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Abstract

Side-channel analysis has been used to determine the secret key from crypto-
graphic devices in a controlled laboratory environment. In many cases, it is assumed
that a powerful attacker is able to place a near-field probe within close proximity
of a device, modify the device to gain precise timing information, and have access
to a training device having side-channel emissions identical to those produced by
the target device. Attacks in a laboratory setting utilize expensive digital storage
oscilloscopes. To make side-channel attacks more effective in an operational envi-
ronment, this research identifies ways to 1) reduce the control an attacker must have

on a cryptographic device, and 2) reduce the cost of required attack equipment.

A new unknown-plaintext attack is developed to exploit redundancy in the
AES key schedule and successfully extract keys from “poor” quality collections.
Algebraic cryptanalysis is used to determine the correct key schedule even when
maximum likelihood-based template attacks do not identify correct intermediate
values by attacking more intermediate values and exploiting the redundancy of the
key schedule, the new attack is superior to known plaintext attacks when only a small
number of traces for a target device are available. The quality of collected traces
is intentionally degraded to show the attack robustness, and a novel thresholding
technique is developed to identify possible values for each targeted key schedule
byte. Even with poor quality traces, the new attack is successful in 97.5% of trials
where a standard template attack that does not employ algebraic cryptanalysis fails

100% of the time.

Profiling attacks assume an adversary has access to a training device identi-
cal to the target device being attacked. Although it was previously assumed the
side-channel emissions from similar devices were identical, or at least similar, this

assumption is challenged here by performing template attacks using traces collected

XVvi



from 40 16-bit microcontrollers. When the standard template attack methodology
fails to produced adequate results, each step is evaluated to identify device-dependent
variations. A simple pre-processing technique, i.e., normalizing the trace means and
variances from the training and test devices, is evaluated for various test data set
sizes. Normalization improves the key-byte extraction success rate from 65.1% to
100% for same part number cross-device template attacks and from 39% to 82.8%
for attacks using similar devices for training. Additionally, a procedure is developed
to create a single set of templates using training data from multiple devices that can

be used to attack all 40 devices at a 99.95% byte extraction success rate.

The new mean and variance normalization technique is also shown to compen-
sate for differences in probe placement, increasing the number of locations at which
successful attacks can be performed by 226% on a 32-bit microcontroller. When com-
bined with a new technique that identifies and filters signals in collected traces that
are unrelated to the encryption operation, the number of traces required to perform
successful attacks is reduced by 85.8% on average. These simple techniques can be
performed on the same traces collected for a standard template attack—improving

the results through post-collection processing only.

Finally, the use of Software Defined Radios (SDRs) to collect side-channel
emissions is introduced and eliminates the need for an attacker to modify the target
device. Side-channel emissions are collected passively, and encryption operations are
identified in the collected emissions. A correlation-based frequency-dependent leak-
age mapping technique is introduced to evaluate a 32-bit microprocessor and shows
how individual key bytes leak at different frequencies. Key-byte dependent leakage
is observed in both SDR collected and triggered oscilloscope-based collections used
to validate the SDR methodology; this research is the first to demonstrate effective
differential side-channel attacks using SDRs. Successful attacks are demonstrated
using two different SDRs, including a commercial $20 USD digital television receiver

with modified drivers.

xXvii



ENHANCING ELECTROMAGNETIC
SIDE-CHANNEL ANALYSIS
IN AN OPERATIONAL ENVIRONMENT

1. Introduction

Modern cryptographic algorithms provide confidentiality and authenticity but
their security relies on computational intractability [132]. The algorithms themselves
are public knowledge but secret keys are used to encrypt and decrypt the information.
Cryptographic systems based on reusable keys can be broken through a brute force
attack, with the amount of time required to do so being an exponential function of
key length. Security is achieved by making the amount of work needed to attack
the cipher greater than the ability of an adversary to muster [114]. A cryptographic
system is considered to be computationally secure if the number of calculations
needed to decode the message or determine the key is impossible through practical

means.

Modern ciphers are typically implemented on electronic devices that produce
both intentional and unintentional emissions. The intentional emissions are the ci-
phertext resulting from an encryption operation or the plaintext resulting from a de-
cryption operation. Using only the input and intentional emissions, i.e., the plaintext
and ciphertext, the key used during the encryption cannot be determined because the
computational complexity of the cipher is very high. The unintentional emissions are
called side-channels. The side-channels that can be used to extract information from
a device depend on the implementation, but may include power consumption [67],
acoustic, electromagnetic (EM) [2], optical [116], and photonic [109] emissions, as

well as variations in computation time [66].



Side-channel analysis (SCA) effectively bypasses the computational complexity
of a cipher by attacking the implementation instead of the cipher itself |[67]. Using the
side-channel emissions from a device, properties of the intermediate values calculated
by the cipher can be determined. When side-channel analysis is used to attack a
device, the attack is referred to as a side-channel attack and cryptographic devices
are a common target. The goal of a side-channel attack against a cryptographic
device is to determine the secret key being used for encryption and decryption. If
the operations being performed by the device are key dependent it may be possible
to determine the key from a single observation of the side-channel. If only the data
being processed changes, as is the case with the Advanced Encryption Standard

(AES), differential statistics must be used to determine the secret key [67].

1.1  Motivation

The field of SCA has continued to grow since timing and power consumption
based attacks were first demonstrated by Kocher et al. in the 1990s [66,67]. Although
the effectiveness of these attacks has been demonstrated in laboratory environments,
many rely on the assumption that a powerful adversary has complete control over
the cryptographic device being attacked [73]. It is frequently assumed the attacker
1) knows the plaintext or ciphertext being processed, 2) can place the EM probe
within close proximity of the encryption device, and 3) can modify the cryptographic
device to add a trigger; the trigger identifies when the encryption operation is being
performed, providing precise timing information for collections made with a digital
storage oscilloscope. For attacks based on profiling a similar device, it is assumed
that similar devices produce EM emissions identical to the target device [24]. While
these assumptions are practical in a academic setting, they may not be rational in
operational scenarios where modifying the device is not an option or there is no

access to a digital storage oscilloscope.

The objective of this research was to identify ways to reduce the number of

assumptions needed for EM-based SCA attacks to make these attacks more practical



in an operational scenario. Ideally, these new techniques would not reduce attack
effectiveness. However, if a given technique reduces attack effectiveness but makes

the attack possible by a less powerful attacker, it would still be considered useful.

1.2 Research Contributions

First, algebraic cryptanalysis is used to enhance an attack on the key sched-
ule of the AES. By attacking the key schedule, the attack can be performed without
knowledge of the plaintexts or ciphertexts associated with each collected side-channel
emission [82]. Since the key is fixed and the key schedule is recalculated for each
encryption operation on the target device, the side-channel emissions from multiple
encryption operations can improve the key extraction rate. Uncertainty in the key
extraction phase of the attack is reconciled using a satisfiability solver and an alge-
braic description of the cipher. A novel technique is developed to identify possible
values of portions of the key schedule. The robustness of the attack is demonstrated
by intentionally degrading the quality of the results by gradually moving the EM

probe away from the encryption device [82].

Template attacks are a form of two-stage profiling attack, with the initial stage
obtaining ‘a priori’ knowledge of the side-channel leakage for a specific device [24].
The profiling stage estimates the multivariate probability densities of the observ-
able side-channels for the targeted intermediate value of the internal calculations
performed within a cryptographic device. It is assumed that a powerful attacker
would be able to procure a training device identical to the device being attacked.
Although template attacks were originally proposed using power consumption data,
they were extended to EM emissions [122]. For the attack to be successful, the EM
emissions from the training device must be sufficiently similar to the EM emissions
from the test device. While previous research assumed implicitly this to be true by

collecting training data from the same device being attacked [3}(9,24,73,92], this



assumption is challenged by performing template attacks with 40 PIC and 2 ARM

microcontrollers [83,85].

When attacks performed with different training and test devices show degraded
performance, each step of the template attack methodology is analyzed and eval-
uated. A number of simple, yet powerful, techniques are developed to improve
cross-device template attacks [85]. A cross-device template attack is defined as a
template attack that specifically uses traces from two different physical devices for
the training and classification phases. These techniques identify and remove device
dependent EM signals and compensate for differences in the distribution of collected
EM emissions from different devices. In addition to differences between devices,
these techniques effectively compensate for differences in collection parameters in-
cluding probe type and placement [83]. Additionally, a process for creating a master
template to attack any device within a family of devices is developed and shown to

be effective.

Finally, the requirement for an attacker to have control of the target device is
eliminated by collecting EM emissions using a Software Defined Radio (SDR) [84].
SDRs down-convert EM emissions from a device allowing data collection at reduced
sampling rates, allowing side-channel data to be collected in real-time. Although
individual traces must be identified in post-processing, the trigger signal is no longer
necessary. The use of a SDR also dramatically reduces the cost of performing side-

channel analysis [84].

1.8 Organization

This dissertation is organized as follows. Chapter [2| contains background infor-
mation and a summary of recent publications that pertain to this research. Chapter
describes common methodology used in two or more of the focus areas. The next
three chapters each contain the unique methodology and results from the four fo-

cus areas described above. Chapter [4 develops an algebraic cryptanalysis-based key



schedule redundancy attack. Chapter [5| improves the effectiveness of cross-device
template attacks for PIC microcontrollers. In Chapter [6] cross-device attacks are
expanded to more complex 32-bit microcontrollers and a new method is developed
to identify and remove interfering signals. Chapter [7] introduces the used of SDRs
to collect the EM emissions from a microprocessor. Finally, Chapter |8/ concludes the

dissertation and recommends areas for further study.



2. Background

2.1 Introduction

Modern cryptographic algorithms provide confidentiality and authenticity ser-
vices based on computational hardness assumptions [132]. Algorithms to secure
information are public knowledge but secret keys are used to encrypt and decrypt
the information. While cryptographic systems based on reusable keys can be broken
through a brute force attack, the amount of time needed is an exponential function
of the length of the key. Effective security is achieved by making the amount of work
needed to attack the cipher more than the ability of an adversary to muster [114].
A cryptographic system is considered to be computationally secure if the number of
calculations needed to decode the message or determine the key is impossible by any

practical means.

In his article on the communication theory of secrecy systems, Claude Shannon
said, breaking a good cipher should require “as much work as solving a system of
simultaneous equations in a large number of unknowns |114]”. In theory, a technique
known as algebraic cryptanalysis can break ciphers by describing the cipher as a
system of polynomial equations and solving this system to obtain the secret key.
In practice, the multivariate systems of polynomial equations derived from modern
ciphers are large and complex and it is not possible to solve the system in a reasonable
amount of time [26]. To break the cipher, the complexity of such systems of equations

must be reduced.

The complexity of solving the system can be reduced by finding a weakness
in the algorithm, or by determining intermediate values calculated by an imple-
mentation of a cipher. A category of relatively low cost, non-intrusive attacks are
called side-channel attacks. Side-channel analysis (SCA) can determine the proper-

ties of intermediate values calculated by a physical implementation of a cipher by



collecting and processing the side-channel emissions from the device performing the

cryptographic operation [73].

The target of the side-channel attacks, the Advanced Encryption Standard
(AES), and cryptanalysis techniques used against block ciphers are introduced in
Section [2.2 The type of side-channels produced by modern electronic devices is
discussed in Section Next, how SCA is used to identify intermediate values is
discussed in Section [2.4], followed by a brief discussion on countermeasures, and col-
lecting and pre-processing of side-channel emissions. Finally, the process and benefit

of combining algebraic cryptanalysis with SCA attacks is explored in Section [2.8]

2.2 Cryptography Preliminaries

Information prior to encryption is referred to as plaintext. Encrypted infor-
mation is called ciphertext. FEncryption is the process of converting plaintext to
ciphertext. Similarly, decryption is the process of converting ciphertext to plaintext.

The cipher is a pair of algorithms used to encrypt and decrypt information.

In symmetric key cryptography, the two communicating parties share a piece
of secret information, the key, and a public encryption system. Breaking a cipher
consists of “finding a weakness in the cipher that allows the cipher to be exploited

with a complexity less than brute-force [110]”.

2.2.1 Block Ciphers.  Block ciphers are symmetric key ciphers that operate
on groups of bits called blocks. The block cipher is keyed to a family of permutations
which operate on n-bits at a time. A permutation is selected from the family using
a key; the same key for both encryption and decryption [125]. Two commonly used
ciphers are the Data Encryption Standard (DES) and AES.

The rounds of a block cipher are usually based on substitution boxes (S-boxes),
bit permutations, arithmetic operations, and exclusive-ORs (XOR). S-boxes are non-

linear substitution tables that map input bits to output bits. They are typically the



only part of a block cipher that is non-linear [16]. An iterated block cipher applies
the round functions sequentially, taking the result of one round as the input to the

next round.

Modern block ciphers can be traced back to Claude Shannon [114]. Shannon
discussed the block ciphers based on the concepts of diffusion and confusion [2§].
Diffusion spreads the influence of all parts of the block cipher inputs to all parts of
the output, the ciphertext. For a block cipher, the inputs include the plaintext and
the key. Confusion attempts to make the relationship between the ciphertext, the
plaintext and the key complicated. In modern ciphers diffusion is typically achieved
using permutations or linear transformations. Simple operations are repeated multi-
ple times to achieve the desired level of security. Encryption/decryption operations

are key dependent because key material is introduced in each round.

2.2.2  Advanced Encryption Standard. — The Advanced Encryption Standard
(AES) was developed to replace the Data Encryption Standard (DES) and triple-
DES. The U.S. National Institute of Standards and Technology (NIST) conducted an
open competition to develop AES which was to be as secure as triple-DES but much
more efficient [39]. A block cipher called Rijndael was selected as the AES. Since
Rijndael was announced as the AES in October 2000, AES has been used throughout
the U.S. government and been adopted by banks, industry and governments around

the world.

AES is a symmetric block cipher that processes blocks of 128 bits using cipher
keys with lengths 128, 192 and 256 bits [88]. The basic processing unit for AES is
a byte. The AES algorithm operations are performed on a two-dimensional array of
bytes called the State. The State is a four row by four column matrix, with a byte in
each cell. One round of AES is composed of the following four different byte-oriented

transformations. [8§]:

1. AddRoundKey: The state matrix is XOR-ed with the round key.



2. SubBytes: Each byte of the state matrix is substituted for another byte value

based on a one-to-one non-linear invertible mapped called S-box,

3. ShiftRows: The last three rows of the state matrix are cyclically shifted column-

wise using different offsets,

4. MixColumns: The state matrix is mixed column by column using a linear

operation.

One round key, based on the original cipher key, is produced by the key ex-
pansion routine for each round. The final round does not include the MixColumns
operation and another AddRoundKey operation is performed to produce the cipher-

text.

SubBytes is the only non-linear step in each round. To resist linear and dif-
ferential cryptanalysis (Ref. Section [2.2.3.1)), the S-box was specifically chosen to
be non-linear and have a high algebraic complexity. Confusion is achieved using
carefully chosen S-boxes in AES. The S-box is based on the inversion over a field of
order 2% [39]. The S-box is defined in [88]. Since inversion and matrix multiplication
are computationally expensive, the S-box is frequently precomputed and stored in a

table.

A key expansion routine generates the key schedule containing each of the
round keys. The number of rounds is determined by the key size. AES performs 10,
12, and 14 rounds for key sizes of 128, 192, and 256 bits of key length respectively.
Eleven round keys are produced by the key expansion routine for AES-128. The first
round key is simply the cipher key and the subsequent round keys are calculated using

the following transformations.

1. SubWord: The SubBytes transformation is performed on each byte of the four-

byte input word to produce a four byte output word,
2. RotWord: Performs a cyclic permutation on the four-byte input word, and

3. AddRcon: Bit-wise XOR with the round constant.
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Figure 2.1 ~ AES Cipher Structure [88§].

The round constant is designed to eliminate symmetries [39]. For a given
implementation, the round keys are either calculated “on the fly”, or pre-calculated
and stored in memory. On devices with a low amount of memory the round keys
are generated as needed, writing over the previous round key in the process. More
detailed information on the structure of the key schedule for AES-128 is presented
in Chapter [l The N, = 10 rounds of AES-128 is shown graphically in Figure [2.1]
For conciseness the round transformations are abbreviated AddRoundKey (ARK),

SubBytes (SB), ShiftRows (SR) and MixColumns (MC) in Figure [2.1]

In a 32-bit microprocessor, the operations performed in the round transforma-
tion can be combined into a single look-up-table, called a T-Box to create a faster

implementation [38]. The 8 x 32-bit tables defined

[ 5B a]e02 | [ SB[a]e03 ]
SB lal SBa] e 02
TO [CL] = Tl [a] =
SB [a] SB [a]
| SBfa]e03 | | SB[d]
(2.1)
[ sBlg | [ SB[q] |
SBa] 03 SB al
T2 [CL] = T3 [(l] =
SBa] e 02 SB|a] 03
I SB [a] | _SB[a]oOQ_

combine the SubBytes, ShiftRows and MixColumns operations.
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The complete round transformation for a 32-bit block is calculated

e. = Tolaoe) ® T [a1,c1] ® Ty [agc—a] ® 15 [az—3] & kj, (2.2)

where ¢ denotes the column of the output e, a,. denotes the row r and column ¢ of
one byte of the input state a, and k; is corresponding 32-bit portion of the round key
for round j. Column indices are taken modulo N, = 4 for AES-128. For AES-128,

row r = n, mod 4 for byte number n, =1, ..., 16.

Hence, each of the four 32-bit portions of the round output are implemented
with four table lookups and four XORs. After performing the initial AddRoundKey,
the T-box implementation is used to calculate the first 9 rounds of AES-128. In the
10th round, since the MixColumns operation is not performed, the SubBytes and

ShiftRows operations are performed separately.

2.2.2.1 Modes of Operation.  Since AES only encrypts data one block
at a time, but the amount of data that must be encrypted is typically greater than one
block, modes of operation have been developed. A mode of operation is a scheme that
allows a block cipher to perform encryption and decryption on groups of plaintexts.
NIST special publication 800-38A lists the modes of operations recommended for
use with AES: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher
Feedback (CFB), Output Feedback (OFB), and (CTR) [87].

In ECB mode the message is divided into blocks and each block is encrypted
separately. The drawback of this approach is blocks with identical plaintexts are en-
crypted into identical ciphertexts. Patterns in the ciphertext may reveal information
about the message being sent. However, since each block is encrypted separately,

encryption of multiple blocks can be performed in parallel.

CBC, CFB, and OFB incorporate the output of previous encryption operations

and utilize initialization vectors. In CTR mode the input blocks, called counters,
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are encrypted using AES and the output of the encryption operation is XORed with
the plaintext to produce the ciphertext. Since other modes incorporate additional
information and restrict the order in which traces can be processed for side-channel
analysis, only ECB mode is considered in this dissertation. For side-channel analysis

using ECB mode allows for each trace to be analyzed independently.

2.2.3  Cryptanalysis of Block Cliphers. The goal of cryptanalysis is to
break ciphers. The goal of most attacks is to recover the encryption or decryption
key. Attacker’s capabilities may vary. In this regard, the amount of information an
adversary has access to changes the types of attacks that are possible. However it
is assumed the attacker has full knowledge of the encryption algorithm and the key
is always secret. Below is a taxonomy of cryptographic attacks adapted from [2§]

listed from most practical to most hypothetical.

1. Cliphertext-only: The adversary only has access to encrypted messages and
some information about the distribution of the plaintext messages. Most mod-

ern ciphers are not susceptible to this type of attack.

2. Known plaintext: In addition to the ciphertext, the attacker has full or par-
tial knowledge of corresponding plaintext messages. Since messages contain

common words or patterns, such as headers, this type of attack is realistic.

3. Chosen plaintext or ciphertext: In a chosen plaintext attack the adversary
has the ability to choose the plaintext messages to be encrypted. In a chosen
ciphertext attack, the adversary can choose the ciphertext to be decrypted and
has access to the corresponding plaintext. Although less common, this scenario

is still realistic.

4. Adaptive chosen plain text or ciphertext: The adversary adapts his choices of
the text to be encrypted and decrypted based on information learned during

the attack.
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5. Related Key: The adversary exploits a known relationship between keys (e.g.,
they only change by a certain number of bits). This attack is conducted in

conjunction with one or more of the scenarios above.

This attack model applies to both algebraic cryptography attacks and side-
channel analysis. Proposed attacks cover the entire range of attack types, but known

plaintext attacks are most common [28].

2.2.3.1 Linear and Differential Cryptanalysis. Linear cryptanalysis
and differential cryptanalysis are the most established methods of attacking block
ciphers. Statistical in nature, the attacker constructs probabilistic patterns through
as many rounds of the cipher as possible. The goal is to distinguish the cipher from

a random permutation and recover the key.

Linear cryptanalysis looks for the effective linear expression for a cipher [76]. A
linear approximate is constructed by building a statistical linear path between input
and output bits of each S-box. The linear approximate is the probability that S-box
inputs coincide with an S-box output bit. Since this method is based on statistics
developed for a specific key, it requires a large number of known plain-texts. Once
each S-box is described as a linear approximate the entire algorithm is represented

without any intermediate values.

Differential cryptanalysis analyzes the effect of particular differences in plain-
text pairs on the differences in corresponding ciphertexts. Using these differences,
probabilities can be assigned to possible keys to identify the most probable key [16].
Typically this type of attack is done with chosen plaintext, but can be done with

known plaintext if a sufficient number are available [76].

AES was developed to be resistant to both linear and differential cryptanaly-
sis. The wide tail strategy employed in AES maximizes the level of mixing within
each round to provide fast diffusion ensuring security against differential and linear

cryptanalysis [39)].
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Due to their statistical basis these attacks require enormous amounts of known
or chosen plaintext/ciphertext and are therefore impractical for complex ciphers [5].
Conversely, a relatively new form of attack, algebraic cryptanalysis, requires very

few, if any, known plaintexts.

2.2.3.2 Algebraic Cryptanalysis. Algebraic cryptanalysis breaks ci-
phers by solving polynomial systems of equations and exploiting the intrinsic alge-
braic structure of the cipher. Typically an attacker converts the encryption trans-
formation into a large system of low degree multivariate polynomial equations and
solves the system to reveal information about the key. A number of methods have
been proposed for solving these systems of equations. If a cipher is well constructed,
however, the system of equations will not be directly solvable. Since the systems
are typically very sparse, over-defined, and structured, it is believed they can be
solved faster than generic non-linear equation systems [5]. The used of algebraic

cryptanalysis against AES is discussed in Section [2.8]

2.3 Side-Channel Leakage

A side-channel is an unintended observable phenomenon that is correlated with
the internal state, operations or data being processed within a device. These cor-
relations can be exploited to recover the leaked information. Electronic devices can
leak information via a number of side-channels including power consumption [67],
acoustic, electromagnetic (EM) [2], and optical [116] emissions, as well as varia-
tions in computation time [66]. Although initial research focused on timing, power

consumption and EM emissions, optical analysis is becoming more practical [109).

2.3.1 Power Consumption. Digital circuits consume power during oper-
ation. The received energy is dissipated as heat and EM emissions. Many mod-
ern integrated circuits are based on Complementary Metal Oxide Semiconductors

(CMOS) transistor technology that are the basis of various types of devices includ-
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Figure 2.2 Lumped capacitor model of a CMOS inverter |73].

ing general purpose microprocessors and Field Programmable Gate Arrays (FPGAs).
The power consumption of CMOS devices consists of static power consumption and
dynamic power consumption. CMOS cells are based on complementary pull-up and
pull-down networks. For constant input signals, the pull-up and pull-down networks
never conduct at the same time. For the inverter shown in Figure P1 is con-
ducting and N1 is insulating when the input is set to GND. When the input is set
to Vpp, P1 is insulating and N1 is conducting. For constant input signals there
is only a small leakage current which contributes to the static power consumption,

Pstat = [leak’ : VDD l73]

Dynamic power consumption occurs when internal transistors change state.
However, the power consumed by internal state changes is much lower than the
power consumed by changing the CMOS cell output signal, therefore it can be ig-
nored. When the value of the cell output does not change, only static power is
consumed, but transitioning from 0 — 1 or 1 — 0 requires both static and dynamic
power. One component of dynamic power consumption is due to the CMOS cell
drawing a charging current from the power supply to change the output capacitance
Cp, during a transition. Cp, is the intrinsic capacitance of the CMOS cell and the
extrinsic capacitance of wires connected to subsequent CMOS cells. The second
component of dynamic power consumption is due to the temporary short circuit
that occurs when a CMOS cell switches and both pMOS and nMOS transistors con-

duct simultaneously. Dynamic power consumption is much higher than static power

15



consumption, in fact it is the primary source of power consumption. Furthermore,

dynamic power consumption is always data dependent [73].

There are many factors that affect the power consumption of a microprocessor,
including the instruction being executed and the memory address the instruction was
retrieved from. Additionally, the data memory address, and the contents of the data
being manipulated, and location of the data registers being accessed affect power

consumption [95].

2.3.2  Electromagnetic Emissions. Electromagnetic (EM) emissions are
caused by three types of coupling: conductive, inductive and radiative. This cou-
pling is caused by time-varying current flows due to transistors turning on and off.
Conductive coupling occurs when there is a physical conductive path between a
source and a receptor allowing the signal to be transmitted through the system.
Conductive emissions can be observed in the power supply, ground line, and cables

attached to the device |2,]20].

An EM field is created when current flows through a wire. When two conduc-
tors are separated by less than a wavelength, mutual-inductive coupling or magnetic
coupling can occur. Through EM induction, current flowing in one wire can induce
a voltage across the ends of another wire. Low frequency signals are typically trans-
mitted by inductive coupling. High frequency signals are more easily transmitted
by capacitive coupling, whereby energy is transferred between to device nodes due
to the capacitance between the two nodes. Inductive and capacitive coupling occur
when the conductors are typically less than a wavelength apart. Radiative coupling
occurs when the source and the receptor are separated by more than a wavelength;

part of the source circuit acts as an antenna and transmits undesired EM waves [93].

EM emissions from digital electronics can be either differential-mode or common-
mode radiation. Differential-mode radiation is generated by a flow of current around

loops formed by conductors in the circuit during the circuit’s normal operation.
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The loops act as small antennas that primarily radiate magnetic fields. Differential-
mode radiation emission is proportional to the loop area, frequency squared, and the
differential-mode current in the loop. Common-mode radiation is caused by para-
sitics in the circuit and unintentional voltage drops in the conductors. Differential-
mode currents flowing through the ground impedance produce a voltage drop in the
device ground system, causing some grounded circuits to rise above the real ground
potential. Bond wires and pins connected to the affected ground act like antennas ra-
diating components of the common-mode potential as electric fields. Common-mode
radiation is proportional to frequency, cable length and the common-mode current

in the circuit [93].

2.3.2.1 Direct and Unintentional Emissions.  The EM emissions from
a device can be separated into two broad categories: direct and unintentional [2].
Direct emissions result from of intentional current flows, which consist of short bursts
of current with sharp rising edges. These short bursts result in emissions observable
over a wide frequency band. Components of the emissions at higher frequencies may
be more useful if less interference or noise is present at higher frequencies. Isolating
direct emissions can be very difficult in complex circuits due to interference by other
signals [1]. To capture direct emissions with minimal interference, tiny near-field

probes should be placed as close as possible to the signal source.

Modern CMOS devices have electronic and EM field coupling between compo-

nents in close proximity, producing compromising unintentional emissions [2]. Mod-
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ulations of a carrier signal, such as the harmonic rich “square-wave” clock may be
produced within the device. As a result, odd harmonics of the clock can be strong
carriers of modulated signals. Non-linear coupling between a carrier signal and a
data signal can result in an amplitude modulated signal emanating from the device.
The coupling between circuits can result in angle (or frequency) modulated signals.
The modulated signals can propagate further than the direct emissions enabling at-
tacks from further distances. Once collected, the data signals can be recovered using

amplitude and angle demodulation techniques [2].

2.3.2.2  Exploiting Electromagnetic EFmissions.  Each current carrying
component of a device produces EM emissions based on its physical and electrical
characteristics as well as the data being processed [2]. An attacker that can analyze
emissions and determine how the data being processed corresponds to the emissions
would be able to compromise the system. As a result, methods originally developed

for power analysis have also been applied to EM Analysis (EMA) [47].

Since power measurements are collected by placing a resistor in series with
the power or ground of the cryptographic device physical access to the device is
required. EM measurements are less invasive because physical contact with the
device is not necessary. Even so, to reduce noise and increase the signal strength
EM measurements are typically performed as close as possible to the chip using a
near-field probe. Ideally, the probe is placed near the part of the device with the
most intense data-dependent signal. This is typically near the CPU, data lines or
power supply lines [47]. Although no physical contact to the device is required, it is
assumed the attacker has the ability to place the probe in the near-field.

The phenomenon of compromising power and EM emissions has been known
and exploited for decades. Declassified TEMPEST documents reveal vulnerabilities
of United States cryptographic systems to EM analysis in 1962 and Soviet guide-

lines for radio frequency interference indicated they recognized the threat before the
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United States [20]. Academic research on the vulnerability of cryptographic devices
to EM analysis has flourished in the last decade when attacks performed using power
analysis were extended to collected EM emissions [47,94]. Since power and EM at-
tacks are related and many of the same techniques apply, attacks are not grouped

by side-channel and are presented in Section [2.4

2.3.83  Other Side-Channels.  Although the power and EM side-channels are
the most commonly attacked, other side-channels have been used to attack crypto-
graphic systems. By carefully measuring and analyzing the amount of time required
to perform a cryptographic operation, a secret key can be determined when the
length of the operation depends on the secret key [66]. The optical side-channel
has been used to enhance side-channel attacks. By observing photon emissions from
switching of transistors, the active area of an integrated circuit can be identified to
allow targeted EM and power attacks [116]. Attacks based on acoustic emissions
have been demonstrated on desktop computer CPUs [111], keyboards [10,/138] and

dot matrix printers [51].

Differential fault injection extends existing side-channel analysis methods by
actively injecting faults into a system in the hope the internal state of the system
will be revealed. Faults can be induced in a variety of ways including over-clocking,

powering at unsupported voltages, or even targeting the device with radiation [17].

2.3.4 Leakage Models. At the transistor level the static and dynamic
power consumption can be modeled with approximations that describe the power
consumption well. For more complex circuits, power models and simulations can
estimate the power consumption, efficiency and security. Highly accurate models
require a high level of memory, time to simulate, and intricate knowledge of the
device. Analog simulations use transistor netlists and circuit parasitics to calculate
power consumption. Precise circuit parasitics will result in a precise simulation.

Logic level simulations requiring fewer resources are less accurate, but still require
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a netlist containing all logic cells in the circuit and the connections between them.
More accurate logic level simulations will contain signal delays, rise and fall times
and accurate power models for each cell. Analog and logic level models required

detailed knowledge that is typically only available to the device designers [73].

Models based on Hamming Weight and Hamming Distance are presented in
the next two sections. Although these models are not as accurate, they are useful
because they do not required detailed information about the layout and device being

used.

2.3.4.1 Hamming Weight Model. A model based on the Hamming
Weight (HW) assumes the power consumption is proportional to the number of bits
equal to 1 in the processed value and does not require any information about the
values processed before or after [73]. Although CMOS power consumption depends
on whether a transition occurs and not on the values being processed, HW models
can still be useful for some applications. The utility of each model depends on the

implementation.

In the best case, the preceding or succeeding values are known, for example,
a precharged bus on a microprocessor. If all of the bits of a data bus are set to 0
before the value of interest is placed on the bus, the HW is determined only by the
values being placed on the bus [7§]. Figure shows an example of how the power

consumption changes based on the HW of the data being processed.

2.8.4.2  Hamming Distance Model. Hamming Distance (HD) is the
number of bit-level transitions (0 — 1 or 1 — 0) that occur during a certain interval.
As discussed above, power consumption is primarily caused by the output of logic
cells transitioning from one state to another. The HD model is a simplified power
model based on a count of the transitions over a period of time. For simplicity
it is assumed that the power required for transitions from 0 — 1 and 1 — 0 are

equal. The parasitic capacitances of wire and cells and the static power consumption

20



e Hamming Weight

8§ ----- Wi=T - oo e e e

I ) T 1 - S

6 W oo W_2_‘_5____W3=4 - Wy=4 - -

SAR | N W | A - <A () B

270 S N IS | S I

0,,,, - J - - 4% - - - A S s I
Power Consumption J

Figure 2.4 HW information revealed by the a power consump-
tion side-channel |78§].

are also ignored for simplicity. The HD of two values vy and vy is equal to the
HW of vy @ v;. Since HW is equal to the number of bits that are set to one,
HD(U(), ’Ul) = HW(’U() D Ul) [73]

To calculate HD, consecutive data values processed in part of a circuit must
be known or guessed. HD can be effective for modeling the power consumption of
registers and buses when the values placed in the register or on a bus are deter-
mined by the algorithm being attacked, known plaintext or ciphertext value, and
key guesses. Advanced HD models assign the power consumption for the transitions
between 0 — 1 and 1 — 0 differently. Figure[2.5|shows how the number of transitions

effects the power leakage of an 8-bit smartcard microcontroller.

The worst case is when the preceding and succeeding values are random and
uniformly distributed. If this occurs the HW and HD models will not be highly
correlated with the power consumption. However, since the power consumed for
the transitions between 0 — 1 is not truly equal to the power consumed by 1 — 0
transition, the HW model will still be weakly related in some way to the actual

power consumption |73].
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Figure 2.5 HD power leakage from an 8-bit smart-card micro-
controller performing a load operations [7§].

2.3.4.8  Applying Power Models to Electromagnetic Emissions.  Com-
bining Ohm’s law (I = V/R) with with Joule’s law (P = IV'), the power in a resistive
circuit current is directly proportional to the current squared (P = I*R). Tt follows
that models that describe power consumption also correspond with EM emissions.
If the power consumption of a device is data dependent, the EM emission will also

be data dependent.

Before introducing how these models can be used to extract information from
a device, it is helpful to understand the cipher being targeted by the attacks. Block
ciphers are presented in the following section. Side-channel attacks that used HW

and HD models are introduced in Section [2.4]

2.4 Side-Channel Attacks

Modern cryptographic ciphers, including AES, were developed assuming that
the hardware used to implement them was secure. Given that assumption, the focus
was on proving the underlying mathematical structure of the cipher is computation-
ally secure. When developing a cryptographic cipher it is generally assumed that the
cryptographic systems behave like a black box in which plaintext is securely turned

into ciphertext.
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Rather than attack the cryptographic algorithm itself in the hopes of finding
a mathematical vulnerability, side-channel analysis targets the devices used to im-
plement the cryptographic algorithms. The goal of Side-Channel Analysis (SCA) is
to learn information about the internal state, data or operations being performed.
Side-channel attacks can also be used to bypassing or compromise the system’s se-

curity.

2.4.1 Types of Implementation Attacks.  Attacks on cryptographic devices
can be active or passive [73]. During a passive attack the device performs its nor-
mal operations with little or no interference by the attacker. In an active attack,
the device, its environment or inputs are manipulated to make the device behave

abnormally. The abnormal behavior is analyzed to compromise the secret key.

Attacks can be invasive [§], semi-invasive [117] and non-invasive. In an inva-
sive attack there is no limitation to what can be done to the device. The devices
are typically depackaged to access specific components of the device using a probing
station. If the probing station only observes the component, the attack is passive.
If signals in the device are changed to alter the function of the device, the attack
is active. Invasive attacks typically require expensive specialized equipment. In a
semi-invasive attack the device is depackaged but, no direct electrical contact is made
with the chip surface. Active semi-invasive attacks may induce faults using X-rays,
EM fields, light or lasers. In a non-invasive attack, the device is attacked without
altering the device leaving no evidence of an attack. Active non-invasive attacks
attempt to cause faults without depackaging the device. The faults can be intro-
duced by clock glitches, power glitches or by changing the operating environment.

In general, side-channel attacks are non-invasive or semi-invasive.

2.4.2 Adversary Models.  Similar to the cryptanalysis model in Section|2.2.3|
the abilities and knowledge attackers possess varies. The power of an adversary is

determined by the amount of knowledge and control he theoretically has over the
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cryptographic system during a particular attack. A weak attacker will have very

restricted access, while a powerful attacker will have complete control of the device.

Powerful attackers are able to choose the number and contents of device inputs,
and are able to observe the encryption/decryption operation in an ideal environment.
Measures may be taken to optimize the quality of the observed side-channel, such
as decapsulation and adding a hardware trigger to precisely determine when the
cryptographic operation begins [73]. In extreme cases, the attacker may have the
ability to load new keys into the device or a similar training device. The attacker
may also collect multiple traces for each plaintext and average the traces together

to reduced environmental noise in the trace.

A weak adversary has less control over the device. The adversary has the
ability to observe the device being attacked in some way, but no special measures
are taken to improve the quality of the collected traces. As a result, the traces may
be noisy and timing may be poor. Typically it is assumed that the adversary is able
to collect either the plaintext or the ciphertext from the device. In extreme cases,

only the side-channel can be observed.

2.4.8 Power and EM Analysis.  The introduction of power analysis in 1999
by Kocher et al. gave rise to a new field of side-channel attacks and countermea-
sures [67]. By observing and analyzing the power consumption of a device performing
a cryptographic operation, information about the device’s operation and data the
device is processing can be determined. A side-channel attack targets a vulnerability
in the implementation rather than attacking the cryptographic algorithm. Depend-
ing on the implementation and resolution of measurement devices an attack may be
performed with a single trace. A trace is a set of side-channel emission measurements
over the length of the cryptographic operation of interest. Any observable behavior
that can be correlated to the internal operation of a device can reveal information

about the device.
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Figure 2.6 SPA analysis from an RSA implementation [68].

A large number of attack types have been developed, but the three most impor-
tant distinguishing characteristics are the analysis approach, the number of traces

used, and the number of phases involved in an attack.

