment
for tumor biology, and still remains largely unexplored [16].
This uniquely complex milieu is due not only to the calcified
matrix but also to multiple types of constituting cells,
including bone cells (osteocytes, osteoclasts and osteoblasts),
hematopoietic cells, immune cells, stromal cells and endo-
thelial cells [17]. Considerable research efforts have been
devoted to characterizing this complex microenvironment
and also to elucidating differential roles of individual cell
types in their contribution to tumor growth and metastasis in
bone [13]. Notably, Mundy and colleagues proposed a
‘vicious cycle’ theory which involves bi-directional inter-
actions between disseminated tumor cells and osteoclasts (as
well as osteoblasts) leading to osteolysis and, in turn, tumor
growth [13, 18, 19]. For example, parathyroid hormone-
related peptide (PTHrP) derived from breast cancer cells
promotes osteolytic bone lesions (mediated by activation
of osteoclasts), leading to release of transforming growth
factor-beta (TGF-β) from the bone matrix to further
aggravate tumor growth in the bone [18, 19]. Later, prostate
cancer cells were shown to express PTHrP in order to
upregulate expression of tumorigenic factors (such as C-C
chemokine ligand 2 [CCL2]) in osteoblasts, resulting in
destructive cascades in the bone as well as osteoblastic
lesions [20–22]. However, the majority of experimental
results are from murine models, and the vicious cycle in
human breast/prostate cancer skeletal metastases is lacking
yet difficult to discern.

Collectively, the current data demonstrate a positive
feedback loop of tumor cell interaction with the hard tissue
compartment of the bone microenvironment (i.e. osteoclasts,
osteoblasts and calcified bone matrix). Additionally, however,
current evidence suggests that different hematopoietic lineage
cell populations in the bone marrow, previously considered as
simple bystanders in the metastatic process, provide distinctive
contributions for promoting or suppressing tumor growth and/
or metastasis [23, 24]. This review paper will examine the
current literature regarding cells in the bone microenviron-
ment, with particular focus on hematopoietic lineage cells in
the bone marrow, and their roles in skeletal metastasis.

Cellular Components of the Congenial Soil: Anatomy
and Histology of Bone Marrow

The bone marrow is one of the largest organs in the human
body, and comprises approximately 5% of body weight in
humans and 3% in adult rats [25, 26]. Bone marrow is the
primary hematopoietic organ and a primary lymphoid
tissue, responsible for the production of the cellular
components of blood [27]. It consists of hematopoietic
tissue, endosteum, connective tissue and endothelium. The
endosteal lining in the marrow cavity contains a single layer
of cells, including osteoblasts and osteoclasts, supported by
a thin layer of reticular connective tissue. Other connective
tissues in the bone marrow include bony trabeculae,
adipocytes, fibroblasts and nerves. Of particular note, the
bone marrow is extremely well vascularized tissue, served
by multiple arteries entering the marrow via nutrient canals
of diverse size. Arteries branch and taper down to thin-
walled arterioles and capillaries anastomosingwith a plexus of
venous sinuses. Venus sinuses then merge to form collecting
veins and further the central venous sinus draining back via
nutrient canals into the systemic circulation. Sinusoidal
vessels are thin-walled, consisting of a layer of flat
endothelial cells with little to no basement membrane.
Bone marrow sinusoids function as an entering point for
hematopoietic cells into the systemic circulation. Similarly,
metastatic cancer cells are considered to extravasate via
sinusoidal barrier. The bone marrow does not have a
lymphatic drainage system [27–29].

The hematopoietic compartment of the bone marrow is
comprised of stem cells, hematopoietic lineage cells,
adventitial reticular cells, adipocytes and macrophages.
Hematopoietic cells are not randomly dispersed, but are
structured within the microenvironment [30]. More impor-
tantly, hematopoiesis occurs as a compartmentalized process,
with erythropoiesis occurring in erythroblastic islands;
granulopoiesis in less defined areas and megakaryopoiesis
adjacent to the sinus endothelium. On demand, the hemato-
poietic cells transverse the sinusoidal barrier to enter the
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systemic circulation, whereas platelets are released directly
from the cytoplasm of megakaryocytes into the bloodstream.

During embryonic development, hematopoiesis occurs in
the liver, and shortly after birth hematopoietic stem cells
(HSCs) migrate and repopulate the bone marrow. This
unique feature of bone marrow biology, bone marrow
homing, has been extensively exploited clinically to
improve the engrafting efficiency of bone marrow trans-
plantation, carried out by simple intravenous injection of
marrow cells [31]. Molecular mechanisms of bone marrow
homing have been demonstrated primarily by exploring
factors inhibiting homing in various mouse models. For
example, mice deficient in E- and P-selectins were found to
have impaired homing, suggesting that tethering and rolling
of bone marrow cells on the sinusoidal endothelium is
critical for correct engraftment [32, 33]. More importantly,
Peled et al. provide pivotal evidence that stromal-derived
factor-1 (SDF-1, also known as CXCL12) expressed by the
bone marrow stroma and endothelium interacts with its
cognate ligand, CXCR-4 expressed on HSCs, is critical to
human HSC engraftment and repopulation in a immune-
deficient mouse model [34]. In sum, the bone marrow is
structured hierarchically, containing various populations of
hematopoietic cells supported by stromal cells, all of which
potentially have unique function in skeletal tumor growth
and/or metastasis.

Hematopoietic Stem Cells Compete with Metastatic
Tumor Cells

Tumor cells frequently usurp physiological mechanisms to
promote growth, angiogenesis, invasion and metastasis. For
example, most of the so-called tumorigenic molecules (such
as vascular endothelial growth factor [VEGF], matrix
metalloproteinases [MMPs] and epidermal growth factor
[EGF] among myriad others) play critical roles in normal
physiology and development. As stated above, liver is the
primary hematopoietic organ until birth, and subsequently
HSCs migrate into the bone marrow where the microenvi-
ronment supports engraftment, repopulation and self-
renewal. This phenomenon of physiological HSC homing
in the bone marrow led scientists to an interesting
hypothesis that bone metastatic cancer cells may mimic
the established pathway of HSC homing. Müller et al. for
the first time provided pivotal evidence that chemokine
receptors (CXCR4 and CCR7, highly expressed by breast
cancer cells) and their cognate ligands (expressed in
metastatic recipient tissues) play critical roles in organ-
specific breast cancer metastasis [35], in the same way that
chemokine-chemokine receptor axes mediate HSC homing
in the bone marrow during normal development and bone
marrow transplantation (BMT). Subsequently, Taichman et

al. demonstrated that CXCL12/SDF-1 (expressed by osteo-
blasts and endothelial cells) and its receptor (CXCR4,
expressed by prostate cancer cells) regulate bone-tropism of
prostate cancer cells [36]. In addition to the CXCL12/
CXCR4/CXCR7 axis [37], Annexin II, expressed by
osteoblasts and endothelium regulates HSC adhesion,
homing and engraftment [38]. Interestingly, human prostate
cancer cells isolated from the metastatic lesions (PC-3,
DU145 and LNCaP) were shown to express receptors for
Annexin II, contributing to prostate cancer growth and
homing in the bone marrow [39]. Given that data collectively
demonstrated that bone metastatic tumor cells (breast and
prostate) utilize the chemokine axes of HSC homing, it is
reasonable to expect that HSCs may compete with metastatic
cancer cells for occupancy in the bone marrow.

Recently, crucial evidence demonstrating that hematopoietic
stem cells (HSC) negatively regulate bone metastasis by
competing with metastatic cancer cells to preoccupy the HSC
endosteal niche came from the works of Shiozawa et al. [40]
The authors demonstrated that increasing the HSC niche size
(i.e. expansion of osteoblasts by parathyroid hormone [PTH]
treatment) promoted skeletal localization of prostate cancer
cells in the systemic circulation, while decreasing the niche
size (using a conditional osteoblast-ablation mouse model)
reduced tumor cell number localized in the bone marrow. In
addition, an experimental treatment to mobilize HSCs
(AMD3100, similarly to a clinical regimen used in autologous
stem cell transplantation) could mobilize the cancer cells in
the niche back into the circulation. Therefore, the HSC
endosteal niche serves as a direct target for metastatic prostate
cancer cells, and HSCs may function as competitors for
metastatic cancer cells with strong bone tropism.

Contrary to the data demonstrating HSCs function as a
competitor for niche occupancy, other data shows that
HSCs may directly promote tumor growth and/or metastasis.
Okamoto et al. demonstrated that HSCs regulate the
angiogenic switch and promote tumor growth in the bone
[41]. Furthermore, expansion of bone marrow cellularity by
treatment with parathyroid hormone (PTH) resulted in
significantly increased prostate cancer cell localization and
subsequent growth in bone [42]. HSCs are pluripotent cells
that can differentiate into any hematopoietic lineage cell
types of tumorigenic potential. Accordingly, the direct roles
of HSCs in tumor growth, particularly in the context of the
bone microenvironment, need further investigation.

Megakaryocytes Attack Extravasating Tumor Cells
in the Bone Marrow

As previously mentioned, megakaryocytes reside in para-
sinusoidal space with cytoplasmic invagination across the
vascular barrier. As a result, platelets are released directly
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into the sinusoidal venous blood [43]. Because the
sinusoidal endothelium is the main entry-exit point between
the circulation and bone marrow tissue, bone metastatic
cancer cells are thought to utilize the same route to
extravasate. Therefore, megakaryocytes are potentially the
first cells that tumor cells encounter upon arrival in the
bone marrow microenvironment. Interestingly, Li et al.
provided the first direct data that megakaryocytes suppress
tumor cell proliferation and increase apoptosis in an
experimental prostate cancer bone metastasis model [44].
In addition, expansion of the megakaryocyte population (by
administering recombinant thrombopoietin) resulted in
significantly reduced localization of tumor cells and
subsequent growth in the bone in vivo. Direct contact
between prostate cancer cells andmegakaryocytic cells in vitro
resulted in increased apoptosis as well as decreased prolifer-
ation of prostate cancer cells. These results demonstrated novel
and specific inhibitory effects of megakaryocytes, a specialized
hematopoietic lineage cell residing in the bone marrow, on
metastatic cancer growth in the bone.

