
Enhancing Electromagnetic

Side-Channel Analysis

in an Operational Environment

DISSERTATION

David P. Montminy, Major, USAF

AFIT–ENG–DS–13–S–01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author and do not reflect

the official policy or position of the United States Air Force, Department of Defense,

or the United States Government.

AFIT–ENG–DS–13–S–01

ENHANCING ELECTROMAGNETIC

SIDE-CHANNEL ANALYSIS

IN AN OPERATIONAL ENVIRONMENT

DISSERTATION

Presented to the Faculty of the

Graduate School of Engineering and Management

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

David P. Montminy, B.S.E.E., M.S.C.E.

Major, USAF

September 2013

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

To my parents and grandparents,

The values you instilled in me as a child continue to served me well.

To my wife and children,

The love and support you have given me over the last three years has kept me strong

and focused. This dissertation would not have been possible without your support.

iii

Acknowledgements

Special thanks to my advisor Dr. Rusty Baldwin, whom I was lucky enough to first

choose as my advisor for my master’s degree. His continued support and encour-

agement over the years led me back to AFIT for a PhD. With gentle guidance he

allowed me to explore my interests while keeping my research focused. I would also

like to thank my research committee, Dr. Temple and Dr. Oxley for the numerous

document reviews and feedback sessions.

David P. Montminy

iv

Table of Contents

Page

Acknowledgements . iv

List of Figures . xii

List of Tables . xv

Abstract . xvi

1. Introduction . 1

1.1 Motivation . 2

1.2 Research Contributions 3

1.3 Organization . 4

2. Background . 6

2.1 Introduction . 6

2.2 Cryptography Preliminaries 7

2.2.1 Block Ciphers 7

2.2.2 Advanced Encryption Standard 8

2.2.3 Cryptanalysis of Block Ciphers 12

2.3 Side-Channel Leakage 14

2.3.1 Power Consumption 14

2.3.2 Electromagnetic Emissions 16

2.3.3 Other Side-Channels 19

2.3.4 Leakage Models 19

2.4 Side-Channel Attacks 22

2.4.1 Types of Implementation Attacks 23

v

Page

2.4.2 Adversary Models 23

2.4.3 Power and EM Analysis 24

2.4.4 Simple Side-Channel Analysis 25

2.4.5 Differential Side-Channel Analysis 26

2.4.6 Profiling Attacks 29

2.5 Countermeasures . 33

2.5.1 Masking . 33

2.5.2 Hiding . 34

2.6 Collecting Electromagnetic Emissions 35

2.6.1 Electronic Noise 36

2.6.2 Improving Collections 36

2.7 Pre-Processing Processing Techniques 38

2.7.1 Detecting Compromising Frequency Components 39

2.7.2 Trace Alignment 42

2.7.3 Frequency-Based Analysis 44

2.8 Algebraic Cryptanalysis 45

2.8.1 Describing a Cipher 45

2.8.2 Solving a System of Equations 48

2.8.3 Using SAT Solvers 48

2.8.4 Algebraic Side-Channel Analysis 50

2.8.5 Related Key Recovery Techniques 53

2.9 Summary . 55

3. Methodology . 57

3.1 Data Collection . 57

3.2 Targeted Devices . 60

3.2.1 PIC Microcontrollers 60

3.2.2 ARM Cortex-M4F 62

vi

Page

3.3 Signal Processing Techniques 65

3.3.1 Filtering . 65

3.3.2 Decimation 67

3.3.3 Alignment . 67

3.4 Correlation-Based Electromagnetic Analysis 68

3.4.1 CEMA Attack Methodology 68

3.4.2 Example CEMA Attack 71

3.4.3 Known-Key Correlation Analysis 72

3.4.4 Comparing Effectiveness of CEMA Attacks . . 73

3.5 Identifying Information Leaking Frequencies 74

3.5.1 Frequency Interval Break Down Approach . . 75

3.5.2 Overlapping Frequency Interval Approach . . 76

3.6 Template Attacks . 79

3.6.1 Class Identification 81

3.6.2 Classifier Training 81

3.6.3 Classifying Observed Traces 82

3.6.4 Class Selection 83

3.6.5 Distinguishing Feature Selection 83

3.6.6 Comparing Effectiveness of Template Attacks 85

3.7 Algebraic Cryptanalysis 86

3.7.1 Generating a System of Equations for AES-128 86

3.7.2 Converting to a SAT Problem 87

3.7.3 Solving the System of Equations 89

3.7.4 Unique Contributions of this SAT Solver Tool 89

3.8 Summary . 90

vii

Page

4. Key Schedule Redundancy Attack 91

4.1 Introduction . 91

4.2 Background . 93

4.2.1 Key Schedule Background 93

4.3 Related Work . 94

4.4 The Attack . 97

4.4.1 Data Collection 97

4.4.2 Targeted Intermediate Values 98

4.4.3 Template Attack 100

4.4.4 Reconciling Round Key-Byte Guesses 101

4.5 Results and Comparison 102

4.5.1 Evaluating Performance 102

4.5.2 Comparison of Distinguishing Features 103

4.5.3 Experimental Results 104

4.5.4 Comparison 108

4.6 Conclusion . 110

5. Improving Cross-Device Template Attacks 112

5.1 Introduction . 112

5.2 Cross-Device EM leakage 114

5.2.1 Compensating for Device Differences 116

5.3 Experimental Methodology 117

5.3.1 Targeted Devices 117

5.3.2 Template Attack Methodology 117

5.3.3 Distinguishing Feature Data Normalization . . 119

5.4 Results . 120

5.4.1 Selected Features 120

5.4.2 Baseline Standard Template Attack 122

viii

Page

5.4.3 MVN Technique Results 125

5.4.4 PCA-based Attack 127

5.4.5 Comparison of Attacks 128

5.5 Conclusion . 131

5.6 Constructing a Master Template 132

6. Cross-Device Attacks on Complex Microprocessors 134

6.1 Introduction . 134

6.2 Related Work . 135

6.3 Methodology . 136

6.3.1 Device Leakage Cartography 136

6.3.2 Identifying Unrelated Signals 137

6.3.3 Combining Techniques 140

6.4 Results . 141

6.4.1 Effectiveness of Cross-Device Methods 141

6.4.2 Probe Position Tolerance 144

6.4.3 Comparison of Successful CEMA and Template

Attacks Locations 147

6.4.4 Notch-Filtering for CEMA Attacks 149

6.5 Conclusion . 150

7. Differential Electromagnetic Attacks on a 32-bit Microprocessor

Using Software Defined Radios 152

7.1 Introduction . 152

7.2 Background . 154

7.2.1 Triggering and Alignment 154

7.2.2 Software Defined Radios 155

7.3 Related Work . 156

7.4 Baseline Attack Performance 157

ix

Page

7.4.1 Electromagnetic Cartography Scan 158

7.4.2 Correlation-Based Frequency-Dependent Leak-

age Analysis 159

7.4.3 Baseline Results 161

7.5 Software Defined Radio Methodology 163

7.5.1 Sub-Nyquist Sampling 165

7.5.2 Software Defined Radios 165

7.5.3 Identifying and Aligning Encryption Operations 167

7.5.4 Additional Processing for the RTL-SDR . . . 171

7.6 Software-Defined Radio Results 171

7.6.1 USRP . 171

7.6.2 RTL-SDR . 177

7.6.3 Additional Observations 180

7.6.4 Comparison of the Baseline and SDR Results 182

7.7 Conclusion and Future Work 184

8. Conclusion . 186

8.1 Research Summary . 186

8.1.1 Algebraic Cryptanalysis 186

8.1.2 Cross-Device Template Attacks 188

8.1.3 Software Defined Radios (SDR) 190

8.2 Recommendations for Future Research 191

8.2.1 Algebraic Cryptanalysis 191

8.2.2 Cross-Device Template Attacks 192

8.2.3 Software Defined Radios 193

Appendix A. Constructing and Solving Systems of Equations 195

A.1 Conjunctive Normal Form 195

x

Page

A.2 SAT Solvers . 196

A.3 Converting MQ to SAT 196

A.3.1 Step 1: Convert the Polynomial System to a Lin-

ear System . 197

A.3.2 Step 2: Linear System to CNF Expression . . 197

A.3.3 Step 3: DIMACS CNF Form 199

A.4 Methods for Solving Non-linear Multivariate Systems of

Equations . 200

Appendix B. Writing AES-128 for a SAT Solver 202

B.1 SR Polynomial Generator 202

B.1.1 Variable Names 204

B.2 ANF to CNF Converter 205

B.2.1 Specifying Known Values 205

B.2.2 SAT Solver 207

B.3 Example Code . 207

B.3.1 Full System of Equations 207

B.3.2 Key Schedule Only System of Equations . . . 208

B.3.3 Known Values Format 209

B.3.4 Helper Functions 209

Appendix C. List of Acronyms . 213

Bibliography . 217

xi

List of Figures
Figure Page

2.1 AES Cipher Structure . 10

2.2 Lumped Capacitor Model of a CMOS Inverter 15

2.3 EMI Coupling Modes . 17

2.4 Hamming Weight Leakage Example 21

2.5 Hamming Distance Leakage Example 22

2.6 Simple Side-Channel Analysis 25

2.7 Differential Power Analysis 28

2.8 Filtered Traces Required to Perform a Successful Attack . . . 41

2.9 Visualization of SAT Solver Search Path 50

3.1 Riscure Inspector Tool Suite 58

3.2 Side-Channel Collection Setup 59

3.3 Jig Configuration for ARM Collections 64

3.4 Impulse Response Magnitude for Bandpass and Notch Filters 66

3.5 Differential Side-Channel Analysis Process 68

3.6 Visualization for Correlation Coefficients 72

3.7 Traces Needed for CEMA Attack Confidence 75

3.8 Traces Needed for Filtered Traces 76

3.9 Comparing CEMA Confidence for Multiple Bytes 79

3.10 Comparison of Posterior Probabilities for Two Template Attacks 86

4.1 One Round of the AES-128 Key Schedule 94

4.2 Estimated SNR . 103

4.3 Distinguishing features for h = 0 mm 104

4.4 Distinguishing features for h = 5 mm 105

5.1 Distribution of samples from 40 devices 115

5.2 Distinguishing Features for 40 Devices 121

xii

Figure Page

5.3 Magnitude of Eigenvector Elements for 40 devices 123

5.4 Standard Cross-Device Template Attack Results 124

5.5 MVN Technique Cross-Device Template Attack Results . . . 126

5.6 MVN Technique Cross-Device PCA Template Attack Results 128

5.7 Comparison of Attack Performance 129

5.8 Effect of Increasing Test Traces Used for Normalization . . . 130

5.9 Combined Template Attack Performance with MVN 133

6.1 CEMA Attack Performance by Location 138

6.2 Variance of Power Spectral Density 139

6.3 Impulse Response of ARM Notch Filter 140

6.4 Traces Required with Pre-processing per Key-Byte 142

6.5 Success Rate for Cross-Device Template Attacks 143

6.6 Pre-processing Techniques on Same- and Cross-Device Attacks 144

6.7 Traces Required for Preprocessing and Probe Placement . . . 146

6.8 CEMA Attack Performance by Location 148

6.9 Template Attack Performance with Negative MVN 149

7.1 Device PSD and Mean Correlation Plots 159

7.2 Magnitude of Overlapping Bandpass Filter Impulse Response 160

7.3 Maximum Normalized Power Spectral Density 162

7.4 Two Computer Collection Setup 164

7.5 Magnitude of Collected Trace 169

7.6 Comparison of 250 traces collected with USRP2 170

7.7 Confidence rmax ≥ rnext for fDs = 2 MSa/s USRP2-based CEMA 173

7.8 Confidence rmax ≥ rnext for fDs = 4 MSa/s USRP2-based CEMA 174

7.9 CEMA attack success rate for USRP2 176

7.10 Confidence rmax ≥ rnext for RTL-SDR-based CEMA 178

7.11 Percent of CEMA attacks correct for 5,000 RTL-SDR test traces 179

xiii

Figure Page

7.12 Byte Extraction Confidence for Compiler Settings 182

7.13 Temporal Leakage Map for Two Optimization Levels 183

B.1 Data Flow from System of Polynomial to SAT Solver Solution 203

xiv

List of Tables
Table Page

3.1 Tested PIC Micro-Controller Device Classes 60

4.1 Calculated SNR for Probe Height 103

4.2 KSRA Attack Percent Correct 106

4.3 SubBytes Attack Percent Correct 109

5.1 Standard Template Attack Performance 122

5.2 Cross-device Extraction Rates with MVN 125

5.3 Cross-device Extraction Rates with MVN and PCA 127

7.1 Confidence Key Byte Selected has Highest Correlation 162

xv

AFIT–ENG–DS–13–S–01

Abstract

Side-channel analysis has been used to determine the secret key from crypto-

graphic devices in a controlled laboratory environment. In many cases, it is assumed

that a powerful attacker is able to place a near-field probe within close proximity

of a device, modify the device to gain precise timing information, and have access

to a training device having side-channel emissions identical to those produced by

the target device. Attacks in a laboratory setting utilize expensive digital storage

oscilloscopes. To make side-channel attacks more effective in an operational envi-

ronment, this research identifies ways to 1) reduce the control an attacker must have

on a cryptographic device, and 2) reduce the cost of required attack equipment.

A new unknown-plaintext attack is developed to exploit redundancy in the

AES key schedule and successfully extract keys from “poor” quality collections.

Algebraic cryptanalysis is used to determine the correct key schedule even when

maximum likelihood-based template attacks do not identify correct intermediate

values by attacking more intermediate values and exploiting the redundancy of the

key schedule, the new attack is superior to known plaintext attacks when only a small

number of traces for a target device are available. The quality of collected traces

is intentionally degraded to show the attack robustness, and a novel thresholding

technique is developed to identify possible values for each targeted key schedule

byte. Even with poor quality traces, the new attack is successful in 97.5% of trials

where a standard template attack that does not employ algebraic cryptanalysis fails

100% of the time.

Profiling attacks assume an adversary has access to a training device identi-

cal to the target device being attacked. Although it was previously assumed the

side-channel emissions from similar devices were identical, or at least similar, this

assumption is challenged here by performing template attacks using traces collected

xvi

from 40 16-bit microcontrollers. When the standard template attack methodology

fails to produced adequate results, each step is evaluated to identify device-dependent

variations. A simple pre-processing technique, i.e., normalizing the trace means and

variances from the training and test devices, is evaluated for various test data set

sizes. Normalization improves the key-byte extraction success rate from 65.1% to

100% for same part number cross-device template attacks and from 39% to 82.8%

for attacks using similar devices for training. Additionally, a procedure is developed

to create a single set of templates using training data from multiple devices that can

be used to attack all 40 devices at a 99.95% byte extraction success rate.

The new mean and variance normalization technique is also shown to compen-

sate for differences in probe placement, increasing the number of locations at which

successful attacks can be performed by 226% on a 32-bit microcontroller. When com-

bined with a new technique that identifies and filters signals in collected traces that

are unrelated to the encryption operation, the number of traces required to perform

successful attacks is reduced by 85.8% on average. These simple techniques can be

performed on the same traces collected for a standard template attack—improving

the results through post-collection processing only.

Finally, the use of Software Defined Radios (SDRs) to collect side-channel

emissions is introduced and eliminates the need for an attacker to modify the target

device. Side-channel emissions are collected passively, and encryption operations are

identified in the collected emissions. A correlation-based frequency-dependent leak-

age mapping technique is introduced to evaluate a 32-bit microprocessor and shows

how individual key bytes leak at different frequencies. Key-byte dependent leakage

is observed in both SDR collected and triggered oscilloscope-based collections used

to validate the SDR methodology; this research is the first to demonstrate effective

differential side-channel attacks using SDRs. Successful attacks are demonstrated

using two different SDRs, including a commercial $20 USD digital television receiver

with modified drivers.

xvii

ENHANCING ELECTROMAGNETIC

SIDE-CHANNEL ANALYSIS

IN AN OPERATIONAL ENVIRONMENT

1. Introduction

Modern cryptographic algorithms provide confidentiality and authenticity but

their security relies on computational intractability [132]. The algorithms themselves

are public knowledge but secret keys are used to encrypt and decrypt the information.

Cryptographic systems based on reusable keys can be broken through a brute force

attack, with the amount of time required to do so being an exponential function of

key length. Security is achieved by making the amount of work needed to attack

the cipher greater than the ability of an adversary to muster [114]. A cryptographic

system is considered to be computationally secure if the number of calculations

needed to decode the message or determine the key is impossible through practical

means.

Modern ciphers are typically implemented on electronic devices that produce

both intentional and unintentional emissions. The intentional emissions are the ci-

phertext resulting from an encryption operation or the plaintext resulting from a de-

cryption operation. Using only the input and intentional emissions, i.e., the plaintext

and ciphertext, the key used during the encryption cannot be determined because the

computational complexity of the cipher is very high. The unintentional emissions are

called side-channels. The side-channels that can be used to extract information from

a device depend on the implementation, but may include power consumption [67],

acoustic, electromagnetic (EM) [2], optical [116], and photonic [109] emissions, as

well as variations in computation time [66].

1

Side-channel analysis (SCA) effectively bypasses the computational complexity

of a cipher by attacking the implementation instead of the cipher itself [67]. Using the

side-channel emissions from a device, properties of the intermediate values calculated

by the cipher can be determined. When side-channel analysis is used to attack a

device, the attack is referred to as a side-channel attack and cryptographic devices

are a common target. The goal of a side-channel attack against a cryptographic

device is to determine the secret key being used for encryption and decryption. If

the operations being performed by the device are key dependent it may be possible

to determine the key from a single observation of the side-channel. If only the data

being processed changes, as is the case with the Advanced Encryption Standard

(AES), differential statistics must be used to determine the secret key [67].

1.1 Motivation

The field of SCA has continued to grow since timing and power consumption

based attacks were first demonstrated by Kocher et al. in the 1990s [66,67]. Although

the effectiveness of these attacks has been demonstrated in laboratory environments,

many rely on the assumption that a powerful adversary has complete control over

the cryptographic device being attacked [73]. It is frequently assumed the attacker

1) knows the plaintext or ciphertext being processed, 2) can place the EM probe

within close proximity of the encryption device, and 3) can modify the cryptographic

device to add a trigger; the trigger identifies when the encryption operation is being

performed, providing precise timing information for collections made with a digital

storage oscilloscope. For attacks based on profiling a similar device, it is assumed

that similar devices produce EM emissions identical to the target device [24]. While

these assumptions are practical in a academic setting, they may not be rational in

operational scenarios where modifying the device is not an option or there is no

access to a digital storage oscilloscope.

The objective of this research was to identify ways to reduce the number of

assumptions needed for EM-based SCA attacks to make these attacks more practical

2

in an operational scenario. Ideally, these new techniques would not reduce attack

effectiveness. However, if a given technique reduces attack effectiveness but makes

the attack possible by a less powerful attacker, it would still be considered useful.

1.2 Research Contributions

First, algebraic cryptanalysis is used to enhance an attack on the key sched-

ule of the AES. By attacking the key schedule, the attack can be performed without

knowledge of the plaintexts or ciphertexts associated with each collected side-channel

emission [82]. Since the key is fixed and the key schedule is recalculated for each

encryption operation on the target device, the side-channel emissions from multiple

encryption operations can improve the key extraction rate. Uncertainty in the key

extraction phase of the attack is reconciled using a satisfiability solver and an alge-

braic description of the cipher. A novel technique is developed to identify possible

values of portions of the key schedule. The robustness of the attack is demonstrated

by intentionally degrading the quality of the results by gradually moving the EM

probe away from the encryption device [82].

Template attacks are a form of two-stage profiling attack, with the initial stage

obtaining ‘a priori’ knowledge of the side-channel leakage for a specific device [24].

The profiling stage estimates the multivariate probability densities of the observ-

able side-channels for the targeted intermediate value of the internal calculations

performed within a cryptographic device. It is assumed that a powerful attacker

would be able to procure a training device identical to the device being attacked.

Although template attacks were originally proposed using power consumption data,

they were extended to EM emissions [122]. For the attack to be successful, the EM

emissions from the training device must be sufficiently similar to the EM emissions

from the test device. While previous research assumed implicitly this to be true by

collecting training data from the same device being attacked [3, 9, 24, 73, 92], this

3

assumption is challenged by performing template attacks with 40 PIC and 2 ARM

microcontrollers [83,85].

When attacks performed with different training and test devices show degraded

performance, each step of the template attack methodology is analyzed and eval-

uated. A number of simple, yet powerful, techniques are developed to improve

cross-device template attacks [85]. A cross-device template attack is defined as a

template attack that specifically uses traces from two different physical devices for

the training and classification phases. These techniques identify and remove device

dependent EM signals and compensate for differences in the distribution of collected

EM emissions from different devices. In addition to differences between devices,

these techniques effectively compensate for differences in collection parameters in-

cluding probe type and placement [83]. Additionally, a process for creating a master

template to attack any device within a family of devices is developed and shown to

be effective.

Finally, the requirement for an attacker to have control of the target device is

eliminated by collecting EM emissions using a Software Defined Radio (SDR) [84].

SDRs down-convert EM emissions from a device allowing data collection at reduced

sampling rates, allowing side-channel data to be collected in real-time. Although

individual traces must be identified in post-processing, the trigger signal is no longer

necessary. The use of a SDR also dramatically reduces the cost of performing side-

channel analysis [84].

1.3 Organization

This dissertation is organized as follows. Chapter 2 contains background infor-

mation and a summary of recent publications that pertain to this research. Chapter 3

describes common methodology used in two or more of the focus areas. The next

three chapters each contain the unique methodology and results from the four fo-

cus areas described above. Chapter 4 develops an algebraic cryptanalysis-based key

4

schedule redundancy attack. Chapter 5 improves the effectiveness of cross-device

template attacks for PIC microcontrollers. In Chapter 6, cross-device attacks are

expanded to more complex 32-bit microcontrollers and a new method is developed

to identify and remove interfering signals. Chapter 7 introduces the used of SDRs

to collect the EM emissions from a microprocessor. Finally, Chapter 8 concludes the

dissertation and recommends areas for further study.

5

2. Background

2.1 Introduction

Modern cryptographic algorithms provide confidentiality and authenticity ser-

vices based on computational hardness assumptions [132]. Algorithms to secure

information are public knowledge but secret keys are used to encrypt and decrypt

the information. While cryptographic systems based on reusable keys can be broken

through a brute force attack, the amount of time needed is an exponential function

of the length of the key. Effective security is achieved by making the amount of work

needed to attack the cipher more than the ability of an adversary to muster [114].

A cryptographic system is considered to be computationally secure if the number of

calculations needed to decode the message or determine the key is impossible by any

practical means.

In his article on the communication theory of secrecy systems, Claude Shannon

said, breaking a good cipher should require “as much work as solving a system of

simultaneous equations in a large number of unknowns [114]”. In theory, a technique

known as algebraic cryptanalysis can break ciphers by describing the cipher as a

system of polynomial equations and solving this system to obtain the secret key.

In practice, the multivariate systems of polynomial equations derived from modern

ciphers are large and complex and it is not possible to solve the system in a reasonable

amount of time [26]. To break the cipher, the complexity of such systems of equations

must be reduced.

The complexity of solving the system can be reduced by finding a weakness

in the algorithm, or by determining intermediate values calculated by an imple-

mentation of a cipher. A category of relatively low cost, non-intrusive attacks are

called side-channel attacks. Side-channel analysis (SCA) can determine the proper-

ties of intermediate values calculated by a physical implementation of a cipher by

6

collecting and processing the side-channel emissions from the device performing the

cryptographic operation [73].

The target of the side-channel attacks, the Advanced Encryption Standard

(AES), and cryptanalysis techniques used against block ciphers are introduced in

Section 2.2. The type of side-channels produced by modern electronic devices is

discussed in Section 2.3. Next, how SCA is used to identify intermediate values is

discussed in Section 2.4, followed by a brief discussion on countermeasures, and col-

lecting and pre-processing of side-channel emissions. Finally, the process and benefit

of combining algebraic cryptanalysis with SCA attacks is explored in Section 2.8.

2.2 Cryptography Preliminaries

Information prior to encryption is referred to as plaintext. Encrypted infor-

mation is called ciphertext. Encryption is the process of converting plaintext to

ciphertext. Similarly, decryption is the process of converting ciphertext to plaintext.

The cipher is a pair of algorithms used to encrypt and decrypt information.

In symmetric key cryptography, the two communicating parties share a piece

of secret information, the key, and a public encryption system. Breaking a cipher

consists of “finding a weakness in the cipher that allows the cipher to be exploited

with a complexity less than brute-force [110]”.

2.2.1 Block Ciphers. Block ciphers are symmetric key ciphers that operate

on groups of bits called blocks. The block cipher is keyed to a family of permutations

which operate on n-bits at a time. A permutation is selected from the family using

a key; the same key for both encryption and decryption [125]. Two commonly used

ciphers are the Data Encryption Standard (DES) and AES.

The rounds of a block cipher are usually based on substitution boxes (S-boxes),

bit permutations, arithmetic operations, and exclusive-ORs (XOR). S-boxes are non-

linear substitution tables that map input bits to output bits. They are typically the

7

only part of a block cipher that is non-linear [16]. An iterated block cipher applies

the round functions sequentially, taking the result of one round as the input to the

next round.

Modern block ciphers can be traced back to Claude Shannon [114]. Shannon

discussed the block ciphers based on the concepts of diffusion and confusion [28].

Diffusion spreads the influence of all parts of the block cipher inputs to all parts of

the output, the ciphertext. For a block cipher, the inputs include the plaintext and

the key. Confusion attempts to make the relationship between the ciphertext, the

plaintext and the key complicated. In modern ciphers diffusion is typically achieved

using permutations or linear transformations. Simple operations are repeated multi-

ple times to achieve the desired level of security. Encryption/decryption operations

are key dependent because key material is introduced in each round.

2.2.2 Advanced Encryption Standard. The Advanced Encryption Standard

(AES) was developed to replace the Data Encryption Standard (DES) and triple-

DES. The U.S. National Institute of Standards and Technology (NIST) conducted an

open competition to develop AES which was to be as secure as triple-DES but much

more efficient [39]. A block cipher called Rijndael was selected as the AES. Since

Rijndael was announced as the AES in October 2000, AES has been used throughout

the U.S. government and been adopted by banks, industry and governments around

the world.

AES is a symmetric block cipher that processes blocks of 128 bits using cipher

keys with lengths 128, 192 and 256 bits [88]. The basic processing unit for AES is

a byte. The AES algorithm operations are performed on a two-dimensional array of

bytes called the State. The State is a four row by four column matrix, with a byte in

each cell. One round of AES is composed of the following four different byte-oriented

transformations. [88]:

1. AddRoundKey: The state matrix is XOR-ed with the round key.

8

2. SubBytes: Each byte of the state matrix is substituted for another byte value

based on a one-to-one non-linear invertible mapped called S-box,

3. ShiftRows: The last three rows of the state matrix are cyclically shifted column-

wise using different offsets,

4. MixColumns: The state matrix is mixed column by column using a linear

operation.

One round key, based on the original cipher key, is produced by the key ex-

pansion routine for each round. The final round does not include the MixColumns

operation and another AddRoundKey operation is performed to produce the cipher-

text.

SubBytes is the only non-linear step in each round. To resist linear and dif-

ferential cryptanalysis (Ref. Section 2.2.3.1), the S-box was specifically chosen to

be non-linear and have a high algebraic complexity. Confusion is achieved using

carefully chosen S-boxes in AES. The S-box is based on the inversion over a field of

order 28 [39]. The S-box is defined in [88]. Since inversion and matrix multiplication

are computationally expensive, the S-box is frequently precomputed and stored in a

table.

A key expansion routine generates the key schedule containing each of the

round keys. The number of rounds is determined by the key size. AES performs 10,

12, and 14 rounds for key sizes of 128, 192, and 256 bits of key length respectively.

Eleven round keys are produced by the key expansion routine for AES-128. The first

round key is simply the cipher key and the subsequent round keys are calculated using

the following transformations.

1. SubWord: The SubBytes transformation is performed on each byte of the four-

byte input word to produce a four byte output word,

2. RotWord: Performs a cyclic permutation on the four-byte input word, and

3. AddRcon: Bit-wise XOR with the round constant.

9

PT SB SR MC SB SR CT

K0 Ki KNr

for round i = 1 to Nr-1

Digital sampling

Power Supply

EM Probe
Digital sampling

oscilloscope

Cryptographic
device

Personal Computer

Figure 2.1 AES Cipher Structure [88].

The round constant is designed to eliminate symmetries [39]. For a given

implementation, the round keys are either calculated “on the fly”, or pre-calculated

and stored in memory. On devices with a low amount of memory the round keys

are generated as needed, writing over the previous round key in the process. More

detailed information on the structure of the key schedule for AES-128 is presented

in Chapter 4. The Nr = 10 rounds of AES-128 is shown graphically in Figure 2.1.

For conciseness the round transformations are abbreviated AddRoundKey (ARK),

SubBytes (SB), ShiftRows (SR) and MixColumns (MC) in Figure 2.1.

In a 32-bit microprocessor, the operations performed in the round transforma-

tion can be combined into a single look-up-table, called a T-Box to create a faster

implementation [38]. The 8× 32-bit tables defined

T0 [a] =

SB [a] • 02

SB [a]

SB [a]

SB [a] • 03

 T1 [a] =

SB [a] • 03

SB [a] • 02

SB [a]

SB [a]

T2 [a] =

SB [a]

SB [a] • 03

SB [a] • 02

SB [a]

 T3 [a] =

SB [a]

SB [a]

SB [a] • 03

SB [a] • 02

(2.1)

combine the SubBytes, ShiftRows and MixColumns operations.

10

The complete round transformation for a 32-bit block is calculated

ec = T0 [a0,c]⊕ T1 [a1,c−1]⊕ T2 [a2,c−2]⊕ T3 [a3,c−3]⊕ kj, (2.2)

where c denotes the column of the output e, ar,c denotes the row r and column c of

one byte of the input state a, and kj is corresponding 32-bit portion of the round key

for round j. Column indices are taken modulo Nb = 4 for AES-128. For AES-128,

row r = nb mod 4 for byte number nb = 1, ..., 16.

Hence, each of the four 32-bit portions of the round output are implemented

with four table lookups and four XORs. After performing the initial AddRoundKey,

the T-box implementation is used to calculate the first 9 rounds of AES-128. In the

10th round, since the MixColumns operation is not performed, the SubBytes and

ShiftRows operations are performed separately.

2.2.2.1 Modes of Operation. Since AES only encrypts data one block

at a time, but the amount of data that must be encrypted is typically greater than one

block, modes of operation have been developed. A mode of operation is a scheme that

allows a block cipher to perform encryption and decryption on groups of plaintexts.

NIST special publication 800-38A lists the modes of operations recommended for

use with AES: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher

Feedback (CFB), Output Feedback (OFB), and (CTR) [87].

In ECB mode the message is divided into blocks and each block is encrypted

separately. The drawback of this approach is blocks with identical plaintexts are en-

crypted into identical ciphertexts. Patterns in the ciphertext may reveal information

about the message being sent. However, since each block is encrypted separately,

encryption of multiple blocks can be performed in parallel.

CBC, CFB, and OFB incorporate the output of previous encryption operations

and utilize initialization vectors. In CTR mode the input blocks, called counters,

11

are encrypted using AES and the output of the encryption operation is XORed with

the plaintext to produce the ciphertext. Since other modes incorporate additional

information and restrict the order in which traces can be processed for side-channel

analysis, only ECB mode is considered in this dissertation. For side-channel analysis

using ECB mode allows for each trace to be analyzed independently.

2.2.3 Cryptanalysis of Block Ciphers. The goal of cryptanalysis is to

break ciphers. The goal of most attacks is to recover the encryption or decryption

key. Attacker’s capabilities may vary. In this regard, the amount of information an

adversary has access to changes the types of attacks that are possible. However it

is assumed the attacker has full knowledge of the encryption algorithm and the key

is always secret. Below is a taxonomy of cryptographic attacks adapted from [28]

listed from most practical to most hypothetical.

1. Ciphertext-only: The adversary only has access to encrypted messages and

some information about the distribution of the plaintext messages. Most mod-

ern ciphers are not susceptible to this type of attack.

2. Known plaintext: In addition to the ciphertext, the attacker has full or par-

tial knowledge of corresponding plaintext messages. Since messages contain

common words or patterns, such as headers, this type of attack is realistic.

3. Chosen plaintext or ciphertext: In a chosen plaintext attack the adversary

has the ability to choose the plaintext messages to be encrypted. In a chosen

ciphertext attack, the adversary can choose the ciphertext to be decrypted and

has access to the corresponding plaintext. Although less common, this scenario

is still realistic.

4. Adaptive chosen plain text or ciphertext: The adversary adapts his choices of

the text to be encrypted and decrypted based on information learned during

the attack.

12

5. Related Key: The adversary exploits a known relationship between keys (e.g.,

they only change by a certain number of bits). This attack is conducted in

conjunction with one or more of the scenarios above.

This attack model applies to both algebraic cryptography attacks and side-

channel analysis. Proposed attacks cover the entire range of attack types, but known

plaintext attacks are most common [28].

2.2.3.1 Linear and Differential Cryptanalysis. Linear cryptanalysis

and differential cryptanalysis are the most established methods of attacking block

ciphers. Statistical in nature, the attacker constructs probabilistic patterns through

as many rounds of the cipher as possible. The goal is to distinguish the cipher from

a random permutation and recover the key.

Linear cryptanalysis looks for the effective linear expression for a cipher [76]. A

linear approximate is constructed by building a statistical linear path between input

and output bits of each S-box. The linear approximate is the probability that S-box

inputs coincide with an S-box output bit. Since this method is based on statistics

developed for a specific key, it requires a large number of known plain-texts. Once

each S-box is described as a linear approximate the entire algorithm is represented

without any intermediate values.

Differential cryptanalysis analyzes the effect of particular differences in plain-

text pairs on the differences in corresponding ciphertexts. Using these differences,

probabilities can be assigned to possible keys to identify the most probable key [16].

Typically this type of attack is done with chosen plaintext, but can be done with

known plaintext if a sufficient number are available [76].

AES was developed to be resistant to both linear and differential cryptanaly-

sis. The wide tail strategy employed in AES maximizes the level of mixing within

each round to provide fast diffusion ensuring security against differential and linear

cryptanalysis [39].

13

Due to their statistical basis these attacks require enormous amounts of known

or chosen plaintext/ciphertext and are therefore impractical for complex ciphers [5].

Conversely, a relatively new form of attack, algebraic cryptanalysis, requires very

few, if any, known plaintexts.

2.2.3.2 Algebraic Cryptanalysis. Algebraic cryptanalysis breaks ci-

phers by solving polynomial systems of equations and exploiting the intrinsic alge-

braic structure of the cipher. Typically an attacker converts the encryption trans-

formation into a large system of low degree multivariate polynomial equations and

solves the system to reveal information about the key. A number of methods have

been proposed for solving these systems of equations. If a cipher is well constructed,

however, the system of equations will not be directly solvable. Since the systems

are typically very sparse, over-defined, and structured, it is believed they can be

solved faster than generic non-linear equation systems [5]. The used of algebraic

cryptanalysis against AES is discussed in Section 2.8.

2.3 Side-Channel Leakage

A side-channel is an unintended observable phenomenon that is correlated with

the internal state, operations or data being processed within a device. These cor-

relations can be exploited to recover the leaked information. Electronic devices can

leak information via a number of side-channels including power consumption [67],

acoustic, electromagnetic (EM) [2], and optical [116] emissions, as well as varia-

tions in computation time [66]. Although initial research focused on timing, power

consumption and EM emissions, optical analysis is becoming more practical [109].

2.3.1 Power Consumption. Digital circuits consume power during oper-

ation. The received energy is dissipated as heat and EM emissions. Many mod-

ern integrated circuits are based on Complementary Metal Oxide Semiconductors

(CMOS) transistor technology that are the basis of various types of devices includ-

14

Figure 2.2 Lumped capacitor model of a CMOS inverter [73].

ing general purpose microprocessors and Field Programmable Gate Arrays (FPGAs).

The power consumption of CMOS devices consists of static power consumption and

dynamic power consumption. CMOS cells are based on complementary pull-up and

pull-down networks. For constant input signals, the pull-up and pull-down networks

never conduct at the same time. For the inverter shown in Figure 2.2, P1 is con-

ducting and N1 is insulating when the input is set to GND. When the input is set

to VDD, P1 is insulating and N1 is conducting. For constant input signals there

is only a small leakage current which contributes to the static power consumption,

Pstat = Ileak · VDD [73].

Dynamic power consumption occurs when internal transistors change state.

However, the power consumed by internal state changes is much lower than the

power consumed by changing the CMOS cell output signal, therefore it can be ig-

nored. When the value of the cell output does not change, only static power is

consumed, but transitioning from 0→ 1 or 1→ 0 requires both static and dynamic

power. One component of dynamic power consumption is due to the CMOS cell

drawing a charging current from the power supply to change the output capacitance

CL during a transition. CL is the intrinsic capacitance of the CMOS cell and the

extrinsic capacitance of wires connected to subsequent CMOS cells. The second

component of dynamic power consumption is due to the temporary short circuit

that occurs when a CMOS cell switches and both pMOS and nMOS transistors con-

duct simultaneously. Dynamic power consumption is much higher than static power

15

consumption, in fact it is the primary source of power consumption. Furthermore,

dynamic power consumption is always data dependent [73].

There are many factors that affect the power consumption of a microprocessor,

including the instruction being executed and the memory address the instruction was

retrieved from. Additionally, the data memory address, and the contents of the data

being manipulated, and location of the data registers being accessed affect power

consumption [95].

2.3.2 Electromagnetic Emissions. Electromagnetic (EM) emissions are

caused by three types of coupling: conductive, inductive and radiative. This cou-

pling is caused by time-varying current flows due to transistors turning on and off.

Conductive coupling occurs when there is a physical conductive path between a

source and a receptor allowing the signal to be transmitted through the system.

Conductive emissions can be observed in the power supply, ground line, and cables

attached to the device [2, 20].

An EM field is created when current flows through a wire. When two conduc-

tors are separated by less than a wavelength, mutual-inductive coupling or magnetic

coupling can occur. Through EM induction, current flowing in one wire can induce

a voltage across the ends of another wire. Low frequency signals are typically trans-

mitted by inductive coupling. High frequency signals are more easily transmitted

by capacitive coupling, whereby energy is transferred between to device nodes due

to the capacitance between the two nodes. Inductive and capacitive coupling occur

when the conductors are typically less than a wavelength apart. Radiative coupling

occurs when the source and the receptor are separated by more than a wavelength;

part of the source circuit acts as an antenna and transmits undesired EM waves [93].

EM emissions from digital electronics can be either differential-mode or common-

mode radiation. Differential-mode radiation is generated by a flow of current around

loops formed by conductors in the circuit during the circuit’s normal operation.

16

Figure 2.3 EMI coupling modes [40].

The loops act as small antennas that primarily radiate magnetic fields. Differential-

mode radiation emission is proportional to the loop area, frequency squared, and the

differential-mode current in the loop. Common-mode radiation is caused by para-

sitics in the circuit and unintentional voltage drops in the conductors. Differential-

mode currents flowing through the ground impedance produce a voltage drop in the

device ground system, causing some grounded circuits to rise above the real ground

potential. Bond wires and pins connected to the affected ground act like antennas ra-

diating components of the common-mode potential as electric fields. Common-mode

radiation is proportional to frequency, cable length and the common-mode current

in the circuit [93].

2.3.2.1 Direct and Unintentional Emissions. The EM emissions from

a device can be separated into two broad categories: direct and unintentional [2].

Direct emissions result from of intentional current flows, which consist of short bursts

of current with sharp rising edges. These short bursts result in emissions observable

over a wide frequency band. Components of the emissions at higher frequencies may

be more useful if less interference or noise is present at higher frequencies. Isolating

direct emissions can be very difficult in complex circuits due to interference by other

signals [1]. To capture direct emissions with minimal interference, tiny near-field

probes should be placed as close as possible to the signal source.

Modern CMOS devices have electronic and EM field coupling between compo-

nents in close proximity, producing compromising unintentional emissions [2]. Mod-

17

ulations of a carrier signal, such as the harmonic rich “square-wave” clock may be

produced within the device. As a result, odd harmonics of the clock can be strong

carriers of modulated signals. Non-linear coupling between a carrier signal and a

data signal can result in an amplitude modulated signal emanating from the device.

The coupling between circuits can result in angle (or frequency) modulated signals.

The modulated signals can propagate further than the direct emissions enabling at-

tacks from further distances. Once collected, the data signals can be recovered using

amplitude and angle demodulation techniques [2].

2.3.2.2 Exploiting Electromagnetic Emissions. Each current carrying

component of a device produces EM emissions based on its physical and electrical

characteristics as well as the data being processed [2]. An attacker that can analyze

emissions and determine how the data being processed corresponds to the emissions

would be able to compromise the system. As a result, methods originally developed

for power analysis have also been applied to EM Analysis (EMA) [47].

Since power measurements are collected by placing a resistor in series with

the power or ground of the cryptographic device physical access to the device is

required. EM measurements are less invasive because physical contact with the

device is not necessary. Even so, to reduce noise and increase the signal strength

EM measurements are typically performed as close as possible to the chip using a

near-field probe. Ideally, the probe is placed near the part of the device with the

most intense data-dependent signal. This is typically near the CPU, data lines or

power supply lines [47]. Although no physical contact to the device is required, it is

assumed the attacker has the ability to place the probe in the near-field.

The phenomenon of compromising power and EM emissions has been known

and exploited for decades. Declassified TEMPEST documents reveal vulnerabilities

of United States cryptographic systems to EM analysis in 1962 and Soviet guide-

lines for radio frequency interference indicated they recognized the threat before the

18

United States [20]. Academic research on the vulnerability of cryptographic devices

to EM analysis has flourished in the last decade when attacks performed using power

analysis were extended to collected EM emissions [47, 94]. Since power and EM at-

tacks are related and many of the same techniques apply, attacks are not grouped

by side-channel and are presented in Section 2.4

2.3.3 Other Side-Channels. Although the power and EM side-channels are

the most commonly attacked, other side-channels have been used to attack crypto-

graphic systems. By carefully measuring and analyzing the amount of time required

to perform a cryptographic operation, a secret key can be determined when the

length of the operation depends on the secret key [66]. The optical side-channel

has been used to enhance side-channel attacks. By observing photon emissions from

switching of transistors, the active area of an integrated circuit can be identified to

allow targeted EM and power attacks [116]. Attacks based on acoustic emissions

have been demonstrated on desktop computer CPUs [111], keyboards [10, 138] and

dot matrix printers [51].

Differential fault injection extends existing side-channel analysis methods by

actively injecting faults into a system in the hope the internal state of the system

will be revealed. Faults can be induced in a variety of ways including over-clocking,

powering at unsupported voltages, or even targeting the device with radiation [17].

2.3.4 Leakage Models. At the transistor level the static and dynamic

power consumption can be modeled with approximations that describe the power

consumption well. For more complex circuits, power models and simulations can

estimate the power consumption, efficiency and security. Highly accurate models

require a high level of memory, time to simulate, and intricate knowledge of the

device. Analog simulations use transistor netlists and circuit parasitics to calculate

power consumption. Precise circuit parasitics will result in a precise simulation.

Logic level simulations requiring fewer resources are less accurate, but still require

19

a netlist containing all logic cells in the circuit and the connections between them.

More accurate logic level simulations will contain signal delays, rise and fall times

and accurate power models for each cell. Analog and logic level models required

detailed knowledge that is typically only available to the device designers [73].

Models based on Hamming Weight and Hamming Distance are presented in

the next two sections. Although these models are not as accurate, they are useful

because they do not required detailed information about the layout and device being

used.

2.3.4.1 Hamming Weight Model. A model based on the Hamming

Weight (HW) assumes the power consumption is proportional to the number of bits

equal to 1 in the processed value and does not require any information about the

values processed before or after [73]. Although CMOS power consumption depends

on whether a transition occurs and not on the values being processed, HW models

can still be useful for some applications. The utility of each model depends on the

implementation.

In the best case, the preceding or succeeding values are known, for example,

a precharged bus on a microprocessor. If all of the bits of a data bus are set to 0

before the value of interest is placed on the bus, the HW is determined only by the

values being placed on the bus [78]. Figure 2.4 shows an example of how the power

consumption changes based on the HW of the data being processed.

2.3.4.2 Hamming Distance Model. Hamming Distance (HD) is the

number of bit-level transitions (0→ 1 or 1→ 0) that occur during a certain interval.

As discussed above, power consumption is primarily caused by the output of logic

cells transitioning from one state to another. The HD model is a simplified power

model based on a count of the transitions over a period of time. For simplicity

it is assumed that the power required for transitions from 0 → 1 and 1 → 0 are

equal. The parasitic capacitances of wire and cells and the static power consumption

20

Figure 2.4 HW information revealed by the a power consump-
tion side-channel [78].

are also ignored for simplicity. The HD of two values v0 and v1 is equal to the

HW of v0 ⊕ v1. Since HW is equal to the number of bits that are set to one,

HD(v0, v1) = HW (v0 ⊕ v1) [73].

To calculate HD, consecutive data values processed in part of a circuit must

be known or guessed. HD can be effective for modeling the power consumption of

registers and buses when the values placed in the register or on a bus are deter-

mined by the algorithm being attacked, known plaintext or ciphertext value, and

key guesses. Advanced HD models assign the power consumption for the transitions

between 0→ 1 and 1→ 0 differently. Figure 2.5 shows how the number of transitions

effects the power leakage of an 8-bit smartcard microcontroller.

The worst case is when the preceding and succeeding values are random and

uniformly distributed. If this occurs the HW and HD models will not be highly

correlated with the power consumption. However, since the power consumed for

the transitions between 0 → 1 is not truly equal to the power consumed by 1 → 0

transition, the HW model will still be weakly related in some way to the actual

power consumption [73].

21

Figure 2.5 HD power leakage from an 8-bit smart-card micro-
controller performing a load operations [78].

2.3.4.3 Applying Power Models to Electromagnetic Emissions. Com-

bining Ohm’s law (I = V/R) with with Joule’s law (P = IV), the power in a resistive

circuit current is directly proportional to the current squared (P = I2R). It follows

that models that describe power consumption also correspond with EM emissions.

If the power consumption of a device is data dependent, the EM emission will also

be data dependent.

Before introducing how these models can be used to extract information from

a device, it is helpful to understand the cipher being targeted by the attacks. Block

ciphers are presented in the following section. Side-channel attacks that used HW

and HD models are introduced in Section 2.4.

2.4 Side-Channel Attacks

Modern cryptographic ciphers, including AES, were developed assuming that

the hardware used to implement them was secure. Given that assumption, the focus

was on proving the underlying mathematical structure of the cipher is computation-

ally secure. When developing a cryptographic cipher it is generally assumed that the

cryptographic systems behave like a black box in which plaintext is securely turned

into ciphertext.

22

Rather than attack the cryptographic algorithm itself in the hopes of finding

a mathematical vulnerability, side-channel analysis targets the devices used to im-

plement the cryptographic algorithms. The goal of Side-Channel Analysis (SCA) is

to learn information about the internal state, data or operations being performed.

Side-channel attacks can also be used to bypassing or compromise the system’s se-

curity.

2.4.1 Types of Implementation Attacks. Attacks on cryptographic devices

can be active or passive [73]. During a passive attack the device performs its nor-

mal operations with little or no interference by the attacker. In an active attack,

the device, its environment or inputs are manipulated to make the device behave

abnormally. The abnormal behavior is analyzed to compromise the secret key.

Attacks can be invasive [8], semi-invasive [117] and non-invasive. In an inva-

sive attack there is no limitation to what can be done to the device. The devices

are typically depackaged to access specific components of the device using a probing

station. If the probing station only observes the component, the attack is passive.

If signals in the device are changed to alter the function of the device, the attack

is active. Invasive attacks typically require expensive specialized equipment. In a

semi-invasive attack the device is depackaged but, no direct electrical contact is made

with the chip surface. Active semi-invasive attacks may induce faults using X-rays,

EM fields, light or lasers. In a non-invasive attack, the device is attacked without

altering the device leaving no evidence of an attack. Active non-invasive attacks

attempt to cause faults without depackaging the device. The faults can be intro-

duced by clock glitches, power glitches or by changing the operating environment.