2.4.4 Simple Side-Channel Analysis.  Some cryptographic implementations
are susceptible to Simple Side-Channel Analysis (SSCA) in which information about
the device’s operation and key material is determined from direct interpretation of
the power or EM emission traces. In [67] Kocher et al. introduced simple power
analysis (SPA) noting that weaknesses in the implementation of an algorithm such as
conditional jumps based on key bit’s value and computational intermediates, reveal
information about the key. Processing time may vary for various reasons including
conditional branches, cache misses, pipeline stalls, interfacing with memory and
external devices [66]. As a result, SPA can determine the sequence of operations for
a cryptographic implementation. If the order or length of operations are dependent
on key bit values, the value of the key bits may be determined from the power trace.
The techniques used for SPA were extended to EM emissions in [94] and called simple

EM power analysis (SEMA).

Figure [2.6] shows power traces from a device implementing public-key cryptog-
raphy algorithm RSAH [68]. In this implementation, a square operation is performed

in every iteration of the exponentiation loop but a multiplication is only performed

!The RSA algorithm is named for Ron Rivest, Adi Shamir and Leonard Adleman [33].
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when a bit of the exponent is 1. Each 1 bit in the secret key appears as a shorter
bump followed by a taller one, each 0 bit appears only as a shorter bump. The key

can be read directly from the measured power consumption.

2.4.5 Differential Side-Channel Analysis. Even when SSCA is not pos-
sible, differential side-channel analysis (DSCA) can be used whenever a physical,
measurable property of the device depends on the data it processes. Differential
Power Analysis (DPA), introduced in [67], takes small variations in power consump-
tion between multiple traces to find correlation between the intermediate values in
the cryptographic computation and the measured power consumption. Although
the variations are small, by collecting a large number of traces, the implementation
can be broken using statistical functions tailored to the target algorithm and de-
vice [67]. A DPA attack uses the power traces from multiple observed encryption
operations, typically with different plaintext/ciphertext. Using the recorded plain-
text or ciphertext and traces from the operations, the attacker calculates differential
statistics based on a key block guess. DPA is capable of extracting information even
when the variations in side-channel are too subtle to be identified using SPA. The
techniques used in DPA were extended to EM emissions and called differential EM
analysis (DEMA) [94]. The step-by-step process for conducting model-based DPA is
explained in Section [3.4] Differential attacks typically assume a powerful adversary
that can arbitrarily change the plaintext to perform desired encryption operations.
At a minimum the attacker must have knowledge of the plaintext or ciphertexts

associated with each trace.

Differential attacks can be used even if detailed knowledge of the implemen-
tation is not known. While SSCA requires the attacker recognize when certain
operations occur in side-channel leakage, DSCA techniques identify the points in
time when side-channel leakage is correlated with a hypothetical intermediate values
in the cryptographic operation. As a result, the attacker only needs to know the

underlying algorithm so that hypothetical intermediate values can be calculated, to
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carry out an attack. Even when the algorithm is not known, an attacker can perform
SSCA and DSCA to learn details about the implementation sufficient to perform a

successful attack [73].

The number of observations required to successfully perform DSCA depends
on the implementation, statistical technique, environmental factors and countermea-
sures protecting the device. The number of traces required can vary from a few dozen

to millions [73].

2.4.5.1 Statistical Methods. — DSCA uses statistical methods to make
inferences about the data processed on the device. Using multiple traces, the sta-
tistical method reduces the noise from measurement error and non-data dependent
emissions while amplifying the data-dependent contributions. DSCA can detect very
small correlations provided a sufficient number of traces are collected and analyzed.
A number of statistical methods have been applied to DSCA to determine how the

data being processed is correlated with side-channel emissions.

DSCA techniques attempt to identify an affine relationship between the pre-
dicted leakage and one or more columns of the observed matrix data. In the observed
data matrix each column corresponds to a particular time sample in relation to the
start of a cryptographic operations and each row corresponds to a possible key value.
When the key hypothesis is correct, there is a linear relationship between the hy-

pothesized leakage value based on the leakage model and the observed leakage.

The original method, proposed in [67] and formalized by [77,/78], known as
difference of means (DoM), takes traces collected for known plaintext and divides
the traces into two groups according to the intermediate value predicted by a key
guess and the trace’s corresponding plaintext. If the average power trace from each
group differs from each other in a significant way, it is likely the key guess is correct.

Key guesses can be made at the bit level, byte level or for multiple bytes at a time.
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Figure 2.7  Five differential traces for a DPA test predicting
the least significant bit of an S-box output. Traces
for key guesses 101 to 105 are shown. Key guess
103 is the correct value [68].

The architecture of the device used to implement the cipher and the way in which

it was implemented will effect which type of attack will be most effective.

The use of Pearson’s correlation coefficient was first proposed in [22]. Using
Pearson’s correlation coefficient, the highest correlation coefficient indicates the cor-
responding sub-key guess most likely to have produced the observed results. The
location of the peak indicates the time at which the targeted intermediate value
is manipulated. Figure shows a plot of the correlation coefficient for five sub-
key hypotheses. Since the plot for sub-key 103 contains the highest peak, it is the
sub-key most likely to have produced the observed trace. Similar keys can produce
high correlations, leaving some ambiguity. If it is not clear which peak is correct,

additional traces can be collected or multiple possible sub-keys can be identified.

A comparison of four DSCA distinguishers was conducted in [40]. In addition
to the DoM and Pearson’s correlation coefficient, the Spearman’s coefficient [15],
variance test [121], and Student’s T-test [34}53|] distinguishers were evaluated using
power traces collected from a hardware implementation of DES. Although the results
are likely implementation dependent, Pearson’s correlation coefficient had the highest

first-order success rate. That is, the sub-key identified by Pearson’s correlation
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coefficient was most often correct. However, in cases where Pearson’s correlation
coefficient did not identify the correct sub-key as the most likely key, the correct
sub-key was ranked low. DoM yielded the highest guessing entropy. When the first-
order DoM guess was wrong, the correct sub-key was still highly ranked. Guessing
entropy is an important consideration when a SAT solver is available to evaluate the

validity of sub-key guesses.

A more precise definition of Pearson’s correlation coefficient is presented in

Section [3.4.11

2.4.6  Profiling Attacks. Profiling attacks differ from standard SPA and
DPA attacks because they require two stages rather than one. The first stage is
a profiling stage which is used to obtain a priori knowledge on the side-channel
leakage for a specific device. Unlike standard DPA attacks, it is possible to conduct
a profiling attack without power consumption models that accurately predict the

side-channel leakage [53].

The key assumption for a profiling attack is that a powerful attacker has access
to a training device, identical to the target device, over which he has full control. The
training device is used to create a precise multivariate distribution of the device’s
side-channel leakage for each sub-key dependency [53]. It is assumed the side-channel
leakage of the device being attack is sufficiently similar to the leakage of the training

device. The training phase is sometimes referred to as the offline phase.

During the attack, or online, phase the distributions calculated during the
profiling phase are used to classify side-channel observations from a target device.
The attacker does not need to have control of the device, but must be able to observe
the side-channel leakage. The trace collected from the target device is classified to
determine the most likely sub-keys. Profiling attacks are considered to be very

powerful because they utilize all information in each side-channel sample [24].
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A number of different profiling attacks have been proposed including template
attacks [24] and the stochastic model attack [108]. Chari et al. observed that using
multivariate statistics allows for stronger attacks [24]. They believe the new attack,
which they called a template attack, is the strongest side-channel attack possible
from an information theoretic sense. Template attacks use all information present in
each portion of a side-channel trace for classification, making them a strong attack
even when only a few traces from the device being attacked are available. Rather
than try to eliminate or reduce noise, the noise present in the side-channel emission
is assumed to be key dependent and precisely modeled. The profiling stage creates
mean and covariance matrices for each of the possible sub-keys. The profiling stage
allows attacks to be conducted using as little as one trace. Agrawl et al. expanded
template attacks to differential power analysis, allowing multiple traces, or even

side-channels, to be incorporated into the template [4].

Building templates is the optimum way to describe the side-channel character-
istics of a device. When the side-channel leakage fits a multivariate-Gaussian model
a template attack is the optimal DPA attack because it minimizes the probability
of error when determining the key. This optimality is only achieved when the ideal
data dependent points of interest in the encryption operation are located and used

to build the template [73].

The efficiency and effectiveness of stochastic model attacks [108] and template
attacks [24] are evaluated in [53]. Unlike template attacks, the stochastic method
developed by Schindler et al. presumes that side-channel noise is independent of
the sub-key and it is not incorporated into the model. The stochastic method is
more efficient, but is not more effective than template attacks |108]. The stochastic
model is useful when there is a bound on the number of traces that can be collected
during profiling; template attacks are more effective when there are enough traces

to construct a full set of templates.
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Agrawal et al. introduced the single-bit template attack and template-enhanced
DPA attack [3]. Rather than building templates for each of the possible 256 key-
byte values, templates were created to attack a single bit in an intermediate value.
The single-bit templates are built from peaks observed in DPA attacks and predict
the value of single-bit with high probability using only one side-channel observation
during the attack phase. An attacker can build a large number of single-bit tem-
plates, each of which can be used to identify the values of individual bits during
the attack phase. With enough precomputed templates, the entropy of the key is
reduced significantly so a brute force attack is practical. The single-bit template
attacks can be incorporated into a template-enhanced DPA attack which was able

to defeat standard random masking techniques on smart cards.

Renauld et al. explore the increasing variability in device leakage for cryp-
tographic devices with features sizes of 65-nanometers and smaller [103]. Using a
prototype S-box implemented in a 65-nanometer low-power CMOS technology, they
demonstrate that with reduced feature size cryptographic devices may not follow
common leakage models. Additionally, they show the increased variability leads to
degraded leakage models and template attack performance when using one device
to attack another. To account for inter-chip variability, they propose training across
multiple devices, but note that incorporating the inter-chip variability into the tem-

plate makes the models less accurate when attacking any individual chip.

A powerful unknown-plaintext, unknown-ciphertext template attack based on
HW templates, which incorporates an algebraic description of AES, is discussed in

Section [2.8.4.1 The steps required to perform a template attack are discussed in

Section

2.4.6.1 Identifying Important Components of the Trace. Templates
consist of a vector of means and a matrix of covariances for each class. Templates

are constructed for specific points in the encryption operation related to the tar-

31



get operation. Since the size of the covariance matrix grows quadratically with the
number of points included in the template, and calculating the observation proba-
bility involves a matrix inversion, the number of points included in each template

dramatically effects processing time [99).

It is computationally infeasible to include all of the points in each trace to
construct each template. Ideally, only points that distinguish between the different
classes considered by the template attack will be included. DSCA methods can be
used to identify these points. One option is to sum the absolute differences of mean
traces and select the highest points [24], or use the cumulative difference between the
mean traces |99] ensuring only one point per clock cycle is chosen. While heuristic
approaches for selecting these points have been effective, a number of more systematic

approaches have been developed.

Assuming the majority of information content of a leakage trace is contained at
the time instances of maximum inter-class variability, Principal Component Analysis
(PCA) can be used?] [9]. PCA is an orthogonal linear transformation that maximizes
the inter-class distance when projecting the data into a lower-dimensional space. As
a result, the dimensionality of the data set is reduced while retaining the majority of
the information. An alternative linear transformation is Fisher’s Linear Discriminant
Analysis (LDA), which maximizes the ratio between inter- and intra-class variance.
While for some implementations LDA has been shown to be more effective than

PCA, it is substantially more computationally expensive then PCA [122].

Archambeau et al. used PCA to perform template attacks in the principal sub-
space of the mean traces for each class [9]. They applied PCA to collected data from
an implementation of RC4 running on a PIC 8-bit micro controller and an FPGA im-
plementation of AES. Traces with 300,000 time samples were collected from the PIC.

Using heuristic methods, 42 test samples were selected for building the templates

2Depending on the field of application, PCA is also known as the Karhunen-Loeve transform,
the Hotelling transform or proper orthogonal decomposition.
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and the average classification success rate was 91.8%. Using PCA, 7 components
were identified and proved to be sufficient to ensure a correct classification of 93.3%.
For the FPGA, traces with 500,000 time samples were collected and PCA identified
20 components. Using 128 encrypted messages the average classification success was
86.7%. Archambeau et al. did not test the performance of the template attack using

heuristic methods to choose the test samples.

Preprocessing leakage traces using PCA provides a systematic way to consol-
idate/identify the most important features of a class, and may allow for superior
classification results using a smaller number of test points. The computational ef-
fort required to build the templates is thereby dramatically reduced. PCA identifies
which components account for the majority of the variance between classes. How

PCA is used in this research is explained in Section [3.6.5.1]

2.5 Countermeasures

Numerous side-channel analysis countermeasures have been proposed. In prac-
tice, protecting implementations against side-channel analysis is difficult and expen-
sive. All countermeasures attempt to make the power consumption of a crypto-
graphic device independent of the data being processed. Since most countermeasures
only increase the cost of attacking a device without fully protecting it, the cost of
implementing the countermeasures must be compared with the additional security it

provides. Countermeasures can be broken into two categories, hiding and masking.

2.5.1 Masking. Masking attempts to randomize the intermediate values
being processed by the cryptographic device changing the power consumption char-
acteristics of the device [73]. Masking techniques are based on various secret sharing
schemes [23]54]. Masking does not reduce the side-channel emissions, but rather
attempts to make the leaked intermediate values independent of the key. A mask is

used to conceal the value of intermediate values. Since the mask is generated within
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the cryptographic device and varies from execution to execution, it is unknown to
the attacker. A masked intermediate value v,, is an intermediate value v concealed
using a random value m such at v,, = v*m, where % is the masking operation. Log-
ical XOR (boolean masking) and modular addition and multiplication (arithmetic
masking) are typical masking operations. To prevent leakage of actual intermediate
values, the masked values are processed by the algorithm, and the final result is

unmasked [73].

2.5.2 Hiding. Hiding attempts to make the power consumption of cryp-
tographic devices independent of the intermediate values and independent of the
operations performed. The signal-to-noise ratio (SNR) can be decreased by mak-
ing changes to the implementation of the cryptographic algorithm or hardware via
hiding techniques. Hiding includes algorithmic countermeasures to randomize the
intermediate results processed during a cryptographic operation. Common hiding
techniques include inserting dummy instructions, random process interrupts, clock
skipping, randomly changing the clock frequency and including multiple clock do-

mains in the device [73].

Hiding techniques, in general, attempt to make the timing of the implemen-
tation non-deterministic. Correctly implemented, these techniques are very effec-
tive against first-order DPA, but can easily be defeated using higher-order DPA
attacks [72]. The operation of the circuit can be modeled as a finite state ma-
chine [63] and the randomization can be analyzed. Resynchronization techniques
can be used to bypass the randomizations. Furthermore, randomization techniques

require additional resources and clock cycles to implement, making them expensive.

The SNR can also be decreased by adding noise. Adding noise does not provide
any fundamental protection against side-channel analysis, but may make an attack
more difficult. The data dependent signal is still being generated by the device and
can still be recovered [123]. Noise is typically generated by adding additional logic
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to the device to perform unrelated, ideally random, operations. As a result, noise
generation may be expensive and increase the power consumption of the device. The
frequency of the generated noise must be matched to the frequency of the information
containing signal, otherwise, the noise can be detected and filtered from the collected

trace [6§].

FPGA implementations are more difficult to exploit for two reasons. First, per-
forming parallel computations in hardware significantly reduces the SNR. Second,
FPGAs operate at higher frequencies, making side-channel data collection more dif-
ficult. Combining pipelined and unrolled implementation, or unrelated operations,

on the same device is an effective way of efficiently increasing noise [123].

Some countermeasures are algorithm independent. These countermeasures im-
plemented in hardware include special leakage resistant logic styles, with the goal of
reducing SNR. To gain resistance, leakage resistant logic styles try to equalize power
consumption for all operations. As a result, implemented ciphers required twice as
much space and power consumption is doubled, making this approach less practi-
cal [98]. For dynamic and differential logic, the output capacitance is independent
of the input transitions. Power consumption differences are due to parasitic capac-
itances in the designs and can only be predicted with transistor-level knowledge of
the circuit. Without this knowledge an attacker is not able to create a precise power

consumption model, however, template attacks can still be used |123].

Although FPGAs are not constructed using dynamic differential logic, gate
level designs with the same properties can be implemented on an FPGA [131]. A
customized design flow is used to implement AES using dynamic differential logic on

an FPGA requiring a 50% time delay and a 90% increase in slice utilization.

2.6 Collecting Electromagnetic Emissions

To reduce the noise present in the traces, EM side-channel collections are usu-

ally performed in the near-field [73]. Although a number of far-field attacks have
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been demonstrated, they often use simplified versions of cryptographic implementa-

tions [64], specialized collection processes, or are limited to SEMA [2].

For example, with the use of a directional antenna and 30dB pre-amplifier
Kim et al. were able to successfully attack an implementation of a single S-box on a
FPGA using a hardwired trigger for timing [64] from 1 meter away. Agrawal et al.
performed SEMA attacks on an Intel-based server containing a commercial PCI bus
based SSL accelerator from 40 ft away using biconical and log-periodic wide-band

antennas as well as hand-crafted, high-gain Yagi antennas [2].

2.6.1 Electronic Noise.  Power and EM traces are subject to noise and as
a result repeated traces for constant inputs will be different. Noise can be catego-
rized as electronic noise, and switching noise [73]. Although steps can be taken to
reduce electronic noise, every trace will contain some noise from the power supply,
clock generator, conducted emissions from other components connected to the device
under attack, and radiated emissions from other electronic devices near the device.
Additionally, since the side-channel data is digitized for analysis, quantization noise
is also present. In addition to the power consumption and EM emissions from the
circuit of interest during the attack, many other operations may be conducted simul-
taneously on the device. The variation in the power and EM traces caused by cells
not involved in the operation of interest, and therefore not relevant to the attack, is
called switching noise. DPA and DEMA techniques, which perform signal process-
ing and statistical estimation on a collection of traces, can mitigate measurement
noise. Hundreds or thousands of traces are often required to perform this type of

attack [73].

2.6.2 Improving Collections. A powerful adversary will be able to take
measures to improve the quality of collected traces by various means. Traces are
typically collected with a high speed digital capturing oscilloscope, due to their

ability to sample and store the side-channel at a high sampling rate. Software-
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defined radios (SDRs) have been used to perform SEMA attacks on unprotected
implementations of RSA [61], but no differential attacks have been demonstrated

using SDRs. The use of SDR for differential side-channel analysis is introduced in
Chapter [7]

2.6.2.1 Hardware Trigger. Adding a hardware trigger to the cryp-
tographic device being attacked can dramatically improve the timing of collected
traces. The cryptographic device is modified by the attacker or designer to signal
immediately before the encryption operation begins, allowing the capturing digital
oscilloscope to trigger at the same time relative to the start of each encryption op-
eration. As a result, corresponding samples in each trace correspond to the same

portion of the encryption operation.

2.6.2.2 Clock Signal. ~ The harmonic content of a square wave is deter-
mined by its rise time and not its fundamental frequency. EM compatibility guides
recommend using a dithered clock which intentionally varies the clock frequency by
a small amount to spread the emission out in the frequency spectrum. This will
reduce the strength of the emission at any one frequency [93|. If a powerful attacker
has the ability to use a clock with a quicker rise time than the FPGAs internal clock,

the concentration of the leakage at clock harmonics can be increased [73].

2.6.2.3 Cartography. Compared to power analysis, EM analysis has
the advantage of being able to target the leakage of specific areas of a chip. Using
small probes placed in the near-field allows the EM emissions from specific parts of a
device to be isolated. Every element on the FPGA will contribute in some way to the
captured EM field. Efforts to isolate the leakage from specific portions of a device
have been shown to reduce the number of traces needed to perform a successful
attack. Using near-field probes, EM cartography was demonstrated to enable more

efficient attacks on FPGAs in [107].
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To find the location on the device with the highest data-correlated emissions,
a scan of the surface can be performed. Creating a coarse resolution EM leakage
map allows physical locations on the device with greater leakage to be identified
and targeted. It has been shown that EM emissions correlated to the data being
processed is not restricted to the area on the device where the data is being processed.
For example, leakage was observed to originate from both the encryption processor
implementation on the FPGA and from a surface mount ceramic capacitor located
outside of the FPGA in [107]. Power, ground networks, clock paths, and buffer trees
all leak information. By targeting the leakage with a directional near-field probe, the
number of traces required to attack the device was significantly reduced compared

to collections made with larger probes.

2.6.2.4 Benefit of Isolation.  To reduce interfering signals from other
devices, Gandolfi et al. placed the cryptographic device into a Faraday cage [47].
They determined that isolation of the device had little effect on the noise present
in the readings. Furthermore, even if the device and probe can be isolated, the
remaining trace collection equipment is still subject to ambient noise and is prone
to cross-talk. This result conflicts with the benefit of isolation reported by Man-
gard ( |70] as cited in [40]). All isolation studies were conducted using near-field

measurements.

2.7 Pre-Processing Processing Techniques

In cases where special efforts to improve the quality of collected traces cannot
be made, pre-processing can improve the effectiveness of side-channel analysis. The
techniques in the following sections identify the frequencies which leak information,
improve alignment of traces and reduce the complexity of analysis through data

reduction.
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2.7.1 Detecting Compromising Frequency Components. One technique to
detect potentially compromising emissions is to use a wide-band receiver tuned to
a specific frequency. High-end TEMPEST receivers can scan across a range of fre-
quencies to identify potential compromising emissions, and demodulate the signal
using AM and FM demodulation. The demodulation can also be performed using

software.

In [136] a software radio was constructed using the Universal Software Radio
Peripheral (USRP) and GNU Radio project. The software radio was able to scan
from DC to 2.9 GHz using various daughterboards. The GNU radio project which
includes libraries for processing AM and FM modulation and performing signal pro-
cessing techniques such as filtering and Fast Fourier Transform (FFT) processed
the collected signals. Combining the USRP with the GNU Radio project, a wide-
band receiver and a spectral analyzer with software-based FFT computation was

constructed [135}136].

If a signal is composed of irregular peaks and erratic carrier frequencies, meth-
ods such as spectral analyzers and scanning with wide-band receivers may fail to
identify some direct and indirect EM emissions [136]. Signal analyzers require con-
stant or long duration carrier frequencies and since the scanning process is not in-
stantaneous, emissions may be missed by a wide-band receiver. Typically when a
frequency is identified using one of these methods, the frequency is isolated using
narrow band antenna and filters. This method is not ideal because the signal is
captured at base band and with limited bandwidth. Important information at other

frequencies may be lost, reducing the entropy of the signal.

Meynard et al. showed a SEMA attack against an RSA processor implemented
on a side-channel Attack Standard Evaluation Board (SASEBO) FPGA board can
be enhanced using a hardware demodulation receiver [79]. Starting with a SEMA
resistant implementation of RSA, the raw recorded EM traces do not allow discrim-

ination between the square and multiply operations. To determine the appropriate
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demodulation frequency, the spectral signature of each operation was found by isolat-
ing each operation and performing a FFT. Using mutual information techniques [52],
a metric for the amount of information contained at different frequencies was calcu-
lated and multiple frequencies with high information content were identified. Using
the frequencies identified with mutual information analysis in the frequency domain
as the demodulation frequency, the start of square and multiple operations are eas-
ily identified in the demodulated signal. In addition to identifying harmonics of the
clock frequency, other frequencies believed to be caused by direct emissions were

found to have high information content [79)].

The use of signal processing to enhance the effectiveness of side-channel attacks
is introduced in [13]. A leakage model identified which frequencies contain useful
information by examining the Discrete Fourier Transform (DFT) of the collected
traces. Since power consumption in CMOS devices is mostly due to signal transitions
and power consumption is proportional to the voltage swing and operating frequency
of the device components, the magnitudes of the clock harmonics in the DFT are
significantly greater than other frequencies. The information leakage is amplitude
modulated on harmonics of the clock. To improve the SNR by removing components
of the signal not correlated to the information, a filter was designed to remove signal

components not related to the clock or clock harmonics.

Using the DF'T of the power traces, the harmonics of the clock frequency were
identified. After locating the main clock and each significant harmonic using the
DTF, 500kHz wide passbands were centered around each. The Chebyshev windowing
technique was chosen to implement the bandpass filters due to its rapid side lobe
roll-off and uniform side lobe attenuation. The filtering method was validated using
a 32-bit Cortex-M3 processor running a software implementation of the AES-128
without DPA countermeasures. Performing the identical DPA attack before and
after filtering, the number of traces required for a successful attack was reduced from

6000 to 450. To reduce the amount of environmental noise, 16 measurements are
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taken with each plaintext and averaged. The technique also enabled better alignment

of traces because artifacts in the original signal that do not carry information are
removed .

The above filtering technique is extended to efficiently search the frequency
spectrum and identify which frequency bands contain important information [14].
The algorithm focuses on harmonic components in the measured signal to avoid
sweeping the entire frequency range. To characterized the leakage in certain fre-
quency bands, the spectrum is split into equally sized shares and filtered as in [13].
A series of DPA attacks are conducted on the filtered output for each frequency band
to determine the number of traces required for a successful attack. The searching

function is recursively called for frequency regions that yield successful attacks.
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Figure 2.8  The minimum number of traces required for a suc-
cessful attack for each slice of the frequency spec-
trum. The leftmost dashed line indicates the mini-
mum number of traces for a successful attack. The
rightmost line indicates the number of unfiltered

traces required )

When finished, the algorithm provides a list of both the shortest frequency
intervals that yield a successful attack and the largest frequency intervals that fail
using the entire trace set. The number of traces required to successfully recover the
key using the traces filtered for a specific frequency band is used as an estimator of

the information leakage over that frequency band. Figure 2.8 shows the results for
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a DEMA attack using up to 3000 traces. Unsuccessful attacks are represented as
requiring zero traces. Since the information leakage tends to be clustered across the
frequency domain, the search algorithm is more efficient than conducting a brute

force search of the entire frequency spectrum [14].

2.7.2 Trace Alignment.  Most side-channel analysis techniques compare the
recorded side-channel emission values at specific points in the encryption operation.
The traces must be aligned so the cryptographic operation being attacked occurs at
the same time in each trace. When attackers have complete control of the system
they typically build a trigger signal into the hardware to ensure that each collected
trace starts at the same point in the encryption operation. When the attacker is not
able to modify the device, real-time processing of the signal to identify a pattern
in the signal can be performed. Once the traces have been collected, they can be
analyzed to identify the portions corresponding to the encryption operation in each

trace [73].

Even when a trigger signal is used, it may contain jitter-related deviations from
the timing of the cryptographic computations. Displacement errors can cause signif-
icant data loss of secret information when analysis techniques average the waveforms
together. Traces can also be misaligned for a number of reasons, including counter-
measures like random dummy operations and shuffling. Various methods have been

proposed and demonstrated for aligning traces.

2.7.2.1 Pattern Matching. Pattern matching in the time domain is
the most common alignment technique. A portion of the first trace is selected as
the pattern. The attacker tries to find the pattern in all other traces to identify the
offset between the traces. There are a number of important considerations when

selecting a pattern |73].

First, the pattern should be unique. The more distinct the portion of the trace

is, the better the alignment process will work. Targeting a unique operation, such
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as loading the initial registers of an AES-128 implementation will work better than
building a pattern for the output of the S-box since a similar operation occurs in
each of the 10 rounds. Second, the pattern should be from a portion of the operation
that is not data dependent. For example, when attacking a device with a fixed key
where the key schedule is generated on the fly, portions of the trace that correspond

with round keys being calculated will not be data dependent.

Next, the length of the pattern is important. Longer is only better if the
operations in the pattern do not depend on intermediate results. Including data
dependent portions of the trace in the pattern can degrade the matching results.
Finally, if countermeasures such as inserting random dummy operations are used,
the pattern should be as close as possible to the portion of the trace that is dependent

on the intermediate value being attacked.

Least squares and correlation coefficient methods are the most common ap-
proach used to identify the pattern in a trace. To improve accuracy and reduce
processing time rather than trying to find the pattern in the entire trace, an at-
tacker should focus on a smaller search interval based on the location of the pattern

in the first trace [73].

2.7.2.2 Phased-Based Alignment. A number of methods to perform
alignment using the frequency domain have been demonstrated. The phase-only
correlation technique allows fine grain alignment of traces with high noise tolerance.
The technique uses a cross-phase spectrum formed with the reference trace and the
subject trace. If the two traces are similar, the inverse discrete Fourier transform of
this spectrum forms a distinct peak at the location of the translational displacement
between the reference and subject trace. Using an analytical model of the correla-
tion peak, the displacement between the waveforms can be estimated with higher
resolution than the sampling resolution. An interpolation technique can then be

used to finely align the traces. The magnitude of the correlation peak can also be
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used to identify inaccurately measured traces that would have adverse effects on the

statistical analysis if included in the attack [59].

Gebotys and White demonstrated a phase-based technique for temporal align-
ment EM traces [49]. The method is robust for complex systems, even those with
random delays and random operations. The technique, called phase substitution, is
based on the fact that a shift of a signal in the time domain corresponds to a change in
the phase of the signal in the frequency domain. To perform phase substitution, the
FFT of each trace is calculated. Next, one trace is randomly chosen as the reference
from the collection of traces and the phase of all other traces is replaced by the phase
of the reference trace. Finally, the inverse FFT is performed to transform the trace
back into the time domain. Once the phase substitution alignment is completed,
an appropriate side-channel analysis attack can be performed. Phase substitution
adds noise in the time domain, but it is largely averaged out by differential analysis

techniques.

2.7.8  Frequency-Based Analysis.  In addition to using the frequency domain
to perform alignment, side-channel attacks can be performed using representations of
the traces in the frequency domain. By ignoring phase information in the frequency
domain, alignment problems can be mitigated. Gebotys et al. proposed frequency-
based DEMA based on the spectrogram of the collected traces [4§]. Gebotys and
White the demonstrate a frequency-based DEMA attack using the Power Spectral
Density (PSD) in [50]. After the portion of each trace with the operation of interest
is identified, the regions are extracted an the PSD of these regions are used for
the attack. Unfortunately, the amount of preprocessing required makes this type
of attack impractical. Hodgers et al. use an overlapping window method to reduce
the amount of preprocessing and eliminate the problem of sampling boundaries [58].
This ensures the entire region of attack is contained within the portion of the trace
that will be used for at least one PSD provided the window is large enough. The
technique follows typical correlation-based attack methodology (cf. Section [3.4.1)),
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but uses the PSD data set in place of the collected time-domain EM traces. The

method is shown to be effective for both aligned and misaligned traces.

Pre-processing traces by taking their FFT has been shown to be a viable
method to enhance template attacks [99]. The FFT of each trace is used in place
of the collected EM trace in the template attack methodology. Basing the template
attack on the FF'T was shown to allow for a successful attack even when the ambient

noise in the time domain did not allow for successful classification.

2.8 Algebraic Cryptanalysis

As block ciphers have become more important, a number of powerful crypt-
analysis methods have been developed; these include differential and linear attacks
as discussed in Section 2.2.3, Most of these methods submit particular statistical
patterns through rounds of the cipher to determine if non-random behavior can be
observed in the output [18]. Newer ciphers, including AES, were developed to be

resistant to these techniques and are thus not vulnerable to these types of attacks.

As introduced in Section [2.2.3.2 an alternate approach for the cryptanalysis
of block ciphers such as AES and DES is to exploit the algebraic structure of the
cipher by constructing algebraic systems of equations which completely describe the

cipher.

2.8.1 Describing a Cipher. In algebraic attacks, equations describe the
output bits of a cipher in terms of its input bits and key. Since modern block ciphers
are implemented in hardware or software, their operations are typically defined over
GF(2). As a result, the Boolean equations are written as polynomial systems over

GF(2). The Galios Field arithmetic required for AES is reviewed in [8§].

Theoretically most modern block ciphers can be fully described by a system

of multivariate polynomial equations over a finite field. In practice, the majority of

45



these systems are too complicated for any practical purpose. However, due to its

algebraic structure AES may be vulnerable to algebraic cryptanalysis [26].

As in most block ciphers, the only non-linear element of the AES is the S-Box.
Since the S-Box is based on an inverse function, a small set of quadratic multivariate
equations in terms of the input and output bits completely define the S-box. For an
S-box of any practical size, a basis of linear independent multivariate polynomials
can be generated which span the space of all possible equations between the input
and output bits [18]. By limiting the set of equations to the basis equations, the size

of the system is reduced.

2.8.1.1 Strategies for Describing Ciphers as Equations.  Writing a set
of equations for the linear components of a block cipher, including linear diffusion
layers and key additions, is straightforward. These are combined with the equations
for the non-linear components to completely define the cipher. Although a cipher
can be described in the terms of a multivariate system of equations over GF(2), that
does not guarantee it can be broken. Solving a system of multivariate quadratic
equations (known as a M(Q problem) is NP-hard. Such systems of equations have a

number of properties that describe their computational complexity.

Shamir et al. showed that the complexity of a M(Q problem drops substantially
when a system is over-defined [112]. An overdefined system has more equations than
unknowns. For a block cipher, using additional plaintext/cipher text pairs is a

straightforward way to create an over-defined system of equations.

To reduce the complexity of the system of equations, equations with common
terms can be combined. Rather than write separate equations for bit permutations,
for example, variables are renamed to prevent redundant variables. Once equations
have been derived for each component, they are combined into a system of equations
for the system. Both [36] and [86] construct simple algebraic equations to describe

AES.
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There are numerous ways to represent the same system of equations. Since
most modern cryptographic systems are implemented on inexpensive hardware they
have moderately low gate counts, resulting in a sparse system of equations [36]. The
sparsity of a system is the ratio of coefficients that are non-zero to the total number of
possible coefficients. Some algebraic cryptanalysis techniques work better on densely
defined systems, while others are more efficient for sparse systems. The technique
used to solve the system of equations should be kept in mind when equations are

generated.

The number of variables in each equation affects how difficult the system is to
solve. A system of any degree can be written as a degree 2 system using the following
step repeatedly

{l = wxyz} = {a = wx;b=yz;l = ab}. (2.3)

Likewise, any equation can be written as a system of smaller equations. The maxi-
mum degree of the smaller equations is known as the cutting number [11]. A method-

ology for describing ciphers as systems of multivariate polynomials is described in

Appendix [A]

2.8.1.2  Systems of Equations for AES. Biryukov and De Canniere
show in [18] that each of the 160 8-bit S-boxes in AES can be completely defined
by a system of 23 quadratic equations in 80 terms. The 11 linear layers in AES can
be written as a system of 128 linear equations and the complete implementation of
AES has been defined as a system of 4000 multivariate quadratic equations with
1600 variables [36]. Unfortunately, the systems of equations have not been made

available from either of these research efforts.

However, two systems of polynomial generators have been published. The
small scale variants of the AES (SR) Polynomial System Generator [7] based on [25],
and SYMAES, a fully symbolic polynomial generator for AES-128 [134]. These tools

both run in Sage Mathematics Software [124] and can generated systems of equations
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for AES-128. The SR Generator is used in Chapter [3| to create the AES-128 SAT

solver tool used in this dissertation.

Once the cipher has been fully defined as a system of equations, the system

can be solved to determine the cryptographic key.

2.8.2 Solving a System of Equations.  The most naive approach to solve a
system of equations is to guess all of the variables (brute force). If the system has
n unknowns, 2" ! guesses must be tried to have a 50% chance of finding the correct
solution. Algebraic cryptography attempts to exploit the algebraic properties of the
cipher to solve the system of equations in less time. Various methods have been
developed for solving non-linear multivariate systems of equations. The method
employed by this research is a satisfiability (SAT) solver. Alternative methods not

used in this research are included in Appendix [A]

Using a SAT solver for cryptanalysis was first proposed by Massacci and Mar-
raro [75]. They demonstrated that DES could be written as a system of equations
and used three different SAT solvers to solve DES reduced round implementations.
Courtrois, Bard and Jefferson discovered that SAT solvers and Grobner bases al-
gorithms such as F4, can solve very sparse or over-defined systems of quadratic
equations efficiently even in cases where the performance of algebraic elimination
methods is greatly degraded [12]. Furthermore, Courtois and Bard showed it is
possible to solve very large systems of multivariate equations with more than 1000

unknowns derived from a contemporary block cipher such as DES [37].

2.8.8 Using SAT Solvers.  Solving systems of multivariate quadratic poly-
nomials is known to be NP-complete |35]. Therefore, rather than solving the system

directly, the system is translated into a SAT problem.

SAT solvers determine an assignment of a set of variables over a domain such

that a set of equations or constraints holds true for those variables or, alternatively,
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determine that no such assignment exists [127]. The term SAT refers more specif-
ically to the problem of assigning values to variables in a given Boolean formula
to find a variable assignment which makes the Boolean statement true, or satisfied.
Although SAT problems are also known to be NP-complete, they are a well-studied

class of problem and the development and enhancement of SAT solvers is ongoing.

SAT solvers determine if a particular set of constraints have a solution. These
constraints are often written in conjunctive normal form (CNF). Each element in
the constraint (a or @), is called a literal. A clause is a disjunction (or statement) of
literals. Constraints presented to a SAT solver in CNF are written as a conjunction

of clauses. See Appendix [A] for more detail.

Conflict-driven SAT solvers attempt to find a satisfying variable assignment.
For example, MiniSat uses a backtracking-based, depth-first search algorithm [120].
The algorithm branches on a variable by guessing true or false and determining if
other variables depend on the guess. Variables affected by this guess are assigned
values and the algorithm continues to branch until no more assignments can be
made. This period is called propagation. If a clause is found that cannot be satisfied
a conflict is identified and a learned clause is generated that records the incorrect
guesses that led to the conflict. Based on the learned clause, the top most guess
allowed is reversed and propagation continues. The collection of learned clauses
trims the search tree and guides the algorithm in choosing the next guess. The
algorithm eventually identifies a satisfying variable assignment or the search tree is
exhausted meaning that no solution exists. Figure [2.9)shows an example search path

taken by a SAT solver.