In parallel to tumor inhibitory effects based on direct
cell-to-cell contact, secretory factors frommegakaryocytes have
been recently demonstrated to suppress osteoclast formation and
activation [45–47]. In addition, megakaryocytes promote
osteoblast synthesis of type I collagen, osteoprotegerin and
receptor activator of nuclear factor kappa-B ligand (RANKL),
all of which positively affect bone formation [48]. Reciprocally,
osteoblasts directly influence hematopoiesis [49, 50] as well
as megakaryopoiesis [51]. Consequently, production and
activity of megakaryocytes are tightly coupled with bone
remodeling, which in turn affects tumor growth in the bone.
Given that the vicious cycle theory integrates activities of
osteoblasts and osteoclasts as critical components [13], and
that resorption is essential for tumor growth in bone [20, 52],
megakaryocytes also alter the bone microenvironment (i.e.
suppressing osteoclasts and activating osteoblasts) to affect
metastatic tumor growth indirectly. Taken together, the current
data suggest that megakaryocytes negatively regulate tumor
cells in the bone marrow directly by suppressing tumor cell
proliferation and inducing apoptosis, and also indirectly by
suppressing osteoclasts and osteoblasts. However, detailed
molecular mechanisms and clinical data are required to further
characterize the role of megakaryocytes in skeletal metastasis.

Contrary to anti-metastatic functions of megakaryocytes,
the end-products, platelets, have been shown to have opposite
roles. Firstly, platelet-derived growth factor (PDGF) is one of
the first angiogenic factors discovered, and critical to vessel
maturation [53]. In addition, aggregation of platelets
surrounding tumor cells had been shown to protect tumor
cell lysis by natural killer cells [54]. Most notably,
Boucharaba et al. provided pivotal evidence supporting the
role of platelets in breast cancer skeletal metastasis [55, 56].
Activation of platelets by tumor cells result in production of

lysophosphatidic acid (LPA), which in turn promotes breast
cancer growth and skeletal metastasis in mice [55]. However,
there is currently no clear evidence supporting clinical
benefits of anti-platelet agents (such as aspirin and heparin)
in cancer patients [56].

Macrophages Promote Tumor Growth and Metastasis
in Bone: More than a Scavenger

Increasing evidence now clearly supports that tumor-
associated macrophages (TAMs) are important regulators
of tumor progression in multiple types of cancers [57–61].
Clinical studies reveal that the density of TAMs in tumor
tissue significantly correlates with poor prognosis in
prostate, breast, ovarian and cervical cancers, and with
controversial outcomes in stomach and lung cancers [62].
In comparison with classically activated macrophages (M1
macrophages) associated with inflammatory phagocytosis,
TAMs are an alternatively activated and polarized population
of macrophages (M2 macrophages) with tumorigenic potential
[63]. The role of immune cells, particularly macrophages, in
tumor progression is not a new idea. The first suggestion of
their involvement dates back to 1863 [64]. Recent studies
now provide the clinical correlations as well as potential
molecular mechanisms of recruitment, activation and function
of TAMs (M2 macrophages). In particular, most prominent
molecules produced by tumors to affect TAMs include C-C
chemokine ligand 2 (CCL2, also known as monocyte
chemoattractant protein-1 [MCP-1]), macrophage colony
stimulating factor (M-CSF, also known as CSF-1) and VEGF.
For example, bone metastatic prostate cancer cells express
CCL2 to recruit monocytes to tumor sites, which then
differentiate into TAMs (M2 macrophages) and osteoclasts
[58, 65–67]. In addition, CCL2 has been seen to increase
prostate cancer growth and bonemetastasis in an experimental
metastasis model, which was accompanied by the recruitment
of macrophages and osteoclasts [57, 68]. Lin et al. also
demonstrated that macrophages switch on tumor angiogen-
esis, using the polyoma middle-T antigen mouse mammary
tumor (PyMT) spontaneous breast cancer model [69].
Macrophages are highly specialized phagocytic cells, derived
from monocytes. In tumor tissue, a wide variety of factors
are secreted by tumor cells, including those that function as
recruiting factors for monocyte-macrophages. The most
prominent and widely investigated functions of TAMs (M2
macrophages) in tumor tissue are increased angiogenesis and
tumor growth caused by growth factors and proteinases. Data
of Harris et al. showed by immunohistochemical quantifica-
tion that TAMs cluster in areas of increased angiogenesis in
human breast cancer samples [70]. In addition, TAMs (M2
macrophages) produce many pro-angiogenic cytokines such
as urokinase-type plasminogen activator (uPA)[71], tumor
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necrosis factor-alpha (TNF-α)[72], IL-1, VEGF [73] and nitric
oxide (NO)[74]. Moreover, TAMs express a wide variety of
growth factors and proteinases such as MMP-7 and 9;
fibroblast growth factor (FGF), hepatocyte growth factor
(HGF), epidermal growth factor (EGF) and platelet-derived
growth factor (PDGF), all of which have independent pro-
tumorigenic functions [75–77].

Recently, interesting data from Pettit and colleagues
demonstrated that a discrete population of macrophages,
osteal tissue macrophages (termed ‘OsteoMacs’). Later, the
authors also showed that OsteoMacs are required for
physiological bone remodeling as well as intramembranous
bone healing, suggesting that osteal macrophages are critical
components in bone physiology [78, 79]. However, there is
currently no definitive data showing the tumorigenic
function of resident macrophages in tumor growth and/or
metastasis in bone. To sum up, clinical and experimental data
supports the tumorigenic roles of macrophages in primary
tumor tissue, but further investigation is required for the
potential roles in the bone microenvironment.

Myeloid-Derived Suppressor Cells and Monocytes:
An Elusive Population with Confronting Functions

As frequently portrayed as ‘wounds that never heal’, cancer
is comprised of multiple types of immune/inflammatory
cells [80]. Clinical data have now accumulated indicating
that human tumor samples positively correlate with infil-
tration of bone marrow-derived immune cells (BMDCs)
such as macrophages and neutrophils. In particular, recent
evidence collectively shows that bone marrow-derived
macrophages and monocytes (collectively termed ‘myeloid
lineage cells’) play crucial roles in tumor angiogenesis [76,
81, 82]. However, those pro-angiogenic myeloid cells are
yet poorly defined, and show overlapping phenotypes [83].
The most widely accepted population of pro-tumorigenic
BMDCs are myeloid-derived suppressor cells (MDSCs),
expressing both CD11b (a myeloid cell marker) and Gr1 (a
granulocyte marker). MDSCs were originally investigated for
their roles in suppressing CD8+ T cell immunity, contributing
to tumor escape from the host immune-surveillance [84–86].
Yang et al. demonstrated that CD11b+Gr1+ MDSCs promote
vascular density and vascular maturation while decreasing
necrosis [87, 88]. In addition, the authors showed that
MDSCs express high levels of matrix metalloproteinase
(MMP)-9, and also MDSCs acquire endothelial properties
to incorporate into endothelium. Similarly, Kim et al.
demonstrated that circulating monocytes in tumor-bearing
hosts express an endothelial cell marker (CD31) and directly
contribute to tumor angiogenesis [89]. However, the idea that
MDSCs can differentiate into endothelial cells remains
controversial and to be further investigated [90]. Interestingly,

while tumors cannot grow in MMP-9 knockout mice, wild-
type bone marrow transplantation can restore tumor growth in
the same host, suggesting that BMDCs are the primary source
of MMP-9 in tumor angiogenesis. CD11b+ myeloid cells, but
not endothelial progenitor cells, are the main source of MMP-
9 in the tumor tissue [91], which can increase the
bioavailability of VEGF and other endothelial growth factors.
In addition, neutrophils have been shown to secrete VEGF
[92]. Recent data from Yang et al. suggest that MDSCs
enhance tumor cell invasion and contribute to TGF-β-
mediated breast cancer metastasis [93]. Furthermore, recruit-
ment of CD11b+Gr1+ cells is mediated by the two chemokine
axes, SDF-1/CXCR4 and CXCL5/CXCR2 [93].

Given the roles of MDSCs in tumor angiogenesis and
invasion, it is likely that MDSCs promote tumor growth
and/or metastasis in any organ site including bone. In
addition, the surface markers of MDSCs overlap with those
of osteoclast lineage cells, suggesting that MDSCs have
potential to differentiate into osteoclasts. However, the role
of MDSCs specifically in bone metastasis is not yet clearly
understood. Some supporting evidence came from the work
of Mundy and colleagues who discovered that MDSCs
were increased in the bone marrow and spleen in a
syngeneic myeloma mouse model, and the MDSCs from
the myeloma-bearing mice had a greater capacity to form
osteoclasts, compared to the MDSCs from control mice [88,
94]. Furthermore, these authors presented their preliminary
data that MDSCs can be precursors of osteoclasts in
myeloma bone lesions [95], and also that an osteoclast
inhibitor, zoledronic acid, suppressed the differentiation of
MDSCs into osteoclasts [96].

Discussion and Conclusions

Bone marrow is comprised of diverse populations of
hematopoietic lineage cells as well as stromal cells.
Increasing lines of evidence support pro-tumorigenic roles
of individual bone marrow-derived cell populations in such
processes as angiogenesis, tumor cell apoptosis, escape
from immune-surveillance, etc. However, each cell population
mediates distinct and sometimes contradictory (pro- or anti-
tumorigenic) roles, and continued research endeavors are
required to delineate the complexity. This review article
summarized key evidence describing the differential roles of
hematopoietic lineage cells, including HSCs, megakaryo-
cytes, macrophages andMDSCs in bonemetastasis (see Fig. 1
for a schematic summary of data). Briefly, expansion of bone
marrow cellularity has been found to promote prostate cancer
skeletal metastasis, suggesting in general that cells in the
bone marrow have tumorigenic functions [42]. Indeed, HSCs
switch on angiogenesis, promoting tumor growth and
potentially metastasis [41]. However, recent data demonstrated
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that tumor cells compete with HSCs for niche occupancy,
thus the presence of HSCs can negatively regulate tumor
metastasis to bone [40]. More interestingly, HSCs have been
shown to increase bone morphogenetic proteins (BMP)-2 and
6 in response to erythropoietin stimuli, potentially contributing
to augmented osteoblastogenesis [97]. These data collectively
support that even a single cell population entity (i.e. HSCs)
can have a dual function in the context of tumor metastasis
to bone. For example, data demonstrate that mesenchymal
stem cells (MSCs), which give rise to multiple types of
stromal cells including adipocytes, muscles, fibroblasts,
chondrocytes, etc., contribute to the creation of a favorable
tumor microenvironment in general as well as in bone
[23]. Contrarily, Naveiras et al. demonstrated that bone
marrow adipocytes, which frequently infiltrate red marrow
spaces after chemotherapy or radiation, negatively regulate
HSCs [98].