In general, side-channel attacks are non-invasive or semi-invasive.

2.4.2 Adversary Models. Similar to the cryptanalysis model in Section 2.2.3,

the abilities and knowledge attackers possess varies. The power of an adversary is

determined by the amount of knowledge and control he theoretically has over the

23

cryptographic system during a particular attack. A weak attacker will have very

restricted access, while a powerful attacker will have complete control of the device.

Powerful attackers are able to choose the number and contents of device inputs,

and are able to observe the encryption/decryption operation in an ideal environment.

Measures may be taken to optimize the quality of the observed side-channel, such

as decapsulation and adding a hardware trigger to precisely determine when the

cryptographic operation begins [73]. In extreme cases, the attacker may have the

ability to load new keys into the device or a similar training device. The attacker

may also collect multiple traces for each plaintext and average the traces together

to reduced environmental noise in the trace.

A weak adversary has less control over the device. The adversary has the

ability to observe the device being attacked in some way, but no special measures

are taken to improve the quality of the collected traces. As a result, the traces may

be noisy and timing may be poor. Typically it is assumed that the adversary is able

to collect either the plaintext or the ciphertext from the device. In extreme cases,

only the side-channel can be observed.

2.4.3 Power and EM Analysis. The introduction of power analysis in 1999

by Kocher et al. gave rise to a new field of side-channel attacks and countermea-

sures [67]. By observing and analyzing the power consumption of a device performing

a cryptographic operation, information about the device’s operation and data the

device is processing can be determined. A side-channel attack targets a vulnerability

in the implementation rather than attacking the cryptographic algorithm. Depend-

ing on the implementation and resolution of measurement devices an attack may be

performed with a single trace. A trace is a set of side-channel emission measurements

over the length of the cryptographic operation of interest. Any observable behavior

that can be correlated to the internal operation of a device can reveal information

about the device.

24

Figure 2.6 SPA analysis from an RSA implementation [68].

A large number of attack types have been developed, but the three most impor-

tant distinguishing characteristics are the analysis approach, the number of traces

used, and the number of phases involved in an attack.

2.4.4 Simple Side-Channel Analysis. Some cryptographic implementations

are susceptible to Simple Side-Channel Analysis (SSCA) in which information about

the device’s operation and key material is determined from direct interpretation of

the power or EM emission traces. In [67] Kocher et al. introduced simple power

analysis (SPA) noting that weaknesses in the implementation of an algorithm such as

conditional jumps based on key bit’s value and computational intermediates, reveal

information about the key. Processing time may vary for various reasons including

conditional branches, cache misses, pipeline stalls, interfacing with memory and

external devices [66]. As a result, SPA can determine the sequence of operations for

a cryptographic implementation. If the order or length of operations are dependent

on key bit values, the value of the key bits may be determined from the power trace.

The techniques used for SPA were extended to EM emissions in [94] and called simple

EM power analysis (SEMA).

Figure 2.6 shows power traces from a device implementing public-key cryptog-

raphy algorithm RSA1 [68]. In this implementation, a square operation is performed

in every iteration of the exponentiation loop but a multiplication is only performed

1The RSA algorithm is named for Ron Rivest, Adi Shamir and Leonard Adleman [33].

25

when a bit of the exponent is 1. Each 1 bit in the secret key appears as a shorter

bump followed by a taller one, each 0 bit appears only as a shorter bump. The key

can be read directly from the measured power consumption.

2.4.5 Differential Side-Channel Analysis. Even when SSCA is not pos-

sible, differential side-channel analysis (DSCA) can be used whenever a physical,

measurable property of the device depends on the data it processes. Differential

Power Analysis (DPA), introduced in [67], takes small variations in power consump-

tion between multiple traces to find correlation between the intermediate values in

the cryptographic computation and the measured power consumption. Although

the variations are small, by collecting a large number of traces, the implementation

can be broken using statistical functions tailored to the target algorithm and de-

vice [67]. A DPA attack uses the power traces from multiple observed encryption

operations, typically with different plaintext/ciphertext. Using the recorded plain-

text or ciphertext and traces from the operations, the attacker calculates differential

statistics based on a key block guess. DPA is capable of extracting information even

when the variations in side-channel are too subtle to be identified using SPA. The

techniques used in DPA were extended to EM emissions and called differential EM

analysis (DEMA) [94]. The step-by-step process for conducting model-based DPA is

explained in Section 3.4. Differential attacks typically assume a powerful adversary

that can arbitrarily change the plaintext to perform desired encryption operations.

At a minimum the attacker must have knowledge of the plaintext or ciphertexts

associated with each trace.

Differential attacks can be used even if detailed knowledge of the implemen-

tation is not known. While SSCA requires the attacker recognize when certain

operations occur in side-channel leakage, DSCA techniques identify the points in

time when side-channel leakage is correlated with a hypothetical intermediate values

in the cryptographic operation. As a result, the attacker only needs to know the

underlying algorithm so that hypothetical intermediate values can be calculated, to

26

carry out an attack. Even when the algorithm is not known, an attacker can perform

SSCA and DSCA to learn details about the implementation sufficient to perform a

successful attack [73].

The number of observations required to successfully perform DSCA depends

on the implementation, statistical technique, environmental factors and countermea-

sures protecting the device. The number of traces required can vary from a few dozen

to millions [73].

2.4.5.1 Statistical Methods. DSCA uses statistical methods to make

inferences about the data processed on the device. Using multiple traces, the sta-

tistical method reduces the noise from measurement error and non-data dependent

emissions while amplifying the data-dependent contributions. DSCA can detect very

small correlations provided a sufficient number of traces are collected and analyzed.

A number of statistical methods have been applied to DSCA to determine how the

data being processed is correlated with side-channel emissions.

DSCA techniques attempt to identify an affine relationship between the pre-

dicted leakage and one or more columns of the observed matrix data. In the observed

data matrix each column corresponds to a particular time sample in relation to the

start of a cryptographic operations and each row corresponds to a possible key value.

When the key hypothesis is correct, there is a linear relationship between the hy-

pothesized leakage value based on the leakage model and the observed leakage.

The original method, proposed in [67] and formalized by [77, 78], known as

difference of means (DoM), takes traces collected for known plaintext and divides

the traces into two groups according to the intermediate value predicted by a key

guess and the trace’s corresponding plaintext. If the average power trace from each

group differs from each other in a significant way, it is likely the key guess is correct.

Key guesses can be made at the bit level, byte level or for multiple bytes at a time.

27

101

102

103

104

105

Figure 2.7 Five differential traces for a DPA test predicting
the least significant bit of an S-box output. Traces
for key guesses 101 to 105 are shown. Key guess
103 is the correct value [68].

The architecture of the device used to implement the cipher and the way in which

it was implemented will effect which type of attack will be most effective.

The use of Pearson’s correlation coefficient was first proposed in [22]. Using

Pearson’s correlation coefficient, the highest correlation coefficient indicates the cor-

responding sub-key guess most likely to have produced the observed results. The

location of the peak indicates the time at which the targeted intermediate value

is manipulated. Figure 2.7 shows a plot of the correlation coefficient for five sub-

key hypotheses. Since the plot for sub-key 103 contains the highest peak, it is the

sub-key most likely to have produced the observed trace. Similar keys can produce

high correlations, leaving some ambiguity. If it is not clear which peak is correct,

additional traces can be collected or multiple possible sub-keys can be identified.

A comparison of four DSCA distinguishers was conducted in [40]. In addition

to the DoM and Pearson’s correlation coefficient, the Spearman’s coefficient [15],

variance test [121], and Student’s T-test [34,53] distinguishers were evaluated using

power traces collected from a hardware implementation of DES. Although the results

are likely implementation dependent, Pearson’s correlation coefficient had the highest

first-order success rate. That is, the sub-key identified by Pearson’s correlation

28

coefficient was most often correct. However, in cases where Pearson’s correlation

coefficient did not identify the correct sub-key as the most likely key, the correct

sub-key was ranked low. DoM yielded the highest guessing entropy. When the first-

order DoM guess was wrong, the correct sub-key was still highly ranked. Guessing

entropy is an important consideration when a SAT solver is available to evaluate the

validity of sub-key guesses.

A more precise definition of Pearson’s correlation coefficient is presented in

Section 3.4.1.

2.4.6 Profiling Attacks. Profiling attacks differ from standard SPA and

DPA attacks because they require two stages rather than one. The first stage is

a profiling stage which is used to obtain a priori knowledge on the side-channel

leakage for a specific device. Unlike standard DPA attacks, it is possible to conduct

a profiling attack without power consumption models that accurately predict the

side-channel leakage [53].

The key assumption for a profiling attack is that a powerful attacker has access

to a training device, identical to the target device, over which he has full control. The

training device is used to create a precise multivariate distribution of the device’s

side-channel leakage for each sub-key dependency [53]. It is assumed the side-channel

leakage of the device being attack is sufficiently similar to the leakage of the training

device. The training phase is sometimes referred to as the offline phase.

During the attack, or online, phase the distributions calculated during the

profiling phase are used to classify side-channel observations from a target device.

The attacker does not need to have control of the device, but must be able to observe

the side-channel leakage. The trace collected from the target device is classified to

determine the most likely sub-keys. Profiling attacks are considered to be very

powerful because they utilize all information in each side-channel sample [24].

29

A number of different profiling attacks have been proposed including template

attacks [24] and the stochastic model attack [108]. Chari et al. observed that using

multivariate statistics allows for stronger attacks [24]. They believe the new attack,

which they called a template attack, is the strongest side-channel attack possible

from an information theoretic sense. Template attacks use all information present in

each portion of a side-channel trace for classification, making them a strong attack

even when only a few traces from the device being attacked are available. Rather

than try to eliminate or reduce noise, the noise present in the side-channel emission

is assumed to be key dependent and precisely modeled. The profiling stage creates

mean and covariance matrices for each of the possible sub-keys. The profiling stage

allows attacks to be conducted using as little as one trace. Agrawl et al. expanded

template attacks to differential power analysis, allowing multiple traces, or even

side-channels, to be incorporated into the template [4].

Building templates is the optimum way to describe the side-channel character-

istics of a device. When the side-channel leakage fits a multivariate-Gaussian model

a template attack is the optimal DPA attack because it minimizes the probability

of error when determining the key. This optimality is only achieved when the ideal

data dependent points of interest in the encryption operation are located and used

to build the template [73].

The efficiency and effectiveness of stochastic model attacks [108] and template

attacks [24] are evaluated in [53]. Unlike template attacks, the stochastic method

developed by Schindler et al. presumes that side-channel noise is independent of

the sub-key and it is not incorporated into the model. The stochastic method is

more efficient, but is not more effective than template attacks [108]. The stochastic

model is useful when there is a bound on the number of traces that can be collected

during profiling; template attacks are more effective when there are enough traces

to construct a full set of templates.

30

Agrawal et al. introduced the single-bit template attack and template-enhanced

DPA attack [3]. Rather than building templates for each of the possible 256 key-

byte values, templates were created to attack a single bit in an intermediate value.

The single-bit templates are built from peaks observed in DPA attacks and predict

the value of single-bit with high probability using only one side-channel observation

during the attack phase. An attacker can build a large number of single-bit tem-

plates, each of which can be used to identify the values of individual bits during

the attack phase. With enough precomputed templates, the entropy of the key is

reduced significantly so a brute force attack is practical. The single-bit template

attacks can be incorporated into a template-enhanced DPA attack which was able

to defeat standard random masking techniques on smart cards.

Renauld et al. explore the increasing variability in device leakage for cryp-

tographic devices with features sizes of 65-nanometers and smaller [103]. Using a

prototype S-box implemented in a 65-nanometer low-power CMOS technology, they

demonstrate that with reduced feature size cryptographic devices may not follow

common leakage models. Additionally, they show the increased variability leads to

degraded leakage models and template attack performance when using one device

to attack another. To account for inter-chip variability, they propose training across

multiple devices, but note that incorporating the inter-chip variability into the tem-

plate makes the models less accurate when attacking any individual chip.

A powerful unknown-plaintext, unknown-ciphertext template attack based on

HW templates, which incorporates an algebraic description of AES, is discussed in

Section 2.8.4.1. The steps required to perform a template attack are discussed in

Section 3.6.

2.4.6.1 Identifying Important Components of the Trace. Templates

consist of a vector of means and a matrix of covariances for each class. Templates

are constructed for specific points in the encryption operation related to the tar-

31

get operation. Since the size of the covariance matrix grows quadratically with the

number of points included in the template, and calculating the observation proba-

bility involves a matrix inversion, the number of points included in each template

dramatically effects processing time [99].

It is computationally infeasible to include all of the points in each trace to

construct each template. Ideally, only points that distinguish between the different

classes considered by the template attack will be included. DSCA methods can be

used to identify these points. One option is to sum the absolute differences of mean

traces and select the highest points [24], or use the cumulative difference between the

mean traces [99] ensuring only one point per clock cycle is chosen. While heuristic

approaches for selecting these points have been effective, a number of more systematic

approaches have been developed.

Assuming the majority of information content of a leakage trace is contained at

the time instances of maximum inter-class variability, Principal Component Analysis

(PCA) can be used2 [9]. PCA is an orthogonal linear transformation that maximizes

the inter-class distance when projecting the data into a lower-dimensional space. As

a result, the dimensionality of the data set is reduced while retaining the majority of

the information. An alternative linear transformation is Fisher’s Linear Discriminant

Analysis (LDA), which maximizes the ratio between inter- and intra-class variance.

While for some implementations LDA has been shown to be more effective than

PCA, it is substantially more computationally expensive then PCA [122].

Archambeau et al. used PCA to perform template attacks in the principal sub-

space of the mean traces for each class [9]. They applied PCA to collected data from

an implementation of RC4 running on a PIC 8-bit micro controller and an FPGA im-

plementation of AES. Traces with 300,000 time samples were collected from the PIC.

Using heuristic methods, 42 test samples were selected for building the templates

2Depending on the field of application, PCA is also known as the Karhunen-Loève transform,
the Hotelling transform or proper orthogonal decomposition.

32

and the average classification success rate was 91.8%. Using PCA, 7 components

were identified and proved to be sufficient to ensure a correct classification of 93.3%.

For the FPGA, traces with 500,000 time samples were collected and PCA identified

20 components. Using 128 encrypted messages the average classification success was

86.7%. Archambeau et al. did not test the performance of the template attack using

heuristic methods to choose the test samples.

Preprocessing leakage traces using PCA provides a systematic way to consol-

idate/identify the most important features of a class, and may allow for superior

classification results using a smaller number of test points. The computational ef-

fort required to build the templates is thereby dramatically reduced. PCA identifies

which components account for the majority of the variance between classes. How

PCA is used in this research is explained in Section 3.6.5.1.

2.5 Countermeasures

Numerous side-channel analysis countermeasures have been proposed. In prac-

tice, protecting implementations against side-channel analysis is difficult and expen-

sive. All countermeasures attempt to make the power consumption of a crypto-

graphic device independent of the data being processed. Since most countermeasures

only increase the cost of attacking a device without fully protecting it, the cost of

implementing the countermeasures must be compared with the additional security it

provides. Countermeasures can be broken into two categories, hiding and masking.

2.5.1 Masking. Masking attempts to randomize the intermediate values

being processed by the cryptographic device changing the power consumption char-

acteristics of the device [73]. Masking techniques are based on various secret sharing

schemes [23, 54]. Masking does not reduce the side-channel emissions, but rather

attempts to make the leaked intermediate values independent of the key. A mask is

used to conceal the value of intermediate values. Since the mask is generated within

33

the cryptographic device and varies from execution to execution, it is unknown to

the attacker. A masked intermediate value vm is an intermediate value v concealed

using a random value m such at vm = v ∗m, where ∗ is the masking operation. Log-

ical XOR (boolean masking) and modular addition and multiplication (arithmetic

masking) are typical masking operations. To prevent leakage of actual intermediate

values, the masked values are processed by the algorithm, and the final result is

unmasked [73].

2.5.2 Hiding. Hiding attempts to make the power consumption of cryp-

tographic devices independent of the intermediate values and independent of the

operations performed. The signal-to-noise ratio (SNR) can be decreased by mak-

ing changes to the implementation of the cryptographic algorithm or hardware via

hiding techniques. Hiding includes algorithmic countermeasures to randomize the

intermediate results processed during a cryptographic operation. Common hiding

techniques include inserting dummy instructions, random process interrupts, clock

skipping, randomly changing the clock frequency and including multiple clock do-

mains in the device [73].

Hiding techniques, in general, attempt to make the timing of the implemen-

tation non-deterministic. Correctly implemented, these techniques are very effec-

tive against first-order DPA, but can easily be defeated using higher-order DPA

attacks [72]. The operation of the circuit can be modeled as a finite state ma-

chine [63] and the randomization can be analyzed. Resynchronization techniques

can be used to bypass the randomizations. Furthermore, randomization techniques

require additional resources and clock cycles to implement, making them expensive.

The SNR can also be decreased by adding noise. Adding noise does not provide

any fundamental protection against side-channel analysis, but may make an attack

more difficult. The data dependent signal is still being generated by the device and

can still be recovered [123]. Noise is typically generated by adding additional logic

34

to the device to perform unrelated, ideally random, operations. As a result, noise

generation may be expensive and increase the power consumption of the device. The

frequency of the generated noise must be matched to the frequency of the information

containing signal, otherwise, the noise can be detected and filtered from the collected

trace [68].

FPGA implementations are more difficult to exploit for two reasons. First, per-

forming parallel computations in hardware significantly reduces the SNR. Second,

FPGAs operate at higher frequencies, making side-channel data collection more dif-

ficult. Combining pipelined and unrolled implementation, or unrelated operations,

on the same device is an effective way of efficiently increasing noise [123].

Some countermeasures are algorithm independent. These countermeasures im-

plemented in hardware include special leakage resistant logic styles, with the goal of

reducing SNR. To gain resistance, leakage resistant logic styles try to equalize power

consumption for all operations. As a result, implemented ciphers required twice as

much space and power consumption is doubled, making this approach less practi-

cal [98]. For dynamic and differential logic, the output capacitance is independent

of the input transitions. Power consumption differences are due to parasitic capac-

itances in the designs and can only be predicted with transistor-level knowledge of

the circuit. Without this knowledge an attacker is not able to create a precise power

consumption model, however, template attacks can still be used [123].

Although FPGAs are not constructed using dynamic differential logic, gate

level designs with the same properties can be implemented on an FPGA [131]. A

customized design flow is used to implement AES using dynamic differential logic on

an FPGA requiring a 50% time delay and a 90% increase in slice utilization.

2.6 Collecting Electromagnetic Emissions

To reduce the noise present in the traces, EM side-channel collections are usu-

ally performed in the near-field [73]. Although a number of far-field attacks have

35

been demonstrated, they often use simplified versions of cryptographic implementa-

tions [64], specialized collection processes, or are limited to SEMA [2].

For example, with the use of a directional antenna and 30dB pre-amplifier

Kim et al. were able to successfully attack an implementation of a single S-box on a

FPGA using a hardwired trigger for timing [64] from 1 meter away. Agrawal et al.

performed SEMA attacks on an Intel-based server containing a commercial PCI bus

based SSL accelerator from 40 ft away using biconical and log-periodic wide-band

antennas as well as hand-crafted, high-gain Yagi antennas [2].

2.6.1 Electronic Noise. Power and EM traces are subject to noise and as

a result repeated traces for constant inputs will be different. Noise can be catego-

rized as electronic noise, and switching noise [73]. Although steps can be taken to

reduce electronic noise, every trace will contain some noise from the power supply,

clock generator, conducted emissions from other components connected to the device

under attack, and radiated emissions from other electronic devices near the device.

Additionally, since the side-channel data is digitized for analysis, quantization noise

is also present. In addition to the power consumption and EM emissions from the

circuit of interest during the attack, many other operations may be conducted simul-

taneously on the device. The variation in the power and EM traces caused by cells

not involved in the operation of interest, and therefore not relevant to the attack, is

called switching noise. DPA and DEMA techniques, which perform signal process-

ing and statistical estimation on a collection of traces, can mitigate measurement

noise. Hundreds or thousands of traces are often required to perform this type of

attack [73].

2.6.2 Improving Collections. A powerful adversary will be able to take

measures to improve the quality of collected traces by various means. Traces are

typically collected with a high speed digital capturing oscilloscope, due to their

ability to sample and store the side-channel at a high sampling rate. Software-

36

defined radios (SDRs) have been used to perform SEMA attacks on unprotected

implementations of RSA [61], but no differential attacks have been demonstrated

using SDRs. The use of SDR for differential side-channel analysis is introduced in

Chapter 7.

2.6.2.1 Hardware Trigger. Adding a hardware trigger to the cryp-

tographic device being attacked can dramatically improve the timing of collected

traces. The cryptographic device is modified by the attacker or designer to signal

immediately before the encryption operation begins, allowing the capturing digital

oscilloscope to trigger at the same time relative to the start of each encryption op-

eration. As a result, corresponding samples in each trace correspond to the same

portion of the encryption operation.

2.6.2.2 Clock Signal. The harmonic content of a square wave is deter-

mined by its rise time and not its fundamental frequency. EM compatibility guides

recommend using a dithered clock which intentionally varies the clock frequency by

a small amount to spread the emission out in the frequency spectrum. This will

reduce the strength of the emission at any one frequency [93]. If a powerful attacker

has the ability to use a clock with a quicker rise time than the FPGAs internal clock,

the concentration of the leakage at clock harmonics can be increased [73].

2.6.2.3 Cartography. Compared to power analysis, EM analysis has

the advantage of being able to target the leakage of specific areas of a chip. Using

small probes placed in the near-field allows the EM emissions from specific parts of a

device to be isolated. Every element on the FPGA will contribute in some way to the

captured EM field. Efforts to isolate the leakage from specific portions of a device

have been shown to reduce the number of traces needed to perform a successful

attack. Using near-field probes, EM cartography was demonstrated to enable more

efficient attacks on FPGAs in [107].

37

To find the location on the device with the highest data-correlated emissions,

a scan of the surface can be performed. Creating a coarse resolution EM leakage

map allows physical locations on the device with greater leakage to be identified

and targeted. It has been shown that EM emissions correlated to the data being

processed is not restricted to the area on the device where the data is being processed.

For example, leakage was observed to originate from both the encryption processor

implementation on the FPGA and from a surface mount ceramic capacitor located

outside of the FPGA in [107]. Power, ground networks, clock paths, and buffer trees

all leak information. By targeting the leakage with a directional near-field probe, the

number of traces required to attack the device was significantly reduced compared

to collections made with larger probes.

2.6.2.4 Benefit of Isolation. To reduce interfering signals from other

devices, Gandolfi et al. placed the cryptographic device into a Faraday cage [47].

They determined that isolation of the device had little effect on the noise present

in the readings. Furthermore, even if the device and probe can be isolated, the

remaining trace collection equipment is still subject to ambient noise and is prone

to cross-talk. This result conflicts with the benefit of isolation reported by Man-

gard ([70] as cited in [40]). All isolation studies were conducted using near-field

measurements.

2.7 Pre-Processing Processing Techniques

In cases where special efforts to improve the quality of collected traces cannot

be made, pre-processing can improve the effectiveness of side-channel analysis. The

techniques in the following sections identify the frequencies which leak information,

improve alignment of traces and reduce the complexity of analysis through data

reduction.

38

2.7.1 Detecting Compromising Frequency Components. One technique to

detect potentially compromising emissions is to use a wide-band receiver tuned to

a specific frequency. High-end TEMPEST receivers can scan across a range of fre-

quencies to identify potential compromising emissions, and demodulate the signal

using AM and FM demodulation. The demodulation can also be performed using

software.

In [136] a software radio was constructed using the Universal Software Radio

Peripheral (USRP) and GNU Radio project. The software radio was able to scan

from DC to 2.9 GHz using various daughterboards. The GNU radio project which

includes libraries for processing AM and FM modulation and performing signal pro-

cessing techniques such as filtering and Fast Fourier Transform (FFT) processed

the collected signals. Combining the USRP with the GNU Radio project, a wide-

band receiver and a spectral analyzer with software-based FFT computation was

constructed [135,136].

If a signal is composed of irregular peaks and erratic carrier frequencies, meth-

ods such as spectral analyzers and scanning with wide-band receivers may fail to

identify some direct and indirect EM emissions [136]. Signal analyzers require con-

stant or long duration carrier frequencies and since the scanning process is not in-

stantaneous, emissions may be missed by a wide-band receiver. Typically when a

frequency is identified using one of these methods, the frequency is isolated using

narrow band antenna and filters. This method is not ideal because the signal is

captured at base band and with limited bandwidth. Important information at other

frequencies may be lost, reducing the entropy of the signal.

Meynard et al. showed a SEMA attack against an RSA processor implemented

on a side-channel Attack Standard Evaluation Board (SASEBO) FPGA board can

be enhanced using a hardware demodulation receiver [79]. Starting with a SEMA

resistant implementation of RSA, the raw recorded EM traces do not allow discrim-

ination between the square and multiply operations. To determine the appropriate

39

demodulation frequency, the spectral signature of each operation was found by isolat-

ing each operation and performing a FFT. Using mutual information techniques [52],

a metric for the amount of information contained at different frequencies was calcu-

lated and multiple frequencies with high information content were identified. Using

the frequencies identified with mutual information analysis in the frequency domain

as the demodulation frequency, the start of square and multiple operations are eas-

ily identified in the demodulated signal. In addition to identifying harmonics of the

clock frequency, other frequencies believed to be caused by direct emissions were

found to have high information content [79].

The use of signal processing to enhance the effectiveness of side-channel attacks

is introduced in [13]. A leakage model identified which frequencies contain useful

information by examining the Discrete Fourier Transform (DFT) of the collected

traces. Since power consumption in CMOS devices is mostly due to signal transitions

and power consumption is proportional to the voltage swing and operating frequency

of the device components, the magnitudes of the clock harmonics in the DFT are

significantly greater than other frequencies. The information leakage is amplitude

modulated on harmonics of the clock. To improve the SNR by removing components

of the signal not correlated to the information, a filter was designed to remove signal

components not related to the clock or clock harmonics.

Using the DFT of the power traces, the harmonics of the clock frequency were

identified. After locating the main clock and each significant harmonic using the

DTF, 500kHz wide passbands were centered around each. The Chebyshev windowing

technique was chosen to implement the bandpass filters due to its rapid side lobe

roll-off and uniform side lobe attenuation. The filtering method was validated using

a 32-bit Cortex-M3 processor running a software implementation of the AES-128

without DPA countermeasures. Performing the identical DPA attack before and

after filtering, the number of traces required for a successful attack was reduced from

6000 to 450. To reduce the amount of environmental noise, 16 measurements are

40

taken with each plaintext and averaged. The technique also enabled better alignment

of traces because artifacts in the original signal that do not carry information are

removed [13].

The above filtering technique is extended to efficiently search the frequency

spectrum and identify which frequency bands contain important information [14].

The algorithm focuses on harmonic components in the measured signal to avoid

sweeping the entire frequency range. To characterized the leakage in certain fre-

quency bands, the spectrum is split into equally sized shares and filtered as in [13].

A series of DPA attacks are conducted on the filtered output for each frequency band

to determine the number of traces required for a successful attack. The searching

function is recursively called for frequency regions that yield successful attacks.

Figure 2.8 The minimum number of traces required for a suc-
cessful attack for each slice of the frequency spec-
trum. The leftmost dashed line indicates the mini-
mum number of traces for a successful attack. The
rightmost line indicates the number of unfiltered
traces required [14].

When finished, the algorithm provides a list of both the shortest frequency

intervals that yield a successful attack and the largest frequency intervals that fail

using the entire trace set. The number of traces required to successfully recover the

key using the traces filtered for a specific frequency band is used as an estimator of

the information leakage over that frequency band. Figure 2.8 shows the results for

41

a DEMA attack using up to 3000 traces. Unsuccessful attacks are represented as

requiring zero traces. Since the information leakage tends to be clustered across the

frequency domain, the search algorithm is more efficient than conducting a brute

force search of the entire frequency spectrum [14].

2.7.2 Trace Alignment. Most side-channel analysis techniques compare the

recorded side-channel emission values at specific points in the encryption operation.

The traces must be aligned so the cryptographic operation being attacked occurs at

the same time in each trace. When attackers have complete control of the system

they typically build a trigger signal into the hardware to ensure that each collected

trace starts at the same point in the encryption operation. When the attacker is not

able to modify the device, real-time processing of the signal to identify a pattern

in the signal can be performed. Once the traces have been collected, they can be

analyzed to identify the portions corresponding to the encryption operation in each

trace [73].

Even when a trigger signal is used, it may contain jitter-related deviations from

the timing of the cryptographic computations. Displacement errors can cause signif-

icant data loss of secret information when analysis techniques average the waveforms

together. Traces can also be misaligned for a number of reasons, including counter-

measures like random dummy operations and shuffling. Various methods have been

proposed and demonstrated for aligning traces.

2.7.2.1 Pattern Matching. Pattern matching in the time domain is

the most common alignment technique. A portion of the first trace is selected as

the pattern. The attacker tries to find the pattern in all other traces to identify the

offset between the traces. There are a number of important considerations when

selecting a pattern [73].

First, the pattern should be unique. The more distinct the portion of the trace

is, the better the alignment process will work. Targeting a unique operation, such

42

as loading the initial registers of an AES-128 implementation will work better than

building a pattern for the output of the S-box since a similar operation occurs in

each of the 10 rounds. Second, the pattern should be from a portion of the operation

that is not data dependent. For example, when attacking a device with a fixed key

where the key schedule is generated on the fly, portions of the trace that correspond

with round keys being calculated will not be data dependent.

Next, the length of the pattern is important. Longer is only better if the

operations in the pattern do not depend on intermediate results. Including data

dependent portions of the trace in the pattern can degrade the matching results.

Finally, if countermeasures such as inserting random dummy operations are used,

the pattern should be as close as possible to the portion of the trace that is dependent

on the intermediate value being attacked.

Least squares and correlation coefficient methods are the most common ap-

proach used to identify the pattern in a trace. To improve accuracy and reduce

processing time rather than trying to find the pattern in the entire trace, an at-

tacker should focus on a smaller search interval based on the location of the pattern

in the first trace [73].

2.7.2.2 Phased-Based Alignment. A number of methods to perform

alignment using the frequency domain have been demonstrated. The phase-only

correlation technique allows fine grain alignment of traces with high noise tolerance.

The technique uses a cross-phase spectrum formed with the reference trace and the

subject trace. If the two traces are similar, the inverse discrete Fourier transform of

this spectrum forms a distinct peak at the location of the translational displacement

between the reference and subject trace. Using an analytical model of the correla-

tion peak, the displacement between the waveforms can be estimated with higher

resolution than the sampling resolution. An interpolation technique can then be

used to finely align the traces. The magnitude of the correlation peak can also be

43

used to identify inaccurately measured traces that would have adverse effects on the

statistical analysis if included in the attack [59].

Gebotys and White demonstrated a phase-based technique for temporal align-

ment EM traces [49]. The method is robust for complex systems, even those with

random delays and random operations. The technique, called phase substitution, is

based on the fact that a shift of a signal in the time domain corresponds to a change in

the phase of the signal in the frequency domain. To perform phase substitution, the

FFT of each trace is calculated. Next, one trace is randomly chosen as the reference

from the collection of traces and the phase of all other traces is replaced by the phase

of the reference trace. Finally, the inverse FFT is performed to transform the trace

back into the time domain. Once the phase substitution alignment is completed,

an appropriate side-channel analysis attack can be performed. Phase substitution

adds noise in the time domain, but it is largely averaged out by differential analysis

techniques.

2.7.3 Frequency-Based Analysis. In addition to using the frequency domain

to perform alignment, side-channel attacks can be performed using representations of

the traces in the frequency domain. By ignoring phase information in the frequency

domain, alignment problems can be mitigated. Gebotys et al. proposed frequency-

based DEMA based on the spectrogram of the collected traces [48]. Gebotys and

White the demonstrate a frequency-based DEMA attack using the Power Spectral

Density (PSD) in [50]. After the portion of each trace with the operation of interest

is identified, the regions are extracted an the PSD of these regions are used for

the attack. Unfortunately, the amount of preprocessing required makes this type

of attack impractical. Hodgers et al. use an overlapping window method to reduce

the amount of preprocessing and eliminate the problem of sampling boundaries [58].

This ensures the entire region of attack is contained within the portion of the trace

that will be used for at least one PSD provided the window is large enough. The

technique follows typical correlation-based attack methodology (cf. Section 3.4.1),

44

but uses the PSD data set in place of the collected time-domain EM traces. The

method is shown to be effective for both aligned and misaligned traces.

Pre-processing traces by taking their FFT has been shown to be a viable

method to enhance template attacks [99]. The FFT of each trace is used in place

of the collected EM trace in the template attack methodology. Basing the template

attack on the FFT was shown to allow for a successful attack even when the ambient

noise in the time domain did not allow for successful classification.

2.8 Algebraic Cryptanalysis

As block ciphers have become more important, a number of powerful crypt-

analysis methods have been developed; these include differential and linear attacks

as discussed in Section 2.2.3. Most of these methods submit particular statistical

patterns through rounds of the cipher to determine if non-random behavior can be

observed in the output [18]. Newer ciphers, including AES, were developed to be

resistant to these techniques and are thus not vulnerable to these types of attacks.

As introduced in Section 2.2.3.2, an alternate approach for the cryptanalysis

of block ciphers such as AES and DES is to exploit the algebraic structure of the

cipher by constructing algebraic systems of equations which completely describe the

cipher.

2.8.1 Describing a Cipher. In algebraic attacks, equations describe the

output bits of a cipher in terms of its input bits and key. Since modern block ciphers

are implemented in hardware or software, their operations are typically defined over

GF(2). As a result, the Boolean equations are written as polynomial systems over

GF(2). The Galios Field arithmetic required for AES is reviewed in [88].

Theoretically most modern block ciphers can be fully described by a system

of multivariate polynomial equations over a finite field. In practice, the majority of

45

these systems are too complicated for any practical purpose. However, due to its

algebraic structure AES may be vulnerable to algebraic cryptanalysis [26].

As in most block ciphers, the only non-linear element of the AES is the S-Box.

Since the S-Box is based on an inverse function, a small set of quadratic multivariate

equations in terms of the input and output bits completely define the S-box. For an

S-box of any practical size, a basis of linear independent multivariate polynomials

can be generated which span the space of all possible equations between the input

and output bits [18]. By limiting the set of equations to the basis equations, the size

of the system is reduced.

2.8.1.1 Strategies for Describing Ciphers as Equations. Writing a set

of equations for the linear components of a block cipher, including linear diffusion

layers and key additions, is straightforward. These are combined with the equations

for the non-linear components to completely define the cipher. Although a cipher

can be described in the terms of a multivariate system of equations over GF(2), that

does not guarantee it can be broken. Solving a system of multivariate quadratic

equations (known as a MQ problem) is NP-hard. Such systems of equations have a

number of properties that describe their computational complexity.

Shamir et al. showed that the complexity of a MQ problem drops substantially

when a system is over-defined [112]. An overdefined system has more equations than

unknowns. For a block cipher, using additional plaintext/cipher text pairs is a

straightforward way to create an over-defined system of equations.

To reduce the complexity of the system of equations, equations with common

terms can be combined. Rather than write separate equations for bit permutations,

for example, variables are renamed to prevent redundant variables. Once equations

have been derived for each component, they are combined into a system of equations

for the system. Both [36] and [86] construct simple algebraic equations to describe

AES.

46

There are numerous ways to represent the same system of equations. Since

most modern cryptographic systems are implemented on inexpensive hardware they

have moderately low gate counts, resulting in a sparse system of equations [36]. The

sparsity of a system is the ratio of coefficients that are non-zero to the total number of

possible coefficients. Some algebraic cryptanalysis techniques work better on densely

defined systems, while others are more efficient for sparse systems. The technique

used to solve the system of equations should be kept in mind when equations are

generated.

The number of variables in each equation affects how difficult the system is to

solve. A system of any degree can be written as a degree 2 system using the following

step repeatedly

{l = wxyz} ⇒ {a = wx; b = yz; l = ab} . (2.3)

Likewise, any equation can be written as a system of smaller equations. The maxi-

mum degree of the smaller equations is known as the cutting number [11]. A method-

ology for describing ciphers as systems of multivariate polynomials is described in

Appendix A.

2.8.1.2 Systems of Equations for AES. Biryukov and De Canniere

show in [18] that each of the 160 8-bit S-boxes in AES can be completely defined

by a system of 23 quadratic equations in 80 terms. The 11 linear layers in AES can

be written as a system of 128 linear equations and the complete implementation of

AES has been defined as a system of 4000 multivariate quadratic equations with

1600 variables [36]. Unfortunately, the systems of equations have not been made

available from either of these research efforts.

However, two systems of polynomial generators have been published. The

small scale variants of the AES (SR) Polynomial System Generator [7] based on [25],

and SYMAES, a fully symbolic polynomial generator for AES-128 [134]. These tools

both run in Sage Mathematics Software [124] and can generated systems of equations

47

for AES-128. The SR Generator is used in Chapter 3 to create the AES-128 SAT

solver tool used in this dissertation.

Once the cipher has been fully defined as a system of equations, the system

can be solved to determine the cryptographic key.

2.8.2 Solving a System of Equations. The most näıve approach to solve a

system of equations is to guess all of the variables (brute force). If the system has

n unknowns, 2n−1 guesses must be tried to have a 50% chance of finding the correct

solution. Algebraic cryptography attempts to exploit the algebraic properties of the

cipher to solve the system of equations in less time. Various methods have been

developed for solving non-linear multivariate systems of equations. The method

employed by this research is a satisfiability (SAT) solver. Alternative methods not

used in this research are included in Appendix A.

Using a SAT solver for cryptanalysis was first proposed by Massacci and Mar-

raro [75]. They demonstrated that DES could be written as a system of equations

and used three different SAT solvers to solve DES reduced round implementations.

Courtrois, Bard and Jefferson discovered that SAT solvers and Gröbner bases al-

gorithms such as F4, can solve very sparse or over-defined systems of quadratic

equations efficiently even in cases where the performance of algebraic elimination

methods is greatly degraded [12]. Furthermore, Courtois and Bard showed it is

possible to solve very large systems of multivariate equations with more than 1000

unknowns derived from a contemporary block cipher such as DES [37].

2.8.3 Using SAT Solvers. Solving systems of multivariate quadratic poly-

nomials is known to be NP-complete [35]. Therefore, rather than solving the system

directly, the system is translated into a SAT problem.

SAT solvers determine an assignment of a set of variables over a domain such

that a set of equations or constraints holds true for those variables or, alternatively,

48

determine that no such assignment exists [127]. The term SAT refers more specif-

ically to the problem of assigning values to variables in a given Boolean formula

to find a variable assignment which makes the Boolean statement true, or satisfied.

Although SAT problems are also known to be NP-complete, they are a well-studied

class of problem and the development and enhancement of SAT solvers is ongoing.

SAT solvers determine if a particular set of constraints have a solution. These

constraints are often written in conjunctive normal form (CNF). Each element in

the constraint (a or a), is called a literal. A clause is a disjunction (or statement) of

literals. Constraints presented to a SAT solver in CNF are written as a conjunction

of clauses. See Appendix A for more detail.

Conflict-driven SAT solvers attempt to find a satisfying variable assignment.

For example, MiniSat uses a backtracking-based, depth-first search algorithm [120].

The algorithm branches on a variable by guessing true or false and determining if

other variables depend on the guess. Variables affected by this guess are assigned

values and the algorithm continues to branch until no more assignments can be

made. This period is called propagation. If a clause is found that cannot be satisfied

a conflict is identified and a learned clause is generated that records the incorrect

guesses that led to the conflict. Based on the learned clause, the top most guess

allowed is reversed and propagation continues. The collection of learned clauses

trims the search tree and guides the algorithm in choosing the next guess. The

algorithm eventually identifies a satisfying variable assignment or the search tree is

exhausted meaning that no solution exists. Figure 2.9 shows an example search path

taken by a SAT solver.