2.8.3.1 Optimization for Cryptography. — SAT solvers typically require
the cipher to be described as a system of equations written in CNF. This process
can be cumbersome and adds additional complexity to the problem. To tailor SAT

solvers for use in cryptography, Soos extended CryptoMiniSat’s input language to
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Figure 2.9  Visualization of a SAT solver’s search for a solu-
tion. The first conflict clause and path to the sat-
isfying assignment are highlighted [118].

support the XOR operation and created functions to reconstruct XOR operations
from CNF clauses [120]. Since many ciphers are described using XOR functions,
this provides a more natural and compact representation. Using a number of stream
ciphers for testing, Soos showed that describing the ciphers using XOR operations
allows a SAT solver to solve systems more quickly. The exponential expansion of

XOR clauses into CNF is described in Appendix [A.3]

2.8.4 Algebraic Side-Channel Analysis.  To break a cipher using algebraic
cryptanalysis, in addition to describing the cipher as a system of multivariate polyno-
mial equations, the system must be solvable. Computational complexity prevents the
system of equations from being solved using only one plaintext-ciphertext pair [36].
Information about intermediate values determined using side-channel analysis can

reduce the complexity of the system.

Combining algebraic cryptanalysis and side-channel analysis has a synergistic

effect, making the system easier to solve while simultaneously reducing the number
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of side-channel measurements required to perform the attack [101]. On vulnerable

implementations, with enough measurements, the entire key can be recovered.

2.8.4.1 Attacks with SAT Solver Stage.  Renauld and Standaert com-
bined side-channel and cryptanalysis techniques into a two-stage attack on an im-
plementation of the PRESENT block cipher [101]. The first stage uses a template
attack to recover as many intermediate values from a single power consumption
trace as possible. Since each intermediate value provides partial information, an
adversary should determine as many intermediate values as possible. Ideally, inter-
mediate values are the output of a surjective function, such as an S-Box, so they

reveal information about previous values.

In the second phase, the adversary uses the intermediate values recovered using
side-channel analysis to write the block cipher as a system of quadratic (or cubic)
equations, including the previously defined surjective functions with outputs recov-
ered using side-channel analysis. The block cipher can be represented as a boolean
satisfiability problem and the intermediate values can be fed into an SAT solver to
recover the key [101]. In an unknown-plaintext/ciphertext scenario, they recovered

the PRESENT block cipher key after observing only one encryption.

Renauld et al. combine algebraic cryptanalysis with a HW-based template
attack to exploit an implementation of AES on a 8-bit PIC microcontroller in [102].
They demonstrate that an AES key can be recovered using only HW information
and show that not knowing the plaintext or ciphertext does not significantly reduce
the probability of determining the correct key. The system of equations includes
multiple intermediate values for the AddRoundKey and SubBytes as well as all of
the intermediate calculations to perform the MixColumn operation. This provided a
total of 788 possible HWs over 10 rounds. Renauld et al. demonstrated that knowing
all of the HWs for three consecutive AES-128 rounds allows for key recovery in 95% of

trials, using simulated data. When the same number of HWs are known for random

51



intermediate values the success rate is dramatically reduced. The sensitivity of the
SAT solver to incorrect information is highlighted as one of the weaknesses of using a
SAT solver. Although they state that up to 200 HWSs can be extracted correctly from

a single trace, no algebraic side-channel attacks are performed with real data [102].

2.8.4.2 Pseudo-Boolean Optimizers. To compensate for the noise
in side-channel analysis measurements, DPA calculates statistics based on multiple
traces. Measurement noise has multiple sources including electronic noise, quanti-
zation noise, and switching noise. To get highly reliable side-channel information,
a large number of traces must be collected and analyzed. Allowing for errors in
the side-channel data can reduce the number of traces that need to be collected.
The process described for algebraic side-channel analysis proposed by Renault et al.

in [102] is extremely sensitive to noise [90].

Renault et al. proposed using algebraic methods during the key recovery phase
to convert the key recovery problem into a Boolean SAT problem and using a SAT
solver to recover the key. However, testing showed the SAT solver could only find a
solution when the error rate was very low (well under 1%) [102]. Oren et al. propose
a new method called Tolerant Algebraic Side-Channel Analysis (TASCA) in which
the side-channel analysis problem is transformed into a pseudo-Boolean optimization

problem (PBOPT) [90], with the main benefit being higher tolerance for errors.

The SAT representation does not offer an efficient method for handling errors
in the side-channel measurements or analysis. If the SAT representation is given
enough errorless side-channel information the SAT solver will be able to recover the
key successfully. However, even a single error in the side-channel measurement can

result in unsatisfiability, or a wrong key.

By writing the system of equations in the more flexible language of non-linear
pseudo-Boolean optimization, additional variables can represent errors. Unlike a

SAT solver which attempts to find a single solution that satisfies a system of equa-
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tions or determine that the system is not satisfiable, PBOPT algorithms find the
solution which minimizes an objective function. Oren et al. demonstrated successful
single-trace attacks against the Keeloq block cipher with intermediate value error

rates of 10-20% [90] which was significantly more tolerant to errors than using a

SAT solver directly [102].

Recently, the TASCA technique was enhanced by specifying a goal function to
indicate which key byte guesses are more probable than others using the posterior
probabilities of each key-byte guess and tested against an 8-bit implementation of
AES-128. This technique is called probabilistic TASCA [89]. Probabilistic TASCA
has a higher correct key identification rate than standard TASCA, and reduced
solve times. While technique is provided the same fixed number of byte or HW value
guesses per targeted intermediate value, only probabilistic TASCA incorporates data
from the posterior probability calculated in the attack phase of a template attack.
It is important to note that experiments in [89,|102] were performed on simulated

data.

Cold boot attacks are a related research field in which cryptographic keys are
reconstructed from partial information. The similarities and differences of cold boot

attacks and side-channel analysis are explored in the following section.

2.8.5 Related Key Recovery Techniques. It is generally believed that dy-
namic random access memory (DRAM) loses its contents immediately when it loses
power, but it has been found that the loss of contents is in fact gradual. Although
typically DRAMSs will lose their contents gradually over a period of seconds at room
temperature, if the chips are kept at low temperatures the data will persist for min-

utes or even hours [55].

Cold boot attacks attempt to extract a cryptographic key stored in a computers
memory [55]. Since the memory decays gradually, some of the bits will have already

decayed to their ground states. Memory bits not in their ground state have a high
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probability of being correct and some researchers assume they are. Using a direct
approach, an AES key can be extracted from memory and candidate keys can be
generated in order of HD from the recovered key. If few bits have flipped, the true
key can be recovered quickly, but the search time grows exponentially as the number

of bit flips increases.

To increase efficiency, encryption software may pre-calculate and store the AES
key schedule in memory. Knowing how the key schedule is constructed from the key
allows an entire decayed key schedule to be used to reconstruct the key [55]. From
the decayed key schedule, small sets of key bytes can be recovered and key candidates
identified. Rather than being an algebraic attack, this attack is based on probability.
The key candidates can be checked against the decayed key schedule to determine

which candidate most likely produced the recovered key schedule.

The use of a SAT solver for cold boot key recovery is proposed by Kamal and
Youssef in [62]. Since bits in memory are expected to decay to their ground state,
this approach assumes that any bit in the recovered key and key schedule not in its
ground state is correct and the remaining bits are discarded. Due to the amount
of redundant information in the AES key schedule, the encryption key can still be

recovered by writing and solving a set of SAT clauses.

Albrecht and Cid extend cold boot key recovery attacks to additional ciphers
with more complex key schedules and use integer programming techniques to solve
sets of non-linear equations with noise to determine the most likely key [6]. This
effort included describing the AES key schedule as a system of polynomial equations.
Key recovery is written as a Polynomial System Solving (PoSSo) problem. The goal
is to find a solution to the system of polynomials over some field. In the presence
of errors, Max-PoSSo can find a solution that maximizes the number of polynomials
equal to 0. The Max-PoSSo problem is analogous to the Max-SAT problem which,
rather than find a solution that satisfies all clauses, tries to find the maximum number

of clauses that can be satisfied.
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Cold boot attacks are similar to side-channel cryptanalysis because both recon-
struct keys from unreliable data using the algebraic structure of the cipher to relate
recovered values to the key. Cold boot attacks assume errors are asymmetric, giving
the attacker a simple way to identify intermediate values with a high probability of

being correct.

2.9  Summary

Algebraic cryptanalysis and side-channel analysis are two techniques for deter-
mining the relationship between the plaintext, key and ciphertext in a cryptographic
operation. Algebraic cryptanalysis breaks ciphers by solving systems of multivariate

polynomials created from the intrinsic algebraic structure of the cipher [11].

While describing the cipher as a system of polynomials does not reduce the
complexity of solving for the key given only the plaintext and ciphertext, it allows
for intermediate values to be introduced [27]. SAT solvers are an effective way to
solve the system of polynomials because they allow for any known intermediate value
to be incorporated and can quickly recover the key if enough intermediate values are
known. Combining SAT solvers with side-channel analysis enables powerful attacks
that often require less traces than side-channel attacks that do not incorporate al-

gebraic cryptanalysis.

The side-channels from cryptographic devices leak information about the oper-
ations performed and the data being manipulated by the device [68]. The emissions
can be used to determine the intermediate values of the cipher and ultimately the
key used for an encryption or decryption operations. The most powerful side-channel
analysis techniques require a very powerful attacker. Many attacks require the at-
tacker to have complete control over the device, allowing the attacker to add a trigger
signal, place a probe as close as possible to the target device, and be able to per-

formed encryption or decryption operations at will [73]. For template attacks, it is
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assumed the leakage from two identical devices is identical and the noise present in

the side-channel emission is key dependent and precisely modeled [24].

The goal of this research is to identify ways to reduce assumptions that must
be made by an attacker, making side-channel attacks more viable in an operational
setting. After common methodology is introduced in Chapter [3 the following four
chapters introduce novel ways to eliminate some of these assumptions to making

side-channel attacks more effective for less powerful attackers.
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3. Methodology

This chapter describes the methodology used to collect and process the electromag-
netic (EM) emissions from target encryption devices. The three contribution ar-
eas of this dissertation, an algebraic side-channel Key Schedule Redundancy Attack
(KSRA), cross-device template attacks, and using software-defined radios (SDRs)
to perform differential Side-Channel Analysis (SCA) are all based on the standard
Correlation-based EM Analysis (CEMA) and template attack methodology. All data
collection and the common methodology shared by these techniques are explained
in this chapter. The unique and novel enhancements that allow these techniques to

be used by a less powerful attacker are presented in Chapters [4] [5] [6] and [7]

The process used for collecting the EM emissions from each of the encryp-
tion devices used in the attacks are described in Section B.Il The devices used
for side-channel attacks are introduced in Section followed by signal processing
techniques in Section [3.3] The steps required to perform CEMA for unknown-key
and known-key analysis are found in Section [3.4] Section [3.6] outlines the steps re-
quired to perform a template attack. Finally, how the system of equations and SAT
solver incorporate side-channel data to perform algebraic cryptanalysis is discussed

in Section B.71

3.1 Data Collection

The EM side-channel of the microprocessors are collected using the hardware
from AFIT’s commercial Riscure Inspector side-channel collection and analysis sys-
tem. However, custom software is used to gain more control of the process. A
Riscure low-sensitivity probe with a 1 GHz bandwidth is used for all collections. For
non-SDR collections the probe is connected to a LeCroy WaveMaster 804Zi oscil-
loscope through an anti-aliasing filter. The oscilloscope has a 4 GHz bandwidth, a

maximum sampling rate of 40GSa/sec on 4 channels and memory to store 128 Mpts
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Figure 3.1  The Riscure Inspector Side-Channel Test Tool |105].

per channel. One of the novel approaches in this research is to use SDRs to collect

EM emissions. This methodology is found in Section [7.5

A low-sensitivity Riscure probe is mounted on a computer-controlled motor-
ized XYZ table that, with proper calibration, allows repeatable probe placement.
Traces are collected and analyzed to determine the best location to place the probe.
Spectral intensity and the results of correlation analysis are used in this research.
For the highest quality collections, unless otherwise stated, the probe is placed as
close as possible without touching the package of the device. To prevent aliasing, an
analog low-pass filter with a cutoff frequency of approximately 36% of the sampling
frequency is placed in-line with the probe. For collections for sampling frequency
fs = 2.5 GSa/sec a Mini-Circuits BLP-1000+ (-3 dB at 900 MHz) low-pass filter
is used. For collections for sampling frequency f; = 250 MSa/sec a Mini-Circuits

BLP-90+ (-3 dB at 90 MHz) low-pass filter is used.

For all collections made with the oscilloscope the encryption device is pro-
grammed to produce a signal at the start of each encryption operation on a general
purpose I/O pin. This signal is used to trigger the oscilloscope, resulting in collected
traces that are well aligned. Where indicated, correlation-based alignment is used
to correct any difference in the time at which the start of the encryption operation

occurs in each trace.
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Figure 3.2  Block diagram of a typical measurement setup for collecting side-
channel emissions [73].

The collection of EM traces is automated to a great extent by controlling the
process with a PC. A block diagram of the process of collecting side-channel emissions
with an oscilloscope is shown in Figure [3.2] The XY position of the probe above the
device is controlled by the computer. For safety, the height above the device is set
manually. The plaintexts and keys used by the cryptographic device are send to the
device by the computer using an RS-232 serial interface. The encryption operation
is initiated by the PC and the output of the encryption operation is returned to the
computer to verify correct encryption operation. The oscilloscope, configured and
controlled through a PC interface, collects the EM emissions for the duration and
sampling rate set by the PC each time the trigger is asserted. The plaintext, key,
ciphers and optionally the intermediate values calculated during each encryption

operations are stored with the saved trace.

Traces collected from a device being attacked, with a fixed key are referred to
as test traces. The key is randomly generated and stored only for the purpose of
determining if the correct key was recovered using SCA. Plaintexts are generated
randomly and encrypted until the desired number of traces are collected. If traces
are collected at multiple probe locations for the purpose of evaluating the effect of
probe placement, the random seed is reset for each location causing the same set of
plaintexts being generated. For the training traces collected for template attacks, a

both they key and ciphertext are random for each encryption operation.
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Table 3.1  Tested PIC micro-controller device classes.

Part

Class Device Numbers PIC Part Number
A A1-A10 PIC24FJ64GA102 I/SP
B B1-B10 PIC24FJ64GA002 1/SP
C C1-C10 PIC24F J48GA002 I/SP
D D1-D10 PIC24FJ32GA002 I/SP

3.2 Targeted Devices

This research attacks two types of microcontrollers. The 16-bit Pl(ﬂ micro-
controllers are representative of low cost microcontroller used in various embedded
applications. The 32-bit ARME| Cortex-M4F high performance, lower power device
intended for applications such as industrial automation, stepped motor and motion

control [12§].

3.2.1 PIC Microcontrollers. The PIC24 is a 16-bit general purpose mi-
crocontroller. The collection of PIC microcontrollers tested come from 4 different
part numbers. There are 10 unique devices from each part number, for a total of
Np = 40 devices. The full part numbers and nomenclature used to refer to each
individual device is shown in Table These part numbers were selected because
they have similar device architectures. The 10 chips from each part number were all

manufactured in the same lot.

Although all the PIC devices have the same basic architecture, Part A devices
have several on-board peripherals that are not included in the other three. Parts B,
C and D devices all have identical architectures with the exception of the amount of
on-board flash Random Access Memory (RAM) which is 32, 48, and 64 KB of RAM
respectively. Part A devices have 64 KB of RAM. Individual devices are reference

'The original PIC microcontroller was designed as a Peripheral Interface Control. The name
was retained despite the future devices being used for other applications.

2The term ARM refers to a family of RISC-based microprocessor architecture design licensed
by British company ARM holdings.
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by an alphanumerical device number that includes part type and chip number, i.e.,

Al, A2, ..., D9, D10, as shown in Table [3.1]

The chips were fabricated using an unspecified 180 nm process. Since all 10
chips for each part number were produced in the same lot, they contain identical
architectural features. Uncontrolled manufacturing variations in the die fabrication
and packaging process are believed to be the only physical differences between devices

with the same part number.

AES-128 is implemented using separate SubBytes, ShiftRows, and MixColumn
functions as specified in the AES standard [88]. The C++ used to program the
UART interface and assembly code used to program the AES operation are identical
for each device. The compiled versions may vary slightly for each part number due

to part specific header files.

3.2.1.1 Data Collection.  The collection process was designed to make
measurements as repeatable as possible. A single evaluation board is used to collect
side-channel emissions from all Np = 40 devices. Each device was programmed
to respond to commands over a RS-232 serial interface. The evaluation board was
modified with a Zero Insertion Force socket (ZIF) to allow the devices to be easily
swapped out. To improve trace alignment, a trigger signal was programmed to go
high immediately before the encryption operation started and to go low immediately

after completion.

To find the best probe position, an XY scan is performed with the near-field
probe as close to a reference device as possible without touching the packaging of
the microcontroller. The point above the device yielding highest spectral intensity is
chosen for collections. Lateral movement of the circuit board is minimized between
signal collections using a custom made jig that fixed the microprocessor position
relative to the probe. A DC power supply (Agilent E3631A) minimizes variation in
the supply voltage.
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Training data for each of the Np = 40 devices is generated by performing
5,000 AES-128 encryption operations using randomly chosen plaintexts and keys.
Similarly, test traces for each device are collected while performing 500 encryption

operations using a fixed key and random plaintexts.

Traces are time aligned by shifting them based on the location of highest
cross-correlation of a trace segment with a segment from the reference trace [104].
Traces are collected at a sampling rate of 2.5 GSa/sec with a 1 GHz low-pass anti-
aliasing filter inserted between the probe and the oscilloscope. Since the target device
operates at fo,, = 29.48 MHz, the traces were down-sampled to make the trace sets
easier to process. Different down sampling techniques were used for the KSRA and

cross-device template attacks.

For the KSRA in Chapter [ the collected traces were down-sampled by aver-
aging groups of adjacent time samples to an effective sampling rate of 200 MSa/sec.
This method was performed by the Riscure Inspector software [104]. Although this
technique is computationally simple, it is not a common down-sampling technique
used in other types of signal processing. A more common technique was used the
cross-device template attacks in Chapter || where the collected data is down-sampled

to 250 MSa/sec using decimation. Decimation is discussed in Section [3.3.2]

3.2.2 ARM Cortex-MjF. The second target device is a 32-bit Stellaris
LM4F232 ARM Cortex-M4F-based microcontroller. The Stellaris LM4F232 USB
+CAN evaluation kit features a Stellaris microcontroller in a 144-LQFP package, a
color organic light emitting diode display, Universal Serial Bus (USB) 2.0, multiple
Universal Asynchronous Receiver /Transmitters (UARTS), as well as other network
and interface standards. The Stellaris LM4F232H5QD microcontroller contains a
number of analog features including two 12-bit analog-to-digital converters (ADCs),

three analog comparators, two temperature sensors and a three-axis accelerometer.
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The microcontroller is fabricated using a 65 nm process and operates at up to 80

MHz.

The microprocessor is programmed to communicate with the PC using a RS-
232 serial interface, allowing the PC to set the key, encrypt plaintext and retrieve
the ciphertext using the device on demand. The key schedule is generated when
the key is set and not generated as part of the encryption operation. For testing
collections with and without a trigger signals, whether a trigger is asserted during
an encryption operation is determined by which version of the encryption command
is sent to the microprocessor by the PC. For compatibility with an existing UART
interface, the system clock is set to fs,; = 50 MHz.

The ARM Cortex-M4F implements AES-128 in Electronic Codebook (ECB)
mode using the T-box method as described in Section and [38]. Internal read-
only memory stores forward S-box, reverse S-box, forward polynomial and reverse
polynomial tables, however no countermeasures are implemented on the device. The
four T-boxes are generated and stored in random access memory on initialization.
Two devices with the same part number are used for testing. Both ARM devices are

used to test cross-device attacks in Chapter [6f The devices are referred to as ARM1

and ARM2. ARM1 is used for the SDR testing in Chapter [7}

3.2.2.1 Data Collection. A custom jig was fabricated to allow for
repeatable placement of each ARM development board on the XYZ stage. Custom
software was written to control the XYZ stage, allowing for calibration and repeat-
able probe placement. Since the LM4F232H5QD microcontroller is placed at a 45
degree angle on the development board, the board sits in the jig at a 45 degree angle
to allow for more efficient XY scans. Note that in the board orientation seen in
Figure [3.3] the device package is upside-down. To compensate for manufacturing
variations in the boards, the coordinates of the upper left-hand corner and lower

right-hand, which specify the bounds of the XY scan, are adjusted for each board.
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Figure 3.3  Orientation of the ARM development board in the jig |129].

For all ARM collections, locations are based on a 25 x 25 = 625 location
scanning grid. Locations are numbered left-to-right, then top-to-bottom as the mi-
crocontroller is oriented in Figure|3.3] For example, location 1 is the upper left-hand
corner, location 25 is in the upper right-hand corner and location 625 is in the bottom

right-hand corner of the device.

Depending on the application, up to n; = 2500 test traces are collected at each
location. A single trace is used to find the spectral intensity of the EM emission col-
lect at each location above the device package. The spectral intensity is calculated
by finding the power spectral density (PSD) of the trace and finding the maximum
power over a range of frequencies. Since the goal of the scan is the find the loca-
tion with this highest spectral intensity, the PSD values are normalized across all

locations.

Collecting n; = 2500 test traces allows CEMA attacks to be performed, and
for the attack phase of a template attack to be conducted. Locations selected based
on maximum power spectral density and CEMA attack performance are used for

collecting template attack training data. The results of the maximum PSD plots

and CEMA attacks for the ARM devices are discussed in Sections [6.3.1] and [7.4.1]

Test traces are collected at 2.5 GSa/sec for ARM1 for the baseline test in

Chapter [/} However, due to the large amount of training and test traces that must be
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collected for the cross-device template attacks, the sampling rate used in Chapter
is reduced to 250 MSa/sec.

3.3 Signal Processing Techniques

This research uses a number of pre-processing techniques to improve the effec-
tiveness of side-channel attacks by making it easier to extract information from the
collected side-channel. Alignment, decimation and filtering are the primary tech-
niques used in this research. Software demodulation was evaluated, but for the
devices studied it did not improved the effectiveness of the attack. Since these tech-
niques may be applied to both CEMA-based attacks and template attacks, they are
outlined here before these techniques are introduced in Sections and respec-

tively.

3.3.1 Filtering. ~ Although template attacks model the noise generated by
the target device due to non-data-dependent operations [24], the classification re-
sults may be better if some of this noise is reduced through filtering, especially if
this noise is not present in all traces. For more complex devices, such as the ARM
Cortex-M4F, where components not used to perform the encryption operation are
housed within the same package, signals unrelated to the encryption operation may
be present. Although filtering has been shown to dramatically reduce the num-
ber of traces required for CEMA [14], no research has been found indicating that
intelligently filtering traces used in a template attack will reduced the number of
traces required. Ideally, signals unrelated to the encryption operation will be filtered

without attenuating frequencies containing useful information.

Digital filtering is used two ways in this research: to isolate and eliminate
frequency components of the collected EM emissions. Bandpass filters are used to
isolate the frequency components to determine if the frequencies retained contain in-

formation that can be used to successfully attack a device. To ensure low attenuation
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Figure 3.4  (a) Magnitude of the impulse response for a bandpass filter centered
at f. = 50 MHz with a bandwidth Wgy, = 2 MHz in the frequency
domain. (b) Magnitude of the of impulse response for two notch filters
in series. The specified cutoff frequencies are shown as dashed lines.

at the cutoff frequencies of the bandpass filters, sixth-order Chebyshev Type I filters
are implemented with a passband ripple of » = 0.1 dB. The term frequency interval
refers to the passband of a bandpass filter. The magnitude of the impulse response

in the frequency domain for a bandpass filter with f. = 50 MHz and Wy = 2 MHz
is shown in Figure 3.

Notch filters are used to eliminate frequencies that are believe to interfere
with the side-channel attack. If multiple frequencies are identified, the traces are
filtered with a series of notch filters. Each filter is a twelfth-order Chebyshev Type
I bandstop filter with a stopband between the specified frequencies. Since the filters
are intended to be used in series a passband ripple of » = 0.1 dB is used as a design
parameter to ensure low attenuation outside of the stopband. The magnitude of the
impulse response in the frequency domain for two stopband filters in series is shown
in Figure 3. The stopband for filter 1 is 46 MHz < f < 48 MHz. The stopband
for filter 2 is 52 MHz < f < 54 MHz. At the cutoff frequencies, the magnitude of the
filter’s response is -0.1 dB due to the desired passband ripple. Although it may be
more straightforward to use a filter design that allows for the desired attenuation to
be reached at the cutoff frequency, having low attenuation and ripple for frequencies

outside the stopband is highly desirable for notch filters used in series.
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The process for identifying the cutoff frequencies of filters are discussed when

these filtering techniques are applied.

3.3.2  Decimation.  Decimation is used to down-sample traces collected at a
higher sampling frequency to a lower effective sampling frequency. Traces collected
at f, = 2.5 GSa/sec are downsampled to f? = 250 MSa/sec using the following
method. First the traces are filtered with an eighth-order low-pass Chebyshev Type
[ filter having a cut-off frequency of 100 MHz (0.8 x f,/2), and then the filtered traces
are properly decimated by 10 (every 10th sample retained and all others discarded).
Since the 8-bit traces are converted to double precision before filtering and not
converted back to 8-bit precision after decimating, the decimated traces are higher
qualityﬁ than traces collected at 250 MSa/sec directly using the 8-bit oscilloscope.
Decimated traces are denoted f to indicate they were not directly sampled at that

rate.

3.3.8  Alignment. Traces collected with the oscilloscope are aligned using
the Riscure Inspector software static alignment module. Static alignment shifts all
samples in a trace by the same offset to align the trace to a reference trace [104].
The module allows the user to quickly select a portion of the trace that is visually
distinctive and it expected to be present in every trace. The shift value is determine
by correlating the selected part of the reference traces with the trace being aligned.
The relative position of the best correlation is used as the shift value. Traces can also
be discarded if the maximum correlation between the trace being aligned and the se-
lected portion of the reference traces does not meet the desired minimum correlation
level. Traces collected using a SDR are also aligned using correlation. Additional

details on how SDR traces are identified and aligned is found in Section [7.2.1]

3In testing, using decimated traces resulted in more effective SCA attacks.
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Figure 3.5  Differential Side-Channel Analysis Process [30,(73].

3.4 Correlation-Based Electromagnetic Analysis

The methodology for correlation-based EM analysis (CEMA) and template
attacks are presented in Sections and respectively. A CEMA-based filtering
processing to identify which frequencies leak information is explained in Section [3.5]

but is important to understand CEMA first.

3.4.1 CEMA Attack Methodology. The same general strategy is used in
all differential SCA attacks. The step-by-step process is presented below and shown
in Figure . Most of the following steps are outlined in [73] but an optional pre-

processing step has been added.

Step 1: Choose an Intermediate Value to Attack. The first step in a differen-
tial attack is to choose an intermediate value calculated by the cryptographic

device to attack. The intermediate value must be a function, f(¢, k), where k is
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a small portion of the key and ¢ is a non-constant data value. When attacking

cryptographic devices, t is typically part of the plaintext or ciphertext.

Step 2: Measure the Side-Channel Emissions. The next step is to measure
the side-channel emissions from the device while it encrypts or decrypts n,
different data blocks. For each operation, the attacker must control or at least
observe the value of t. The values of known values can be written as a vector
t = (t1,...,tn,). Power or EM traces corresponding to each known value are
collected. The trace for data block t4 can be written as s, = (t41...t4,, ), Where
n,s denotes the length of the trace. The n; x n, matrix S contains n, traces of

length n, samples.

Step 3: Pre-process Traces (Optional). Proper trace alignment is critical for
differential attacks. If the traces are properly aligned, this step is optional.
Alignment methods are discussed in Section [2.7.2] Data reduction, demodula-
tion, and filtering techniques can also be applied. These methods are discussed

in detail in Section [3.3]

Step 4: Calculate Hypothetical Intermediate Values. Since the intermediate
values are a function of ¢t and k, and values of ¢ are known, hypothetical interme-
diate values can be calculated for each possible choice of k, the key hypothesis.
A list of the ny possible key hypotheses is written as k = (ky, ..., k,, ). Calcu-
lating the hypothetical intermediate values for each of the n; values of t and
ny, values of k results in the matrix V of size n; x n;. The individual elements
of V can be calculated vq; = f(t4, k;) where d =1,...,n; and ¢ = 1,...,ny. The

column 7 of V contains the intermediate results based on the key guess k;.

Step 5: Calculate Hypothetical Leakage. Using an appropriate power consump-
tion or EM emission model, the hypothetical intermediate values in V are used
to calculate the hypothetical emission values in matrix H. The hypothetical in-

termediate value v,; is used to calculate the values of h4;. The most commonly

used models are discussed in Section [2.3.4]
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Step 6: Compare Hypothetical Leakage to Collected Traces. The final step
compares the hypothetical emission values for each key guess in H to the col-
lected traces in S using statistical methods. Each column h; from the matrix
H is compared with each column s; from the matrix S. It is assumed there
is a statistical correlation between the hypothetical values for the correct key
guess hy, and the collected traces s; where j is the sample index corresponding
to some unknown time ¢. Finding the interdependence reveals both the correct

key value,k;, and the time ¢ at which the intermediate value is computed.

Various discriminators have been proposed for use in Step 6. The most com-
monly used is Pearson’s correlation coefficient [22]. The elements 7; ; of the result

matrix (R) are

Ti,j = =1 < R, (31)
(has —1i)* ) (sa; —§;)°
d=1 d=1

where i = 1,...,n; and j =1, ..., n, and h; and s; denotes the means of the columns

hz’ and S; l22]

When using Pearson’s correlation coefficient as the discriminator, the corre-
lation coefficient between each of the columns of hypothetical power consumption
matrix H and each column of the recorded side-channel information matrix S is
calculated and stored in the matrix R. The correlation coefficient is an indication of
the linear relationship between the observed side-channel and hypothetical leakage
model |22]. The correlation matrix R can be visualized a number of different ways.
Each row of R corresponds to one key guess. Plotting each of the rows yields a
plot of the correlation coefficient vs. time for each key hypothesis. The most likely
key hypothesis produces the highest correlation coefficient. The time at which the

peak occurs indicates when an operation correlated to the model takes place in the
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cryptographic operation. Figure (a) is a plot of the correlation coefficients for all
key guesses vs. time. The correct key hypothesis is shown in black while other key
hypotheses are shown in gray. A plot of how the correlation coefficient changes as
the number of traces increases is shown in Figure [3.6(b). This graph is created by
plotting the columns of R at a specific time correlated with an intermediate value in
the encryption operation. Plots similar to Figure [3.6(b) are often used to determine
the number of traces required before the most likely key hypothesis can be identified.

3.4.2  Example CEMA Attack. The output of the AddRoundKey and
SubBytes operations in the first round of AES-128 are common intermediate values
to target in a CEMA attack [73]. Since it provided the best results against the PIC
microprocessors, the output of the SubBytes operation in the first round of AES is

the targeted intermediate value for the baseline template attacks in Chapter [] and

all attacks in Chapter

Since these are byte-wise computations, each byte can be considered separately.
Let 7 denote the value of byte n of the d input plaintext (which corresponds to
the d™ trace) and let k™ denote byte n of the fixed secret key. When attacking the
input to the SubBytes operation in the first round, the target intermediate values is
calculated Ij; = tq®k;. When attacking the output of the SubBytes operations in the
first round, the target intermediate values is calculated vy, = SubBytes(t; © k;). In
both cases, k; € {0, ...,255} represents possible values for k™. Assuming ¢7 is known
and k" is unknown, the CEMA attack identifies the most likely candidate k" based
on the collection side-channel observations S that correspond with the intermediate
value [j; or vy, calculated for each d € {0,...,n;} trace in being processed on the

target device.

The plots in Figure|3.6| are generated by performing an attack on byte 1 of the
output of SubBytes from traces collected from PIC AO1.
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Figure 3.6  (a) All rows of R. Correct key hypothesis is plotted in black, others in
gray. (b) Columns of R at time ¢ corresponding to an intermediate spe-
cific operation for different numbers of traces. Correct key hypothesis
is plotted in black.

3.4.3 Known-Key Correlation Analysis. Since the correct key-byte is ex-
pected to produce the highest correlation with the observed side-channel, if the

correct key is known (|3.1]) simplifies to

e

> (ha—h)(se; —§))

= —=2 eR, (3.2)
> (ha=h)*> (sa; —8;)°
d=1 d=1

where j = 1,...,n, and §; denotes the mean of the column s;. Since the key is known,
h is the mean of hypothetical leakage h for the correct intermediate values. Since
the targeted key byte is known for each trace, the correct hypothetical values can be

calculated even if the key changes for each trace (as with training data).

The correlation vector r is used to identify time samples highly correlated with
the leakage model as in the leakage mapping tecnique developed by Cobb et al. [30].
This is one heuristic method for identifying the points of interested used in template

attacks.

72



3.4.4  Comparing Effectiveness of CEMA Attacks. A number of methods
have been developed to determine the effectiveness of CEMA attacks. The correla-
tion coefficient r; ; defined in is an indication of the linear relationship between
the observed side-channel and hypothetical leakage model. For byte-wise attacks,
each column of R corresponds to one key byte guess. Each row of R corresponds to a
time sample. Although additional insight may be gained by examining the columns

of R graphically, for this research the most likely key k., is chosen according to

Kmar = argmax ( max ]7“”|> (3.3)

i€{0,...np—1} \JE{L--ns}

To evaluate the effectiveness of a CEMA attack the maximum correlation co-
efficient, 7,42, i compared with the next highest correlation coefficient, r,c.¢. Let

Tmax D€ the maximum correlation coefficient where

1€{0,...,nx—1} \j€{1,...,ns}

Tmar =  IMax ( max |r”]> (3.4)

The next highest correlation coefficient 7., is

Tnest =  INax < max |7’”|) . (3.5)
i je{l,...,ns}
i€{0,,n—1}

Comparing 7,qz t0 Theze 18 used in this research to identify which frequencies

are the most important to the success of the CEMA attack.

The confidence intervals for each correlation coefficient can be calculated and
compared as in [14]. To determine the confidence interval for a correlation coefficient

the Fisher’s transformation [46]

,
slInT— = arctanh (r) , (3.6)

is used.

73



To calculate the confidence interval for a sample correlation r, the upper and

lower bounds are calculated & = z, — \Z/l%g, u =2+ 3;;“—123 where z, = arctanh (r),
and zj4,/2 is the standard normal cumulative distribution function evaluated at
1 — «a/2 [14]. The lower and upper confidence interval bounds for a correlation

coefficient r are

g (r) = tanh (arctanh (r) — Zl—aﬂ) ,and (3.7)
Ny —3
4 (1) = tanh <arctanh (r) + Zl_—a/Q) . (3.8)
Ny —3

3.5 Identifying Information Leaking Frequencies

Barenghi et al. propose a systematic way of determining the frequencies at
which information is leaked from cryptographic devices [14]. They show the effec-
tiveness of differential power analysis can be improved by isolating the frequencies
that leak information using software filtering. The goal of Barenghi’s attack was
to determine the minimum number of filter traces required to perform a successful
correlation attack with a given confidence level. The number of traces is found by
repeatedly performing the CEMA attack while increasing the number of traces until
€1 (Pmaz) = €u (Tnewt) as calculated in (3.7)) and . The algorithm tries to iden-
tify the smallest frequency interval that contains information by repeatedly dividing
frequency intervals that yield successful attacks with the desired confidence in less
than the maximum number of traces. The algorithm does not split up frequency
intervals that were not successful with the maximum number of traces. Although
this approach dramatically reduces the number of correlation attacks that must be
performed, testing on the PIC microcontroller showed that it may fail to identify

frequency intervals that carry information.
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Figure 3.7  Identifying the number of traces needed for the de-
sired confidence in a CEMA attack
Figure illustrates the result from this approach graphically. Using traces
from PIC A01, decimated to fP = 250 MSa/sec a CEMA attack is performed using
up to 500 test traces in the order they were collected. The confidence intervals are
shown as shaded regions. Although the correct value for key byte 1 is identified for
n; > 160 traces, the 90% confidence intervals overlap until n; > 291 traces are used.
The minimum number of traces required for the desired confidence is only one metric

that can be used to compare attacks.

Two alternative approaches were developed as part of this research. The fre-

quency interval break down approach and overlapping frequency interval approach are

developed in Sections [3.5.1| and [3.5.2] Both correlation-based frequency-dependent

leakage analysis techniques complement each other, one providing a variable fre-
quency interval width and the other providing overlapping frequency intervals and

easier comparison of multiple key bytes.

3.5.1 Frequency Interval Break Down Approach.  The frequency break down
approach splits the frequency interval [fiuin, fmax] Dy a branching factor v, A times
(levels). Imitially fumm = 0 and fiax = fs/2, where f, is the sampling frequency,

but these bounds can range between 0 and fs/2 to focus on a frequency interval of
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Figure 3.8  The number of traces needed for 90% confidence in a byte 1 CEMA at-
tack using traces from PIC A0l filtered with a bandpass filter. Attacks
that are not successful with the desired confidence are shown with an x
through the rectangle representing the bandwidth.

interest. CEMA attacks are performed on all intervals regardless if the attack on
the level above it was successful. Like, the minimum number of traces required

to achieve the desired confidence level is used as the metric to compare attacks.

Using traces collected from PIC A01 decimated to fs = 250 MSa/sec, this
method was applied and the results are shown in Figure [3.8] In this case, fim =0,
fmaz = 100 MHz, v = 2 and the first A = 7 levels are shown. Compared with
the 291 traces needed in Figure it is clear from Figure that filtering can
dramatically reduce the number of traces required to extract byte 1 with the desired
level of confidence. Filtering reduced the number of traces required to achieve the
designed confidence level to as few as 53 traces for the 0 MHz to 25 MHz frequency

interval.

3.5.2  Qwerlapping Frequency Interval Approach. There are a number of
problems with the frequency interval break down approach. Since multiple levels
are represented in Figure |3.8] in order to compare all key-bytes 16 figures must be
compared. While it is possible to extract a single level and compare the results for
each byte on a single figure, the first algorithm also does not allow for overlap between

adjacent frequency intervals. As a result, the frequencies near the filter cutoff are
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attenuated. To address these problems, the overlapping frequency interval approach
uses a single level for each bytes, allowing the filter bandwidth, fzy, frequency
interval, [ fimin, fmax), and percent overlap between adjacent filters to be specified. As
many bandpass filters with bandwidth fgy, that fit in the frequency interval with

desired the overlap of 50% are created and used to filter the collected traces.