Other components of the bone marrow such as mega-
karyocytes and macrophages also have unique roles in

tumor progression. Megakaryocytes are potentially the first
cells that extravasating tumor cells encounter in the bone
marrow, and megakaryocytes induce tumor cell apoptosis and
decreased proliferation [44]. Despite the lack of definitive
experimental results in bone metastasis, macrophages,
particularly TAMs, are highly likely to play critical roles in
tumor growth and angiogenesis in bone. Similarly, MDSCs
are essential components for a favorable tumor microenvi-
ronment. Collectively, as the bone marrow is the primary
supplying organ of macrophages, monocytes and other
immune cells, precursors and the differentiated macrophages
and MDSCs surely play essential roles in bone metastasis.

Even with the data described in this article, elucidating
the roles of bone marrow cells in the metastatic bone
microenvironment remain a rich area of research opportunity.
For example, one emerging question is how solid tumors in a
primary organ site or in circulation regulate bone marrow cells
before the occurrence of bone metastasis. The tumor
microenvironment is comprised of primary tumor cells mixed

Fig. 1 Interactions between metastatic tumor cells and bone marrow
cells are illustrated. Hematopoietic stem cells increase tumor growth
by promoting angiogenesis and osteoblastogenesis. Concurrently,
hematopoietic stem cells compete with metastatic tumor cells for
occupancy of the osteoblastic niche, resulting in negative regulation of
skeletal metastasis. Osteoblasts and osteoclasts both contribute to the
positive feedback leading to tumor growth in bone (a ‘vicious cycle’).
Immune cells (phagocytic cells and dendritic cells) attack tumor cells.

However, a subset of immune precursor cells (e.g. myeloid-derived
suppressor cells) is implicated in promoting tumor growth and
metastasis. Megakaryocytes induce apoptosis of extravasating tumor
cells in bone, and also suppress tumor cell proliferation. (Legend: blue
arrows with circled plus mark indicate positive regulation; red arrows
with circled minus mark indicate negative regulation; and black
arrows indicate differentiation. Cellular components of this cartoon
are not proportionate to the actual size)
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with multiple types of stromal cells, of which a significant
fraction originates from the bone marrow. Increasing evidence
supports the critical roles of those bone marrow-derived cells
(BMDCs) in tumor progression. As BMDCs are such critical
components, it is likely that primary tumors somehow
communicate with the cells in the bone marrow to supply
the indispensable components to enhance metastatic capacity.
In addition, the data demonstrating that tumor cells prime the
metastatic soil (termed ‘pre-metastatic niche’) before arrival of
tumor cells in the metastatic recipient organ by VEGF-
receptor 1-positive bone marrow cells [99, 100], suggest
similar mechanisms may occur in the bone marrow before
arrival of breast or prostate cancer cells in the bone marrow.
Particularly, the unique bone-tropism of metastatic prostate
or breast cancer cells may be due to breast or prostate tumor-
derived factors modulating bone and bone marrow cells. One
potential candidate molecule mediating crosstalk between
tumor cells and bone marrow cells is parathyroid hormone-
related peptide (PTHrP). PTHrP was first discovered as an
etiologic factor for malignancy-induced hypercalcemia, and
was later implicated in pro-tumorigenic roles such as cellular
proliferation, angiogenesis as well as stimulating osteoblasts
and osteoclasts. Similar to parathyroid hormone (PTH), a
physiological counterpart, PTHrP promotes bone turnover
and anabolic response, which can promote tumor growth in
bone. In addition, PTHrP up-regulates cytokine expression
from the bone marrow stromal cells (i.e. osteoblasts),
including VEGF, IL-6 and C-C chemokine ligand (CCL)-2
(also known as monocyte chemoattractant protein [MCP]-1)
all of which have the potential to promote bone marrow
cells. Therefore, tumor cells in their primary organ site may
secrete PTHrP to prime the cells in the bone marrow
indirectly via up-regulating cytokines from osteoblasts,
leading to expansion and/or potentiation of fractions of bone
marrow cells (e.g. MDSCs). In turn, the primed bone
marrow cells either cultivate the metastatic recipient site,
and/or travel back to the primary tumor tissue to promote
growth, invasion and angiogenesis. However, there is
currently no data supporting this potential loop of crosstalk
between tumor tissue and the bone marrow. Continued
research in this field may yield potential mechanisms that
could be targeted for the treatment and prevention of
metastasis, thereby providing a means to increase length and
quality of life for cancer patients.
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Abstract

Prostate cancer remains a leading cause of cancer-related death in men, largely attributable to
distant metastases, most frequently to bones. Despite intensive investigations, molecular
mechanisms underlying metastasis are not completely understood. Among prostate cancer-
derived factors, parathyroid hormone-related peptide (PTHrP), first discovered as an etiologic
factor for malignancy-induced hypercalcemia, regulates many cellular functions critical to tumor
growth, angiogenesis, and metastasis. In this study, the role of PTHrP in tumor cell survival from
detachment-induced apoptosis (i.e. anoikis) was investigated. Reduction of PTHLH (encoding
PTHrP) gene expression in human prostate cancer cells (PC-3) increased the percentage of
apoptotic cells when cultured in suspension. Conversely, overexpression of PTHrP protected
prostate cancer cells (Ace-1 and LNCaP, both typically expressing low or undetectable basal
PTHrP) from anoikis. Overexpression of nuclear localization signal (NLS)-defective PTHrP failed
to protect cells from anoikis, suggesting that PTHrP-dependent protection from anoikis is an
intracrine event. A PCR-based apoptosis-related gene array showed that detachment increased
expression of the TNF gene (encoding the proapoptotic protein tumor necrosis factor-a) fourfold
greater in PTHrP-knockdown PC-3 cells than in control PC-3 cells. In parallel, TNF gene
expression was significantly reduced in PTHrP-overexpressing LNCaP cells, but not in NLS-
defective PTHrP overexpressing LNCaP cells, when compared with control LNCaP cells.
Subsequently, in a prostate cancer skeletal metastasis mouse model, PTHrP-knockdown PC-3
cells resulted in significantly fewer metastatic lesions compared to control PC-3 cells, suggesting
that PTHrP mediated antianoikis events in the bloodstream. In conclusion, nuclear localization of
PTHrP confers prostate cancer cell resistance to anoikis, potentially contributing to prostate
cancer metastasis.

Endocrine-Related Cancer (2012) 19 1–12

Introduction

Prostate cancer is the second most frequently diag-

nosed cancer and the sixth leading cause of cancer-

related death in males worldwide, notwithstanding the

improved early detection methods and therapeutic

modalities (Jemal et al. 2011). Advanced-stage

prostate cancer patients commonly develop metastatic

lesions, most frequently in the skeleton, which

ultimately account for the high mortality rate as well

as severe morbidities (Weilbaecher et al. 2011).

In sharp contrast, the molecular mechanism leading

to metastasis is not yet completely understood.

Metastatic colonization in distant organs requires

disseminating tumor cells to have essential cellular

functions, such as invasion of extracellular matrices,

survival in the bloodstream, extravasation, and

Endocrine-Related Cancer (2012) 19 1–12

Endocrine-Related Cancer (2012) 19 1–12

1351–0088/12/019–001 q 2012 Society for Endocrinology Printed in Great Britain

DOI: 10.1530/ERC-11-0278

Online version via http://www.endocrinology-journals.org

Page 26

http://dx.doi.org/10.1530/ERC-11-0278


adaptation to the new environment (Langley & Fidler

2011), which are mediated by numerous tumor-derived

factors. Prostate cancer is uniquely positioned because

of its strong propensity to interact with and metastasize

to bone. In this regard, prostate cancer cells express

numerous bone-modulating cytokines including para-

thyroid hormone-related peptide (PTHrP), osteoprote-

gerin, receptor activator of nuclear factor-kB ligand,

and others (Deftos et al. 2005). However, contributions

of these bone-modulating factors to metastasis remain

under investigation.

PTHrP was first discovered as an etiologic factor for

malignancy-induced hypercalcemia by increasing

osteoclastogenesis (Suva et al. 1987). Later, PTHrP

expression was identified in carcinoma cells, such as

lung, breast, and prostate cancer cells (Moseley et al.

1987, Iwamura et al. 1993, Downey et al. 1997).

Similar to its physiologic counterpart, PTH, PTHrP

binds to its cognate PTH/PTHrP receptor (PPR)

expressed on osteoblasts and also found in some

tumor cells (Downey et al. 1997, Iddon et al. 2000),

triggering the cyclic AMP/protein kinase A signal

transduction pathway. In addition to autocrine/para-

crine effects mediated by receptor binding, PTHrP has

been shown to localize to the nucleus, leading to the

inhibition of apoptosis in chondrocytes and prostate

cancer cells (Henderson et al. 1995, Dougherty et al.

1999). Chondrocytes expressing PTHrP with a deletion

of the nuclear localization signal (NLS) showed

increased apoptosis (Henderson et al. 1995), indicating

that PTHrP functions as an antiapoptotic factor.

However, the potential role of PTHrP in tumor cells,

particularly in the context of metastatic cascades, is

under investigation. For example, tumor cells are

triggered to undergo apoptosis when the cells lose

attachment to their extracellular matrix, a cellular

phenomenon termed anoikis. Evasion of anoikis in the

metastatic process (e.g. in the bloodstream) is essential

for successful colonization of tumor cells in distant

organs (Sakamoto & Kyprianou 2010).

In this study, the function of PTHrP in the context of

prostate cancer was examined using an in vitro anoikis

model as well as an in vivo experimental bone

metastasis model. PTHrP protected prostate cancer

cells from anoikis, effects of which were mediated by

nuclear localization of PTHrP and reduced expression

of tumor necrosis factor-a (TNF-a). Prostate tumor

cells expressing lower PTHrP resulted in significantly

fewer metastatic lesions compared to cells expressing

higher PTHrP, potentially mediated by increased

anoikis due to loss of intracrine PTHrP activity.