2.8.3.1 Optimization for Cryptography. SAT solvers typically require

the cipher to be described as a system of equations written in CNF. This process

can be cumbersome and adds additional complexity to the problem. To tailor SAT

solvers for use in cryptography, Soos extended CryptoMiniSat’s input language to

49

�����

����	
�

����

�����
��

����

����
��

�����

���	��

�����

������

�����

����
��

�����

������

����	

�����
��

����

����
��

����

������

���
�

������

�����

���	��

�����

������

�����

�����
��

����

�����

�

����

���	��

����

������

����

�����
��

����

����

�

����

������

����

���	��

����

������

����

�����

�

����

�������

����

������

����

������

����

���	��

����

������

���	

�������

����

����	�

����

���	��

����

������

����

������

����

�������

����

�����	�

����

�������

����

�������

��	�

���	��

���

������

����

�������

����

�������

����

�������

����

�������

����

�����
�

����

�������

����

�������

����

�������

����

�����	�

����

�������

����

�������

����

������

��	�

������

��		

���	��

��	�

�������

����

�������

����

�������

����

�����
�

����

�������

����

�������

����

������

��	

���	��

��	�

���	��

��	�

�������

����

������

����

������

����

�����	�

����

����	�

����

���	��

����������

����	��

����������

������

��������
�

������

����������

����	��

���������

�������

��������

�

����	��

��������
�

����	�
������
������
����
��
������
����

�
���	
�
������

��������
��

����	��

����������

���	��

����������

�������

��������
�

������

����������

������
������
������
���	
�
������
����
��
����

�

����������

�������

����

�������

����������

���	��

��������
�

����	��

����������

������
�������
������
������
������
���	
�

����������

������

����������

����	��

��������
�

����	��

����������

������

����������

����	�

����������

������
������
���	
�
����
��
������
������
����
��
����

�

��������
��

����	��

����

������

��	�

����	�

����������

�������

����

�������

����������

�������

��������
��

����	��

��������
�

������
���	��
������
���	
�
�������
������
����
��

����������

������

����������

������

��������
��

���	��

��������
�

���	��

���������

���	��

��������	�

���	��

��������
�

������

����������

���	��
������
�������
������
���	
�
������
����
��

����������

�����	�

����������

����	��

����

�������

��������
�

�������

����������

���	��

���������

�������

����������

����	��

��������
��

������

��������	�

���	��
�������
������
������
����	��
����	�
����
��
���	
�

����������

������

��������
�

������

����������

����	��

���������

������

����������

������
������
���	
�
������
����	�
����
��
������
����
��
����
��
����

�

����������

�������

����

���	��

��	�

������

����������

����	��

����

����	�

����������

������

��������

�

������

��������
��

����	��

����������

���	��

���������

���	��
������
���	
�
�������
������
����
��
����

�

���������

�����	�

����������

�������

��������

�

�������

��������
��

����	��

����������

���	��

���������

���	��

��������	�

������

����������

������
�������
���	
�
����	�
������
����
��
����

�

���������

�������

����������

����	��

����

������

��������
�

�������

����������

����	�

��������

�

����	��

���������

����	��

����������

����	��

��������
�

������

��������
��

���	��
�������
���	
�
�������
����

�
������

���������

�������

��������
�

�������

����������

����	�

��������

�

���	��

���������

����	��

����������

�������
����	�
����
��
����

�
������
���	
�

��������
��

����	��

����

������

��	�

����	�

����������

�������

����

�������

��	�

�������

����������

�������

��������

�

������

��	

���	��

��������
�

������
���	��
���	
�
������
����
��
����

�
������

��������
��

������

����������

������

��������

�

���	��

��������	�

������

��������
��

����	��

����������

�������

��������
��

����	��

���������

���	��

����������

���	��
����	�
����
��
����
��
���	
�
����

�
������

���������

�����	�

����������

�������

����

�������

����������

������

��������

�

���	��

��������	�

�������

��������
��

����	��

����������

�������

��������
��

������
����	��
���	
�
������
����
��
����	�
����

�

���������

������

����������

�������

��������

�

���	��

��������	�

�������

��������
��

���	��

����������

�������

��������
��

���	��

���������

���	��

����������

����	�
������
����
��
����
��
����

�
���	
�

��������
�

����	��

����

������

����

������

����

����	�

����������

�������

����

�������

��	�

������
���	��
���	
�
����
��
����

�
������

��	�

�������

����

������

����������

������

��������

�

����	��

��������	�

������

��������
��

���	��

����������

������

��������
��

����	��

���������

����	��

����������

������
�������
���	
�
���	��
����
��
����
��
�����	�
����

�

���������

���	��

��	�

�������

����������

�������

��������

�

�������

��������
�

������

����������

���	��

���������

���	��

���������

���	��
������
����

�
���	
�
����
��
����
��

����������

�����	�

����������

������

���	

�������

����

�������

����

�������

����������

������

��������

�

����	��

��������	�

�������

��������
��

���	��

����������

������

��������
��

������
������
����	��
���	
�
����
��
�����	�
����

�

���������

������

����������

�������

��������

�

����	��

��������	�

�������

��������
��

����	��

����������

������

��������
��

���	��

���������

����	��

����������

������
����	��
���	
�
����
��
����
��
�����	�
����

�

��������
�

�������

����

������

����������

�������

��������

�

����	��

��������	�

�������

��������
��

����	��

����������

�������

��������
��

������
����	��
���	
�
�������
����
��
�����	�
����

�

���������

���	��

��	�

�������

����������

������

��������

�

�������

��������
�

������
����

�
���	
�
����
��
����
��

����������

�������

����

���	��

����

������

����

����	��

����

������

���

����	�

����������

�������

����

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

����	��

���������

������

����������

���	��

���������

������
���	��
���	
�
������
����
��
����

�

���������

������

����������

������

��������

�

������

��������
��

���	��

��������
�

����	��

���������

������

����������

����	��

���������

���	��
������
���	
�
����
��
����

�

����������

�����	�

����������

�������

����

�����	�

���	

������
������
���	
�
����
��
����

�

����

�����	�

����

������

����������

�������

��������

�

���	��

��������	�

�������

��������
��

���	��

����������

������

��������
��

������
����

�
����
��
���	
�

���������

����	��

����

������

����

����	�

����������

�������

����

�����	�

����

������

����������

������

��������

�

���	��

��������	�

������

��������
��

����	��

����������

�������

��������
��

����	��

���������

���	��

����������

������
���	��
���	
�
����
��
����
��
����

�

���������

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

���	��
����

�
����
��
���	
�
����
��

����������

�����	�

����������

�������

����

�����	�

����

������

����������

�������

��������

�

���	��

��������	�

�������

��������
��

���	��

����������

�������

��������
��

���	��

���������

���	��

����������

������
����

�
����
��
����
��
���	
�

��������
�

�������

����������

������

��������

�

�������

��������
��

���	��

��������
�

����	��

���������

�������

����������

���	��

���������

����

�
����
��
����
��
���	
�

���������

�������

����

���	��

����

������

���

����	��

����

������

����

����	�

����������

�������

����

�������

����������

������

��������

�

�������

��������
��

���	��

��������
�

����	��

���������

�������

����������

�������

����������

���	��

���������

������
���	��
������
���	
�
����
��
�����

�

���������

������

����������

�������

��������

�

�������

��������
��

����	��

��������
�

���	��

���������

������

����������

������

����������

����	��

���������

���	��
������
���	
�
����
��
�����

�

����������

�����	�

����������

�������

����

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

���	��

���������

������

����������

�������

����������

���	��

���������

������
������
���	
�
����
��
�����

�

���������

������

����������

������

��������

�

������

��������
��

���	��

��������
�

����	��

���������

�������

����������

������

����������

����	��

���������

������
�����

�
����
��
���	
�

����������

����	��

����

������

����

����	�

����������

�������

����

������

����������

�������

��������

�

�������

��������
��

����	��

��������
�

����	��

���������

�������

����������

�������

����������

����	��

���������

���	��

��������
�

������
���	��
���	
�
����
��
�����

�

����������

�������

����������

������

��������

�

�������

��������
��

���	��

��������
�

���	��

���������

������

����������

������

����������

���	��

���������

���	��
�����

�
����
��
���	
�

���������

�����	�

����������

�������

����

������

����������

������

��������

�

������

��������
��

���	��

��������
�

���	��

���������

������

����������

�������

����������

����	��

���������

����	��

��������
�

������
�����

�
����
��
���	
�

����������

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

����	��

���������

�������

����������

������

����������

���	��

���������

�����

�
����
��
���	
�

���������

������

����

������

���	

����
��

����

����	��

����

����	�

����������

�������

����

������

����������

������

��������

�

������

��������
��

���	��

��������
�

���	��

���������

�������

����������

�������

����������

����	��

���������

���	��

��������
�

������
���	��
����
��
���	
�
����
��

��������
��

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

���	��

���������

������

��	�

���	��
����
��
���	
�
����
��

����������

�����	�

����������

�������

����

������

����������

�������

��������

�

�������

��������
��

����	��

��������
�

����	��

���������

������

����������

�������

����������

����	��

���������

����	��

��������
�

������
����
��
���	
�
����
��

��������
��

�������

����������

������

��������

�

�������

��������
��

���	��

��������
�

����	��

���������

������

����������

�������

����������

���	��

���������

����
��
����
��
���	
�

���������

�������

����

���	��

���
�

������

���
�

������

���
	

����	��

����

������

���
�

������

���
�

����	�

����������

������

���

�������

����

�������

����������

�����

�

����

�������

��������

�

�������

��������
��

���	��

��������
�

���	��

���������

������

����������

�������

����������

���	��

���������

������
������
������
���	��
���	
�
�����
��

���������

����

�

��������

�

������

��������
��

����	��

��������
�

���	��

���������

�������

����������

������

����������

���	��

���������

������
���	��
������
���	
�
�����
��

���������

������

����������

�������

����

����	��

��������
�

������

��������
��

����	��

���������

�������

����������

������

����������

����	��

���������

�����

�

��������

�

����	��

��������
�

������
���	��
����
��
������
���	
�

��������
��

���	��

��������
�

�������

��������
��

����	��

���������

������

����������

�������

����������

����	��

���������

���	��
������
���	
�
����
��

����������

�����	�

����������

������

���
�

�������

����

�������

����������

�������

����

���	��

��������
�

�������

��������
��

����	��

���������

������

����������

������

����������

���	��

���������

������
������
������
����	��
���	
�
�����
��

���������

����	��

��������
�

������

��������
��

����	��

���������

�������

����������

�������

����������

���	��

���������

������
������
���	
�
����	��
�����
��

���������

������

����������

�������

����

����	��

��������
�

������

��������
��

���	��

���������

�������

����������

�������

����������

����	��

���������

������
����	��
���	
�
������
�����
��

����������

���	��

��������
�

�������

��������
��

���	��

���������

������

����������

������

����������

����	��

���������

�����

�

��������

�

���	��

��������
�

������
����
��
���	
�

��������
��

�������

����

���	��

���
�

������

����

������

����������

������

���
�

����	��

����

����	�

����������

�������

����

����	��

��������
�

������

��������
��

���	��

���������

������

����������

�������

����������

����	��

���������

������
���	��
���	
�
�������
������
�����
��

����������

���	��

��������
�

�������

��������
��

���	��

���������

�������

����������

������

����������

����	��

���������

����

�

��������

�

����	��

��������
�

���	��
������
�������
���	
�
�����
��

����������

�����	�

����������

�������

����

����	��

��������
�

������

��������
��

����	��

���������

������

����������

������

����������

����	��

���������

����

�

��������

�

���	��

��������
�

������
������
�������
���	
�
�����
��

����������

���	��

��������
�

�������

��������
��

����	��

���������

�������

����������

�������

����������

����	��

���������

������
�������
���	
�
�����
��

����������

�������

����������

������

�����

����	��

����

����	�

����������

�������

����

���	��

��������
�

�������

��������
��

����	��

���������

�������

����������

������

����������

���	��

���������

������
���	��
�������
���	
�
�����
��

���������

����	��

��������
�

������

��������
��

����	��

���������

������

����������

�������

����������

���	��

���������

���	��
�������
���	
�
�����
��

���������

�����	�

����������

�������

����

���	��

��������
�

�������

��������
��

���	��

���������

�������

����������

�������

����������

���	��

���������

������
�������
���	
�
�����
��

���������

����	��

��������
�

������

��������
��

���	��

���������

������

����������

������

����������

���	��

���������

����
��
���	
�

���������

����	��

����

������

�����

����
��

�����

������

����

����	�

����������

����
��

����	

�������

����

�������

����

�����
��

���
�

�������

����������

�����

�

����

����
��

����

����
��
������
���	
�
���	��

����

�������

�����

������
���	��
���	
�

���
�

�����
��

����

������

�����

�����

�

����

����
��

����

�������

����

������

����������

������

��������

�

������

��������
��

���	��

��������
�

���	��

���������

�������

����������

�������

����������

����	��

���������

���	��

��������
�

������
����
��
���	
�
���	��

����������

�������

����������

�������

��������

�

������

��������
��

����	��

��������
�

���	��

���������

������

��	�

����
��
���	��
���	
�

����������

�������

�����

������

����������

�������

����

����	��

��������
�

������

��������
��

����	��

���������

�������

����������

������

����������

����	��

���������

�����

�

��������

�

����	��

��������
�

������
���	��
���	
�

����������

���	��

��������
�

�������

��������
��

����	��

���������

������

����������

�������

����������

����	��

���������

���	��
���	
�

����������

�����	�

����������

����
��

�����

�������

����

�����
��

����

�����

�

����

����
��

����

����
��
������
���	
�

����

�������

�����

������
���	
�

���
�

�����
��

����

������

�����

�����

�

����

����
��

����

�������

����

������

����������

�������

��������

�

�������

��������
��

����	��

��������
�

����	��

���������

������

����������

�������

����������

����	��

���������

����	��

��������
�

������
����
��
���	
�

����������

�������

����������

������

��������

�

�������

��������
��

���	��

��������
�

����	��

���������

������

����������

�������

����������

���	��

���������

����
��
���	
�

���������

�������

����

������

���
	

������

����������

���	��

��������
�

�������

��������
��

���	��

���������

������

����������

������

����������

����	��

���������

�����

�

��������

�

���	��

��������
�

������
���	
�

����������

������

�����

�������

����������

����	��

��������
�

������

��������
��

���	��

���������

������

����������

������

����������

���	��

���������

���	
�

���������

����		

���	
�

����� ��! ������

������

����� ��! ������

�������

����

����
��

�����

���	��

�����

������

����

������

�����

�����
��

����

���	��

����

������

�����

������

�����

����	��

����

������

�����

������

�����

����	�

����������

������

�����

�������

����

������

����������

�������

����

����	��

��������
�

�������

��������
��

����	��

���������

�������

����������

������

����������

���	��

���������

������
������
���	��
������
����
��

����������

���	��

��������
�

������

��������
��

����	��

���������

������

����������

�������

����������

���	��

���������

����

�

��������

�

���	��

��������
�

������

����������

������
���	��
������
����
��

����������

�������

����������

�������

����

���	��

��������
�

������

��������
��

����	��

���������

�������

����������

������

����������

����	��

���������

������
���	��
������
����
��

���������

����	��

��������
�

�������

��������
��

����	��

���������

������

����������

�������

����������

����	��

���������

���	��
����
��
������

���������

�����	�

����������

������

�����

�������

����

������

����������

�������

����

����	��

��������
�

�������

��������
��

���	��

���������

�������

����������

�������

����������

���	��

���������

����

�

��������

�

����	��

��������
�

������

����������

������
������
������
����
��

����������

���	��

��������
�

������

��������
��

���	��

���������

������

����������

������

����������

���	��

���������

������
����
��
������

����������

�������

����������

�����	�

����

�������

����

���	��

��������
�

������

��������
��

���	��

���������

�������

����������

�������

����������

����	��

���������

������
����
��
������

���������

����	��

��������
�

�������

��������
��

���	��

���������

������

����������

������

����������

����	��

���������

����
��
������

���������

����	��

����

������

����	

������

�����

����	�

����������

������

�����

�������

����

������

����������

�������

����

����	��

��������
�

������

��������
��

���	��

���������

������

����������

������

����������

���	��

���������

����

�

��������

�

����	��

��������
�

������

����������

������
������
������
���	��

����������

���	��

��������
�

�������

��������
��

���	��

���������

�������

����������

�������

����������

���	��

���������

������
���	��
������

����������

�������

����������

�������

����

���	��

��������
�

�������

��������
��

���	��

���������

������

����������

������

����������

����	��

���������

������
���	��
������

���������

����	��

��������
�

������

��������
��

���	��

���������

�������

����������

�������

����������

����	��

���������

���	��
������

���������

�����	�

����������

������

�����

�������

����

������

����������

�������

����

����	��

��������
�

������

��������
��

����	��

���������

������

����������

�������

����������

���	��

���������

������
������
������

����������

���	��

��������
�

�������

��������
��

����	��

���������

�������

����������

������

����������

���	��

���������

����

�

��������

�

���	��

��������
�

������

����������

������
������

����������

�������

����������

�������

����

���	��

��������
�

�������

��������
��

����	��

���������

������

����������

�������

����������

����	��

���������

������
������

���������

����	��

��������
�

������

��������
��

����	��

���������

�������

����������

������

����������

����	��

���������

������

���������

�����
��

����

���	��

�����

������

�����

������

�����

����	��

����

������

�����

������

�����

����	�

����������

������

�����

�������

����

�������

����������

�������

����

���	��

��������
�

������

��������
��

���	��

���������

������

����������

�������

����������

����	��

���������

������
������
���	��
����
��

���������

����	��

��������
�

�������

��������
��

���	��

���������

�������

����������

������

����������

����	��

���������

������
���	��
����
��

���������

������

����������

�������

����

����	��

��������
�

�������

��������
��

���	��

���������

������

����������

�������

����������

���	��

���������

�����

�

��������

�

���	��

��������
�

�������

����������

������
���	��
����
��

��������	�

���	��

��������
�

������

��������
��

���	��

���������

�������

����������

������

����������

���	��

���������

���	��
����
��

����������

�����	�

����������

������

����	

�������

����

�������

����������

�������

����

���	��

��������
�

������

��������
��

����	��

���������

������

����������

������

����������

����	��

���������

������
������
����
��

���������

����	��

��������
�

�������

��������
��

����	��

���������

�������

����������

�������

����������

����	��

���������

������
����
��

���������

������

����������

�������

����

����	��

��������
�

�������

��������
��

����	��

���������

������

����������

������

����������

���	��

���������

������
����
��

����������

���	��

��������
�

������

��������
��

����	��

���������

�������

����������

�������

����������

���	��

���������

�����

�

��������

�

����	��

��������
�

�������

����������

�������

����������

����	��

����������

������

����������

�����
��

��������
��

�������

����������

������

����������

����	�

��������	�

�����
��

��������
��

������

����������

������

����������

�����
�

��������
�

�������

����������

�������

����������

�������

����������

�������

����������

�����
��

��������
��

����
�

��������
�

�������

����������

�������

����������

������

����������

�������

����������

�����	�

��������	�

"#$�%

&'()*+,-./',*
0-12*'-.+&-2.3

45,6*(5,6

728))+
2.*'1
,-./',*

0*5(*

Figure 2.9 Visualization of a SAT solver’s search for a solu-
tion. The first conflict clause and path to the sat-
isfying assignment are highlighted [118].

support the XOR operation and created functions to reconstruct XOR operations

from CNF clauses [120]. Since many ciphers are described using XOR functions,

this provides a more natural and compact representation. Using a number of stream

ciphers for testing, Soos showed that describing the ciphers using XOR operations

allows a SAT solver to solve systems more quickly. The exponential expansion of

XOR clauses into CNF is described in Appendix A.3.

2.8.4 Algebraic Side-Channel Analysis. To break a cipher using algebraic

cryptanalysis, in addition to describing the cipher as a system of multivariate polyno-

mial equations, the system must be solvable. Computational complexity prevents the

system of equations from being solved using only one plaintext-ciphertext pair [36].

Information about intermediate values determined using side-channel analysis can

reduce the complexity of the system.

Combining algebraic cryptanalysis and side-channel analysis has a synergistic

effect, making the system easier to solve while simultaneously reducing the number

50

of side-channel measurements required to perform the attack [101]. On vulnerable

implementations, with enough measurements, the entire key can be recovered.

2.8.4.1 Attacks with SAT Solver Stage. Renauld and Standaert com-

bined side-channel and cryptanalysis techniques into a two-stage attack on an im-

plementation of the PRESENT block cipher [101]. The first stage uses a template

attack to recover as many intermediate values from a single power consumption

trace as possible. Since each intermediate value provides partial information, an

adversary should determine as many intermediate values as possible. Ideally, inter-

mediate values are the output of a surjective function, such as an S-Box, so they

reveal information about previous values.

In the second phase, the adversary uses the intermediate values recovered using

side-channel analysis to write the block cipher as a system of quadratic (or cubic)

equations, including the previously defined surjective functions with outputs recov-

ered using side-channel analysis. The block cipher can be represented as a boolean

satisfiability problem and the intermediate values can be fed into an SAT solver to

recover the key [101]. In an unknown-plaintext/ciphertext scenario, they recovered

the PRESENT block cipher key after observing only one encryption.

Renauld et al. combine algebraic cryptanalysis with a HW-based template

attack to exploit an implementation of AES on a 8-bit PIC microcontroller in [102].

They demonstrate that an AES key can be recovered using only HW information

and show that not knowing the plaintext or ciphertext does not significantly reduce

the probability of determining the correct key. The system of equations includes

multiple intermediate values for the AddRoundKey and SubBytes as well as all of

the intermediate calculations to perform the MixColumn operation. This provided a

total of 788 possible HWs over 10 rounds. Renauld et al. demonstrated that knowing

all of the HWs for three consecutive AES-128 rounds allows for key recovery in 95% of

trials, using simulated data. When the same number of HWs are known for random

51

intermediate values the success rate is dramatically reduced. The sensitivity of the

SAT solver to incorrect information is highlighted as one of the weaknesses of using a

SAT solver. Although they state that up to 200 HWs can be extracted correctly from

a single trace, no algebraic side-channel attacks are performed with real data [102].

2.8.4.2 Pseudo-Boolean Optimizers. To compensate for the noise

in side-channel analysis measurements, DPA calculates statistics based on multiple

traces. Measurement noise has multiple sources including electronic noise, quanti-

zation noise, and switching noise. To get highly reliable side-channel information,

a large number of traces must be collected and analyzed. Allowing for errors in

the side-channel data can reduce the number of traces that need to be collected.

The process described for algebraic side-channel analysis proposed by Renault et al.

in [102] is extremely sensitive to noise [90].

Renault et al. proposed using algebraic methods during the key recovery phase

to convert the key recovery problem into a Boolean SAT problem and using a SAT

solver to recover the key. However, testing showed the SAT solver could only find a

solution when the error rate was very low (well under 1%) [102]. Oren et al. propose

a new method called Tolerant Algebraic Side-Channel Analysis (TASCA) in which

the side-channel analysis problem is transformed into a pseudo-Boolean optimization

problem (PBOPT) [90], with the main benefit being higher tolerance for errors.

The SAT representation does not offer an efficient method for handling errors

in the side-channel measurements or analysis. If the SAT representation is given

enough errorless side-channel information the SAT solver will be able to recover the

key successfully. However, even a single error in the side-channel measurement can

result in unsatisfiability, or a wrong key.

By writing the system of equations in the more flexible language of non-linear

pseudo-Boolean optimization, additional variables can represent errors. Unlike a

SAT solver which attempts to find a single solution that satisfies a system of equa-

52

tions or determine that the system is not satisfiable, PBOPT algorithms find the

solution which minimizes an objective function. Oren et al. demonstrated successful

single-trace attacks against the Keeloq block cipher with intermediate value error

rates of 10-20% [90] which was significantly more tolerant to errors than using a

SAT solver directly [102].

Recently, the TASCA technique was enhanced by specifying a goal function to

indicate which key byte guesses are more probable than others using the posterior

probabilities of each key-byte guess and tested against an 8-bit implementation of

AES-128. This technique is called probabilistic TASCA [89]. Probabilistic TASCA

has a higher correct key identification rate than standard TASCA, and reduced

solve times. While technique is provided the same fixed number of byte or HW value

guesses per targeted intermediate value, only probabilistic TASCA incorporates data

from the posterior probability calculated in the attack phase of a template attack.

It is important to note that experiments in [89, 102] were performed on simulated

data.

Cold boot attacks are a related research field in which cryptographic keys are

reconstructed from partial information. The similarities and differences of cold boot

attacks and side-channel analysis are explored in the following section.

2.8.5 Related Key Recovery Techniques. It is generally believed that dy-

namic random access memory (DRAM) loses its contents immediately when it loses

power, but it has been found that the loss of contents is in fact gradual. Although

typically DRAMs will lose their contents gradually over a period of seconds at room

temperature, if the chips are kept at low temperatures the data will persist for min-

utes or even hours [55].

Cold boot attacks attempt to extract a cryptographic key stored in a computers

memory [55]. Since the memory decays gradually, some of the bits will have already

decayed to their ground states. Memory bits not in their ground state have a high

53

probability of being correct and some researchers assume they are. Using a direct

approach, an AES key can be extracted from memory and candidate keys can be

generated in order of HD from the recovered key. If few bits have flipped, the true

key can be recovered quickly, but the search time grows exponentially as the number

of bit flips increases.

To increase efficiency, encryption software may pre-calculate and store the AES

key schedule in memory. Knowing how the key schedule is constructed from the key

allows an entire decayed key schedule to be used to reconstruct the key [55]. From

the decayed key schedule, small sets of key bytes can be recovered and key candidates

identified. Rather than being an algebraic attack, this attack is based on probability.

The key candidates can be checked against the decayed key schedule to determine

which candidate most likely produced the recovered key schedule.

The use of a SAT solver for cold boot key recovery is proposed by Kamal and

Youssef in [62]. Since bits in memory are expected to decay to their ground state,

this approach assumes that any bit in the recovered key and key schedule not in its

ground state is correct and the remaining bits are discarded. Due to the amount

of redundant information in the AES key schedule, the encryption key can still be

recovered by writing and solving a set of SAT clauses.

Albrecht and Cid extend cold boot key recovery attacks to additional ciphers

with more complex key schedules and use integer programming techniques to solve

sets of non-linear equations with noise to determine the most likely key [6]. This

effort included describing the AES key schedule as a system of polynomial equations.

Key recovery is written as a Polynomial System Solving (PoSSo) problem. The goal

is to find a solution to the system of polynomials over some field. In the presence

of errors, Max-PoSSo can find a solution that maximizes the number of polynomials

equal to 0. The Max-PoSSo problem is analogous to the Max-SAT problem which,

rather than find a solution that satisfies all clauses, tries to find the maximum number

of clauses that can be satisfied.

54

Cold boot attacks are similar to side-channel cryptanalysis because both recon-

struct keys from unreliable data using the algebraic structure of the cipher to relate

recovered values to the key. Cold boot attacks assume errors are asymmetric, giving

the attacker a simple way to identify intermediate values with a high probability of

being correct.

2.9 Summary

Algebraic cryptanalysis and side-channel analysis are two techniques for deter-

mining the relationship between the plaintext, key and ciphertext in a cryptographic

operation. Algebraic cryptanalysis breaks ciphers by solving systems of multivariate

polynomials created from the intrinsic algebraic structure of the cipher [11].

While describing the cipher as a system of polynomials does not reduce the

complexity of solving for the key given only the plaintext and ciphertext, it allows

for intermediate values to be introduced [27]. SAT solvers are an effective way to

solve the system of polynomials because they allow for any known intermediate value

to be incorporated and can quickly recover the key if enough intermediate values are

known. Combining SAT solvers with side-channel analysis enables powerful attacks

that often require less traces than side-channel attacks that do not incorporate al-

gebraic cryptanalysis.

The side-channels from cryptographic devices leak information about the oper-

ations performed and the data being manipulated by the device [68]. The emissions

can be used to determine the intermediate values of the cipher and ultimately the

key used for an encryption or decryption operations. The most powerful side-channel

analysis techniques require a very powerful attacker. Many attacks require the at-

tacker to have complete control over the device, allowing the attacker to add a trigger

signal, place a probe as close as possible to the target device, and be able to per-

formed encryption or decryption operations at will [73]. For template attacks, it is

55

assumed the leakage from two identical devices is identical and the noise present in

the side-channel emission is key dependent and precisely modeled [24].

The goal of this research is to identify ways to reduce assumptions that must

be made by an attacker, making side-channel attacks more viable in an operational

setting. After common methodology is introduced in Chapter 3, the following four

chapters introduce novel ways to eliminate some of these assumptions to making

side-channel attacks more effective for less powerful attackers.

56

3. Methodology

This chapter describes the methodology used to collect and process the electromag-

netic (EM) emissions from target encryption devices. The three contribution ar-

eas of this dissertation, an algebraic side-channel Key Schedule Redundancy Attack

(KSRA), cross-device template attacks, and using software-defined radios (SDRs)

to perform differential Side-Channel Analysis (SCA) are all based on the standard

Correlation-based EM Analysis (CEMA) and template attack methodology. All data

collection and the common methodology shared by these techniques are explained

in this chapter. The unique and novel enhancements that allow these techniques to

be used by a less powerful attacker are presented in Chapters 4, 5, 6 and 7.

The process used for collecting the EM emissions from each of the encryp-

tion devices used in the attacks are described in Section 3.1. The devices used

for side-channel attacks are introduced in Section 3.2, followed by signal processing

techniques in Section 3.3. The steps required to perform CEMA for unknown-key

and known-key analysis are found in Section 3.4. Section 3.6 outlines the steps re-

quired to perform a template attack. Finally, how the system of equations and SAT

solver incorporate side-channel data to perform algebraic cryptanalysis is discussed

in Section 3.7.

3.1 Data Collection

The EM side-channel of the microprocessors are collected using the hardware

from AFIT’s commercial Riscure Inspector side-channel collection and analysis sys-

tem. However, custom software is used to gain more control of the process. A

Riscure low-sensitivity probe with a 1 GHz bandwidth is used for all collections. For

non-SDR collections the probe is connected to a LeCroy WaveMaster 804Zi oscil-

loscope through an anti-aliasing filter. The oscilloscope has a 4 GHz bandwidth, a

maximum sampling rate of 40GSa/sec on 4 channels and memory to store 128 Mpts

57

Figure 3.1 The Riscure Inspector Side-Channel Test Tool [105].

per channel. One of the novel approaches in this research is to use SDRs to collect

EM emissions. This methodology is found in Section 7.5.

A low-sensitivity Riscure probe is mounted on a computer-controlled motor-

ized XYZ table that, with proper calibration, allows repeatable probe placement.

Traces are collected and analyzed to determine the best location to place the probe.

Spectral intensity and the results of correlation analysis are used in this research.

For the highest quality collections, unless otherwise stated, the probe is placed as

close as possible without touching the package of the device. To prevent aliasing, an

analog low-pass filter with a cutoff frequency of approximately 36% of the sampling

frequency is placed in-line with the probe. For collections for sampling frequency

fs = 2.5 GSa/sec a Mini-Circuits BLP-1000+ (-3 dB at 900 MHz) low-pass filter

is used. For collections for sampling frequency fs = 250 MSa/sec a Mini-Circuits

BLP-90+ (-3 dB at 90 MHz) low-pass filter is used.

For all collections made with the oscilloscope the encryption device is pro-

grammed to produce a signal at the start of each encryption operation on a general

purpose I/O pin. This signal is used to trigger the oscilloscope, resulting in collected

traces that are well aligned. Where indicated, correlation-based alignment is used

to correct any difference in the time at which the start of the encryption operation

occurs in each trace.

58

PT SB SR MC SB SR CT

K0 Ki KNr

for round = 1 to Nr-1

Digital sampling

Power Supply

EM Probe
Digital sampling

oscilloscope

Cryptographic
device

Personal Computer

Figure 3.2 Block diagram of a typical measurement setup for collecting side-
channel emissions [73].

The collection of EM traces is automated to a great extent by controlling the

process with a PC. A block diagram of the process of collecting side-channel emissions

with an oscilloscope is shown in Figure 3.2. The XY position of the probe above the

device is controlled by the computer. For safety, the height above the device is set

manually. The plaintexts and keys used by the cryptographic device are send to the

device by the computer using an RS-232 serial interface. The encryption operation

is initiated by the PC and the output of the encryption operation is returned to the

computer to verify correct encryption operation. The oscilloscope, configured and

controlled through a PC interface, collects the EM emissions for the duration and

sampling rate set by the PC each time the trigger is asserted. The plaintext, key,

ciphers and optionally the intermediate values calculated during each encryption

operations are stored with the saved trace.

Traces collected from a device being attacked, with a fixed key are referred to

as test traces. The key is randomly generated and stored only for the purpose of

determining if the correct key was recovered using SCA. Plaintexts are generated

randomly and encrypted until the desired number of traces are collected. If traces

are collected at multiple probe locations for the purpose of evaluating the effect of

probe placement, the random seed is reset for each location causing the same set of

plaintexts being generated. For the training traces collected for template attacks, a

both they key and ciphertext are random for each encryption operation.

59

Table 3.1 Tested PIC micro-controller device classes.

Part
Class Device Numbers PIC Part Number

A A1-A10 PIC24FJ64GA102 I/SP
B B1-B10 PIC24FJ64GA002 I/SP
C C1-C10 PIC24FJ48GA002 I/SP
D D1-D10 PIC24FJ32GA002 I/SP

3.2 Targeted Devices

This research attacks two types of microcontrollers. The 16-bit PIC1 micro-

controllers are representative of low cost microcontroller used in various embedded

applications. The 32-bit ARM2 Cortex-M4F high performance, lower power device

intended for applications such as industrial automation, stepped motor and motion

control [128].

3.2.1 PIC Microcontrollers. The PIC24 is a 16-bit general purpose mi-

crocontroller. The collection of PIC microcontrollers tested come from 4 different

part numbers. There are 10 unique devices from each part number, for a total of

ND = 40 devices. The full part numbers and nomenclature used to refer to each

individual device is shown in Table 3.1. These part numbers were selected because

they have similar device architectures. The 10 chips from each part number were all

manufactured in the same lot.

Although all the PIC devices have the same basic architecture, Part A devices

have several on-board peripherals that are not included in the other three. Parts B,

C and D devices all have identical architectures with the exception of the amount of

on-board flash Random Access Memory (RAM) which is 32, 48, and 64 KB of RAM

respectively. Part A devices have 64 KB of RAM. Individual devices are reference

1The original PIC microcontroller was designed as a Peripheral Interface Control. The name
was retained despite the future devices being used for other applications.

2The term ARM refers to a family of RISC-based microprocessor architecture design licensed
by British company ARM holdings.

60

by an alphanumerical device number that includes part type and chip number, i.e.,

A1, A2, ..., D9, D10, as shown in Table 3.1.

The chips were fabricated using an unspecified 180 nm process. Since all 10

chips for each part number were produced in the same lot, they contain identical

architectural features. Uncontrolled manufacturing variations in the die fabrication

and packaging process are believed to be the only physical differences between devices

with the same part number.

AES-128 is implemented using separate SubBytes, ShiftRows, and MixColumn

functions as specified in the AES standard [88]. The C++ used to program the

UART interface and assembly code used to program the AES operation are identical

for each device. The compiled versions may vary slightly for each part number due

to part specific header files.

3.2.1.1 Data Collection. The collection process was designed to make

measurements as repeatable as possible. A single evaluation board is used to collect

side-channel emissions from all ND = 40 devices. Each device was programmed

to respond to commands over a RS-232 serial interface. The evaluation board was

modified with a Zero Insertion Force socket (ZIF) to allow the devices to be easily

swapped out. To improve trace alignment, a trigger signal was programmed to go

high immediately before the encryption operation started and to go low immediately

after completion.

To find the best probe position, an XY scan is performed with the near-field

probe as close to a reference device as possible without touching the packaging of

the microcontroller. The point above the device yielding highest spectral intensity is

chosen for collections. Lateral movement of the circuit board is minimized between

signal collections using a custom made jig that fixed the microprocessor position

relative to the probe. A DC power supply (Agilent E3631A) minimizes variation in

the supply voltage.

61

Training data for each of the ND = 40 devices is generated by performing

5,000 AES-128 encryption operations using randomly chosen plaintexts and keys.

Similarly, test traces for each device are collected while performing 500 encryption

operations using a fixed key and random plaintexts.

Traces are time aligned by shifting them based on the location of highest

cross-correlation of a trace segment with a segment from the reference trace [104].

Traces are collected at a sampling rate of 2.5 GSa/sec with a 1 GHz low-pass anti-

aliasing filter inserted between the probe and the oscilloscope. Since the target device

operates at fsys = 29.48 MHz, the traces were down-sampled to make the trace sets

easier to process. Different down sampling techniques were used for the KSRA and

cross-device template attacks.

For the KSRA in Chapter 4, the collected traces were down-sampled by aver-

aging groups of adjacent time samples to an effective sampling rate of 200 MSa/sec.

This method was performed by the Riscure Inspector software [104]. Although this

technique is computationally simple, it is not a common down-sampling technique

used in other types of signal processing. A more common technique was used the

cross-device template attacks in Chapter 5 where the collected data is down-sampled

to 250 MSa/sec using decimation. Decimation is discussed in Section 3.3.2.

3.2.2 ARM Cortex-M4F. The second target device is a 32-bit Stellaris

LM4F232 ARM Cortex-M4F-based microcontroller. The Stellaris LM4F232 USB

+CAN evaluation kit features a Stellaris microcontroller in a 144-LQFP package, a

color organic light emitting diode display, Universal Serial Bus (USB) 2.0, multiple

Universal Asynchronous Receiver/Transmitters (UARTs), as well as other network

and interface standards. The Stellaris LM4F232H5QD microcontroller contains a

number of analog features including two 12-bit analog-to-digital converters (ADCs),

three analog comparators, two temperature sensors and a three-axis accelerometer.

62

The microcontroller is fabricated using a 65 nm process and operates at up to 80

MHz.

The microprocessor is programmed to communicate with the PC using a RS-

232 serial interface, allowing the PC to set the key, encrypt plaintext and retrieve

the ciphertext using the device on demand. The key schedule is generated when

the key is set and not generated as part of the encryption operation. For testing

collections with and without a trigger signals, whether a trigger is asserted during

an encryption operation is determined by which version of the encryption command

is sent to the microprocessor by the PC. For compatibility with an existing UART

interface, the system clock is set to fsys = 50 MHz.

The ARM Cortex-M4F implements AES-128 in Electronic Codebook (ECB)

mode using the T-box method as described in Section 2.2.2 and [38]. Internal read-

only memory stores forward S-box, reverse S-box, forward polynomial and reverse

polynomial tables, however no countermeasures are implemented on the device. The

four T-boxes are generated and stored in random access memory on initialization.

Two devices with the same part number are used for testing. Both ARM devices are

used to test cross-device attacks in Chapter 6. The devices are referred to as ARM1

and ARM2. ARM1 is used for the SDR testing in Chapter 7.

3.2.2.1 Data Collection. A custom jig was fabricated to allow for

repeatable placement of each ARM development board on the XYZ stage. Custom

software was written to control the XYZ stage, allowing for calibration and repeat-

able probe placement. Since the LM4F232H5QD microcontroller is placed at a 45

degree angle on the development board, the board sits in the jig at a 45 degree angle

to allow for more efficient XY scans. Note that in the board orientation seen in

Figure 3.3, the device package is upside-down. To compensate for manufacturing

variations in the boards, the coordinates of the upper left-hand corner and lower

right-hand, which specify the bounds of the XY scan, are adjusted for each board.

63

(minX,minY)

x

y

(maxX,maxY)

Figure 3.3 Orientation of the ARM development board in the jig [129].

For all ARM collections, locations are based on a 25 × 25 = 625 location

scanning grid. Locations are numbered left-to-right, then top-to-bottom as the mi-

crocontroller is oriented in Figure 3.3. For example, location 1 is the upper left-hand

corner, location 25 is in the upper right-hand corner and location 625 is in the bottom

right-hand corner of the device.

Depending on the application, up to nt = 2500 test traces are collected at each

location. A single trace is used to find the spectral intensity of the EM emission col-

lect at each location above the device package. The spectral intensity is calculated

by finding the power spectral density (PSD) of the trace and finding the maximum

power over a range of frequencies. Since the goal of the scan is the find the loca-

tion with this highest spectral intensity, the PSD values are normalized across all

locations.

Collecting nt = 2500 test traces allows CEMA attacks to be performed, and

for the attack phase of a template attack to be conducted. Locations selected based

on maximum power spectral density and CEMA attack performance are used for

collecting template attack training data. The results of the maximum PSD plots

and CEMA attacks for the ARM devices are discussed in Sections 6.3.1 and 7.4.1.

Test traces are collected at 2.5 GSa/sec for ARM1 for the baseline test in

Chapter 7. However, due to the large amount of training and test traces that must be

64

collected for the cross-device template attacks, the sampling rate used in Chapter 5

is reduced to 250 MSa/sec.

3.3 Signal Processing Techniques

This research uses a number of pre-processing techniques to improve the effec-

tiveness of side-channel attacks by making it easier to extract information from the

collected side-channel. Alignment, decimation and filtering are the primary tech-

niques used in this research. Software demodulation was evaluated, but for the

devices studied it did not improved the effectiveness of the attack. Since these tech-

niques may be applied to both CEMA-based attacks and template attacks, they are

outlined here before these techniques are introduced in Sections 3.4 and 3.6 respec-

tively.

3.3.1 Filtering. Although template attacks model the noise generated by

the target device due to non-data-dependent operations [24], the classification re-

sults may be better if some of this noise is reduced through filtering, especially if

this noise is not present in all traces. For more complex devices, such as the ARM

Cortex-M4F, where components not used to perform the encryption operation are

housed within the same package, signals unrelated to the encryption operation may

be present. Although filtering has been shown to dramatically reduce the num-

ber of traces required for CEMA [14], no research has been found indicating that

intelligently filtering traces used in a template attack will reduced the number of

traces required. Ideally, signals unrelated to the encryption operation will be filtered

without attenuating frequencies containing useful information.

Digital filtering is used two ways in this research: to isolate and eliminate

frequency components of the collected EM emissions. Bandpass filters are used to

isolate the frequency components to determine if the frequencies retained contain in-

formation that can be used to successfully attack a device. To ensure low attenuation

65

44 45 46 47 48 49 50 51 52 53 54 55

−100

−50

0

Frequency (MHz)

M
a

g
n

it
u

d
e

 (
d

B
)

(a)

44 45 46 47 48 49 50 51 52 53 54 55

−100

−50

0

Frequency (MHz)

M
a

g
n

it
u

d
e

 (
d

B
)

(b)

Figure 3.4 (a) Magnitude of the impulse response for a bandpass filter centered
at fc = 50 MHz with a bandwidth WBW = 2 MHz in the frequency
domain. (b) Magnitude of the of impulse response for two notch filters
in series. The specified cutoff frequencies are shown as dashed lines.

at the cutoff frequencies of the bandpass filters, sixth-order Chebyshev Type I filters

are implemented with a passband ripple of r = 0.1 dB. The term frequency interval

refers to the passband of a bandpass filter. The magnitude of the impulse response

in the frequency domain for a bandpass filter with fc = 50 MHz and WBW = 2 MHz

is shown in Figure 3.4(a).

Notch filters are used to eliminate frequencies that are believe to interfere

with the side-channel attack. If multiple frequencies are identified, the traces are

filtered with a series of notch filters. Each filter is a twelfth-order Chebyshev Type

I bandstop filter with a stopband between the specified frequencies. Since the filters

are intended to be used in series a passband ripple of r = 0.1 dB is used as a design

parameter to ensure low attenuation outside of the stopband. The magnitude of the

impulse response in the frequency domain for two stopband filters in series is shown

in Figure 3.4(b). The stopband for filter 1 is 46 MHz < f < 48 MHz. The stopband

for filter 2 is 52 MHz < f < 54 MHz. At the cutoff frequencies, the magnitude of the

filter’s response is -0.1 dB due to the desired passband ripple. Although it may be

more straightforward to use a filter design that allows for the desired attenuation to

be reached at the cutoff frequency, having low attenuation and ripple for frequencies

outside the stopband is highly desirable for notch filters used in series.

66

The process for identifying the cutoff frequencies of filters are discussed when

these filtering techniques are applied.

3.3.2 Decimation. Decimation is used to down-sample traces collected at a

higher sampling frequency to a lower effective sampling frequency. Traces collected

at fs = 2.5 GSa/sec are downsampled to fDs = 250 MSa/sec using the following

method. First the traces are filtered with an eighth-order low-pass Chebyshev Type

I filter having a cut-off frequency of 100 MHz (0.8×fs/2), and then the filtered traces

are properly decimated by 10 (every 10th sample retained and all others discarded).

Since the 8-bit traces are converted to double precision before filtering and not

converted back to 8-bit precision after decimating, the decimated traces are higher

quality3 than traces collected at 250 MSa/sec directly using the 8-bit oscilloscope.

Decimated traces are denoted fDs to indicate they were not directly sampled at that

rate.

3.3.3 Alignment. Traces collected with the oscilloscope are aligned using

the Riscure Inspector software static alignment module. Static alignment shifts all

samples in a trace by the same offset to align the trace to a reference trace [104].

The module allows the user to quickly select a portion of the trace that is visually

distinctive and it expected to be present in every trace. The shift value is determine

by correlating the selected part of the reference traces with the trace being aligned.

The relative position of the best correlation is used as the shift value. Traces can also

be discarded if the maximum correlation between the trace being aligned and the se-

lected portion of the reference traces does not meet the desired minimum correlation

level. Traces collected using a SDR are also aligned using correlation. Additional

details on how SDR traces are identified and aligned is found in Section 7.2.1.

3In testing, using decimated traces resulted in more effective SCA attacks.

67

1,1 1,

,1 ,

k

t t k

n

n n n

v v

v v

V , ,d i IV d iv f t k

1

2

kn

k

k

k

K

 , LeakageModel ,d i d ih f v

1,1 1,

1 2

,1 ,

s

s

t t s

n

n

n n n

s s

s s

S s s s

1,1 1,

,1 ,

k

t t k

n

n n n

r r

r r

R , ,i j Statistical i j
Comparison

r f h s

1,1 1,

1 2

,1 ,

k

k

t t k

n

n

n n n

h h

h h

H h h h

Subkey
Hypotheses

(Known)
Plaintext or
Ciphertext

Hypothetical (Computed)
Intermediate Values

Estimated (Computed)
Side Channel Leakage for

Hypothesized Key

4

1

Measured Side-Channel
Traces

2

5 4

Compare Hypothetical
and Traces

6

3

1

2

tn

t

t

t

T

S
Align,

 Filter, etc.

Pre-process
Traces

Result. Highest ri,j indicates
correct key is ki.

Figure 3.5 Differential Side-Channel Analysis Process [30,73].

3.4 Correlation-Based Electromagnetic Analysis

The methodology for correlation-based EM analysis (CEMA) and template

attacks are presented in Sections 3.4.1 and 3.6 respectively. A CEMA-based filtering

processing to identify which frequencies leak information is explained in Section 3.5,

but is important to understand CEMA first.

3.4.1 CEMA Attack Methodology. The same general strategy is used in

all differential SCA attacks. The step-by-step process is presented below and shown

in Figure 3.5. Most of the following steps are outlined in [73] but an optional pre-

processing step has been added.

Step 1: Choose an Intermediate Value to Attack. The first step in a differen-

tial attack is to choose an intermediate value calculated by the cryptographic

device to attack. The intermediate value must be a function, f(t, k), where k is

68

a small portion of the key and t is a non-constant data value. When attacking

cryptographic devices, t is typically part of the plaintext or ciphertext.

Step 2: Measure the Side-Channel Emissions. The next step is to measure

the side-channel emissions from the device while it encrypts or decrypts nt

different data blocks. For each operation, the attacker must control or at least

observe the value of t. The values of known values can be written as a vector

t = (t1, ..., tnt)
′. Power or EM traces corresponding to each known value are

collected. The trace for data block td can be written as s′d = (td,1...td,ns), where

ns denotes the length of the trace. The nt × ns matrix S contains nt traces of

length ns samples.

Step 3: Pre-process Traces (Optional). Proper trace alignment is critical for

differential attacks. If the traces are properly aligned, this step is optional.

Alignment methods are discussed in Section 2.7.2. Data reduction, demodula-

tion, and filtering techniques can also be applied. These methods are discussed

in detail in Section 3.3.

Step 4: Calculate Hypothetical Intermediate Values. Since the intermediate

values are a function of t and k, and values of t are known, hypothetical interme-

diate values can be calculated for each possible choice of k, the key hypothesis.

A list of the nk possible key hypotheses is written as k = (k1, ..., knk). Calcu-

lating the hypothetical intermediate values for each of the nt values of t and

nk values of k results in the matrix V of size nt× nk. The individual elements

of V can be calculated vd,i = f(td, ki) where d = 1, ..., nt and i = 1, ..., nk. The

column i of V contains the intermediate results based on the key guess ki.

Step 5: Calculate Hypothetical Leakage. Using an appropriate power consump-

tion or EM emission model, the hypothetical intermediate values in V are used

to calculate the hypothetical emission values in matrix H. The hypothetical in-

termediate value vd,i is used to calculate the values of hd,i. The most commonly

used models are discussed in Section 2.3.4.

69

Step 6: Compare Hypothetical Leakage to Collected Traces. The final step

compares the hypothetical emission values for each key guess in H to the col-

lected traces in S using statistical methods. Each column hi from the matrix

H is compared with each column sj from the matrix S. It is assumed there

is a statistical correlation between the hypothetical values for the correct key

guess hki and the collected traces sj where j is the sample index corresponding

to some unknown time t. Finding the interdependence reveals both the correct

key value,ki, and the time t at which the intermediate value is computed.

Various discriminators have been proposed for use in Step 6. The most com-

monly used is Pearson’s correlation coefficient [22]. The elements ri,j of the result

matrix (R) are

ri,j =

nt∑
d=1

(hd,i − h̄i)(sd,j − s̄j)√√√√ nt∑
d=1

(hd,i − h̄i)
2·

nt∑
d=1

(sd,j − s̄j)
2

∈ R, (3.1)

where i = 1, ..., nk and j = 1, ..., ns and h̄i and s̄j denotes the means of the columns

hi and sj [22].

When using Pearson’s correlation coefficient as the discriminator, the corre-

lation coefficient between each of the columns of hypothetical power consumption

matrix H and each column of the recorded side-channel information matrix S is

calculated and stored in the matrix R. The correlation coefficient is an indication of

the linear relationship between the observed side-channel and hypothetical leakage

model [22]. The correlation matrix R can be visualized a number of different ways.

Each row of R corresponds to one key guess. Plotting each of the rows yields a

plot of the correlation coefficient vs. time for each key hypothesis. The most likely

key hypothesis produces the highest correlation coefficient. The time at which the

peak occurs indicates when an operation correlated to the model takes place in the

70

cryptographic operation. Figure 3.6(a) is a plot of the correlation coefficients for all

key guesses vs. time. The correct key hypothesis is shown in black while other key

hypotheses are shown in gray. A plot of how the correlation coefficient changes as

the number of traces increases is shown in Figure 3.6(b). This graph is created by

plotting the columns of R at a specific time correlated with an intermediate value in

the encryption operation. Plots similar to Figure 3.6(b) are often used to determine

the number of traces required before the most likely key hypothesis can be identified.

3.4.2 Example CEMA Attack. The output of the AddRoundKey and

SubBytes operations in the first round of AES-128 are common intermediate values

to target in a CEMA attack [73]. Since it provided the best results against the PIC

microprocessors, the output of the SubBytes operation in the first round of AES is

the targeted intermediate value for the baseline template attacks in Chapter 4 and

all attacks in Chapter 5.

Since these are byte-wise computations, each byte can be considered separately.

Let tnd denote the value of byte n of the dth input plaintext (which corresponds to

the dth trace) and let kn denote byte n of the fixed secret key. When attacking the

input to the SubBytes operation in the first round, the target intermediate values is

calculated lnd,i = td⊕ki. When attacking the output of the SubBytes operations in the

first round, the target intermediate values is calculated vnd,i = SubBytes(td ⊕ ki). In

both cases, ki ∈ {0, ..., 255} represents possible values for kn. Assuming tnd is known

and kn is unknown, the CEMA attack identifies the most likely candidate kni based

on the collection side-channel observations S that correspond with the intermediate

value lnd,i or vnd,i calculated for each d ∈ {0, ..., nt} trace in being processed on the

target device.

The plots in Figure 3.6 are generated by performing an attack on byte 1 of the

output of SubBytes from traces collected from PIC A01.

71

(a)

0 100 200 300 400 500
−1

−0.5

0

0.5

1

Traces

C
o
rr

e
la

ti
o
n

(b)

Figure 3.6 (a) All rows of R. Correct key hypothesis is plotted in black, others in
gray. (b) Columns of R at time t corresponding to an intermediate spe-
cific operation for different numbers of traces. Correct key hypothesis
is plotted in black.

3.4.3 Known-Key Correlation Analysis. Since the correct key-byte is ex-

pected to produce the highest correlation with the observed side-channel, if the

correct key is known (3.1) simplifies to

rj =

nt∑
d=1

(hd − h̄)(sd,j − s̄j)√√√√ nt∑
d=1

(hd − h̄)2·
nt∑
d=1

(sd,j − s̄j)
2

∈ R, (3.2)

where j = 1, ..., ns and s̄j denotes the mean of the column sj. Since the key is known,

h̄ is the mean of hypothetical leakage h for the correct intermediate values. Since

the targeted key byte is known for each trace, the correct hypothetical values can be

calculated even if the key changes for each trace (as with training data).

The correlation vector r is used to identify time samples highly correlated with

the leakage model as in the leakage mapping tecnique developed by Cobb et al. [30].

This is one heuristic method for identifying the points of interested used in template

attacks.

72

3.4.4 Comparing Effectiveness of CEMA Attacks. A number of methods

have been developed to determine the effectiveness of CEMA attacks. The correla-

tion coefficient ri,j defined in (3.1) is an indication of the linear relationship between

the observed side-channel and hypothetical leakage model. For byte-wise attacks,

each column of R corresponds to one key byte guess. Each row of R corresponds to a

time sample. Although additional insight may be gained by examining the columns

of R graphically, for this research the most likely key kmax is chosen according to

kmax = arg max
i∈{0,...,nk−1}

(
max

j∈{1,...,ns}
|ri,j|

)
. (3.3)

To evaluate the effectiveness of a CEMA attack the maximum correlation co-

efficient, rmax, is compared with the next highest correlation coefficient, rnext. Let

rmax be the maximum correlation coefficient where

rmax = max
i∈{0,...,nk−1}

(
max

j∈{1,...,ns}
|ri,j|

)
. (3.4)

The next highest correlation coefficient rnext is

rnext = max
i 6=kmax

i∈{0,...,nk−1}

(
max

j∈{1,...,ns}
|ri,j|

)
. (3.5)

Comparing rmax to rnext is used in this research to identify which frequencies

are the most important to the success of the CEMA attack.

The confidence intervals for each correlation coefficient can be calculated and

compared as in [14]. To determine the confidence interval for a correlation coefficient

the Fisher’s transformation [46]

Z(r) =
1

2
ln

1 + r

1− r
= arctanh (r) , (3.6)

is used.

73

To calculate the confidence interval for a sample correlation r, the upper and

lower bounds are calculated ξl = zr−
z1−α/2√
Nt−3

, ξu = zr +
z1+α/2√
Nt−3

where zr = arctanh (r),

and z1±α/2 is the standard normal cumulative distribution function evaluated at

1 − α/2 [14]. The lower and upper confidence interval bounds for a correlation

coefficient r are

εl (r) = tanh

(
arctanh (r)−

z1−α/2√
Nt − 3

)
, and (3.7)

εu (r) = tanh

(
arctanh (r) +

z1−α/2√
Nt − 3

)
. (3.8)

3.5 Identifying Information Leaking Frequencies

Barenghi et al. propose a systematic way of determining the frequencies at

which information is leaked from cryptographic devices [14]. They show the effec-

tiveness of differential power analysis can be improved by isolating the frequencies

that leak information using software filtering. The goal of Barenghi’s attack was

to determine the minimum number of filter traces required to perform a successful

correlation attack with a given confidence level. The number of traces is found by

repeatedly performing the CEMA attack while increasing the number of traces until

εl (rmax) ≥ εu (rnext) as calculated in (3.7) and (3.8). The algorithm tries to iden-

tify the smallest frequency interval that contains information by repeatedly dividing

frequency intervals that yield successful attacks with the desired confidence in less

than the maximum number of traces. The algorithm does not split up frequency

intervals that were not successful with the maximum number of traces. Although

this approach dramatically reduces the number of correlation attacks that must be

performed, testing on the PIC microcontroller showed that it may fail to identify

frequency intervals that carry information.