Finding the minimum number of traces required for a CEMA attack to have a
desired confidence is computationally expensive. To produce Figure [3.7 the CEMA
attack is repeated 499 timesﬁ for each key byte. A binary search method was devel-
oped which reduces the number of CEMA attacks needed to determine the minimum
number of traces, but this approach relies on the assumption that once 7,42 > Tneat
with the desired confidence, the confidence will not go down when additional traces

are added.

An alternative metric to compare the effectiveness of attacks is the confidence
Tmaz = Tnewt TOT @ fixed number of traces. A hypothesis test is performed to determine
if 74 1s statistically different than r,..; using Fisher’s transformation and a Z-

test [46]. The Z values for 7,4, and Tpext, Zmar and znerr respectively, are calculated
using (3-9).
The Z-score is calculated by finding the difference between the z,,,, and z,ez

and dividing by the pooled standard error, SE = /2/(n; — 3), or

nt—3
2

Zmaz — *next
Ztest -

SE

- (zmaaﬂ - Znext)

4The attack cannot be performed with less than two traces
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Rather than compare this test statistic with a cutoff, for example Z..;; = 1.95
for 95% confidence (o = 0.05), the confidence p with which the null hypothesis can

be rejected is found using the standard normal cumulative density function

1 Ztest _2

This approach is used to compare the frequencies at which key byte information
leaks for the A01 PIC microcontroller in Figure 3.9} A total of 99 overlapping filters
are created for fim = 0, fimae = 100 MHz and fpw = 2 MHz with 50% overlap.
Each row represents a different key byte. To make the differences between key bytes
easier to see, only n; = 250 traces are used. Since this is a relatively small number
of traces, it is possible that differences between key bytes are due to the distribution
of the plaintext bytes processed, but the change in the confidence between frequency
intervals is real since only f. changes for each filter. The traces are filtered once
for each frequency interval and used to attack each key byte. For this plot, since
intervals overlap by 50% the width of the rectangle in Figure representing each
frequency interval does not reflect the true frequency interval bandwidth. The box

is centered on the correct f,.

Since it is possible for 7,4, to correspond with an incorrect key guess, an x
is drawn through the box presenting a unsuccessful attack. As expected, attacks
with lower calculated confidence are more likely to be incorrect. Since by definition
Zimaz 2 Znext according to , Ziest > 0 and 0.5 < p < 1. Figure shows that
some key bytes values are leaked more for certain frequency intervals than others.
Additionally, the value of key byte 4 does not appear to leak as well as the other key
bytes for this device.
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Figure 3.9  Colored boxes represent the confidence 7,4 > Thest for each CEMA

attack on PIC AO1. Attacks are performed on each key byte using
n; = 250 filtered traces. The boxes represent bandpass filters with
center frequency f., and bandwidth of Wgy = 2 MHz. An X indicates
the CEMA attack produced an incorrect result.

3.6 Template Attacks

A profiling stage can be used to build multivariate statistical models of the
device’s side-channel leakage [24]. Incorporating a profiling stage allows template
attacks to use all information present in a side-channel trace for classification, making
them a strong attack even when only a single or few traces from the attacked device
are available. Rather than try to eliminate or reduce noise, the noise present in
the side-channel emission is assumed to be key dependent and precisely modeled.
Templates are created during the training or profiling stage using training traces
with known key and plaintext values. The templates are used during the attack
or classification phase to determine the most likely class a collection of test traces

belong to.

Since the introduction of template attacks in [24], a number of variations and
improvements have been proposed as discussed in Section However, all tem-

plate attacks fundamentally contain the following steps.
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Step 1: Data Collection. The training device and test device must both be ob-
served performing encryption operations. It is assumed the attacker has com-
plete control of the training device, can change the key and plaintext at will
and can associate a collected trace with the plaintext and key used to produce
it. While the key on the target device is always unknown, some attack sce-
narios assume a powerful attacker is able to match observed test traces with

corresponding plaintext or ciphertext.

Step 2: Identify Classes. The goal of a template attack is to correctly determine
to which category or class an observed trace (or set of traces) from a target
device belongs. The number and definition of the classes is determined by
the attack scenario and the type of information leaked from the target device.
When attacking a microprocessor running AES, classes are commonly based
on byte value (256 classes) [24,/99], byte Hamming Weight (HW) (9 classes) or
bit value (2 classes) [3].

Step 3: Feature Generation. Preprocessing techniques may be applied to the
traces or the extracted samples before they are used for training or classifi-
cation. Examples of preprocessing techniques include Principal Component

Analysis, down-sampling or filtering.

Step 4: Feature Extraction. The samples in the collected or preprocessed traces

that distinguish between classes are identified and extracted from each trace.

Step 5: Classifier Training. Using the known plaintexts and keys from the train-
ing phase, the attacker can estimate the class from which the observed training
trace belongs. One template is created for each class using the extracted dis-

tinguishing features from the training traces belonging to that class (Ref. to
Sec. [3.6.2)).

Step 6: Classification. Using distinguishing features generated from one or more

test traces, the classifier estimates the class to which the test traces most likely
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belong. If the plaintexts or ciphertexts are known, hypothetical intermediate

values may be used in this process.

The remainder of this section provides additional information for the more
complicated template attack steps. Although distinguishing features are generated
and selected before constructing templates in an actual attack, it is more insightful to
discuss the rationale for feature selection after explaining the mechanics of template
attacks. Let vector x be the list of v distinguishing features. Methods for selecting

distinguishing features are discussed in Section |3.6.5]

3.6.1 Class Identification.  To evaluate the effectiveness of template attacks
on the target devices, a CEMA-based template attack is performed on the PIC and
ARM microcontrollers. Since the plaintext and keys are known during the training
phase, the actual values of the target intermediate value is known for each of the
training traces. For both microprocessors, attacks using K = 256 classes, one for each
byte possible byte value, were the most effective and yeilded the most information
to the attack. Different templates are constructed for each intermediate value byte

being attacked, but the number of classes is used in all attacks.

3.6.2  Classifier Training. The classifier is trained by constructing tem-
plates for each class. A fundamental assumption is that side-channel leakage for
a particular operation follows a multivariate Gaussian distribution. This assump-
tion has been shown to provide adequate performance in previous template attack
research [3,(9,124}73,92]. The probability density function of a 7-dimensional multi-

variate normal distribution is

exp <_%(X - laki)Til;l (X - lakz)>
p(x) = — 17 : (3.11)
(2m)"? |5,

i
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where empirical mean vector fir, and empirical noise covariance matrix iki, form
the template of class k;. One template is constructed for each of the K = 256
possible byte values, k; € {0,...,255}. The estimates are constructed using ny,
distinguishing feature vectors that belong to class k;. Each distinguishing feature

vector is represented as x5 where 0 € {1, ..., ng, }.

The empirical mean vector, fig,, and the v X v empirical noise covariance

matrix, X,, are

1
llki = — Xk; 6 3.12
~ ; (3.12)
and,
nki
A 1 N ~ T
Eki = (in,5 - l’l'kz> (in,5 - l’l'kz) ) (313)
e — 145
respectively.

3.6.3  Classifying Observed Traces. Since each targeted intermediate val-
ues are dependent one byte of the key, there are K = 256 key-byte values, k; €
{0, ...,255}. For matrix X, which contains the distinguishing features from one trace

in each row, the probability that a key-byte guess is correct is 73]

ﬁ p (XdT| k?z) -p (ki)
p (k| X) = —=— , (3.14)
S (Hpotim) e

where ¢ is the index of the n; test traces.

Since AES key-bytes are uniformly distributed, it is initially assumed that
p (k) = 1/256 for all I € {0,...,255}. The Bayesian classification process produces
the probabilities p (k;| X) for all i € {0,...,255}.
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3.6.4 Class Selection. (Classification is based on a maximum-likelihood
(ML) decision rule. After p (k;|X) is calculated for each possible round key value,
the most likely key-byte value is

k; = argmax p (k| X) . (3.15)
k;

3.6.5 Distinguishing Feature Selection.  Device EM traces are typically col-
lected at a very high sampling rate resulting in a large number of samples (n, > 10%).
Building templates based on every sample is not feasible due to storage requirements
of the covariance matrix and complexity of matrix inversion required to calculate the

observation probability [99].

The processing time and complexity of constructing the templates can be re-
duced by identifying n out of ny points that provide the most information to the
template attack. Since these samples must allow classes to be distinguished from
each other, they are referred to as distinguishing features herein. They are also

referred to as points of interest in related literature.

Previous research has focused on improving how distinguishing features are
generated and selected. A number of heuristic approaches have been proposed,
including selecting samples with the largest difference between mean traces [24], or
the point at which the largest variance between the mean traces (for each class)
occurs. Benefits of pre-processing using a Fast Fourier Transform before selecting
the samples, with the highest cumulative difference between pairs of mean traces,
was evaluated in [99]. Requiring a minimum number of samples between successive
selected time samples has also been proposed as a way to reduce the number of

distinguishing features by reducing redundant information [99].

The known-key CEMA described in Section [3.4.3] was determined to be the
most effective method for selecting distinguishing features for both target devices.

Points with high correlation coefficients are dependent on the key and plaintext being
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processed. The n points with the highest correlation can be selected, or all points
with an minimum correlation coefficient could be used. To prevent points of interest
from being chosen that are not significantly greater than the average correlation
coefficient of the trace, only points with correlation coefficients greater than 5 times
the average correlation coefficient are used as points of interest for the template

attacks.

3.6.5.1 Principal Component Analysis (PCA).  While heuristic meth-
ods for selecting distinguishing features have been effective, more systematic ap-
proaches have been developed. PCA can reduce the dimensionality of trace data
using a linear transform that maximizes the inter-class variance between empiri-
cal mean traces {1}, for each class in the subspace [9]. To find this transform,
PCA identifies the principal directions {w;}.?, such that n, < n,, which forms an
orthonormal basis capturing the maximal variance of {f,}" | in an n,-dimensional

subspace. The principal directions are the eigenvectors U of the empirical covariance

matrix

S = o3 () (e~ )" (3.16)

where § = UAUT, and 1 = % Zle [is is the average of the mean traces. The
principal directions {w;}.”, are the columns of U that correspond to the n, largest
eigenvalues of A. The n,-largest eigenvalues are denoted by the diagonal matrix A €
R"*" and the corresponding matrix of principal directions is denoted W &€ R?s*"»p.

To perform an attack in the principal subspace, a Gaussian model after projection is

K

assumed. The projected means {v,}' | and projected covariance matrices {A4}~

are given by

and,

A, =WTSW. (3.18)
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A collection of traces from the test device, X, is classified by

k; = arg max p (k:| W'X) (3.19)
k;

3.6.6 Comparing Effectiveness of Template Attacks.  In a template attack
the most likely key-byte is selected using or if PCA is used. For this
research, the template attack is only considered successful if the most likely key-byte
value is the correct key-byte value. Since key-byte selection is dependent on the set
of test traces X used, the attack can be repeated multiple times with different sets
of test traces. Although mathematically when using a Bayesian classifier, the order
in which the processed traces are added does not matter, in practice due to machine
precision limitations the result can be different depending on the order the traces are
added to the classifier. This may occur if the distributions of the training and test
data differ significantly. To repeat a template attack multiple times, permutations
of the collected traces are generated to specify multiple trace orders for a given test
trace set. To determine the success rate for an attack, the classification phase of the
template attack is performed using the first n; traces from each permutation, and
the percentage of attacks that yield the correct key byte is calculated for each byte
individually or for all 16 key-bytes (global success rate).

Alternatively, a single set /order of traces can be used to compare the effective-
ness of two template attacks. By plotting the posterior probabilities for call key-byte
guesses found using as in Figure , the number of traces at which an attack
is successful for a given trace set can be compared [73]. The posterior probability for
the correct key byte value is drawn with a thick green line, and the other key bytes
are drawn using thin lines. Using training and test traces collected from ARMI, a
template attack is performed using the 40 samples most highly correlated with the
HW of output of SubBytes for Byte 1 as distinguishing features. Next, the attack

is repeated using the 80 most highly correlated samples. The effectiveness of these
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Figure 3.10  Plot of the posterior probabilities for all possible key-byte values using
the indicated number of distinguishing features selected using known-

key CEMA.

template attacks can be compared in Figure [3.10, Using the same trace set, the
template attack using 80 distinguishing features identifies the correct key in fewer

traces than the template attack using only 40 distinguishing features.

3.7 Algebraic Cryptanalysis

Algebraic cryptanalysis is used in this dissertation to combine the results from
multiple template attacks. The AES SAT solver tool developed in this section uses
a multivariate system of polynomials to describe the relationship between the plain-
text, key, ciphertext and intermediate values of AES-128. The AES SAT solver tool
allows any information known about the plaintext, ciphertext, and any intermediate
value or a pair of intermediate values to be added as a constraint for the system of
equations. For direct attacks on the key schedule, an AES Key Schedule SAT Solver

tool is developed which only includes the equations for the key schedule.

3.7.1 Generating a System of Equations for AES-128.  The small scale vari-
ants of the AES are designed to incorporate the design features of AES and provide
a framework for comparing cryptographic methods . In addition to implement-
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ing the small scale variants described in [25] and |27], a full scale implementation of
AES-128 can be constructed using the SR polynomial generator [7] based in Sage
mathematical software, a free software tool created with the goal of being an “open

source alternative to Magma, Maple, Mathematica, and MATLAB” [124].

For a full AES-128 encryption operation this system includes 7288 polynomials
in Algebraic Normal Form (ANF) and 4544 variables. The variables are specified at
the bit level for the start of each AES-128 round, the output of each SubBytes inver-
sion and each bit of each round key. Variables are added to the system to represent
the plaintext and ciphertext. The polynomials define the relationship between each
round, the inversion in SubBytes, and the key schedule. Thus the system of equa-
tions fully defines the relationship between each of the variables defined by AES-128.
If enough of the variables are known, the key can be determined by finding a solution
to the system of equations. The value of the variables may be known from plaintext,
ciphertext, and intermediate values found using side-channel analysis. Methods for

writing constraints for known values are explained in Section [3.7.2.1]

For the attack in Chapter [}, the key schedule is attacked directly by identifying
possible values for multiple bytes of the key schedule. Since the entire key schedule

depends only on the cipher key and not the plaintext, only the equations for the key
schedule are included in the AES Key Schedule SAT Solver tool.

3.7.2  Converting to a SAT Problem. The polynomials produced by the
SR polynomial generator are in ANF. Since the system of polynomials contains
thousands of polynomials and variables, it is not practical to convert to CNF by
hand. Mate Soos updated a converter originally written by Martin Albrecht which
converts ANF to Conjunctive Normal Form (CNF) (anf2cnf) and can produce a
DIMACS filff] from equations written in ANF [119]. DIMACS is a standardized
format for writing CNF equations for input to a SAT solver. The output of the SR

SDIMACS format is named for the Center for Discrete Mathematics & Theoretical Computer
Science (DIMACS) at Rutgers University.
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polynomial generator can be used with the anf2cnf converter to produce a DIMACS
file which describes the relationship between the intermediate values, the plaintext,

ciphertext and key for AES-128.

3.7.2.1 Introducing Side-Channel Information. SCA can identify
properties of intermediate values or pairs of intermediate values. For example, if the
exact value of a S-box input is determined using a template attack, the value can be
added as constraints on bit values in the system of polynomials. The attack could

also identify multiple possible byte-values.

Given enough traces, template attacks can usually identify the correct byte
value. However, in many cases a template attack can identify multiple possible key-
byte candidates using less traces than required to determine the exact key value.
Rather than using the exact byte value as a constraint for the SAT solver tool, a
list of possible bytes can be used. If the template attack determines the HW of an
intermediate value, all byte values with that HW would be added as possible values.
For example, if the HW of an intermediate value byte is equal to 1, the actual decimal
representation of the 8-bit intermediate value byte may be 1, 2, 4, 8, 16, 32, 64 or
128.

A list of possible values for each byte can also be identified from the posterior
probability for each key byte value calculated using[3.14 When using the maximum
likelihood decision rule in ([3.15)), only the key byte value with the highest posterior
probability is selected. If this fails to produce the correct key value, more than
one possible key value can be allowed. A fixed number of possible values could be
added to the system of equations for each attacked intermediate value or all key byte
values a meet a minimum posterior probability threshold could be added. Methods
for setting this threshold are explored in Chapter [l If more than one byte value is

allowed, additional information is needed to identify which byte is correct. This could
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be information from more than one round of AES, or a known plaintext/ciphertext

pair.

As the number of possible byte values increases, the probability a byte value
combination will satisfy the system of equation increases and the SAT solver may
identify the incorrect key. Increasing the number of byte candidates increases solve
time, but because of the data redundancy in AES, the SAT solver tool may still
identify the correct key. The data redundancy in AES allows the correct key to be

recovered even if each byte value cannot be uniquely identified.

3.7.83  Solving the System of Fquations.  Once constraints on the byte values
are identified, they must be written in terms of the bit variables used to construct
the system of equations. Rather than add the constraints directly to the system of
equations in ANF, the constraints are written separately. The benefit of this ap-
proach is that the system of equations describing AES can be generated once, and
Sage Mathematics is not required for each attack. Constraint statements describing
the relationship between the bits of the intermediate value are written using Boolean
logic. A tool called Limboole [60], takes constraints written in Boolean logic and con-
verts them to DIMACS CNF form. Once the variable assignments in the DIMACS
file from anf2cnf and Limboole have been deconflicted, the DIMACS files can be
combined and used as the input to the SAT solver. The consolidated DIMACS file
is processed using CryptoMiniSat2 v2.9.1 [118] and the result is compared with the
correct key schedule. If an incorrect key is found, it can be added as a constraint to
the system of equations, to ensure the SAT solver will not find the same incorrect

solution again. More information on this process is found in Appendix [B]

3.7.4  Unique Contributions of this SAT Solver Tool. Although this tool
is based on a freely available polynomial system generator, extensive work was per-

formed to introduce the properties of the intermediate values recovered from SCA
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to constrain the SAT solver and translate the SAT solver solution back into the

intermediate value variables.

The AES-128 SAT solver tool in this research is the first to use multiple models
to simultaneously constrain the solution of the SAT solver. Since the properties that
can be extracted using SCA are different for each round- or key-bit, properties can
be specified in terms of bytes or bits. Models currently incorporated into the tool
are exact bit/byte value, exact byte value plus random byte values, byte HW, and
possible byte values based on posterior probability. Using a thresholding technique
based on the posterior probabilities for all key guesses, is also unique and explained

further in Chapter [4]

3.8  Summary

This chapter introduced the common methodology used in this dissertation
including, data collection, pre-processing techniques, CEMA-based attacks and tem-
plate attacks. The techniques presented in the following chapters enhance the effec-
tiveness of these attacks and remove or challenge one or more of the assumptions
required to preform these attacks. Additional methodology presented in the following

chapters build off of the common methodology presented here.
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4. Key Schedule Redundancy Attack

This chapter is based on methodology and results submitted to the International
Journal of Applied Cryptography in a paper titled “An algebraic side-channel attack
on the AES key schedule”. The article was coauthored by Dr. Rusty Baldwin and
Dr. Michael Temple.

4.1 Introduction

Side-Channel Analysis (SCA) exploits a physical implementation rather than
the mathematical cryptographic strength of a cipher. An implementation can leak in-
formation about the data being processed on the device, which can lead to the extrac-
tion of the key used to perform the cryptographic operation. Various side-channels
have been used to attack cryptographic devices including timing [66], power con-
sumption [67], and electromagnetic (EM) emanations [47,94]. Template attacks [24]
are a powerful type of two-phased attack in which an adversary builds probabilistic
models known as templates during a training phase, and compares key-dependent
predictions with observed emissions using those templates during an attack phase.
The single key or key portion guess with the highest probability of being correct is
typically chosen based on a Maximum Likelihood (ML) decision rule [24}/73]. The
ML decision rule produces a single guess for each portion of the key. If the collected
emissions used for classification are of poor quality, due to poor probe placement,
noisy device operation, noise introduced from the collection process or in the collec-

tion environment, the ML decision rule may produce an incorrect key guess.

Incorporating algebraic cryptanalysis into the template attack methodology al-
lows the most likely guesses to be considered rather than a single guess. As a result,
even if the correct byte is not identified using the ML decision rule, the algebraic
structure of the cipher can be used to identify which guess is correct. To demonstrate

this, we introduce a new unknown plaintext attack, called the Key Schedule Redun-
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dancy Attack (KSRA), that combines template attacks with algebraic cryptanalysis
such that the AES key schedule can be recovered even from poor quality collections.
The attack has three phases: 1) template construction, 2) trace classification, and 3)
key schedule reconciliation. The template construction phase identifies distinguish-
ing features of interest using correlation analysis [22] and builds templates for each
targeted intermediate value. The list of potential values for each targeted interme-
diate byte is used to calculate possible round key-byte values in the attack phase.
These possible round key-bytes are then reconciled into a working key schedule using
algebraic cryptanalysis in the final phase. While, demonstrated here using the AES
key schedule, the proposed method is generally applicable to other ciphers.

Various aspects of this attack are different than previously proposed attacks.
This attack directly targets the key schedule, identifying possible values for portions
of multiple round keys based on the posterior probability for each byte guess calcu-
lated from a template attack. A novel thresholding technique is used to gradually
include additional key-byte guesses based only on the posterior probability for each
key-byte guess. Since the target microcontroller calculates the key schedule as part
of each encryption operation, traces from multiple encryption operations can be used
without requiring individual plaintexts or ciphertext to be matched with their corre-
sponding side-channel emissions, eliminating one of the biggest assumptions made in
side-channel analysis. Since each round key contains all of the information required
to reconstruct the entire key schedule, this attack takes advantage of the redundancy
in the key schedule to resolve uncertainty in template classification. Since the goal
of KSRA is to combine template attacks and algebraic cryptanalysis to improve per-
formance when using poor quality traces, rather than a hardened design, the attack

is performed on an unprotected implementation.

This chapter is organized as follows. Section provides a brief overview of

the AES key schedule, template attacks and algebraic cryptanalysis. Related work
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is outlined in Section 4.3 The new attack is explained in Section 4.4} and results

are presented in Section [4.5]

4.2 Background

This attack targets an Electronic Codebook (ECB) implementation of AES on
a 16-bit PIC microprocessor. AES is summarized in Section [2.2.2] and fully described
in the Federal Information Processing Standards Publication 197 [88]. Since the
KSRA focuses on the key schedule, it is explained in detail here.

The KSRA uses known-key Correlation-based Electromagnetic Analysis (CEMA)
to identify points of interest for template attacks. Background on known-key CEMA
and template attacks can be found in Chapter [3]

4.2.1 Key Schedule Background.  The template attacks in the KSRA target
the SubWord operation output in the AES key scheduleﬂ How this output is related
to portions of the round keys is explained below and shown in Fig. [4.1l The full key

expansion routine is explained in AES standard [88§].

For AES-128, the variant of AES with a 128-bit key, there are IV, = 10 rounds.
The key expansion routine takes the original cipher key, K, and generates a total of
N, = 44 4-byte words, [w;], 0 < i < 43. The first 4 words of the key schedule are from
the original 128-bit round key K = K" = [wg, w1, w9, w3] and an additional 4 words
are generated for each of the 10 rounds. Each round key is denoted by K" where 7 is
the round index 0 < r < 10 so, K" = [W4y, Wary1, Warr2, Warr3]. Furthermore, since
key schedule transformations are performed at the byte level, each round key can be

written in terms of its key-bytes as K" = [K{, K7, ...K7,, K{;].

There are multiple intermediate values calculated during the key schedule

routine that are not used as the round keys. The last four bytes of each round

! The motivation for attacking the output of SubWord, rather than the key-bytes directly [24],
is described in Section

93



Figure 4.1  Process for transforming the original cipher key into the first round
key performed in the key schedule algorithm (figure derived from [65]).
This process is repeated for K? through K'°. The 4-byte outputs of
the SubWord operations performed to calculate K' through K are
the targets of this attack.

key, [wyr13] = [K{y, K3, K7y, K5], are transformed using the cyclic permutation
RotWord ([KTy, K1y, K1y, Ki5]) = [Ki3, K1y, Kis, K]

Next, the SubWord operation takes the 4-byte output of RotWord and applies
the AES S-box to each byte to produce a 4-byte output word. This result is XOR-ed
with the round word constant, Rcon[i] and finally XOR-ed with [wy,] to calculate

[w4(r+1)]. For this attack, since the SubWord operation occurs in the round after

the targeted round, r, its output is [ZTg+', 77, Ty +', T3 +.

4.8 Related Work

A side-channel attack on the AES-128 key schedule is proposed in [71]. The
goal of the attack is to substantially reduce the number of keys such that a brute
force search is feasible. The attack assumes all 16 8-bit Hamming Weights (HWSs)
(i.e., the number of bits equal to 1 in the byte) can be extracted for a targeted
round key. The round key is divided into four 5-byte overlapping parts. Additional
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intermediate key schedule values solely determined by each 5-byte set are identified
and it is assume the HWs of these values are known. Knowing the HWs for each
round key-byte and dependent intermediate values allows lists of possible round keys
to be created for each 5-byte part. The four lists are combined to define the new
key search space. Not all HW values must be known to determine the key, but
the attacker must be able to determine which HWs can be successfully determined
during a side-channel attack [71]. With fewer HWs, the key search space becomes
larger. The KSRA allows for uncertainty in extracted values, using the algebraic
representation of the key schedule and the SAT solver to identify the correct value

for each byte.

Renauld et al. combined algebraic cryptanalysis with HW-based template at-
tacks to exploit an implementation of AES on a 8-bit PIC microcontroller [100]. The
attack targeted an 8-bit PIC microcontroller which used multiple lookup tables and
XOR operations to perform the MixColumn transformation resulting in more inter-
mediate values than needed to perform AES on another microcontroller architecture.
Renault et al. note the leakage of the MixColumn operation is “most critical when
solving the system”. If the HWs for all of the intermediate values for 3 consecutive
rounds can be extracted with an error rate less than or equal to 1%, the AES key
can be recovered in 95% of cases. Since this approach identifies a single HW for
each intermediate value, an incorrect HW will result in the SAT solver determining
the system as unsatisfiable or the SAT solver will identify an incorrect key. A SAT
solver can use less precise leakages and still find the correct key if given a pair of HWs
that includes the correct one along with sufficient rounds of HW information. All
template attack results were simulated, and the authors do not state if enough HWs
can actually be recovered from the 8-bit PIC microcontroller, to make the attack

possible.

Building on the results of [100], Mohamed et al. improved the algebraic repre-

sentation of AES for an 8-bit implementation to reduce the amount of data required
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for both known and unknown plaintext attacks [81]. Additionally, their approach
defined and tolerated practical levels of erroneous information recovered from simu-
lated template attacks by increasing the set of possible HW values to reach a pre-
determined certainty threshold based on maximum-likelihood estimation. Oren et
al. proposed dealing with errors by converting the problem of solving the system of
equations into an integer programming optimization problem [90]. Successful attacks
were demonstrated with 10-20% error rates for the Keeloq system [90] and extended
to AES [89] allowing recovery of the secret key in 60-70% of trials with a single
trace even when 20% of the trace is corrupted by noise. These attacks [81,89}/100],
were again demonstrated with simulated template attack results, and rely on the
ability to extract the HWs from additional calculations used to implement AES on

the targeted 8-bit microcontrollers.

Simultaneously, yet independent of this research, posterior probability values
were incorporated into the template attack methodology to attack AES [89]. Using
known plaintext and ciphertext pairs in conjunction with the algebraic description
of AES-128 on an 8-bit microcontroller from [100], the posterior probability values
identify the k& most likely values for each intermediate value. A fixed number of
possible values for each intermediate value produced poor results when used with
a SAT solver. More favorable results were achieved when the posterior probability
values were used to determine a goal term in an integer programming optimization
representation. Rather than use a fixed number of guesses, our KSRA attack demon-
strates a thresholding technique to identify the possible values for each intermediate

value.

Albrecht and Cid demonstrated it is possible to recover a decayed key schedule
in the presence of noise using polynomial system solving techniques to identify the
most likely key schedule [6]. In their cold boot application, noise is modeled as
the probability of an individual bit in the key schedule stored in Dynamic Random
Access Memory (DRAM) flipping from its initial state. Since bit decay in DRAM is
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usually asymmetric [55], the probability of a bit flipping to the memory’s “ground
state” is much higher than the probability of flipping in the opposite direction. This
research uses the same system of equations, but possible byte values are determined

by the posterior probability of the template attacks.

4.4 The Attack

The KSRA combines correlation-based EM analysis techniques, template at-
tacks and algebraic cryptanalysis. The attack uses collected side-channel emissions
from a PIC microcontroller. To test the robustness of the attack, the quality of the
data is intentionally degraded by moving the near-field probe away from the device.
Training and test data are collected at each probe height above the device. Known-
key correlation analysis is performed on the training data to identify the points of
interest for each output of the SubWord operation in the key schedule. Templates
are built for the points of interest for each byte using the training data. The tem-
plate classification phase is performed using test data, and the posterior probability
for each key bytes guess is used to identify possible values for the last 4 bytes in
each round key. The bytes values that meet a threshold posterior probability are
included as possible values for the SAT solver. The SAT solver uses a description of
the AES-128 key schedule and possible byte values to return a working key schedule

if possible. Each of these steps are now explained in greater detail.

4.4.1 Data Collection. Training and test data is collected from PIC A01
as described in Section [3.1] The microprocessor performs MixColumns using the
xtimes operation as described in FIPS 197 [88], not using substitution tables as
in [81,[89,/100]. The SubBytes substitution table, used in both the rounds and key

schedule, is the only substitution table used.

To test the robustness of the attack, the quality of the data is intentionally

degraded by gradually increasing the distance between the device and probe from
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h =0toh=>5mm in 1 mm increments. At each height, n, = 10,000 training traces
and n; = 5,000 test traces are collected. After down-sampling, the traces used in

the attack have an effective sampling frequency of fP = 200 MSa/sec.

4.4.2  Targeted Intermediate Values.  To identify the portions of the round
key for round r which can be recovered from the targeted intermediate values, the
output of SubWord in the following round is designated [T5*', 77!, T3, T4 +'] and

shown in Fig. 4.1}

The temporary values produced by SubWord, [T5*!, Ty, T3+, Ti ], are the
target of the KSRA. Letting SB denote the AES S-Box, with SB™! denoting its
inverse, the relationship between the last 4 bytes of round keys K° through K°
and the subsequent SubWord operation which calculates the next round key can be

written,
[SB(K1s),SB (K{y),SB(KT;),SB(K1y)] = [Tg7, 7, T3, T3+ . (4.1)

Therefore,

Possible values for [T5™, 77+, T; ™ T4+ are determined using template at-
tacks. Since the original key can be determine using the last 4 bytes of any 4
consecutive round keys, the 40 bytes of round key data extracted using this method
are redundant and can be used to determine the correct key schedule in poor quality
trace sets. Given a set of guesses for the last 4 bytes of each round key, a SAT solver

attempts to reconcile the guesses into a proper key schedule.
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A more direct attack would be to build templates for each byte of the AES-128
key [24]. However, following the same methodology to identify distinguishing features
to build and use the template attack described in this section, only the last 4 of the
16 key-bytes can be extracted successfully for the target device. Other methods of
identifying distinguishing features including Principal Component Analysis [9] were

tested, but did not improve the result.

While any intermediate value in the key schedule can be targeted, only compar-
ison of the input and output SubWord operations provides additional information.
All other intermediate values are linearly related to the output of the previous Sub-
Word operation. The SubWord output was chosen as the target intermediate value
for the template attack because it yielded the highest posterior probabilities for

correct key-byte values out of all intermediate values tested.

In testing, including additional linearly related intermediate values degraded
performance. Performance is degraded because including additional intermediate
values introduces additional (incorrect) key-byte guesses for the same key-byte, in-

creasing the likelihood of finding an incorrect key schedule.

4.4.2.1 Identifying Distinguishing Features. — The goal of the template
attack is to identify the most likely byte values of each output of the SubWord
operation. To identify the correct byte, each bit must be correctly identified. Using
the known cipher keys from the training data, the output of the SubWord operation
is calculated and bit-level correlation analysis [22] is performed to determine which
samples are highly correlated with the leakage for each bit of the SubWord output.
This process is described in Section [3.4.3]

The samples with the highest correlation coefficients for each bit are added to
the list of distinguishing features. If a sample has already been added because it
was highly correlated with another bit, the sample with the next highest correlation

coefficient for that bit is added. Only samples which have correlation coefficients
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significantly (5x) greater than the average correlation coefficient are added to the
list of distinguishing features. Up to 10 points of interest for each bit are included
in the list of distinguishing features for each byte. Including more than 10 points for
each bit did not dramatically improve classification performance for h = 0. To allow

for comparison, the maximum number of points was fixed for all heights.

The known-key correlation analysis is repeated using the data sets collected at
each distance. As a result, the interesting points identified for the trace set collected
with the near-field probe is at A = 0 mm may not be the same points as identified

using the trace set collected when the probe is 5 mm above the device.

4.4.8 Template Attack. A template attack is performed on 40 intermediate
values of the key schedule to determine possible values for 7} 1 where b € {1,...,4}
and r € {0,...,9}. Although distinguishing features are selected using bit-wise
known-key correlation analysis, the templates are constructed for K = 256 possible

key-byte values (classes), k; € {0, ..., 255}, as described in Section [3.6.2]

For the matrix X containing distinguishing features from one test trace on each

row, the probability that a byte guess is correct is [73],

(B p (K%l k= 177) - (ki = 177

5 (T e (Tl ke = 15Y)) o (k= 1) )

p(ki=T,7X) = (4.3)

where 7 is the index of the IV, test traces.

Since AES key-bytes are uniformly distributed, it is initially assumed that
P (kl =T +1) = 1/256. Let py, be the posterior probability for which a key-byte
guess is retained as a round key-byte candidate. Since the key schedule portion of
each trace is the same, an alternative approach is to average multiple traces before
performing classification. In testing, the Bayesian classification approach in
yielded better results.
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If p (kl =1 +1| X) > P it is included in the list of possible values for 7T} +1,
The list of possible values for T, ' are used to calculate possible values for K7J,, K7,
K7, or K{5 using .

Selecting the proper threshold at which to keep or reject a byte guess for each
T, *1is critical to the success of this attack. For the SAT solver to find the correct
key schedule, the value of T} 1 that corresponds to the actual key-byte must be
included in the list of possible bytes for each targeted byte. If all correct round
key-byte values are not included in the list of possible values, the SAT solver will
either produce an incorrect key schedule or return an UNSAT result. If too many
round key-byte guesses are included, the SAT solver will either find an incorrect key

schedule or not identify a working key schedule in a timely manner.

To calculate the ideal threshold, py,, the maximum threshold that allows all
of the correct round key-bytes to be included in the list of possible round key-byte
values, the minimum posterior probability of the correct values for the 40 targeted
round key-byte values is found. The ideal threshold is calculated for each attack.
It is shown in Section that for an actual attack, the posterior probability
matrices for each targeted round key-byte can be used to determine possible values
for py, by evaluating the number of round key-byte guesses that would be included

for a given pyp,..

4.4.4  Reconciling Round Key-Byte Guesses.  The AES Key Schedule SAT
Solver tool described in Section is used to reconcile the round key-byte guesses.
The guesses for the byte value for 40 key schedule bytes are included as constraints
to the system of equations describing the AES-128 key schedule. The SAT solver
attempts to identify a working key schedule. Since the key schedule rounds contain
redundant information, it may identify the correct key schedule even if the correct
byte value would not have been selected using a ML decision rule. If a working key

schedule cannot be found the SAT solver will identify the system as unsatisfiable
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(UNSAT). If a working key schedule is returned, the correct key schedule is compared

to the result to determine if the attack is successful.

4.5 Results and Comparison

4.5.1  Fvaluating Performance.  After collecting training and test traces as
described at h = 0 mm, a template attack is performed using the ML decision rule
on each of the 40 targeted key schedule intermediate values. The attack is repeated
with n, = 500 test traces, and overall the correct round key-byte value is identified
in 98.5% of the template attacks using only a single trace. To intentionally degrade
the quality of the collected traces, the distance between the probe and device is

increased from A =0 to h = 5 mm in 1 mm increments.

Increasing the distance between the probe and the device reduces the signal-to-
noise ratio (SNR). The SNR is estimated for one bit changing for each set of training
traces collected at different distances using the methodology proposed in [73]. In ad-
dition to the variation caused by the data, each trace contains electronic and switch-
ing noise as well as noise from the collection equipment and environment. Digitizing
the signal introduced quantization noise. The SNR for one bit changing at a specific

sample of a collected signal S is estimated to be SNR = Var (Syata) /Var (Snoise) -

To estimate Var (Sgaa), the mean signal observed value when the bit of interest
is zero, o, and the mean when the bit is one, u;, are calculated to average out
the contributions of noise. Next, the value observed for a sample in each of the
n; = 10,000 training traces is replaced with either p or p; based on the actual bit
value for that trace. To estimate Var (Spuise), the variance of all traces when the
bit value is equal to 0 is calculated. This process estimates the SNR for the LSB
of K}, for the training data collected at each distance. The SNRs are calculated
for each time sample in the collected traces. Since the highest SNRs may occur at
different samples for each trace collection, the SNRs are compared by calculating the

average of the five highest SNRs at each distance and normalizing by the average of
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Figure 4.2  Estimated normalized SNR is calculated by averaging the 5 highest
SNRs for each distance and normalizing using the average when the
probe is at A = 0 mm (left). The change in SNR in dB when the near-
field probe is placed h = 2 mm (middle) and h = 4 mm (right) above
the device are shown.