Materials and methods

Cells

PC-3, LNCaP, and Ace-1 prostate carcinoma cells

were selected to study the function of PTHrP, because

PC-3 cells express high levels of endogenous

PTHrP while LNCaP and Ace-1 cells do not express

detectable PTHrP. The canine prostate carcinoma cell

line (Ace-1) was kindly provided by Dr Thomas Rosol

(Ohio State University, USA; LeRoy et al. 2006, Thudi

et al. 2011). Cells were maintained as monolayer

cultures in RPMI-1640 media supplemented with 10%

v/v fetal bovine serum and 1! penicillin/streptomycin

and glutamate (all from Invitrogen). For in vivo

bioluminescence imaging, luciferase-labeled PC-3

cells (designated PC-3Luc) were produced by stably

transfecting a luciferase-expressing pLazarus retroviral

construct as previously described (Schneider et al.

2005). In addition, PTHLH (NCBI reference number:

NM_198966) gene expression was reduced in PC-3Luc

cells via a lentiviral vector (pLenti4/Block-iT DEST

vector; Invitrogen) expressing short hairpin RNA

targeting 5 0-GGGCAGATACCTAACTCAGGA-3 0.

An empty vector was used as a control. Lentiviral

supernatants were prepared using 293T packaging cells

(the University of Michigan Viral Vector Core

Laboratory, Ann Arbor, MI, USA), followed by

transduction of PC-3Luc cells with polybrene (6 mg/ml).

Subsequently, transduced cells were grown in

bleomycin selection media (Zeocin 200 mg/ml; Invi-

trogen), and stable clones were selected and expanded

for further experiments.

LNCaP and Ace-1 cells normally express undetect-

able basal levels of PTHrP. Both cell lines were stably

transfected with full-length PTHrP, NLS-defective

PTHrP (i.e. amino acids 87–107) (Henderson et al.

1995), or empty pcDNA3.1 vectors, as previously

described (Dougherty et al. 1999, Liao et al. 2008).

Measurement of PTHrP

PTHrP expression was measured from the culture

supernatant using an IRMA kit (Diagnostic Systems

Laboratories, Webster, TX, USA), detecting amino

acids 1–87 (Ratcliffe et al. 1991). Briefly, one million

cells were seeded in a six-well plate in complete

RPMI-1640 media (in triplicate), followed by media

change with serum-free RPMI-1640 24 h later.

Subsequently, cells were incubated for 48 h and cell-

free supernatants collected. The PTHrP assay was

performed as suggested by the manufacturer.
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Calculation of in vitro doubling time

PTHrP-knockdown and empty vector control PC-3Luc

cells were synchronized (by overnight serum star-

vation), followed by seeding (1!105 cells/well, in

triplicate) and enumeration at 24, 48, 72, and 96 h later

with the aid of a hemacytometer and trypan blue dye.

The doubling time (Td) was calculated using the

formula: TdZ(T2KT1)!(log2/log(Q2/Q1)), where Q1

and Q2 are cell numbers at two time points (T1 and T2)

respectively.

In vivo tumor growth

All animal experimental protocols were approved and

performed in accordance with current regulations and

standards of the University of Michigan’s Institutional

Animal Care and Use Committee guidelines.

For in vivo tumor growth, male athymic mice (Hsd:

Athymic nude –Foxn1nu; 4 weeks old; Harlan

Laboratories, Indianapolis, IN, USA) were anesthe-

tized and 100 ml of cell suspension containing 1!106

cells were mixed with 100 ml of growth factor reduced

Matrigel (Invitrogen), and injected subcutaneously into

both flanks (nZ10 each group). After 3 weeks,

bioluminescence imaging was performed to measure

tumor size, followed by euthanasia and tumor tissue

harvesting.

Anoikis assay and flow cytometry

To induce anoikis in vitro, prostate cancer cells were

cultured in suspension as previously described (Minard

et al. 2006). Briefly, six-well tissue culture plates were

covered with 4% w/v endotoxin-free agarose. Prostate

cancer cells were w80% confluent at the initiation

of overnight serum-starvation (for synchronization).

Subsequently, cells were trypsinized and counted,

followed by seeding of 1!106 cells/well in RMPI-

1640 media supplemented with 2% v/v fetal bovine

serum on regular culture plates or agarose-covered

plates (in sextuplicate). After 12–16 h of incubation at

37 8C, cells were harvested by pipetting (for cells in

suspension) or trypsinization (for attached cells),

followed by washing with ice-cold PBS and

centrifugation.

For flow cytometric analyses, cells were re-suspended

in Annexin V binding buffer (BD Biosciences, San

Jose, CA, USA), followed by addition of FITC-

conjugated anti-Annexin V and propidium iodide

(BD Biosciences). Subsequently, cells were washed

once with ice-cold PBS and analyzed by flow

cytometer (BD FACSCalibur) with CellQuest analyses

software (BD Biosciences).
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Figure 1 Generation of PC-3 prostate cancer cells expressing
varying levels of PTHrP. PTHrP expression was reduced in PC-
3Luc cells via lentiviral shRNA. (A) PTHrP protein levels were
measured from the culture supernatant by IRMA. Data are
average of two measurements GS.D. Assays were repeated
more than three times, and one set of representative data is
shown. (B) In vitro doubling time of the PC-3 clones expressing
varying levels of PTHrP was calculated by enumeration of
viable cells at 24, 48, 72, and 96 h time points (nZ3 each). Data
are meanGS.D. NS, not significant. (C) In vivo tumor size was
measured by bioluminescence imaging. Subcutaneous tumors
were grown for 20 days (nZ10 per group). Five representative
mice are shown. Tumor incidence was 100% in all three groups,
determined by microscopic examination of tumor cells
upon necropsy.
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Apoptotic gene array

PTHrP-knockdown and empty vector control PC-3Luc

cells were grown on regular or 4% w/v agarose-

covered 10 cm tissue culture plates (in duplicate)

for 16 h. Subsequently, cells were lysed and total

RNA was prepared (Qiagen RNeasy Mini Kit; Qiagen).

RNA samples were reverse transcribed (RT2

First Strand Kit; SA Biosciences, Frederick, MD,

USA), followed by quantitative PCR-based human

apoptotic gene array (SA Biosciences) according to

the manufacturer’s suggested protocols (Li et al.

2011). Analyses of data were performed using

computer software provided by the manufacturer.

A complete list of 84 apoptosis-related genes included

in the analyses, detailed protocols, and analysis

method can be found at the manufacturer’s website

(http://www.sabiosciences.com/rt_pcr_product/HTML/

PAHS-012A.html).

In vivo metastasis model

To test the metastatic potentials of PC-3Luc clones,

cells were inoculated into the systemic circulation

via intracardiac route, as previously described (Park

et al. 2011a), followed by in vivo bioluminescence

imaging. In brief, male athymic mice (Hsd: Athymic

nude –Foxn1nu; 6 weeks old; Harlan Laboratories)

were anesthetized and 100 ml of cell suspension

containing 2!105 cells were injected into the left

heart ventricle. Systemic circulation of the tumor

cells was confirmed by in vivo bioluminescence

imaging immediately after inoculation. Metastatic

hind limb tumors were detected and quantified by

bioluminescence imaging (Caliper Life Sciences,

Alameda, CA, USA). Tumor-bearing hind limb

bones were harvested at euthanasia, fixed in 10% v/v

buffered formaldehyde and decalcified in 10% w/v

EDTA for 2 weeks. Metastatic tumor cells were

microscopically confirmed.

Cytokines and antibodies

Recombinant human TNF-a and anti-human TNF-a
neutralizing antibodies were purchased from Pepro-

tech, Inc. (Rocky Hill, NJ, USA). For western blotting,

anti-PTHrP antibody (H-137: a rabbit polyclonal

antibody against amino acids 41–177 of human

PTHrP) was purchased from Santa Cruz Biotechnology

(Santa Cruz, CA, USA).

Statistical analyses

All statistical tests were performed by Microsoft

Excel or GraphPad Prism Version 5 (La Jolla, CA,
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USA). Student’s t-test was used to compare two groups

and the P!0.05 level was considered statistically

significant. All statistical tests were two-sided and data

expressed as a meanGS.D.

Results

PTHrP-knockdown reduced in vivo tumor growth

without affecting in vitro proliferation

As a first approach to investigate the function of PTHrP

in prostate cancer cells, PTHLH gene expression was

reduced in PC-3Luc human prostate cancer cells using

an shRNA technique. Stable clones were confirmed

and selected according to level of PTHrP expression

(Fig. 1A) in the cell culture supernatants. Two

knockdown clones (clone no. 5 and 10) showed more

than 50% reduction of PTHrP expression compared to

parental PC-3Luc cells, while an empty vector control

clone also showed mild reduction, but not to the extent

of clones 5 and 10. PTHrP has been shown to regulate

cellular proliferation (Dougherty et al. 1999).

However, cell enumeration assays demonstrated that

PTHrP-knockdown did not affect in vitro cellular

doubling time of PC-3Luc cells (Fig. 1B), suggesting

that the reduced level of PTHrP expression was

sufficient to maintain cellular proliferation, at least in

PC-3Luc cells which express high basal levels of

PTHrP. In contrast, PTHrP-knockdown resulted in

significantly reduced tumor growth in vivo (Fig. 1C),

suggesting that PTHrP regulates tumor cell prolifer-

ation and/or survival via a mechanism other than direct

regulation of cell proliferation.

Reduction of PTHrP expression sensitized

PC-3Luc cells to detachment-induced apoptosis

In routine maintenance subculturing, differential

plating efficiency among PTHrP-knockdown and

control clones was noted, leading to a hypothesis that

PTHrP-knockdown PC-3 cells are more prone to

detachment-induced apoptosis. To test this, PC-3Luc

cells and PTHrP-knockdown clones were grown in

suspension for an extended time, followed by flow

cytometric analyses of apoptotic cells. Detachment

increased the percentage of apoptotic Annexin VCPIK

PC-3Luc cells (Fig. 2A and B), and empty vector

control cells (Fig. 2C). Interestingly, PTHrP-knock-

down clones had a significantly increased percentage

of Annexin VCPIK apoptotic cells (Fig. 2D, E and F),
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indicating that reduction of PTHrP expression inhibits

survival of prostate tumor cells in suspension.

PTHrP overexpression rescued Ace-1 prostate

cancer cells from anoikis

To further investigate the role of PTHrP in anoikis, an

alternative approach (i.e. ectopic expression of PTHrP)

was employed. An additional prostate cancer cell line,

Ace-1, had been previously shown to express undetect-

able levels of PTHrP (Liao et al. 2008). A PTHrP

overexpression vector or empty pcDNA3.1 vector (as a

control) was transfected into Ace-1 cells, resulting in

Ace-1 PTHrP clone 10 and Ace-1 pcDNA respectively.