74

Figure 3.7 Identifying the number of traces needed for the de-
sired confidence in a CEMA attack

Figure 3.7 illustrates the result from this approach graphically. Using traces

from PIC A01, decimated to fDs = 250 MSa/sec a CEMA attack is performed using

up to 500 test traces in the order they were collected. The confidence intervals are

shown as shaded regions. Although the correct value for key byte 1 is identified for

nt ≥ 160 traces, the 90% confidence intervals overlap until nt ≥ 291 traces are used.

The minimum number of traces required for the desired confidence is only one metric

that can be used to compare attacks.

Two alternative approaches were developed as part of this research. The fre-

quency interval break down approach and overlapping frequency interval approach are

developed in Sections 3.5.1 and 3.5.2. Both correlation-based frequency-dependent

leakage analysis techniques complement each other, one providing a variable fre-

quency interval width and the other providing overlapping frequency intervals and

easier comparison of multiple key bytes.

3.5.1 Frequency Interval Break Down Approach. The frequency break down

approach splits the frequency interval [fmin, fmax] by a branching factor γ, λ times

(levels). Initially fmin = 0 and fmax = fs/2, where fs is the sampling frequency,

but these bounds can range between 0 and fs/2 to focus on a frequency interval of

75

0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0

53

9961

8499

Frequency (MHz)

Traces
Required

1.56

3.12

6.25

12.5

 25

 50

 100

Frequency
 Interval
Bandwidth
 (MHz)

0

100

200

300

400

500

Figure 3.8 The number of traces needed for 90% confidence in a byte 1 CEMA at-
tack using traces from PIC A01 filtered with a bandpass filter. Attacks
that are not successful with the desired confidence are shown with an ×
through the rectangle representing the bandwidth.

interest. CEMA attacks are performed on all intervals regardless if the attack on

the level above it was successful. Like, [14] the minimum number of traces required

to achieve the desired confidence level is used as the metric to compare attacks.

Using traces collected from PIC A01 decimated to fs = 250 MSa/sec, this

method was applied and the results are shown in Figure 3.8. In this case, fmin = 0,

fmax = 100 MHz, γ = 2 and the first λ = 7 levels are shown. Compared with

the 291 traces needed in Figure 3.7, it is clear from Figure 3.8 that filtering can

dramatically reduce the number of traces required to extract byte 1 with the desired

level of confidence. Filtering reduced the number of traces required to achieve the

designed confidence level to as few as 53 traces for the 0 MHz to 25 MHz frequency

interval.

3.5.2 Overlapping Frequency Interval Approach. There are a number of

problems with the frequency interval break down approach. Since multiple levels

are represented in Figure 3.8, in order to compare all key-bytes 16 figures must be

compared. While it is possible to extract a single level and compare the results for

each byte on a single figure, the first algorithm also does not allow for overlap between

adjacent frequency intervals. As a result, the frequencies near the filter cutoff are

76

attenuated. To address these problems, the overlapping frequency interval approach

uses a single level for each bytes, allowing the filter bandwidth, fBW , frequency

interval, [fmin, fmax], and percent overlap between adjacent filters to be specified. As

many bandpass filters with bandwidth fBW that fit in the frequency interval with

desired the overlap of 50% are created and used to filter the collected traces.

Finding the minimum number of traces required for a CEMA attack to have a

desired confidence is computationally expensive. To produce Figure 3.7, the CEMA

attack is repeated 499 times4 for each key byte. A binary search method was devel-

oped which reduces the number of CEMA attacks needed to determine the minimum

number of traces, but this approach relies on the assumption that once rmax ≥ rnext

with the desired confidence, the confidence will not go down when additional traces

are added.

An alternative metric to compare the effectiveness of attacks is the confidence

rmax ≥ rnext for a fixed number of traces. A hypothesis test is performed to determine

if rmax is statistically different than rnext using Fisher’s transformation and a Z-

test [46]. The Z values for rmax and rnext, zmax and znext respectively, are calculated

using (3.6).

The Z-score is calculated by finding the difference between the zmax and znext

and dividing by the pooled standard error, SE =
√

2/(nt − 3), or

Ztest =
zmax − znext

SE
= (zmax − znext)

√
nt − 3

2
. (3.9)

4The attack cannot be performed with less than two traces

77

Rather than compare this test statistic with a cutoff, for example Zcrit = 1.95

for 95% confidence (α = 0.05), the confidence p with which the null hypothesis can

be rejected is found using the standard normal cumulative density function

p =
1√
2π

∫ Ztest

−∞
e

−t2
2 dt. (3.10)

This approach is used to compare the frequencies at which key byte information

leaks for the A01 PIC microcontroller in Figure 3.9. A total of 99 overlapping filters

are created for fmin = 0, fmax = 100 MHz and fBW = 2 MHz with 50% overlap.

Each row represents a different key byte. To make the differences between key bytes

easier to see, only nt = 250 traces are used. Since this is a relatively small number

of traces, it is possible that differences between key bytes are due to the distribution

of the plaintext bytes processed, but the change in the confidence between frequency

intervals is real since only fc changes for each filter. The traces are filtered once

for each frequency interval and used to attack each key byte. For this plot, since

intervals overlap by 50% the width of the rectangle in Figure 3.9 representing each

frequency interval does not reflect the true frequency interval bandwidth. The box

is centered on the correct fc.

Since it is possible for rmax to correspond with an incorrect key guess, an ×

is drawn through the box presenting a unsuccessful attack. As expected, attacks

with lower calculated confidence are more likely to be incorrect. Since by definition

zmax ≥ znext according to (3.9), Ztest ≥ 0 and 0.5 ≤ p ≤ 1. Figure 3.9 shows that

some key bytes values are leaked more for certain frequency intervals than others.

Additionally, the value of key byte 4 does not appear to leak as well as the other key

bytes for this device.

78

f
c
 (MHz)

K
e

y
 B

y
te

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 0.5

0.6

0.7

0.8

0.9

1

Figure 3.9 Colored boxes represent the confidence rmax ≥ rnext for each CEMA
attack on PIC A01. Attacks are performed on each key byte using
nt = 250 filtered traces. The boxes represent bandpass filters with
center frequency fc, and bandwidth of WBW = 2 MHz. An × indicates
the CEMA attack produced an incorrect result.

3.6 Template Attacks

A profiling stage can be used to build multivariate statistical models of the

device’s side-channel leakage [24]. Incorporating a profiling stage allows template

attacks to use all information present in a side-channel trace for classification, making

them a strong attack even when only a single or few traces from the attacked device

are available. Rather than try to eliminate or reduce noise, the noise present in

the side-channel emission is assumed to be key dependent and precisely modeled.

Templates are created during the training or profiling stage using training traces

with known key and plaintext values. The templates are used during the attack

or classification phase to determine the most likely class a collection of test traces

belong to.

Since the introduction of template attacks in [24], a number of variations and

improvements have been proposed as discussed in Section 2.4.6. However, all tem-

plate attacks fundamentally contain the following steps.

79

Step 1: Data Collection. The training device and test device must both be ob-

served performing encryption operations. It is assumed the attacker has com-

plete control of the training device, can change the key and plaintext at will

and can associate a collected trace with the plaintext and key used to produce

it. While the key on the target device is always unknown, some attack sce-

narios assume a powerful attacker is able to match observed test traces with

corresponding plaintext or ciphertext.

Step 2: Identify Classes. The goal of a template attack is to correctly determine

to which category or class an observed trace (or set of traces) from a target

device belongs. The number and definition of the classes is determined by

the attack scenario and the type of information leaked from the target device.

When attacking a microprocessor running AES, classes are commonly based

on byte value (256 classes) [24,99], byte Hamming Weight (HW) (9 classes) or

bit value (2 classes) [3].

Step 3: Feature Generation. Preprocessing techniques may be applied to the

traces or the extracted samples before they are used for training or classifi-

cation. Examples of preprocessing techniques include Principal Component

Analysis, down-sampling or filtering.

Step 4: Feature Extraction. The samples in the collected or preprocessed traces

that distinguish between classes are identified and extracted from each trace.

Step 5: Classifier Training. Using the known plaintexts and keys from the train-

ing phase, the attacker can estimate the class from which the observed training

trace belongs. One template is created for each class using the extracted dis-

tinguishing features from the training traces belonging to that class (Ref. to

Sec. 3.6.2).

Step 6: Classification. Using distinguishing features generated from one or more

test traces, the classifier estimates the class to which the test traces most likely

80

belong. If the plaintexts or ciphertexts are known, hypothetical intermediate

values may be used in this process.

The remainder of this section provides additional information for the more

complicated template attack steps. Although distinguishing features are generated

and selected before constructing templates in an actual attack, it is more insightful to

discuss the rationale for feature selection after explaining the mechanics of template

attacks. Let vector x be the list of γ distinguishing features. Methods for selecting

distinguishing features are discussed in Section 3.6.5.

3.6.1 Class Identification. To evaluate the effectiveness of template attacks

on the target devices, a CEMA-based template attack is performed on the PIC and

ARM microcontrollers. Since the plaintext and keys are known during the training

phase, the actual values of the target intermediate value is known for each of the

training traces. For both microprocessors, attacks usingK = 256 classes, one for each

byte possible byte value, were the most effective and yeilded the most information

to the attack. Different templates are constructed for each intermediate value byte

being attacked, but the number of classes is used in all attacks.

3.6.2 Classifier Training. The classifier is trained by constructing tem-

plates for each class. A fundamental assumption is that side-channel leakage for

a particular operation follows a multivariate Gaussian distribution. This assump-

tion has been shown to provide adequate performance in previous template attack

research [3, 9, 24, 73, 92]. The probability density function of a γ-dimensional multi-

variate normal distribution is

p (x) =
exp

(
−1

2
(x− µ̂ki)

T Σ̂−1
ki

(x− µ̂ki)
)

(2π)γ/2
∣∣∣Σ̂ki

∣∣∣1/2 , (3.11)

81

where empirical mean vector µ̂ki and empirical noise covariance matrix Σ̂ki , form

the template of class ki. One template is constructed for each of the K = 256

possible byte values, ki ∈ {0, ..., 255}. The estimates are constructed using nki

distinguishing feature vectors that belong to class ki. Each distinguishing feature

vector is represented as xδ where δ ∈ {1, ..., nki}.

The empirical mean vector, µ̂ki , and the γ × γ empirical noise covariance

matrix, Σ̂ki , are

µ̂ki =
1

nki

nki∑
δ=1

xki,δ (3.12)

and,

Σ̂ki =
1

nki − 1

nki∑
δ=1

(xki,δ − µ̂ki) (xki,δ − µ̂ki)
T , (3.13)

respectively.

3.6.3 Classifying Observed Traces. Since each targeted intermediate val-

ues are dependent one byte of the key, there are K = 256 key-byte values, ki ∈

{0, ..., 255}. For matrix X, which contains the distinguishing features from one trace

in each row, the probability that a key-byte guess is correct is [73]

p (ki|X) =

nt∏
d=1

p
(
xTd
∣∣ ki) · p (ki)∑K−1

l=0

(
nt∏
d=1

p (xTd | kl)
)
· p (kl)

, (3.14)

where i is the index of the nt test traces.

Since AES key-bytes are uniformly distributed, it is initially assumed that

p (kl) = 1/256 for all l ∈ {0, ..., 255}. The Bayesian classification process produces

the probabilities p (ki|X) for all i ∈ {0, ..., 255}.

82

3.6.4 Class Selection. Classification is based on a maximum-likelihood

(ML) decision rule. After p (ki|X) is calculated for each possible round key value,

the most likely key-byte value is

k̂i = arg max
ki

p (ki|X) . (3.15)

3.6.5 Distinguishing Feature Selection. Device EM traces are typically col-

lected at a very high sampling rate resulting in a large number of samples (ns > 104).

Building templates based on every sample is not feasible due to storage requirements

of the covariance matrix and complexity of matrix inversion required to calculate the

observation probability [99].

The processing time and complexity of constructing the templates can be re-

duced by identifying n out of ns points that provide the most information to the

template attack. Since these samples must allow classes to be distinguished from

each other, they are referred to as distinguishing features herein. They are also

referred to as points of interest in related literature.

Previous research has focused on improving how distinguishing features are

generated and selected. A number of heuristic approaches have been proposed,

including selecting samples with the largest difference between mean traces [24], or

the point at which the largest variance between the mean traces (for each class)

occurs. Benefits of pre-processing using a Fast Fourier Transform before selecting

the samples, with the highest cumulative difference between pairs of mean traces,

was evaluated in [99]. Requiring a minimum number of samples between successive

selected time samples has also been proposed as a way to reduce the number of

distinguishing features by reducing redundant information [99].

The known-key CEMA described in Section 3.4.3 was determined to be the

most effective method for selecting distinguishing features for both target devices.

Points with high correlation coefficients are dependent on the key and plaintext being

83

processed. The n points with the highest correlation can be selected, or all points

with an minimum correlation coefficient could be used. To prevent points of interest

from being chosen that are not significantly greater than the average correlation

coefficient of the trace, only points with correlation coefficients greater than 5 times

the average correlation coefficient are used as points of interest for the template

attacks.

3.6.5.1 Principal Component Analysis (PCA). While heuristic meth-

ods for selecting distinguishing features have been effective, more systematic ap-

proaches have been developed. PCA can reduce the dimensionality of trace data

using a linear transform that maximizes the inter-class variance between empiri-

cal mean traces {µ̂s}Ks=1 for each class in the subspace [9]. To find this transform,

PCA identifies the principal directions {wi}npi=1 such that np ≤ ns, which forms an

orthonormal basis capturing the maximal variance of {µ̂s}Ks=1 in an np-dimensional

subspace. The principal directions are the eigenvectors U of the empirical covariance

matrix

S̄ =
1

K

∑K

s=1
(µ̂s − µ̄) (µ̂s − µ̄)T, (3.16)

where S̄ = U∆UT, and µ̄ = 1
K

∑K
s=1 µ̂s is the average of the mean traces. The

principal directions {wi}npi=1 are the columns of U that correspond to the np largest

eigenvalues of ∆. The np-largest eigenvalues are denoted by the diagonal matrix Λ ∈

Rnp×np and the corresponding matrix of principal directions is denoted W ∈ Rns×np .

To perform an attack in the principal subspace, a Gaussian model after projection is

assumed. The projected means {νs}Ks=1 and projected covariance matrices {Λs}Ks=1

are given by

νk = WTµ̂k (3.17)

and,

Λk = WTΣ̂W. (3.18)

84

A collection of traces from the test device, X, is classified by

k̂i = arg max
ki

p
(
ki|WTX

)
(3.19)

3.6.6 Comparing Effectiveness of Template Attacks. In a template attack

the most likely key-byte is selected using (3.15) or (3.19) if PCA is used. For this

research, the template attack is only considered successful if the most likely key-byte

value is the correct key-byte value. Since key-byte selection is dependent on the set

of test traces X used, the attack can be repeated multiple times with different sets

of test traces. Although mathematically when using a Bayesian classifier, the order

in which the processed traces are added does not matter, in practice due to machine

precision limitations the result can be different depending on the order the traces are

added to the classifier. This may occur if the distributions of the training and test

data differ significantly. To repeat a template attack multiple times, permutations

of the collected traces are generated to specify multiple trace orders for a given test

trace set. To determine the success rate for an attack, the classification phase of the

template attack is performed using the first nt traces from each permutation, and

the percentage of attacks that yield the correct key byte is calculated for each byte

individually or for all 16 key-bytes (global success rate).

Alternatively, a single set/order of traces can be used to compare the effective-

ness of two template attacks. By plotting the posterior probabilities for call key-byte

guesses found using (3.14) as in Figure 3.10, the number of traces at which an attack

is successful for a given trace set can be compared [73]. The posterior probability for

the correct key byte value is drawn with a thick green line, and the other key bytes

are drawn using thin lines. Using training and test traces collected from ARM1, a

template attack is performed using the 40 samples most highly correlated with the

HW of output of SubBytes for Byte 1 as distinguishing features. Next, the attack

is repeated using the 80 most highly correlated samples. The effectiveness of these

85

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Traces

P
ro

b
a
b
ili

ty

(a) 40 features

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Traces

P
ro

b
a
b
ili

ty

(b) 80 features

Figure 3.10 Plot of the posterior probabilities for all possible key-byte values using
the indicated number of distinguishing features selected using known-
key CEMA.

template attacks can be compared in Figure 3.10. Using the same trace set, the

template attack using 80 distinguishing features identifies the correct key in fewer

traces than the template attack using only 40 distinguishing features.

3.7 Algebraic Cryptanalysis

Algebraic cryptanalysis is used in this dissertation to combine the results from

multiple template attacks. The AES SAT solver tool developed in this section uses

a multivariate system of polynomials to describe the relationship between the plain-

text, key, ciphertext and intermediate values of AES-128. The AES SAT solver tool

allows any information known about the plaintext, ciphertext, and any intermediate

value or a pair of intermediate values to be added as a constraint for the system of

equations. For direct attacks on the key schedule, an AES Key Schedule SAT Solver

tool is developed which only includes the equations for the key schedule.

3.7.1 Generating a System of Equations for AES-128. The small scale vari-

ants of the AES are designed to incorporate the design features of AES and provide

a framework for comparing cryptographic methods [25]. In addition to implement-

86

ing the small scale variants described in [25] and [27], a full scale implementation of

AES-128 can be constructed using the SR polynomial generator [7] based in Sage

mathematical software, a free software tool created with the goal of being an “open

source alternative to Magma, Maple, Mathematica, and MATLAB” [124].

For a full AES-128 encryption operation this system includes 7288 polynomials

in Algebraic Normal Form (ANF) and 4544 variables. The variables are specified at

the bit level for the start of each AES-128 round, the output of each SubBytes inver-

sion and each bit of each round key. Variables are added to the system to represent

the plaintext and ciphertext. The polynomials define the relationship between each

round, the inversion in SubBytes, and the key schedule. Thus the system of equa-

tions fully defines the relationship between each of the variables defined by AES-128.

If enough of the variables are known, the key can be determined by finding a solution

to the system of equations. The value of the variables may be known from plaintext,

ciphertext, and intermediate values found using side-channel analysis. Methods for

writing constraints for known values are explained in Section 3.7.2.1.

For the attack in Chapter 4, the key schedule is attacked directly by identifying

possible values for multiple bytes of the key schedule. Since the entire key schedule

depends only on the cipher key and not the plaintext, only the equations for the key

schedule are included in the AES Key Schedule SAT Solver tool.

3.7.2 Converting to a SAT Problem. The polynomials produced by the

SR polynomial generator are in ANF. Since the system of polynomials contains

thousands of polynomials and variables, it is not practical to convert to CNF by

hand. Mate Soos updated a converter originally written by Martin Albrecht which

converts ANF to Conjunctive Normal Form (CNF) (anf2cnf) and can produce a

DIMACS file5 from equations written in ANF [119]. DIMACS is a standardized

format for writing CNF equations for input to a SAT solver. The output of the SR

5DIMACS format is named for the Center for Discrete Mathematics & Theoretical Computer
Science (DIMACS) at Rutgers University.

87

polynomial generator can be used with the anf2cnf converter to produce a DIMACS

file which describes the relationship between the intermediate values, the plaintext,

ciphertext and key for AES-128.

3.7.2.1 Introducing Side-Channel Information. SCA can identify

properties of intermediate values or pairs of intermediate values. For example, if the

exact value of a S-box input is determined using a template attack, the value can be

added as constraints on bit values in the system of polynomials. The attack could

also identify multiple possible byte-values.

Given enough traces, template attacks can usually identify the correct byte

value. However, in many cases a template attack can identify multiple possible key-

byte candidates using less traces than required to determine the exact key value.

Rather than using the exact byte value as a constraint for the SAT solver tool, a

list of possible bytes can be used. If the template attack determines the HW of an

intermediate value, all byte values with that HW would be added as possible values.

For example, if the HW of an intermediate value byte is equal to 1, the actual decimal

representation of the 8-bit intermediate value byte may be 1, 2, 4, 8, 16, 32, 64 or

128.

A list of possible values for each byte can also be identified from the posterior

probability for each key byte value calculated using 3.14. When using the maximum

likelihood decision rule in (3.15), only the key byte value with the highest posterior

probability is selected. If this fails to produce the correct key value, more than

one possible key value can be allowed. A fixed number of possible values could be

added to the system of equations for each attacked intermediate value or all key byte

values a meet a minimum posterior probability threshold could be added. Methods

for setting this threshold are explored in Chapter 4. If more than one byte value is

allowed, additional information is needed to identify which byte is correct. This could

88

be information from more than one round of AES, or a known plaintext/ciphertext

pair.

As the number of possible byte values increases, the probability a byte value

combination will satisfy the system of equation increases and the SAT solver may

identify the incorrect key. Increasing the number of byte candidates increases solve

time, but because of the data redundancy in AES, the SAT solver tool may still

identify the correct key. The data redundancy in AES allows the correct key to be

recovered even if each byte value cannot be uniquely identified.

3.7.3 Solving the System of Equations. Once constraints on the byte values

are identified, they must be written in terms of the bit variables used to construct

the system of equations. Rather than add the constraints directly to the system of

equations in ANF, the constraints are written separately. The benefit of this ap-

proach is that the system of equations describing AES can be generated once, and

Sage Mathematics is not required for each attack. Constraint statements describing

the relationship between the bits of the intermediate value are written using Boolean

logic. A tool called Limboole [60], takes constraints written in Boolean logic and con-

verts them to DIMACS CNF form. Once the variable assignments in the DIMACS

file from anf2cnf and Limboole have been deconflicted, the DIMACS files can be

combined and used as the input to the SAT solver. The consolidated DIMACS file

is processed using CryptoMiniSat2 v2.9.1 [118] and the result is compared with the

correct key schedule. If an incorrect key is found, it can be added as a constraint to

the system of equations, to ensure the SAT solver will not find the same incorrect

solution again. More information on this process is found in Appendix B.

3.7.4 Unique Contributions of this SAT Solver Tool. Although this tool

is based on a freely available polynomial system generator, extensive work was per-

formed to introduce the properties of the intermediate values recovered from SCA

89

to constrain the SAT solver and translate the SAT solver solution back into the

intermediate value variables.

The AES-128 SAT solver tool in this research is the first to use multiple models

to simultaneously constrain the solution of the SAT solver. Since the properties that

can be extracted using SCA are different for each round- or key-bit, properties can

be specified in terms of bytes or bits. Models currently incorporated into the tool

are exact bit/byte value, exact byte value plus random byte values, byte HW, and

possible byte values based on posterior probability. Using a thresholding technique

based on the posterior probabilities for all key guesses, is also unique and explained

further in Chapter 4.

3.8 Summary

This chapter introduced the common methodology used in this dissertation

including, data collection, pre-processing techniques, CEMA-based attacks and tem-

plate attacks. The techniques presented in the following chapters enhance the effec-

tiveness of these attacks and remove or challenge one or more of the assumptions

required to preform these attacks. Additional methodology presented in the following

chapters build off of the common methodology presented here.

90

4. Key Schedule Redundancy Attack

This chapter is based on methodology and results submitted to the International

Journal of Applied Cryptography in a paper titled “An algebraic side-channel attack

on the AES key schedule”. The article was coauthored by Dr. Rusty Baldwin and

Dr. Michael Temple.

4.1 Introduction

Side-Channel Analysis (SCA) exploits a physical implementation rather than

the mathematical cryptographic strength of a cipher. An implementation can leak in-

formation about the data being processed on the device, which can lead to the extrac-

tion of the key used to perform the cryptographic operation. Various side-channels

have been used to attack cryptographic devices including timing [66], power con-

sumption [67], and electromagnetic (EM) emanations [47,94]. Template attacks [24]

are a powerful type of two-phased attack in which an adversary builds probabilistic

models known as templates during a training phase, and compares key-dependent

predictions with observed emissions using those templates during an attack phase.

The single key or key portion guess with the highest probability of being correct is

typically chosen based on a Maximum Likelihood (ML) decision rule [24, 73]. The

ML decision rule produces a single guess for each portion of the key. If the collected

emissions used for classification are of poor quality, due to poor probe placement,

noisy device operation, noise introduced from the collection process or in the collec-

tion environment, the ML decision rule may produce an incorrect key guess.

Incorporating algebraic cryptanalysis into the template attack methodology al-

lows the most likely guesses to be considered rather than a single guess. As a result,

even if the correct byte is not identified using the ML decision rule, the algebraic

structure of the cipher can be used to identify which guess is correct. To demonstrate

this, we introduce a new unknown plaintext attack, called the Key Schedule Redun-

91

dancy Attack (KSRA), that combines template attacks with algebraic cryptanalysis

such that the AES key schedule can be recovered even from poor quality collections.

The attack has three phases: 1) template construction, 2) trace classification, and 3)

key schedule reconciliation. The template construction phase identifies distinguish-

ing features of interest using correlation analysis [22] and builds templates for each

targeted intermediate value. The list of potential values for each targeted interme-

diate byte is used to calculate possible round key-byte values in the attack phase.

These possible round key-bytes are then reconciled into a working key schedule using

algebraic cryptanalysis in the final phase. While, demonstrated here using the AES

key schedule, the proposed method is generally applicable to other ciphers.

Various aspects of this attack are different than previously proposed attacks.

This attack directly targets the key schedule, identifying possible values for portions

of multiple round keys based on the posterior probability for each byte guess calcu-

lated from a template attack. A novel thresholding technique is used to gradually

include additional key-byte guesses based only on the posterior probability for each

key-byte guess. Since the target microcontroller calculates the key schedule as part

of each encryption operation, traces from multiple encryption operations can be used

without requiring individual plaintexts or ciphertext to be matched with their corre-

sponding side-channel emissions, eliminating one of the biggest assumptions made in

side-channel analysis. Since each round key contains all of the information required

to reconstruct the entire key schedule, this attack takes advantage of the redundancy

in the key schedule to resolve uncertainty in template classification. Since the goal

of KSRA is to combine template attacks and algebraic cryptanalysis to improve per-

formance when using poor quality traces, rather than a hardened design, the attack

is performed on an unprotected implementation.

This chapter is organized as follows. Section 4.2 provides a brief overview of

the AES key schedule, template attacks and algebraic cryptanalysis. Related work

92

is outlined in Section 4.3. The new attack is explained in Section 4.4, and results

are presented in Section 4.5.

4.2 Background

This attack targets an Electronic Codebook (ECB) implementation of AES on

a 16-bit PIC microprocessor. AES is summarized in Section 2.2.2 and fully described

in the Federal Information Processing Standards Publication 197 [88]. Since the

KSRA focuses on the key schedule, it is explained in detail here.

The KSRA uses known-key Correlation-based Electromagnetic Analysis (CEMA)

to identify points of interest for template attacks. Background on known-key CEMA

and template attacks can be found in Chapter 3.

4.2.1 Key Schedule Background. The template attacks in the KSRA target

the SubWord operation output in the AES key schedule1. How this output is related

to portions of the round keys is explained below and shown in Fig. 4.1. The full key

expansion routine is explained in AES standard [88].

For AES-128, the variant of AES with a 128-bit key, there are Nr = 10 rounds.

The key expansion routine takes the original cipher key, K, and generates a total of

Nw = 44 4-byte words, [wi], 0 ≤ i ≤ 43. The first 4 words of the key schedule are from

the original 128-bit round key K = K0 = [w0, w1, w2, w3] and an additional 4 words

are generated for each of the 10 rounds. Each round key is denoted by Kr where r is

the round index 0 ≤ r ≤ 10 so, Kr = [w4r, w4r+1, w4r+2, w4r+3]. Furthermore, since

key schedule transformations are performed at the byte level, each round key can be

written in terms of its key-bytes as Kr = [Kr
0 , K

r
1 , ...K

r
14, K

r
15].

There are multiple intermediate values calculated during the key schedule

routine that are not used as the round keys. The last four bytes of each round

1 The motivation for attacking the output of SubWord, rather than the key-bytes directly [24],
is described in Section 4.4.2.

93

0
K K=

0

0
K

0

1
K

0

2
K

0

3
K

0

4
K

0

5
K

0

6
K

0

7
K

0

8
K

0

9
K

0

12
K

0

13
K

0

10
K

0

14
K

0

11
K

0

15
K []3

w

RotWord()

SubWord()

1
K

1

0
T

1

1
T

1

2
T

1

3
T

Rcon

2 10
K K−

1

0
K

1

1
K

1

2
K

1

3
K

1

4
K

1

5
K

1

6
K

1

7
K

1

8
K

1

9
K

1

12
K

1

13
K

1

10
K

1

14
K

1

11
K

1

15
K []7

w

Figure 4.1 Process for transforming the original cipher key into the first round
key performed in the key schedule algorithm (figure derived from [65]).
This process is repeated for K2 through K10. The 4-byte outputs of
the SubWord operations performed to calculate K1 through K10 are
the targets of this attack.

key, [w4r+3] = [Kr
12, K

r
13, K

r
14, K

r
15], are transformed using the cyclic permutation

RotWord ([Kr
12, K

r
13, K

r
14, K

r
15]) = [Kr

13, K
r
14, K

r
15, K

r
12].

Next, the SubWord operation takes the 4-byte output of RotWord and applies

the AES S-box to each byte to produce a 4-byte output word. This result is XOR-ed

with the round word constant, Rcon[i] and finally XOR-ed with [w4r] to calculate[
w4(r+1)

]
. For this attack, since the SubWord operation occurs in the round after

the targeted round, r, its output is
[
T r+1

0 , T r+1
1 , T r+1

2 , T r+1
3

]
.

4.3 Related Work

A side-channel attack on the AES-128 key schedule is proposed in [71]. The

goal of the attack is to substantially reduce the number of keys such that a brute

force search is feasible. The attack assumes all 16 8-bit Hamming Weights (HWs)

(i.e., the number of bits equal to 1 in the byte) can be extracted for a targeted

round key. The round key is divided into four 5-byte overlapping parts. Additional

94

intermediate key schedule values solely determined by each 5-byte set are identified

and it is assume the HWs of these values are known. Knowing the HWs for each

round key-byte and dependent intermediate values allows lists of possible round keys

to be created for each 5-byte part. The four lists are combined to define the new

key search space. Not all HW values must be known to determine the key, but

the attacker must be able to determine which HWs can be successfully determined

during a side-channel attack [71]. With fewer HWs, the key search space becomes

larger. The KSRA allows for uncertainty in extracted values, using the algebraic

representation of the key schedule and the SAT solver to identify the correct value

for each byte.

Renauld et al. combined algebraic cryptanalysis with HW-based template at-

tacks to exploit an implementation of AES on a 8-bit PIC microcontroller [100]. The

attack targeted an 8-bit PIC microcontroller which used multiple lookup tables and

XOR operations to perform the MixColumn transformation resulting in more inter-

mediate values than needed to perform AES on another microcontroller architecture.

Renault et al. note the leakage of the MixColumn operation is “most critical when

solving the system”. If the HWs for all of the intermediate values for 3 consecutive

rounds can be extracted with an error rate less than or equal to 1%, the AES key

can be recovered in 95% of cases. Since this approach identifies a single HW for

each intermediate value, an incorrect HW will result in the SAT solver determining

the system as unsatisfiable or the SAT solver will identify an incorrect key. A SAT

solver can use less precise leakages and still find the correct key if given a pair of HWs

that includes the correct one along with sufficient rounds of HW information. All

template attack results were simulated, and the authors do not state if enough HWs

can actually be recovered from the 8-bit PIC microcontroller, to make the attack

possible.

Building on the results of [100], Mohamed et al. improved the algebraic repre-

sentation of AES for an 8-bit implementation to reduce the amount of data required

95

for both known and unknown plaintext attacks [81]. Additionally, their approach

defined and tolerated practical levels of erroneous information recovered from simu-

lated template attacks by increasing the set of possible HW values to reach a pre-

determined certainty threshold based on maximum-likelihood estimation. Oren et

al. proposed dealing with errors by converting the problem of solving the system of

equations into an integer programming optimization problem [90]. Successful attacks

were demonstrated with 10-20% error rates for the Keeloq system [90] and extended

to AES [89] allowing recovery of the secret key in 60-70% of trials with a single

trace even when 20% of the trace is corrupted by noise. These attacks [81, 89, 100],

were again demonstrated with simulated template attack results, and rely on the

ability to extract the HWs from additional calculations used to implement AES on

the targeted 8-bit microcontrollers.

Simultaneously, yet independent of this research, posterior probability values

were incorporated into the template attack methodology to attack AES [89]. Using

known plaintext and ciphertext pairs in conjunction with the algebraic description

of AES-128 on an 8-bit microcontroller from [100], the posterior probability values

identify the k most likely values for each intermediate value. A fixed number of

possible values for each intermediate value produced poor results when used with

a SAT solver. More favorable results were achieved when the posterior probability

values were used to determine a goal term in an integer programming optimization

representation. Rather than use a fixed number of guesses, our KSRA attack demon-

strates a thresholding technique to identify the possible values for each intermediate

value.

Albrecht and Cid demonstrated it is possible to recover a decayed key schedule

in the presence of noise using polynomial system solving techniques to identify the

most likely key schedule [6]. In their cold boot application, noise is modeled as

the probability of an individual bit in the key schedule stored in Dynamic Random

Access Memory (DRAM) flipping from its initial state. Since bit decay in DRAM is

96

usually asymmetric [55], the probability of a bit flipping to the memory’s “ground

state” is much higher than the probability of flipping in the opposite direction. This

research uses the same system of equations, but possible byte values are determined

by the posterior probability of the template attacks.

4.4 The Attack

The KSRA combines correlation-based EM analysis techniques, template at-

tacks and algebraic cryptanalysis. The attack uses collected side-channel emissions

from a PIC microcontroller. To test the robustness of the attack, the quality of the

data is intentionally degraded by moving the near-field probe away from the device.

Training and test data are collected at each probe height above the device. Known-

key correlation analysis is performed on the training data to identify the points of

interest for each output of the SubWord operation in the key schedule. Templates

are built for the points of interest for each byte using the training data. The tem-

plate classification phase is performed using test data, and the posterior probability

for each key bytes guess is used to identify possible values for the last 4 bytes in

each round key. The bytes values that meet a threshold posterior probability are

included as possible values for the SAT solver. The SAT solver uses a description of

the AES-128 key schedule and possible byte values to return a working key schedule

if possible. Each of these steps are now explained in greater detail.

4.4.1 Data Collection. Training and test data is collected from PIC A01

as described in Section 3.1. The microprocessor performs MixColumns using the

xtimes operation as described in FIPS 197 [88], not using substitution tables as

in [81, 89, 100]. The SubBytes substitution table, used in both the rounds and key

schedule, is the only substitution table used.

To test the robustness of the attack, the quality of the data is intentionally

degraded by gradually increasing the distance between the device and probe from

97

h = 0 to h = 5 mm in 1 mm increments. At each height, nt = 10, 000 training traces

and nt = 5, 000 test traces are collected. After down-sampling, the traces used in

the attack have an effective sampling frequency of fDs = 200 MSa/sec.

4.4.2 Targeted Intermediate Values. To identify the portions of the round

key for round r which can be recovered from the targeted intermediate values, the

output of SubWord in the following round is designated
[
T r+1

0 , T r+1
1 , T r+1

2 , T r+1
3

]
and

shown in Fig. 4.1.

The temporary values produced by SubWord,
[
T r+1

0 , T r+1
1 , T r+1

2 , T r+1
3

]
, are the

target of the KSRA. Letting SB denote the AES S-Box, with SB−1 denoting its

inverse, the relationship between the last 4 bytes of round keys K0 through K9

and the subsequent SubWord operation which calculates the next round key can be

written,

[SB (Kr
13) , SB (Kr

14) , SB (Kr
15) , SB (Kr

12)] =
[
T r+1

0 , T r+1
1 , T r+1

2 , T r+1
3

]
. (4.1)

Therefore,

Kr
12 = SB−1

(
T r+1

3

)
,

Kr
13 = SB−1

(
T r+1

0

)
,

Kr
14 = SB−1

(
T r+1

1

)
and,

Kr
15 = SB−1

(
T r+1

2

)
.

(4.2)

Possible values for
[
T r+1

0 , T r+1
1 , T r+1

2 , T r+1
3

]
are determined using template at-

tacks. Since the original key can be determine using the last 4 bytes of any 4

consecutive round keys, the 40 bytes of round key data extracted using this method

are redundant and can be used to determine the correct key schedule in poor quality

trace sets. Given a set of guesses for the last 4 bytes of each round key, a SAT solver

attempts to reconcile the guesses into a proper key schedule.

98

A more direct attack would be to build templates for each byte of the AES-128

key [24]. However, following the same methodology to identify distinguishing features

to build and use the template attack described in this section, only the last 4 of the

16 key-bytes can be extracted successfully for the target device. Other methods of

identifying distinguishing features including Principal Component Analysis [9] were

tested, but did not improve the result.

While any intermediate value in the key schedule can be targeted, only compar-

ison of the input and output SubWord operations provides additional information.

All other intermediate values are linearly related to the output of the previous Sub-

Word operation. The SubWord output was chosen as the target intermediate value

for the template attack because it yielded the highest posterior probabilities for

correct key-byte values out of all intermediate values tested.

In testing, including additional linearly related intermediate values degraded

performance. Performance is degraded because including additional intermediate

values introduces additional (incorrect) key-byte guesses for the same key-byte, in-

creasing the likelihood of finding an incorrect key schedule.

4.4.2.1 Identifying Distinguishing Features. The goal of the template

attack is to identify the most likely byte values of each output of the SubWord

operation. To identify the correct byte, each bit must be correctly identified. Using

the known cipher keys from the training data, the output of the SubWord operation

is calculated and bit-level correlation analysis [22] is performed to determine which

samples are highly correlated with the leakage for each bit of the SubWord output.

This process is described in Section 3.4.3.

The samples with the highest correlation coefficients for each bit are added to

the list of distinguishing features. If a sample has already been added because it

was highly correlated with another bit, the sample with the next highest correlation

coefficient for that bit is added. Only samples which have correlation coefficients

99

significantly (5×) greater than the average correlation coefficient are added to the

list of distinguishing features. Up to 10 points of interest for each bit are included

in the list of distinguishing features for each byte. Including more than 10 points for

each bit did not dramatically improve classification performance for h = 0. To allow

for comparison, the maximum number of points was fixed for all heights.

The known-key correlation analysis is repeated using the data sets collected at

each distance. As a result, the interesting points identified for the trace set collected

with the near-field probe is at h = 0 mm may not be the same points as identified

using the trace set collected when the probe is 5 mm above the device.

4.4.3 Template Attack. A template attack is performed on 40 intermediate

values of the key schedule to determine possible values for T r+1
b where b ∈ {1, ..., 4}

and r ∈ {0, ..., 9}. Although distinguishing features are selected using bit-wise

known-key correlation analysis, the templates are constructed for K = 256 possible

key-byte values (classes), ki ∈ {0, ..., 255}, as described in Section 3.6.2.

For the matrix X containing distinguishing features from one test trace on each

row, the probability that a byte guess is correct is [73],

p
(
ki = T r+1

b

∣∣X) =

(∏Nt
d=1 p

(
xT

d

∣∣ ki = T r+1
b

)
· p
(
ki = T r+1

b

))
∑K−1

l=0

((∏Nt
d=1 p

(
xT

d| kl = T r+1
b

))
· p
(
kl = T r+1

b

)) , (4.3)

where i is the index of the Nt test traces.

Since AES key-bytes are uniformly distributed, it is initially assumed that

p
(
kl = T r+1

b

)
= 1/256. Let pthr be the posterior probability for which a key-byte

guess is retained as a round key-byte candidate. Since the key schedule portion of

each trace is the same, an alternative approach is to average multiple traces before

performing classification. In testing, the Bayesian classification approach in (4.3)

yielded better results.

100

If p
(
ki = T r+1

b

∣∣X) ≥ pthr it is included in the list of possible values for T r+1
b .

The list of possible values for T r+1
b are used to calculate possible values for Kr

12, Kr
13,

Kr
14 or Kr

15 using (4.2).

Selecting the proper threshold at which to keep or reject a byte guess for each

T r+1
b is critical to the success of this attack. For the SAT solver to find the correct

key schedule, the value of T r+1
b that corresponds to the actual key-byte must be

included in the list of possible bytes for each targeted byte. If all correct round

key-byte values are not included in the list of possible values, the SAT solver will

either produce an incorrect key schedule or return an UNSAT result. If too many

round key-byte guesses are included, the SAT solver will either find an incorrect key

schedule or not identify a working key schedule in a timely manner.

To calculate the ideal threshold, pthr, the maximum threshold that allows all

of the correct round key-bytes to be included in the list of possible round key-byte

values, the minimum posterior probability of the correct values for the 40 targeted

round key-byte values is found. The ideal threshold is calculated for each attack.

It is shown in Section 4.5.3.2 that for an actual attack, the posterior probability

matrices for each targeted round key-byte can be used to determine possible values

for pthr by evaluating the number of round key-byte guesses that would be included

for a given pthr.

4.4.4 Reconciling Round Key-Byte Guesses. The AES Key Schedule SAT

Solver tool described in Section 3.7 is used to reconcile the round key-byte guesses.

The guesses for the byte value for 40 key schedule bytes are included as constraints

to the system of equations describing the AES-128 key schedule. The SAT solver

attempts to identify a working key schedule. Since the key schedule rounds contain

redundant information, it may identify the correct key schedule even if the correct

byte value would not have been selected using a ML decision rule. If a working key

schedule cannot be found the SAT solver will identify the system as unsatisfiable

101

(UNSAT). If a working key schedule is returned, the correct key schedule is compared

to the result to determine if the attack is successful.

4.5 Results and Comparison

4.5.1 Evaluating Performance. After collecting training and test traces as

described at h = 0 mm, a template attack is performed using the ML decision rule

on each of the 40 targeted key schedule intermediate values. The attack is repeated

with nt = 500 test traces, and overall the correct round key-byte value is identified

in 98.5% of the template attacks using only a single trace. To intentionally degrade

the quality of the collected traces, the distance between the probe and device is

increased from h = 0 to h = 5 mm in 1 mm increments.

Increasing the distance between the probe and the device reduces the signal-to-

noise ratio (SNR). The SNR is estimated for one bit changing for each set of training

traces collected at different distances using the methodology proposed in [73]. In ad-

dition to the variation caused by the data, each trace contains electronic and switch-

ing noise as well as noise from the collection equipment and environment. Digitizing

the signal introduced quantization noise. The SNR for one bit changing at a specific

sample of a collected signal S is estimated to be SNR ≡ V ar (Sdata) /V ar (Snoise) .

To estimate V ar (Sdata), the mean signal observed value when the bit of interest

is zero, µ0, and the mean when the bit is one, µ1, are calculated to average out

the contributions of noise. Next, the value observed for a sample in each of the

nt = 10, 000 training traces is replaced with either µ0 or µ1 based on the actual bit

value for that trace. To estimate V ar (Snoise), the variance of all traces when the

bit value is equal to 0 is calculated. This process estimates the SNR for the LSB

of K1
12 for the training data collected at each distance. The SNRs are calculated

for each time sample in the collected traces. Since the highest SNRs may occur at

different samples for each trace collection, the SNRs are compared by calculating the

average of the five highest SNRs at each distance and normalizing by the average of

102

3740 3760 3780 3800 3820
−40

−30

−20

−10

0

10
Normalized SNR (dB) at 0 mm

N
or

m
al

iz
ed

 S
N

R
 (

dB
)

Sample Number

µ = 0.0

3740 3760 3780 3800 3820
−40

−30

−20

−10

0

10
Normalized SNR (dB) at 2 mm

N
or

m
al

iz
ed

 S
N

R
 (

dB
)

Sample Number

µ = −11.1

3740 3760 3780 3800 3820
−40

−30

−20

−10

0

10
Normalized SNR (dB) at 4 mm

N
or

m
al

iz
ed

 S
N

R
 (

dB
)

Sample Number

µ = −21.6

Figure 4.2 Estimated normalized SNR is calculated by averaging the 5 highest
SNRs for each distance and normalizing using the average when the
probe is at h = 0 mm (left). The change in SNR in dB when the near-
field probe is placed h = 2 mm (middle) and h = 4 mm (right) above
the device are shown.

Table 4.1 Calculated change in SNR (dB) from increasing the distance between
the microcontroller packaging and the bottom of the probe.

Probe Height h (mm)
0 1 2 3 4 5

Normalized
SNR (dB)

0 -3.7 -11.1 -14.9 -21.6 -26.3

5 SNRs calculated when the probe is at h = 0 mm. Plots of the SNRs calculated

for the distances of h = 0, 2 and 4 mm for samples 3725 to 3825 are shown in

Fig. 4.2. The 5 highest SNR values, circled on in Fig. 4.2, correspond with the 5

highest correlation coefficients found during the single-bit correlation analysis used

to identify distinguishing features for the template. The normalized SNR for each

probe height is shown in Table 4.1.

SNR was estimated at the bit level because the distinguishing points are se-

lected at the bit level. Performing these calculations on other bits produced consis-

tent results, so only one example is shown.

4.5.2 Comparison of Distinguishing Features. The samples used to build

templates for h = 0 mm and h = 5 mm are compared in Figs. 4.3 and 4.4. Using the

103

0 1 2 3 4

x 10
4

5

10

15

20

25

30

35

40

Samples

T
ar

ge
te

d
B

yt
e

Figure 4.3 Plot of distinguishing features chosen for h = 0 mm. The round key for
the next round is calculated before the round starts. The points which
are highly correlated with a HW model are identified as distinguishing
features. There are 4 targeted bytes per round. To help distinguish
rounds, a dotted line is shown between each round.

methodology described in Sec. 4.4.2.1, between 59 and 80 points are identified for

training data collected at h = 0 mm. When the distance is increased to h = 5 mm

the number of points selected to build templates for each byte is reduced to between

30 and 66 because fewer samples have correlation coefficients significantly greater

than (≥ ×5) the average correlation coefficient. The reduced number of points, and

the increased number of points scattered across the entire trace, indicate the traces

collected at the greater distance do not follow the HW model as well. The reduced

number of points and selection of points with lower correlation, make the template

attack at h = 5 mm less effective than for h = 0 mm.

4.5.3 Experimental Results. Since this attack directly targets the inter-

mediate values of the key schedule, it has the benefit of being able to use traces

from multiple encryption operations without requiring the plaintext or ciphertext

to be associated with each collected side-channel emission. In fact, only a single

plaintext/ciphertext pair is needed to verify the correct key has been found. The

104

0 1 2 3 4

x 10
4

5

10

15

20

25

30

35

40

Samples

T
ar

ge
te

d
B

yt
e

Figure 4.4 Plot of distinguishing features for h = 5 mm. At h = 5 mm additional
noise causes various points across the entire trace to be identified as
distinguishing features. Overall, less distinguishing features are chosen
for h = 5 mm than for h = 0 mm.

performance of this attack is evaluated by repeatedly performing the attack 500 times

using randomly chosen sets of 1, 5 or 50 traces from the nt = 1, 000 test traces.

4.5.3.1 Ideal threshold. To reduce the time required to evaluate

performance of the KSRA, the ideal threshold pthr (discussed in Section 4.4.3) is

used to identify possible values for each round key-byte for the results in Table 4.2.

For these trials the SAT solver is only allowed to return one solution. If any portion

of the key schedule is incorrect, the entire key schedule is incorrect. The average

number of round key-bytes (of the 40 targeted values) correctly identified using the

ML decision rule are shown in parentheses for comparison. Since they do not indicate

the percentage of key schedules recovered using the ML method, they are shown as

a ratio to avoid confusion.

With a probe height of h = 2 mm using only 1 test trace, the KSRA was able

to recover the correct key schedule in 90.6% of the trials despite correctly identifying

only 21.7 of the 40 extracted round key-bytes correctly using a ML decision rule.