Table 4.1  Calculated change in SNR (dB) from increasing the distance between
the microcontroller packaging and the bottom of the probe.
Probe Height h (mm)
0 1 2 3 4 )

0-3.7|-11.1|-14.9 | -21.6 | -26.3

Normalized

SNR (dB)

5 SNRs calculated when the probe is at A = 0 mm. Plots of the SNRs calculated
for the distances of h = 0,2 and 4 mm for samples 3725 to 3825 are shown in
Fig. [4.2 The 5 highest SNR values, circled on in Fig. [4.2] correspond with the 5
highest correlation coefficients found during the single-bit correlation analysis used
to identify distinguishing features for the template. The normalized SNR for each
probe height is shown in Table [4.1]

SNR was estimated at the bit level because the distinguishing points are se-
lected at the bit level. Performing these calculations on other bits produced consis-

tent results, so only one example is shown.

4.5.2  Comparison of Distinguishing Features. The samples used to build
templates for h = 0 mm and A = 5 mm are compared in Figs. [4.3]and [£.4] Using the

103



Targeted Byte

Samples x 10°

Figure 4.3  Plot of distinguishing features chosen for A = 0 mm. The round key for
the next round is calculated before the round starts. The points which
are highly correlated with a HW model are identified as distinguishing
features. There are 4 targeted bytes per round. To help distinguish
rounds, a dotted line is shown between each round.

methodology described in Sec. [£.4.2.1] between 59 and 80 points are identified for
training data collected at h = 0 mm. When the distance is increased to h = 5 mm
the number of points selected to build templates for each byte is reduced to between
30 and 66 because fewer samples have correlation coefficients significantly greater
than (> x5) the average correlation coefficient. The reduced number of points, and
the increased number of points scattered across the entire trace, indicate the traces
collected at the greater distance do not follow the HW model as well. The reduced
number of points and selection of points with lower correlation, make the template

attack at h = 5 mm less effective than for h = 0 mm.

4.5.8  Ezxperimental Results. Since this attack directly targets the inter-
mediate values of the key schedule, it has the benefit of being able to use traces
from multiple encryption operations without requiring the plaintext or ciphertext
to be associated with each collected side-channel emission. In fact, only a single

plaintext/ciphertext pair is needed to verify the correct key has been found. The
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Targeted Byte

Samples x 10°

Figure 4.4  Plot of distinguishing features for h =5 mm. At h =5 mm additional
noise causes various points across the entire trace to be identified as
distinguishing features. Overall, less distinguishing features are chosen
for h =5 mm than for h = 0 mm.

performance of this attack is evaluated by repeatedly performing the attack 500 times

using randomly chosen sets of 1, 5 or 50 traces from the n, = 1,000 test traces.

4.5.3.1 Ideal threshold. To reduce the time required to evaluate
performance of the KSRA, the ideal threshold py,, (discussed in Section is
used to identify possible values for each round key-byte for the results in Table [4.2]
For these trials the SAT solver is only allowed to return one solution. If any portion
of the key schedule is incorrect, the entire key schedule is incorrect. The average
number of round key-bytes (of the 40 targeted values) correctly identified using the
ML decision rule are shown in parentheses for comparison. Since they do not indicate
the percentage of key schedules recovered using the ML method, they are shown as

a ratio to avoid confusion.

With a probe height of A = 2 mm using only 1 test trace, the KSRA was able
to recover the correct key schedule in 90.6% of the trials despite correctly identifying
only 21.7 of the 40 extracted round key-bytes correctly using a ML decision rule.
With a probe height of h = 5 mm, if 50 traces are used during the template matching
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Table 4.2  Percentage of 500 trials resulting in the correct key schedule being iden-
tified at each probe height using the unknown plaintext attack pro-
posed. The posterior probability threshold py,, used to select possible
SubWord () output is calculated for each trial to allow all correct bytes to
be included. The average number of the 40 targeted key schedule values
correctly identified using a ML decision rule are shown in parentheses.

1 of Traces - 1 Prol;e Height h émm) ; .
1 100.0% 99.8% 90.6% 40.6% 0.0% 0.0%
(39.4/40) | (33.9/40) | (21.7/40) | (13.9/40) | (4.7/40) | (1.9/40)
5 100.0% 100.0% 99.6% 99.6% 58.3% 0.0%
(40/40) | (39.1/40) | (35.2/40) | (20.40/40) | (15.8/40) | (6.8/40)
50 100.0% 100.0% 100.0% 100.0% 99.8% 93.6%
(40/40) | (39.9/40) | (38.1/40) | (37.0/40) | (28.0/40) | (17.8/40)

phase, the key schedule is successfully recovered in 93.6% of trials without knowledge

of the plaintext.

4.5.3.2  Ezxperimentally Determined Threshold. Clearly, in an actual
attack the ideal threshold is not known. However, the posterior probability matri-
ces for each round key-byte can be used to identify possible threshold values. The
threshold can gradually be decreased based on the number of key-byte guesses in-
cluded at a given threshold. The initial threshold is set to include at least one guess
for all targeted round key-bytes. If this initial guess fails to identify the correct key
due to the SAT solver returning an incorrect key or UNSAT, the threshold is lowered
for subsequent attempts. Although there are potentially 40x256 thresholds to eval-
uate, good results were obtained when the threshold was adjusted to increase the
maximum number of guesses per round key-byte each time the SAT solver returned
an Unsatisfiable (UNSAT) or incorrect key schedule. These thresholds can easily
be found by ranking the key schedule byte guesses for each intermediate values by
posterior probability, and finding the maximum posterior probability for the desired
number of guesses. Although this method still identifies up to 256 threshold values,
these are quickly evaluated by the SAT solver.
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To test the effectiveness of gradually lowering the threshold, KSRA is per-
formed repeatedly, reducing the threshold for each subsequent attack. Since all
correct key schedules in Table 2 were found in less than 60 seconds, the SAT solver
timeout is set to 120 seconds. Additionally, since it is unlikely the SAT solver will
find the correct answer when the average number of guesses for each round key-byte
is greater than 50, or the minimum number of key guesses for any byte is greater
than 10, these statistics were used to identify when the threshold should no longer
be increased. These constraints allow multiple correct key-byte guesses to have low
posterior probabilities. However since only one threshold is used to determine the
possible values for all key schedule bytes, if the correct key-byte value for one or
more bytes has a very low posterior probability due to a particularly noisy or poorly
collected trace, the number of possible values for other key schedule bytes will be

increased.

The effectiveness of using this method to find the threshold is compared to
calculating the ideal threshold using sets of 50 traces collected at h = 5 mm. By
gradually increasing the maximum number of round key-byte guesses, the correct key
was identified in 488 of 500 (97.6%) of the trials. This is a marked improvement over
the 93.6% success rate for the “ideal threshold”. When the ideal threshold is known,
the SAT solver was only run once. However, when the threshold is unknown and
an incorrect answer is returned it is assumed the threshold was not low enough to
include the correct round key-bytes and the threshold is decreased further. Although
the SAT solver has a larger set of possible key-byte values in this case, it also has

another chance to find the correct key.

4.5.8.8  Multiple Guesses. ~ When the threshold is gradually lowered,
the correct key is found for 12 of the 16 trials which produced incorrect key guesses
using the “ideal” threshold. This discrepancy is resolved by allowing the SAT solver
to return another guess if it returns an incorrect key schedule. Adding incorrect

solutions to the SAT solver constraints prevents previous results from being returned
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by the SAT solver in subsequent attempts. Allowing for up to 10 incorrect answers
to be returned, 488 of 500 keys (97.6%) were recovered successfully using the ideal

threshold, matching the performance when the threshold was unknown.

4.5.8.4  Error Tolerance.  If the template attack classification process
results in the correct byte value having a very low posterior probability due to noise,
P Mmust be decreased until the correct value is included in the set of possible byte
values before it will be possible for the SAT solver to find the correct key schedule.
Unfortunately, reducing pp, also increases the number of possible byte values for
other round key-bytes. When a large number of byte values are possible for each
of the targeted bytes, the SAT solver may find another working key schedule before
finding the correct key. If the correct key is not found after a set number of attempts,
the trial is considered a failure. For all trials shown in Table[4.2] the correct value for
each byte is included in the list of possible bytes. All failures are due to an incorrect

key schedule being returned from the SAT solver after the first attempt.

4.5.4  Comparison.  Effectiveness of KSRA is compared to a template attack
on the SubBytes output in the first round of AES-128, as described in Section [3.4.2]
This type of side-channel attack is compared with KSRA because it also incorporates
multiple traces using a Bayesian classification rule. To perform classification for a
SubBytes attack using multiple traces, the plaintext must be known. The SubBytes
template attack is implemented using the same distinguishing feature selection cri-
teria and the ML decision rule is used to select the 16 key-byte candidates. The
percentage of trials that successfully identified all 16 key-bytes for each probe height
are shown in Table [£.3]

Even without knowledge of the plaintexts, performing a proposed SubWord
attack with a SAT solver provides a higher success rate when only a small number
of traces or plaintexts are available. If only one captured trace is available, the

SubWord attack has a higher success rate than the SubBytes attack for h = 0 to 3
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Table 4.3  Percentage of 500 trials resulting in the correct key being identified at
each probe height using a known plaintext template attack targeting
the output of the SubBytes operation in the first round of an AES-128
encryption operation. The average number of the 16 key values correctly
identified using a ML decision rule are shown in parentheses.

Probe Height h (mm)
# of Traces 0 i 5 3 1 5

1 16.8% 0.0% 0.0% 0.0% 0.0% 0.0%
(14.2/16) | (4.8/16) | (4.8/16) | (3.4/16) | (1.5/16) | (0.7/16)

5 95.8% 85.2% 66.8% 42.2% 4.2% 0.0%
(15.9/16) | (15.6/16) | (15.6/16) | (15.1/16) | (13.1/16) | (8.67/16)

50 100.0% 100.0% 100.0% 100.0% 100.0% 98.2%
(16/16) (16/16) (16/16) (16/16) (16/16) | (15.9/16)

mm. If the associated plaintext is known for a large number of test traces, the

SubBytes attack provides superior performance.

While the SPA key schedule attack in [71] and SKRA both exploit key schedule
redundancy, there are key differences between the attacks which make them hard to
compare directly. The SPA attack uses 81, 76, or 40 HWs extracted with perfect
accuracy to reduce the size of the key schedule search space. A brute force iteration

is required to determine which key in the reduced search space is correct.

The KSRA is based on actual side-channel attacks against the PIC microcon-
trollers. The 40 key schedule bytes are chosen because their values can be revealed
through side-channel analysis. The SPA key schedule attack in |71] identifies which
key schedule bytes could be used to determine the key schedule, but it does not take
into account which byte values (or HWSs) can actually be determined on a physical

implementation.

The KSRA uses the posterior probabilities for the 256 possible byte values
for 40 key schedule bytes. With perfect byte-value extraction accuracy this attack
could be performed with only 16 bytes from the key schedule. Targeting 40 bytes
allows key-byte values to be consider by the SAT solver that would not be chosen
using the ML decision rule. Since the SPA attack assumes perfectly extracted HW
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data, despite increased brute force search times for lower quantities of HWs, it always
recovers the correct key. Unlike the SPA attack, the KSRA is able to use information
from multiple observations and is able to tolerate imprecise classification. Since
guesses for any key-byte can be specified in the SAT solver constraints, KSRA can
be easily adapted to implementations of AES-128 that leak different key schedule
bytes. As such, direct comparison between the SPA attack and the KSRA is not

appropriate.

4.6 Conclusion

This chapter demonstrates the benefit of using algebraic cryptanalysis to rec-
oncile uncertainty in the classification stage of template attacks. The KSRA is a
new unknown-plaintext attack that exploits the redundancy in the key schedule to
compensate for measurement errors. Unlike previous attacks, which merely simu-
lated the results of template attacks [81}/89,90,/100], the robustness of the KRSA is
demonstrated using collected traces that were intentionally degraded by moving the

probe away from the device.

The KSRA identifies possible round-key-byte candidates using the posterior
probability from the classification phase of a template attack rather than selecting
the byte guess with the highest posterior probability. The resulting list of possible
round-key-byte values are reconciled into a working key schedule using a SAT solver.
In addition to not requiring the plaintext, this method was shown to be more effective
than targeting the output of the SubBytes operation in the first AES round based

on the ML decision rule when a small number of plaintexts are available.

Unlike previous SAT solver based unknown plaintext attacks [81}89,90}100]
which targeted intermediate values from the AES round transformation, traces from
multiple encryption operations can be used if the key schedule is calculated during
each encryption operation. The use of multiple traces dramatically improves perfor-

mance for poor quality trace sets. For data collected at h = 5 mm with only one
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trace, the key schedule was not successfully recovered in any of the 500 attempts.
However, when 50 traces and multiple SAT solver attempts are used the success rate

improves to 97.6%.

Pre-calculating and storing the key schedule is an obvious countermeasure for
poor quality collections requiring more than one trace to determine the key schedule.
In this case, an attacker would not be able to observe the same key schedule being
calculated during multiple encryption operations and multiple traces could not be
used to identify the most probable byte guesses. However, unlike the SubBytes
attack, KSRA was successful using but a single trace for all trials when the probe

was placed as close to the microprocessor as possible.

Although determining the secret key for an unprotected implementation of
AES-128 on a microprocessor using side-channel analysis is trivial using high quality
collections, the KSRA has shown the value of incorporating algebraic cryptanalysis
and a SAT solver into template attacks. Even with poor quality traces, the cipher
redundancy can be exploited to determine the correct key value justifying the extra
effort required to create and incorporate the algebraic description of the cipher into

the template attack methodology.
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5. Improving Cross-Device Template Attacks

This chapter contains text of an article submitted and accepted to the Journal of
Cryptographic Engineering [85] titled “Improving cross-device attacks using zero-
mean unit-variance normalization” based on the cross-device attack on PIC micro-
controllers. This article was co-authored by Dr. Rusty Baldwin, Dr. Michael Temple
and Mr. Eric Laspe. It was published online 29 September 2012, and in Volume 3,
Issue 2, pp 99-110 of the print edition. The background section was reduced to avoid
redundancy and notation has been homogenized between chapters of this disserta-
tion. Improvements on the cross-device methodology, to create a single template for
a family of devices, and improve cross-device attacks for more complicated devices

are discussed in Chapter [0}

5.1 Introduction

Template attacks [24] are a form of two-stage profiling attack, with the initial
stage obtaining ‘a priori’ knowledge of the side-channel leakage for a specific device.
The profiling, or training stage estimates the multivariate probability densities of
observable side-channels for the targeted key-dependent internal state of the cryp-
tographic implementation. The estimated probability densities are used during the
attack phase to determine the device’s internal state. The key assumption for a
profiling attack is that a powerful attacker has access to a training device, identical
to the target device, over which he has full control. The training device is used to
create a precise multivariate model of the device’s side-channel leakage for each key
dependency. Implicit in using a training device is that both devices produce similar
side-channel emissions. This assumption was originally introduced in [24], and has

since been repeatedly accepted without challenge [3,9./53}92}/102,/122].

It has recently been shown that in addition to operation and data depen-

dent components of electromagnetic (EM) emissions, the emissions exhibit signif-
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icant device-dependent characteristics [31]. This is likely due to random process
variations introduced during fabrication and packaging [69]. Although the struc-
tural variations introduced in the manufacturing process are relatively small, and
the devices produced meet the desired specifications, no two chips are exactly alike.
Therefore, the emissions produced by similar devices are indeed similar to some de-
gree but not identical. These variations are significant enough to allow a specific
device to be uniquely identified based only on the devices EM emissions [29]. The
work here examines the differences in cross-device emissions to determine if such
differences are sufficient enough to prevent template attacks from being effective if
similar devices are used for training and testing, versus using the same device for

training and testing.

Template attack research has expanded the capabilities of template attacks
to use multiple test traces [92], multiple side-channels [4], reduced the number of
features required to build templates using heuristics [99] and systematic methods |9,
122], and employed templates to defeat countermeasures [3,92]. Template attacks
have been adopted as an attack methodology without evaluating the underlying
assumption the power consumption and EM emissions from two separate devices are
sufficiently similar to make the attacks practical. In each of the papers cited above,
the same smartcard or microprocessor was used to create both the training and test

data.

Research here focuses on the EM side-channel of a device performing the Ad-
vanced Encryption Standard (AES) encryption operations. Unlike power consump-
tion methods, the EM side-channel can be collected without physically modifying
the device. This makes repeating the collection process more difficult. Instead of
monitoring the voltage change across a single shunted resistor, careful consideration
must be given to placing the EM probe in exactly the same position and configu-
ration between collections on a device. Even template attacks performed using the

same-device can fail if the probe is moved between the collection of training and test
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traces. Recently, differences in collection equipment, methodology, synchronization
and target device age were shown to reduce the effectiveness of template attacks
even when attacking using templates created with the same device [41]. This paper

explores the differences between devices.

The remainder of this chapter is organized as follows. Background on the
target cipher, the AES [88] and template attacks were presented in Section and
Section respectively. Known-key Correlation-based EM Analysis (CEMA), used
to identify distinguishing features, was introduced in Section [3.4.3] Differences in
side-channel emissions between devices and development of the mean and variance
normalization technique are explored in Section [5.2] followed by the experimental
methodology in Section [5.3] Results are presented in Section followed by the

conclusion in Section 5.5

5.2 Cross-Device EM leakage

The EM side-channel can be divided into various components as was done for
the power consumption side-channel in [73]. Each sample in the EM side-channel
trace is made up of various components: a operation-dependent component S, a
data-dependent component Sy.:q, electronic noise Sy noise, and a constant component
Seconst- A sample in the total EM side-channel trace is a sum of these components,
or

Stotal = Sop + Sdata + Sel.noise + Sconst- (51)

The distribution of S, ,pise in a microprocessor has been shown to be Se noise ~
N (0,0% ., ....)- The contribution of Syu, is proportional to the Hamming Weight
(HW) of the data being processed and its distribution can be approximated with the
normal distribution when the data is uniformly distributed, or Sgua ~ N (0, Cdata)-

Note that o, neise and cgq:q are device specific.
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For a differential side-channel attack where only the data is changing be-
tween traces, it can be assumed that Var (Seonst) = Var (S,,) = 0, and E (S,,) =
E (Sdata) =F (Sel.noise) = 0. Therefore, F (Stotal> =F (Sconst) = fconst; Where fleonst
is a constant contribution for the operation being performed at a specific time on a

specific device.

Assuming Sguia and Sepneise are statistically independent, Sguta + Sernoise ~

2 2 2 2 :
N (0,02 4ata + 02 el noise) ad Siotar ~ N (Lconsts Taata + T2 noise). FOr a cross-device

must be consistent across

template attack to be successful, ficonst and o2, + 02 .o

devices at samples identified as distinguishing features.
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Figure 5.1  Violin plots showing the distribution of 5,000 observations of sample
#972 on an AES encryption operations with random plaintext and keys
for Np = 40 similar microcontroller devices.

Figure 5.1 uses a violin plot [57] to show the distributions of 5,000 observations
of sample (#972) for Np = 40 different training devices. These 40 devices are from
the same family of PIC microcontrollers, with devices within groups of 10 (denoted
A, B, C and D) having identical part numbers. More information on the devices
can be found in Section B.2.1l It is shown in Section [5.4.2] that if the differences in
means and variance between device groups are not compensated for some template

attacks will fail.
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5.2.1 Compensating for Device Differences.  To compensate for the device-
to-device differences in fieonst and 02gatq + 02l noise, @ transformation of variables is
performed. The transformation ensures the test data have approximately the same

distribution as the training data.

Using collected training and test data at a specific time sample collected across
multiple traces, the mean and variance of that sample can be estimated for each data
set. Let variable Xy, 4, represent the value of EM traces at a specific sample in the
training data, and let variable X, represent the value of the test data at the same

sample.

Let fiyrqin and 5t2mm be the estimated mean and variance of X4, and let
fhtest and 6t26$t represent the estimated distribution of the test data. X;.. is used to
calculate transformed X}, , having the same mean and variance as the training data
using

(Xtest - ,atest) N

Xzest = Otrain + ,atrain~ (52)

Otest
Test data transformation is performed for each sample selected as a distinguishing

feature for the template attack.

Alternatively, both X s and Xy, can be transformed to the standard normal

via
Xes — [ es
X,y = Kot = frest) g (5.3)
Otest
Xraz'n — [ rain
X/train - ( ! ~ ol ) (54)

Otrain

To reduce attack time and eliminate the need to retain the training data, the
classifier can be trained using (3.12) and (3.13)) before collecting the test traces.
Transforming both X and X4, eliminates the need to retain the training data

or store [iyrqin and Gyqin for each distinguishing feature.
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The remaining steps of the template attack are performed as usual using trans-
formed test data. This process is referred to as the zero-Mean, unit-Variance Nor-
malization (MVN) technique herein. Although this technique was developed inde-
pendently for this research, it was first published in [41] as a way to compensate for
differences in the collected trace sets from the same device before and after device

modifications and aging.

5.8  Experimental Methodology

5.3.1 Targeted Devices. To test the effectiveness of the MVN technique,
template attacks are performed to attack 40 unprotected 16-bit PIC24F microcon-
trollers. The PIC device naming conventions can be found in Table|3.1} The process
used to collect n; = 500 test traces and n; = 5,000 training traces with an effec-
tive sampling frequency of fP = 250 MSa/sec can be found in Section . The
attacks are performed with and without the MVN technique using two methods for

generating distinguishing features.

5.3.2  Template Attack Methodology. Template attacks performed with
training and test data from the same-device are referred to as same-device attacks.
For cross-device attacks, each device is used as a training device and used to attack
all 40 devices. In all attacks, feature selection is performed using a single training
device. If an attacker only has access to one training device, it is assumed that he

would follow a similar process.

The initial step develops two highly effective same-device template attacks us-
ing both a heuristic method and Principal Component Analysis (PCA) to select
distinguishing features. Classifier training and trace classification are performed as

described in Sections |3.6.2] and [3.6.3| respectively. Since they are specific to this

attack, the rationale for class selection and distinguishing feature selection are dis-

cussed here.
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5.3.2.1 Class Selection. In the classification stage of the template
attack, the classifier attempts to determine which class an observed side-channel
emission most likely belongs to. The training traces are separated into K = 256

classes and templates are created for each class.

5.3.2.2  Correlation-based Feature Selection. Distinguishing features
are identified using known-key CEMA as described in Section[3.4.3, The intermediate
value attacked for all devices is the input to SubBytes. This intermediate value was
chosen because it yielded higher success rates for same-device attacks than attacking
the output of SubBytes. Since both the plaintext, t = (¢, ta, ...tnt)T , and sub-keys,
k = (ky, ko, ...knt)T, are known for each of the n; collected traces in the training
data, the correct intermediate value vg; = f(t4, ki) = t; ® k; can be calculated. The

leakage model hg; based on the HW of vg; is also easily calculated.

Selecting distinguishing features based on known-key CEMA with a byte HW
model for the targeted intermediate value byte produces adequate results. However,
classification is improved by performing correlation analysis separately for each bit
of the intermediate value byte. This approach produces a vector of correlation coeffi-
cients for each of the 8 bits in the targeted byte. Samples with the highest correlation
coefficient for each bit are added to the list of distinguishing features for the byte.
If a sample has already been added because it was highly correlated with another
bit, the sample with the next highest correlation coefficient for that bit is added.
Only samples which have correlation coefficients significantly greater (> 5x) than
the average correlation coefficient are added to the list of distinguishing features. It
was determined empirically through experimentation that including up to 10 points

of interest for each bit produced very good results.

5.3.2.3 PCA-based Feature Selection. PCA is also used to generate
and select distinguishing features in the principal subspace. Based on the samples

selected using correlation analysis, only the first npc4 = 3500 samples are used for
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each trace. For byte-wise analysis with K = 256 classes same-device PCA-based
template attacks are not always successful unless approximately 80 components in
the principal subspace are used as distinguishing features. This may be due to the
relatively low number of traces (~ 19 on average) from each class used to construct
the mean traces. Like the correlation-based feature selection process, the probability

of correctly identifying the key-byte improves by performing bit-wise analysis.

PCA is performed for each bit of the target byte, with K = 2 classes for
each bit. A PCA transformation matrix W, € R"P¢4*1 ig constructed for each bit
b € {1,...,8} retaining a single principal component. Rather than perform 8 bit-wise

template attacks, these 8 transformation matrices are combined column-wise,
W:[Wl WS] (5.5)

where W € R"Pcax®  The new transformation matrix is used to perform byte-wise

template attacks using (3.17)), (3.18)), and (3.19).

5.8.8  Distinguishing Feature Data Normalization. — Motivation for the MVN
technique can be seen in Figure , which provides violin plots [57] for the distribu-
tions of the 5,000 observations of sample #972 for each device. Sample #972 is one
of the 16 samples chosen as a distinguishing feature for all 40 devices. The violin

plots show that observation mean and variance changes from device to device.

For each sample selected as a distinguishing feature, the distributions of train-
ing and test data at that sample are normalized using and respectively.
Normalization is performed independently on training and test data because the
mean and variance at corresponding samples may not be the same for different de-
vices. For simplicity when utilizing PCA the distribution for training and test data
are normalized for each sample across all traces before PCA transformation into the

primary component subspace. The test data set must contain enough traces to es-
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timate the distribution of each sample accurately. The amount of traces required to

estimate the distribution is explored in Section [5.4.5|

5.4 Results

5.4.1 Selected Features.  The correlation-based feature selection methodol-
ogy in Section [5.3.2] is repeated for each of the Np = 40 devices. Each byte of the
input to the SubBytes operation in round 1 of AES-128 is targeted separately with
K = 256 templates constructed for each byte. The process is repeated to identify
distinguishing features to build templates for each training device. Figure |5.2]is a
graphical representation of the samples selected for each device for byte 1. Since only
these samples are used as distinguishing features, and there are large gaps between

them, the time axis is segmented multiple times to compress the plot.

Recall that part A devices have different peripherals than devices in groups
B-D. There is some intra-device type variation in the samples for parts B-D devices
but 19 of the samples are the same across the three part types. It is important to
note that a number of samples which are consistently selected for devices in group
A are not identified as distinguishing features for any of the devices in group B, C,
and D. Likewise, some samples commonly selected in groups B, C and D are not

selected for group A.

When performing a PCA-based template attack, the transform matrix W that
maps the trace samples into the principal subspace is generated separately for each
set of training data. Plotting the eigenvectors is one way of visualizing contribu-
tions of the original samples in the principal subspace [122]. Since the magnitude
of the eigenvector elements determine the weight of a sample’s contribution in a
component, a plot of samples which contribute most to one or more of the retained
components can be generated by calculating statistics for the magnitude of the eigen-
vector elements for the retained components. Figure shows the maximum value

of the eigenvector element magnitude for each of the 8 retained components found
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Figure 5.2  Samples selected as distinguishing features for each of the 40 devices
using the correlation-based feature selection process when attacking
byte 1 of the input to the SubBytes operation. All B, C and D devices
share 19 common features while only 6 of those features are identified
for all of the type A parts.
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Table 5.1  Standard template attack cross-device key-byte extraction success rate
using correlation-based selection of distinguishing features (without the
MVN technique).

Test Training Device
Device A B C D
A 59.7% | 4.3% | 5.2% | 5.1%
B 13.1% | 63.0% | 68.3% | 70.2%
C 11.6% | 67.9% | 63.7% | 69.5%
D 14.7% | 69.8% | 69.2% | 70.3%

using bit-wise PCA. Since a majority of the samples contribute to one or more of
the retained primary components the plot is not segmented as in Figure 5.2 Note
that different samples are weighted more heavily based on the training device. As
is the case for the correlation-based feature selection, devices in groups B, C and D

are more similar to each other than they are to group A.

5.4.2 Baseline Standard Template Attack. A standard template attack
assumes a multivariate Gaussian distribution for each sample and assumes the dis-
tributions for corresponding training data samples and test data samples are iden-
tical [24]. Figure shows the percent of key-bytes correctly extracted for 1600
template attacks, one for each device used as a training device and as a test device.
Each attack is repeated using 100 randomly chosen sets of 30 test traces from the
n; = 500 available test traces for each test device. The same 100 trace sets for each
test device are used in the attack performed in Section [5.4.3|and Section[5.4.4] When
the same-device is used to generate both the training and test data, the template
attacks identify each of the 16 key-bytes correctly in all trials. Same-device attacks
are found on the diagonal of the chart. The overall percent of successful key-byte
extractions using one device from groups A-D to attack another device from groups
A-D is shown in Table[5.1l The cross-device success rates do not include same-device

attacks.
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Plot of the maximum magnitude of the eigenvector elements for the
eight retained components found using bit-wise PCA. Darker points
have higher maximum eigenvector element magnitude, indicating they
contribute more to one or more of the retained components in the
principal subspace.
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Figure 5.4  Standard attack results using same- and cross-device templates without
the MVN technique. The percentage of correctly extracted key-bytes
in 100 trials is indicated by the color of the block. Percentages > 90%
and < 100% are highlighted with a box.

The reduced number of correct key-bytes when training using devices from
group A to attack devices from groups B, C, or D can be explained in part by the
difference in the distinguishing features used to build templates. More surprising
is the poor results for intra-group attacks which construct templates using many of
the same samples as distinguishing features. The poor results are due to location
and spread differences in the distributions for collected side-channel emissions at
the points used as distinguishing features for training and test data. For example,
Figure [5.1] shows the distribution of sample #972 for 5,000 observations in each set
of training traces. Since the test data collected for each device is consistent with the

distribution of the training data from that device, it is not shown separately.
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Table 5.2 MVN-enhanced cross-device key-byte extraction success rate for
matched distribution correlation-based template attack.

Test Training Device
Device A B C D
A 99.9% | 70.0% | 70.3% | 67.8%
B 58.8% | 100.0% | 100.0% | 99.9%
C 64.8% | 100.0% | 100.0% | 99.9%
D 61.5% | 100.0% | 100.0% | 99.9%

5.4.3 MVN Technique Results. The template attack results can be im-
proved by transforming the test data to match the distribution of the training data
or by mapping both the training and test data to the standard normal. This transfor-
mation is performed separately for the data from each distinguishing feature before
templates are built. These template attacks are performed with n, = 5,000 training
traces and n; = 30 test traces. Unlike the attacks in [41] which normalized the data
using 50,000 measurements, only the 30 test traces in each trial are used to estimate
the distribution of the test data. Since the main benefit of template attacks is the
low number of test traces required, limiting the number of traces used for normal-
ization is more realistic. Using this simple pre-processing step, the successful byte
extraction rate is improved for cross-device attacks for both the same part number

and similar devices.

The correlation-based template attack is repeated after pre-processing the
training data and each of the 100 test trace sets for each device. The results are
shown in Figure[5.5]and Table[5.2] With the MVN technique, any device from groups
B, C or D can be used to successfully attack any test device in groups B, C, or D.
Any device in group A can be used to attack any device within that group. The
worst same-part-number performance was using A9 to attack A5 where the correct
key-byte was returned in only 94.4% of the attacks. Device D3 has the ‘poorest’
results as a training device when attacking similar devices with only 98.7% of bytes-

correct for devices in groups B-D, however in practice such an attack would likely be
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Figure 5.5  Results from same and cross-device template attacks using MVN tech-
nique with correlation-based distinguishing features. The percentage
of correctly extracted key-bytes is indicated by the color of the block.
Percentages > 90% and < 100% are highlighted with a box.

successful. The MVN technique also dramatically improves the percentage of bytes

correctly identified when attacking between groups B-D and group A.

A same-device attack can be performed successfully for all 40 devices using
1-4 training traces. For same-device attacks, normalizing the training and test data
reduces the posterior probability of the correct key-byte guess found during the
classification step for an equivalent number of traces, but the correct key-byte is
still chosen based on the Maximum Likelihood (ML) decision rule. The additional
traces required for cross-device attacks allow the distribution of the test data to be
estimated accurately. It is important to note that plaintexts only need be known for

traces used in the classification process and not for all traces used to estimate the
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Table 5.3  Cross-device key-byte extraction success rate for MVN PCA-based tem-
plate attack. These numbers do not include the same-device attacks.

Test Training Device
Device A B C D
A 99.6% | 30.4% | 29.9% | 30.0%
B 16.7% | 100.0% | 100.0% | 99.7%
C 17.3% | 100.0% | 100.0% | 99.7%
D 19.5% | 100.0% | 100.0% | 99.7%

distribution. In this case, 30 traces were used for both distribution estimation and

classification.

5.4.4 PCA-based Attack. The PCA-based attack incorporates the MVN
processing step. Normalizing the mean and variance is a common PCA pre-processing
step when data is collected using various scales for different dimensions. It is not
clear if this step is performed in [9,|122], as testing showed it is not necessary for

same-device template attacks.

The PCA-based attack uses 8 distinguishing features generated by transform-
ing the training data and test data using W found using and performing a
byte level template attack. The PCA-based template attack is repeated 100 times
for each training and test pair and the success rate is shown in Figure 5.6, Cross-
device byte extraction success rate is shown in Table [5.3] Although all same-device
attacks are successful, a small number of the attacks within a group only correctly
recover 15 of 16 bytes. The number of bytes correctly extracted when training using
devices in group A to attack devices in group B-D is significantly lower than for
attacks using the same test traces with the correlation-based distinguishing feature
selection process. The PCA-based attack can be improved by increasing the number
of principal components retained for each byte (or bit), or by performing PCA only

on the points identified using the correlation-based selection process.
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Figure 5.6  Results from same and cross-device template attacks using MVN tech-
nique with bit-wise PCA performed on the distinguishing points vectors
found using correlation analysis. The percentage of correctly extracted
key-bytes is indicated by the color of the block. Percentages > 90%
and < 100% are highlighted with a box.

5.4.5 Comparison of Attacks.  This section examines how the MVN tech-
nique affects the probability of successful key-byte extraction for a single training
and test device pair. The correlation-based and PCA-based template attacks are
performed using A1l as the training device and A5 as the test device. This pair is
chosen because the MVN technique improves the results for both the correlation and
PCA-based attacks for 30 traces. The attacks in Figs. 5.0| are performed using
sets of 30 traces from the n; = 500 collected test traces for each device. The number

of traces required to perform each type of attack is evaluated below.

When using a Bayesian classifier, the order in which traces are processed the-

oretically does not matter. In practice, traces may be ignored if they cause the
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Figure 5.7

denominator of to be zero. This occurs frequently for cross-device attacks
without the MVN technique when the test data samples have different distributions
than the training data.

To randomize the order test traces are added to the template attacks, 500
permutations of the n; = 500 test trace indices are generated to specify trace order.
The percent of bytes correct in Figures and are the percentage of bytes correct
across all 16 key-bytes using the template attack for the 500 randomly generated trace

orders. The same 500 trace orders are used for each template attack methodology.

Same-device template attacks are very effective using only a small number of
traces. All results in Figure are performed using only the indicated number
of test traces for both normalization and classification. As expected, for a low
number of traces, i.e., less than 15, where the distribution of each sample cannot be

accurately estimated, using MVN for same-device attacks dramatically reduces the
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Using additional traces to estimate the distributions improves the re-
sults for MVN technique-based attacks. When n, = 500 traces are
used for the MVN process (denoted 500), with the indicated number
of plaintexts, the results for both the correlation-based (CORR) and
PCA-based MVN attacks improve.

Figure 5.8

effectiveness of the attack. However, for a same-device attack the standard template

attack methodology can be used.

For A1-A5 cross-device correlation-based attacks, a relatively poor successful
byte extraction rate of approximately 28% is achieved after 15 traces without the
MVN technique. The PCA-based template attack gradually improves to 51.3% for 30
traces. The A1-Ab cross-device attacks, however, are greatly enhanced by the MVN
technique with 99.6% successful byte extraction by 15 traces for the correlation-based

attack and 99.1% successful byte extraction by 30 traces for the PCA-based attack.

Figure |5.8 shows the benefit of using more traces to estimate the distributions
before normalization. By performing the MVN technique on all n;, = 500 traces
before using the traces for classification, fewer traces are needed to achieve the
same percentage of correct bytes for both correlation- and PCA-based cross-device

template attacks. Using n; = 500 traces for the MVN processing technique, the
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correlation-based attack reaches 90% successful extraction in 6 traces. It takes 9
traces to reach the same byte extraction rate when only traces with plaintexts are
used to estimate the distribution. Using n, = 500 traces for MVN, the PCA-based
attack reaches 90% at 9 traces. When only using the traces with plaintexts, 13 traces

are required before the 90% extraction rate is reached.

5.5 Conclusion

This chapter explored whether similar devices can be used as effective training
devices for a template attack. It was shown that while template attacks based on
mean and covariance matrices work well for attacking the same device on which the
training traces are collected, the slight differences in emissions from similar devices
may be sufficient to cause a template attack to fail. However, if the zero mean, unit
variance normalization (MVN) technique is used to pre-process both the test and
training data before building templates, the effectiveness of cross-device template
attacks is significantly improved. These results are consistent with the benefit of the
MVN technique utilized in [41] for differences in measurement conditions and device

age for training and test data.

Additionally, the distinguishing features selected may be different from device
to device, even for devices with the same part number produced in the same lot. If
enough distinguishing features are different between two devices, the template attack
will fail. Even small changes such as internal peripherals are sufficient to degrade the
byte extraction success rate. While the goal for a same-device attack is to reduce the
number of distinguishing features to make the templates easier to create, increasing

the number of distinguishing features improves the cross-device attack success rate.

Ultimately, the original assumption that training and target devices have suf-
ficiently similar side-channel emissions in [24] is validated with an added caveat that
device-dependent differences in sample means and variances must be compensated

for before performing the template attack.
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One limitation of the MVN technique is that sufficient traces from the target
device must be available to estimate sample distributions accurately. This is a draw-
back of the MVN technique but nevertheless it allows for successful attacks that
would fail otherwise. Furthermore, even if a relatively large number of traces are
required to estimate the distribution, only a small number of plaintext or ciphertext

must be known for the classification process.

5.6 Constructing a Master Template

This section was not included in the original “Improving cross-device attacks
using zero-mean unit-variance normalization” paper [85], but introduces an efficient
way to create single master template for a family of devices. This is the first known

template attack based on traces from more than one device.

To construct a single template for multiple devices, the distinguishing features
for one device from each part number (A1, B1, C1, and D1) are identified separately
using known-key CEMA as described in Section [5.4.1. The four lists of up to 80
distinguishing features for each byte are then combined and duplicate sample indices

are removed to create a single list of distinguishing features for each byte.