PTHrP expression was measured and confirmed by

IRMA of culture supernatants. The Ace-1 PTHrP clone

10 expressed 282.2G9.83 (pg/ml per 1!106 cells per

48 h), while Ace-1 pcDNA control cells expressed

undetectable levels of PTHrP. Cells were induced to

undergo anoikis by culturing in suspension (Fig. 3).

PTHrP overexpressing Ace-1 cells had significantly

fewer apoptotic cells compared to Ace-1 pcDNA

control cells (Fig. 3A, B, C and D), indicating a causal

role of PTHrP in protection from anoikis.

Recombinant PTHrP (1–34) failed to rescue PC-3

cells from anoikis

Data in Figs 2 and 3 demonstrated that prostate tumor

cells expressing higher PTHrP have increased survival

from detachment-induced apoptosis. Because PTHrP

functions primarily via paracrine/autocrine manners

through its cognate PTH type 1 receptor (PPR), we

next tested whether exogenous PTHrP would rescue the

PTHrP-knockdown clones from anoikis. Recombinant

PTHrP (amino acids 1 through 34, the functional PPR-

binding fragment) or conditioned media from the

parental PC-3Luc cell culture which contains full-length

PTHrP was added to PTHrP-knockdown PC-3 clones in

suspension. Neither recombinant PTHrP (1–34) nor the

conditioned media rescued PTHrP-knockdown PC-3

cells from anoikis (Fig. 4), suggesting that PTHrP-

dependent survival is not via N-terminus paracrine

effects.

Overexpression of full-length PTHrP, but not

NLS-defective PTHrP, rescues prostate cancer

cells from anoikis

PTHrP localizes to the nucleus and has been shown to

protect colon tumor cells from drug-induced apoptosis

(Shen et al. 2007a, Bhatia et al. 2009b). This mechanism

was evaluated on PTHrP- or NLS-defective PTHrP

overexpressing prostate tumor cells. Human prostate

cancer cells, LNCaP, expressing undetectable basal

levels of PTHrP were engineered to express full-length

PTHrP (designated PTHrP OE), NLS-defective PTHrP

(designated PTHrP DNLS), or pcDNA3.1 (as a control)

(Fig. 5G). Cells were cultured in suspension to induce

anoikis, followed by flow cytometric analyses. Interest-

ingly, NLS-defective PTHrP failed to rescue LNCaP
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cells from anoikis, while full-length PTHrP significantly

supported LNCaP cell survival in suspension (Fig. 5A,

B, C, D, E and F). Overall, Figs 1, 2, 3, 4 and 5

demonstrate that PTHrP promotes prostate tumor cell

survival from detachment-induced apoptosis via an

intracrine manner (nuclear localization) and not a

paracrine manner, potentially contributing to tumor

growth in vivo.

Detachment induced greater TNF-a expression

in PTHrP-knockdown PC-3 cells than in empty

vector control cells

To investigate downstream mediators of PTHrP-

dependent anoikis, a quantitative PCR-based gene

array (detecting 84 human apoptosis-related genes)

experiment was performed. Detachment-induced genes

were identified by comparing mRNA from cells

cultured in an agarose-covered plate with cells cultured

on a regular plate (columns (A) and (B) in Table 1).

Among 84 apoptosis-related genes tested, tumor

necrosis factor-a (TNF) gene expression was increased

more than fourfold in PTHrP-knockdown PC-3 cells

compared to empty vector control PC-3 cells,

indicating an inverse correlation of PTHrP nuclear

localization with a proapoptotic gene (TNF).

NLS-defective PTHrP failed to decrease TNF

in response to detachment

To validate the observation in the gene array data

(Table 1), detachment-induced TNF expression was

confirmed in an additional cell line (LNCaP) expres-

sing full-length PTHrP or NLS-defective PTHrP.

Overexpression of PTHrP in LNCaP cells significantly

reduced TNF gene expression, while NLS-defective

PTHrP failed to do so, supporting a negative

correlation between PTHLH expression and TNF

(Fig. 6A). Data from Figs 1, 2, 3, 4, 5, 6 and Table 1

all together demonstrated that prostate tumor cells

expressing higher PTHrP have increased resistance to

anoikis by suppressing a proapoptotic gene (TNF).

Recombinant TNF-a promotes anoikis and

neutralizing TNF-a protects cells from anoikis

The causal role of TNF-a in PTHrP-dependent

anoikis was further examined. Recombinant human

TNF-a administration promoted anoikis in empty

vector control PC-3 cells (Fig. 6B). More importantly,

neutralizing TNF-a reduced the percentage of apopto-

tic PTHrP-knockdown PC-3 cells in an in vitro anoikis

experiment model (Fig. 6C). These results establish the
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causal relationship between TNF-a and PTHrP-

mediated anoikis in PC-3 cells.

Reduction of PTHrP expression decreased pros-

tate cancer skeletal metastasis

The biological significance of PTHrP-dependent

resistance to anoikis was examined using an experi-

mental prostate cancer skeletal metastasis model.

Prostate cancer cells expressing high PTHrP were

anticipated to produce more metastatic lesions via

increased survival in the bloodstream, compared to

prostate cancer cells expressing low PTHrP (Fig. 7). In

our previous experiments, PC-3 cells develop meta-

static lesions predominantly in bones (i.e. hind limbs

and mandibles) in an intracardiac injection model

(Schneider et al. 2005, Park et al. 2011a). Accordingly,

PTHrp-knockdown or empty vector PC-3Luc cells were

introduced into the systemic circulation and skeletal

lesions were measured via in vivo bioluminescence

imaging 5 weeks later. Because of differential in vivo

growth rates (Fig. 1C), instead of comparing hind limb

tumor size (quantified by photon emission from each

lesion), incidence of hind limb metastatic lesions

was reasoned to be a more appropriate comparison.

PTHrP-knockdown PC-3Luc (clone no. 10) produced

significantly fewer hind limb metastatic lesions

compared to empty vector control PC-3Luc cells,

potentially due to decreased survival from anoikis in

the bloodstream.

Discussion

The current study demonstrated that tumor-derived

PTHrP promotes prostate cancer metastasis, in part, by

conferring resistance to anoikis, and that the PTHrP-

dependent protection from anoikis is mediated by

nuclear translocalization. Reduction of PTHrP gene

expression in PC-3 luc human prostate cancer cells did

not alter in vitro cellular proliferation but significantly

decreased in vivo tumor growth, suggesting that PTHrP

regulates cellular functions (evasion of apoptosis) in

addition to previously known effects on proliferation.

Indeed, PTHrP-knockdown cells had impaired ability

to attach to the culture plates, leading to investigation

of the mechanisms of PTHrP protection from anoikis.

However, the discrepancy between in vitro prolifer-

ation and in vivo tumor growth might be attributable to

other cellular functions. First, as wild-type PC-3 cells

express high basal levels of PTHrP, reduction of

PTHrP-expression to 20–40% (in PRHrp-knockdown

clones 5 and 10) may not be sufficient to affect cellular

proliferation, but enough to sensitize the cells to

apoptotic stimuli. In addition, as PTHrP has been

shown to regulate tumor angiogenesis (Liao et al.

2008), effects on in vivo tumor growth could simply be

secondary to reduced angiogenesis. Murine endothelial

cell-specific CD31/PECAM immunohistochemistry of

the tumor tissue confirmed that PTHrP-knockdown

tumors had significantly reduced mean vessel density

(data not shown). Lastly, because PTHrP functions as a

mediator in the crosstalk between the primary tumor

and the bone/bone marrow, where a conducive

environment is present, prostate tumors expressing

low PTHrP may grow slower because of reduced

recruitment of bone marrow-derived cells with tumori-

genic functions (Park et al. 2011b). On the other hand,

subsequent data (Figs 2, 3, 4 and 5) clearly

demonstrated that PTHrP nuclear translocalization

protects prostate tumor cells from anoikis, partly

contributing to suppression of in vivo tumor growth

of PTHrP-knockdown cells.

Antiapoptotic effects of PTHrP were first demon-

strated in chondrocytes (Henderson et al. 1995),

mediated by upregulation of the antiapoptotic protein

BCL-2 (Amling et al. 1997). Later, PTHrP was shown

to protect LoVo colon tumor cells from apoptosis by

upregulating the PI3K/AKT pathway (Shen et al.

Table 1

Gene

Detachment-induced genes (fold)
(C) Fold

changes

((A)/(B))

(A) PTHrP-KD

PC-3

(B) EV-control

PC-3

TNF 4.829922 1.182631 4.08

CD40LG 1.571345 0.547906 2.87

BAK1 1.285206 0.693515 1.85

TNFSF8 1.134455 0.688725 1.65

GADD45A 1.387031 0.865737 1.60

BIRC8 2.891865 1.830198 1.58

PYCARD 0.612168 1.126619 0.54

HRK 1.118837 2.993846 0.37

CIDEA 0.53663 1.45599 0.37

TP73 0.185823 0.890076 0.21

PC-3Luc cells were transfected with PTHLH-targeting shRNA or
empty lentiviral vectors, and stable clones were selected
(designated PTHrP-KD and EV-control respectively). Cells
were grown on a regular tissue-culture dish (control) and on
agarose-covered plate to induce anoikis. Total RNA was
prepared, followed by reverse transcription and quantitative
PCR apoptotic gene array. Detachment-induced genes and fold
induction in PTHrP-knockdown PC-3 cells are shown in column
(A) (i.e. detachment effects in the PTHrP-knockdown cloneZ
detached PTHrP-KD/attached PTHrP-KD), and those in empty
vector control PC-3 cells (i.e. detachment effects in the control
cloneZdetached EV-control/attached EV-control) are shown in
column (B). To identify the anoikis genes altered by PTHrP
reduction, fold changes comparing PTHrP-knockdown and
control PC-3 cells are shown in column (C).
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2007b). Additionally, PTHrP protected prostate tumor

cells (C4-2 and PC-3) from chemotherapy-induced

apoptosis in an intracrine manner (Bhatia et al. 2009a),

of which observations were expanded by our current

study. Therefore, PTHrP-mediated protection from

apoptosis can be generalized to multiple inducers of

apoptosis (e.g. chemotherapy, detachment, etc.), which

can account for the correlation between PTHrP

expression and metastatic potential of tumor cells

(Hiraki et al. 2002, Liao & McCauley 2006). Apoptosis

induced by disrupted epithelial cell–matrix interactions

was described by Frisch & Francis (1994), and termed

‘anoikis.’ Evasion of anoikis was reasoned, and later

proved to be a critical function of metastatic tumor

cells (Yawata et al. 1998, Sakamoto et al. 2010). Data

from the present study expand the role of PTHrP in

protecting prostate tumor cells from anoikis, leading to

decreased skeletal metastasis in PTHrP-knockdown

cells compared to control PC-3 cells.