With a probe height of h = 5 mm, if 50 traces are used during the template matching

105

Table 4.2 Percentage of 500 trials resulting in the correct key schedule being iden-
tified at each probe height using the unknown plaintext attack pro-
posed. The posterior probability threshold pthr used to select possible
SubWord() output is calculated for each trial to allow all correct bytes to
be included. The average number of the 40 targeted key schedule values
correctly identified using a ML decision rule are shown in parentheses.

of Traces
Probe Height h (mm)

0 1 2 3 4 5

1
100.0% 99.8% 90.6% 40.6% 0.0% 0.0%

(39.4/40) (33.9/40) (21.7/40) (13.9/40) (4.7/40) (1.9/40)

5
100.0% 100.0% 99.6% 99.6% 58.3% 0.0%
(40/40) (39.1/40) (35.2/40) (29.40/40) (15.8/40) (6.8/40)

50
100.0% 100.0% 100.0% 100.0% 99.8% 93.6%
(40/40) (39.9/40) (38.1/40) (37.0/40) (28.0/40) (17.8/40)

phase, the key schedule is successfully recovered in 93.6% of trials without knowledge

of the plaintext.

4.5.3.2 Experimentally Determined Threshold. Clearly, in an actual

attack the ideal threshold is not known. However, the posterior probability matri-

ces for each round key-byte can be used to identify possible threshold values. The

threshold can gradually be decreased based on the number of key-byte guesses in-

cluded at a given threshold. The initial threshold is set to include at least one guess

for all targeted round key-bytes. If this initial guess fails to identify the correct key

due to the SAT solver returning an incorrect key or UNSAT, the threshold is lowered

for subsequent attempts. Although there are potentially 40x256 thresholds to eval-

uate, good results were obtained when the threshold was adjusted to increase the

maximum number of guesses per round key-byte each time the SAT solver returned

an Unsatisfiable (UNSAT) or incorrect key schedule. These thresholds can easily

be found by ranking the key schedule byte guesses for each intermediate values by

posterior probability, and finding the maximum posterior probability for the desired

number of guesses. Although this method still identifies up to 256 threshold values,

these are quickly evaluated by the SAT solver.

106

To test the effectiveness of gradually lowering the threshold, KSRA is per-

formed repeatedly, reducing the threshold for each subsequent attack. Since all

correct key schedules in Table 2 were found in less than 60 seconds, the SAT solver

timeout is set to 120 seconds. Additionally, since it is unlikely the SAT solver will

find the correct answer when the average number of guesses for each round key-byte

is greater than 50, or the minimum number of key guesses for any byte is greater

than 10, these statistics were used to identify when the threshold should no longer

be increased. These constraints allow multiple correct key-byte guesses to have low

posterior probabilities. However since only one threshold is used to determine the

possible values for all key schedule bytes, if the correct key-byte value for one or

more bytes has a very low posterior probability due to a particularly noisy or poorly

collected trace, the number of possible values for other key schedule bytes will be

increased.

The effectiveness of using this method to find the threshold is compared to

calculating the ideal threshold using sets of 50 traces collected at h = 5 mm. By

gradually increasing the maximum number of round key-byte guesses, the correct key

was identified in 488 of 500 (97.6%) of the trials. This is a marked improvement over

the 93.6% success rate for the “ideal threshold”. When the ideal threshold is known,

the SAT solver was only run once. However, when the threshold is unknown and

an incorrect answer is returned it is assumed the threshold was not low enough to

include the correct round key-bytes and the threshold is decreased further. Although

the SAT solver has a larger set of possible key-byte values in this case, it also has

another chance to find the correct key.

4.5.3.3 Multiple Guesses. When the threshold is gradually lowered,

the correct key is found for 12 of the 16 trials which produced incorrect key guesses

using the “ideal” threshold. This discrepancy is resolved by allowing the SAT solver

to return another guess if it returns an incorrect key schedule. Adding incorrect

solutions to the SAT solver constraints prevents previous results from being returned

107

by the SAT solver in subsequent attempts. Allowing for up to 10 incorrect answers

to be returned, 488 of 500 keys (97.6%) were recovered successfully using the ideal

threshold, matching the performance when the threshold was unknown.

4.5.3.4 Error Tolerance. If the template attack classification process

results in the correct byte value having a very low posterior probability due to noise,

pthr must be decreased until the correct value is included in the set of possible byte

values before it will be possible for the SAT solver to find the correct key schedule.

Unfortunately, reducing pthr also increases the number of possible byte values for

other round key-bytes. When a large number of byte values are possible for each

of the targeted bytes, the SAT solver may find another working key schedule before

finding the correct key. If the correct key is not found after a set number of attempts,

the trial is considered a failure. For all trials shown in Table 4.2, the correct value for

each byte is included in the list of possible bytes. All failures are due to an incorrect

key schedule being returned from the SAT solver after the first attempt.

4.5.4 Comparison. Effectiveness of KSRA is compared to a template attack

on the SubBytes output in the first round of AES-128, as described in Section 3.4.2.

This type of side-channel attack is compared with KSRA because it also incorporates

multiple traces using a Bayesian classification rule. To perform classification for a

SubBytes attack using multiple traces, the plaintext must be known. The SubBytes

template attack is implemented using the same distinguishing feature selection cri-

teria and the ML decision rule is used to select the 16 key-byte candidates. The

percentage of trials that successfully identified all 16 key-bytes for each probe height

are shown in Table 4.3.

Even without knowledge of the plaintexts, performing a proposed SubWord

attack with a SAT solver provides a higher success rate when only a small number

of traces or plaintexts are available. If only one captured trace is available, the

SubWord attack has a higher success rate than the SubBytes attack for h = 0 to 3

108

Table 4.3 Percentage of 500 trials resulting in the correct key being identified at
each probe height using a known plaintext template attack targeting
the output of the SubBytes operation in the first round of an AES-128
encryption operation. The average number of the 16 key values correctly
identified using a ML decision rule are shown in parentheses.

of Traces
Probe Height h (mm)

0 1 2 3 4 5

1
16.8% 0.0% 0.0% 0.0% 0.0% 0.0%

(14.2/16) (4.8/16) (4.8/16) (3.4/16) (1.5/16) (0.7/16)

5
95.8% 85.2% 66.8% 42.2% 4.2% 0.0%

(15.9/16) (15.6/16) (15.6/16) (15.1/16) (13.1/16) (8.67/16)

50
100.0% 100.0% 100.0% 100.0% 100.0% 98.2%
(16/16) (16/16) (16/16) (16/16) (16/16) (15.9/16)

mm. If the associated plaintext is known for a large number of test traces, the

SubBytes attack provides superior performance.

While the SPA key schedule attack in [71] and SKRA both exploit key schedule

redundancy, there are key differences between the attacks which make them hard to

compare directly. The SPA attack uses 81, 76, or 40 HWs extracted with perfect

accuracy to reduce the size of the key schedule search space. A brute force iteration

is required to determine which key in the reduced search space is correct.

The KSRA is based on actual side-channel attacks against the PIC microcon-

trollers. The 40 key schedule bytes are chosen because their values can be revealed

through side-channel analysis. The SPA key schedule attack in [71] identifies which

key schedule bytes could be used to determine the key schedule, but it does not take

into account which byte values (or HWs) can actually be determined on a physical

implementation.

The KSRA uses the posterior probabilities for the 256 possible byte values

for 40 key schedule bytes. With perfect byte-value extraction accuracy this attack

could be performed with only 16 bytes from the key schedule. Targeting 40 bytes

allows key-byte values to be consider by the SAT solver that would not be chosen

using the ML decision rule. Since the SPA attack assumes perfectly extracted HW

109

data, despite increased brute force search times for lower quantities of HWs, it always

recovers the correct key. Unlike the SPA attack, the KSRA is able to use information

from multiple observations and is able to tolerate imprecise classification. Since

guesses for any key-byte can be specified in the SAT solver constraints, KSRA can

be easily adapted to implementations of AES-128 that leak different key schedule

bytes. As such, direct comparison between the SPA attack and the KSRA is not

appropriate.

4.6 Conclusion

This chapter demonstrates the benefit of using algebraic cryptanalysis to rec-

oncile uncertainty in the classification stage of template attacks. The KSRA is a

new unknown-plaintext attack that exploits the redundancy in the key schedule to

compensate for measurement errors. Unlike previous attacks, which merely simu-

lated the results of template attacks [81, 89, 90, 100], the robustness of the KRSA is

demonstrated using collected traces that were intentionally degraded by moving the

probe away from the device.

The KSRA identifies possible round-key-byte candidates using the posterior

probability from the classification phase of a template attack rather than selecting

the byte guess with the highest posterior probability. The resulting list of possible

round-key-byte values are reconciled into a working key schedule using a SAT solver.

In addition to not requiring the plaintext, this method was shown to be more effective

than targeting the output of the SubBytes operation in the first AES round based

on the ML decision rule when a small number of plaintexts are available.

Unlike previous SAT solver based unknown plaintext attacks [81, 89, 90, 100]

which targeted intermediate values from the AES round transformation, traces from

multiple encryption operations can be used if the key schedule is calculated during

each encryption operation. The use of multiple traces dramatically improves perfor-

mance for poor quality trace sets. For data collected at h = 5 mm with only one

110

trace, the key schedule was not successfully recovered in any of the 500 attempts.

However, when 50 traces and multiple SAT solver attempts are used the success rate

improves to 97.6%.

Pre-calculating and storing the key schedule is an obvious countermeasure for

poor quality collections requiring more than one trace to determine the key schedule.

In this case, an attacker would not be able to observe the same key schedule being

calculated during multiple encryption operations and multiple traces could not be

used to identify the most probable byte guesses. However, unlike the SubBytes

attack, KSRA was successful using but a single trace for all trials when the probe

was placed as close to the microprocessor as possible.

Although determining the secret key for an unprotected implementation of

AES-128 on a microprocessor using side-channel analysis is trivial using high quality

collections, the KSRA has shown the value of incorporating algebraic cryptanalysis

and a SAT solver into template attacks. Even with poor quality traces, the cipher

redundancy can be exploited to determine the correct key value justifying the extra

effort required to create and incorporate the algebraic description of the cipher into

the template attack methodology.

111

5. Improving Cross-Device Template Attacks

This chapter contains text of an article submitted and accepted to the Journal of

Cryptographic Engineering [85] titled “Improving cross-device attacks using zero-

mean unit-variance normalization” based on the cross-device attack on PIC micro-

controllers. This article was co-authored by Dr. Rusty Baldwin, Dr. Michael Temple

and Mr. Eric Laspe. It was published online 29 September 2012, and in Volume 3,

Issue 2, pp 99-110 of the print edition. The background section was reduced to avoid

redundancy and notation has been homogenized between chapters of this disserta-

tion. Improvements on the cross-device methodology, to create a single template for

a family of devices, and improve cross-device attacks for more complicated devices

are discussed in Chapter 6.

5.1 Introduction

Template attacks [24] are a form of two-stage profiling attack, with the initial

stage obtaining ‘a priori’ knowledge of the side-channel leakage for a specific device.

The profiling, or training stage estimates the multivariate probability densities of

observable side-channels for the targeted key-dependent internal state of the cryp-

tographic implementation. The estimated probability densities are used during the

attack phase to determine the device’s internal state. The key assumption for a

profiling attack is that a powerful attacker has access to a training device, identical

to the target device, over which he has full control. The training device is used to

create a precise multivariate model of the device’s side-channel leakage for each key

dependency. Implicit in using a training device is that both devices produce similar

side-channel emissions. This assumption was originally introduced in [24], and has

since been repeatedly accepted without challenge [3, 9, 53,92,102,122].

It has recently been shown that in addition to operation and data depen-

dent components of electromagnetic (EM) emissions, the emissions exhibit signif-

112

icant device-dependent characteristics [31]. This is likely due to random process

variations introduced during fabrication and packaging [69]. Although the struc-

tural variations introduced in the manufacturing process are relatively small, and

the devices produced meet the desired specifications, no two chips are exactly alike.

Therefore, the emissions produced by similar devices are indeed similar to some de-

gree but not identical. These variations are significant enough to allow a specific

device to be uniquely identified based only on the devices EM emissions [29]. The

work here examines the differences in cross-device emissions to determine if such

differences are sufficient enough to prevent template attacks from being effective if

similar devices are used for training and testing, versus using the same device for

training and testing.

Template attack research has expanded the capabilities of template attacks

to use multiple test traces [92], multiple side-channels [4], reduced the number of

features required to build templates using heuristics [99] and systematic methods [9,

122], and employed templates to defeat countermeasures [3, 92]. Template attacks

have been adopted as an attack methodology without evaluating the underlying

assumption the power consumption and EM emissions from two separate devices are

sufficiently similar to make the attacks practical. In each of the papers cited above,

the same smartcard or microprocessor was used to create both the training and test

data.

Research here focuses on the EM side-channel of a device performing the Ad-

vanced Encryption Standard (AES) encryption operations. Unlike power consump-

tion methods, the EM side-channel can be collected without physically modifying

the device. This makes repeating the collection process more difficult. Instead of

monitoring the voltage change across a single shunted resistor, careful consideration

must be given to placing the EM probe in exactly the same position and configu-

ration between collections on a device. Even template attacks performed using the

same-device can fail if the probe is moved between the collection of training and test

113

traces. Recently, differences in collection equipment, methodology, synchronization

and target device age were shown to reduce the effectiveness of template attacks

even when attacking using templates created with the same device [41]. This paper

explores the differences between devices.

The remainder of this chapter is organized as follows. Background on the

target cipher, the AES [88] and template attacks were presented in Section 2.2.2 and

Section 3.6 respectively. Known-key Correlation-based EM Analysis (CEMA), used

to identify distinguishing features, was introduced in Section 3.4.3. Differences in

side-channel emissions between devices and development of the mean and variance

normalization technique are explored in Section 5.2, followed by the experimental

methodology in Section 5.3. Results are presented in Section 5.4 followed by the

conclusion in Section 5.5.

5.2 Cross-Device EM leakage

The EM side-channel can be divided into various components as was done for

the power consumption side-channel in [73]. Each sample in the EM side-channel

trace is made up of various components: a operation-dependent component Sop, a

data-dependent component Sdata, electronic noise Sel. noise, and a constant component

Sconst. A sample in the total EM side-channel trace is a sum of these components,

or

Stotal = Sop + Sdata + Sel. noise + Sconst. (5.1)

The distribution of Sel. noise in a microprocessor has been shown to be Sel. noise ∼

N (0, σ2
el.noise). The contribution of Sdata is proportional to the Hamming Weight

(HW) of the data being processed and its distribution can be approximated with the

normal distribution when the data is uniformly distributed, or Sdata ∼ N (0, σdata).

Note that σel.noise and σdata are device specific.

114

For a differential side-channel attack where only the data is changing be-

tween traces, it can be assumed that V ar (Sconst) = V ar (Sop) = 0, and E (Sop) =

E (Sdata) = E (Sel.noise) = 0. Therefore, E (Stotal) = E (Sconst) = µconst, where µconst

is a constant contribution for the operation being performed at a specific time on a

specific device.

Assuming Sdata and Sel.noise are statistically independent, Sdata + Sel.noise ∼

N (0, σ2
data + σ2

el. noise) and Stotal ∼ N (µconst, σ
2
data + σ2

el. noise). For a cross-device

template attack to be successful, µconst and σ2
data+σ2

el. noise must be consistent across

devices at samples identified as distinguishing features.

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 9101 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

-10

0

10

20

30

40

50

M
a
g
n
it
u
d
e

Training Device

A CB D

Figure 5.1 Violin plots showing the distribution of 5,000 observations of sample
#972 on an AES encryption operations with random plaintext and keys
for ND = 40 similar microcontroller devices.

Figure 5.1 uses a violin plot [57] to show the distributions of 5,000 observations

of sample (#972) for ND = 40 different training devices. These 40 devices are from

the same family of PIC microcontrollers, with devices within groups of 10 (denoted

A, B, C and D) having identical part numbers. More information on the devices

can be found in Section 3.2.1. It is shown in Section 5.4.2 that if the differences in

means and variance between device groups are not compensated for some template

attacks will fail.

115

5.2.1 Compensating for Device Differences. To compensate for the device-

to-device differences in µconst and σ2
data + σ2

el. noise, a transformation of variables is

performed. The transformation ensures the test data have approximately the same

distribution as the training data.

Using collected training and test data at a specific time sample collected across

multiple traces, the mean and variance of that sample can be estimated for each data

set. Let variable Xtrain represent the value of EM traces at a specific sample in the

training data, and let variable Xtest represent the value of the test data at the same

sample.

Let µ̂train and σ̂2
train be the estimated mean and variance of Xtrain, and let

µ̂test and σ̂2
test represent the estimated distribution of the test data. Xtest is used to

calculate transformed X ′test having the same mean and variance as the training data

using

X ′test =
(Xtest − µ̂test)

σ̂test
σ̂train + µ̂train. (5.2)

Test data transformation is performed for each sample selected as a distinguishing

feature for the template attack.

Alternatively, both Xtest and Xtrain can be transformed to the standard normal

via

X ′test =
(Xtest − µ̂test)

σ̂test
, and (5.3)

X ′train =
(Xtrain − µ̂train)

σ̂train
. (5.4)

To reduce attack time and eliminate the need to retain the training data, the

classifier can be trained using (3.12) and (3.13) before collecting the test traces.

Transforming both Xtest and Xtrain eliminates the need to retain the training data

or store µ̂train and σ̂train for each distinguishing feature.

116

The remaining steps of the template attack are performed as usual using trans-

formed test data. This process is referred to as the zero-Mean, unit-Variance Nor-

malization (MVN) technique herein. Although this technique was developed inde-

pendently for this research, it was first published in [41] as a way to compensate for

differences in the collected trace sets from the same device before and after device

modifications and aging.

5.3 Experimental Methodology

5.3.1 Targeted Devices. To test the effectiveness of the MVN technique,

template attacks are performed to attack 40 unprotected 16-bit PIC24F microcon-

trollers. The PIC device naming conventions can be found in Table 3.1. The process

used to collect nt = 500 test traces and nt = 5, 000 training traces with an effec-

tive sampling frequency of fDs = 250 MSa/sec can be found in Section 3.1. The

attacks are performed with and without the MVN technique using two methods for

generating distinguishing features.

5.3.2 Template Attack Methodology. Template attacks performed with

training and test data from the same-device are referred to as same-device attacks.

For cross-device attacks, each device is used as a training device and used to attack

all 40 devices. In all attacks, feature selection is performed using a single training

device. If an attacker only has access to one training device, it is assumed that he

would follow a similar process.

The initial step develops two highly effective same-device template attacks us-

ing both a heuristic method and Principal Component Analysis (PCA) to select

distinguishing features. Classifier training and trace classification are performed as

described in Sections 3.6.2 and 3.6.3 respectively. Since they are specific to this

attack, the rationale for class selection and distinguishing feature selection are dis-

cussed here.

117

5.3.2.1 Class Selection. In the classification stage of the template

attack, the classifier attempts to determine which class an observed side-channel

emission most likely belongs to. The training traces are separated into K = 256

classes and templates are created for each class.

5.3.2.2 Correlation-based Feature Selection. Distinguishing features

are identified using known-key CEMA as described in Section 3.4.3. The intermediate

value attacked for all devices is the input to SubBytes. This intermediate value was

chosen because it yielded higher success rates for same-device attacks than attacking

the output of SubBytes. Since both the plaintext, t = (t1, t2, ...tnt)
T , and sub-keys,

k = (k1, k2, ...knt)
T , are known for each of the nt collected traces in the training

data, the correct intermediate value vd,i = f(td, ki) = ti ⊕ ki can be calculated. The

leakage model hd,i based on the HW of vd,i is also easily calculated.

Selecting distinguishing features based on known-key CEMA with a byte HW

model for the targeted intermediate value byte produces adequate results. However,

classification is improved by performing correlation analysis separately for each bit

of the intermediate value byte. This approach produces a vector of correlation coeffi-

cients for each of the 8 bits in the targeted byte. Samples with the highest correlation

coefficient for each bit are added to the list of distinguishing features for the byte.

If a sample has already been added because it was highly correlated with another

bit, the sample with the next highest correlation coefficient for that bit is added.

Only samples which have correlation coefficients significantly greater (≥ 5×) than

the average correlation coefficient are added to the list of distinguishing features. It

was determined empirically through experimentation that including up to 10 points

of interest for each bit produced very good results.

5.3.2.3 PCA-based Feature Selection. PCA is also used to generate

and select distinguishing features in the principal subspace. Based on the samples

selected using correlation analysis, only the first nPCA = 3500 samples are used for

118

each trace. For byte-wise analysis with K = 256 classes same-device PCA-based

template attacks are not always successful unless approximately 80 components in

the principal subspace are used as distinguishing features. This may be due to the

relatively low number of traces (∼ 19 on average) from each class used to construct

the mean traces. Like the correlation-based feature selection process, the probability

of correctly identifying the key-byte improves by performing bit-wise analysis.

PCA is performed for each bit of the target byte, with K = 2 classes for

each bit. A PCA transformation matrix Wb ∈ RnPCA×1 is constructed for each bit

b ∈ {1, ..., 8} retaining a single principal component. Rather than perform 8 bit-wise

template attacks, these 8 transformation matrices are combined column-wise,

W =
[

W1 · · · W8

]
(5.5)

where W ∈ RnPCA×8. The new transformation matrix is used to perform byte-wise

template attacks using (3.17), (3.18), and (3.19).

5.3.3 Distinguishing Feature Data Normalization. Motivation for the MVN

technique can be seen in Figure 5.1, which provides violin plots [57] for the distribu-

tions of the 5,000 observations of sample #972 for each device. Sample #972 is one

of the 16 samples chosen as a distinguishing feature for all 40 devices. The violin

plots show that observation mean and variance changes from device to device.

For each sample selected as a distinguishing feature, the distributions of train-

ing and test data at that sample are normalized using (5.3) and (5.4) respectively.

Normalization is performed independently on training and test data because the

mean and variance at corresponding samples may not be the same for different de-

vices. For simplicity when utilizing PCA the distribution for training and test data

are normalized for each sample across all traces before PCA transformation into the

primary component subspace. The test data set must contain enough traces to es-

119

timate the distribution of each sample accurately. The amount of traces required to

estimate the distribution is explored in Section 5.4.5.

5.4 Results

5.4.1 Selected Features. The correlation-based feature selection methodol-

ogy in Section 5.3.2 is repeated for each of the ND = 40 devices. Each byte of the

input to the SubBytes operation in round 1 of AES-128 is targeted separately with

K = 256 templates constructed for each byte. The process is repeated to identify

distinguishing features to build templates for each training device. Figure 5.2 is a

graphical representation of the samples selected for each device for byte 1. Since only

these samples are used as distinguishing features, and there are large gaps between

them, the time axis is segmented multiple times to compress the plot.

Recall that part A devices have different peripherals than devices in groups

B-D. There is some intra-device type variation in the samples for parts B-D devices

but 19 of the samples are the same across the three part types. It is important to

note that a number of samples which are consistently selected for devices in group

A are not identified as distinguishing features for any of the devices in group B, C,

and D. Likewise, some samples commonly selected in groups B, C and D are not

selected for group A.

When performing a PCA-based template attack, the transform matrix W that

maps the trace samples into the principal subspace is generated separately for each

set of training data. Plotting the eigenvectors is one way of visualizing contribu-

tions of the original samples in the principal subspace [122]. Since the magnitude

of the eigenvector elements determine the weight of a sample’s contribution in a

component, a plot of samples which contribute most to one or more of the retained

components can be generated by calculating statistics for the magnitude of the eigen-

vector elements for the retained components. Figure 5.3 shows the maximum value

of the eigenvector element magnitude for each of the 8 retained components found

120

Figure 5.2 Samples selected as distinguishing features for each of the 40 devices
using the correlation-based feature selection process when attacking
byte 1 of the input to the SubBytes operation. All B, C and D devices
share 19 common features while only 6 of those features are identified
for all of the type A parts.

121

Table 5.1 Standard template attack cross-device key-byte extraction success rate
using correlation-based selection of distinguishing features (without the
MVN technique).

Test Training Device
Device A B C D

A 59.7% 4.3% 5.2% 5.1%
B 13.1% 63.0% 68.3% 70.2%
C 11.6% 67.9% 63.7% 69.5%
D 14.7% 69.8% 69.2% 70.3%

using bit-wise PCA. Since a majority of the samples contribute to one or more of

the retained primary components the plot is not segmented as in Figure 5.2. Note

that different samples are weighted more heavily based on the training device. As

is the case for the correlation-based feature selection, devices in groups B, C and D

are more similar to each other than they are to group A.

5.4.2 Baseline Standard Template Attack. A standard template attack

assumes a multivariate Gaussian distribution for each sample and assumes the dis-

tributions for corresponding training data samples and test data samples are iden-

tical [24]. Figure 5.4 shows the percent of key-bytes correctly extracted for 1600

template attacks, one for each device used as a training device and as a test device.

Each attack is repeated using 100 randomly chosen sets of 30 test traces from the

nt = 500 available test traces for each test device. The same 100 trace sets for each

test device are used in the attack performed in Section 5.4.3 and Section 5.4.4. When

the same-device is used to generate both the training and test data, the template

attacks identify each of the 16 key-bytes correctly in all trials. Same-device attacks

are found on the diagonal of the chart. The overall percent of successful key-byte

extractions using one device from groups A-D to attack another device from groups

A-D is shown in Table 5.1. The cross-device success rates do not include same-device

attacks.

122

Expanded View

#

Figure 5.3 Plot of the maximum magnitude of the eigenvector elements for the
eight retained components found using bit-wise PCA. Darker points
have higher maximum eigenvector element magnitude, indicating they
contribute more to one or more of the retained components in the
principal subspace.

123

Percent of Bytes Correct

| | |
| | |A B C D

_

_

_

_

_

_

A

B

C

D

Training Device

T
e
s
t
D

e
v
ic

e

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Figure 5.4 Standard attack results using same- and cross-device templates without
the MVN technique. The percentage of correctly extracted key-bytes
in 100 trials is indicated by the color of the block. Percentages ≥ 90%
and < 100% are highlighted with a box.

The reduced number of correct key-bytes when training using devices from

group A to attack devices from groups B, C, or D can be explained in part by the

difference in the distinguishing features used to build templates. More surprising

is the poor results for intra-group attacks which construct templates using many of

the same samples as distinguishing features. The poor results are due to location

and spread differences in the distributions for collected side-channel emissions at

the points used as distinguishing features for training and test data. For example,

Figure 5.1 shows the distribution of sample #972 for 5,000 observations in each set

of training traces. Since the test data collected for each device is consistent with the

distribution of the training data from that device, it is not shown separately.

124

Table 5.2 MVN-enhanced cross-device key-byte extraction success rate for
matched distribution correlation-based template attack.

Test Training Device
Device A B C D

A 99.9% 70.0% 70.3% 67.8%
B 58.8% 100.0% 100.0% 99.9%
C 64.8% 100.0% 100.0% 99.9%
D 61.5% 100.0% 100.0% 99.9%

5.4.3 MVN Technique Results. The template attack results can be im-

proved by transforming the test data to match the distribution of the training data

or by mapping both the training and test data to the standard normal. This transfor-

mation is performed separately for the data from each distinguishing feature before

templates are built. These template attacks are performed with nt = 5, 000 training

traces and nt = 30 test traces. Unlike the attacks in [41] which normalized the data

using 50,000 measurements, only the 30 test traces in each trial are used to estimate

the distribution of the test data. Since the main benefit of template attacks is the

low number of test traces required, limiting the number of traces used for normal-

ization is more realistic. Using this simple pre-processing step, the successful byte

extraction rate is improved for cross-device attacks for both the same part number

and similar devices.

The correlation-based template attack is repeated after pre-processing the

training data and each of the 100 test trace sets for each device. The results are

shown in Figure 5.5 and Table 5.2. With the MVN technique, any device from groups

B, C or D can be used to successfully attack any test device in groups B, C, or D.

Any device in group A can be used to attack any device within that group. The

worst same-part-number performance was using A9 to attack A5 where the correct

key-byte was returned in only 94.4% of the attacks. Device D3 has the ‘poorest’

results as a training device when attacking similar devices with only 98.7% of bytes-

correct for devices in groups B-D, however in practice such an attack would likely be

125

Percent of Bytes Correct

| | |
| | |A B C D

_

_

_

_

_

_

A

B

C

D

Training Device

T
e
s
t
D

e
v
ic

e

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Figure 5.5 Results from same and cross-device template attacks using MVN tech-
nique with correlation-based distinguishing features. The percentage
of correctly extracted key-bytes is indicated by the color of the block.
Percentages ≥ 90% and < 100% are highlighted with a box.

successful. The MVN technique also dramatically improves the percentage of bytes

correctly identified when attacking between groups B-D and group A.

A same-device attack can be performed successfully for all 40 devices using

1-4 training traces. For same-device attacks, normalizing the training and test data

reduces the posterior probability of the correct key-byte guess found during the

classification step for an equivalent number of traces, but the correct key-byte is

still chosen based on the Maximum Likelihood (ML) decision rule. The additional

traces required for cross-device attacks allow the distribution of the test data to be

estimated accurately. It is important to note that plaintexts only need be known for

traces used in the classification process and not for all traces used to estimate the

126

Table 5.3 Cross-device key-byte extraction success rate for MVN PCA-based tem-
plate attack. These numbers do not include the same-device attacks.

Test Training Device
Device A B C D

A 99.6% 30.4% 29.9% 30.0%
B 16.7% 100.0% 100.0% 99.7%
C 17.3% 100.0% 100.0% 99.7%
D 19.5% 100.0% 100.0% 99.7%

distribution. In this case, 30 traces were used for both distribution estimation and

classification.

5.4.4 PCA-based Attack. The PCA-based attack incorporates the MVN

processing step. Normalizing the mean and variance is a common PCA pre-processing

step when data is collected using various scales for different dimensions. It is not

clear if this step is performed in [9, 122], as testing showed it is not necessary for

same-device template attacks.

The PCA-based attack uses 8 distinguishing features generated by transform-

ing the training data and test data using W found using (5.5) and performing a

byte level template attack. The PCA-based template attack is repeated 100 times

for each training and test pair and the success rate is shown in Figure 5.6. Cross-

device byte extraction success rate is shown in Table 5.3. Although all same-device

attacks are successful, a small number of the attacks within a group only correctly

recover 15 of 16 bytes. The number of bytes correctly extracted when training using

devices in group A to attack devices in group B-D is significantly lower than for

attacks using the same test traces with the correlation-based distinguishing feature

selection process. The PCA-based attack can be improved by increasing the number

of principal components retained for each byte (or bit), or by performing PCA only

on the points identified using the correlation-based selection process.

127

Percent of Bytes Correct

| | |
| | |A B C D

_

_

_

_

_

_

A

B

C

D

Training Device

T
e
s
t
D

e
v
ic

e

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Figure 5.6 Results from same and cross-device template attacks using MVN tech-
nique with bit-wise PCA performed on the distinguishing points vectors
found using correlation analysis. The percentage of correctly extracted
key-bytes is indicated by the color of the block. Percentages ≥ 90%
and < 100% are highlighted with a box.

5.4.5 Comparison of Attacks. This section examines how the MVN tech-

nique affects the probability of successful key-byte extraction for a single training

and test device pair. The correlation-based and PCA-based template attacks are

performed using A1 as the training device and A5 as the test device. This pair is

chosen because the MVN technique improves the results for both the correlation and

PCA-based attacks for 30 traces. The attacks in Figs. 5.4–5.6 are performed using

sets of 30 traces from the nt = 500 collected test traces for each device. The number

of traces required to perform each type of attack is evaluated below.

When using a Bayesian classifier, the order in which traces are processed the-

oretically does not matter. In practice, traces may be ignored if they cause the

128

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Test Traces Used

P
e
rc

e
n
t
o
f
B

y
te

s
 C

o
rr

e
c
t
(%

)

A1-A1 CORR

A1-A1 PCA

A1-A1 MVN-CORR

A1-A1 MVN-PCA

A1-A5 MVN-CORR

A1-A5 MVN-PCA

A1-A5 CORR

A1-A5 PCA

Figure 5.7 Comparison of same-device (A1-A1) and cross-device (A1-A5) template
attacks using the baseline standard template attack and attacks using
the MVN technique. CORR and PCA indicates whether correlation
analysis or PCA was used to identify/generate distinguishing features.

denominator of (3.14) to be zero. This occurs frequently for cross-device attacks

without the MVN technique when the test data samples have different distributions

than the training data.

To randomize the order test traces are added to the template attacks, 500

permutations of the nt = 500 test trace indices are generated to specify trace order.

The percent of bytes correct in Figures 5.7 and 5.8 are the percentage of bytes correct

across all 16 key-bytes using the template attack for the 500 randomly generated trace

orders. The same 500 trace orders are used for each template attack methodology.

Same-device template attacks are very effective using only a small number of

traces. All results in Figure 5.7 are performed using only the indicated number

of test traces for both normalization and classification. As expected, for a low

number of traces, i.e., less than 15, where the distribution of each sample cannot be

accurately estimated, using MVN for same-device attacks dramatically reduces the

129

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Traces/Plaintexts Used

P
e
rc

e
n
t
o
f
B

y
te

s
 C

o
rr

e
c
t
(%

)

A1-A5 MVN-CORR (500)

A1-A5 MVN-PCA (500)

A1-A5 MVN-CORR

A1-A5 MVN-PCA

A1-A5 CORR

A1-A5 PCA

Figure 5.8 Using additional traces to estimate the distributions improves the re-
sults for MVN technique-based attacks. When nt = 500 traces are
used for the MVN process (denoted 500), with the indicated number
of plaintexts, the results for both the correlation-based (CORR) and
PCA-based MVN attacks improve.

effectiveness of the attack. However, for a same-device attack the standard template

attack methodology can be used.

For A1-A5 cross-device correlation-based attacks, a relatively poor successful

byte extraction rate of approximately 28% is achieved after 15 traces without the

MVN technique. The PCA-based template attack gradually improves to 51.3% for 30

traces. The A1-A5 cross-device attacks, however, are greatly enhanced by the MVN

technique with 99.6% successful byte extraction by 15 traces for the correlation-based

attack and 99.1% successful byte extraction by 30 traces for the PCA-based attack.

Figure 5.8 shows the benefit of using more traces to estimate the distributions

before normalization. By performing the MVN technique on all nt = 500 traces

before using the traces for classification, fewer traces are needed to achieve the

same percentage of correct bytes for both correlation- and PCA-based cross-device

template attacks. Using nt = 500 traces for the MVN processing technique, the

130

correlation-based attack reaches 90% successful extraction in 6 traces. It takes 9

traces to reach the same byte extraction rate when only traces with plaintexts are

used to estimate the distribution. Using nt = 500 traces for MVN, the PCA-based

attack reaches 90% at 9 traces. When only using the traces with plaintexts, 13 traces

are required before the 90% extraction rate is reached.

5.5 Conclusion

This chapter explored whether similar devices can be used as effective training

devices for a template attack. It was shown that while template attacks based on

mean and covariance matrices work well for attacking the same device on which the

training traces are collected, the slight differences in emissions from similar devices

may be sufficient to cause a template attack to fail. However, if the zero mean, unit

variance normalization (MVN) technique is used to pre-process both the test and

training data before building templates, the effectiveness of cross-device template

attacks is significantly improved. These results are consistent with the benefit of the

MVN technique utilized in [41] for differences in measurement conditions and device

age for training and test data.

Additionally, the distinguishing features selected may be different from device

to device, even for devices with the same part number produced in the same lot. If

enough distinguishing features are different between two devices, the template attack

will fail. Even small changes such as internal peripherals are sufficient to degrade the

byte extraction success rate. While the goal for a same-device attack is to reduce the

number of distinguishing features to make the templates easier to create, increasing

the number of distinguishing features improves the cross-device attack success rate.

Ultimately, the original assumption that training and target devices have suf-

ficiently similar side-channel emissions in [24] is validated with an added caveat that

device-dependent differences in sample means and variances must be compensated

for before performing the template attack.

131

One limitation of the MVN technique is that sufficient traces from the target

device must be available to estimate sample distributions accurately. This is a draw-

back of the MVN technique but nevertheless it allows for successful attacks that

would fail otherwise. Furthermore, even if a relatively large number of traces are

required to estimate the distribution, only a small number of plaintext or ciphertext

must be known for the classification process.

5.6 Constructing a Master Template

This section was not included in the original “Improving cross-device attacks

using zero-mean unit-variance normalization” paper [85], but introduces an efficient

way to create single master template for a family of devices. This is the first known

template attack based on traces from more than one device.

To construct a single template for multiple devices, the distinguishing features

for one device from each part number (A1, B1, C1, and D1) are identified separately

using known-key CEMA as described in Section 5.4.1. The four lists of up to 80

distinguishing features for each byte are then combined and duplicate sample indices

are removed to create a single list of distinguishing features for each byte.

Next the training data from each of the four devices are pre-processed with

the MVN technique before being combined into a consolidated training trace set.

Using the combined training set, templates are constructed for each byte. These

templates are used to attack all 40 devices using test traces processed using the MVN

technique. The attack is repeated 100 times using sets of nt = 30 test traces for both

estimating the distribution and in the classification phase. The success rate is shown

for each byte and test device in Figure 5.9. On average 99.95% of key bytes where

correctly identified. Since performing this process without the MVN technique,

produces results worse than using a single device to build templates without the

MVN technique, results are not shown for this method.

132

Percent of Bytes Correct

| | |
| | |

A B C D

Training Device

K
e
y
 B

y
te

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Figure 5.9 Attack results per key-byte using a set of templates built from train-
ing trace sets combined after performing the MVN technique on each
device training set separately. The percentage of correctly extracted
key-bytes in 100 trials is indicated by the color of the block. Note all
byte extraction rates are greater than 90%.

An alternative approach is to process the training data using the MVN tech-

nique and combined the trace sets before identifying distinguishing features. Using

a fixed number of distinguishing features (≥ 80), this approach reduces the effec-

tiveness of the attack. In this case, since devices B1, C1, and D1 are very similar

(compared to A1) the distinguishing features they have in common have higher cor-

relation with the data being processed than the features important for device A1. As

a result, attacks using test traces from device A1-A10 have poor results. Although

more distinguishing features could be allowed when using this approach, identifying

distinguishing features separately for each device type is simple and effective.

Since known-key CEMA attacks produced better results than PCA, the mas-

ter template was constructed using this technique. When performing PCA for a

template constructed from multiple training devices, including additional principal

components in (5.5) from the PCA transformation matrix constructed for each bit

may improve results.

133

6. Cross-Device Attacks on Complex Microprocessors

This chapter contains text of an article submitted to the Journal of Cryptographic

Engineering [83] titled “Cross-device attacks on complex microprocessors” based on

the cross-device attack on ARM microcontrollers. This article was co-authored by

Dr. Rusty Baldwin and Dr. Michael Temple. The background section was reduced

to avoid redundancy and notation has been homogenized between chapters of this

dissertation.

6.1 Introduction

The PIC microcontrollers used in Chapter 5 made an ideal target for testing

cross-device template attacks. They are inexpensive and all four part numbers could

be placed on the same development board. By mounting a Zero Insertion Force

(ZIF) socket to the development board, the microcontrollers were quickly and easily

swapped out while maintaining the lateral position of the probe above each device.

Since the same development board was used for all collections, the contribution due

to the microprocessor was isolated.

Even if the development board could not have been modified to accept the ZIF

socket, the small size of the PIC microcontroller package makes it easy to reposition

the probe on each device. Side-channel analysis becomes more challenging as device

complexity increases. More complex devices may have faster operating frequencies,

and more noise from other parts. Since the PICs are relatively simple compared

with the more complex microcontrollers used in devices, such as cell phones and

tablets, this chapter evaluates the effectiveness of cross-device attacks on the ARM

Cortex-M4F microcontroller.

While cross-device template attacks are shown to be effective even without ap-

plying the zero-Mean and unit-Variance Normalization (MVN) technique developed

in Chapter 5, the MVN technique is shown to improve the attack success rate. A

134

cartography scan is performed to show the MVN technique increases the area above

the device where test traces can be collected and used for a successful template

attack.

When the MVN technique is combined with a new technique to identify and

reduce the differences between training and test data, the number of test traces

required for a template attack is dramatically reduced. The power spectral density

of each trace is used to identify the frequencies that have different amounts of power

from trace to trace. For the ARM Cortex-M4F devices tested, these frequencies

can be identified using only 10 traces. Combining the two techniques reduced the

average number of traces required to attack a key-byte by 85.8%.

Background on the T-Box implementation of the target cipher, the Advanced

Encryption Standard (AES) [88] and template attacks were presented in Section 2.2.2

and Section 3.6 respectively. Known-key Correlation-based Electromagnetic Analy-

sis (CEMA), used to identify distinguishing features, was introduced in Section 3.4.3.

The remainder of this chapter is organized as follows. Research most directly related

to the techniques developed in this chapter are reviewed in Section 6.2. Techniques

to improve cross-device attacks for the ARM Cortex-M4F microcontrollers, are de-

veloped in Section 6.3, and results are presented in Section 6.4. Finally, Section 6.5

concludes this chapter.

6.2 Related Work

Mapping the training and test data to the standard normal, is used by Elaabid

and Guilley to compensate for “carrier-induced degradation” of the training device

and changes collection setup [41]. Since a differential voltage probe was used to

measure the voltage across a resistor, the collection location was fixed. This chapter

will explore the effectiveness of the MVN technique to compensate for changes in

probe placement on the test device.

135

Although filtering was used by Barenghi et al. to enhance the effectiveness

of CEMA attacks [13], no research has been found suggesting filtering can improve

the success rate for template attacks. This may be due to the belief that template

attacks build the noise into the templates in the training phase [24]. While this may

be effective if the noise is present in both the training data and test data, as it is for

a same-device template attack, it may not be true for cross-device attacks.

Kocher et al. state that “digital filtering” can help “reduce noise” and “focus

on parts of the spectrum where the leakage signal is present” without specifically

stating how the filtering is performed [68]. Trace compression (adding successive

measurements), subtracting unwanted effects, and average traces from identical op-

erations are given as examples. Unfortunately, averaging test traces in a template

attack, where the attacker does not have complete control over the target device, is

not practical.

6.3 Methodology

Two identical ARM Cortex-M4F development boards are used to test the MVN

technique and the new techniques developed in this chapter. The training device is

designated ARM1 and attacks are performed using test data from both ARM1 and

ARM2. Attacks that used ARM1 for both training and test are called same-device

attacks. Attacks that use traces from ARM1 for training, and traces from ARM2

for testing are called cross-device attacks.

6.3.1 Device Leakage Cartography. To identify the best location to collect

training data for a template attack, traces are collected at each of the 625 locations

specified by a 25 × 25 grid, as described in Section 3.2.2.1. A total of nt = 2, 500

traces, with random plaintexts and fixed key, are collected with fs = 250 MSa/sec

at each location on both ARM1 and ARM2. The trace sets are not aligned because

there is no distinguishable structure in the collected signal for many of the locations

136

and alignment for traces with structure only improves the CEMA attack results

marginally. To be consistent across all locations, no alignment is used. The trace

sets from ARM1 are used for CEMA attacks, and traces from both devices are used

during the classification phase of template attacks.

CEMA attacks are performed using nt = 1, 500 traces to determine which

locations result in effective CEMA attacks. The same set of plaintexts are used at

each location. Based on the results for ARM1 shown in Figure 6.1, location 303

(indicated by a black circle) was chosen because it is in the middle of a cluster

of locations from which the majority of the key-bytes can be extracted from the

collected traces. Since an attacker targeting ARM2 may only be able to collect a

small number of test traces, making a XY scan of the target device impractical,

placing the probe in an area where a small change in probe position can be tolerated

is more desirable than placing the probe in a location with better CEMA attack

performance if the attack success depends on exact probe placement. Even if the

probe can be placed at the same location above the device package, manufacturing

differences may cause the attack to fail in a cross-device attack.

Although the locations with good CEMA attack performance are similar for

ARM1 and ARM2, the attacks on traces collected from ARM1 consistently yield a

higher number of bytes correct than attacks on traces from ARM2. This comparison

is shown in Figure 6.1. Since an attacker does not have full access to the test device

(ARM2), the attacker would not be able to produce Figure 6.1(b) to compare the

two devices.

6.3.2 Identifying Unrelated Signals. The power spectral density (PSD) of a

signal describes how the power in the signal is distributed in the frequency domain.

Since the same instructions are being executed for each encryption operation, the

power for each frequency should be approximately the same for each trace. Changes

in the PSD between traces may be due to changes in the data being processed or due

137

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

(a) ARM1

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

(b) ARM2

Figure 6.1 Comparison of the number of bytes correctly identified using nt = 1, 500
test traces to perform CEMA attacks on (a) ARM1 and (b) ARM2.
CEMA attacks are more effective for ARM1 with more locations that
recover 15 or 16 bytes. The box location represents the location of the
center of the probe. The black circles in (a) and (b) denote collection
location 303 used to collect training traces for template attacks.

to operations unrelated to the encryption operation being performed on the device.

To determine if the differences are due to the data being processed, multiple traces

can be collected with a fixed key and fixed plaintext1.

The PSD of a non-periodic signal xT (t) observed only in the interval (−T/2, T/2),

with a proper Fourier transform XT (f) is defined in the limit as [115]

Gx (f) = lim
T→∞

1

T
|XT (f)|2.

To calculate an approximate value for the PSD, the Fourier transform XT (f)

is estimated using the Fast Fourier transform (FFT). The magnitude of the FFT is

squared and divided by the number of samples in a trace multiplied by the sampling

frequency. Finally, since the magnitude of the PSD is symmetric around zero, it

can be represented as a single-sided PSD by doubling the magnitude for frequencies

1Identifying differences in frequency content between traces was inspired by viewing the signals
near f = 31.9 MHz and f = 63.7 MHz (on ARM1) change frequency in a software defined radio
waterfall display. Additional details are found in Chapter 7.

138

0 25 50 75 100 125
0

5

10

15

20

25

P
S

D
 V

a
ri
a

n
c
e

Frequency (MHz)

ARM1

ARM2

Figure 6.2 Variance of Power Spectral Density for traces collected from ARM1
and ARM2. Only nt = 10 traces are used to identify the frequency of
signals that change in power level between traces.

between 0 and fs/2. Next, variance of the trace PSDs for test traces and training

traces are calculated separately.

Finding the variance of PSDs for traces from a device, is a simple and effective

way of identifying the frequency of signals unrelated to the encryption operation on

that device. A set of of nt = 20, 000 training traces are collected from ARM1. Sets

of nt = 60, 0000 test traces are collected at location 303 on both ARM1 and ARM2.

All traces are collected at fs = 250 MSa/sec. Since template attacks try to minimize

the number of traces used in the attack phase, it is more realistic to use a small

number of traces to find the variance of the PSDs. The variance of the PSDs for the

first nt = 10 traces from each device is shown in Figure 6.2.

The frequencies that have high power variance between traces are fARM1
1 ≈

31.9 MHz and fARM1
2 ≈ 63.7 MHz for ARM1 and fARM2

1 ≈ 29.4 MHz and fARM2
2 ≈

58.8 MHz for ARM2. Although the source of these signals is unknown, the signals

are not related to the data being processed by the device. Notch filters can be used

to reduce the contributions of signals at these frequencies in the collected traces.

Notch filters are implemented in series to eliminate each of these frequencies from

both the training data and test data.

139

0 25 50 75 100 125
−100

−80

−60

−40

−20

0

Frequency (MHz)

A
tt
e
n
u
a
ti
o
n
 (

d
B

)

Figure 6.3 Plot of the magnitude of the impulse response for four notch filters in
series.

As described in Section 3.3.1, for Chebyshev Type I stopband filters the cutoff

frequencies define the passband. The cut-off frequencies are set to ±1 MHz for each

frequency identified in Figure 6.2. Figure 6.3 shows the magnitude of the filter series

impulse response in the frequency domain. For the remainder of this chapter, filtering

refers to filtering both the training data and test data with a series of notch filters.

For cross-device attacks, the filter attenuates the contributions of signals around

fARM1
1 , fARM1

2 , fARM2
1 , and fARM2

2 . For same-device attacks, the filter attenuate

signals around fARM1
1 and fARM1

2 .

6.3.3 Combining Techniques. After filtering both the training and test

trace sets, template attacks are performed. The methodology for template attacks is

described in Section 3.6. Known-key CEMA, described in Section 3.4.3, is performed

on the nt = 20, 000 training traces to identify the 80 time samples that are the most

highly correlated with a Hamming Weight model for each 8-bit output of SubBytes.