Next the training data from each of the four devices are pre-processed with
the MVN technique before being combined into a consolidated training trace set.
Using the combined training set, templates are constructed for each byte. These
templates are used to attack all 40 devices using test traces processed using the MVN
technique. The attack is repeated 100 times using sets of n; = 30 test traces for both
estimating the distribution and in the classification phase. The success rate is shown
for each byte and test device in Figure [5.9) On average 99.95% of key bytes where
correctly identified. Since performing this process without the MVN technique,
produces results worse than using a single device to build templates without the

MVN technique, results are not shown for this method.
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Figure 5.9  Attack results per key-byte using a set of templates built from train-
ing trace sets combined after performing the MVN technique on each
device training set separately. The percentage of correctly extracted
key-bytes in 100 trials is indicated by the color of the block. Note all
byte extraction rates are greater than 90%.

An alternative approach is to process the training data using the MVN tech-
nique and combined the trace sets before identifying distinguishing features. Using
a fixed number of distinguishing features (> 80), this approach reduces the effec-
tiveness of the attack. In this case, since devices B1, C1, and D1 are very similar
(compared to A1) the distinguishing features they have in common have higher cor-
relation with the data being processed than the features important for device Al. As
a result, attacks using test traces from device A1-A10 have poor results. Although
more distinguishing features could be allowed when using this approach, identifying

distinguishing features separately for each device type is simple and effective.

Since known-key CEMA attacks produced better results than PCA, the mas-
ter template was constructed using this technique. When performing PCA for a
template constructed from multiple training devices, including additional principal
components in from the PCA transformation matrix constructed for each bit

may improve results.
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6. Cross-Device Attacks on Complex Microprocessors

This chapter contains text of an article submitted to the Journal of Cryptographic
Engineering [83] titled “Cross-device attacks on complex microprocessors” based on
the cross-device attack on ARM microcontrollers. This article was co-authored by
Dr. Rusty Baldwin and Dr. Michael Temple. The background section was reduced
to avoid redundancy and notation has been homogenized between chapters of this

dissertation.

6.1 Introduction

The PIC microcontrollers used in Chapter |5 made an ideal target for testing
cross-device template attacks. They are inexpensive and all four part numbers could
be placed on the same development board. By mounting a Zero Insertion Force
(ZIF) socket to the development board, the microcontrollers were quickly and easily
swapped out while maintaining the lateral position of the probe above each device.
Since the same development board was used for all collections, the contribution due

to the microprocessor was isolated.

Even if the development board could not have been modified to accept the ZIF
socket, the small size of the PIC microcontroller package makes it easy to reposition
the probe on each device. Side-channel analysis becomes more challenging as device
complexity increases. More complex devices may have faster operating frequencies,
and more noise from other parts. Since the PICs are relatively simple compared
with the more complex microcontrollers used in devices, such as cell phones and
tablets, this chapter evaluates the effectiveness of cross-device attacks on the ARM

Cortex-M4F microcontroller.

While cross-device template attacks are shown to be effective even without ap-
plying the zero-Mean and unit-Variance Normalization (MVN) technique developed
in Chapter [, the MVN technique is shown to improve the attack success rate. A
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cartography scan is performed to show the MVN technique increases the area above
the device where test traces can be collected and used for a successful template

attack.

When the MVN technique is combined with a new technique to identify and
reduce the differences between training and test data, the number of test traces
required for a template attack is dramatically reduced. The power spectral density
of each trace is used to identify the frequencies that have different amounts of power
from trace to trace. For the ARM Cortex-M4F devices tested, these frequencies
can be identified using only 10 traces. Combining the two techniques reduced the

average number of traces required to attack a key-byte by 85.8%.

Background on the T-Box implementation of the target cipher, the Advanced
Encryption Standard (AES) [88] and template attacks were presented in Section[2.2.2]
and Section [3.6| respectively. Known-key Correlation-based Electromagnetic Analy-
sis (CEMA), used to identify distinguishing features, was introduced in Section .
The remainder of this chapter is organized as follows. Research most directly related
to the techniques developed in this chapter are reviewed in Section [6.2, Techniques
to improve cross-device attacks for the ARM Cortex-M4F microcontrollers, are de-
veloped in Section [6.3] and results are presented in Section 6.4} Finally, Section [6.5

concludes this chapter.

6.2 Related Work

Mapping the training and test data to the standard normal, is used by Elaabid
and Guilley to compensate for “carrier-induced degradation” of the training device
and changes collection setup [41]. Since a differential voltage probe was used to
measure the voltage across a resistor, the collection location was fixed. This chapter
will explore the effectiveness of the MVN technique to compensate for changes in

probe placement on the test device.
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Although filtering was used by Barenghi et al. to enhance the effectiveness
of CEMA attacks [13], no research has been found suggesting filtering can improve
the success rate for template attacks. This may be due to the belief that template
attacks build the noise into the templates in the training phase [24]. While this may
be effective if the noise is present in both the training data and test data, as it is for

a same-device template attack, it may not be true for cross-device attacks.

Kocher et al. state that “digital filtering” can help “reduce noise” and “focus
on parts of the spectrum where the leakage signal is present” without specifically
stating how the filtering is performed [68]. Trace compression (adding successive
measurements), subtracting unwanted effects, and average traces from identical op-
erations are given as examples. Unfortunately, averaging test traces in a template
attack, where the attacker does not have complete control over the target device, is

not practical.

6.3 Methodology

Two identical ARM Cortex-M4F development boards are used to test the MVN
technique and the new techniques developed in this chapter. The training device is
designated ARM1 and attacks are performed using test data from both ARMI1 and
ARM2. Attacks that used ARM1 for both training and test are called same-device
attacks. Attacks that use traces from ARMI1 for training, and traces from ARM?2

for testing are called cross-device attacks.

6.3.1 Deuvice Leakage Cartography.  To identify the best location to collect
training data for a template attack, traces are collected at each of the 625 locations
specified by a 25 x 25 grid, as described in Section A total of n, = 2,500
traces, with random plaintexts and fixed key, are collected with f, = 250 MSa/sec
at each location on both ARM1 and ARM2. The trace sets are not aligned because

there is no distinguishable structure in the collected signal for many of the locations
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and alignment for traces with structure only improves the CEMA attack results
marginally. To be consistent across all locations, no alignment is used. The trace
sets from ARMI1 are used for CEMA attacks, and traces from both devices are used

during the classification phase of template attacks.

CEMA attacks are performed using n; = 1,500 traces to determine which
locations result in effective CEMA attacks. The same set of plaintexts are used at
each location. Based on the results for ARM1 shown in Figure [6.1] location 303
(indicated by a black circle) was chosen because it is in the middle of a cluster
of locations from which the majority of the key-bytes can be extracted from the
collected traces. Since an attacker targeting ARM2 may only be able to collect a
small number of test traces, making a XY scan of the target device impractical,
placing the probe in an area where a small change in probe position can be tolerated
is more desirable than placing the probe in a location with better CEMA attack
performance if the attack success depends on exact probe placement. Even if the
probe can be placed at the same location above the device package, manufacturing

differences may cause the attack to fail in a cross-device attack.

Although the locations with good CEMA attack performance are similar for
ARM1 and ARM2, the attacks on traces collected from ARMI consistently yield a
higher number of bytes correct than attacks on traces from ARM2. This comparison
is shown in Figure 6.1} Since an attacker does not have full access to the test device
(ARM2), the attacker would not be able to produce Figure [6.1(b) to compare the

two devices.

6.3.2 Identifying Unrelated Signals. ~ The power spectral density (PSD) of a
signal describes how the power in the signal is distributed in the frequency domain.
Since the same instructions are being executed for each encryption operation, the
power for each frequency should be approximately the same for each trace. Changes

in the PSD between traces may be due to changes in the data being processed or due
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Figure 6.1 Comparison of the number of bytes correctly identified using n, = 1, 500
test traces to perform CEMA attacks on (a) ARM1 and (b) ARM2.
CEMA attacks are more effective for ARM1 with more locations that
recover 15 or 16 bytes. The box location represents the location of the
center of the probe. The black circles in (a) and (b) denote collection
location 303 used to collect training traces for template attacks.

to operations unrelated to the encryption operation being performed on the device.
To determine if the differences are due to the data being processed, multiple traces

can be collected with a fixed key and fixed plaintextT]

The PSD of a non-periodic signal 27 (t) observed only in the interval (=7"/2,7/2),
with a proper Fourier transform X7 (f) is defined in the limit as [115]

G. () = Jim = |Xr ()

To calculate an approximate value for the PSD, the Fourier transform X (f)
is estimated using the Fast Fourier transform (FFT). The magnitude of the FFT is
squared and divided by the number of samples in a trace multiplied by the sampling
frequency. Finally, since the magnitude of the PSD is symmetric around zero, it

can be represented as a single-sided PSD by doubling the magnitude for frequencies

Identifying differences in frequency content between traces was inspired by viewing the signals
near f = 31.9 MHz and f = 63.7 MHz (on ARM1) change frequency in a software defined radio
waterfall display. Additional details are found in Chapter 7.
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Figure 6.2  Variance of Power Spectral Density for traces collected from ARMI1
and ARM2. Only n; = 10 traces are used to identify the frequency of
signals that change in power level between traces.

between 0 and f;/2. Next, variance of the trace PSDs for test traces and training

traces are calculated separately.

Finding the variance of PSDs for traces from a device, is a simple and effective
way of identifying the frequency of signals unrelated to the encryption operation on
that device. A set of of n; = 20,000 training traces are collected from ARMI. Sets
of n; = 60,0000 test traces are collected at location 303 on both ARM1 and ARM2.
All traces are collected at f; = 250 MSa/sec. Since template attacks try to minimize
the number of traces used in the attack phase, it is more realistic to use a small
number of traces to find the variance of the PSDs. The variance of the PSDs for the
first n; = 10 traces from each device is shown in Figure [6.2]

The frequencies that have high power variance between traces are f{#M! ~

31.9 MHz and f{'FM! ~ 63.7 MHz for ARM1 and f{*fM2? ~ 29.4 MHz and f;'#M? ~
58.8 MHz for ARM2. Although the source of these signals is unknown, the signals
are not related to the data being processed by the device. Notch filters can be used
to reduce the contributions of signals at these frequencies in the collected traces.
Notch filters are implemented in series to eliminate each of these frequencies from

both the training data and test data.

139



0

g -20

C

S 4ot
[y

2 i
5 -60

< _go}

_100 1 1 1 1
0 25 50 75 100 125

Frequency (MHz)
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As described in Section [3.3.1], for Chebyshev Type I stopband filters the cutoff
frequencies define the passband. The cut-off frequencies are set to =1 MHz for each
frequency identified in Figure[6.2] Figure|6.3|shows the magnitude of the filter series
impulse response in the frequency domain. For the remainder of this chapter, filtering
refers to filtering both the training data and test data with a series of notch filters.

For cross-device attacks, the filter attenuates the contributions of signals around

ARM1 rARM1 fARM?2 ARM?2
1 ) f2 1 , and fz .

For same-device attacks, the filter attenuate

)

signals around f{*fM1 and f5'#M1.

6.3.3 Combining Techniques. After filtering both the training and test
trace sets, template attacks are performed. The methodology for template attacks is
described in Section 3.6 Known-key CEMA, described in Section [3.4.3] is performed
on the n; = 20, 000 training traces to identify the 80 time samples that are the most
highly correlated with a Hamming Weight model for each 8-bit output of SubBytes.
Although the ARM uses the T-Box approach, template attacks that used the output
of SubBytes as the target intermediate value produce results superior to attacks
targeting the 32-bit output of the T-Box. The template training and classification

phases are unchanged.

When used with filtering, the MVN technique is applied after filtering. The
known-key CEMA step can be performed before or after the MVN technique. Tem-
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plate attacks using training and test traces from location 303, are compared for each

combination of these two techniques in the following section.

6.4 Results

6.4.1 Effectiveness of Cross-Device Methods. To test the effectiveness of
the filtering and the MVN technique on the ARM Cortex-M4F processors, n; =
20,000 training traces are collected for ARM1 and n; = 60,000 test traces are
collected from both ARM1 and ARM2. All traces are collected using a Riscure
low-sensitivity probe at location 303, as described in Section [3.1, Templates are
build using all n, = 20,000 training traces. To repeat the template attacks 1,000
times, the order in which test traces are used in the classification phase is randomly
assigned. The same trace order is used for each of the pre-processing techniques,
making the attacks identical except for the preprocessing technique used. Up to
1,000 traces are used in the classification phase. The following preprocessing tech-
niques are evaluated: noneEL notch-filtering, MVN and notch-filtering with MVN.
Since the filtering may change the structure of the traces (including sample mean
and variance), the known-key CEMA-based distinguishing feature identification and
MVN are performed after filtering. All test traces are used to estimate the mean

and variance when performing the MVN technique.

The maximum-likelihood (ML) decision rule in (3.15]) is used to select the key-
byte in the classification phase of the template attack. If the correct key-byte has the
highest posterior probability for all key-byte guesses for a given number of traces,
the template attack is successful for that number of traces. Since the success of a
template attack depends on the quality and order of the training and test data, not
every trial will necessarily be successful for a given number of traces. To compare
the preprocessing techniques, the number of trials needed to achieve a 90% attack

success rate for each byte is shown in Figure |6.4

2A standard template attack has no pre-processing.
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Figure 6.4  Comparison of the number of test traces need to achieve a 90% suc-
cess rate for template attacks for each key-byte using test traces from
ARM?2 with ARM1 training traces using the indicated pre-processing
technique.

It is clear from Figure the correct value of some key-bytes are easier to
extract than other key-bytes. For the standard template attack, 745 test traces are
required to achieve the desired 90% success rate for key-byte 9. Applying the MVN
technique reduces the number of test traces to 675, but filtering has the biggest
impact. With filtering only 200 traces are required. When filtering is followed by
the MVN technique, only 82 test traces are needed to achieve the 90% success rate.
The number of test traces required is reduced by 88.9%. Across all key-bytes, the
number of test traces required is reduced between 73.3% and 92.7%, with an average

reduction of 85.8%.

To examine the benefit pre-processing methods have on the effectiveness of the
cross-device template attack, the percent of attacks successful for key-bytes 9 and 10
are compared in Figure|6.5| These key-bytes were chosen because they have the worst
and best performance of the standard template attack. Although the MVN technique
results in a slight improvement, filtering results in a dramatic improvement in the
percent of attacks successful. Applying the MVN technique after filtering continues
to improve the attack success rate for key-byte 9, but has little effect on key-byte
10. For key-byte 9, with 82 traces the standard template attack is only successful for
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Figure 6.5 Comparison of the percent of 1000 trials correct for each type of cross-

device template attack for (a) key-byte 9 and (b) key-byte 10 using the
indicated number of test traces. Training traces are from ARMI1 and

test traces are from ARM2 (location 303).

8.2% of the attacks, with filtering and the MVN technique the attack us successful
in 90% of the 1000 attacks. For key-byte 10, with 12 traces the standard template
attack is only success for 10.9% of trials but with filtering and the MVN technique,

the success rate improves to 90%.

The overall key-byte extraction success rate for same-device and cross-device
attacks are shown in Figure[6.6] Filtering the traces results in a slight improvement
in the percentage of bytes correct when ARM1 training traces are used to attack
ARMI1. Since training and test data are from the same device, MVN has no effect
and the results are omitted from Figure (a). For the cross-device attack, using
training traces from ARM1 and test traces from ARM2, the overall key-byte extrac-
tion success rate for template attacks with different pre-processing techniques are
shown in Figure [6.6[b). For a 90% byte extraction rate, 264 traces are needed for
a standard template attack, but only 30 traces are needed if filtering and the MVN
technique are used. All trials are correct when 625 traces are used with filtering.

Only 212 traces are needed when filtering and MVN are combined. With the MVN
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Figure 6.6  Comparison of the percent of all bytes correct in 1,000 trials for each
pre-processing technique for same-device and cross-device attacks using
ARMI training traces. In (a) ARM1 is attacked and in (b) ARM2 is
attacked. Since the MVN technique does not change the success rate for
the same-device attacks, processing techniques that use it are omitted
from (a).

technique, 2079 traces are required to achieve a 100% success rate for 1000 trials.

Standard template attacks required 2293 traces.

6.4.2 Probe Position Tolerance. The MVN technique was shown to be
effective at compensating for differences between devices in Chapter [5] but it can also
be used to tolerate changes in the positioning of the probe above a device. Ideally,
both the training and test traces will be collected from the exact same location above
the device. To test the effectiveness of the MVN technique to mitigate the effects of
poor probe placement repeatability, template attacks are conducted using the test
data collected at location 303 above ARM1 and the training data collected at each
of the 625 locations above both ARM1 and ARM2.

Probe placement repeatability is important for cross-device template attacks.

For same-device attacks, test and training data can be collected without moving the
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probe. For cross-device attacks, the probe (or target device) must be moved and it

is possible the probe may not be placed in the same location above each device.

Template attacks are performed using all n, = 20,000 training traces from
ARMI location 303 and n; = 2,500 test traces from each location on ARM1 and
ARM2. The number of traces required before the correct byte is permanently identi-
fied using the ML rule is determined from the posterior probability for each key-byte
guess. For the purposes here, permanently identified means that no other key-byte
guess has a higher posterior probability than the correct key-bytes even as addi-
tional traces are added to the Bayesian classifier. The use of posterior probabilities

to identify the correct key-byte value was discussed in Section [3.6.6]

Same-device and cross-device attacks are conducted using each pre-processing
technique and a summary of the results are shown in Figure [6.7 The color of the
box indicates the mean number of traces needed before the template attack identified
the correct key-byte for each of the 16 bytes of the AES-128 key. The location of
the box indicates where the test traces were collected. Only attacks which yielded
all 16 of the key-bytes correctly are shown. To improve the contrast for attacks that
required less than 500 traces, all attacks that required 500 or more traces are listed

as 500+.

Same-device attacks with and without the MVN technique are shown in Fig-
ures [6.7)(a) and (b). Using the MVN technique both increases the number of loca-
tions where all 16 bytes can be extracted from 91 to 140, and increases the number

of locations where less than 100 traces are needed on average from 53 to 76.

Cross-device attacks for each combination of filtering and the MVN technique,
are shown in Figures [6.7)(c)-(f). As with the same-device attack, the MVN tech-
nique increases the number of locations that template attacks yield all 16 key-bytes
correctly from 84 to 135 (compare Figures [6.7(c) and (d)). The number of traces
required is higher for the cross-device attack for both the standard template attack

and attacks with the MVN technique than for same-device attacks. For the standard
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Figure 6.7

The mean number of traces required per byte for successful template
attacks. All attacks are performed with training data collected at loca-
tion 303 from ARM1 (denoted by black circles). Plots (a) and (b) are
same device attacks. Plots (c¢)-(f) are cross-device attacks. The loca-
tion of each square represents the location of the probe when collecting
test traces. Only locations where all 16 bytes are identified with less
than n, = 2,500 test traces are shown.
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cross-device template attack, only 4 locations required a mean number of traces less
than 100. The number of locations is increased to 18 when the MVN technique is

used.

In the cross-device attack shown in Figure (e) using filtering only, the aver-
age number of test traces required per key-byte is significantly reduced. The number
of locations that yield all 16 bytes is increased to 89, and for 55 locations the mean
number of traces required is less than 100. In Figure [6.7(f), both filtering and the
MVN technique are used to improve the cross-device attack. With both techniques,
the number of locations with all 16 key-bytes correct increases to 139 and the num-
ber of locations with a mean number of traces less than 100, increases to 79. These
results are comparable to the success rate of the same-device attack with the MVN

technique.

6.4.3 Comparison of Successful CEMA and Template Attacks Locations.
Using the MVN technique on a same-device attack increases the number of locations
that can be used for a successful template attack. Since template attacks typically
require less test traces than CEMA attacks, the number of locations with successful
results should increase for the template attack. To compare the attack using an equal
number of traces, the CEMA attack is repeated using all n; = 2, 500 test traces from
ARM1. The number of bytes correctly identified for the CEMA attack and the
same-device template attack are shown in Figure[6.8] While there are regions of the
device where the template attack is more successful than the CEMA attack, there
are also large portions of the device where the CEMA attack is successful, but the

template attack is not.

There are at least two reasons why the template attack could fail. The distin-
guishing features could be different, or the distribution of the samples for the distin-
guishing features could be different. Although the MVN technique compensates for

differences in the mean and variance of collected traces, it does not compensate for
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Figure 6.8  Comparison of (a) the number of bytes correct for CEMA attacks and
(b) the number of bytes correct for template attacks with the MVN
technique. All attacks use n, = 2,500 test traces from ARMI1. Training
data is from ARM1 location 303 (denoted by black circles).

other differences in the leakage distribution. To evaluate the difference in leakage
across the device, training data is collected at location 202. Known key CEMA is
performed, and the top 80 highest correlated samples are compared with the top 80
highest correlated samples from location 303. Out of the 80 samples chosen for each
location, 65 of the samples are the same. With the large number of test traces, the

attacks should still be successful with this many distinguishing features in common.

Since the CEMA attack works in locations the template attack does not, the
leakage in other regions of the device must still be correlated with the HW of the data
being processed. To make the CEMA attack be effective on various microprocessor
architectures, the absolute value of the correlation coefficient is taken before identi-
fying the samples with the highest correlation magnitude. As a result, leakage that
is both negatively or positively correlated with the HW of the targeted intermediate
values can be used to identify the correct key-byte using .

In a template attack, the difference between negatively and positively corre-
lated leakage can be compensated for by applying the MVN technique and multiply-
ing the test data by -1. This is referred to herein as the negative MVN technique.
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Figure 6.9 The number of bytes correctly identified using template attacks on
ARM1 with n; = 2,500 test traces at each location and training traces
from location 303 (denoted by circle) when (a) the negative MNV tech-
nique is used on each test trace set, and (b) the negative MVN or MVN
techniques are each used separately and the best result at each location
is reported.

Using the MVN technique on training data from location 303 and the negative MVN
technique on each set of test data, template attacks are repeated for all 625 locations.
As expected, the locations that yield successful attacks, shown in Figure (a), are
in areas that were not successful in Figure [6.§f The combined results for both tech-
niques are shown in Figure b). As expected, the combined attacks are successful

in all the locations the CEMA attacks were successful (and more).

6.4.4 Notch-Filtering for CEMA Attacks. Applying the notch-filtering
technique to CEMA attacks significantly degrades attack performance. The band-
pass filtering technique developed in Section [3.3.1] can improve the effectiveness of
CEMA attacks. This approach is applied to ARM data in Chapter[7] Although band-
pass filtering can dramatically improve CEMA attacks, bandpass filtering could not
be shown to improve template attacks. All attempts to perform a template attack
on bandpass filtered traces failed when the matrix inversion used to construct the
covariance matrix could not be performed. This problem may be avoided by reduc-

ing the number of distinguishing features through principal component analysis or
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multiple discriminant analysis to ensure the matrix of distinguishing features has full

rank, or by constructing mean only templates. This is an area for future research.

6.5 Conclusion

The methods developed and tested in this chapter, to identify and filter out
signals that are not consistently present in the collected traces, are simple and ef-
fective. Although template attacks incorporate the noise from a training device into
the template [24], noise present in only the training or test trace sets can reduce the
effectiveness of the attack. By calculating the variance in the PSDs of the collected
traces, the frequencies of interfering components can be identified. Notch filters can
effectively reduce the contributions of the signals at those frequencies in the collected

traces, improving template attack performance.

Although little effect is seen for same-device attacks, notch-filtering dramati-
cally reduces the number of traces required to achieve a 90% success rate for cross-
device template attacks on the ARM Cortex-M4F. Filtering reduced the average
number of traces required to attack each key-byte by an average of 69.3%. Filtering
followed by the MVN technique reduced the number of traces required by 85.8%.
For key-byte 9, the average number of traces required was reduced from 745, to just

82.

On the ARM Cortex-M4F, portions of each device have EM leakage negatively
correlated with the HW of the data being processed, while other portions of the
device have leakage positively correlated with the HW. Rather than collect data
from two training locations, the negative MVN technique can be used. Use of the
MVN and negative MVN technique makes template attacks more practical when
probe placement can not be replicated or a new set of training data cannot be

collected from a training device.

When the results from the MVN technique and the negative MVN technique

are combined, the number of test locations where all 16 key-bytes are correctly
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identified increased from 91 to 297, an increase of 226% vs. a standard template

attack.

Although these techniques may not result in the same level of improvement
for all cross-device attacks, since they use the same data collected for a standard
template attack, they can be tried if the standard template attack fails to produce

adequate results.
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7. Differential Electromagnetic Attacks on a 32-bit Microprocessor
Using Software Defined Radios

This chapter contains results submitted to the IEEFE Transactions on Information
Forensics and Security in a paper titled “Differential Electromagnetic Attacks on a
32-bit Microprocessor using Software Defined Radios”. The article was coauthored
by Dr. Rusty Baldwin and Dr. Michael Temple. For incorporation into this docu-
ment, notation has been updated, and background and methodology that appeared
previously in the dissertation have been removed from this chapter to avoid redun-

dancy. The sections containing the removed information are referenced.

7.1  Introduction

Side-Channel Analysis (SCA) can extract sensitive information from power
consumption [67] and Electromagnetic (EM) emissions [94] of cryptographic devices,
including the cryptographic key used during encryption operations. Differential anal-
ysis determines the secret key used in multiple encryption operations by calculating
statistics using observed side-channel traces from a cryptographic device and the
plaintext or ciphertext associated with each trace [67]. To collect well aligned traces
from multiple encryption operations, the cryptographic device is often modified to
produce a trigger signal when the device is starting an encryption operation [73].

This trigger, of course, dramatically improves the alignment of the collected traces.

Agrawal et al. evaluated the leakage in EM signals, showing they contain
a multiplicity of compromising signals, many of which can be used independently
to break cryptographic implementations [2]. Observing that many compromising
signals have very low energy, Agrawal et al. recommends separating those signals
with useful information early in the acquisition process to negate precision limitations
of signal capturing equipment. Receivers can be used for this purpose and although

the receiver used for collections in [2] is not specified, the Dynamic Sciences R-1550
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receiver and the Walkin-Johnson 8716 receivers are noted to be particularly effective
receivers because they have a wide frequency range and bandwidth. Unfortunately,

these receivers are also very expensive.

A less expensive approach is to sample the intermediate frequency output of a
wide-band receiver using an oscilloscope and perform demodulation in software [2].
An oscilloscope could also directly sample the collected emissions at a rate greater
than twice the targeted harmonic of the carrier frequency and the modulated signal
can then be separated using software, but this approach does not provide the signal

isolation of using a receiver before digitizing the signal.

In addition to a baseline attack performed using Correlation-based EM Anal-
ysis (CEMA) for traces collected using an oscilloscope, this paper evaluates the
effectiveness of using SDRs to collect side-channel information. Software defined
radios contain a Radio Frequency (RF) front end including a band-pass filter, RF
amplifier and mixer to convert the signal to the intermediate frequency, followed
by an analog-to-digital converter. Depending on the implementation, processing of
the digitized signal is performed by a dedicated processor on the SDR or a general

purpose processor, such as a personal computer.

The SDRs herein perform both the receiver and digitization functions, send-
ing real-time observations of the side-channel to a PC, eliminating the need for an
oscilloscope. The cost of performing side-channel analysis is significantly reduced
by eliminating the oscilloscope, but the narrow bandwidth collected using an SDR
and low number of samples per encryption operation increase the number of traces
needed to perform successful side-channel attacks. However, since the sampling fre-
quency is also reduced, trace information can be collected in real-time providing for
continuous collection. Continuous collection allows attacks to be performed without
modifying the device to add a trigger or training a real-time trigger generation device
to create an external trigger. Despite sampling at rates well below the Nyquist rate,

the encryption key can be successfully identified using SDRs.
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Since this paper focuses on alternative collection techniques and determining
the information contained at specific frequencies, countermeasures are not consid-
ered. An unprotected 32-bit ARM Cortex-M4F processor validates the SDR, collec-
tion process. In both the oscilloscope-based and SDR-based analysis, differences in

the frequencies at which key byte information is leaked from the device is observed.

This paper is organized as follows. Section [7.2| provides a brief overview of AES
and correlation-based differential attacks. Related work is outlined in Section [Z.3l
The baseline attack is explained in Section [7.4] the SDR-based attack is explained
in Section and results are presented in Section [7.6]

7.2 Background

Devices running AES can be exploited using differential side-channel attacks.
The goal of differential side-channel attacks against AES is to determine the secret
key by measuring and analyzing the small statistical influence the computation of
intermediate values has on the power or EM side-channel [68]. The CEMA attacks

performed in this chapter are described in Section [3.4]

The targeted 32-bit ARM Cortex-M4F microprocessor performs AES-128 using
the T-Box method described in Section and [38]. The T-Box combined the
SubBytes, ShiftRows and MixColumns operations into four 8 x 32 bit lookup tables.
After performing the initial AddRoundKey, T-Boxes are used to calculate the first
9 rounds of AES-128. However, since the MixColumns operation is not performed

in the last round of AES, the SubBytes implementation is used.

7.2.1 Triggering and Alignment. =~ When a powerful attacker has complete
control of the cryptographic device, a hardware trigger is often added to improve
collections [73]. The device is modified to produced a signal on an I/O pin when
an encryption operation begins and/or ends. This signal is used to trigger the

oscilloscope, resulting in collected traces that are closely aligned. In properly aligned
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traces, corresponding parts of the encryption operations occur at the same sample

in each trace.

In cases were a trigger is not added, but the attacker still has control of the
cryptographic device, the oscilloscope can be triggered separately to capture a trace.
Since the trigger is not created by the cryptographic device, the trace may not start
at the same point relative to the start of each observed encryption operation and

alignment techniques must be used [73].

If the attacker has no control over the start of an encryption operation, but is
able to record at least one example encryption operation, a separate device capable

of real-time pattern detection can be used to generate a trigger [106].

Even when a hardware trigger is used, post-collection alignment techniques
can improve the alignment of the traces. Calculating the cross correlation between a
reference trace and the trace being aligned, the point with the highest value indicates
the offset between the two traces. Correlation-based alignment is used to align traces

in both the baseline oscilloscope and SDR collected traces.

7.2.2  Software Defined Radios. Once restricted to military and academic
applications, SDRs are now common in mobile communication networks [133], digital
TV and FM reception [74]. Receivers typically use a variable frequency oscillator,
mixer and filter to isolate and shift the target RF frequency to an Intermediate
Frequency (IF) or baseband where it is amplified and sampled by a analog-to-digital
converter (ADC) [133]. A Low Noise Amplifier (LNA) may amplify the RF signals
before converting the RF signal to the IF or baseband. Alternatively, low frequency
RF signalsﬂ may be sampled directly and down-converted digitally.

After the ADC, some or all of the signal processing is done in software. A
number of free and/or open source software development toolkits are available to

implement signal processing blocks in software including GNU Radio [19], and High

!Frequencies less than % the sampling rate of the ADC
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Definition Software Defined Radio (HDSDR) [126]. The interfaces used to collect the
SDR traces used in the CEMA attacks are described in Section but the HDSDR
is used for spectrum analysis of the target microprocessor. The RF spectrum and

waterfall displays are used to identify signals from the device that interfere with

SDR-based collections.

7.8 Related Work

Cryptographic Research, Inc. demonstrated simple EM attacks on implemen-
tations of RSA and Elliptic Curve Cryptography (ECC) on smart phones [61]. The
RSA attack was performed using a near field probe, and the ECC attack with a
far-field antenna. A receiver demodulated the signal and an SDR was used as a
digitizer. Additionally, it was shown that AES operations can be observed in the
demodulated signal, but an attack is not performed on AES. No other examples of

using SDRs for collecting SCA data have been found in literature.

Agrawal et al. explored how leakage changes across the EM spectrum by
performing differential attacks on demodulated EM signals [2]. A Difference of Means
attack (DoM) [67] was conducted on a single bit of a smartcard with a 3.68 MHz
clock frequency performing the Data Encryption Standard (DES). The signal from a
near-field probe was amplitude demodulated using a receiver for center frequencies of
188 MHz, 224.5 MHz, and 262 MHz with a bandwidth of 50 MHz. The demodulated
signals were collected with a 12-bit, 100 MHz digital oscilloscope. Agrawal et al.
found both the magnitude of the DoM results and time at which leakage occurs are

affected by the carrier used.

Barenghi et al. identify the frequencies at which a device leaks information
by performing a correlation-based differential attack on filtered power consumption
data [13]. Focusing on a single key byte, they show that creating a filter with multiple
passbands around harmonics of the clock frequency can reduce the number of traces

required to determine the correct value for the byte. They expand this technique to
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look at other frequencies in [14]. In both cases they average multiple traces for each

plaintext.

The correlation-based frequency-dependent leakage analysis method developed
in Section [3.5.2]in contrast does not average collected traces. To average traces, an
attacker must be able to observe and align multiple encryption operations with the
same plaintext. Since the goal of the SDR-based attack is to perform a passive at-
tack with no device modification, the ability to average traces is not assumed. While
Barenghi et al. focused on a single key byte, all key bytes will be attacked. Analysis
shows that frequencies at which key bytes leak information can change from byte
to byte and can even change if the device is reprogrammed. Since power consump-
tion data cannot be collected without modifying the device, only EM emissions are

collected.

7.4 Baseline Attack Performance

The target device is the LM4F232H5QD evaluation kit with ARM Cortex-
MA4F based microcontroller denoted ARM1 in Section 3.2.2l The baseline attack is
performed using test traces collected with an oscilloscope sampling at f; = 2.5 GSa/s

as described in Section [3.1] The traces are downsampled to an effective sampling

frequency of fP = 250 MSa/s.

CEMA is used to identify the most likely value for each of the 16 bytes in the
AES-128 key, as described in Section Attacks targeting both the output of
SubBytes and the output of the T-Box in the first round of AES can be successfully
performed against the target microprocessor. However, since attacking the output
of the T-Box yields the highest key extraction success rate, the T-Box outputs in

the first round of AES are the target intermediate values herein.

The target intermediate values for these attacks are the 32-bit output of each
T-Box in the first round of AES-128. The EM leakage from the ARM Cortex-
MA4F follows a 32-bit Hamming Weight (HW) model. Analysis is performed using
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known plaintext bytes, t = (1, to, ...tm)T, and the collected side-channel emissions
corresponding for each of the n; plaintexts. Elements of the hypothetical leakage
matrix H are calculated h;; = HW(T,(tq ® k;)) where r is the row of the state
matrix, d = 1, ..., n, samples per trace, and ¢ = 1,...,n,. Where n, = 256 possible
key values and n, is the number of samples in each trace. Since only the HW is
used in the CEMA attack, the row of the input byte in the state matrix can be
disregarded as the HWs of the output of all four T-Boxes are equal for any given

input.

7.4.1  Electromagnetic Cartography Scan. The LM4F232H5QD package
has multiple power and ground connections and it is unclear in documentation [130]
which pin supplies the power to the portion of logic the cryptographic computations
will be performed on. To determine the best location above the device to position
the probe for collections, a 25 x 25 = 625 location XY scan is performed capturing
emissions from the device while it repeats one encryption operation at each location,
as described in Section [3.2.2.1] Since the amplitude of the collected emissions varies
greatly between locations, the magnitude of the collected trace is evaluated and
the vertical sensitivity of the oscilloscope is adjusted to maximize dynamic range.
After adjusting the vertical sensitivity the trace is recollected and stored with its
corresponding plaintext and volts/div setting. When used to calculate the Power
Spectral Density (PSD), each trace is scaled by the volts/div setting used to collect

the trace.

Figure [7.1a) is a plot of the normalized maximum PSD value across the 625
locations above the device. The LM4F232 has a maximum clock speed of 80 MHz,
but the clock was set to fs,s = 50 MHz for compatibility with existing UART inter-
face code. Results in Figure[7.1j(a) are based on the PSD calculated for frequencies
between 49 MHz and 51 MHz.
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0.07

Figure 7.1  (a) Maximum Power Spectral Density (PSD) at 25 x 25 = 625 locations
above the device package between 49 and 50 MHz. PSD values are nor-
malized across all locations. (b) Mean magnitude of maximum correla-
tion coefficient using n, = 1, 000 traces traces collected at 25 x 25 = 625
locations above the device package for each of the 16 AES key bytes.

To validate the effectiveness of using spectral intensity to determine the best
location, the XY scan was repeated using a fixed set of plaintexts. A CEMA attack
on the output of the T-Box is performed using the set of n, = 1,000 traces from
each location as described in Section [7.4] The average magnitude of the correla-
tion coefficient for the correct key value for the 16 bytes in the AES-128 key are
represented graphically in Figure (b) The locations identified using the PSD
yield good results, but the correlation-based results find other locations above the
device where collected traces have high correlation with the HW leakage model for
each correct key byte. Plots of the minimum correlation and number of bytes cor-
rectly identified using were also created, but are omitted here. Based on these
plots, the position indicated by a small circle in Figures [7.1[a) and [7.1[b) was used
for all oscilloscope and SDR collections herein. Using the grid system described in

Section [3.2.2.1] this position is location 303.

7.4.2  Correlation-Based Frequency-Dependent Leakage Analysis.  To evalu-
ate the information leakage of the ARM Cortex-M4F, a set of n, = 2,000 traces with
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Figure 7.2 Magnitude of impulse frequency responses for 99 overlapping Cheby-
shev Type I filters bandpass filters with Wy = 2 MHz used in the
correlation-based frequency dependent leakage analysis.

a fixed key and random plaintexts is collected and analyzed by filtering the traces
and performing CEMA. The traces were collected at f, = 2.5 GSa/s. Since, ini-
tial filtering experiments showed frequencies below 100 MHz contained more leakage
when attacked using CEMA with a HW model than frequencies above 100 MHz, the
traces are downsampled to fP = 250 MSa/s as described in Section to make

them easier to process.