Interestingly, the PCR-based gene array data

demonstrated that PTHrP prevents anoikis by down-

regulating the proapoptotic gene TNF, which was

confirmed in an additional human prostate cancer cell

line. However, the mechanism of transcriptional

downregulation by nuclear translocalization of

PTHrP is unclear and requires further investigation.

One potential mechanism underlying PTHrP-regulated

gene expression is interaction with RNA. Aarts et al.

(1999) demonstrated that nuclear PTHrP interacts with

mRNA, which may lead to degradation of transcripts.

Recently, deletion of mid-region, nuclear localization,

and C-terminus of PTHrP (i.e. protein domains other

than N-terminus which are recognized by the cognate

receptor) decreases expression of genes essential for

skeletal development (Runx1, Runx2 and Sox9) while

increasing expression of cell cycle inhibitors (p21 and

p16), supporting a role for PTHrP in transcriptional

regulation (Toribio et al. 2010). Therefore, despite lack

of definitive experimental evidence, nuclear local-

ization of PTHrP may play critical roles in regulating

gene expression, resulting in cellular phenotypes such

as protection from apoptosis.

The current study has potential clinical significance

by providing an additional molecular mechanism

contributing to prostate cancer skeletal metastasis.

Reduction of PTHrP resulted in decreased metastatic
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lesions in an experimental skeletal metastasis model.

Incidence of skeletal metastatic lesions in hind limbs

was significantly lower than the empty vector control

group, not to mention hind limb metastatic tumor size

(as determined by average photon emission from

metastatic lesions in each group). However, we

reasoned that the comparison of tumor size between

two groups may not be an adequate approach to

analyze the data, because two clones (empty vector

control clone and PTHrP-knockdown clone) had

significantly different growth potential in vivo, thus

the hind limb tumor size quantification was not

included in the data. Instead, as PTHrP-knockdown

cells produced significantly fewer metastatic lesions in

the hind limbs compared to 100% development of hind

limb metastasis in the empty vector control cells, this

likely reflects the altered ability for cells to survive the

trajectory from injection to tumor cell lodging and

growth in bone.

In conclusion, the current study demonstrates a role

for PTHrP in protecting prostate tumor cells from

anoikis in vitro, downregulating TNF gene expression,

and supporting metastatic potential of prostate tumor

cells in vivo.
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2 Cyclophosphamide Creates a Receptive Microenvironment
3 for Prostate Cancer Skeletal Metastasis
4
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8 Abstract
9 A number of cancers predominantly metastasize to bone, due to its complex microenvironment and multiple
10 types of constitutive cells. Prostate cancer especially has been shown to localize preferentially to bones with
11 highermarrow cellularity. Using an experimental prostate cancermetastasis model, we investigated the effects of
12 cyclophosphamide, a bone marrow–suppressive chemotherapeutic drug, on the development and growth of
13 metastatic tumors in bone. Priming the murine host with cyclophosphamide before intracardiac tumor cell
14 inoculation was found to significantly promote tumor localization and subsequent growth in bone. Shortly after
15 cyclophosphamide treatment, there was an abrupt expansion ofmyeloid lineage cells in the bonemarrow and the
16 peripheral blood, associated with increases in cytokines withmyelogenic potential such as C-C chemokine ligand
17 (CCL)2, interleukin (IL)-6, andVEGF-A.More importantly, neutralizing host-derivedmurineCCL2, but not IL-6, in
18 the premetastatic murine host significantly reduced the prometastatic effects of cyclophosphamide. Together,
19 our findings suggest that bone marrow perturbation by cytotoxic chemotherapy can contribute to bone
20 metastasis via a transient increase in bone marrow myeloid cells and myelogenic cytokines. These changes
21 can be reversed by inhibition of CCL2. Cancer Res; 72(00); 1–11. �2012 AACR.
22
23
24

25 Introduction
26 Bone is the predominant site of prostate cancer metastasis,
27 and patients with advanced-stage prostate cancer commonly
28 develop metastatic bone lesions (1). Unfortunately, the path-
29 ophysiology of skeletal metastasis is not yet completely under-
30 stood (2). One major obstacle to better understanding skeletal
31 metastasis is the unusual complexity of the tumor microen-
32 vironment in bone (3), due to multiple constituent cell types.
33 Emerging evidence supports that cells in the bone marrow
34 microenvironment are actively involved in prostate cancer
35 metastasis (4).
36 Bone marrow–derived myeloid lineage cells are critical
37 regulators of tumor progression and metastasis (5–10). Yang
38 and colleagues showed that expansion of Gr-1þCD11bþ mye-
39 loid cells directly promotes tumor angiogenesis (6) via
40 increased production of matrix metalloproteinase (MMP)-9

42(7). Myeloid cells (expressing surface markers CD11b and/or
43Gr-1) are amajor component of undifferentiated bonemarrow
44cells, and ultimately differentiate into monocytes, macro-
45phages, and granulocytes (10). Parallel to the tumorigenic roles
46of myeloid cells, monocytemacrophages also have been shown
47to participate in tumor metastasis (11–13). All of these data
48collectively support the critical roles of myeloid lineage cells in
49prostate cancer progression and bone metastasis. However, it
50is not clearly understood how the alterations in the bone
51marrow occur, which could provide clues for therapeutic
52approaches.
53In clinical settings, chemotherapeutic drugs and/or irradi-
54ation perturb the bone marrow microenvironment, leading to
55alterations in marrow cellular composition. Although chemo-
56therapy and irradiation are both bonemarrow suppressive, the
57subsequent recovery process may lead to temporary spikes of
58certain cell types, including monocytes and neutrophils (14,
5915). Therefore, net effects of bone marrow–suppressive agents
60could have pro- or antitumorigenic effects. Interestingly, prim-
61ing the murine host with cyclophosphamide, a bone marrow–
62suppressive chemotherapeutic drug, promoted subcutaneous
63tumor growth andmetastasis in severalmousemodels (16–19).
64Cyclophosphamide is a DNA-alkylating drug commonly
65included in chemotherapeutic regimens against breast and
66lung cancers and non-Hodgkin's lymphoma. In addition,
67cyclophosphamide is used in the conditioning regimen for
68recipients of myeloablative bone marrow transplantation, to
69enhance engraftment and suppress the host immune reac-
70tion. Intriguing data showing opposite prometastatic effects
71of chemotherapeutic drugs remain poorly investigated.
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74 To our best knowledge, the effects of cyclophosphamide on
75 skeletal metastasis have never been reported. Given that
76 prostate cancer has been shown to use similar strategies as
77 hematopoietic stem/progenitor cell homing and that pros-
78 tate cancer has long been known to home typically to bones
79 enriched with red marrow (20), we hypothesized that altera-
80 tions induced by cyclophosphamide in the bone marrow
81 microenvironment would contribute to prostate cancer
82 colonization in the bone and/or subsequent tumor growth.
83 In the current study, we investigated prometastatic effects of
84 bone marrow suppression in a prostate cancer skeletal
85 metastasis model and explored the underlying mechanisms
86 that could be used to design methods of therapeutic
87 intervention.

88 Materials and Methods
89 Cells
90 Luciferase-labeled PC-3 cells (PC-3Luc) were established
91 from the PC-3 cell line (American Type Culture Collection;
92 ATCC), as previously described (20). PC-3Luc cells were regu-
93 larly authenticated and matched short tandem repeat DNA
94 profiles of the original PC-3 cell line (last tested onMay 9, 2009).

95 Mouse models of prostate cancer
96 All experimental protocols were approved by the University
97 ofMichigan Institutional Animal Care andUse Committee. For
98 a skeletal metastasis model, the procedure described by Park
99 and colleagues was followed (21). Briefly, 2 � 105 PC-3Luc cells
100 were injected into the left heart ventricle of male athymic mice
101 (Harlan Laboratories). For an orthotopic bone tumor model,
102 1 � 103 PC-3Luc cells were injected in the proximal tibiae as
103 described (21).

104 Ex vivomurinebonemarrowmicrovascular angiography
105 Murine bone marrow vasculature was visualized by a mod-
106 ified method of Guldberg and colleagues (22) Mice were
107 anesthetized and perfused sequentially with heparin-supple-
108 mented Ringer's lactate (9 minutes), formalin (9 minutes), and
109 MICROFIL (Flow Tech, 7 minutes) via the intracardiac route.
110 Following polymerization, femurs were dissected, decalcified,
111 and scanned by microcomputed tomography (mCT).

112 Neutralizing antibodies
113 Anti-mouseCCL2 antibody (C1142, Janssen) and anti-mouse
114 interleukin (IL)-6 antibody (R&D Systems) were provided by
115 Janssen, LLC. C1142 is a rat/mouse chimeric antibody specific
116 for mouse C-C chemokine ligand (CCL)2/MCP-1 and does not
117 cross-react with human CCL2 or mouse MCP-5 (23–25). Non-
118 specific IgG from mouse serum (Sigma-Aldrich) was used as a
119 control antibody.

120 Flow cytometry
121 Bone marrow cells were collected by flushing femurs and
122 tibiae. Lungs, liver, and kidney were digested in complete
123 Dulbecco's Modified Eagle's Medium supplemented with 0.5
124 mg/mL collagenase (Sigma-Aldrich). One million cells were
125 used for flow cytometry (BD Bioscience).

127Complete blood counting with white blood cell
128differentials
129Blood cell counting was carried out in the University of
130Michigan Unit for Laboratory Animal Medicine, using a For-
131cyte automatic hematology analyzer (Oxford Science).

132Quantitative PCR
133The mRNA samples were prepared from the flushed bone
134marrow cells, followed by RT-PCR Q3for CD31 and mouse glyc-
135eraldehyde-3-phosphate dehydrogenase (GAPDH; Applied
136Biosystems).