Although the ARM uses the T-Box approach, template attacks that used the output

of SubBytes as the target intermediate value produce results superior to attacks

targeting the 32-bit output of the T-Box. The template training and classification

phases are unchanged.

When used with filtering, the MVN technique is applied after filtering. The

known-key CEMA step can be performed before or after the MVN technique. Tem-

140

plate attacks using training and test traces from location 303, are compared for each

combination of these two techniques in the following section.

6.4 Results

6.4.1 Effectiveness of Cross-Device Methods. To test the effectiveness of

the filtering and the MVN technique on the ARM Cortex-M4F processors, nt =

20, 000 training traces are collected for ARM1 and nt = 60, 000 test traces are

collected from both ARM1 and ARM2. All traces are collected using a Riscure

low-sensitivity probe at location 303, as described in Section 3.1. Templates are

build using all nt = 20, 000 training traces. To repeat the template attacks 1,000

times, the order in which test traces are used in the classification phase is randomly

assigned. The same trace order is used for each of the pre-processing techniques,

making the attacks identical except for the preprocessing technique used. Up to

1,000 traces are used in the classification phase. The following preprocessing tech-

niques are evaluated: none2, notch-filtering, MVN and notch-filtering with MVN.

Since the filtering may change the structure of the traces (including sample mean

and variance), the known-key CEMA-based distinguishing feature identification and

MVN are performed after filtering. All test traces are used to estimate the mean

and variance when performing the MVN technique.

The maximum-likelihood (ML) decision rule in (3.15) is used to select the key-

byte in the classification phase of the template attack. If the correct key-byte has the

highest posterior probability for all key-byte guesses for a given number of traces,

the template attack is successful for that number of traces. Since the success of a

template attack depends on the quality and order of the training and test data, not

every trial will necessarily be successful for a given number of traces. To compare

the preprocessing techniques, the number of trials needed to achieve a 90% attack

success rate for each byte is shown in Figure 6.4.

2A standard template attack has no pre-processing.

141

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
ra

ce
s

R
eq

u
ir

ed

Key Byte

Standard TA

MVN Only

Filter Only

Filter then MVN

Figure 6.4 Comparison of the number of test traces need to achieve a 90% suc-
cess rate for template attacks for each key-byte using test traces from
ARM2 with ARM1 training traces using the indicated pre-processing
technique.

It is clear from Figure 6.4 the correct value of some key-bytes are easier to

extract than other key-bytes. For the standard template attack, 745 test traces are

required to achieve the desired 90% success rate for key-byte 9. Applying the MVN

technique reduces the number of test traces to 675, but filtering has the biggest

impact. With filtering only 200 traces are required. When filtering is followed by

the MVN technique, only 82 test traces are needed to achieve the 90% success rate.

The number of test traces required is reduced by 88.9%. Across all key-bytes, the

number of test traces required is reduced between 73.3% and 92.7%, with an average

reduction of 85.8%.

To examine the benefit pre-processing methods have on the effectiveness of the

cross-device template attack, the percent of attacks successful for key-bytes 9 and 10

are compared in Figure 6.5. These key-bytes were chosen because they have the worst

and best performance of the standard template attack. Although the MVN technique

results in a slight improvement, filtering results in a dramatic improvement in the

percent of attacks successful. Applying the MVN technique after filtering continues

to improve the attack success rate for key-byte 9, but has little effect on key-byte

10. For key-byte 9, with 82 traces the standard template attack is only successful for

142

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Plaintexts Used

P
e

rc
e

n
t

A
tt

a
c
k
s
 S

u
c
c
e

s
s
fu

l
(%

)

Filter then MVN

Filter Only

MVN Only

Standard TA

(a) Key-Byte 9

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Plaintexts Used

P
e

rc
e

n
t

A
tt

a
c
k
s
 S

u
c
c
e

s
s
fu

l
(%

)

Filter then MVN

Filter Only

MVN Only

Standard TA

(b) Key-Byte 10

Figure 6.5 Comparison of the percent of 1000 trials correct for each type of cross-
device template attack for (a) key-byte 9 and (b) key-byte 10 using the
indicated number of test traces. Training traces are from ARM1 and
test traces are from ARM2 (location 303).

8.2% of the attacks, with filtering and the MVN technique the attack us successful

in 90% of the 1000 attacks. For key-byte 10, with 12 traces the standard template

attack is only success for 10.9% of trials but with filtering and the MVN technique,

the success rate improves to 90%.

The overall key-byte extraction success rate for same-device and cross-device

attacks are shown in Figure 6.6. Filtering the traces results in a slight improvement

in the percentage of bytes correct when ARM1 training traces are used to attack

ARM1. Since training and test data are from the same device, MVN has no effect

and the results are omitted from Figure 6.6(a). For the cross-device attack, using

training traces from ARM1 and test traces from ARM2, the overall key-byte extrac-

tion success rate for template attacks with different pre-processing techniques are

shown in Figure 6.6(b). For a 90% byte extraction rate, 264 traces are needed for

a standard template attack, but only 30 traces are needed if filtering and the MVN

technique are used. All trials are correct when 625 traces are used with filtering.

Only 212 traces are needed when filtering and MVN are combined. With the MVN

143

0 50 100
0

10

20

30

40

50

60

70

80

90

100

Plaintexts Used

P
e
rc

e
n
t
o
f
B

y
te

s
 C

o
rr

e
c
t
(%

)

Filter Only

Standard TA

(a) Same-Device

0 100 200 300 400
0

10

20

30

40

50

60

70

80

90

100

Plaintexts Used

P
e
rc

e
n
t
o
f
B

y
te

s
 C

o
rr

e
c
t
(%

)

Filter then MVN

Filter Only

MVN Only

Standard TA

(b) Cross-Device

Figure 6.6 Comparison of the percent of all bytes correct in 1,000 trials for each
pre-processing technique for same-device and cross-device attacks using
ARM1 training traces. In (a) ARM1 is attacked and in (b) ARM2 is
attacked. Since the MVN technique does not change the success rate for
the same-device attacks, processing techniques that use it are omitted
from (a).

technique, 2079 traces are required to achieve a 100% success rate for 1000 trials.

Standard template attacks required 2293 traces.

6.4.2 Probe Position Tolerance. The MVN technique was shown to be

effective at compensating for differences between devices in Chapter 5, but it can also

be used to tolerate changes in the positioning of the probe above a device. Ideally,

both the training and test traces will be collected from the exact same location above

the device. To test the effectiveness of the MVN technique to mitigate the effects of

poor probe placement repeatability, template attacks are conducted using the test

data collected at location 303 above ARM1 and the training data collected at each

of the 625 locations above both ARM1 and ARM2.

Probe placement repeatability is important for cross-device template attacks.

For same-device attacks, test and training data can be collected without moving the

144

probe. For cross-device attacks, the probe (or target device) must be moved and it

is possible the probe may not be placed in the same location above each device.

Template attacks are performed using all nt = 20, 000 training traces from

ARM1 location 303 and nt = 2, 500 test traces from each location on ARM1 and

ARM2. The number of traces required before the correct byte is permanently identi-

fied using the ML rule is determined from the posterior probability for each key-byte

guess. For the purposes here, permanently identified means that no other key-byte

guess has a higher posterior probability than the correct key-bytes even as addi-

tional traces are added to the Bayesian classifier. The use of posterior probabilities

to identify the correct key-byte value was discussed in Section 3.6.6.

Same-device and cross-device attacks are conducted using each pre-processing

technique and a summary of the results are shown in Figure 6.7. The color of the

box indicates the mean number of traces needed before the template attack identified

the correct key-byte for each of the 16 bytes of the AES-128 key. The location of

the box indicates where the test traces were collected. Only attacks which yielded

all 16 of the key-bytes correctly are shown. To improve the contrast for attacks that

required less than 500 traces, all attacks that required 500 or more traces are listed

as 500+.

Same-device attacks with and without the MVN technique are shown in Fig-

ures 6.7(a) and (b). Using the MVN technique both increases the number of loca-

tions where all 16 bytes can be extracted from 91 to 140, and increases the number

of locations where less than 100 traces are needed on average from 53 to 76.

Cross-device attacks for each combination of filtering and the MVN technique,

are shown in Figures 6.7(c)-(f). As with the same-device attack, the MVN tech-

nique increases the number of locations that template attacks yield all 16 key-bytes

correctly from 84 to 135 (compare Figures 6.7(c) and (d)). The number of traces

required is higher for the cross-device attack for both the standard template attack

and attacks with the MVN technique than for same-device attacks. For the standard

145

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM1

(a) Same-Device Standard TA

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM1

(b) Same-Device MVN

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM2

(c) Cross-Device Standard TA

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM2

(d) Cross-Device MVN

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM2

(e) Cross-Device Filtering

M
e
a
n
 T

e
s
t
T

ra
c
e
s
 R

e
q
u
ir
e
d

 0

100

200

300

400

500+

Train Dev: ARM1, Test Dev: ARM2

(f) Cross-Device Filtering then MVN

Figure 6.7 The mean number of traces required per byte for successful template
attacks. All attacks are performed with training data collected at loca-
tion 303 from ARM1 (denoted by black circles). Plots (a) and (b) are
same device attacks. Plots (c)-(f) are cross-device attacks. The loca-
tion of each square represents the location of the probe when collecting
test traces. Only locations where all 16 bytes are identified with less
than nt = 2, 500 test traces are shown.

146

cross-device template attack, only 4 locations required a mean number of traces less

than 100. The number of locations is increased to 18 when the MVN technique is

used.

In the cross-device attack shown in Figure 6.7(e) using filtering only, the aver-

age number of test traces required per key-byte is significantly reduced. The number

of locations that yield all 16 bytes is increased to 89, and for 55 locations the mean

number of traces required is less than 100. In Figure 6.7(f), both filtering and the

MVN technique are used to improve the cross-device attack. With both techniques,

the number of locations with all 16 key-bytes correct increases to 139 and the num-

ber of locations with a mean number of traces less than 100, increases to 79. These

results are comparable to the success rate of the same-device attack with the MVN

technique.

6.4.3 Comparison of Successful CEMA and Template Attacks Locations.

Using the MVN technique on a same-device attack increases the number of locations

that can be used for a successful template attack. Since template attacks typically

require less test traces than CEMA attacks, the number of locations with successful

results should increase for the template attack. To compare the attack using an equal

number of traces, the CEMA attack is repeated using all nt = 2, 500 test traces from

ARM1. The number of bytes correctly identified for the CEMA attack and the

same-device template attack are shown in Figure 6.8. While there are regions of the

device where the template attack is more successful than the CEMA attack, there

are also large portions of the device where the CEMA attack is successful, but the

template attack is not.

There are at least two reasons why the template attack could fail. The distin-

guishing features could be different, or the distribution of the samples for the distin-

guishing features could be different. Although the MVN technique compensates for

differences in the mean and variance of collected traces, it does not compensate for

147

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

(a) CEMA Attack

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

Train Dev: ARM1, Test Dev: ARM1

(b) MVN Template Attack

Figure 6.8 Comparison of (a) the number of bytes correct for CEMA attacks and
(b) the number of bytes correct for template attacks with the MVN
technique. All attacks use nt = 2, 500 test traces from ARM1. Training
data is from ARM1 location 303 (denoted by black circles).

other differences in the leakage distribution. To evaluate the difference in leakage

across the device, training data is collected at location 202. Known key CEMA is

performed, and the top 80 highest correlated samples are compared with the top 80

highest correlated samples from location 303. Out of the 80 samples chosen for each

location, 65 of the samples are the same. With the large number of test traces, the

attacks should still be successful with this many distinguishing features in common.

Since the CEMA attack works in locations the template attack does not, the

leakage in other regions of the device must still be correlated with the HW of the data

being processed. To make the CEMA attack be effective on various microprocessor

architectures, the absolute value of the correlation coefficient is taken before identi-

fying the samples with the highest correlation magnitude. As a result, leakage that

is both negatively or positively correlated with the HW of the targeted intermediate

values can be used to identify the correct key-byte using (3.3).

In a template attack, the difference between negatively and positively corre-

lated leakage can be compensated for by applying the MVN technique and multiply-

ing the test data by -1. This is referred to herein as the negative MVN technique.

148

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

Train Dev: ARM1, Test Dev: ARM1

(a) Negative MVN Template Attack

K
e
y
 B

y
te

s
 C

o
rr

e
c
t

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

Train Dev: ARM1, Test Dev: ARM1Train Dev: ARM1, Test Dev: ARM1

(b) Combined Results

Figure 6.9 The number of bytes correctly identified using template attacks on
ARM1 with nt = 2, 500 test traces at each location and training traces
from location 303 (denoted by circle) when (a) the negative MNV tech-
nique is used on each test trace set, and (b) the negative MVN or MVN
techniques are each used separately and the best result at each location
is reported.

Using the MVN technique on training data from location 303 and the negative MVN

technique on each set of test data, template attacks are repeated for all 625 locations.

As expected, the locations that yield successful attacks, shown in Figure 6.9(a), are

in areas that were not successful in Figure 6.8. The combined results for both tech-

niques are shown in Figure 6.9(b). As expected, the combined attacks are successful

in all the locations the CEMA attacks were successful (and more).

6.4.4 Notch-Filtering for CEMA Attacks. Applying the notch-filtering

technique to CEMA attacks significantly degrades attack performance. The band-

pass filtering technique developed in Section 3.3.1 can improve the effectiveness of

CEMA attacks. This approach is applied to ARM data in Chapter 7. Although band-

pass filtering can dramatically improve CEMA attacks, bandpass filtering could not

be shown to improve template attacks. All attempts to perform a template attack

on bandpass filtered traces failed when the matrix inversion used to construct the

covariance matrix could not be performed. This problem may be avoided by reduc-

ing the number of distinguishing features through principal component analysis or

149

multiple discriminant analysis to ensure the matrix of distinguishing features has full

rank, or by constructing mean only templates. This is an area for future research.

6.5 Conclusion

The methods developed and tested in this chapter, to identify and filter out

signals that are not consistently present in the collected traces, are simple and ef-

fective. Although template attacks incorporate the noise from a training device into

the template [24], noise present in only the training or test trace sets can reduce the

effectiveness of the attack. By calculating the variance in the PSDs of the collected

traces, the frequencies of interfering components can be identified. Notch filters can

effectively reduce the contributions of the signals at those frequencies in the collected

traces, improving template attack performance.

Although little effect is seen for same-device attacks, notch-filtering dramati-

cally reduces the number of traces required to achieve a 90% success rate for cross-

device template attacks on the ARM Cortex-M4F. Filtering reduced the average

number of traces required to attack each key-byte by an average of 69.3%. Filtering

followed by the MVN technique reduced the number of traces required by 85.8%.

For key-byte 9, the average number of traces required was reduced from 745, to just

82.

On the ARM Cortex-M4F, portions of each device have EM leakage negatively

correlated with the HW of the data being processed, while other portions of the

device have leakage positively correlated with the HW. Rather than collect data

from two training locations, the negative MVN technique can be used. Use of the

MVN and negative MVN technique makes template attacks more practical when

probe placement can not be replicated or a new set of training data cannot be

collected from a training device.

When the results from the MVN technique and the negative MVN technique

are combined, the number of test locations where all 16 key-bytes are correctly

150

identified increased from 91 to 297, an increase of 226% vs. a standard template

attack.

Although these techniques may not result in the same level of improvement

for all cross-device attacks, since they use the same data collected for a standard

template attack, they can be tried if the standard template attack fails to produce

adequate results.

151

7. Differential Electromagnetic Attacks on a 32-bit Microprocessor

Using Software Defined Radios

This chapter contains results submitted to the IEEE Transactions on Information

Forensics and Security in a paper titled “Differential Electromagnetic Attacks on a

32-bit Microprocessor using Software Defined Radios”. The article was coauthored

by Dr. Rusty Baldwin and Dr. Michael Temple. For incorporation into this docu-

ment, notation has been updated, and background and methodology that appeared

previously in the dissertation have been removed from this chapter to avoid redun-

dancy. The sections containing the removed information are referenced.

7.1 Introduction

Side-Channel Analysis (SCA) can extract sensitive information from power

consumption [67] and Electromagnetic (EM) emissions [94] of cryptographic devices,

including the cryptographic key used during encryption operations. Differential anal-

ysis determines the secret key used in multiple encryption operations by calculating

statistics using observed side-channel traces from a cryptographic device and the

plaintext or ciphertext associated with each trace [67]. To collect well aligned traces

from multiple encryption operations, the cryptographic device is often modified to

produce a trigger signal when the device is starting an encryption operation [73].

This trigger, of course, dramatically improves the alignment of the collected traces.

Agrawal et al. evaluated the leakage in EM signals, showing they contain

a multiplicity of compromising signals, many of which can be used independently

to break cryptographic implementations [2]. Observing that many compromising

signals have very low energy, Agrawal et al. recommends separating those signals

with useful information early in the acquisition process to negate precision limitations

of signal capturing equipment. Receivers can be used for this purpose and although

the receiver used for collections in [2] is not specified, the Dynamic Sciences R-1550

152

receiver and the Walkin-Johnson 8716 receivers are noted to be particularly effective

receivers because they have a wide frequency range and bandwidth. Unfortunately,

these receivers are also very expensive.

A less expensive approach is to sample the intermediate frequency output of a

wide-band receiver using an oscilloscope and perform demodulation in software [2].

An oscilloscope could also directly sample the collected emissions at a rate greater

than twice the targeted harmonic of the carrier frequency and the modulated signal

can then be separated using software, but this approach does not provide the signal

isolation of using a receiver before digitizing the signal.

In addition to a baseline attack performed using Correlation-based EM Anal-

ysis (CEMA) for traces collected using an oscilloscope, this paper evaluates the

effectiveness of using SDRs to collect side-channel information. Software defined

radios contain a Radio Frequency (RF) front end including a band-pass filter, RF

amplifier and mixer to convert the signal to the intermediate frequency, followed

by an analog-to-digital converter. Depending on the implementation, processing of

the digitized signal is performed by a dedicated processor on the SDR or a general

purpose processor, such as a personal computer.

The SDRs herein perform both the receiver and digitization functions, send-

ing real-time observations of the side-channel to a PC, eliminating the need for an

oscilloscope. The cost of performing side-channel analysis is significantly reduced

by eliminating the oscilloscope, but the narrow bandwidth collected using an SDR

and low number of samples per encryption operation increase the number of traces

needed to perform successful side-channel attacks. However, since the sampling fre-

quency is also reduced, trace information can be collected in real-time providing for

continuous collection. Continuous collection allows attacks to be performed without

modifying the device to add a trigger or training a real-time trigger generation device

to create an external trigger. Despite sampling at rates well below the Nyquist rate,

the encryption key can be successfully identified using SDRs.

153

Since this paper focuses on alternative collection techniques and determining

the information contained at specific frequencies, countermeasures are not consid-

ered. An unprotected 32-bit ARM Cortex-M4F processor validates the SDR collec-

tion process. In both the oscilloscope-based and SDR-based analysis, differences in

the frequencies at which key byte information is leaked from the device is observed.

This paper is organized as follows. Section 7.2 provides a brief overview of AES

and correlation-based differential attacks. Related work is outlined in Section 7.3.

The baseline attack is explained in Section 7.4, the SDR-based attack is explained

in Section 7.5 and results are presented in Section 7.6.

7.2 Background

Devices running AES can be exploited using differential side-channel attacks.

The goal of differential side-channel attacks against AES is to determine the secret

key by measuring and analyzing the small statistical influence the computation of

intermediate values has on the power or EM side-channel [68]. The CEMA attacks

performed in this chapter are described in Section 3.4.

The targeted 32-bit ARM Cortex-M4F microprocessor performs AES-128 using

the T-Box method described in Section 2.2.2 and [38]. The T-Box combined the

SubBytes, ShiftRows and MixColumns operations into four 8×32 bit lookup tables.

After performing the initial AddRoundKey, T-Boxes are used to calculate the first

9 rounds of AES-128. However, since the MixColumns operation is not performed

in the last round of AES, the SubBytes implementation is used.

7.2.1 Triggering and Alignment. When a powerful attacker has complete

control of the cryptographic device, a hardware trigger is often added to improve

collections [73]. The device is modified to produced a signal on an I/O pin when

an encryption operation begins and/or ends. This signal is used to trigger the

oscilloscope, resulting in collected traces that are closely aligned. In properly aligned

154

traces, corresponding parts of the encryption operations occur at the same sample

in each trace.

In cases were a trigger is not added, but the attacker still has control of the

cryptographic device, the oscilloscope can be triggered separately to capture a trace.

Since the trigger is not created by the cryptographic device, the trace may not start

at the same point relative to the start of each observed encryption operation and

alignment techniques must be used [73].

If the attacker has no control over the start of an encryption operation, but is

able to record at least one example encryption operation, a separate device capable

of real-time pattern detection can be used to generate a trigger [106].

Even when a hardware trigger is used, post-collection alignment techniques

can improve the alignment of the traces. Calculating the cross correlation between a

reference trace and the trace being aligned, the point with the highest value indicates

the offset between the two traces. Correlation-based alignment is used to align traces

in both the baseline oscilloscope and SDR collected traces.

7.2.2 Software Defined Radios. Once restricted to military and academic

applications, SDRs are now common in mobile communication networks [133], digital

TV and FM reception [74]. Receivers typically use a variable frequency oscillator,

mixer and filter to isolate and shift the target RF frequency to an Intermediate

Frequency (IF) or baseband where it is amplified and sampled by a analog-to-digital

converter (ADC) [133]. A Low Noise Amplifier (LNA) may amplify the RF signals

before converting the RF signal to the IF or baseband. Alternatively, low frequency

RF signals1 may be sampled directly and down-converted digitally.

After the ADC, some or all of the signal processing is done in software. A

number of free and/or open source software development toolkits are available to

implement signal processing blocks in software including GNU Radio [19], and High

1Frequencies less than 1
2 the sampling rate of the ADC

155

Definition Software Defined Radio (HDSDR) [126]. The interfaces used to collect the

SDR traces used in the CEMA attacks are described in Section 7.5, but the HDSDR

is used for spectrum analysis of the target microprocessor. The RF spectrum and

waterfall displays are used to identify signals from the device that interfere with

SDR-based collections.

7.3 Related Work

Cryptographic Research, Inc. demonstrated simple EM attacks on implemen-

tations of RSA and Elliptic Curve Cryptography (ECC) on smart phones [61]. The

RSA attack was performed using a near field probe, and the ECC attack with a

far-field antenna. A receiver demodulated the signal and an SDR was used as a

digitizer. Additionally, it was shown that AES operations can be observed in the

demodulated signal, but an attack is not performed on AES. No other examples of

using SDRs for collecting SCA data have been found in literature.

Agrawal et al. explored how leakage changes across the EM spectrum by

performing differential attacks on demodulated EM signals [2]. A Difference of Means

attack (DoM) [67] was conducted on a single bit of a smartcard with a 3.68 MHz

clock frequency performing the Data Encryption Standard (DES). The signal from a

near-field probe was amplitude demodulated using a receiver for center frequencies of

188 MHz, 224.5 MHz, and 262 MHz with a bandwidth of 50 MHz. The demodulated

signals were collected with a 12-bit, 100 MHz digital oscilloscope. Agrawal et al.

found both the magnitude of the DoM results and time at which leakage occurs are

affected by the carrier used.

Barenghi et al. identify the frequencies at which a device leaks information

by performing a correlation-based differential attack on filtered power consumption

data [13]. Focusing on a single key byte, they show that creating a filter with multiple

passbands around harmonics of the clock frequency can reduce the number of traces

required to determine the correct value for the byte. They expand this technique to

156

look at other frequencies in [14]. In both cases they average multiple traces for each

plaintext.

The correlation-based frequency-dependent leakage analysis method developed

in Section 3.5.2 in contrast does not average collected traces. To average traces, an

attacker must be able to observe and align multiple encryption operations with the

same plaintext. Since the goal of the SDR-based attack is to perform a passive at-

tack with no device modification, the ability to average traces is not assumed. While

Barenghi et al. focused on a single key byte, all key bytes will be attacked. Analysis

shows that frequencies at which key bytes leak information can change from byte

to byte and can even change if the device is reprogrammed. Since power consump-

tion data cannot be collected without modifying the device, only EM emissions are

collected.

7.4 Baseline Attack Performance

The target device is the LM4F232H5QD evaluation kit with ARM Cortex-

M4F based microcontroller denoted ARM1 in Section 3.2.2. The baseline attack is

performed using test traces collected with an oscilloscope sampling at fs = 2.5 GSa/s

as described in Section 3.1. The traces are downsampled to an effective sampling

frequency of fDs = 250 MSa/s.

CEMA is used to identify the most likely value for each of the 16 bytes in the

AES-128 key, as described in Section 3.4.1. Attacks targeting both the output of

SubBytes and the output of the T-Box in the first round of AES can be successfully

performed against the target microprocessor. However, since attacking the output

of the T-Box yields the highest key extraction success rate, the T-Box outputs in

the first round of AES are the target intermediate values herein.

The target intermediate values for these attacks are the 32-bit output of each

T-Box in the first round of AES-128. The EM leakage from the ARM Cortex-

M4F follows a 32-bit Hamming Weight (HW) model. Analysis is performed using

157

known plaintext bytes, t = (t1, t2, ...tnt)
T , and the collected side-channel emissions

corresponding for each of the nt plaintexts. Elements of the hypothetical leakage

matrix H are calculated hi,j = HW (Tr(td ⊕ ki)) where r is the row of the state

matrix, d = 1, ..., ns samples per trace, and i = 1, ..., nk. Where nk = 256 possible

key values and ns is the number of samples in each trace. Since only the HW is

used in the CEMA attack, the row of the input byte in the state matrix can be

disregarded as the HWs of the output of all four T-Boxes are equal for any given

input.

7.4.1 Electromagnetic Cartography Scan. The LM4F232H5QD package

has multiple power and ground connections and it is unclear in documentation [130]

which pin supplies the power to the portion of logic the cryptographic computations

will be performed on. To determine the best location above the device to position

the probe for collections, a 25× 25 = 625 location XY scan is performed capturing

emissions from the device while it repeats one encryption operation at each location,

as described in Section 3.2.2.1. Since the amplitude of the collected emissions varies

greatly between locations, the magnitude of the collected trace is evaluated and

the vertical sensitivity of the oscilloscope is adjusted to maximize dynamic range.

After adjusting the vertical sensitivity the trace is recollected and stored with its

corresponding plaintext and volts/div setting. When used to calculate the Power

Spectral Density (PSD), each trace is scaled by the volts/div setting used to collect

the trace.

Figure 7.1(a) is a plot of the normalized maximum PSD value across the 625

locations above the device. The LM4F232 has a maximum clock speed of 80 MHz,

but the clock was set to fsys = 50 MHz for compatibility with existing UART inter-

face code. Results in Figure 7.1(a) are based on the PSD calculated for frequencies

between 49 MHz and 51 MHz.

158

0

1

(a)

0.07

0.38

(b)

Figure 7.1 (a) Maximum Power Spectral Density (PSD) at 25×25 = 625 locations
above the device package between 49 and 50 MHz. PSD values are nor-
malized across all locations. (b) Mean magnitude of maximum correla-
tion coefficient using nt = 1, 000 traces traces collected at 25×25 = 625
locations above the device package for each of the 16 AES key bytes.

To validate the effectiveness of using spectral intensity to determine the best

location, the XY scan was repeated using a fixed set of plaintexts. A CEMA attack

on the output of the T-Box is performed using the set of nt = 1, 000 traces from

each location as described in Section 7.4. The average magnitude of the correla-

tion coefficient for the correct key value for the 16 bytes in the AES-128 key are

represented graphically in Figure 7.1(b). The locations identified using the PSD

yield good results, but the correlation-based results find other locations above the

device where collected traces have high correlation with the HW leakage model for

each correct key byte. Plots of the minimum correlation and number of bytes cor-

rectly identified using (3.3) were also created, but are omitted here. Based on these

plots, the position indicated by a small circle in Figures 7.1(a) and 7.1(b) was used

for all oscilloscope and SDR collections herein. Using the grid system described in

Section 3.2.2.1, this position is location 303.

7.4.2 Correlation-Based Frequency-Dependent Leakage Analysis. To evalu-

ate the information leakage of the ARM Cortex-M4F, a set of nt = 2, 000 traces with

159

45 46 47 48 49 50 51 52 53 54 55

−100

−50

0

Frequency (MHz)

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 7.2 Magnitude of impulse frequency responses for 99 overlapping Cheby-
shev Type I filters bandpass filters with WBW = 2 MHz used in the
correlation-based frequency dependent leakage analysis.

a fixed key and random plaintexts is collected and analyzed by filtering the traces

and performing CEMA. The traces were collected at fs = 2.5 GSa/s. Since, ini-

tial filtering experiments showed frequencies below 100 MHz contained more leakage

when attacked using CEMA with a HW model than frequencies above 100 MHz, the

traces are downsampled to fDs = 250 MSa/s as described in Section 3.3.2 to make

them easier to process.

The goal of the baseline analysis is to determine which frequencies leak ex-

ploitable AES-128 key information from the ARM Cortex-M4F implementation to

aid in choosing a center frequency and sampling rate for the SDRs. Since the SDRs

will ultimately be used to collect at a single frequency, the filters are not combined

to create a multi-bandpass filter as in [14]. To ensure low attenuation at the cut-

off frequencies of the bandpass filters, twelfth-order Chebyshev Type I filters are

implemented with a passband ripple of 0.1 dB as described in Section 3.5.2. The

cutoff frequencies of the filters overlap by 50% to prevent gaps between the filters.

A plot of the magnitude of the impulse response in the frequency domain for three

overlapping filters with WBW = 2 MHz is shown in Figure 7.2.

Since SDRs have much lower maximum sampling rates than oscilloscopes,

the filter bandwidth is chosen based on sampling rates that can be achieved us-

ing low-cost SDRs. Using a bandwidth of WBW = 2 MHz, center frequencies

fc = {1, 2, ..., 99} MHz, 99 filters are constructed. If the passband includes 0 or

160

100 MHz, a sixth-order low-pass or high-pass filter is used, otherwise the filter is a

twelfth-order bandpass filter. The term frequency interval refers to the passband of

a filter. A CEMA attack is performed for each of the 16 key bytes on traces filtered

using a zero-phase digital filter. The value of the key byte selected by the attack is

found using (3.3).

The CEMA attack determines the correlation between the hypothetical leakage

for each key byte value guess. To determine the confidence in the key value selected

using a CEMA attack, the maximum correlation coefficient, rmax, is compared with

the next highest correlation coefficient, rnext), as defined in (3.4) and (3.5) respec-

tively. The confidence rmax ≥ rnext is calculated for each CEMA attack using the

trace set filtered for each frequency interval as described in Section 3.5.2.

7.4.3 Baseline Results. Calculating the confidence at which rmax and rnext

are statistically different allows CEMA attacks performed on different bytes and for

traces filtered using different frequency intervals to be compared directly. Figure 7.3

shows the statistical confidence found using (3.10) for the 99 filters constructed with

WBW = 2 MHz and center frequencies fc = {1, 2, ..., 99} MHz. Higher statistical

confidence is represented by lighter colors. Since the same trace set is filtered each

time and the bandwidth is constant, the differences reflect confidence variation due to

varying the center frequency of the filters. For some frequency intervals, even when

the number of traces is increased, some key bytes cannot be extracted while other

key bytes can be (see nt = 2000 results in Sec. 7.6.3). Although high confidence

does not guarantee the correct key byte value is chosen, in Figure 7.3 the highest

p-value where an incorrect byte was chosen using (3.3) was 0.8252. If the CEMA

attack using traces filtered over a frequency interval yielded the incorrect value, an ×

is drawn through the box representing that attack in Fig. 7.3.

Note that confidence changes for both frequency interval and key byte. The

correct value for some key bytes can be easily extracted, while the values of other

161

f
c
 (MHz)

K
e
y
 B

y
te

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 0.5

0.6

0.7

0.8

0.9

1

Figure 7.3 Colored boxes represent the confidence rmax ≥ rnext from each CEMA
attack. Attacks are performed at each key byte using nt = 1000 traces
filtered using overlapping frequency intervals. Since fc ∈ {1, 2, ..., 99}
MHz and WBW = 2 MHz, the intervals overlap by 50%. Each box is
centered at the correct fc but their widths do not represent the actual
WBW . CEMA attacks that yielded incorrect key byte values are marked
with an ×.

Table 7.1 Confidence rmax > rnext using nt = 1000 traces decimated to fDs = 250
MSa/s for key byte ki ∈ {1, ..., 16}

ki Confidence ki Confidence ki Confidence ki Confidence
1 1.00000 5 0.99998 9 0.98726 13 0.99996
2 1.00000 6 0.99990 10 1.00000 14 1.00000
3 1.00000 7 0.99970 11 1.00000 15 1.00000
4 1.00000 8 1.00000 12 0.99979 16 1.00000

key bytes may not be easily determined using the same set of filtered traces. For

comparison, using the unfiltered traces the correct value is identified for all 16 key

bytes. The confidence levels are listed in Table 7.1.

Some trends can be observed across all key bytes. For center frequencies near

31.9 MHz and 63.7 MHz the confidence rmax > rnext is lower2 Viewing the spectral

waterfall display in HDSDR, there are unknown signals at these frequencies that

2The signal at 31.9 MHz and 63.7 MHz were also identified using the PSD variance technique
in Section 6.3.2. Additional signals at 15.9 MHz and 47.7 MHz can be identified using the PSD
variance method, but these signals have significantly less power than the signals at 31.9 MHz and
63.7 MHz and required a larger number of test traces identify them using this PSD variance method.

162

appear to vary in frequency; adding noise to the collected signal. Attacks performed

using traces filtered with a passband filter which includes these unknown signals

have lower rmax values and lower confidence. Testing isolated these signals to the

development board, but their source is unknown.

Although the system clock of the ARM Cortex-M4F is set to fsys = 50 MHz,

frequency intervals with center frequencies above and below 50 MHz can be used

to successfully attack the device. The target center frequencies for SDR collections

are based on the baseline results in Fig. 7.3 and center frequency ranges of the two

SDRs. The filtered traces for frequency intervals between 12 MHz and 60 MHz

contain enough information to be able to extract a large majority of the 16 AES-128

key bytes with high confidence.

Since AES operations in the target device are performed with the T-Box im-

plementation (as described in Section 2.2.2) the state matrix row determines which

of the four T-Box tables are accessed in memory for each byte. There is no correla-

tion between state row and the confidence with which a key byte can be extracted.

The code is optimized to reduce execution time by the compiler. The effect of code

optimization is evaluated in Section 7.6.3.

7.5 Software Defined Radio Methodology

Collecting differential side-channel traces using a SDR simplifies the collection

process but requires additional post-collection processing. Since the SDR can collect

data continuously, there is no need to modify the target cryptographic device to

add a trigger. A near-field probe is placed just above the device and the SDR

can immediately begin recording the emissions from encryption operations being

performed. To allow comparison between the baseline oscilloscope-based collection

and SDR-based collection results , the probe location is fixed at the location found in

Sec. 7.4.1. However, an adequate location can easily be found by manually moving

the probe over the device while monitoring the spectral intensity in SDR software.

163

Plaintexts

Plaintexts

Ciphertexts

Record Start Notification

fc, fs,
Gain

Recorded
DataAttenuator

Near-field
Probe

LM4F232H5QD
Evaluation Board

Control
PC

Encryption
Device

Collection
PC

SDR

Figure 7.4 The collection setup uses two computers to simu-
late an attack scenario where the attacker is able
to place a probe on the encryption device to col-
lect the EM emissions corresponding to encryption
operations with known plaintext or ciphertexts.

Since the probe is amplified, and cannot be used without amplification, a 20 dB

attenuator is used to prevent damage to the SDRs.

When collecting using an oscilloscope, the PC used to collect and store the

traces from the oscilloscope also controls the target encryption device. To make

the SDR collection scenario more realistic, two separate PCs are used as shown in

Fig. 7.4. The collection PC continuously records the side-channel through the SDR

while the control PC requests the encryption device perform multiple encryption op-

erations. To verify the correct encryption operations are being performed, the control

PC receives the ciphertext from the ARM Cortex-M4F for the previous encryption

operation before sending the next plaintext for encryption.

To automate the collection of a large number of traces the collection PC and

control PC are connected via Ethernet. The collection PC notifies the control PC

when it is about to begin recording. The collection PC records for a given amount of

time and then retrieves the plaintexts from the control PC. Since a trigger is not used

to indicate the start or duration of individual encryption operations, each individual

encryption operation must be identified in the SDR recording via signal processing.

164

7.5.1 Sub-Nyquist Sampling. The baseline oscilloscope analysis indicated

that signals with frequencies between 10 MHz and 70 MHz frequencies contain key

information. The SDRs are used to target frequencies within this range. In order to

perfectly reconstruct a bandwidth limited signal with spectral contents less than a

maximum frequency fmax, the signal must be sampled at a rate of at least 2fmax [113].

This is known as the Nyquist rate. Since the SDRs sample at frequencies lower than

the 20 MHz to 140 MHz Nyquist rates, all SDR collections will be sub-Nyquist.

While many techniques have been developed to reconstruct signals sampled at sub-

Nyquist rates using prior information on the signal structure [80], there is no need

to reconstruct the signal to perform the CEMA attack. As an indicator of how

far below the Nyquist rate the SDRs sample, the proportion of the Nyquist rate is

calculated

Nq =
fDs
fN

, (7.1)

where fDs and fN = 2fmax is the decimated sampling frequency output by the SDR.

For simplicity, Nq is estimated with fN = 2fc.

We expect that lowering Nq will degrade the key byte extraction success rate,

but successful attacks will still be possible. Additional traces may need to be col-

lected to compensate for reduced Nq.

7.5.2 Software Defined Radios.

7.5.2.1 USRP. EM emissions are collected from the near-field probe

using a Universal Software-Defined Radio Peripheral (USRP). The USRP2 model

uses dual 100 MSa/s 14-bit Analog to Digital Converters (ADCs) and interfaces with

the collection PC via gigabit Ethernet. The USRP2 uses interchangeable daughter

boards as the RF front end. Since the baseline test in Section 7.4 found compromising

signals at frequencies less than 30 MHz, the LFRX daughterboard designed to receive

165

0-30 MHz is chosen. The LFRX can receive center frequencies up to 50 MHz, but

filters the RF signal with a third-order low-pass filter with a cutoff of 30 MHz to

prevent aliasing. The LFRX amplifies the RF signal using high-speed operational

amplifiers [43]. Although the BasicRx daughterboard can sample in the DC - 50

MHz range, only the LFRX can be used without any external front end hardware.

A Digital Down-Converter (DDC) is implemented on the USRP Field Pro-

grammable Gate Array (FPGA) to down-convert the RF signal to baseband and

decimate the signal. A Numerically-Controlled Oscillator (NCO) synthesizes the

discrete-time, discrete-amplitude sine and cosine waveforms with frequency fc within

the FPGA. The sine and cosine functions are multiplied with the digitized samples

from the ADC to produce In-phase Quadrature (I/Q) data and down-convert the

center frequency of the collected signal to DC. Since only the magnitude of the base-

band signal is use for SCA, one of the I/Q channels is filled with null-samples and

only one 16-bit value is sent to the collection PC.

The USRP2 ADCs sample at fs = 100 MSa/s. To achieve a decimated USRP2

output sampling rate of fDs = 2 MSa/s, the sampled RF signal is sent through a

low-pass filter with a cut-off of WLP = fmax/nd and decimated by nd = 50. From

the baseline test in Fig. 7.3, most key bytes appear to leak at frequencies between

18 MHz and 32 MHz. Using the USRP2, center frequencies between 18 and 40 MHz

are targeted with sampling frequencies of both fDs = 2 MSa/s and fDs = 4 MSa/s.

7.5.2.2 Low-Cost RLT-SDR. Low-cost Digital Video Broadcasting–

Terrestrial (DVB-T) Universal Serial Bus (USB) dongles can be used as SDRs. DVB-

T dongles based on the Realtek RTL2832U3 can transfer raw unsigned 8-bit I/Q

samples to a host computer using alternative drivers [74]. The ezcap USB 2.0 DVB-

T/DAB/FM dongle, henceforth referred to as the RTL-SDR, is used because it has

the Elonics E4000, a highly integrated multi-band RF tuner integrated circuit im-

3The RTL2832U is a high-performance DVB-T Coded Orthogonal Frequency Division Multi-
plexing demodulator that supports a USB 2.0 interface [97]

166

plemented in CMOS [42]. The E4000 uses a direct conversion zero IF architecture,

employing a single stage to mix the amplified and filtered RF signal to baseband.

Before being digitized using a fast sampling ADC, the baseband signals DC offset is

corrected, the signal is filtered using a low-pass filter and the signal is amplified. Al-

though dongles with other tuners are available, the E4000 offers the widest frequency

range [74].

According to specifications, the E4000 can accurately tune to frequencies be-

tween 64 and 1700 MHz [42], but can also be used out-of-spec from 50 MHz - 2.2

GHz [74]. In practice, the lowest center frequency the RTL-SDR dongle used for

this research could be set to through the collection interface [32] was fc = 53.5 MHz.

Although the RTL-SDR’s highest sampling rate is 3.2 MSa/s, rates less than 2.8

MHz are used to avoid sample loss when the I/Q data is transfered over USB 2.0 to

the collection PC.

Since the targeted frequencies are down-converted to baseband before being

digitized, the sampling rate is much lower than would be needed to sample the tar-

geted frequencies directly. To minimize sample loss, the RTL-SDR was configured to

sample at fDs = 2.0 MSa/s making the maximum frequency of the sampled baseband

signals 1.0 MHz. From the baseline test in Fig. 7.3, there is at least one frequency

interval above 50 MHz where each key byte has a high probability of rmax ≥ rnext.

Center frequencies between 53.5 and 73 MHz are used for collections with the RTL-

SDR. The gain is set to 1.5 for all collections.

7.5.3 Identifying and Aligning Encryption Operations. Associating the

correct plaintext to each recorded encryption operation is essential for an efficient

differential attack. Since multiple encryption operations are being performed during

each collection, the collection computer must be able to identify each operation. To

simplify this problem, a set number of encryption operations are performed in each

group. The control PC performs groups of ng = 250 encryption operations using

167

randomly generated plaintexts and a fixed key. This number was chosen to make

the processing of each SDR collection more manageable. The entire EM emission

recorded by an SDR is referred to as a collection. To be consistent with SCA nomen-

clature, the portion of the collection produced by an individual encryption operation

is referred to as a trace. Each collection should contain ng traces. Since it is vital

each plaintext is matched with the correct trace, if the collection PC cannot iden-

tify ng traces in the collection, the collection and associated set of plaintexts are

discarded.

The SDR collection not only contains the encryption operations of interest, but

also all other operations being performed by the microprocessor. However, since the

ARM Cortex-M4F is being used as a dedicated encryption device, when the device

is not performing a key schedule operation or performing encryption or decryption

operations it is waiting to receive or process a command.

When the collection device is triggered the portion of the collection where

the encryption operation is performed is easily isolated and no other device activity

need be collected. When recording continuously, device activity such as responding

to interrupts, identifying commands, receiving the plaintext and transmitting the

ciphertext are evident in the recorded trace. The magnitude of a USRP2 collection

at fc = 22 MHz and fDs = 2 MSa/s for the operations associated with one encryption

operation is shown in Figure 7.5. Since the microcontroller waits for an interrupt

between commands, distinct periods of activity can be seen before and during each

encryption operation. The last period of activity in Figure 7.5 is where the encryption

operation is performed.

Various methods can be used to identify the ng encryption operations in the

SDR collection. Using a manually identified reference trace, cross correlation can

identify the start time of each encryption operation. However, in addition to re-

quiring manual intervention for each center frequency and sampling frequency, this

process is computationally intensive due to the length of the SDR collections. Since

168

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4
x 10

−3

Samples

M
a
g
n
it
u
d
e

Figure 7.5 Magnitude of the data recorded for interrupt han-
dling, command identification, receipt of plaintext,
encryption of plaintext and returning ciphertext
for single encryption operation using the USRP2
with fc = 22 MHz and fDs = 2 MSa/s.

the microprocessor is idle when not performing operations associated with an en-

cryption operation, faster detection is performed by counting and identifying the

location of nd peaks with a minimum distance greater than the length of the opera-

tions shown in Figure 7.5 and a height greater than hmin. The initial value of hmin is

the overall maximum value in the collected trace. While nd < ng, hmin is gradually

lowered. If nd = ng, the collection is separated into ng traces by retaining a fixed

number of samples before and after each identified peak. If nd > ng, the collection

is discarded.

The ng traces should each contain three distinct periods of activity. Since only

the last period of activity contains the encryption operation, traces are truncated to

remove the first two peaks. Using the first trace as a reference, the remaining traces

are aligned by finding the offset that produces the highest cross correlation between

the trace being aligned and reference. The traces are circularly shifted to align

them. To show the similarity between aligned traces, 250 traces are superimposed

and shown with the mean of the 250 traces in Figure 7.6. Groups of ng traces are

169

0 50 100 150
0

1

2

3

4
x 10

−3

Samples

M
a
g
n
it
u
d
e

Figure 7.6 Two-hundred and fifty traces collected with the
USRP2 superimposed in grey with the mean of the
samples shown as a dark line for fc = 22 MHz and
fDs = 2 MSa/s.

collected until number of collected traces reaches or exceeds the desired total number

of traces ntotal.

The USRP2 and RTL-SDR both contain small memory buffers and samples

must be streamed to the collection PC as they are recorded. If for any reason the

SDR is not able to send the samples fast enough, an overflow occurs and samples

are discarded. As a result, it is possible for portions of an encryption operation

to be missing from the recorded SDR data. Missing samples can cause traces to

contain less than three periods of activity, or for a period of activity in the trace

to be shorter than expected. The USRP2 has an overflow indicator which allows

a collection to be discarded when an overflow occurs. However, collecting with the

USRP at fDs = 2 MSa/s and fDs = 4 MSa/s, no overflows occurred. Unfortunately,

the RLT-SDR interface [32] does not report overflows, and overflows do occur via

that interface. To make sure the traces collected with the RTL-SDR are usable,

additional processing steps were required.

170

7.5.4 Additional Processing for the RTL-SDR. As discussed in Sec. 7.5.2,

the tuner in the RTL-SDR is a single CMOS RF tuner. While the user can set center

frequency, sampling frequency and gain before the ADC, the DC offset compensa-

tion is performed automatically by the E4000. Testing showed the E4000 does not

consistently apply the same DC offset for each collection. Since multiple collections

are used together for the CEMA attack, it is necessary to adjust the mean of each

RTL-SDR collection to zero. The adjustment is performed on the entire collection,

and not on individual traces.

For the target microcontroller there are up to three periods of activity asso-

ciated with each encryption operation as shown in Figure 7.5. However, if samples

are dropped, there may be fewer periods of activity in the retained trace or sam-

ples may be missing at one or more unknown point(s) in the trace. Since only the

third period of activity contains the AES-128 encryption operation of interest, only

samples missing within the last region of activity are of concern.

To allow for traces with less than three periods of activity to be used, the last

region of activity is always assumed to be the encryption operation. The samples

within this region are aligned using cross-correlation, and the width of the retained

region from each trace is evaluated to verify it is consistent with the other traces

in the group of ng = 250 traces. If the width of the last period of activity for

the encryption operation is greater than 5 standard deviations away from the mean

region width, the trace and its corresponding plaintext are excluded from the CEMA

attack.

7.6 Software-Defined Radio Results

7.6.1 USRP. The USRP2 collects side-channel emissions from the ARM

Cortex-M4F using fc ∈ {15, 15.5, ..., 29.5, 30} MHz with fDs = 2 MSa/s. The gain

is fixed on the LFRX daughterboard. Not all center frequencies produced usable

traces. The ARM Cortex-M4F has a number of clocks on the device. In addition

171

to the system clock which is divided to fsys = 50 MHz (from 400 MHz) for the

implementation of AES with UART communication, there is a Precision Oscillator

(PIOSC) with frequency of 16 MHz. There are also strong signals at 16.67 MHz

and 25 MHz which are believed to be due to operations that take two or three clock

cycles to complete. The spectrum analysis display in HDSDR reveals that both

the system clock and PIOSC have substantial clock jitter which makes encryption

operation extraction from collections made with center frequencies near fc = 16.67

MHz and fc = 25 MHz more difficult. When the SDR down-converts fc = 25 MHz

to baseband the slight variations around fc = 25 MHz become low frequency signals.