The goal of the baseline analysis is to determine which frequencies leak ex-
ploitable AES-128 key information from the ARM Cortex-M4F implementation to
aid in choosing a center frequency and sampling rate for the SDRs. Since the SDRs
will ultimately be used to collect at a single frequency, the filters are not combined
to create a multi-bandpass filter as in [14]. To ensure low attenuation at the cut-
off frequencies of the bandpass filters, twelfth-order Chebyshev Type 1 filters are
implemented with a passband ripple of 0.1 dB as described in Section [3.5.2] The
cutoff frequencies of the filters overlap by 50% to prevent gaps between the filters.
A plot of the magnitude of the impulse response in the frequency domain for three

overlapping filters with Wy = 2 MHz is shown in Figure [7.2]

Since SDRs have much lower maximum sampling rates than oscilloscopes,
the filter bandwidth is chosen based on sampling rates that can be achieved us-
ing low-cost SDRs. Using a bandwidth of Wgy = 2 MHz, center frequencies
fe =41,2,...,99} MHz, 99 filters are constructed. If the passband includes 0 or
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100 MHz, a sixth-order low-pass or high-pass filter is used, otherwise the filter is a
twelfth-order bandpass filter. The term frequency interval refers to the passband of
a filter. A CEMA attack is performed for each of the 16 key bytes on traces filtered

using a zero-phase digital filter. The value of the key byte selected by the attack is
found using (3.3)).

The CEMA attack determines the correlation between the hypothetical leakage
for each key byte value guess. To determine the confidence in the key value selected
using a CEMA attack, the maximum correlation coefficient, 7,4, is compared with
the next highest correlation coefficient, 7,..:), as defined in and respec-
tively. The confidence 7,4z > Tpnest is calculated for each CEMA attack using the

trace set filtered for each frequency interval as described in Section [3.5.2

7.4.3 Baseline Results.  Calculating the confidence at which r,,., and r,c.¢
are statistically different allows CEMA attacks performed on different bytes and for
traces filtered using different frequency intervals to be compared directly. Figure (7.3
shows the statistical confidence found using for the 99 filters constructed with
Wpew = 2 MHz and center frequencies f. = {1,2,...,99} MHz. Higher statistical
confidence is represented by lighter colors. Since the same trace set is filtered each
time and the bandwidth is constant, the differences reflect confidence variation due to
varying the center frequency of the filters. For some frequency intervals, even when
the number of traces is increased, some key bytes cannot be extracted while other
key bytes can be (see n, = 2000 results in Sec. [7.6.3)). Although high confidence
does not guarantee the correct key byte value is chosen, in Figure the highest
p-value where an incorrect byte was chosen using was 0.8252. If the CEMA
attack using traces filtered over a frequency interval yielded the incorrect value, an x

is drawn through the box representing that attack in Fig. [7.3]

Note that confidence changes for both frequency interval and key byte. The

correct value for some key bytes can be easily extracted, while the values of other
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Colored boxes represent the confidence r,,q; = Tnest from each CEMA
attack. Attacks are performed at each key byte using n, = 1000 traces
filtered using overlapping frequency intervals. Since f. € {1,2,...,99}
MHz and Wgy = 2 MHz, the intervals overlap by 50%. Each box is
centered at the correct f. but their widths do not represent the actual
Wpew. CEMA attacks that yielded incorrect key byte values are marked
with an Xx.

Confidence 7,42 > Tnest using ny; = 1000 traces decimated to fSD = 250
MSa/s for key byte k; € {1,...,1

k; | Confidence || k; | Confidence || k; | Confidence || k; | Confidence
1 1.00000 5 0.99998 9 0.98726 13 | 0.99996
2 1.00000 6 0.99990 10 1.00000 14 | 1.00000
3 1.00000 7 0.99970 11 1.00000 15 1.00000
4 1.00000 8 1.00000 12 | 0.99979 16 1.00000
key bytes may not be easily determined using the same set of filtered traces. For

comparison, using the unfiltered traces the correct value is identified for all 16 key

bytes. The confidence levels are listed in Table [7.1]

Some trends can be observed across all key bytes. For center frequencies near

31.9 MHz

and 63.7 MHz the confidence 7,40 > Tnest 1S IOWQIEI Viewing the spectral

waterfall display in HDSDR, there are unknown signals at these frequencies that

2The signal at 31.9 MHz and 63.7 MHz were also identified using the PSD variance technique
in Section Additional signals at 15.9 MHz and 47.7 MHz can be identified using the PSD
variance method, but these signals have significantly less power than the signals at 31.9 MHz and
63.7 MHz and required a larger number of test traces identify them using this PSD variance method.
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appear to vary in frequency; adding noise to the collected signal. Attacks performed
using traces filtered with a passband filter which includes these unknown signals
have lower 7,,,, values and lower confidence. Testing isolated these signals to the

development board, but their source is unknown.

Although the system clock of the ARM Cortex-M4F is set to f,,s = 50 MHz,
frequency intervals with center frequencies above and below 50 MHz can be used
to successfully attack the device. The target center frequencies for SDR collections
are based on the baseline results in Fig. and center frequency ranges of the two
SDRs. The filtered traces for frequency intervals between 12 MHz and 60 MHz
contain enough information to be able to extract a large majority of the 16 AES-128

key bytes with high confidence.

Since AES operations in the target device are performed with the T-Box im-
plementation (as described in Section the state matrix row determines which
of the four T-Box tables are accessed in memory for each byte. There is no correla-
tion between state row and the confidence with which a key byte can be extracted.
The code is optimized to reduce execution time by the compiler. The effect of code

optimization is evaluated in Section [7.6.3]

7.5  Software Defined Radio Methodology

Collecting differential side-channel traces using a SDR simplifies the collection
process but requires additional post-collection processing. Since the SDR can collect
data continuously, there is no need to modify the target cryptographic device to
add a trigger. A near-field probe is placed just above the device and the SDR
can immediately begin recording the emissions from encryption operations being
performed. To allow comparison between the baseline oscilloscope-based collection
and SDR-based collection results , the probe location is fixed at the location found in
Sec. [7.4.1] However, an adequate location can easily be found by manually moving

the probe over the device while monitoring the spectral intensity in SDR software.
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Figure 7.4  The collection setup uses two computers to simu-
late an attack scenario where the attacker is able
to place a probe on the encryption device to col-
lect the EM emissions corresponding to encryption
operations with known plaintext or ciphertexts.

Since the probe is amplified, and cannot be used without amplification, a 20 dB

attenuator is used to prevent damage to the SDRs.

When collecting using an oscilloscope, the PC used to collect and store the
traces from the oscilloscope also controls the target encryption device. To make
the SDR collection scenario more realistic, two separate PCs are used as shown in
Fig.[7.4l The collection PC continuously records the side-channel through the SDR
while the control PC requests the encryption device perform multiple encryption op-
erations. To verify the correct encryption operations are being performed, the control
PC receives the ciphertext from the ARM Cortex-M4F for the previous encryption

operation before sending the next plaintext for encryption.

To automate the collection of a large number of traces the collection PC and
control PC are connected via Ethernet. The collection PC notifies the control PC
when it is about to begin recording. The collection PC records for a given amount of
time and then retrieves the plaintexts from the control PC. Since a trigger is not used
to indicate the start or duration of individual encryption operations, each individual

encryption operation must be identified in the SDR recording via signal processing.
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7.5.1  Sub-Nyquist Sampling. The baseline oscilloscope analysis indicated
that signals with frequencies between 10 MHz and 70 MHz frequencies contain key
information. The SDRs are used to target frequencies within this range. In order to
perfectly reconstruct a bandwidth limited signal with spectral contents less than a
maximum frequency f,q., the signal must be sampled at a rate of at least 2,4, [113].
This is known as the Nyquist rate. Since the SDRs sample at frequencies lower than
the 20 MHz to 140 MHz Nyquist rates, all SDR collections will be sub-Nyquist.
While many techniques have been developed to reconstruct signals sampled at sub-
Nyquist rates using prior information on the signal structure [80], there is no need
to reconstruct the signal to perform the CEMA attack. As an indicator of how
far below the Nyquist rate the SDRs sample, the proportion of the Nyquist rate is

calculated

fD

N, = =, 7.1
q fN ( )
where fP and fyx = 2f,ae is the decimated sampling frequency output by the SDR.

For simplicity, N, is estimated with fx = 2f..

We expect that lowering N, will degrade the key byte extraction success rate,
but successful attacks will still be possible. Additional traces may need to be col-

lected to compensate for reduced [V,.
7.5.2  Software Defined Radios.

7.5.2.1 USRP. EM emissions are collected from the near-field probe
using a Universal Software-Defined Radio Peripheral (USRP). The USRP2 model
uses dual 100 MSa/s 14-bit Analog to Digital Converters (ADCs) and interfaces with
the collection PC via gigabit Ethernet. The USRP2 uses interchangeable daughter
boards as the RF front end. Since the baseline test in Section[7.4] found compromising
signals at frequencies less than 30 MHz, the LFRX daughterboard designed to receive
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0-30 MHz is chosen. The LFRX can receive center frequencies up to 50 MHz, but
filters the RF signal with a third-order low-pass filter with a cutoff of 30 MHz to
prevent aliasing. The LFRX amplifies the RF signal using high-speed operational
amplifiers [43]. Although the BasicRx daughterboard can sample in the DC - 50
MHz range, only the LFRX can be used without any external front end hardware.

A Digital Down-Converter (DDC) is implemented on the USRP Field Pro-
grammable Gate Array (FPGA) to down-convert the RF signal to baseband and
decimate the signal. A Numerically-Controlled Oscillator (NCO) synthesizes the
discrete-time, discrete-amplitude sine and cosine waveforms with frequency f,. within
the FPGA. The sine and cosine functions are multiplied with the digitized samples
from the ADC to produce In-phase Quadrature (I/Q) data and down-convert the
center frequency of the collected signal to DC. Since only the magnitude of the base-
band signal is use for SCA, one of the I/Q channels is filled with null-samples and

only one 16-bit value is sent to the collection PC.

The USRP2 ADCs sample at f; = 100 MSa/s. To achieve a decimated USRP2
output sampling rate of f2 = 2 MSa/s, the sampled RF signal is sent through a
low-pass filter with a cut-off of Wip = fi4:/na and decimated by ng = 50. From
the baseline test in Fig. [7.3] most key bytes appear to leak at frequencies between
18 MHz and 32 MHz. Using the USRP2, center frequencies between 18 and 40 MHz
are targeted with sampling frequencies of both f? =2 MSa/s and fP = 4 MSa/s.

7.5.2.2  Low-Cost RLT-SDR.  Low-cost Digital Video Broadcasting—-
Terrestrial (DVB-T') Universal Serial Bus (USB) dongles can be used as SDRs. DVB-
T dongles based on the Realtek RTL2832UE] can transfer raw unsigned 8-bit 1/Q
samples to a host computer using alternative drivers [74]. The ezcap USB 2.0 DVB-
T/DAB/FM dongle, henceforth referred to as the RTL-SDR, is used because it has
the Elonics E4000, a highly integrated multi-band RF tuner integrated circuit im-

3The RTL2832U is a high-performance DVB-T Coded Orthogonal Frequency Division Multi-
plexing demodulator that supports a USB 2.0 interface [97]
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plemented in CMOS [42]. The E4000 uses a direct conversion zero IF architecture,
employing a single stage to mix the amplified and filtered RF signal to baseband.
Before being digitized using a fast sampling ADC, the baseband signals DC offset is
corrected, the signal is filtered using a low-pass filter and the signal is amplified. Al-
though dongles with other tuners are available, the E4000 offers the widest frequency
range [74].

According to specifications, the E4000 can accurately tune to frequencies be-
tween 64 and 1700 MHz [42], but can also be used out-of-spec from 50 MHz - 2.2
GHz [74]. In practice, the lowest center frequency the RTL-SDR dongle used for
this research could be set to through the collection interface [32] was f. = 53.5 MHz.
Although the RTL-SDR’s highest sampling rate is 3.2 MSa/s, rates less than 2.8
MHz are used to avoid sample loss when the I1/Q data is transfered over USB 2.0 to
the collection PC.

Since the targeted frequencies are down-converted to baseband before being
digitized, the sampling rate is much lower than would be needed to sample the tar-
geted frequencies directly. To minimize sample loss, the RTL-SDR was configured to
sample at fP = 2.0 MSa/s making the maximum frequency of the sampled baseband
signals 1.0 MHz. From the baseline test in Fig. [7.3] there is at least one frequency
interval above 50 MHz where each key byte has a high probability of 7,40 > Tnewt-
Center frequencies between 53.5 and 73 MHz are used for collections with the RTL-
SDR. The gain is set to 1.5 for all collections.

7.5.8 Identifying and Aligning Encryption Operations. Associating the
correct plaintext to each recorded encryption operation is essential for an efficient
differential attack. Since multiple encryption operations are being performed during
each collection, the collection computer must be able to identify each operation. To
simplify this problem, a set number of encryption operations are performed in each

group. The control PC performs groups of n, = 250 encryption operations using
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randomly generated plaintexts and a fixed key. This number was chosen to make
the processing of each SDR collection more manageable. The entire EM emission
recorded by an SDR is referred to as a collection. To be consistent with SCA nomen-
clature, the portion of the collection produced by an individual encryption operation
is referred to as a trace. Each collection should contain n, traces. Since it is vital
each plaintext is matched with the correct trace, if the collection PC cannot iden-

tify n, traces in the collection, the collection and associated set of plaintexts are

discarded.

The SDR collection not only contains the encryption operations of interest, but
also all other operations being performed by the microprocessor. However, since the
ARM Cortex-M4F is being used as a dedicated encryption device, when the device
is not performing a key schedule operation or performing encryption or decryption

operations it is waiting to receive or process a command.

When the collection device is triggered the portion of the collection where
the encryption operation is performed is easily isolated and no other device activity
need be collected. When recording continuously, device activity such as responding
to interrupts, identifying commands, receiving the plaintext and transmitting the
ciphertext are evident in the recorded trace. The magnitude of a USRP2 collection
at f. = 22 MHz and fP = 2 MSa/s for the operations associated with one encryption
operation is shown in Figure Since the microcontroller waits for an interrupt
between commands, distinct periods of activity can be seen before and during each
encryption operation. The last period of activity in Figure[7.5]is where the encryption

operation is performed.

Various methods can be used to identify the n, encryption operations in the
SDR collection. Using a manually identified reference trace, cross correlation can
identify the start time of each encryption operation. However, in addition to re-
quiring manual intervention for each center frequency and sampling frequency, this

process is computationally intensive due to the length of the SDR collections. Since
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Figure 7.5  Magnitude of the data recorded for interrupt han-
dling, command identification, receipt of plaintext,
encryption of plaintext and returning ciphertext
for single encryption operation using the USRP2
with f. =22 MHz and fP =2 MSa/s.

the microprocessor is idle when not performing operations associated with an en-
cryption operation, faster detection is performed by counting and identifying the
location of ng peaks with a minimum distance greater than the length of the opera-
tions shown in Figure and a height greater than h,,;,. The initial value of h,,;, is
the overall maximum value in the collected trace. While ng < ng, hpi, is gradually
lowered. If ng = ng4, the collection is separated into n, traces by retaining a fixed
number of samples before and after each identified peak. If ng > n,, the collection

is discarded.

The n, traces should each contain three distinct periods of activity. Since only
the last period of activity contains the encryption operation, traces are truncated to
remove the first two peaks. Using the first trace as a reference, the remaining traces
are aligned by finding the offset that produces the highest cross correlation between
the trace being aligned and reference. The traces are circularly shifted to align
them. To show the similarity between aligned traces, 250 traces are superimposed

and shown with the mean of the 250 traces in Figure Groups of ny traces are
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Figure 7.6  Two-hundred and fifty traces collected with the
USRP2 superimposed in grey with the mean of the
samples shown as a dark line for f. = 22 MHz and

fP =2 MSa/s.

collected until number of collected traces reaches or exceeds the desired total number

of traces Niptar-

The USRP2 and RTL-SDR both contain small memory buffers and samples
must be streamed to the collection PC as they are recorded. If for any reason the
SDR is not able to send the samples fast enough, an overflow occurs and samples
are discarded. As a result, it is possible for portions of an encryption operation
to be missing from the recorded SDR data. Missing samples can cause traces to
contain less than three periods of activity, or for a period of activity in the trace
to be shorter than expected. The USRP2 has an overflow indicator which allows
a collection to be discarded when an overflow occurs. However, collecting with the
USRP at fP =2 MSa/s and fP =4 MSa/s, no overflows occurred. Unfortunately,
the RLT-SDR interface [32] does not report overflows, and overflows do occur via
that interface. To make sure the traces collected with the RTL-SDR are usable,

additional processing steps were required.
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7.5.4  Additional Processing for the RTL-SDR.  As discussed in Sec. [7.5.2]
the tuner in the RTL-SDR is a single CMOS RF tuner. While the user can set center
frequency, sampling frequency and gain before the ADC, the DC offset compensa-
tion is performed automatically by the E4000. Testing showed the E4000 does not
consistently apply the same DC offset for each collection. Since multiple collections
are used together for the CEMA attack, it is necessary to adjust the mean of each
RTL-SDR collection to zero. The adjustment is performed on the entire collection,

and not on individual traces.

For the target microcontroller there are up to three periods of activity asso-
ciated with each encryption operation as shown in Figure However, if samples
are dropped, there may be fewer periods of activity in the retained trace or sam-
ples may be missing at one or more unknown point(s) in the trace. Since only the
third period of activity contains the AES-128 encryption operation of interest, only

samples missing within the last region of activity are of concern.

To allow for traces with less than three periods of activity to be used, the last
region of activity is always assumed to be the encryption operation. The samples
within this region are aligned using cross-correlation, and the width of the retained
region from each trace is evaluated to verify it is consistent with the other traces
in the group of n, = 250 traces. If the width of the last period of activity for
the encryption operation is greater than 5 standard deviations away from the mean
region width, the trace and its corresponding plaintext are excluded from the CEMA

attack.

7.6 Software-Defined Radio Results

7.6.1 USRP. The USRP2 collects side-channel emissions from the ARM
Cortex-M4F using f. € {15,15.5,...,29.5,30} MHz with f? = 2 MSa/s. The gain
is fixed on the LFRX daughterboard. Not all center frequencies produced usable
traces. The ARM Cortex-M4F has a number of clocks on the device. In addition
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to the system clock which is divided to fs,s = 50 MHz (from 400 MHz) for the
implementation of AES with UART communication, there is a Precision Oscillator
(PIOSC) with frequency of 16 MHz. There are also strong signals at 16.67 MHz
and 25 MHz which are believed to be due to operations that take two or three clock
cycles to complete. The spectrum analysis display in HDSDR reveals that both
the system clock and PIOSC have substantial clock jitter which makes encryption
operation extraction from collections made with center frequencies near f. = 16.67
MHz and f. = 25 MHz more difficult. When the SDR down-converts f. = 25 MHz
to baseband the slight variations around f. = 25 MHz become low frequency signals.
Although a low pass filter can remove these signals from the collected trace, better

results were achieved at frequencies other than f. =16 MHz or f. = 25 MHz.

With a sampling frequency of f2 = 2 MSa/s the USRP2 collects nyprqr =
100,000 traces at the following center frequencies: f. € {18,18.5,...,22.5,23} MHz
and f. € {28,28.5,29,29.5,30} MHz. For this range of center frequencies with
fP = 2 MSa/s, the signals are sampled at 1/18 < N, < 1/30 the Nyquist rate.
CEMA attacks are performed using the first n, € {5000, 25000, 100000} traces. The
confidence 7y,0; > Thest for each of these attacks are shown in Figure [7.7 Higher

confidence is indicated by lighter colors. If the CEMA attack yielded an incorrect

key byte value, the box corresponding to the attack is marked with an x.

Next, using a sampling frequency of f2 = 4 MSa/s the USRP2 is used to collect
Notar = 100,000 traces at the following center frequencies, f. € {20,21,22,29,30}
MHz. For this range of center frequencies with f2 = 4 MSa/s, the signals are
sampled at 1/10 < N, < 1/15 the Nyquist rate. There is a reduced number of
center frequencies because the increased sampling rate makes it harder to avoid
frequencies with interfering signals. CEMA attacks are performed using the first
ny € {5000, 25000, 100000} traces collected at each center frequency. The confidence

Tmaz = Tnest fOr each of these attacks are shown in Figure [7.8, Increasing the
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Figure 7.7  Confidence 7,4z > Thest from CEMA attacks using traces collected with
the USRP2. Traces are collected using the indicated center frequency
f. and a sampling rate of fP = 2 MSa/s. The signals are sampled
at 1/18 < N, < 1/30 the Nyquist rate. Attacks are performed for
each key byte using the first (a) n, = 5,000, (b) n; = 25,000 or (b)
n; = 100,000 traces collected. CEMA attacks that yielded incorrect
key byte values are marked with an x.
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1/10 < N, < 1/15 the Nyquist rate. Attacks are performed for each key
byte using the first (a) n; = 5,000, (b) n, = 25,000 or (b) n; = 100,000
traces collected. CEMA attacks that yielded incorrect key byte values
are marked with an x.

sampling frequency, increases the number of key bytes that can be extracted with

high confidence for f. € {20,21,22,29,30} MHz.

Even after using all ns = 100,000 traces to perform the CEMA attacks,
not every key byte can be extracted at every center frequency. As expected, as the
number of traces used in the attack increases, confidence 7,4 > Tnest and the number
of key bytes correctly identified increase. However, since the confidence calculation
in is based on pooled standard error, as the number of traces increases small
differences in correlation coefficients can result in high confidence levels. Figs.
and both show key byte attacks that fail despite having > 90% confidence for
n; = 25,000 and ny; = 100,000 traces. Although less key byte values are correctly
identified, the confidence results for n, = 5,000 traces in Figs. [1.7(a) and [7.8(a)
reliably identify a subset of the key bytes that leak for a given center frequency and

sampling rate.
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Using the sets of nsue = 100,000 traces as trace pools from which n; = 5,000
traces are randomly selected, the CEMA attack is repeated n, = 1,000 times for each
center frequency and sampling rate. The results are shown in Figure[7.9, Comparing
Figs. [7.7(a) and [7.9|(a), most bytes that have a high confidence for a given sampling
frequency and sampling rate using only the first n, = 5,000 traces also have high
success rate when n, = 5,000 traces are chosen randomly from ny,, = 100,000
traces. When the attack using only the first n, = 5,000 traces has a confidence
p > 0.97 , the attack for that byte was successful for at least 80% of trials when

repeated n, = 1,000 times.

The correct key byte value may be identified with n, = 5,000 traces but not
when the number of traces is increased to n; = 25,000+. An example is found in
Figure The identified value for key byte 14 using USRP traces with fP = 2
MSa/s and f. € {20.5,21,23} MHz is correct for n, = 5,000 traces, but incorrect for
n; = 25,000 traces. For high quality traces, an attack that is successful with a lower
number of traces should be successful when a significantly larger number of traces is
used. Since the quality of USRP traces is consistent across the entire trace set, this
phenomenon may be due to the poor quality of the traces including the low sampling
rate of the SDR. The low sampling rate means multiple operations are performed on

the devices between samples.

Figure (a) shows that, as in the baseline oscilloscope test, bytes 1 and 10
leak at multiple frequencies for f” = 2 MSa/s. Although there are multiple key bytes
that do not have high extraction success rates for every center frequency, every key
byte has at least one center frequency for which the correct key value is selected for
all n, trials. From Figure[7.9(a), all key bytes, with the exception of byte 6 , have at
least one frequency interval for which p ~ 1. However, even if the remaining bytes
cannot be extracted with high confidence, a brute force attack to identify the value

of the remaining bytes may be trivial.
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Figure 7.9  Percentage of 1,000 CEMA attacks correct for each key byte using
n; = 5,000 traces randomly chosen from the n., = 100,000 traces
collected with the USRP2 at each center frequency f. for (a) f2 = 2
MSa/s (1/18 < N, < 1/30) and (b) fP = 4MSa/s (1/10 < N, < 1/20).

For f. = 23 MHz and fP =2 MS/s, 100% of the n, = 1,000 trials yielded the
correct result for attacks on 11 of 16 key bytes. Using only the first n; = 5, 000 traces,
the CEMA attacks on these 11 key bytes have confidence values greater than 0.97.
For f.= 28.5 MHz and fP = 2 MSa/s greater than 99.5% of the n, = 1,000 trials
yielded the correct result for 12 of 16 key bytes. Using only the first n; = 5, 000 traces,
the CEMA attacks on 10 of the 12 key bytes with greater than 99.5% of trials correct
have confidence values greater than 0.99. Combining the byte values identified at
these two frequencies, only two bytes cannot be determined using n; = 5, 000 traces
at each frequency. When fP =4 MS/s 12 of 16 key bytes can be determined using
only the first n; = 5,000 traces collected for f. = 20 MHz.

Two USRP2-based attacks extract all 16 bytes correctly with high confidence
(p ~ 1). Figure[7.§(a) includes an attack with f. = 27 MHz and f” = 4 MSa/s
and [7.§|(c) shows an attack with f. = 30 MHz and f? =4 MS/s.
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7.6.2 RTL-SDR. The lowest center frequency that RTL-SDR can be tuned
to is f. = 53.5 MHz. Although the baseline test indicates most leakage is below 63
MHz, collections using at center frequencies up to f. = 73 MHz are made to verify
key byte extraction rates and confidence levels are reduce for center frequencies above
65 MHz. With a sampling frequency of fP = 2 MSa/s, nsa = 100,000 traces are
collected for f. € {53.5,54,....,61.5,62} MHz and f. € {68,68.5,....,72.5,73} MHz.
For this range of center frequencies with f? = 2 MSa/s, the signals are sampled at

1/53.5 < N, < 1/73 the Nyquist rate.

The confidence 7paz > Thest, using the first n, € {5000, 25000, 100000} traces
collected at each center frequency is shown in Figure [7.10] Attacks yielding an
incorrect key byte guess are indicated with an x. Using n, = 25,000 and n; =
100,000 the byte-wise CEMA successfully extract all 16 bytes for multiple center
frequencies. When the CEMA attack is performed using only the first n, = 5,000
traces there is at least one center frequency at which p ~ 1 (with the exception of

byte 5 (p = 0.99) and byte 9 (p = 0.98)).

The CEMA attack is performed using n; = 5,000 randomly selected traces
and repeated n, = 1,000 times. The results of these attacks are summarized in
Figure [7.11] All attacks with confidence p > 0.975 in Figure [7.10|(a) are successful
for at least 82% of n,, = 1,000 trials. As with the USRP2 collections, high confidence
for ny = 5,000 traces is a good way to identify a subset of the key bytes that leak

information for a frequency interval.

Consistent with the baseline test, center frequencies less than 65 MHz have a
lower percentage of successful key byte attacks than center frequencies above 65 MHz.
Again, key bytes 1 and 10 have a higher probability of being correctly determined
using a CEMA attack for multiple center frequencies. An unknown signal that varies
in frequency near 56.9 MHz is observable on a waterfall plot in HDSDR, and causes

a reduction in the effectiveness of the attacks using traces collected with f. = 57.5
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Figure 7.10  Confidence 7,4z = Tnest from CEMA attacks using traces collected
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Figure 7.11  Percentage of 1,000 CEMA attacks correct for each key byte using
n; = 5,000 traces randomly chosen from the 7., = 100,000 traces
collected with the RTL-SDR at each center frequency f. and sampling
rate f2 = 2 MSa/s. The signals are sampled at 1/53.5 < N, < 1/73
the Nyquist rate.

MHz. The highest number of key bytes successfully attacked in greater than 99.9%
of trials is 11 of 16 using traces collected at f. = 55 MHz.

Although the baseline oscilloscope results are filtered to include approximately
the same frequencies collected using the SDRs, the baseline results cannot be directly
compared to the SDR results. The baseline results are filtered but are not down-
converted to baseband, low-pass filtered and decimated. At the sampling rate of
fs = 250 MSa/s, a total of 8,450 samples represent each t; = 32.18 psec encryption
operation. At the lower sampling rates of f2 = 2 MSa/s and f = 4 MSa/s, only 63
and 129 samples respectively make up the entire encryption operation. As a result,
calculations performed during multiple clock cycles are included in a single SDR

sample.

Comparing the baseline oscilloscope and SDR based attacks, the key bytes that
leak for specific center frequencies are not the same in all cases. Key bytes 1 and
10 are easier to extract than other key bytes for the oscilloscope and both SDRs.
However, other key bytes which can be easily extracted with high confidence over a

wide range of frequencies using filtered oscilloscope traces cannot be identified with
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high confidence using SDR traces. For example, key byte 16 can be extracted with
high confidence for center frequencies between 18 MHz and 30 MHz using filtered
oscilloscope traces, but can only be successfully extracted using the USRP2 for select
center frequencies. Key byte 16 can be extracted with a low number of RTL-SDR

traces at various center frequencies between 55 MHz and 59 MHz.

In both the oscilloscope and SDR based attacks key bytes leak a different
frequencies. If an SDR is used to collect data for a CEMA attack, collections should
be performed at multiple frequencies. However, if the target encryption device can
be modified to add a trigger, it should be. The SDR is not a replacement for an

oscilloscope when the device can be altered to add a trigger.

The center frequency and sampling frequencies for both the USRP and RTL-
SDR must to be carefully chosen to avoid clock jitter (from multiple clocks on the
device) and various signals on the device with variable frequencies. Including these
frequencies degrade the effectiveness of an attack and make it harder to identify
the encryption operations. Fortunately, these frequencies can be easily identified by
scanning over the potential collection frequencies using SDR spectrum visualization

software.

In addition to frequencies near the system clock, frequencies around divisors
of the system clock can be attacked. For the ARM Cortex-M4F, frequencies near
16.66 MHz and 25 MHz contain exploitable information. This may be due to some
instructions taking multiple clock cycles or certain operations only being performed

multiple clock cycles apart.

7.6.8 Additional Observations.  Like the baseline attack, both SDR-based
attacks indicate key bytes leak at different frequencies. Since the ARM Cortex-M4F
is a 32-bit microprocessor with sufficient memory, the T-Box implementation is used
to increase the speed of round transformations 1-9. While it is possible to store

just one T-Box in memory and implement a byte-wise rotation separately [38], all

180



four T-Boxes in are stored in memory on the target device. Using standard
development tools, without programming AES directly in assembly, the designer
does not have complete control of when each calculation will be performed on the
device and which registers will be used. The compiler transforms the C++ code into

object code with corresponding assembly instructions.

Evaluating the assembly code, it is not clear why some bytes are easier to
extract than others. There is no correlation with the row of the AES state matrix,
which would determine which T-Box is accessed in memory for each byte. One
simple way to change key byte leakage is to change the optimization level for the

C++ compiler used to program the ARM Cortex-M4F.

To evaluate compiler-dependent byte frequency leakage, traces are collected
with the oscilloscope as in Sec. [7.4] with two different optimization levels used to
compile the AES code for the microprocessor. The baseline test in Sec. used
the compiler default optimization leve]ﬁ of 2. Immediately after collecting the traces
used in the baseline test, the device is reprogrammed using optimization level 0 and

a new set of traces using the same set of n, = 2,000 plaintexts is captured.

The baseline attack described in [7.4] is repeated for the trace set with opti-
mization level 0. Figure compares the confidence 7,4, > These for the trace
sets with different optimization levels. Changing the optimization level changes the
frequencies at which key bytes leak. For example, byte 10 can be extracted with
high confidence 7,4, > Thest for center frequencies between 23 and 28 MHz with op-
timization level 2, but not for optimization level 0. Optimization to reduce execution
time does not necessarily decrease key byte value leakage. Trace sets of n; = 2,000
plaintexts are used to demonstrate that even with a relatively large number of traces

some bytes do not leak at certain frequencies.

4Level 0 includes register optimizations. Level 2 adds local and global optimizations. All SDR
collections were performed with optimization level 2.
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Figure 7.12  Comparison of key byte extraction confidence using n, = 2,000 traces
for compiler optimized implementations of AES. The same set of plain-
texts are used for each attack.

7.6.4 Comparison of the Baseline and SDR Results.  Based on the duration
of the trigger, the encryption operation takes t; = 34.89 usec for optimization level
0, vs tg = 32.18 usec for optimization level 2. Since execution time is decreased, the
compiler does find some optimizations, but it is not clear what the optimizations are.
One way to visualize the difference between the two optimization levels is to display
the magnitude of the correlation with the 32-bit HW model for each output of the
T-Box, using a technique similar to Cobb [30]. Oscilloscope traces with f2 = 250
MSa/sec (no bandpass filtering) are used to create the temporal leakage maps for

each optimization level shown in Figure [7.13]
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Figure 7.13  Comparison of the temporal leakage map for (a) optimization level
2 and (b) optimization level 0. The order the T-Box operations are
performed is different depending on the optimization level used by the
compiler.

While the columns of the state matrix are processed in order (1-4) for both

optimization levels, the order in which the T-Box operations are performed changes

for each optimization level, and possibly between columns. The T-Box used and the

row and column of the state matrix are indicated on the left y-axis of Figure [7.13]

The byte number that corresponds with the state matrix location is list on the right

y-axis. The correlation plots for the T-Box operations are arranged in approximate

temporal order for optimization level 2 in Figure[7.13(a) and the same order is used
for optimization level 0 in Figure [7.13(b) to show that the order in which the T-

Box operations are performed changes. While this does not fully explain why the
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bytes leak differently, it clearly shows the order intermediate values are calculated is

affected by the compiler optimization level used.

7.7  Conclusion and Future Work

SDRs can effectively attack a 32-bit microcontroller running AES-128. Using
sampling rates as low as fP = 2 MSa/s, both the USRP2 and RTL-SDR, a SDR
based on a $20 USD digital TV tuner, can capture EM emissions from a ARM
Cortex-MA4F.

Although a low number of samples are collected per encryption operation, the
low sampling rate allows RF emissions from an encryption device to be collected
continuously. Post-processing extracts encryption operations from a collected EM
emission for use in a CEMA attack. This no-trigger, no-profiling approach enables at-
tacks on an unmodified device without external trigger generation hardware. Despite
sampling at rates well below the Nyquist rate, the encryption key can be successfully

extracted.

Attacks using both SDR and oscilloscope collected traces all found key bytes
leak at different frequencies. The correlation-based frequency-dependent leakage
mapping technique identified filter parameters which increased the confidence of the
CEMA attack and identified frequencies to target with the SDRs. Failing to identify
the correct key byte despite high confidence is an acknowledged limitation of the
confidence metric when a large number of traces is used in the attack. Despite this
limitation, confidence is favored over success rate or guessing entropy for an SDR-
based attack because it can be calculated with a small set of test traces, allowing an

attacker to determine which bytes likely leak for each center frequency.

To attack a device with an SDR, collections should be made with multiple
center frequencies near the clock frequency or divisors of the clock frequency. Using
the highest sampling rate possible improves results provided signals on the device

such as clocks and signals with variable frequencies can be avoided. SDR spectrum
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visualization software can identify frequencies to avoid. To determine the correct
128-bit AES key, an attacker should collect at multiple center frequencies to identify
the key bytes that leak strongly for each frequency interval or collect significantly

more traces for a single frequency interval.
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8. Conclusion

This chapter summarizes the activities and unique contributions of this doctoral

research and makes several recommendations for future research.

8.1 Research Summary

Over the last 15 years many side-channel analysis (SCA) techniques have been
developed that work very well in academic laboratory environments. When apply-
ing these techniques in operational environments, an attacker may not be able to
take actions to improve the quality of the collected traces or have access to high
quality collection equipment. This dissertation examined ways to 1) eliminate some
assumptions commonly made when performing SCA attacks in the laboratory, and
2) compensate for incomplete assumptions made by others. Ultimately, even if the
techniques developed here reduce side-channel attack effectiveness, they remain valu-
able in so far as the attack can be performed without modifying the device or by

using lower cost equipment, thereby improving SCA utility.

The research focused on three primary areas of investigation:

1. An algebraic cryptanalysis-based attack on the AES-128 key schedule,
2. Cross-device template attacks, and

3. Introduction of Software Defined Radios (SDRs) for differential SCA.

Specific results and contributions in each of these areas are summarized below.

8.1.1 Algebraic Cryptanalysis. The Key Schedule Redundancy Attack
(KSRA) developed here reconciles uncertainty in the classification stage of template
attacks using a SAT solver [82]. A system of equations for the AES-128 key schedule
was generated and constrained based on the results of template attacks to create a

new unknown-plaintext, unknown-ciphertext attack. By attacking the key schedule,
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traces from multiple encryption operations can be used without knowledge of the

plaintext.

Previous work in algebraic side-channel analysis used a fixed number of guesses
for each targeted intermediate value [81},[89,/102,/137], but the KSRA uses a novel
thresholding technique to gradually increase the maximum number of guesses per
key byte [82]. This approach prevents key byte guesses with low probabilities from
being included when one or more guesses are assigned a high probability by the
classifier, reducing solve time and the probability of identifying an incorrect key

schedule.

The strength of the attack comes from the redundancy of the key schedule,
allowing 40 key schedule-bytes to be attacked rather than just 16 key-bytes normally
targeted in a SubBytes-based attack and from the ability to used traces from multiple
encryption operations. Since the redundancy exists, the SAT solver can be used to
identify working key schedules that meet the constraints. Even if the key schedule
can only be observed once, the KSRA yields much better performance (100% of 500
trials) than a SubBytes attack (16.8% of 500 trials) [82].

Incorporating multiple traces into the attack phase dramatically improves at-
tack performance for poor quality traces. For traces collected at h = 5 mm using only
one trace, the key schedule was not recovered in any of the 500 attempts. When 50
traces were used, the Satisfiability solver identified the correct key schedule in 97.6%
of the trials [82].

The ability to perform the KSRA without knowledge of the plaintext or cipher-
text, and its robust performance using poor quality traces, may enable an attacker
without placing a near-field probe directly on the device and/or matching each col-

lected trace with its corresponding plaintext or ciphertext to be successful.

Although Renauld et al. note that up to 200 Hamming weights (HWs) can be

recovered from a single power trace from one encryption operation, they do not use
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actual data to perform their attack [102]. All their data is simulated, and although
they may randomly determine which intermediate values are included, all HWs used
to constrain the SAT solver result are correct. The Pseudo-Boolean optimization
approaches by Oren et al. both use simulated data as well [89,91]. The KSRA is the
first known algebraic side-channel attack demonstrated using actual collected data,
and the first side-channel attack method to demonstrate robustness by intentionally

degrading the quality of the collected traces [82].