137Statistical analyses
138Experimental skeletal metastasis experiments were ana-
139lyzed using linear mixed models. The primary outcome was
140the natural log transformed bioluminescence measurement.
141Fixed covariates in the model included the groups in the
142experiment and time (weeks) and the interaction between
143group and time. The repeated measures aspect of the model,
144due to multiple measurements over time within each mouse,
145was adjusted for using a single order autoregressive correlation
146structure. Contrasts were used to test the pairwise compar-
147isons of interest. Analyses were completed using SAS (SAS
148Institute) with a type I error of 5%.
149All other statistical analyses, including Kaplan–Meier anal-
150yses of metastasis-free mice, Student t tests comparing 2
151groups, and Mann–Whitney U tests of samples failing to
152distribute normally, were conducted with GraphPad Prism.

153Results
154Cyclophosphamide enhanced experimental prostate
155cancer skeletal metastasis in vivo
156Cyclophosphamide has been shown to promote subcutane-
157ous tumor growth and experimental metastasis in various
158animal models (16–19). Initially, the effects of cyclophospha-
159mide on prostate cancer skeletal metastasis were investigated.
160The experimental design is schematically shown in Fig. 1A. The
161serum half-life of cyclophosphamide is less than 17minutes (in
162mice) and 6.5 hours (in human), and mice were allowed 7 days
163of recovery to insure that the drug was completely cleared, to
164avoid any direct antitumor effects of cyclophosphamide (26,
16527). Interestingly, mice primed with cyclophosphamide devel-
166oped significantly larger tumors in the hind limb bones after 7
167days (Fig. 1B). Cyclophosphamide-treated mice exhibited
168increased tumor bioluminescence in the mandible also, but
169the effects were variable and not statistically significant until
170day 35 (Fig. 1C). Because hind limb skeletal metastases are
171more clinically relevant, and also murine mandibles are sig-
172nificantly different from human (e.g., continuous eruption of
173incisors), the hind limb skeletal metastases were the focus of
174subsequent investigation. Cyclophosphamide-primed mice
175developed hind limb metastases at an earlier time point
176(i.e., increased incidence ofmetastases on day 7, 14, and 21; Fig.
1771D), compared with the saline-treated group that developed
178detectable hind limb metastatic lesions only after 14 days.
179These data suggest that the larger tumor size on day 42 in the
180hind limbs of cyclophosphamide-treated mice (Fig. 1E) is
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Figure 1. Priming mice with a single administration of cyclophosphamide (CY) enhanced experimental prostate cancer skeletal metastasis. A, schematic
representation of the experimental design.Male athymicmice were divided into 2 groups and treated with saline or CY. Following 7 days of recovery, PC-3Luc

cells were injected into the left heart ventricle (n ¼ 18 for saline control and n ¼ 13 for CY group). Metastatic tumor growth was monitored by weekly in vivo
bioluminescence imaging for 6 weeks. B, hind limb metastatic tumor size was measured by weekly in vivo bioluminescence imaging. Data are medians with
interquartile range. Asterisks represent statistical significance (linear contrastsP < 0.01). C,mandibularmetastatic tumor sizewasmeasured. Data aremedian
� interquartile range. Asterisks represent statistical significance (linear contrasts P < 0.01). D, percentage of hind limb metastasis-free mice plotted in a
Kaplan–Meier curve. Lesions emittingmore than 1� 105 photon/secwere considered asmetastases, and statistical significancewas determined by log-rank
test (P < 0.01). E, representative histologic images of metastatic bone tumors. Tumor-bearing hind limb tibiae were dissected, followed by hematoxylin and
eosin (H&E) staining. The presence of metastatic tumor cells was confirmed microscopically. Tumor perimeter is indicated by dotted lines in lower
magnification images (� 4; top). Higher magnification images (� 20; bottom) show tumor, bone, and bone marrow (denoted T, B, and BM, respectively). Q4
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183 attributable to the early events following tumor cell
184 inoculation.

185 A single dose of cyclophosphamide significantly
186 disrupted bone marrow vascular integrity
187 Cyclophosphamide has been found to cause damage to
188 endothelial cells, potentially promoting tumor cell seeding in
189 the metastatic target organs (28). These data are consistent
190 with the observation in Fig. 1 showing outgrowth of metastatic
191 tumors at earlier time points in the cyclophosphamide-treated
192 hosts. Consequently, an experiment was designed to test
193 whether a single dose of cyclophosphamide could perturb

195endothelial integrity in the bone marrow, which might in turn
196lead to increased extravasation of tumor cells immediately
197after inoculation. Because immunohistochemistry can only
198provide 2-dimensional images of selected cross-sections, a
199technique to reconstruct 3-dimensional vascular structures
200enclosed in calcified tissues was used (ref. 22; Fig. 2A). In Fig.
2012B, this technique clearly showed 3-dimensional structures of
202microvessels in the epiphyses and the central sinusoidal vessels
203in the diaphyses of saline controls. In sharp contrast, a single
204dose of cyclophosphamide very obviously disrupted vascular
205integrity and continuity (Fig. 2C). Quantification of the images
206in Fig. 2B andC showed that bonemarrow vascular volumewas
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cyclophosphamide (CY)
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with saline or CY. Following 7 days
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vivo femoral angiography from the
saline-treated group (n ¼ 13) are
shown. C, five representative mCT
images of ex vivo femoral
angiography from the CY-treated
group (n ¼ 13) are shown. D, mCT
data were analyzed to quantify the
total vascular volume (per bone).
Data are mean � SEM (P < 0.05 by
Mann–WhitneyU test). E, femurs of
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mice (n ¼ 10/group; the same
dosage and schedule as described
in A–C) were dissected, and bone
marrow was harvested. The mRNA
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determined by quantitative RT-
PCR. Data aremean�SD (P < 0.01
by the Student t test). F, human
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209 significantly reduced by cyclophosphamide (Fig. 2D). CD31 (an
210 endothelial-specific marker) gene expression in bone was
211 significantly suppressed with cyclophosphamide administra-
212 tion (Fig. 2E), but not in lungs, liver, and kidney (Supplemen-
213 tary Fig. S1). In addition, bonemarrow endothelial cells treated
214 with 4-hydroperoxycyclophosphamide (4-HC, a metabolite of
215 cyclophosphamide with in vitro biologic activity) had signifi-
216 cantly increased apoptosis (Fig. 2F). Taken together, cyclo-
217 phosphamide-induced vascular disruption led to altered endo-
218 thelial cells in the bone marrow.

219 Cyclophosphamide treatment did not cause systemic
220 inflammation
221 We next ruled out the possibility that cyclophosphamide
222 promoted metastasis by systemic inflammation secondary to
223 the bone marrow suppression. Cyclophosphamide-treated
224 mice had significantly reduced body weight, compared with
225 the saline control groups, and the effects lasted more than 2
226 weeks (Supplementary Fig. S2A). However, cyclophosphamide-
227 treated mice regained body weight with a similar trend to the
228 saline-treated controls. In addition, cyclophosphamide-trea-
229 ted mice did not show any significant lethargy or signs of
230 systemic inflammation, the latter often signaled by increased
231 circulating levels of C-reactive protein (Supplementary Fig.
232 S2B).

233 Cyclophosphamide pretreatment promoted orthotopic
234 prostate tumor growth in bone
235 The potential role of disrupted bone marrow vascular
236 integrity secondary to cyclophosphamide treatment in the
237 increased metastatic tumor growth in the bone was further
238 tested using an orthotopic approach (Fig. 3A). This approach
239 was designed to circumvent the effects of vascular disruption

241that could contribute to initial tumor cell seeding. PC-3 tumors
242grew larger after 6 weeks in the cyclophosphamide-treated
243bone marrow, than in control (Fig. 3B and C), suggesting that
244alterations in the cyclophosphamide-treated murine bone
245marrow, not a specific compromise of vascular integrity, were
246responsible for promoting tumor growth and/or metastasis.

247Cyclophosphamide transiently expanded myeloid
248lineage cells
249On the basis of the observation in Figs. 2 and 3, alterations
250induced by cyclophosphamide potentially contributing to
251tumor growth and/or metastasis were investigated. The
252changes of white blood cell (WBC) differential counts were
253further investigated serially after cyclophosphamide adminis-
254tration. Total WBC counts were significantly reduced 3 to 15
255days after cyclophosphamide, indicating that cyclophospha-
256mide suppressed bone marrow, and that the effects lasted
257more than 2 weeks (Fig. 4A). However, the WBC count was
258increased onday 7 comparedwith the day 3 cyclophosphamide
259group (Fig. 4A). Furthermore, neutrophil number was below
260detection on day 3 but significantly spiked on day 7, immedi-
261ately followed by suppression (Fig. 4B). In addition, monocyte
262counts showed a similar pattern to neutrophils (Fig. 4C).
263Collectively, these data revealed that differentiated myeloid
264cells in the peripheral blood (i.e., monocytes and neutrophils)
265transiently increased during recovery from cyclophosphamide.
266Because both monocytes and neutrophils are differentiated
267from myeloid lineage cells in the bone marrow, the nature of
268the changes of myeloid lineage cells in the bone marrow
269was determined. Flow cytometric analyses of bone marrow
270cells from mice treated with cyclophosphamide after 3, 7, 10,
271and 15 days revealed that myeloid lineage cells (expressing
272CD11b) were significantly expanded 7 and 10 days after

Figure 3. Cyclophosphamide (CY)
pretreatment directly promoted
orthotopic PC-3 tumor growth in
bone. A, schematic representation of
the experiment. Male athymic mice
were divided into 2 groups (n ¼ 8/
group) and treated with saline or CY.
Following 7 days of recovery,
PC-3Luc cells were injected into the
bone marrow space of the right
proximal tibiae. Tumor growth in
bone was monitored by weekly
in vivobioluminescence imaging for 6
weeks. B, intratibial tumor size was
measured by weekly in vivo
bioluminescence imaging (P < 0.05
by the Student t test). Data are mean
� SEM. C, representative images of
in vivo bioluminescence on day 42.

Cyclophosphamide Supports Prostate Cancer Bone Metastasis

www.aacrjournals.org Cancer Res; 2012 5

Page 42

Unpublished manuscript; This page is not for public release



275 cyclophosphamide administration with suppression on days 3
276 and 15 (Fig. 4D). In contrast, there was no change in the
277 numbers of CD11bþ cells in other organs such as kidney, lung,
278 and liver (Fig. 4E–G). We next determined the serum protein
279 levels of VEGF-A, IL-6, and CCL2. All 3 molecules have angio-
280 genic properties and also promote myeloid cell proliferation
281 and differentiation (29–31). All 3 serum cytokines were signif-
282 icantly increased by cyclophosphamide treatment (Fig. 4H–J).