Although a low pass filter can remove these signals from the collected trace, better

results were achieved at frequencies other than fc = 16 MHz or fc = 25 MHz.

With a sampling frequency of fDs = 2 MSa/s the USRP2 collects ntotal =

100, 000 traces at the following center frequencies: fc ∈ {18, 18.5, ..., 22.5, 23} MHz

and fc ∈ {28, 28.5, 29, 29.5, 30} MHz. For this range of center frequencies with

fDs = 2 MSa/s, the signals are sampled at 1/18 < Nq < 1/30 the Nyquist rate.

CEMA attacks are performed using the first nt ∈ {5000, 25000, 100000} traces. The

confidence rmax ≥ rnext for each of these attacks are shown in Figure 7.7. Higher

confidence is indicated by lighter colors. If the CEMA attack yielded an incorrect

key byte value, the box corresponding to the attack is marked with an ×.

Next, using a sampling frequency of fDs = 4 MSa/s the USRP2 is used to collect

ntotal = 100, 000 traces at the following center frequencies, fc ∈ {20, 21, 22, 29, 30}

MHz. For this range of center frequencies with fDs = 4 MSa/s, the signals are

sampled at 1/10 < Nq < 1/15 the Nyquist rate. There is a reduced number of

center frequencies because the increased sampling rate makes it harder to avoid

frequencies with interfering signals. CEMA attacks are performed using the first

nt ∈ {5000, 25000, 100000} traces collected at each center frequency. The confidence

rmax ≥ rnext for each of these attacks are shown in Figure 7.8. Increasing the

172

f
c
 (MHz)

K
e
y
 B

y
te

//

//
18 19 20 21 22 23 27 28 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) nt = 5, 000 traces

f
c
 (MHz)

K
e
y
 B

y
te

//

//
18 19 20 21 22 23 27 28 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b) nt = 25, 000 traces

f
c
 (MHz)

K
e
y
 B

y
te

//

//

18 19 20 21 22 23 27 28 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.5

0.6

0.7

0.8

0.9

1

(c) nt = 100, 000 traces

Figure 7.7 Confidence rmax ≥ rnext from CEMA attacks using traces collected with
the USRP2. Traces are collected using the indicated center frequency
fc and a sampling rate of fDs = 2 MSa/s. The signals are sampled
at 1/18 < Nq < 1/30 the Nyquist rate. Attacks are performed for
each key byte using the first (a) nt = 5, 000, (b) nt = 25, 000 or (b)
nt = 100, 000 traces collected. CEMA attacks that yielded incorrect
key byte values are marked with an ×.

173

f
c
 (MHz)

K
e
y
 B

y
te

//

//
20 21 22 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) nt = 5, 000

f
c
 (MHz)

K
e
y
 B

y
te

//

//
20 21 22 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b) nt = 25, 000

f
c
 (MHz)

K
e
y
 B

y
te

//

//

20 21 22 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.5

0.6

0.7

0.8

0.9

1

(c) nt = 100, 000

Figure 7.8 Confidence rmax ≥ rnext from CEMA attacks using traces collected with
the USRP2. Traces are collected using the indicated center frequency
fc and sampling rate fDs = 4 MSa/s. The signals are sampled at
1/10 < Nq < 1/15 the Nyquist rate. Attacks are performed for each key
byte using the first (a) nt = 5, 000, (b) nt = 25, 000 or (b) nt = 100, 000
traces collected. CEMA attacks that yielded incorrect key byte values
are marked with an ×.

sampling frequency, increases the number of key bytes that can be extracted with

high confidence for fc ∈ {20, 21, 22, 29, 30} MHz.

Even after using all ntotal = 100, 000 traces to perform the CEMA attacks,

not every key byte can be extracted at every center frequency. As expected, as the

number of traces used in the attack increases, confidence rmax ≥ rnext and the number

of key bytes correctly identified increase. However, since the confidence calculation

in (3.10) is based on pooled standard error, as the number of traces increases small

differences in correlation coefficients can result in high confidence levels. Figs. 7.7

and 7.8 both show key byte attacks that fail despite having ≥ 90% confidence for

nt = 25, 000 and nt = 100, 000 traces. Although less key byte values are correctly

identified, the confidence results for nt = 5, 000 traces in Figs. 7.7(a) and 7.8(a)

reliably identify a subset of the key bytes that leak for a given center frequency and

sampling rate.

174

Using the sets of ntotal = 100, 000 traces as trace pools from which nt = 5, 000

traces are randomly selected, the CEMA attack is repeated nr = 1, 000 times for each

center frequency and sampling rate. The results are shown in Figure 7.9. Comparing

Figs. 7.7(a) and 7.9(a), most bytes that have a high confidence for a given sampling

frequency and sampling rate using only the first nt = 5, 000 traces also have high

success rate when nt = 5, 000 traces are chosen randomly from ntotal = 100,000

traces. When the attack using only the first nt = 5, 000 traces has a confidence

p > 0.97 , the attack for that byte was successful for at least 80% of trials when

repeated nr = 1, 000 times.

The correct key byte value may be identified with nt = 5, 000 traces but not

when the number of traces is increased to nt = 25, 000+. An example is found in

Figure 7.7. The identified value for key byte 14 using USRP traces with fDs = 2

MSa/s and fc ∈ {20.5, 21, 23} MHz is correct for nt = 5, 000 traces, but incorrect for

nt = 25, 000 traces. For high quality traces, an attack that is successful with a lower

number of traces should be successful when a significantly larger number of traces is

used. Since the quality of USRP traces is consistent across the entire trace set, this

phenomenon may be due to the poor quality of the traces including the low sampling

rate of the SDR. The low sampling rate means multiple operations are performed on

the devices between samples.

Figure 7.9(a) shows that, as in the baseline oscilloscope test, bytes 1 and 10

leak at multiple frequencies for fDs = 2 MSa/s. Although there are multiple key bytes

that do not have high extraction success rates for every center frequency, every key

byte has at least one center frequency for which the correct key value is selected for

all nr trials. From Figure 7.9(a), all key bytes, with the exception of byte 6 , have at

least one frequency interval for which p ≈ 1. However, even if the remaining bytes

cannot be extracted with high confidence, a brute force attack to identify the value

of the remaining bytes may be trivial.

175

//

//

f
c
 (MHz)

K
e
y
 B

y
te

18 19 20 21 22 23 27 28 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) fD
s = 2 MSa/s

//

//

f
c
 (MHz)

K
e
y
 B

y
te

20 21 22 29 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0%

20%

40%

60%

80%

100%

(b) fD
s = 4 MSa/s

Figure 7.9 Percentage of 1,000 CEMA attacks correct for each key byte using
nt = 5, 000 traces randomly chosen from the ntotal = 100, 000 traces
collected with the USRP2 at each center frequency fc for (a) fDs = 2
MSa/s (1/18 < Nq < 1/30) and (b) fDs = 4 MSa/s (1/10 < Nq < 1/20).

For fc = 23 MHz and fDs = 2 MS/s, 100% of the nr = 1, 000 trials yielded the

correct result for attacks on 11 of 16 key bytes. Using only the first nt = 5, 000 traces,

the CEMA attacks on these 11 key bytes have confidence values greater than 0.97.

For fc = 28.5 MHz and fDs = 2 MSa/s greater than 99.5% of the nr = 1, 000 trials

yielded the correct result for 12 of 16 key bytes. Using only the first nt = 5, 000 traces,

the CEMA attacks on 10 of the 12 key bytes with greater than 99.5% of trials correct

have confidence values greater than 0.99. Combining the byte values identified at

these two frequencies, only two bytes cannot be determined using nt = 5, 000 traces

at each frequency. When fDs = 4 MS/s 12 of 16 key bytes can be determined using

only the first nt = 5, 000 traces collected for fc = 20 MHz.

Two USRP2-based attacks extract all 16 bytes correctly with high confidence

(p ≈ 1). Figure 7.8(a) includes an attack with fc = 27 MHz and fDs = 4 MSa/s

and 7.8(c) shows an attack with fc = 30 MHz and fDs = 4 MS/s.

176

7.6.2 RTL-SDR. The lowest center frequency that RTL-SDR can be tuned

to is fc = 53.5 MHz. Although the baseline test indicates most leakage is below 63

MHz, collections using at center frequencies up to fc = 73 MHz are made to verify

key byte extraction rates and confidence levels are reduce for center frequencies above

65 MHz. With a sampling frequency of fDs = 2 MSa/s, ntotal = 100, 000 traces are

collected for fc ∈ {53.5, 54,, 61.5, 62} MHz and fc ∈ {68, 68.5,, 72.5, 73} MHz.

For this range of center frequencies with fDs = 2 MSa/s, the signals are sampled at

1/53.5 < Nq < 1/73 the Nyquist rate.

The confidence rmax ≥ rnext, using the first nt ∈ {5000, 25000, 100000} traces

collected at each center frequency is shown in Figure 7.10. Attacks yielding an

incorrect key byte guess are indicated with an ×. Using nt = 25, 000 and nt =

100, 000 the byte-wise CEMA successfully extract all 16 bytes for multiple center

frequencies. When the CEMA attack is performed using only the first nt = 5, 000

traces there is at least one center frequency at which p ≈ 1 (with the exception of

byte 5 (p = 0.99) and byte 9 (p = 0.98)).

The CEMA attack is performed using nt = 5, 000 randomly selected traces

and repeated nr = 1, 000 times. The results of these attacks are summarized in

Figure 7.11. All attacks with confidence p > 0.975 in Figure 7.10(a) are successful

for at least 82% of nr = 1, 000 trials. As with the USRP2 collections, high confidence

for nt = 5, 000 traces is a good way to identify a subset of the key bytes that leak

information for a frequency interval.

Consistent with the baseline test, center frequencies less than 65 MHz have a

lower percentage of successful key byte attacks than center frequencies above 65 MHz.

Again, key bytes 1 and 10 have a higher probability of being correctly determined

using a CEMA attack for multiple center frequencies. An unknown signal that varies

in frequency near 56.9 MHz is observable on a waterfall plot in HDSDR, and causes

a reduction in the effectiveness of the attacks using traces collected with fc = 57.5

177

f
c
 (MHz)

K
e
y
 B

y
te

//

//
54 55 56 57 58 59 60 61 68 69 70 71 72 73

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) nt = 5, 000 traces

f
c
 (MHz)

K
e
y
 B

y
te

//

//
54 55 56 57 58 59 60 61 68 69 70 71 72 73

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b) nt = 25, 000 traces

f
c
 (MHz)

K
e
y
 B

y
te

 //

//
54 55 56 57 58 59 60 61 68 69 70 71 72 73

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0.5

0.6

0.7

0.8

0.9

1

(c) nt = 100, 000 traces

Figure 7.10 Confidence rmax ≥ rnext from CEMA attacks using traces collected
with the RTL-SDR. Traces are collected using the indicated center
frequency fc and sampling rate fDs = 2 MSa/s. The signals are sam-
pled at 1/53.5 < Nq < 1/73 the Nyquist rate. Attacks are performed
for each key byte using the first (a) nt = 5, 000, (b) nt = 25, 000 or (c)
nt = 100, 000 traces. CEMA attacks that yielded incorrect key byte
values are marked with an ×.

178

f
c
 (MHz)

K
e
y
 B

y
te

 //

//
54 55 56 57 58 59 60 61 68 69 70 71 72 73

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

0%

20%

40%

60%

80%

100%

Figure 7.11 Percentage of 1,000 CEMA attacks correct for each key byte using
nt = 5, 000 traces randomly chosen from the ntotal = 100, 000 traces
collected with the RTL-SDR at each center frequency fc and sampling
rate fDs = 2 MSa/s. The signals are sampled at 1/53.5 < Nq < 1/73
the Nyquist rate.

MHz. The highest number of key bytes successfully attacked in greater than 99.9%

of trials is 11 of 16 using traces collected at fc = 55 MHz.

Although the baseline oscilloscope results are filtered to include approximately

the same frequencies collected using the SDRs, the baseline results cannot be directly

compared to the SDR results. The baseline results are filtered but are not down-

converted to baseband, low-pass filtered and decimated. At the sampling rate of

fs = 250 MSa/s, a total of 8,450 samples represent each td = 32.18 µsec encryption

operation. At the lower sampling rates of fDs = 2 MSa/s and fDs = 4 MSa/s, only 63

and 129 samples respectively make up the entire encryption operation. As a result,

calculations performed during multiple clock cycles are included in a single SDR

sample.

Comparing the baseline oscilloscope and SDR based attacks, the key bytes that

leak for specific center frequencies are not the same in all cases. Key bytes 1 and

10 are easier to extract than other key bytes for the oscilloscope and both SDRs.

However, other key bytes which can be easily extracted with high confidence over a

wide range of frequencies using filtered oscilloscope traces cannot be identified with

179

high confidence using SDR traces. For example, key byte 16 can be extracted with

high confidence for center frequencies between 18 MHz and 30 MHz using filtered

oscilloscope traces, but can only be successfully extracted using the USRP2 for select

center frequencies. Key byte 16 can be extracted with a low number of RTL-SDR

traces at various center frequencies between 55 MHz and 59 MHz.

In both the oscilloscope and SDR based attacks key bytes leak a different

frequencies. If an SDR is used to collect data for a CEMA attack, collections should

be performed at multiple frequencies. However, if the target encryption device can

be modified to add a trigger, it should be. The SDR is not a replacement for an

oscilloscope when the device can be altered to add a trigger.

The center frequency and sampling frequencies for both the USRP and RTL-

SDR must to be carefully chosen to avoid clock jitter (from multiple clocks on the

device) and various signals on the device with variable frequencies. Including these

frequencies degrade the effectiveness of an attack and make it harder to identify

the encryption operations. Fortunately, these frequencies can be easily identified by

scanning over the potential collection frequencies using SDR spectrum visualization

software.

In addition to frequencies near the system clock, frequencies around divisors

of the system clock can be attacked. For the ARM Cortex-M4F, frequencies near

16.66 MHz and 25 MHz contain exploitable information. This may be due to some

instructions taking multiple clock cycles or certain operations only being performed

multiple clock cycles apart.

7.6.3 Additional Observations. Like the baseline attack, both SDR-based

attacks indicate key bytes leak at different frequencies. Since the ARM Cortex-M4F

is a 32-bit microprocessor with sufficient memory, the T-Box implementation is used

to increase the speed of round transformations 1-9. While it is possible to store

just one T-Box in memory and implement a byte-wise rotation separately [38], all

180

four T-Boxes in (2.1) are stored in memory on the target device. Using standard

development tools, without programming AES directly in assembly, the designer

does not have complete control of when each calculation will be performed on the

device and which registers will be used. The compiler transforms the C++ code into

object code with corresponding assembly instructions.

Evaluating the assembly code, it is not clear why some bytes are easier to

extract than others. There is no correlation with the row of the AES state matrix,

which would determine which T-Box is accessed in memory for each byte. One

simple way to change key byte leakage is to change the optimization level for the

C++ compiler used to program the ARM Cortex-M4F.

To evaluate compiler-dependent byte frequency leakage, traces are collected

with the oscilloscope as in Sec. 7.4 with two different optimization levels used to

compile the AES code for the microprocessor. The baseline test in Sec. 7.4 used

the compiler default optimization level4 of 2. Immediately after collecting the traces

used in the baseline test, the device is reprogrammed using optimization level 0 and

a new set of traces using the same set of nt = 2, 000 plaintexts is captured.

The baseline attack described in 7.4 is repeated for the trace set with opti-

mization level 0. Figure 7.12 compares the confidence rmax > rnext for the trace

sets with different optimization levels. Changing the optimization level changes the

frequencies at which key bytes leak. For example, byte 10 can be extracted with

high confidence rmax ≥ rnext for center frequencies between 23 and 28 MHz with op-

timization level 2, but not for optimization level 0. Optimization to reduce execution

time does not necessarily decrease key byte value leakage. Trace sets of nt = 2, 000

plaintexts are used to demonstrate that even with a relatively large number of traces

some bytes do not leak at certain frequencies.

4Level 0 includes register optimizations. Level 2 adds local and global optimizations. All SDR
collections were performed with optimization level 2.

181

f
c
 (MHz)

K
e
y
 B

y
te

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 0.5

0.6

0.7

0.8

0.9

1

(a) Optimization level 2

f
c
 (MHz)

K
e

y
 B

y
te

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 0.5

0.6

0.7

0.8

0.9

1

(b) Optimization level 0

Figure 7.12 Comparison of key byte extraction confidence using nt = 2, 000 traces
for compiler optimized implementations of AES. The same set of plain-
texts are used for each attack.

7.6.4 Comparison of the Baseline and SDR Results. Based on the duration

of the trigger, the encryption operation takes td = 34.89 µsec for optimization level

0, vs td = 32.18 µsec for optimization level 2. Since execution time is decreased, the

compiler does find some optimizations, but it is not clear what the optimizations are.

One way to visualize the difference between the two optimization levels is to display

the magnitude of the correlation with the 32-bit HW model for each output of the

T-Box, using a technique similar to Cobb [30]. Oscilloscope traces with fDs = 250

MSa/sec (no bandpass filtering) are used to create the temporal leakage maps for

each optimization level shown in Figure 7.13.

182

Samples

IV
 C

a
lc

u
la

ti
o

n

Column 1

Column 2

Column 3

Column 4

16
11
 6
 1
 4
15
10
 5
 8
 3
14
 9
12
 7
 2
13

Byte____T−Box_____

200 400 600 800 1000 1200 1400 1600 1800 2000

T3(4,4)
T2(3,3)
T1(2,2)
T0(1,1)
T3(4,1)
T2(3,4)
T1(2,3)
T0(1,2)
T3(4,2)
T2(3,1)
T1(2,4)
T0(1,3)
T3(4,3)
T2(3,2)
T1(2,1)
T0(1,4)

0.1

0.2

0.3

0.4

(a) Optimization level 2

Samples

IV
 C

a
lc

u
la

ti
o

n

Column 1

Column 2

Column 3

Column 4

16
11
 6
 1
 4
15
10
 5
 8
 3
14
 9
12
 7
 2
13

Byte____T−Box_____

200 400 600 800 1000 1200 1400 1600 1800 2000

T3(4,4)
T2(3,3)
T1(2,2)
T0(1,1)
T3(4,1)
T2(3,4)
T1(2,3)
T0(1,2)
T3(4,2)
T2(3,1)
T1(2,4)
T0(1,3)
T3(4,3)
T2(3,2)
T1(2,1)
T0(1,4)

0.1

0.2

0.3

0.4

0.5

(b) Optimization level 0

Figure 7.13 Comparison of the temporal leakage map for (a) optimization level
2 and (b) optimization level 0. The order the T-Box operations are
performed is different depending on the optimization level used by the
compiler.

While the columns of the state matrix are processed in order (1-4) for both

optimization levels, the order in which the T-Box operations are performed changes

for each optimization level, and possibly between columns. The T-Box used and the

row and column of the state matrix are indicated on the left y-axis of Figure 7.13.

The byte number that corresponds with the state matrix location is list on the right

y-axis. The correlation plots for the T-Box operations are arranged in approximate

temporal order for optimization level 2 in Figure 7.13(a) and the same order is used

for optimization level 0 in Figure 7.13(b) to show that the order in which the T-

Box operations are performed changes. While this does not fully explain why the

183

bytes leak differently, it clearly shows the order intermediate values are calculated is

affected by the compiler optimization level used.

7.7 Conclusion and Future Work

SDRs can effectively attack a 32-bit microcontroller running AES-128. Using

sampling rates as low as fDs = 2 MSa/s, both the USRP2 and RTL-SDR, a SDR

based on a $20 USD digital TV tuner, can capture EM emissions from a ARM

Cortex-M4F.

Although a low number of samples are collected per encryption operation, the

low sampling rate allows RF emissions from an encryption device to be collected

continuously. Post-processing extracts encryption operations from a collected EM

emission for use in a CEMA attack. This no-trigger, no-profiling approach enables at-

tacks on an unmodified device without external trigger generation hardware. Despite

sampling at rates well below the Nyquist rate, the encryption key can be successfully

extracted.

Attacks using both SDR and oscilloscope collected traces all found key bytes

leak at different frequencies. The correlation-based frequency-dependent leakage

mapping technique identified filter parameters which increased the confidence of the

CEMA attack and identified frequencies to target with the SDRs. Failing to identify

the correct key byte despite high confidence is an acknowledged limitation of the

confidence metric when a large number of traces is used in the attack. Despite this

limitation, confidence is favored over success rate or guessing entropy for an SDR-

based attack because it can be calculated with a small set of test traces, allowing an

attacker to determine which bytes likely leak for each center frequency.

To attack a device with an SDR, collections should be made with multiple

center frequencies near the clock frequency or divisors of the clock frequency. Using

the highest sampling rate possible improves results provided signals on the device

such as clocks and signals with variable frequencies can be avoided. SDR spectrum

184

visualization software can identify frequencies to avoid. To determine the correct

128-bit AES key, an attacker should collect at multiple center frequencies to identify

the key bytes that leak strongly for each frequency interval or collect significantly

more traces for a single frequency interval.

185

8. Conclusion

This chapter summarizes the activities and unique contributions of this doctoral

research and makes several recommendations for future research.

8.1 Research Summary

Over the last 15 years many side-channel analysis (SCA) techniques have been

developed that work very well in academic laboratory environments. When apply-

ing these techniques in operational environments, an attacker may not be able to

take actions to improve the quality of the collected traces or have access to high

quality collection equipment. This dissertation examined ways to 1) eliminate some

assumptions commonly made when performing SCA attacks in the laboratory, and

2) compensate for incomplete assumptions made by others. Ultimately, even if the

techniques developed here reduce side-channel attack effectiveness, they remain valu-

able in so far as the attack can be performed without modifying the device or by

using lower cost equipment, thereby improving SCA utility.

The research focused on three primary areas of investigation:

1. An algebraic cryptanalysis-based attack on the AES-128 key schedule,

2. Cross-device template attacks, and

3. Introduction of Software Defined Radios (SDRs) for differential SCA.

Specific results and contributions in each of these areas are summarized below.

8.1.1 Algebraic Cryptanalysis. The Key Schedule Redundancy Attack

(KSRA) developed here reconciles uncertainty in the classification stage of template

attacks using a SAT solver [82]. A system of equations for the AES-128 key schedule

was generated and constrained based on the results of template attacks to create a

new unknown-plaintext, unknown-ciphertext attack. By attacking the key schedule,

186

traces from multiple encryption operations can be used without knowledge of the

plaintext.

Previous work in algebraic side-channel analysis used a fixed number of guesses

for each targeted intermediate value [81, 89, 102, 137], but the KSRA uses a novel

thresholding technique to gradually increase the maximum number of guesses per

key byte [82]. This approach prevents key byte guesses with low probabilities from

being included when one or more guesses are assigned a high probability by the

classifier, reducing solve time and the probability of identifying an incorrect key

schedule.

The strength of the attack comes from the redundancy of the key schedule,

allowing 40 key schedule-bytes to be attacked rather than just 16 key-bytes normally

targeted in a SubBytes-based attack and from the ability to used traces from multiple

encryption operations. Since the redundancy exists, the SAT solver can be used to

identify working key schedules that meet the constraints. Even if the key schedule

can only be observed once, the KSRA yields much better performance (100% of 500

trials) than a SubBytes attack (16.8% of 500 trials) [82].

Incorporating multiple traces into the attack phase dramatically improves at-

tack performance for poor quality traces. For traces collected at h = 5 mm using only

one trace, the key schedule was not recovered in any of the 500 attempts. When 50

traces were used, the Satisfiability solver identified the correct key schedule in 97.6%

of the trials [82].

The ability to perform the KSRA without knowledge of the plaintext or cipher-

text, and its robust performance using poor quality traces, may enable an attacker

without placing a near-field probe directly on the device and/or matching each col-

lected trace with its corresponding plaintext or ciphertext to be successful.

Although Renauld et al. note that up to 200 Hamming weights (HWs) can be

recovered from a single power trace from one encryption operation, they do not use

187

actual data to perform their attack [102]. All their data is simulated, and although

they may randomly determine which intermediate values are included, all HWs used

to constrain the SAT solver result are correct. The Pseudo-Boolean optimization

approaches by Oren et al. both use simulated data as well [89,91]. The KSRA is the

first known algebraic side-channel attack demonstrated using actual collected data,

and the first side-channel attack method to demonstrate robustness by intentionally

degrading the quality of the collected traces [82].

8.1.2 Cross-Device Template Attacks. The assumption that side-channel

emissions from two similar devices produce similar emissions, as made by Chari et

al. [24] and adopted by others [3,9,53,92,102,122] is challenged here for the first time.

It was shown that while template attacks based on mean and covariance matrices

work well for attacking the same device on which the training traces are collected,

the slight differences in emissions from similar devices may be sufficient to cause a

template attack to fail [83]. The process of identifying distinguishing features and

the distribution of training and test data at each of the distinguishing features were

analyzed to identify differences between devices.

The simple technique of mapping both the test data and the training data to

the standard normal, or zero-mean and unit-variance normalization (MVN), was de-

veloped here to improve the effectiveness of cross-device template attacks [83]. Same

part number attacks are improved from 65.1% to 100%, and attacks against similar

devices in the same device family are also improved [83]. For the PIC microcon-

trollers, only a small number of traces (approximately 15) are needed to estimate

the mean and variance for a cross-device attack. Although the MVN technique

was shown to reduce the effectiveness of same-device attacks using a small number

of traces, an attacker can always perform a standard template attack since both

attacks are based on the same collected data.

188

The distinguishing features selected may be different from device to device.

While the goal for a same-device attack is to reduce the number of distinguishing

features to make the templates easier to create, increasing the number of distinguish-

ing features improves the cross-device attack success rate [83]. A master template

can be created for a family of devices by combining the distinguishing features for

each type of device and building templates from a combined training set. Training

data from each training device is pre-processed with the MVN technique before be-

ing combined into a larger training set. While the resulting attack did not perfectly

identify every byte for all 40 PIC devices, it provided the best performance of a

single set of templates, achieving an average byte extraction success rate of 99.95%.

The MVN technique was also shown to effectively compensate for changes in

probe placement on larger more complex devices such as the ARM Cortex-M4F.

Combined with the negative MVN technique which compensates for negatively-

correlated EM emissions, the MVN technique increases the number of locations above

the device where template attack can be performed successfully for all 16 bytes by

226% [83]. Calculating the power spectral density (PSD) variance was found to be

a simple, yet powerful, way to identify signal frequency components that change in

power between collected traces and have an adverse effect on cross-device template

attacks. Using notch filtering to attenuate these frequencies in both training and test

traces reduced the average number of traces needed to perform a successful template

attack by 85.8% [83].

The ability to use a different device for training, rather than the device being

attacked is one assumed benefit of template attacks. This research identified ways

to increase the effectiveness of template attacks when training and test data are

collected on different devices. Ultimately, the original assumption that training and

target devices have sufficiently similar side-channel emissions in [24] is validated with

an added caveat that device-dependent differences in sample means and variances

must be compensated for before performing the template attack [85]. Additionally,

189

if signals unrelated to the encryption operation being performed can be identified,

notch filtering to reduce the contribution of theses signals may improve the effective-

ness of the template attack [83].

8.1.3 Software Defined Radios (SDR). SDRs can be used to effectively

attack a 32-bit microcontroller running AES-128 [84]. Two SDRs were used to

passively collect traces from a ARM Cortex-M4F at sampling rates as low as fDs = 2

MSa/s. The RTL-SDR is based on a commercial digital TV tuner that can be

purchased for $20 USD. This research is the first known use of SDRs for differential

side-channel analysis.

Due to their limited sampling frequencies, a low number of samples are collected

for each encryption operation using an SDR. The low sampling rates allow the traces

to be collected continuously and eliminate the need for a trigger. This no-trigger,

no-profiling approach allows for attacks to be performed on an unmodified device

without external trigger generation hardware and greatly reduces the equipment

needed to perform a side-channel attack [84].

Attacks using both SDR and oscilloscope collected traces found key-byte leak-

age at different frequencies. Since previous research had focused on a single key

byte [13,14], the research here is the first to identify this phenomenon [84]. Key-byte

leakage can also be changed by reprogramming the target device using a different

optimization level.

To attack a device with an SDR, traces should be collected at multiple center

frequencies and with the highest sampling rate possible without loosing samples due

to overruns [84]. The center frequencies and bandwidths must be chosen carefully

to avoid clock frequencies (including jitter) and signals on the device that vary in

frequency. These frequencies can easily be identified using SDR spectrum visual-

ization software or the variance of trace PSD technique for traces collected with an

oscilloscope [83].

190

Although more traces are required to perform an attack with SDR-collected

traces than with oscilloscope-collected traces, the fact SDR traces can be collected

without modifying the device or additional hardware makes SDR-based collection a

powerful tool for operational side-channel attacks. However, since oscilloscope based

attacks are more effective, if an oscilloscope is available and the cryptographic device

can be modified without losing the key being attacked, it should be [84].

8.2 Recommendations for Future Research

8.2.1 Algebraic Cryptanalysis. Since the KSRA uses 40 key schedule byte

values when only 16 bytes are required, the attack would be possible using fewer

intermediate values. It may be possible to identify which intermediate values to

include based on the posterior probabilities for each attacked byte. Since the correct

key schedule can not be found unless the correct byte value is included in the list

of possible values for each targeted byte, eliminating a key-schedule-byte from the

list of constraints if it has a larger number of possible byte values than other key-

schedule-bytes may improve attack performance and reduce solving time.

Optimizer-based approaches that incorporate the posterior probabilities for

each targeted intermediate value into a goal function, have been demonstrated to be

more tolerant of errors than SAT-solver based approaches using simulated data [89].

However, using an optimizer rather than a SAT solver dramatically increases the

solve time and memory requirements. A comparison of an optimizer-based approach,

and a SAT solver-based approach with constraints defined using the thresholding

technique developed for KRSA should be performed.

Finally, a more powerful attack might be created by combining SDR-based

trace collection, MVN technique-based template attacks and KSRA. Since the KSRA

is a no-plaintext/no-ciphertext attack an SDR could be used to collect traces from

the test device without needing to identify the plaintext or ciphertext. Template

attacks could be performed using training and test data pre-processed with the

191

MVN technique. This attack could be performed without device modification and

would likely require fewer traces than the correlation-based electro-magnetic analysis

(CEMA) based attack in Chapter 7. However, due to the poor quality of individual

traces when collecting with the SDR, this attack would likely only be successful if the

key schedule is calculated on the fly with each encryption operation. These attack

methodologies can not be combined for every attack and their utility depends on the

implementation being attacked.

8.2.2 Cross-Device Template Attacks. As microprocessors and Field Pro-

grammable Gate Arrays (FPGAs) continue to become more complex, and cross-

device template attacks are used to attack these devices, additional steps may be

required to address differences between devices. As device features size and power

consumption is reduced, probe placement will be more important and there may be

greater differences in the leakage distribution for each type of device. While tech-

niques developed in this dissertation will continue to be valuable, additional device

specific techniques may need to be developed.

It was demonstrated in this research that a single set of templates can be

created to attack multiple devices with minor differences in memory and on-board

peripherals. This set of templates was created by identifying distinguishing features

from each device before performing the MVN technique on training data from each

training device to form a combined training set. Further research is required to deter-

mine the most effective method of identifying distinguishing features from multiple

training devices. Additional methods for transforming and combining data should

also be explored.

The MVN technique may also be able to compensate for differences in the oper-

ating conditions of the device. For example, it was shown the power consumption of

a SASEBO-GII FPGA platform changes as the ambient temperature changes. This

is addressed using a stochastic approach that compares the differences in consecutive

192

power traces in place of the power traces themselves in [56], but it may be possible to

use the MVN technique to pre-process groups of data collected during short periods

of time when the ambient temperature is relatively constant. The processed groups

would be recombined into a new training set, and the test set would be similarly

processed.

This research found that notch-filtering improved the performance of template

attacks but reduced the effectiveness of CEMA attacks. Conversely, bandpass filter-

ing was found to improve CEMA attacks, but was not shown to improve template

attacks. Further research is needed to verify this phenomenon is true for other

devices and understand why each type of attack is enhanced or degraded by each

filtering method, and identify additional pre-processing methods to improve SCA

attack performance.

8.2.3 Software Defined Radios. Further research is needed to understand

why key-bytes leak at different frequencies, and how changing the compiler opti-

mization level changes which key bytes leak at each frequency. Speed optimization

may have made the implementation easier to attack. If it can be determined why

compiler-dependent byte frequency leakage differences exist, it may be possible to

program the device in assembly to reduce the devices vulnerability to side-channel at-

tacks. Once well understood, it may be possible to design a compiler that minimizes

leakage from a device. Unfortunately, leakage may change from device-to-device,

reducing the utility of such a compiler.

One way to enhance the attack using the USRP2 is to collect at multiple

frequencies simultaneously. The USRP2 can collect at two center frequencies with

the same sampling rate. The data from both center frequencies could be used in

the attack, or one frequency could be used to identify and align the encryption

operations collected at another center frequency. This would allow attacks to be

performed for center frequencies where the encryption operations are not easy to

193

identify. Additionally, if the same external clock is used on both the cryptographic

device and the SDR, attacks with a center frequency equal to the clock frequency of

the cryptographic device may be more effective.

Given the capabilities of modern FPGAs, it may be possible to create a sin-

gle device that performs all aspects of a side-channel attack. Many FPGAs include

analog-to-digital converters which can digitize the side-channel information, and per-

form demodulation. The FPGA can be used to identify traces in the collected side-

channel and perform a CEMA-based attack. The device could read ciphertext from

the a network connection to simulate encrypted packets being captured on a net-

work. If the attacker knows which samples are highly correlated with the targeted

intermediate value, only these samples need to be retained for each trace. Although

this would require a profiling step, the amount of memory required to perform the

attack would be dramatically reduced.

194

Appendix A. Constructing and Solving Systems of Equations

This appendix provides a brief introduction to Conjunctive Normal Form (CNF),

Satisfiability (SAT) solvers, and how to present a system of equations written in

CNF to a SAT solver.

A.1 Conjunctive Normal Form

To use a SAT solver to determine a solution to a set of equations, the problem

must be transformed into CNF. A brief introduction to CNF, based on [127], is

presented below.

A Boolean variable x can take on two values, ‘1’ for true, and ‘0’ for false. The

basic Boolean functions are negation (NOT), conjunction (AND) and disjunction

(OR). The Boolean negation function is,

x̄ =

1 if x is false,

0 otherwise.

A literal is a Boolean variable or its negation. A conjunction of a collection of literals

x1,...,xn is,

x1 ∧ x2 ∧ · · · ∧ xn =

1 if all of the xi are true,

0 otherwise.

A clause is a disjunction of a collection of literals. For example a disjunction of

x1,...,xn is,

x1 ∨ x2 ∨ · · · ∨ xn =

1 if any of the xi are true,

0 otherwise.

195

A Boolean function, f , is said to be in conjunctive normal form (CNF) if it is written

as,

f(x1, ..., xn) =
m∧
k=1

Ck

There each Ck is a conjunction of literals. The following function is in CNF,

f(x1, ..., xn) = (x1 ∨ x2 ∨ x̄5) ∧ (x̄3 ∨ x6) ∧ (x4 ∨ x̄6).

A truth assignment assigns values to the variable of the Boolean function such

that x = (x1, ...xn) ∈ {0, 1}n . If the set of variables satisfies the function such that

f(x) = 1, the set {x ∈ {0, 1}n : f(x) = 1} is a satisfying truth assignment. If a set

of variable assignment exist such that f(x) = 1, then f is satisfiable.

A.2 SAT Solvers

SAT solvers attempt to answer the question, “for a given Boolean function

f(x1, ..., xn) =
∧m
k=1Ck, is f satisfiable?”

SAT solvers use an encoding scheme with the alphabet Σ = {0, 1,∨,∧,¬}.

Each variable xi is denoted by the binary representation of i and x̄ is written as ¬x.

The CNF Boolean function written as

f(x1, ..., x6) = (x1 ∨ x2 ∨ x̄5) ∧ (x̄3 ∨ x6) ∧ (x4 ∨ x̄6)

would be encoded using Σ as

1 ∨ 10 ∨ ¬101 ∧ ¬011 ∨ 110 ∧ 100 ∨ ¬110.

A.3 Converting MQ to SAT

Although a number of articles outline the steps to represent a system of multi-

variate polynomials as a SAT problem, the best step-by-step process is found in [11].

196

The following section is based on Bard’s technique and includes many of his exam-

ples.

A.3.1 Step 1: Convert the Polynomial System to a Linear System. Every

polynomial is a sum of linear and higher degree terms. Quadratic and higher degree

terms must be rewritten. For example, the logical expression

(w ∨ a)(x ∨ a)(y ∨ a)(z ∨ a)(a ∨ w ∨ x ∨ y ∨ z)

can we rewritten as a ⇐⇒ (w ∧ x ∧ y ∧ z), or in GF(2) as a = wxyz [11]. A

similar equation of the form a = w1w2 . . . wr, for any r > 1 can be written for any

monomial of degree d > 1. A dummy variable represents each monomial with degree

d > 1. The number of clauses required to represent the monomial is d + 1. If

the monomial appears more than once, the dummy variable should be used instead

of added additional equations. Care must be taken to avoid encoding the same

monomial twice.

CNF does not have constants. A work around to include a 1 or 0 in a CNF

clause is to add a separate clause consisting of T or equivalently (T ∨ T ∨ . . . ∨ T).

Since this statement must be true in any satisfying solution, T can be used in place

of a 1 and T can be used in place of 0. As a results, the constant term 0 or zero can

be treated as a variable.

A.3.2 Step 2: Linear System to CNF Expression. Each polynomial is now

a sum of variables, which can be represented using logical-XORs. For example, the

sum (a⊕ b⊕ c⊕ d = 0) is equivalent to

(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)

(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)(a ∨ b ∨ c ∨ d)
(A.1)

197

The length of the CNF equation grows exponentially with the number of variables

in the XOR statements. The statement must equal one whenever there is an even

number of ones. The CNF must include every arrangement of variables that can

produce a zero. XORs statements with many variables require long CNF clauses

which are more difficult for SAT solvers to solve.

For a sum of length l, where 2bl/2c = j, this requires

(
l

0

)
+

(
l

2

)
+

(
l

4

)
+ . . .+

(
l

j

)
= 2l−1 (A.2)

clauses.

To prevent this exponential increase in clauses, the XOR sum can be cut into

subsums of length c. This is referred to as the cutting number. For example, the

equation x1 ⊕ x2 ⊕ . . .⊕ xl = 0 can be written as the set of equations

x1 ⊕ x2 ⊕ x3 ⊕ yl = 0

y1 ⊕ x6 ⊕ x7 ⊕ y2 = 0

...
...
...

xi ⊕ x4i+2 ⊕ x4i+3 ⊕ yi+1 = 0

...
...
...

xh ⊕ xl−2 ⊕ xl−1 ⊕ yl = 0

if l = 2(mod c). If l 6= 2(mod c) then the final sum is shorter than l. Since

multiple shorter XOR statements produce fewer CNF clauses, this is a more efficient

way to represent the original XOR. This method produced h + 1 subsums, where

h = dl/ce − 2. There will be h + 1 subsums and each will require 2c−1 clauses of

length c each as shown in (A.2).

198

A.3.3 Step 3: DIMACS CNF Form. The Center for Discrete Mathematics

& Theoretical Computer Science (DIMACS) at Rutgers University proposed a stan-

dard graph format in 1993 for satisfiability problems in CNF. CNF file format is an

ASCII file with the following structure.

• Comments are indicated by making the first character of each comment line

a lower case letter ‘c’. Comments are typically placed at the beginning of the

file, but are allowed through the file.

• The “problem” line should be placed after comment lines at the beginning of

the file. This line begins with ‘p’ followed by the problem type. For CNF files,

‘cnf’ should be followed by the number of variables and the number of clauses.

• The clauses appear immediately after the problem line and make up the re-

mainder of the file. The variables are assumed to be numbered 1 to n. Each

clause is a sequence of numbers, separated by a space, tab or a new line char-

acter. The non-negated variable is represented by i and the negated variable

is represented by -i. Each clause is terminated by the value 0.

The CNF equation in (A.1) can be written in DIMACS CNF file format as,

c A XOR B XOR C XOR D = 0

c 4 variables, 8 clauses

p cnf 4 8

1 2 3 4 0

1 2 -3 -4 0

1 -2 3 -4 0

1 -2 -3 4 0

-1 2 3 -4 0

-1 2 -3 4 0

-1 -2 3 4 0

-1 -2 -3 -4 0

199

A.4 Methods for Solving Non-linear Multivariate Systems of Equations

A number of methods have been demonstrated or proposed for solving non-

linear multivariate systems of equations. One applies a technique from computational

algebra called Gröbner basis algorithms. Gröbner basis can be used to triangulate

a polynomial system and can be found using the Buchberger Algorithm, which is

an exact algorithm. More efficient F4 or F5 algorithms can also find the Gröbner

basis [44], [45]. A number of mathematical tools use Gröbner basis techniques to

solve systems of equations, but for complex problems they crash due to memory

requirements. MAGMA and SINGULAR tools are recommended for solving systems

of polynomial equations [11].

The eXtended Linearization (XL) algorithm developed by Courtois builds on

the concept of relinearization [112]. Relinearization takes a given system of linear

equations and adds non-linear equations which capture the fact that these vari-

ables are related rather than independent, making the system of equations easier

to solve. XL is a combination of bounded degree Gröbner basis and relinearization

techniques [35].

Courtois recommends that Gröbner basis methods should be avoided because

they expand the system of equations to a larger degree (e.g., 4 or 5) to solve them,

resulting in time and memory-consuming expansion. He recommends using linear

algebra and known elimination techniques to take advantage of and, if possible,

preserve sparsity [37]. The ElimLin function incorporates this philosophy.

The ElimLin function, also developed by Courtois [37], is another algebraic

attack. Starting with an initial system (i.e., degree 2 or 3), the algorithm looks

for linear equations in the linear span of the equations. If equations in the span of

equations are identified, several variables can be eliminated using simple substitution

by a linear expression. When new linear equations are found they are added to

the system. The process is repeated until no more linear equations are found. The

variables that appear in the smallest number of equations are eliminated first, helping

200

to preserve sparsity, while key variables are eliminated last. As a results, ElimLin is

able to solve systems were Gröbner basis techniques fail due to lack of memory.

Courtois and Pieprzyk introduced the idea of describing ciphers with S-boxes

as an over-defined system of algebraic equations. They found the quadratic equations

for AES are both sparse and over-defined and proposed a new method for solving

over-defined systems of equations called eXtended Sparse Linearization (XSL), which

takes advantage of the sparsity and structure of the system [36] . XSL is designed to

work with ciphers that have XOR, S-Box and Linear diffusion layers. After Courtois

and Bard published their results in [36], the efficiency of an XSL-attack on AES was

challenged in [26].

Raddum and Semaev present an alternative approach [96]. Rather than rep-

resent the system equations as polynomials, the equations are represented as lists

of bit-strings. Each string is a value assignment of a variable that satisfies the

equation. Raddium and Semaev’s algorithm is more efficient than classical methods

which represent the system as polynomials [96].

Murphy and Robshaw describe the essential algebraic structure within AES

using a new block cipher [86]. They introduce the Big Encryption System (BES), that

uses only simple algebraic operations in GF(28) and show that AES, which performs

operations in GF(2)8, can be implemented as a form of BES with a restricted message

and key space. BES uses very simple operations in GF(28), and as a result AES can

be described without operations in GF(2)8. A round of AES can be described in

BES as an inversion, a matrix multiplication, and a key addition in GF(28). Thus,

AES can be described as a “very simple” and extremely spare system of multivariate

quadratic equations over GF(28). Using GF(28) to describe AES S-Box equations

has the benefit of much sparser systems of equations with a reduced number of free

terms. However, working in a larger field may increase the complexity of the solving

algorithm [18]. Note that this embedding technique is not applicable to all block

ciphers, but takes advantage of the particular AES algebraic structure.

201

Appendix B. Writing AES-128 for a SAT Solver

Implementing an AES-128 SAT solver tool from a system of equations required a

number of steps, which are performed by different programs. The system of equa-

tions generated by the SR polynomial generator are in algebraic normal form (ANF).

A ANF to CNF converter is used to convert the system of equations to conjunctive

normal form (CNF). Constraints for known values can be added by including addi-

tional polynomials in the system, by adding additional lines to the DIMACS code,

or by using Limboole. The DIMACS file with constraints is the input to the SAT

solver. Finally, the output of the SAT solver must be converted back to the original

variables. These steps are shown in Figure B.1 and are explained in the following

sections.

B.1 SR Polynomial Generator

Small scale variants of the AES were defined to inherit the design features

of AES and to provide a framework for comparing cryptographic methods [25]. In

addition to implementing the small scale variants described in [25] and [27], a full

scale implementation of AES-128 can be constructed. The SR generator is based

in Sage Mathematical Software, a free and open source software tool created with

the goal of being an “open source alternative to Magma, Maple, Mathematica, and

MATLAB” [124].

Since the SR generator is designed to implement all small scale versions spec-

ified in [25] and [27], various parameters must be set. The size of the variant is

specified using sr = mq.SR(n,r,c,e) where n is the number of rounds, r is the

number of rows in the state array, c is the number of columns and e is the exponent

of the finite extension field. For the Rijndael polynomial used in AES-128: sr =

mq.SR(10,4,4,8).

202

Figure B.1 Data flow from the system of polynomial produced
by the SR polynomial generator to a results in
terms of the original variables.

To use the anf2cnf converter, the output of the SR generator must be a system

of equations specified over a Boolean Polynomial Ring. The polybori=True option

tells the SR generator to used the PolyBoRi package [21] included in Sage to cre-

ate a system of polynomials over the boolean ring defined by SR. The star=True

and gf2=True options tell the SR generator to use the AES key schedule and omit the

MixColumns transformation during round ten. Finally, the option correct only=True

specifies that only inversion polynomials that are correct for all SubBytes inputs

should be used. If this option is not specified, plaintext/key pairs that result in a 00

as the input to any SubBytes transformation will result in an inconsistent system of

equations.

The following options specify the correct SR generator for generating a system

of equation in GF(2) for AES-128:

sr = mq.SR(10,4,4,8,star=True,gf2=True,polybori=True, ...

correct_only = True)

203

For a full AES-128 encryption operation this system included 7288 polynomials

in algebraic normal form (ANF) and 4544 variables. The variables are specified at

the bit level for the inputs to each of AES-128 round, the output of each SubBytes

inversion and each bit of each round key. Variables were added to the system to

represent the plaintext and ciphertext. The polynomials define the relationship

between each round, the inversion in SubBytes, and the key schedule. As a result,

the system of equations fully defines the relationship between each of the variables

defined by the AES-128 block cipher. If the values of enough of the variables are

known, the key can be determined. The value of the some variables may be known

from plaintext/ciphertext pairs, ciphertext and intermediate values found using side-

channel analysis.

B.1.1 Variable Names. The SR generator uses the following naming con-

vention for intermediate variables. Inversion refers to the inversion step in the Sub-

Bytes operation. Depending how the SubBytes transformation is implemented in a

device, this intermediate value may not be calculated.

• ki,j,l subkey: round i, word j, bit l

• wi,j,l inversion input: round i, word j, bit l

• xi,j,l inversion output: round i, word j, bit l

• Pj,l plaintext: word j, bit l

• Cj,l ciphertext: word j, bit l

For AES-128 the round, word and bit values are always represented as two-

character-wide numbers. For example, the variable name for the starting round value

for round 1, work 2, bit 10 is written as w010210. Note that, although they are not

part of a round, both the plaintext and ciphertext use 00 as the round number.

204

B.2 ANF to CNF Converter

The ANF to CNF converter (anf2cnf) is written for Sage and requires the

system of polynomials to be written as a list of Boolean Polynomials, a specific class

in Sage. The SR polynomial generator creates a list of Boolean Polynomials over

GF(2) if the option polybri=True is used. When creating an instance using the

ANFSatSolver() class, the Boolean Ring over which the Boolean Polynomials are

defined in Sage must be specified. If sr is the name of the SR generator instance,

sr.R refers to the Boolean Ring used to create the boolean polynomials. An instance

of the anf2cnf converter called anf2cnf can be created in Sage by typing anf2cnf

= ANF2CNF(sr.R). If F is the system of equations produced by the SR polynomial

generator, anf2cnf.cnf(F) will print the DIMACS to the screen.