8.1.2  Cross-Device Template Attacks. The assumption that side-channel
emissions from two similar devices produce similar emissions, as made by Chari et
al. [24] and adopted by others [3]9,(53.92,102,/122] is challenged here for the first time.
It was shown that while template attacks based on mean and covariance matrices
work well for attacking the same device on which the training traces are collected,
the slight differences in emissions from similar devices may be sufficient to cause a
template attack to fail [83]. The process of identifying distinguishing features and
the distribution of training and test data at each of the distinguishing features were

analyzed to identify differences between devices.

The simple technique of mapping both the test data and the training data to
the standard normal, or zero-mean and unit-variance normalization (MVN), was de-
veloped here to improve the effectiveness of cross-device template attacks [83]. Same
part number attacks are improved from 65.1% to 100%, and attacks against similar
devices in the same device family are also improved [83]. For the PIC microcon-
trollers, only a small number of traces (approximately 15) are needed to estimate
the mean and variance for a cross-device attack. Although the MVN technique
was shown to reduce the effectiveness of same-device attacks using a small number
of traces, an attacker can always perform a standard template attack since both

attacks are based on the same collected data.
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The distinguishing features selected may be different from device to device.
While the goal for a same-device attack is to reduce the number of distinguishing
features to make the templates easier to create, increasing the number of distinguish-
ing features improves the cross-device attack success rate [83]. A master template
can be created for a family of devices by combining the distinguishing features for
each type of device and building templates from a combined training set. Training
data from each training device is pre-processed with the MVN technique before be-
ing combined into a larger training set. While the resulting attack did not perfectly
identify every byte for all 40 PIC devices, it provided the best performance of a

single set of templates, achieving an average byte extraction success rate of 99.95%.

The MVN technique was also shown to effectively compensate for changes in
probe placement on larger more complex devices such as the ARM Cortex-M4F.
Combined with the negative MVN technique which compensates for negatively-
correlated EM emissions, the MVN technique increases the number of locations above
the device where template attack can be performed successfully for all 16 bytes by
226% [83]. Calculating the power spectral density (PSD) variance was found to be
a simple, yet powerful, way to identify signal frequency components that change in
power between collected traces and have an adverse effect on cross-device template
attacks. Using notch filtering to attenuate these frequencies in both training and test
traces reduced the average number of traces needed to perform a successful template

attack by 85.8% [83].

The ability to use a different device for training, rather than the device being
attacked is one assumed benefit of template attacks. This research identified ways
to increase the effectiveness of template attacks when training and test data are
collected on different devices. Ultimately, the original assumption that training and
target devices have sufficiently similar side-channel emissions in [24] is validated with
an added caveat that device-dependent differences in sample means and variances

must be compensated for before performing the template attack [85]. Additionally,
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if signals unrelated to the encryption operation being performed can be identified,
notch filtering to reduce the contribution of theses signals may improve the effective-

ness of the template attack [83].

8.1.3 Software Defined Radios (SDR). SDRs can be used to effectively
attack a 32-bit microcontroller running AES-128 [84]. Two SDRs were used to
passively collect traces from a ARM Cortex-M4F at sampling rates as low as f2 = 2
MSa/s. The RTL-SDR is based on a commercial digital TV tuner that can be
purchased for $20 USD. This research is the first known use of SDRs for differential

side-channel analysis.

Due to their limited sampling frequencies, a low number of samples are collected
for each encryption operation using an SDR. The low sampling rates allow the traces
to be collected continuously and eliminate the need for a trigger. This no-trigger,
no-profiling approach allows for attacks to be performed on an unmodified device
without external trigger generation hardware and greatly reduces the equipment

needed to perform a side-channel attack [84].

Attacks using both SDR and oscilloscope collected traces found key-byte leak-
age at different frequencies. Since previous research had focused on a single key
byte [13,/14], the research here is the first to identify this phenomenon [84]. Key-byte
leakage can also be changed by reprogramming the target device using a different

optimization level.

To attack a device with an SDR, traces should be collected at multiple center
frequencies and with the highest sampling rate possible without loosing samples due
to overruns [84]. The center frequencies and bandwidths must be chosen carefully
to avoid clock frequencies (including jitter) and signals on the device that vary in
frequency. These frequencies can easily be identified using SDR spectrum visual-
ization software or the variance of trace PSD technique for traces collected with an

oscilloscope [83].
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Although more traces are required to perform an attack with SDR-collected
traces than with oscilloscope-collected traces, the fact SDR traces can be collected
without modifying the device or additional hardware makes SDR-based collection a
powerful tool for operational side-channel attacks. However, since oscilloscope based
attacks are more effective, if an oscilloscope is available and the cryptographic device

can be modified without losing the key being attacked, it should be [84].

8.2 Recommendations for Fulure Research

8.2.1 Algebraic Cryptanalysis.  Since the KSRA uses 40 key schedule byte
values when only 16 bytes are required, the attack would be possible using fewer
intermediate values. It may be possible to identify which intermediate values to
include based on the posterior probabilities for each attacked byte. Since the correct
key schedule can not be found unless the correct byte value is included in the list
of possible values for each targeted byte, eliminating a key-schedule-byte from the
list of constraints if it has a larger number of possible byte values than other key-

schedule-bytes may improve attack performance and reduce solving time.

Optimizer-based approaches that incorporate the posterior probabilities for
each targeted intermediate value into a goal function, have been demonstrated to be
more tolerant of errors than SAT-solver based approaches using simulated data [89].
However, using an optimizer rather than a SAT solver dramatically increases the
solve time and memory requirements. A comparison of an optimizer-based approach,
and a SAT solver-based approach with constraints defined using the thresholding
technique developed for KRSA should be performed.

Finally, a more powerful attack might be created by combining SDR-based
trace collection, MVN technique-based template attacks and KSRA. Since the KSRA
is a no-plaintext/no-ciphertext attack an SDR could be used to collect traces from
the test device without needing to identify the plaintext or ciphertext. Template

attacks could be performed using training and test data pre-processed with the
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MVN technique. This attack could be performed without device modification and
would likely require fewer traces than the correlation-based electro-magnetic analysis
(CEMA) based attack in Chapter . However, due to the poor quality of individual
traces when collecting with the SDR, this attack would likely only be successful if the
key schedule is calculated on the fly with each encryption operation. These attack
methodologies can not be combined for every attack and their utility depends on the

implementation being attacked.

8.2.2  Cross-Device Template Attacks. As microprocessors and Field Pro-
grammable Gate Arrays (FPGAs) continue to become more complex, and cross-
device template attacks are used to attack these devices, additional steps may be
required to address differences between devices. As device features size and power
consumption is reduced, probe placement will be more important and there may be
greater differences in the leakage distribution for each type of device. While tech-
niques developed in this dissertation will continue to be valuable, additional device

specific techniques may need to be developed.

It was demonstrated in this research that a single set of templates can be
created to attack multiple devices with minor differences in memory and on-board
peripherals. This set of templates was created by identifying distinguishing features
from each device before performing the MVN technique on training data from each
training device to form a combined training set. Further research is required to deter-
mine the most effective method of identifying distinguishing features from multiple
training devices. Additional methods for transforming and combining data should

also be explored.

The MVN technique may also be able to compensate for differences in the oper-
ating conditions of the device. For example, it was shown the power consumption of
a SASEBO-GII FPGA platform changes as the ambient temperature changes. This

is addressed using a stochastic approach that compares the differences in consecutive
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power traces in place of the power traces themselves in [56], but it may be possible to
use the MVN technique to pre-process groups of data collected during short periods
of time when the ambient temperature is relatively constant. The processed groups
would be recombined into a new training set, and the test set would be similarly

processed.

This research found that notch-filtering improved the performance of template
attacks but reduced the effectiveness of CEMA attacks. Conversely, bandpass filter-
ing was found to improve CEMA attacks, but was not shown to improve template
attacks. Further research is needed to verify this phenomenon is true for other
devices and understand why each type of attack is enhanced or degraded by each
filtering method, and identify additional pre-processing methods to improve SCA

attack performance.

8.2.3 Software Defined Radios.  Further research is needed to understand
why key-bytes leak at different frequencies, and how changing the compiler opti-
mization level changes which key bytes leak at each frequency. Speed optimization
may have made the implementation easier to attack. If it can be determined why
compiler-dependent byte frequency leakage differences exist, it may be possible to
program the device in assembly to reduce the devices vulnerability to side-channel at-
tacks. Once well understood, it may be possible to design a compiler that minimizes
leakage from a device. Unfortunately, leakage may change from device-to-device,

reducing the utility of such a compiler.

One way to enhance the attack using the USRP2 is to collect at multiple
frequencies simultaneously. The USRP2 can collect at two center frequencies with
the same sampling rate. The data from both center frequencies could be used in
the attack, or one frequency could be used to identify and align the encryption
operations collected at another center frequency. This would allow attacks to be

performed for center frequencies where the encryption operations are not easy to
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identify. Additionally, if the same external clock is used on both the cryptographic
device and the SDR, attacks with a center frequency equal to the clock frequency of

the cryptographic device may be more effective.

Given the capabilities of modern FPGAs, it may be possible to create a sin-
gle device that performs all aspects of a side-channel attack. Many FPGAs include
analog-to-digital converters which can digitize the side-channel information, and per-
form demodulation. The FPGA can be used to identify traces in the collected side-
channel and perform a CEMA-based attack. The device could read ciphertext from
the a network connection to simulate encrypted packets being captured on a net-
work. If the attacker knows which samples are highly correlated with the targeted
intermediate value, only these samples need to be retained for each trace. Although
this would require a profiling step, the amount of memory required to perform the

attack would be dramatically reduced.
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Appendiz A. Constructing and Solving Systems of Equations

This appendix provides a brief introduction to Conjunctive Normal Form (CNF),
Satisfiability (SAT) solvers, and how to present a system of equations written in

CNF to a SAT solver.

A.1  Conjunctive Normal Form

To use a SAT solver to determine a solution to a set of equations, the problem
must be transformed into CNF. A brief introduction to CNF, based on [127], is

presented below.

A Boolean variable x can take on two values, ‘1’ for true, and ‘0’ for false. The
basic Boolean functions are negation (NOT), conjunction (AND) and disjunction

(OR). The Boolean negation function is,

1 if x is false,

S]]
I

0 otherwise.

A literal is a Boolean variable or its negation. A conjunction of a collection of literals
L1y, Ty 18,

1 if all of the z; are true,
TINTa N Nxy =

0 otherwise.
A clause is a disjunction of a collection of literals. For example a disjunction of
L1y, Ty 18,

1 if any of the x; are true,
r1VaaV:---Va, =

0 otherwise.
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A Boolean function, f, is said to be in conjunctive normal form (CNF) if it is written

as,

f(z,...,zp) = /\ Cy,
k=1

There each C is a conjunction of literals. The following function is in CNF,

f(l‘l, ,ZEn) = (IL‘l V i) V j}5) VAN (ng, V IL‘G) N (1'4 V i’ﬁ).

A truth assignment assigns values to the variable of the Boolean function such
that x = (21, ...7,,) € {0,1}" . If the set of variables satisfies the function such that
f(x) =1, the set {x € {0,1}": f(x) = 1} is a satisfying truth assignment. If a set

of variable assignment exist such that f(x) = 1, then f is satisfiable.

A.2 SAT Solvers

SAT solvers attempt to answer the question, “for a given Boolean function

f(x1,.yzn) = Aoy Ck, is [ satisfiable?”

SAT solvers use an encoding scheme with the alphabet ¥ = {0,1,V, A, —}.
Each variable z; is denoted by the binary representation of ¢ and ¥ is written as —zx.

The CNF Boolean function written as
f(@1, o 26) = (21 V22 VTs5) A (T3 V 26) A (24 V T)
would be encoded using > as

1v10V —-101 A =011V 110 A 100 V —110.

A.8 Converting M@ to SAT

Although a number of articles outline the steps to represent a system of multi-

variate polynomials as a SAT problem, the best step-by-step process is found in [11].
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The following section is based on Bard’s technique and includes many of his exam-

ples.

A.3.1 Step 1: Convert the Polynomial System to a Linear System.  Every
polynomial is a sum of linear and higher degree terms. Quadratic and higher degree

terms must be rewritten. For example, the logical expression

(wva)(zVva)(yva)(zVva)laVTVIVYVZ)

can we rewritten as a <= (w Ax Ay A z), or in GF(2) as a = wzryz [11]. A
similar equation of the form a = wyws ... w,, for any r > 1 can be written for any
monomial of degree d > 1. A dummy variable represents each monomial with degree
d > 1. The number of clauses required to represent the monomial is d + 1. If
the monomial appears more than once, the dummy variable should be used instead
of added additional equations. Care must be taken to avoid encoding the same

monomial twice.

CNF does not have constants. A work around to include a 1 or 0 in a CNF
clause is to add a separate clause consisting of 1" or equivalently ('V T V...V T).
Since this statement must be true in any satisfying solution, 7" can be used in place
of a1 and T can be used in place of 0. As a results, the constant term 0 or zero can

be treated as a variable.

A.3.2 Step 2: Linear System to CNF Ezxpression.  Fach polynomial is now
a sum of variables, which can be represented using logical-XORs. For example, the

sum (a ®b® c® d=0) is equivalent to

(avbVevd)(avbvevd)(aVvbVeVd) (aVbVeVd) A1
1

(@vbvevd)(@vobvevd(@avbvevd) (@avbVveVd)
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The length of the CNF equation grows exponentially with the number of variables
in the XOR statements. The statement must equal one whenever there is an even
number of ones. The CNF must include every arrangement of variables that can
produce a zero. XORs statements with many variables require long CNF clauses

which are more difficult for SAT solvers to solve.

For a sum of length [, where 2|1/2] = j, this requires
l [ l [
. =2 A2
o)+ ()= () () 2

To prevent this exponential increase in clauses, the XOR sum can be cut into

clauses.

subsums of length c. This is referred to as the cutting number. For example, the

equation 1 ® xo ® ... @ x; = 0 can be written as the set of equations

.731@1'2@1’3@%:0

Yy Dre Dy Dy =0

Ti D Taivo ® Tyips D Yir1 =0

Th D2 D11 DYy =0

if | = 2(mod ¢). If [ # 2(mod ¢) then the final sum is shorter than [. Since
multiple shorter XOR statements produce fewer CNF clauses, this is a more efficient
way to represent the original XOR. This method produced h + 1 subsums, where

h = [l/c] — 2. There will be h + 1 subsums and each will require 27! clauses of
length ¢ each as shown in (A.2).
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A.3.83 Step 3: DIMACS CNF Form.  The Center for Discrete Mathematics
& Theoretical Computer Science (DIMACS) at Rutgers University proposed a stan-
dard graph format in 1993 for satisfiability problems in CNF. CNF file format is an
ASCII file with the following structure.

e Comments are indicated by making the first character of each comment line
a lower case letter ‘c’. Comments are typically placed at the beginning of the

file, but are allowed through the file.

e The “problem” line should be placed after comment lines at the beginning of
the file. This line begins with ‘p’ followed by the problem type. For CNF files,

‘enf’ should be followed by the number of variables and the number of clauses.

e The clauses appear immediately after the problem line and make up the re-
mainder of the file. The variables are assumed to be numbered 1 to n. Each
clause is a sequence of numbers, separated by a space, tab or a new line char-
acter. The non-negated variable is represented by ¢ and the negated variable

is represented by -i. Each clause is terminated by the value 0.

The CNF equation in (A.1]) can be written in DIMACS CNF file format as,

c AXOR B XOR C XOR D = 0
c 4 variables, 8 clauses
p cnf 4 8

12340

12-3-4

1 -23 -4

1 -2-34

-12-34

0
0
0
-123-40
0
-1-2340
-4

-1 -2 -3 0
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A.4  Methods for Solving Non-linear Multivariate Systems of Equations

A number of methods have been demonstrated or proposed for solving non-
linear multivariate systems of equations. One applies a technique from computational
algebra called Grobner basis algorithms. Grobner basis can be used to triangulate
a polynomial system and can be found using the Buchberger Algorithm, which is
an exact algorithm. More efficient F'4 or F'5 algorithms can also find the Grobner
basis [44], [45]. A number of mathematical tools use Grobner basis techniques to
solve systems of equations, but for complex problems they crash due to memory
requirements. MAGMA and SINGULAR tools are recommended for solving systems

of polynomial equations [11].

The eXtended Linearization (XL) algorithm developed by Courtois builds on
the concept of relinearization [112]. Relinearization takes a given system of linear
equations and adds non-linear equations which capture the fact that these vari-
ables are related rather than independent, making the system of equations easier
to solve. XL is a combination of bounded degree Grobner basis and relinearization

techniques [35].

Courtois recommends that Grobner basis methods should be avoided because
they expand the system of equations to a larger degree (e.g., 4 or 5) to solve them,
resulting in time and memory-consuming expansion. He recommends using linear
algebra and known elimination techniques to take advantage of and, if possible,

preserve sparsity [37]. The ElimLin function incorporates this philosophy.

The ElimLin function, also developed by Courtois [37], is another algebraic
attack. Starting with an initial system (i.e., degree 2 or 3), the algorithm looks
for linear equations in the linear span of the equations. If equations in the span of
equations are identified, several variables can be eliminated using simple substitution
by a linear expression. When new linear equations are found they are added to
the system. The process is repeated until no more linear equations are found. The

variables that appear in the smallest number of equations are eliminated first, helping
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to preserve sparsity, while key variables are eliminated last. As a results, ElimLin is

able to solve systems were Grobner basis techniques fail due to lack of memory.

Courtois and Pieprzyk introduced the idea of describing ciphers with S-boxes
as an over-defined system of algebraic equations. They found the quadratic equations
for AES are both sparse and over-defined and proposed a new method for solving
over-defined systems of equations called eXtended Sparse Linearization (XSL), which
takes advantage of the sparsity and structure of the system [36] . XSL is designed to
work with ciphers that have XOR, S-Box and Linear diffusion layers. After Courtois
and Bard published their results in [36], the efficiency of an XSL-attack on AES was
challenged in [26].

Raddum and Semaev present an alternative approach [96]. Rather than rep-
resent the system equations as polynomials, the equations are represented as lists
of bit-strings. FEach string is a value assignment of a variable that satisfies the
equation. Raddium and Semaev’s algorithm is more efficient than classical methods

which represent the system as polynomials [96].

Murphy and Robshaw describe the essential algebraic structure within AES
using a new block cipher [86]. They introduce the Big Encryption System (BES), that
uses only simple algebraic operations in GF(2®) and show that AES, which performs
operations in GF(2)®, can be implemented as a form of BES with a restricted message
and key space. BES uses very simple operations in GF(2%), and as a result AES can
be described without operations in GF(2)%. A round of AES can be described in
BES as an inversion, a matrix multiplication, and a key addition in GF(28). Thus,
AES can be described as a “very simple” and extremely spare system of multivariate
quadratic equations over GF(2%). Using GF(28) to describe AES S-Box equations
has the benefit of much sparser systems of equations with a reduced number of free
terms. However, working in a larger field may increase the complexity of the solving
algorithm |1§]. Note that this embedding technique is not applicable to all block

ciphers, but takes advantage of the particular AES algebraic structure.
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Appendiz B. Writing AES-128 for a SAT Solver

Implementing an AES-128 SAT solver tool from a system of equations required a
number of steps, which are performed by different programs. The system of equa-
tions generated by the SR polynomial generator are in algebraic normal form (ANF).
A ANF to CNF converter is used to convert the system of equations to conjunctive
normal form (CNF). Constraints for known values can be added by including addi-
tional polynomials in the system, by adding additional lines to the DIMACS code,
or by using Limboole. The DIMACS file with constraints is the input to the SAT
solver. Finally, the output of the SAT solver must be converted back to the original
variables. These steps are shown in Figure [Bl1 and are explained in the following

sections.

B.1 SR Polynomial Generator

Small scale variants of the AES were defined to inherit the design features
of AES and to provide a framework for comparing cryptographic methods [25]. In
addition to implementing the small scale variants described in [25] and [27], a full
scale implementation of AES-128 can be constructed. The SR generator is based
in Sage Mathematical Software, a free and open source software tool created with
the goal of being an “open source alternative to Magma, Maple, Mathematica, and

MATLAB” [124].

Since the SR generator is designed to implement all small scale versions spec-
ified in [25] and [27], various parameters must be set. The size of the variant is
specified using sr = mq.SR(n,r,c,e) where n is the number of rounds, r is the
number of rows in the state array, c is the number of columns and e is the exponent
of the finite extension field. For the Rijndael polynomial used in AES-128: sr =
mq.SR(10,4,4,8).
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SR Generator

System of Polynomialsin ANF

Side Channel
Introduced known values as Analysis
additional polynomials or Simulation
Larger system of polynomialsin ANF
| ANF2ONF | Limbool

Constraints written

CFN equations written in DIMACS )
in DIMACS

— Convert to
| CryptoMiniSat2 ‘ anf2cnf variables

Solution written in terms of DIMACS variables

Map DIMACS
variables back

Solution written in terms original variables

Figure B.1  Data flow from the system of polynomial produced
by the SR polynomial generator to a results in
terms of the original variables.

To use the anf2cenf converter, the output of the SR generator must be a system
of equations specified over a Boolean Polynomial Ring. The polybori=True option
tells the SR generator to used the PolyBoRi package [21] included in Sage to cre-
ate a system of polynomials over the boolean ring defined by SR. The star=True
and gf2=True options tell the SR generator to use the AES key schedule and omit the
MixColumns transformation during round ten. Finally, the option correct_only=True
specifies that only inversion polynomials that are correct for all SubBytes inputs
should be used. If this option is not specified, plaintext/key pairs that result in a 00
as the input to any SubBytes transformation will result in an inconsistent system of

equations.

The following options specify the correct SR generator for generating a system

of equation in GF(2) for AES-128:

sr = mq.SR(10,4,4,8,star=True,gf2=True,polybori=True,

correct_only = True)
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For a full AES-128 encryption operation this system included 7288 polynomials
in algebraic normal form (ANF) and 4544 variables. The variables are specified at
the bit level for the inputs to each of AES-128 round, the output of each SubBytes
inversion and each bit of each round key. Variables were added to the system to
represent the plaintext and ciphertext. The polynomials define the relationship
between each round, the inversion in SubBytes, and the key schedule. As a result,
the system of equations fully defines the relationship between each of the variables
defined by the AES-128 block cipher. If the values of enough of the variables are
known, the key can be determined. The value of the some variables may be known
from plaintext/ciphertext pairs, ciphertext and intermediate values found using side-

channel analysis.

B.1.1  Variable Names.  The SR generator uses the following naming con-
vention for intermediate variables. Inversion refers to the inversion step in the Sub-
Bytes operation. Depending how the SubBytes transformation is implemented in a

device, this intermediate value may not be calculated.

e k; ;; subkey: round i, word j, bit
e w; ;; inversion input: round ¢, word 7, bit [

e 1, ; inversion output: round 4, word j, bit [

P;; plaintext: word 7, bit [

C;, ciphertext: word j, bit [

For AES-128 the round, word and bit values are always represented as two-
character-wide numbers. For example, the variable name for the starting round value
for round 1, work 2, bit 10 is written as w010210. Note that, although they are not

part of a round, both the plaintext and ciphertext use 00 as the round number.
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B.2 ANF to CNF Converter

The ANF to CNF converter (anf2cnf) is written for Sage and requires the
system of polynomials to be written as a list of Boolean Polynomials, a specific class
in Sage. The SR polynomial generator creates a list of Boolean Polynomials over
GF(2) if the option polybri=True is used. When creating an instance using the
ANFSatSolver() class, the Boolean Ring over which the Boolean Polynomials are
defined in Sage must be specified. If sr is the name of the SR generator instance,
sr.R refers to the Boolean Ring used to create the boolean polynomials. An instance
of the anf2cnf converter called anf2cnf can be created in Sage by typing anf2cnf
= ANF2CNF(sr.R). If F is the system of equations produced by the SR polynomial
generator, anf2cnf . cnf (F) will print the DIMACS to the screen.

When a polynomial is in conjunctive normal form each formula is a conjunction
of clauses and each clause is a disjunction of literals. In DIMACS format, each line
represents a clause and each literal is represented as an integer. A disjunction is
represented as multiple integers on the same line. For the DIMACS to be satisfiable,

a set of variable assignments must be found to make each line equal to 1.

B.2.1 Specifying Known Values.  The anf2cnf converter assigns integers to
variables in the order they are encountered when parsing the system of polynomi-
als. To allow the integers to be mapped back to the original variables, the anf2cnf
converter builds a dictionary mapping the variable names to the assigned integer.
Constraints for known values can be added by including additional polynomials in
the system, by adding additional lines to the DIMACS code, or by using Limboole.
If the system of equations is augmented by adding polynomials to the system which
represent the known values, the anf2cnf converter will automatically created DI-
MACS entries for the known values. Constraints can also be added to the DIMACS
file created by the anf2enf converter by generating (a) DIMACS clause(s) for each

known value(s). To write DIMACS constraints, the correct integer representation
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of the variable must be found using the variable name to integer mapping. This
dictionary is also required to use the equations for the constraints generated using

Limboole.

B.2.1.1 Limboole. Limboole, a simple Boolean calculator, reads a
Boolean formula, checks if it is valid and converts it to a CNF formula in DIMACS
format |[60]. A number of operators are allowed in the Limboole syntax, including &

(and), | (or), and not (!). The order of operations can be specified using parenthesis.

Suppose through SCA it is determined that Hamming Weight of the byte 0 for
key round 1 is equal to 1. Although, the values of individual bits are not known,
the relationship between the 8 bits in the byte is known. Only one of the bits can
be equal to 1, and all others must be zero. In decimal the possible values of the
byte are 1, 2, 4, 8, 16, 32, 64, and 128. If the byte is represented as a,b,c,d,e.f,g, the
Limboole input is found in Code Listing

Code Listing B.1  Limboole Code
'(a&!b&lc&!d&le&! f&!g&!h
la&!b&c&!ld&le&! f&!g&!h
la&!b&!c&!d&e&! f&!g&!h
la&!b&!lc&!d&!le&! f&g&!lh

(la&b&lc&!ld&le&! f&!g&!h
(la&!b&lc&kd&!le&! f&!g&k!h
(la&!b&lc&!d&!le&f&!g&!h
(la&!b&lc&ld&le&! f&!ghh))

( ) | )
( ) | )
( ) | ) |
( ) | )

Although there are only 8 variables in the Limboole input, Limboole produces
a DIMACS file with 65 variables and 163 clauses. Many additional intermediate
variables are introduced by the conversion process. Like the anf2enf converter, Lim-
boole assigns integers to the original and intermediate variables created during the
conversion from Boolean formula into DIMACS. To make the two DIMACS files
compatible, the Limboole DIMACS file must use the same integers to represent the
original variables. A Python script was written to translate the Limboole DIMACS

integers into the integers used by the anf2cnf converter. Using the Limboole variable

assignments listed in the comments of the Limboole DIMACS code, and the dictio-
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nary created by the anf2cnf converter, Limboole integers can be substitute with the
anf2enf integer. Any integers from the Limboole DIMACS not associated with one
of the original variables are intermediate values, and are assigned to unused integers

in the anf2enf DIMACS file.

B.2.2  SAT Solver.  The SAT solver chosen for this research is CryptoMin-
iSat2 [118]. CryptoMiniSat2 is optimized for working with cryptographic instances
allowing for XOR clauses to be reconstructed from the DIMACS input. XOR clauses
are treated differently allowing the solver to handle them faster in most scenarios.
Since SAT solvers use a standard input format, another SAT solver could easily be

substituted instead of CryptoMiniSat2.

B.3  Ezample Code

B.3.1 Full System of Equations. The code listed in Code Listing
creates a system of polynomials for the AES-128 key with symbolic plaintext and
ciphertext variables. Additional equations for known values are imported from a
file using the ImportKnownValuesFromFile() function list in Code Listing and
the additional polynomials are created by the KnownValuesPolynomials() function
and added to the system. Finally, the combined system of equations is converted to
DIMACS format. This code is based on the instructions at [7] and contained in the

anf2cnf converter source code.

Code Listing B.2  fullsystem.py

output_filename = ’DIMACS.cnf’
# A symbolic representation for the plaintext (P) and the
# cipher text to create equations for fully symbolic AES

sr = mq.SR(10,4,4,8,star=True,gf2=True,polybori=True, correct_only = True)

R = sr.R

vn = sr.varstrs("P", O, 16, 8) + R.variable_names() + sr.varstrs("C", 0, 16, 8)
R = BooleanPolynomialRing(len(vn),vn)

sr.R = R

C = sr.vars("C",0);

P = sr.vars("P",0);
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# Generate system of equations (F is the system of equations)

F,s = sr.polynomial_system(P=P,C=C);

data_filename = ’known_values_format.txt’
known_values, actual_key = ImportKnownValuesFromFile(data_filename)
KnownValuePolys = KnownValuePolynomials (known_values, sr)

# Add the known value polynomials to the system

for each_polynomial in KnownValuePolys:
F.append(each_polynomial)

print (’With Known Values: ’ + str(F))

# Find and save the DIMACS

print (’\nRunning ANF to CNF...?’)

anf2cnf = ANFSatSolver (sr.R)

o = open(output_filename,’w’)

o.write(anf2cnf.cnf(F)) # DIMACS is output to file

o.close ()

B.3.2  Key Schedule Only System of Equations. The code listed in Code
Listing creates a system of polynomials for the AES-128 key schedule, adds
additional equations for known values using the ImportKnownValuesFromFile()
function in Code Listing creates the polynomials from the known values using
KnownValuePolynomials () function in Code List [B.7 and converts the combined

system of equations into DIMACS format.

Code Listing B.3  keyschsystem.py

data_filename = "data.txt"

sr = mq.SR(10,4,4,8,star=True,gf2=True,polybori=True, correct_only = True, <
AES_mode = True)

full_system = []

for rnd_idx in range(11):

key_polys += sr.key_schedule_polynomials(rnd_idx)

known_values, actual_key = ImportKnownValuesFromFile(data_filename, <
key_values_only = True)
KnownValuePolys = KnownValuePolynomials (known_values, sr)

full_system = key_polys + KnownValuePolys

anf2cnf = ANFSatSolver (sr.R)

o = open(inputfile,’w’)

o.write(anf2cnf.cnf (full_system)) # DIMACS is written to file

o.close()
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B.3.3  Known Values Format.  To simplify testing, the data import format
show in Code Listing was created. All known values are represented by hexadec-
imal numbers and unknown values are listed as ‘X’. This format is parsed using the

ImportKnownValuesFromFile () function in Code Listing [B.5]

Code Listing B.4  knownvaluesformat.sage

# Note: actual_key is not used as an input to the SAT solver

# for testing you can specify the actual key in the ROO_k_sch

actual_key = D810B8F5649A78CO08DEE15A80EAE2398

plaintext = decOdedfabledecOdedfabledecOdedf
ROO_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO1_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO1_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXda6cbOae
RO2_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO2_k_sch = XXXXXXXXXXXXXXXXXXXXXXXX38d3bfof
RO3_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO3_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXelc84037
RO4_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO4_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXeea7b960
RO5_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO5_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO6_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO6_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO7_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO7_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO8_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO8_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO9_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
RO9_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
R10_start = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
R10_k_sch = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ciphertext = 07881c0ec03c192a9b6c553e5cfelb65
B.3.4 Helper Functions. The process of creating a system of equations

for AES, introducing known data, converting to a SAT problem and interpreting

the output of the SAT solver involved various tools and data formats. A number
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of functions were written in Python to import and convert data between types and

formats.

To import the known values file, the ImportKnownValuesFromFile() function

was written. The result is a list of variable names and their values.

Code Listing B.5  ImportKnownValuesFromFile()

def ImportKnownValuesFromFile (known_values_filename, key_values_only = False):
try:

file = open(known_values_filename)

data = file.readlines ()

except IOError as err:

print (’File Error:’ + str(err))
finally:

if ’file’ in locals():

file.close ()

# Import data list. All lines without equal signs will be ignored
data_list = []
for each_line in data:

if each_line.find("=")> -1:

(row_name, row_values) = each_line.split(’=’, 1)
row_name = row_name.strip()
row_values = row_values.strip()

data_list.append((row_name, row_values))

# Process each set of data in data_list
known_list = [];

for data_pair in data_list:

(data_name, data_values) = data_pair

if data_name == ’actual_key’:

actual_key = data_values

elif data_name == ’plaintext’ and not key_values_only:

prefix = ’P’
rnd_str = 200’

known_list += BuildKnownValuesPairs(prefix, rnd_str, data_values)

elif data_name == ’ciphertext’ and not key_values_only:
prefix = ’C’
rnd_str = ’00°

known_list += BuildKnownValuesPairs(prefix, rnd_str, data_values)
elif data_name[:1] == ’R’ and data_name[4:] == ’start’ and not key_values_only:

prefix = ’w’
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rnd_str = data_name [1:3]

known_list += BuildKnownValuesPairs(prefix, rnd_str, data_values)

elif data_name[:1] == ’R’ and data_name[4:] == ’k_sch’:
prefix = ’k’
rnd_str = data_name [1:3]

known_list += BuildKnownValuesPairs(prefix, rnd_str, data_values)

return known_list, actual_key

The BuildKnownValuesPair () function builds the name of the variables from
the prefix, round, and each of the string of values specified by the input file. The
function hex2binX() is a simple hexadecimal to binary converter but also converts a
‘X" in the hex string to a ‘XXXX’ in the binary string. The output is a paired list

of the variables with known binary values.

Code Listing B.6  BuildKnownValuesPair()

def BuildKnownValuesPairs(prefix, rnd_str, data_values_hex):
known_list = []
data_value_binary = hex2binX(data_values_hex)
for word_num in range (16):
word_str = str(word_num).zfill(2)
for bit_num in range(8):
bit_str = str(bit_num).zfill (2)
bit_idx = 8 * word_num + bit_num
var_name = prefix + rnd_str + word_str + bit_str
if not data_value_binary [bit_idx] == ’X’:
var_value = Integer(data_value_binary[bit_idx])
known_list.append((var_name, var_value))

return known_list

The KnownValuePolynomial() function takes the paired list of variables and
known binary values and creates polynomials to represent the known values using
the Boolean Polynomial class required by the anf2cnf converter. The SR generator’s
variable_dict () function produces a dictionary that relates the variable name with
its corresponding Boolean Monomial. The Boolean Monomial must be used in the
polynomial for the polynomial to be a Boolean Polynomial class. Since each poly-

nomial in ANF is equal to 0 if the variable is equal to 1, 1 is added to the variable
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to create a polynomial equal to zero over GF(2). If the variable is equal to 0, the

Boolean Monomial is simply appended to the list of polynomials.

Code Listing B.7  KnownValuePolynomials()

def KnownValuePolynomials (inputList, srGenerator):
# get the boolean polynomial to integer dictionary
PBDict = srGenerator.variable_dict ()
# create an empty list
IntValuePolynomials = [];
for each_item in inputList:
varstr = each_item[0] # variable name
myBP = PBDict[varstr] # BooleanPolynomial for that name
if each_item[1]:
IntValuePolynomials.append (myBP + 1)
else:
IntValuePolynomials.append (myBP)

return tuple(IntValuePolynomials)
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Appendixz C. List of Acronyms

Acronym  Definition
ADC Analog-to-Digital Converter
AES Advanced Encryption Standard

AES-128  Advanced Encryption Standard (128-bit variant)

ANF Algebraic Normal Form
ARK AddRoundKey
CBC Cipher Block Chaining

CEMA Correlation-based Electro-Magnetic Analysis
CFB Cipher Feedback

CMOS Complementary Metal Oxide Semiconductor

CNF Conjunctive Normal Form
CTR Counter

DAB Digital Audio Broadcasting
DDC Digital Down-Converter

DEMA Differential Electro-Magnetic Analysis

DES Data Encryption Standard

DFT Discrete Fourier Transform

DIMACS Discrete Mathematics & Theoretical Computer Science
DPA Differential Power Analysis

DRAM Dynamic Random Access Memory
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Acronym
DSCA
DVB-T
DoM
ECB
ECC
EM
EMA
FFT
FPGA
GNU
HD
HDSDR
HW

I/Q

IF
KSRA
LNA
MC

ML

MVN

Definition

Differential Side-Channel Analysis
Digital Video Broadcasting-Terrestrial
Difference of Means

Electronic Codebook

Elliptic Curve Cryptography
Electro-Magnetic
Electro-Magnetic Analysis

Fast Fourier Transform

Field Programmable Gate Array
GNU’s Not Unix (recursive)
Hamming Distance

High Definition

Hamming Weight

In-phase Quadrature
Intermediate Frequency

Key Schedule Redundancy Attack
Low Noise Amplifier

SubBytes

Maximum-Likelihood

Mean and Variance Normalization
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Acronym
NCO
NIST
OFB
PBOPT
PCA
PIOSC
PSD
PoSSo
RAM

RF
RTL-SDR
S-box
SASEBO
SAT

SB

SCA
SDR
SEMA
SNR

SPA

Definition

Numerically-Controlled Oscillator

National Institute of Standards and Technology
Output Feedback

Pseudo-Boolean Optimization Problem
Principal Component Analysis

Precision Oscillator

Power Spectral Density

Polynomial System Solving

Random Access Memory

Radio Frequency

Realtek RLT2832U-based Software Defined Radio
Substitution Box

Side-channel Attack Standard Evaluation Board
SATisfiability

SubBytes

Side-Channel Analysis

Software Defined Radio

Simple Electro-Magnetic Analysis
Signal-to-Noise Ratio

Simple Power Analysis
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Acronym
SR

SR
SSCA
SYMAES
TASCA
UART
UNSAT
USB
USRP
XOR

ZIF

Definition

ShiftRows (Figure 2.1 only)

Small Scale Variants of the AES

Simple Side-Channel Analysis

Symbolic AES

Tolerant Algebraic Side-Channel Analysis
Universal Asynchronous Receiver/Transmitter
Unsatisfiable

Universal Serial Bus

Universal Software Radio Peripheral
eXclusive-OR

Zero Insertion Force
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