284Cyclophosphamide-induced skeletal metastases overlap
285temporally with bone marrow myeloid cell expansion
286To assess the temporal impact of cyclophosphamide on
287myeloid cell populations, the effects of tumor inoculation at
288various times after cyclophosphamide treatment were evalu-
289ated. PC-3Luc tumor cells were inoculated into the systemic
290circulation 3, 7, and 15 days after cyclophosphamide treatment
291(Fig. 5A). The 7-day group had significantly more metastases,
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294 than the saline-treated control group, as observed previously.
295 When tumor cells were injected at a later time point (i.e., 15
296 days after cyclophosphamide treatment), significantly fewer
297 mice developed hind limb metastatic lesions, suggesting that
298 levels of bone marrow myeloid cell populations correlate with
299 hind limb metastases (Fig. 5B and C). The 3-day group had a
300 similar metastatic pattern as the 7-day group (Fig. 5B) and
301 increased tumor size compared with the 7-day group (Fig. 5C),
302 potentially because of prolonged survival of tumor cells in the
303 systemic circulation overriding the expansion of bone marrow
304 myeloid cells.

305 Neutralizing host-derived murine CCL2, but not IL-6,
306 inhibited cyclophosphamide-induced prostate cancer
307 bone metastasis
308 These data described earlier collectively showed that cyclo-
309 phosphamide provided an environment conducive to experi-
310 mental prostate cancer skeletal metastasis, potentially medi-
311 ated by increase of serum cytokines and/or expansion of
312 myeloid cells. The causal relationship of alterations induced
313 by cyclophosphamide and tumor metastasis was determined
314 using the intracardiac metastasis model in combination with

316neutralizing antibodies. Mice were treated with neutralizing
317antibodies targeting mouse IL-6 or mouse CCL2 during the 7
318day recovery phase after cyclophosphamide treatment (Fig.
3196A). Consistent with the observation in Fig. 1B, cyclophospha-
320mide treatment significantly enhanced the development and
321subsequent growth of experimental bone metastasis (Fig. 6B;).
322Neutralizing IL-6 did not prevent development of metastasis in
323cyclophosphamide-treated mice. However, neutralizing CCL2
324significantly inhibited the cyclophosphamide-induced pros-
325tate cancer metastasis in vivo (statistical comparison shown
326in Fig. 6C and D), indicating that the upregulation of CCL2 in
327response to cyclophosphamide contributed to the develop-
328ment and progression of metastasis. Moreover, administration
329of both antibodies against IL-6 and CCL2 had similar effects to
330the anti-CCL2 antibody alone group (Fig. 6B–D). Importantly,
331neutralizing antibodies were administered before the tumor
332cell inoculation, to exclude the possibility of direct effects of the
333drug on the tumor cells. Therefore, the effects of neutralizing
334antibody were mainly due to the changes exerted on the host
335microenvironment. However, preclinical pharmacokinetic
336studies showed that anti-CCL2 antibody can remain detectable
337in serumup to 10 days after administration, thus the possibility
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340 of direct effects may not be completely excluded (personal
341 communication).

342 An alternative chemotherapeutic drug, docetaxel, did
343 not promote skeletal metastases
344 To further determine the causal role of cyclophosphamide-
345 induced myeloid cell expansion to the development of skeletal
346 metastasis, the effects of docetaxel, a chemotherapeutic agent
347 commonly included in prostate cancer treatment regimens,
348 were tested. In contrast to cyclophosphamide-mediated pro-
349 metastatic effects, pretreatment of mice with docetaxel
350 decreased hind limb skeletal metastasis (Fig. 7B). In addition,
351 CD11bþ cell enumeration in the docetaxel-treated bone mar-
352 row revealed similar but significantly blunted alterations in
353 CD11bþ cells in comparison with the effects of cyclophospha-
354 mide (Fig. 7C). Docetaxel-induced myeloid cell expansion
355 (59.1%� 12.1%) at day 7 was not sufficient enough to increase
356 myeloid cells (neutrophils and monocytes) in the peripheral
357 blood (Fig. 7D–F).

359Discussion
360Multiple mechanisms have been proposed to explain why
361bone provides a congenial metastatic microenvironment. For
362example, bone is enriched with cytokines and growth factors
363that promote tumor cell proliferation, migration, and survival
364(32). In addition, bonehouses the primary hematopoietic organ
365(i.e., bone marrow), containing multiple types of progenitor
366cells and hematopoietic cells of various tumorigenic potential.
367Previously, Schneider and colleagues showed that expansion of
368bone marrow cellularity before inoculation of prostate tumor
369cells significantly promoted skeletal metastasis (20), suggest-
370ing bones with increased cellularity constitute a more conge-
371nial microenvironment for metastasis. In this context, it is
372reasonable to expect that cytotoxic chemotherapy and/or
373irradiation may impact skeletal metastasis.
374This study showed for the first time that alterations induced
375by cyclophosphamide, a common chemotherapeutic drug,
376enhanced prostate cancer skeletal metastasis. Furthermore,
377we showed that the prometastatic effects of cyclophosphamide
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380 were significantly reversed by suppression of CCL2, which
381 suggests the causal role of bone marrow myeloid lineage cell
382 expansion. We showed that a single dose of cyclophosphamide
383 administration increased myelogenic cytokines, and corre-
384 spondingly expanded the myeloid cell population in the bone
385 marrow, as well as the numbers of monocytes and neutrophils
386 transiently in the peripheral blood.
387 The unexpected "opposite" protumorigenic effect of such a
388 chemotherapeutic drug is not a novel observation in other
389 nonskeletal sites. There have been several reports of chemo-
390 therapy-induced metastasis and/or tumor growth (18, 19, 33,
391 34). Most notably, Carmel and Brown showed that pretreat-
392 ment of the host with cyclophosphamide, among many other
393 chemotherapeutic drugs including actinomycin D, vinblastine,
394 bleomycin, methotrexate, and 5-fluorouracil, resulted in the
395 most prominent prometastatic effects in a syngeneic sarcoma
396 lungmetastasis model (17). Whilemost of the previous studies
397 focused on an experimental pulmonary metastasis model, our
398 data expanded the earlier observations by showing the pro-
399 metastatic effects of chemotherapy in a skeletal metastasis
400 model (Fig. 1 and Supplementary Fig. S3). Data in the present
401 study suggest that chemotherapeutic drugs with strong bone
402 marrow suppression may have the adverse effect of promot-
403 ing bone metastasis, a finding which has not been extensively
404 investigated. Cyclophosphamide is not a standard chemo-
405 therapeutic drug for patients with prostate cancer, but recent-
406 ly low-dose metronomic administration of cyclophosphamide
407 is in clinical trials as an antiangiogenic therapy in prostate
408 cancer (35, 36). In addition, cyclophosphamide is widely used
409 for treatment of breast cancer, which also has a strong
410 propensity for skeletal metastasis. Consequently, the effects
411 of varying dosages and administration scheduling of cyclo-
412 phosphamide on bone metastasis warrant extensive further
413 studies.
414 The findings concerning the mechanisms involved in che-
415 motherapy-enhanced metastasis have clinically therapeutic
416 implications. We showed that the numbers of bone marrow
417 myeloid cells andmyelomonocytic cells in the peripheral blood
418 are significantly increased after cyclophosphamide adminis-
419 tration, but not after docetaxel administration, potentially
420 mediated by the increase of myelogenic cytokines. During the
421 recovery phase after bone marrow suppression, spikes of
422 monocytes and neutrophils are frequently observed in
423 patients, and clinically considered a favorable prognostic sign
424 (37). Data in the present study confirmed an abrupt increase of
425 neutrophils and monocytes shortly after cyclophosphamide
426 administration. Moreover, significant increases in CCL2, IL-6,
427 and VEGF-A, all of which are potent myelogenic factors, were
428 observed simultaneously or before the expansion of myelo-
429 monocytic cells, supporting the roles of these factors in the
430 expansion of CD11bþ myeloid cells in the bone marrow.
431 Results of this work confirmed that neutralizing CCL2, but
432 not IL-6, significantly inhibited the prometastatic effects of
433 cyclophosphamide. It should be noted that anti-CCL2 anti-
434 body is specific to the murine host–derived CCL2, and
435 does not cross-react with prostate cancer-derived human
436 CCL2, and that the neutralizing antibody was administered in
437 only 3 dosages before tumor cell inoculation. Collectively,

439these data suggest that neutralizing CCL2 reconditions
440the premetastatic host microenvironment induced by
441chemotherapy.
442Although the present data show the efficacy of anti-CCL2
443antibody in the cyclophosphamide-induced prostate cancer
444bone metastasis model, increased expression of CCL2 (and
445subsequent expansion of myeloid cells) may not be the only
446mechanism of promoting metastasis after cyclophosphamide
447treatment. The first alternative explanation for the prometa-
448static effects of cyclophosphamide is that it could be mediated
449by the effects on bone cells. Given that inhibition of osteoclasts
450reversed the effects of granulocyte macrophage colony-—
451stimulating factor (GM-CSF) on metastasis in a mouse model
452(38), it is possible that the effects of CCL2 neutralizing antibody
453in these results were, in part, mediated by inhibition of
454osteoclastogenesis. Second, while our results failed to confirm
455the causal role of cyclophosphamide-induced endothelial dam-
456age in metastasis, the possibility still remains for further
457investigation. Cyclophosphamide is currently being tested for
458efficacy as antiangiogenic therapy, and disruption of endothe-
459lial barrier function can promote extravasation of tumor cells
460in the metastatic microenvironment. Previously, Shirota and
461Tavassoli showed that cyclophosphamide induces endothelial
462damage detectable by electron microscopy, and destroys the
463integrity of bone marrow sinus endothelium (indicated by red
464blood cells in the extravascular space), leading to enhanced
465engraftment of bone marrow transplantation (28). Therefore,
466cyclophosphamide effects on metastasis may be varied in
467different dosing schedules (i.e., metronomic low dose) or
468different tumor models.
469In conclusion, this study showed that priming the murine
470host with cyclophosphamide altered the bone microenviron-
471ment, leading to promotionof prostate cancer bonemetastasis.
472In addition, suppression of host CCL2 by antibody treatment
473significantly reduced the adverse effects of cyclophosphamide.
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