When a polynomial is in conjunctive normal form each formula is a conjunction

of clauses and each clause is a disjunction of literals. In DIMACS format, each line

represents a clause and each literal is represented as an integer. A disjunction is

represented as multiple integers on the same line. For the DIMACS to be satisfiable,

a set of variable assignments must be found to make each line equal to 1.

B.2.1 Specifying Known Values. The anf2cnf converter assigns integers to

variables in the order they are encountered when parsing the system of polynomi-

als. To allow the integers to be mapped back to the original variables, the anf2cnf

converter builds a dictionary mapping the variable names to the assigned integer.

Constraints for known values can be added by including additional polynomials in

the system, by adding additional lines to the DIMACS code, or by using Limboole.

If the system of equations is augmented by adding polynomials to the system which

represent the known values, the anf2cnf converter will automatically created DI-

MACS entries for the known values. Constraints can also be added to the DIMACS

file created by the anf2cnf converter by generating (a) DIMACS clause(s) for each

known value(s). To write DIMACS constraints, the correct integer representation

205

of the variable must be found using the variable name to integer mapping. This

dictionary is also required to use the equations for the constraints generated using

Limboole.

B.2.1.1 Limboole. Limboole, a simple Boolean calculator, reads a

Boolean formula, checks if it is valid and converts it to a CNF formula in DIMACS

format [60]. A number of operators are allowed in the Limboole syntax, including &

(and), | (or), and not (!). The order of operations can be specified using parenthesis.

Suppose through SCA it is determined that Hamming Weight of the byte 0 for

key round 1 is equal to 1. Although, the values of individual bits are not known,

the relationship between the 8 bits in the byte is known. Only one of the bits can

be equal to 1, and all others must be zero. In decimal the possible values of the

byte are 1, 2, 4, 8, 16, 32, 64, and 128. If the byte is represented as a,b,c,d,e,f,g, the

Limboole input is found in Code Listing B.1.

Code Listing B.1 Limboole Code

1 ! ((a&!b&!c&!d&!e&! f &!g&!h) | (! a&b&!c&!d&!e&! f &!g&!h) |

2 (! a&!b&c&!d&!e&! f &!g&!h) | (! a&!b&!c&d&!e&! f &!g&!h) |

3 (! a&!b&!c&!d&e&! f &!g&!h) | (! a&!b&!c&!d&!e&f &!g&!h) |

4 (! a&!b&!c&!d&!e&! f&g&!h) | (! a&!b&!c&!d&!e&! f &!g&h))

Although there are only 8 variables in the Limboole input, Limboole produces

a DIMACS file with 65 variables and 163 clauses. Many additional intermediate

variables are introduced by the conversion process. Like the anf2cnf converter, Lim-

boole assigns integers to the original and intermediate variables created during the

conversion from Boolean formula into DIMACS. To make the two DIMACS files

compatible, the Limboole DIMACS file must use the same integers to represent the

original variables. A Python script was written to translate the Limboole DIMACS

integers into the integers used by the anf2cnf converter. Using the Limboole variable

assignments listed in the comments of the Limboole DIMACS code, and the dictio-

206

nary created by the anf2cnf converter, Limboole integers can be substitute with the

anf2cnf integer. Any integers from the Limboole DIMACS not associated with one

of the original variables are intermediate values, and are assigned to unused integers

in the anf2cnf DIMACS file.

B.2.2 SAT Solver. The SAT solver chosen for this research is CryptoMin-

iSat2 [118]. CryptoMiniSat2 is optimized for working with cryptographic instances

allowing for XOR clauses to be reconstructed from the DIMACS input. XOR clauses

are treated differently allowing the solver to handle them faster in most scenarios.

Since SAT solvers use a standard input format, another SAT solver could easily be

substituted instead of CryptoMiniSat2.

B.3 Example Code

B.3.1 Full System of Equations. The code listed in Code Listing B.2

creates a system of polynomials for the AES-128 key with symbolic plaintext and

ciphertext variables. Additional equations for known values are imported from a

file using the ImportKnownValuesFromFile() function list in Code Listing B.5 and

the additional polynomials are created by the KnownValuesPolynomials() function

and added to the system. Finally, the combined system of equations is converted to

DIMACS format. This code is based on the instructions at [7] and contained in the

anf2cnf converter source code.

Code Listing B.2 fullsystem.py

1 output_filename = ’DIMACS.cnf’

2 # A symbolic representation for the plaintext (P) and the

3 # cipher text to create equations for fully symbolic AES

4 sr = mq.SR(10,4,4,8,star=True ,gf2=True ,polybori=True , correct_only = True)

5 R = sr.R

6 vn = sr.varstrs("P", 0, 16, 8) + R.variable_names () + sr.varstrs("C", 0, 16, 8)

7 R = BooleanPolynomialRing(len(vn),vn)

8 sr.R = R

9 C = sr.vars("C" ,0);

10 P = sr.vars("P" ,0);

207

11 # Generate system of equations (F is the system of equations)

12 F,s = sr.polynomial_system(P=P,C=C);

13 data_filename = ’known_values_format.txt’

14 known_values , actual_key = ImportKnownValuesFromFile(data_filename)

15 KnownValuePolys = KnownValuePolynomials(known_values , sr)

16 # Add the known value polynomials to the system

17 for each_polynomial in KnownValuePolys:

18 F.append(each_polynomial)

19 print(’With Known Values: ’ + str(F))

20 # Find and save the DIMACS

21 print(’\nRunning ANF to CNF ...’)

22 anf2cnf = ANFSatSolver(sr.R)

23 o = open(output_filename ,’w’)

24 o.write(anf2cnf.cnf(F)) # DIMACS is output to file

25 o.close()

B.3.2 Key Schedule Only System of Equations. The code listed in Code

Listing B.3 creates a system of polynomials for the AES-128 key schedule, adds

additional equations for known values using the ImportKnownValuesFromFile()

function in Code Listing B.5, creates the polynomials from the known values using

KnownValuePolynomials() function in Code List B.7 and converts the combined

system of equations into DIMACS format.

Code Listing B.3 keyschsystem.py

1 data_filename = "data.txt"

2 sr = mq.SR(10,4,4,8,star=True ,gf2=True ,polybori=True , correct_only = True , ←↩

AES_mode = True)

3 full_system = []

4 for rnd_idx in range (11):

5 key_polys += sr.key_schedule_polynomials(rnd_idx)

6 known_values , actual_key = ImportKnownValuesFromFile(data_filename , ←↩

key_values_only = True)

7 KnownValuePolys = KnownValuePolynomials(known_values , sr)

8 full_system = key_polys + KnownValuePolys

9 anf2cnf = ANFSatSolver(sr.R)

10 o = open(inputfile ,’w’)

11 o.write(anf2cnf.cnf(full_system)) # DIMACS is written to file

12 o.close()

208

B.3.3 Known Values Format. To simplify testing, the data import format

show in Code Listing B.5 was created. All known values are represented by hexadec-

imal numbers and unknown values are listed as ‘X’. This format is parsed using the

ImportKnownValuesFromFile() function in Code Listing B.5.

Code Listing B.4 knownvaluesformat.sage

1 # Note: actual_key is not used as an input to the SAT solver

2 # for testing you can specify the actual key in the R00_k_sch

3

4 actual_key = D810B8F5649A78C08D6E15A80EAE2398

5

6 plaintext = dec0dedfab1edec0dedfab1edec0dedf

7 R00_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

8 R01_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

9 R01_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXda6cb0ae

10 R02_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

11 R02_k_sch = XXXXXXXXXXXXXXXXXXXXXXXX38d3bf0f

12 R03_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

13 R03_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXe1c84037

14 R04_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

15 R04_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXeea7b960

16 R05_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

17 R05_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

18 R06_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

19 R06_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

20 R07_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

21 R07_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

22 R08_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

23 R08_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

24 R09_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

25 R09_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

26 R10_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

27 R10_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

28 ciphertext = 07881 c0ec03c192a9b6c553e5cfe1b65

B.3.4 Helper Functions. The process of creating a system of equations

for AES, introducing known data, converting to a SAT problem and interpreting

the output of the SAT solver involved various tools and data formats. A number

209

of functions were written in Python to import and convert data between types and

formats.

To import the known values file, the ImportKnownValuesFromFile() function

was written. The result is a list of variable names and their values.

Code Listing B.5 ImportKnownValuesFromFile()

1 def ImportKnownValuesFromFile(known_values_filename , key_values_only = False):

2 try:

3 file = open(known_values_filename)

4 data = file.readlines ()

5 except IOError as err:

6 print(’File Error:’ + str(err))

7 finally:

8 if ’file’ in locals ():

9 file.close()

10

11 # Import data list. All lines without equal signs will be ignored

12 data_list = []

13 for each_line in data:

14 if each_line.find("=")> -1:

15 (row_name , row_values) = each_line.split(’=’, 1)

16 row_name = row_name.strip()

17 row_values = row_values.strip()

18 data_list.append ((row_name , row_values))

19

20 # Process each set of data in data_list

21 known_list = [];

22 for data_pair in data_list:

23 (data_name , data_values) = data_pair

24 if data_name == ’actual_key ’:

25 actual_key = data_values

26 elif data_name == ’plaintext ’ and not key_values_only:

27 prefix = ’P’

28 rnd_str = ’00’

29 known_list += BuildKnownValuesPairs(prefix , rnd_str , data_values)

30 elif data_name == ’ciphertext ’ and not key_values_only:

31 prefix = ’C’

32 rnd_str = ’00’

33 known_list += BuildKnownValuesPairs(prefix , rnd_str , data_values)

34 elif data_name [:1] == ’R’ and data_name [4:] == ’start’ and not key_values_only:

35 prefix = ’w’

210

36 rnd_str = data_name [1:3]

37 known_list += BuildKnownValuesPairs(prefix , rnd_str , data_values)

38 elif data_name [:1] == ’R’ and data_name [4:] == ’k_sch’:

39 prefix = ’k’

40 rnd_str = data_name [1:3]

41 known_list += BuildKnownValuesPairs(prefix , rnd_str , data_values)

42

43 return known_list , actual_key

The BuildKnownValuesPair() function builds the name of the variables from

the prefix, round, and each of the string of values specified by the input file. The

function hex2binX() is a simple hexadecimal to binary converter but also converts a

‘X’ in the hex string to a ‘XXXX’ in the binary string. The output is a paired list

of the variables with known binary values.

Code Listing B.6 BuildKnownValuesPair()

1 def BuildKnownValuesPairs(prefix , rnd_str , data_values_hex):

2 known_list = []

3 data_value_binary = hex2binX(data_values_hex)

4 for word_num in range (16):

5 word_str = str(word_num).zfill (2)

6 for bit_num in range (8):

7 bit_str = str(bit_num).zfill (2)

8 bit_idx = 8 * word_num + bit_num

9 var_name = prefix + rnd_str + word_str + bit_str

10 if not data_value_binary [bit_idx] == ’X’:

11 var_value = Integer(data_value_binary[bit_idx])

12 known_list.append ((var_name , var_value))

13 return known_list

The KnownValuePolynomial() function takes the paired list of variables and

known binary values and creates polynomials to represent the known values using

the Boolean Polynomial class required by the anf2cnf converter. The SR generator’s

variable dict() function produces a dictionary that relates the variable name with

its corresponding Boolean Monomial. The Boolean Monomial must be used in the

polynomial for the polynomial to be a Boolean Polynomial class. Since each poly-

nomial in ANF is equal to 0 if the variable is equal to 1, 1 is added to the variable

211

to create a polynomial equal to zero over GF(2). If the variable is equal to 0, the

Boolean Monomial is simply appended to the list of polynomials.

Code Listing B.7 KnownValuePolynomials()

1 def KnownValuePolynomials(inputList , srGenerator):

2 # get the boolean polynomial to integer dictionary

3 PBDict = srGenerator.variable_dict ()

4 # create an empty list

5 IntValuePolynomials = [];

6 for each_item in inputList:

7 varstr = each_item [0] # variable name

8 myBP = PBDict[varstr] # BooleanPolynomial for that name

9 if each_item [1]:

10 IntValuePolynomials.append(myBP + 1)

11 else:

12 IntValuePolynomials.append(myBP)

13 return tuple(IntValuePolynomials)

212

Appendix C. List of Acronyms

Acronym Definition

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AES-128 Advanced Encryption Standard (128-bit variant)

ANF Algebraic Normal Form

ARK AddRoundKey

CBC Cipher Block Chaining

CEMA Correlation-based Electro-Magnetic Analysis

CFB Cipher Feedback

CMOS Complementary Metal Oxide Semiconductor

CNF Conjunctive Normal Form

CTR Counter

DAB Digital Audio Broadcasting

DDC Digital Down-Converter

DEMA Differential Electro-Magnetic Analysis

DES Data Encryption Standard

DFT Discrete Fourier Transform

DIMACS Discrete Mathematics & Theoretical Computer Science

DPA Differential Power Analysis

DRAM Dynamic Random Access Memory

213

Acronym Definition

DSCA Differential Side-Channel Analysis

DVB-T Digital Video Broadcasting-Terrestrial

DoM Difference of Means

ECB Electronic Codebook

ECC Elliptic Curve Cryptography

EM Electro-Magnetic

EMA Electro-Magnetic Analysis

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GNU GNU’s Not Unix (recursive)

HD Hamming Distance

HDSDR High Definition

HW Hamming Weight

I/Q In-phase Quadrature

IF Intermediate Frequency

KSRA Key Schedule Redundancy Attack

LNA Low Noise Amplifier

MC SubBytes

ML Maximum-Likelihood

MVN Mean and Variance Normalization

214

Acronym Definition

NCO Numerically-Controlled Oscillator

NIST National Institute of Standards and Technology

OFB Output Feedback

PBOPT Pseudo-Boolean Optimization Problem

PCA Principal Component Analysis

PIOSC Precision Oscillator

PSD Power Spectral Density

PoSSo Polynomial System Solving

RAM Random Access Memory

RF Radio Frequency

RTL-SDR Realtek RLT2832U-based Software Defined Radio

S-box Substitution Box

SASEBO Side-channel Attack Standard Evaluation Board

SAT SATisfiability

SB SubBytes

SCA Side-Channel Analysis

SDR Software Defined Radio

SEMA Simple Electro-Magnetic Analysis

SNR Signal-to-Noise Ratio

SPA Simple Power Analysis

215

Acronym Definition

SR ShiftRows (Figure 2.1 only)

SR Small Scale Variants of the AES

SSCA Simple Side-Channel Analysis

SYMAES Symbolic AES

TASCA Tolerant Algebraic Side-Channel Analysis

UART Universal Asynchronous Receiver/Transmitter

UNSAT Unsatisfiable

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

XOR eXclusive-OR

ZIF Zero Insertion Force

216

Bibliography

1. Agrawal, Dakshi, et al. “Advances in Side-Channel Cryptanalysis Electromag-
netic Analysis and Template Attacks,” RSA Laboratories Cryptobytes , 6 :20–32
(2003).

2. Agrawal, Dakshi, et al. “The EM Side–Channel(s).” Cryptographic Hardware
and Embedded Systems - CHES 2002 2523 . Lecture Notes in Computer Science,
edited by Burton Kaliski, et al., 29–45, Springer Berlin / Heidelberg, 2003.

3. Agrawal, Dakshi, et al. “Templates as Master Keys.” Cryptographic Hardware
and Embedded Systems CHES 2005 3659 . Lecture Notes in Computer Science,
edited by Josyula Rao and Berk Sunar, 15–29, Springer Berlin / Heidelberg,
2005.

4. Agrawal, Dakshi, et al. Multi-channel Attacks , 2779 . Lecture notes in computer
science, 2–16. Berlin, Heidelberg: Springer, 2003.

5. Albrecht, Martin and Carlos Cid. “Algebraic Techniques in Differential Crypt-
analysis.” Fast Software Encryption 5665 . Lecture Notes in Computer Science,
edited by Orr Dunkelman, 193–208, Springer Berlin / Heidelberg, 2009.

6. Albrecht, Martin and Carlos Cid, “Cold Boot Key Recovery by Solving Polyno-
mial Systems with Noise.” Cryptology ePrint Archive, Report 2011/038, 2011.

7. Albrecht, Martin and Niles Johnson, “Small Scale Variants of the AES (SR)
Polynomial System Generator,” 2011.

8. Anderson, Ross J. Security Engineering: A Guide to Building Dependable
Distributed Systems . Wiley, January 2001.

9. Archambeau, C., et al. “Template Attacks in Principal Subspaces.” Crypto-
graphic Hardware and Embedded Systems - CHES 2006 4249 . Lecture Notes in
Computer Science, edited by Louis Goubin and Mitsuru Matsui, 1–14, Springer
Berlin / Heidelberg, 2006.

10. Asonov, Dmitri and Rakesh Agrawal. “Keyboard Acoustic Emanations.” IEEE
Symposium on Security and Privacy . 3–11. 2004.

11. Bard, Gregory V. Algebraic Cryptanalysis . Springer, 2009.

12. Bard, Gregory V., et al., “Efficient Methods for Conversion and Solution of
Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-
Solvers.” Available at, 2007.

13. Barenghi, Alessandro, et al. “Improving first order differential power attacks
through digital signal processing.” Proceedings of the 3rd international confer-
ence on Security of information and networks . SIN ’10. 124–133. New York,
NY, USA: ACM, 2010.

217

14. Barenghi, Alessandro, et al. “Information Leakage Discovery Techniques to En-
hance Secure Chip Design.” Information Security Theory and Practice. Security
and Privacy of Mobile Devices in Wireless Communication 6633 . Lecture Notes
in Computer Science, edited by Claudio Ardagna and Jianying Zhou, 128–143,
Springer Berlin / Heidelberg, 2011.

15. Batina, Lejla, et al. “Comparative Evaluation of Rank Correlation Based DPA
on an AES Prototype Chip.” Information Security 5222 . Lecture Notes in
Computer Science, edited by Tzong-Chen Wu, et al., 341–354, Springer Berlin
/ Heidelberg, 2008.

16. Biham, Eli and Adi Shamir. “Differential cryptanalysis of DES-like cryptosys-
tems,” Journal of Cryptology , 4 :3–72 (1991).

17. Biham, Eli and Adi Shamir. “Differential fault analysis of secret key cryptosys-
tems.” Advances in Cryptology CRYPTO ’97 1294 . Lecture Notes in Computer
Science, edited by Burton Kaliski, 513–525, Springer Berlin / Heidelberg, 1997.

18. Biryukov, Alex and Christophe De Cannire. “Block Ciphers and Systems of
Quadratic Equations.” Fast Software Encryption 2887 . Lecture Notes in Com-
puter Science, edited by Thomas Johansson, 274–289, Springer Berlin / Hei-
delberg, 2003.

19. Blossom, Eric. “GNU radio: tools for exploring the radio frequency spectrum,”
Linux Journal , 2004 (122):4 (June 2004).

20. Boak, David G., “A history of U.S. communications security: The David G.
Boak lectures,” July 1973. Retrieved 9 August, 2011 from http://www.nsa.

gov/public_info/_files/cryptologic_histories/history_comsec.pdf.

21. Brickenstein, Michael and Alexander Dreyer. “PolyBoRi: A framework for
Gröbner-basis computations with Boolean polynomials,” Journal of Symbolic
Computation, 44 (9):1326 – 1345 (2009). Effective Methods in Algebraic Ge-
ometry.

22. Brier, Eric, et al. “Correlation Power Analysis with a Leakage Model.” CHES .
16–29. 2004.

23. Chari, Suresh, et al. “Towards Sound Approaches to Counteract Power-Analysis
Attacks.” Advances in Cryptology CRYPTO 99 1666 . Lecture Notes in Com-
puter Science, edited by Michael Wiener, 791–791, Springer Berlin / Heidelberg,
1999.

24. Chari, Suresh, et al. “Template Attacks.” Cryptographic Hardware and Embed-
ded Systems - CHES 2002 2523 . Lecture Notes in Computer Science, edited
by Burton Kaliski, et al., 51–62, Springer Berlin / Heidelberg, 2003.

218

http://www.nsa.gov/public_info/_files/cryptologic_histories/history_comsec.pdf
http://www.nsa.gov/public_info/_files/cryptologic_histories/history_comsec.pdf

25. Cid, C., et al. “Small Scale Variants of the AES.” Fast Software Encryption
3557 . Lecture Notes in Computer Science, edited by Henri Gilbert and Helena
Handschuh, 145–162, Springer Berlin / Heidelberg, 2005.

26. Cid, Carlos. “Some Algebraic Aspects of the Advanced Encryption Standard.”
Advanced Encryption Standard AESgro 3373 . Lecture Notes in Computer Sci-
ence, edited by Hans Dobbertin, et al., 571–571, Springer Berlin / Heidelberg,
2005.

27. Cid, Carlos, et al. Algebraic Aspects of the Advanced Encryption Standard .
Springer Verlag, 2006.

28. Cid, Carlos and Ralf-Philipp Weinmann. “Block Ciphers: Algebraic Cryptanal-
ysis and Grobner Bases.” Grobner Bases, Coding, and Cryptography 307–327,
Springer Berlin Heidelberg, 2009.

29. Cobb, W., et al. “Intrinsic Physical Layer Authentication of Integrated Cir-
cuits,” Information Forensics and Security, IEEE Transactions on, 7 (99):14–24
(2011).

30. Cobb, William. Exploition of the Unintentional Information Leakage of Inte-
grated Circuits . PhD dissertation, Air Force Institute of Technology, 2011.

31. Cobb, William E., et al. “Physical layer identification of embedded devices
using RF-DNA fingerprinting.” Military Communications Conference, 2010 –
MILCOM 2010 . 2168 –2173. November 2010.

32. Communication Engineering Lab (CEL) at the Karlsruhe Institute of Technol-
ogy (KIT), Germany, “Simulink-RTL-SDR: A Simulink interface for rtl-sdr.”

33. Cormen, Thomas H, et al. Introduction to algorithms . MIT press, 2001.

34. Coron, Jean-Sbasticn, et al. “Statistics and Secret Leakage.” Financial Cryp-
tography 1962 . Lecture Notes in Computer Science, edited by Yair Frankel,
157–173, Springer Berlin / Heidelberg, 2001.

35. Courtois, Nicolas, et al. “Efficient Algorithms for Solving Overdefined Systems
of Multivariate Polynomial Equations.” Advances in Cryptology EUROCRYPT
2000 1807 . Lecture Notes in Computer Science, edited by Bart Preneel, 392–
407, Springer Berlin / Heidelberg, 2000.

36. Courtois, Nicolas and Josef Pieprzyk. “Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations.” Proceedings of the 8th International Con-
ference on the Theory and Application of Cryptology and Information Secu-
rity: Advances in Cryptology . ASIACRYPT ’02. 267–287. London, UK, UK:
Springer-Verlag, 2002.

37. Courtois, Nicolas T. and Gregory V. Bard. “Algebraic cryptanalysis of the data
encryption standard.” Proceedings of the 11th IMA international conference on

219

Cryptography and coding . Cryptography and Coding’07. 152–169. Berlin,
Heidelberg: Springer-Verlag, 2007.

38. Daemen, Joan and Vincent Rijmen, “The Rijendael Block Cipher. Version 2,”
1999.

39. Daemen, Joan and Vincent Rijmen. The Design of Rijndael . Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2002.

40. De Mulder, Elke. Electromagnetic Techniques and Probes for Side-Channel
Analysis on Cryptographic Devices . PhD dissertation, Arenberg Doctoral
School of Science, Engineering & Technology, 2010.

41. Elaabid, M. and Sylvain Guilley. “Portability of templates,” Journal of Cryp-
tographic Engineering , 2 :63–74 (2012).

42. Elonics Ltd, “Elonics E4000 product page,” Retrieved October 2, 2012.

43. Ettus Research, “LFRX Daughterboard 1-250 MHz Rx,” 2012.

44. Faugère, Jean Charles, “A New Efficient algorithm for Computing Gröbner
Basis, F4,” 1999.

45. Faugère, Jean Charles. “A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5).” Proceedings of the 2002 international sympo-
sium on Symbolic and algebraic computation. ISSAC ’02. 75–83. New York,
NY, USA: ACM, 2002.

46. Fisher, R.A. “Frequency distribution of the values of the correlation coefficient
in samples from an indefinitely large population,” Biometrika, 10 (4):507–521
(1915).

47. Gandolfi, Karine, et al. “Electromagnetic Analysis: Concrete Results.” Cryp-
tographic Hardware and Embedded Systems CHES 2001 2162 . Lecture Notes
in Computer Science, edited by Cetin Koç, et al., 251–261, Springer Berlin /
Heidelberg, 2001.

48. Gebotys, Catherine, et al. “EM Analysis of Rijndael and ECC on a Wireless
Java-based PDA.” Cryptographic Hardware and Embedded Systems CHES 2005
3659 . Lecture Notes in Computer Science, edited by Josyula Rao and Berk
Sunar, 250–264, Springer Berlin / Heidelberg, 2005.

49. Gebotys, Catherine and Brian White. “EM alignment using phase for secure
embedded systems,” Design Automation for Embedded Systems , 12 :185–206
(2008).

50. Gebotys, Catherine H. and Brian A. White. “EM analysis of a wireless Java-
based PDA,” ACM Trans. Embed. Comput. Syst., 7 :44:1–44:28 (August 2008).

51. Gibbs, W. “How to Steal Secrets,” Scientific American Magazine, 300 (5):58–63
(2009).

220

52. Gierlichs, Benedikt, et al. “Mutual Information Analysis.” Cryptographic Hard-
ware and Embedded Systems CHES 2008 5154 . Lecture Notes in Computer
Science, edited by Elisabeth Oswald and Pankaj Rohatgi, 426–442, Springer
Berlin / Heidelberg, 2008.

53. Gierlichs, Benedikt, et al. “Templates vs. Stochastic Methods.” Cryptographic
Hardware and Embedded Systems - CHES 2006 4249 . Lecture Notes in Com-
puter Science, edited by Louis Goubin and Mitsuru Matsui, 15–29, Springer
Berlin / Heidelberg, 2006.

54. Goubin, Louis and Jacques Patarin. “DES and Differential Power Analysis The
Duplication Method.” Cryptographic Hardware and Embedded Systems 1717 .
Lecture Notes in Computer Science, edited by Cetin Koç and Christof Paar,
728–728, Springer Berlin / Heidelberg, 1999.

55. Halderman, J. Alex, et al. “Lest we remember: cold boot attacks on encryp-
tion keys.” Proceedings of the 17th conference on Security symposium. 45–60.
Berkeley, CA, USA: USENIX Association, 2008.

56. Heuser, Annelie, et al. “A New Difference Method for Side-Channel Analysis
with High-Dimensional Leakage Models.” Topics in Cryptology – CT-RSA 2012
7178 . Lecture Notes in Computer Science, edited by Orr Dunkelman, 365–382,
Springer Berlin Heidelberg, 2012.

57. Hintze, Jerry L and Ray D Nelson. “Violin plots: a box plot-density trace
synergism,” The American Statistician, 52 (2):181–184 (1998).

58. Hodgers, Philip, et al. “Power Spectral Density Side Channel Attack Overlap-
ping Window Method.” 14th Euromicro Conference on Digital System Design.
274 –278. 2011.

59. Homma, Naofumi, et al. “High-Resolution Side-Channel Attack Using Phase-
Based Waveform Matching.” Cryptographic Hardware and Embedded Systems -
CHES 2006 4249 . Lecture Notes in Computer Science, edited by Louis Goubin
and Mitsuru Matsui, 187–200, Springer Berlin / Heidelberg, 2006. Includes
POC method from Java PDA paper.

60. Institute for Formal Models and Verification at the Johannes Kepler University
in Linz, Austria. Limboole, 2003. http://fmv.jku.at/limboole/.

61. Jun, Benjamin and Gary Kenworth, “Is Your Mobile Device Radiating Keys?.”
RSA Conference Presentation, 2012.

62. Kamal, Abdel Alim and Amr M. Youssef, “Applications of SAT Solvers to AES
key Recovery from Decayed Key Schedule Images,” 2010.

63. Karlof, Chris and David Wagner. “Hidden Markov Model Cryptanalysis.” Cryp-
tographic Hardware and Embedded Systems - CHES 2003 2779 . Lecture Notes

221

in Computer Science, edited by Colin Walter, et al., 17–34, Springer Berlin /
Heidelberg, 2003.

64. Kim, ChanKyun, et al. “Differential Side Channel Analysis Attacks on FPGA
Implementations of ARIA,” ETRI journal , 30 :315–325 (2008).

65. Kim, Chong Hee. “Improved Differential Fault Analysis on AES Key Schedule,”
Information Forensics and Security, IEEE Transactions on, 7 (1):41 –50 (feb.
2012).

66. Kocher, Paul. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems.” Advances in Cryptology CRYPTO 96 1109 . Lecture
Notes in Computer Science, edited by Neal Koblitz, 104–113, Springer Berlin
/ Heidelberg, 1996.

67. Kocher, Paul, et al. “Differential Power Analysis.” Advances in Cryptology
CRYPTO 99 1666 . Lecture Notes in Computer Science, edited by Michael
Wiener, 789–789, Springer Berlin / Heidelberg, 1999.

68. Kocher, Paul, et al. “Introduction to differential power analysis,” Journal of
Cryptographic Engineering , 1–23 (2011).

69. Maes, R. and P. Tuyls. Secure integrated circuits and systems . Springer, New
York, 2010.

70. Mangard, Stefan. “Exploiting Radiated Emissions - EM Attacks on Crypto-
graphic ICs.” Processings of Austrochip. 2003.

71. Mangard, Stefan. “A simple power-analysis (SPA) attack on implementations
of the AES key expansion.” Proceedings of the 5th international conference on
Information security and cryptology . ICISC’02. 343–358. Berlin, Heidelberg:
Springer-Verlag, 2003.

72. Mangard, Stefan. “Hardware Countermeasures against DPA A Statistical
Analysis of Their Effectiveness.” Topics in Cryptology CT-RSA 2004 2964 .
Lecture Notes in Computer Science, edited by Tatsuaki Okamoto, 1998–1998,
Springer Berlin / Heidelberg, 2004.

73. Mangard, Stefan, et al. Power Analysis Attacks: Revealing the Secrets of Smart
Cards (Advances in Information Security). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

74. Markgraf, Steve and Dimitri Stolnikov, “rtl-sdr OsmoSDR,” 2012.

75. Massacci, Fabio and Laura Marraro. “Logical Cryptanalysis as a SAT Prob-
lem,” Journal of Automated Reasoning , 24 :165–203 (2000).

76. Matsui, Mitsuru. “Linear Cryptanalysis Method for DES Cipher.” Advances in
Cryptology EUROCRYPT 93 765 . Lecture Notes in Computer Science, edited
by Tor Helleseth, 386–397, Springer Berlin / Heidelberg, 1994.

222

77. Messerges, Thomas S., et al. “Investigations of Power Analysis Attacks on
Smartcards.” Usenix Workshop on Smartcard Technology 1999 . 1999.

78. Messerges, T.S., et al. “Examining smart-card security under the threat of
power analysis attacks,” Computers, IEEE Transactions on, 51 (5):541 –552
(may 2002).

79. Meynard, O., et al. “Enhancement of simple electro-magnetic attacks by pre-
characterization in frequency domain and demodulation techniques.” Design,
Automation Test in Europe Conference Exhibition (DATE) 2011 . 1 –6. march
2011.

80. Mishali, M. and Y.C. Eldar. “Sub-Nyquist Sampling,” Signal Processing Mag-
azine, IEEE , 28 (6):98 –124 (nov. 2011).

81. Mohamed, Mohamed Saied Emam, et al., “Improved Algebraic Side-Channel
Attack on AES.” Cryptology ePrint Archive, Report 2012/084, 2012. http:

//eprint.iacr.org/.

82. Montminy, David P., et al. “An algebraic side-channel attack on the AES key
schedule,” International Journal of Applied Cryptography (2013). Manuscript
submitted for publication.

83. Montminy, David P., et al. “Cross-device attacks on complex microproces-
sors,” Journal of Cryptographic Engineering (2013). Manuscript submitted for
publication.

84. Montminy, David P., et al. “Differential Electromagnetic Attacks on a 32-
bit Microprocessor Using Software Defined Radios,” Information Forensics and
Security, IEEE Transactions on (2013). In Review.

85. Montminy, David P., et al. “Improving cross-device attacks using zero-
mean unit-variance normalization,” Journal of Cryptographic Engineering , 1–
12 (2012). Manuscript submitted for publication.

86. Murphy, Sean and Matthew Robshaw. “Essential Algebraic Structure within
the AES.” Advances in Cryptology CRYPTO 2002 2442 . Lecture Notes in
Computer Science, edited by Moti Yung, 1–16, Springer Berlin / Heidelberg,
2002.

87. NIST, “NIST Special Publication 800-38A.” Online.

88. NIST, “FIPS 197,” November 26 2001.

89. Oren, Y., et al. “Algebraic Side-Channel Analysis Beyond the Hamming Weight
Leakage Model.” Cryptographic Hardware and Embedded Systems, CHES 2012
7428 . Lecture Notes in Computer Science, 140–154, Springer Berlin / Heidel-
berg, 2012.

223

http://eprint.iacr.org/
http://eprint.iacr.org/

90. Oren, Yossef, et al. “Algebraic Side-Channel Analysis in the Presence of Er-
rors.” Cryptographic Hardware and Embedded Systems, CHES 2010 6225 . Lec-
ture Notes in Computer Science, edited by Stefan Mangard and Franois-Xavier
Standaert, 428–442, Springer Berlin / Heidelberg, 2010.

91. Oren, Yossef and Avishai Wool, “Tolerant Algebraic Side-Channel Analysis of
AES.” Cryptology ePrint Archive, Report 2012/092, 2012. http://eprint.

iacr.org/.

92. Oswald, Elisabeth E. and Stefan Mangard. Template Attacks on Masking -
Resistance Is Futile, 4377 . Lecture notes in computer science, 243–256. Berlin,
Heidelberg: Springer, 2007.

93. Ott, Henry W. Electromagnetic compatibility engineering . John Wiley & Sons,
Inc., 2009.

94. Quisquater, Jean-Jacques and David Samyde. “ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smart Cards.” Proceedings of the
International Conference on Research in Smart Cards: Smart Card Program-
ming and Security . E-SMART ’01. 200–210. London, UK, UK: Springer-Verlag,
2001.

95. Quisquater, Jean-Jacques and David Samyde. “Automatic code recognition for
smart cards using a kohonen neural network.” Proceedings of the 5th conference
on Smart Card Research and Advanced Application Conference-Volume 5 . 6–6.
2002.

96. Raddum, H̊avard and Igor Semaev, “New Technique for Solving Spase Equation
Systems.” Cryptology ePrint Archive, 2006.

97. Realtek, “Realtek RTL2832U,” Retrieved 11 Dec 2012.

98. Rechberger, C. and E. Oswald. “Stream ciphers and side-channel analysis.”
Proceedings of the ECRYPT Workshop, SASC-The State of the Art of Stream
Ciphers . 320–326. 2004.

99. Rechberger, Christian and Elisabeth Oswald. “Practical Template Attacks.”
Information Security Applications 3325 . Lecture Notes in Computer Science,
edited by Chae Lim and Moti Yung, 440–456, Springer Berlin / Heidelberg,
2005.

100. Renauld, Mathieu and François-Xavier Standaert. “Combining Algebraic and
Side-Channel Cryptanalysis against Block Ciphers.” 30th Symposium on Infor-
mation Theory in the Benelux . May 2009.

101. Renauld, Mathieu and François-Xavier Standaert. “Algebraic side-channel at-
tacks.” Proceedings of the 5th international conference on Information security
and cryptology . Inscrypt’09. 393–410. Berlin, Heidelberg: Springer-Verlag,
2010.

224

http://eprint.iacr.org/
http://eprint.iacr.org/

102. Renauld, Mathieu, et al. “Algebraic Side-Channel Attacks on the AES: Why
Time also Matters in DPA.” Cryptographic Hardware and Embedded Systems -
CHES 2009 5747 . Lecture Notes in Computer Science, edited by Christophe
Clavier and Kris Gaj, 97–111, Springer Berlin / Heidelberg, 2009.

103. Renauld, Mathieu, et al. “A Formal Study of Power Variability Issues and
Side-Channel Attacks for Nanoscale Devices.” Advances in Cryptology EURO-
CRYPT 2011 6632 . Lecture Notes in Computer Science, edited by Kenneth
Paterson, 109–128, Springer Berlin / Heidelberg, 2011.

104. Riscure, “Inspector Data Sheet.”

105. Riscure, “Inspector - The Side Channel Test Platform.” Online, 2009.
Retrieved on 25 July, 2011, from http://www.riscure.com/inspector/

product-description.html.

106. Riscure, “icWaves, Inspector Data Sheet,” 2011.

107. Sauvage, Laurent, et al. “ElectroMagnetic Radiations of FPGAs: High Spa-
tial Resolution Cartography and Attack of a Cryptographic Module,” ACM
Transactions on Reconfigurable Technology and Systems (2008).

108. Schindler, Werner, et al. “A Stochastic Model for Differential Side Channel
Cryptanalysis.” Cryptographic Hardware and Embedded Systems CHES 2005
3659 . Lecture Notes in Computer Science, edited by Josyula Rao and Berk
Sunar, 30–46, Springer Berlin / Heidelberg, 2005.

109. Schlösser, Alexander, et al. “Simple Photonic Emission Analysis of AES,”
Cryptographic Hardware and Embedded Systems–CHES 2012 , 41–57 (2012).

110. Schneier, Bruce. “A self-study course in block-cipher cryptanalysis,” Cryptolo-
gia, 1833 (2000).

111. Shamir, A. and E. Tromer, “Acoustic cryptanalysis—On nosy people
and noisy machines.” Online, 2004. Retrieved on Aug 6, 2011, from
http://tau.ac.il/ tromer/acoustic/.

112. Shamir, Adi and Aviad Kipnis. “Cryptanalysis of the HFE Public Key Cryp-
tosystem.” Advances in Cryptography, Proceedings in Crypto ’99 . Springer-
Verlag, LNCS, 1999. Could not find the PDF.

113. Shannon, C. E. “Communication in the presence of noise,” Proc. IRE , 37 :10–21
(1949).

114. Shannon, Claude Elwood. “Communication theory of secrecy systems,” Bell
System Technical Journal , 28 :656–715 (1949).

115. Sklar, B. Digital communications: fundamentals and applications . Prentice Hall
Communications Engineering and Emerging Technologies Series, Prentice-Hall
PTR, 2001.

225

http://www.riscure.com/inspector/product-description.html
http://www.riscure.com/inspector/product-description.html

116. Skorobogatov, S. “Using Optical Emission Analysis for Estimating Contri-
bution to Power Analysis.” Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2009 Workshop on. 111 –119. sept. 2009.

117. Skorobogatov, Sergei P. Semi-invasive attacks - A new approach to hardware
security analysis . PhD dissertation, University of Cambridge, 2005.

118. Soos, Mate, “Limits of SAT Solvers in Cryptography.” Presented at CASED,
July 2011.

119. Soos, Mate and Martin Albrecht, “INRIAGForge: anf2cnf: Project Info.,” 2010.

120. Soos, Mate, et al. “Extending SAT Solvers to Cryptographic Problems.” The-
ory and Applications of Satisfiability Testing - SAT 2009 5584 . Lecture Notes
in Computer Science, edited by Oliver Kullmann, 244–257, Springer Berlin /
Heidelberg, 2009.

121. Standaert, François-Xavier, et al. “Partition vs. Comparison Side-Channel Dis-
tinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-
Channel Attacks against Two Unprotected CMOS Devices.” Information Se-
curity and Cryptology ICISC 2008 5461 . Lecture Notes in Computer Science,
edited by Pil Lee and Jung Cheon, 253–267, Springer Berlin / Heidelberg, 2009.

122. Standaert, Franois-Xavier and Cedric Archambeau. “Using Subspace-Based
Template Attacks to Compare and Combine Power and Electromagnetic In-
formation Leakages.” Cryptographic Hardware and Embedded Systems CHES
2008 5154 . Lecture Notes in Computer Science, edited by Elisabeth Oswald
and Pankaj Rohatgi, 411–425, Springer Berlin / Heidelberg, 2008.

123. Standaert, O.-X., et al. “An Overview of Power Analysis Attacks Against Field
Programmable Gate Arrays,” Proceedings of the IEEE , 94 (2):383 –394 (Feb.
2006).

124. Stein, W. A. and others. Sage Mathematics Software (Version 4.7b). The Sage
Development Team, 2011. http://www.sagemath.org.

125. Stinson, Douglas Robert. Cryptography: theory and practice. CRC press, 2006.

126. Taeubel, Mario, “High Definition Software Defined Radio (HDSDR).”

127. Talbot, John and Dominic Welsh. Complexity and Cryptography: An Introduc-
tion. New York, NY, USA: Cambridge University Press, 2006.

128. Texas Instruments, “Stellari ARM Cortex-M4F Microcontrollers Applications.”

129. Texas Instruments, “Stellaris LM4F232 Evaluation Board User’s Manual,”
2011.

130. Texas Instruments, “Stellaris LM4F232H5QD Microcontroller Data Sheet,”
2012.

226

131. Tiri, Kris and Ingrid Verbauwhede, “Synthesis of Secure FPGA Implementa-
tions.” Cryptology ePrint Archive, Report 2004/068, 2004. http://eprint.

iacr.org/.

132. Trappe, Wade and Lawrence C. Washington. Introduction to Cryptography with
Coding Theory (2nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 2005.

133. Tuttlebee, Wally H. W., editor. Software defined radio: Origins, drivers, and
international perspectives . West Sussex, England: John Wiley, 2002.

134. Velichkov, Vesselin, et al. “SYMAES: A Fully Symbolic Polynomial System
Generator for AES-128.” Proceedings of the ECRYPT Workshop on Tools for
Cryptanalysis 2010 , edited by Francois-Xavier Standaert. June 2010.

135. Vuagnoux, M. and S. Pasini. “An improved technique to discover compro-
mising electromagnetic emanations.” 2010 IEEE International Symposium on
Electromagnetic Compatibility (EMC). 121–126. July 2010.

136. Vuagnoux, Martin and Sylvain Pasini. “Compromising electromagnetic emana-
tions of wired and wireless keyboards.” Proceedings of the 18th conference on
USENIX security symposium. SSYM’09. 1–16. Berkeley, CA, USA: USENIX
Association, 2009.

137. Zhao, X., et al. “SAT based Error Tolerant Algebraic Side-Channel Attacks.”
Submitted to SCIENCE CHINA Information Sciences . 2011.

138. Zhuang, Li, et al. “Keyboard acoustic emanations revisited,” ACM Transac-
tions on Information and System Security , 13 :3:1–3:26 (November 2009).

227

http://eprint.iacr.org/
http://eprint.iacr.org/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15–09–2013 Doctoral Dissertation Sep 2010-Sep 2013

Enhancing Electromagnetic Side-Channel Analysis
in an Operational Environment

Montminy, David P., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765 DSN: 785-3636

AFIT-ENG-DS-13-S-01

Intentionally Left Blank

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research
identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to
reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to
select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods.
Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the
effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1%
to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel
technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform
a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for
collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing
information.

Side-Channel Analysis, Cross-Device, Mean & Variance Normalization, Software Defined Radios, Algebraic Cryptanalysis

U U U UU 247

Dr. Rusty O. Baldwin (ENG)

(937) 255-3636 x4445; email:rusty.baldwin@afit.edu

	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Research Contributions
	Organization

	Background
	Introduction
	Cryptography Preliminaries
	Block Ciphers
	Advanced Encryption Standard
	Cryptanalysis of Block Ciphers

	Side-Channel Leakage
	Power Consumption
	Electromagnetic Emissions
	Other Side-Channels
	Leakage Models

	Side-Channel Attacks
	Types of Implementation Attacks
	Adversary Models
	Power and EM Analysis
	Simple Side-Channel Analysis
	Differential Side-Channel Analysis
	Profiling Attacks

	Countermeasures
	Masking
	Hiding

	Collecting Electromagnetic Emissions
	Electronic Noise
	Improving Collections

	Pre-Processing Processing Techniques
	Detecting Compromising Frequency Components
	Trace Alignment
	Frequency-Based Analysis

	Algebraic Cryptanalysis
	Describing a Cipher
	Solving a System of Equations
	Using SAT Solvers
	Algebraic Side-Channel Analysis
	Related Key Recovery Techniques

	Summary

	Methodology
	Data Collection
	Targeted Devices
	PIC Microcontrollers
	ARM Cortex-M4F

	Signal Processing Techniques
	Filtering
	Decimation
	Alignment

	Correlation-Based Electromagnetic Analysis
	CEMA Attack Methodology
	Example CEMA Attack
	Known-Key Correlation Analysis
	Comparing Effectiveness of CEMA Attacks

	Identifying Information Leaking Frequencies
	Frequency Interval Break Down Approach
	Overlapping Frequency Interval Approach

	Template Attacks
	Class Identification
	Classifier Training
	Classifying Observed Traces
	Class Selection
	Distinguishing Feature Selection
	Comparing Effectiveness of Template Attacks

	Algebraic Cryptanalysis
	Generating a System of Equations for AES-128
	Converting to a SAT Problem
	Solving the System of Equations
	Unique Contributions of this SAT Solver Tool

	Summary

	Key Schedule Redundancy Attack
	Introduction
	Background
	Key Schedule Background

	Related Work
	The Attack
	Data Collection
	Targeted Intermediate Values
	Template Attack
	Reconciling Round Key-Byte Guesses

	Results and Comparison
	Evaluating Performance
	Comparison of Distinguishing Features
	Experimental Results
	Comparison

	Conclusion

	Improving Cross-Device Template Attacks
	Introduction
	Cross-Device EM leakage
	Compensating for Device Differences

	Experimental Methodology
	Targeted Devices
	Template Attack Methodology
	Distinguishing Feature Data Normalization

	Results
	Selected Features
	Baseline Standard Template Attack
	MVN Technique Results
	PCA-based Attack
	Comparison of Attacks

	Conclusion
	Constructing a Master Template

	Cross-Device Attacks on Complex Microprocessors
	Introduction
	Related Work
	Methodology
	Device Leakage Cartography
	Identifying Unrelated Signals
	Combining Techniques

	Results
	Effectiveness of Cross-Device Methods
	Probe Position Tolerance
	Comparison of Successful CEMA and Template Attacks Locations
	Notch-Filtering for CEMA Attacks

	Conclusion

	Differential Electromagnetic Attacks on a 32-bit Microprocessor Using Software Defined Radios
	Introduction
	Background
	Triggering and Alignment
	Software Defined Radios

	Related Work
	Baseline Attack Performance
	Electromagnetic Cartography Scan
	Correlation-Based Frequency-Dependent Leakage Analysis
	Baseline Results

	Software Defined Radio Methodology
	Sub-Nyquist Sampling
	Software Defined Radios
	Identifying and Aligning Encryption Operations
	Additional Processing for the RTL-SDR

	Software-Defined Radio Results
	USRP
	RTL-SDR
	Additional Observations
	Comparison of the Baseline and SDR Results

	Conclusion and Future Work

	Conclusion
	Research Summary
	Algebraic Cryptanalysis
	Cross-Device Template Attacks
	Software Defined Radios (SDR)

	Recommendations for Future Research
	Algebraic Cryptanalysis
	Cross-Device Template Attacks
	Software Defined Radios

	Constructing and Solving Systems of Equations
	Conjunctive Normal Form
	SAT Solvers
	Converting MQ to SAT
	Step 1: Convert the Polynomial System to a Linear System
	Step 2: Linear System to CNF Expression
	Step 3: DIMACS CNF Form

	Methods for Solving Non-linear Multivariate Systems of Equations

	Writing AES-128 for a SAT Solver
	SR Polynomial Generator
	Variable Names

	ANF to CNF Converter
	Specifying Known Values
	SAT Solver

	Example Code
	Full System of Equations
	Key Schedule Only System of Equations
	Known Values Format
	Helper Functions

	List of Acronyms
	Bibliography

