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SECTION I

INTRODUCTION

Graphite/epoxy and other advanced composite materials are seeing

increasing use in aerospace and some non-aerospace structures. An advan-

tage of these materials is that their elastic properties can be tailored

to give improved buckling strength, stiffness and aeroelastic properties

as well as reduced weight when compared to structures made with conven-

tional materials. In order to use this advantage effectively it is

necessary to accurately determine the basic stiffness properties of the

material.

This study considers the problem of testing the stiffness properties

of graphite/epoxy. A series of tests were carried out to determine these

properties. Some existing testing and analysis methods were

employed and new ones developed. This test program al lows the comparison

of different test methods and may help determine if certain test methods

are applicable to certain design problems.

In the process of making the test specimens, testing them, and

analyzing the data there were several additional objectives. First,

extra effort was put into automating the production process and producing

test specimens that were precisely made and accurately measured. Second,

a test method was developed that allowed speedy, accurate, and consis-

tent collection of data. Third and last, computer programs were develop-

ed to speed up the analysis of data and present it in a useful form.
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Consequently, the results of these tests should be accurate , easily

reproducible, and provide a means of comparing stiffness properties from

different types of tests.



SECTION 2

TEST SPECIMENS

2.1 Types of Specimens Tested

There were three general types of specimens tested. First, four

point bending sandwich beam specimens for testing laminates in tension

and compression. Second, tensile coupons that are relatively easy to

build, test and provide additional data for comparison. Third, cantilever

beams that were tested with static tip loads and also dynamically tested

to determine natural frequencies and modulus.

2.2 Types of Laminates Tested

Three basic types of laminates were tested:

1. (00)N where N = 2, 4, or 8

2. (904)N where N =4 or 8

3. (+/- 450)NS where N = I or 2: (+/- 450, +/- 45)

The (00)N laminates were used to determine longitudinal modulus, EL on

all three types of specimens as well as major Poisson's Ratio, V LT from

sandwich beam and coupon tests. Similarly, (904)N laminates determined

transverse modulus ET and minor Poisson's Ratio, VTL for sandwich beam

and coupon tests. Lastly, (+/- 450)NS laminates were tested to deter-

mine shear stress-strain behavior and shear modulus, G.

A total of 70 laminates were tested. Twenty-six laminates were

tested in 13 sandwich beams. Thirty-two laminates were tested as

tensile coupons. Twelve laminates were tested as cantilever beams.



2.3 Sandwich Beams

At first, sandwich beam specimens were tested rather than tensile

coupons for several reasons. The relatively thin laminates (2 to 4 plies)

tested were easier to handle and less susceptible to damage when bonded

onto a core material. Also, beam specimens could be tested easily at

low stress levels. When testing was began this was not true for tensile

coupons because hydraulic grips were not readily available for holding

and testing tensile coupons. The grips that were then available tended

to slip with only small loads at low stress levels. Most importantly

thought, sandwich beams allowed the testing of each laminate in tension

and compression without elaborate testing jigs.

2.4 Tensile Coupons

Sandwich beam tests with 2 and 4 ply laminates indicated very little

difference between tensile and compressive stiffness properties. Also,

a new testing machine with hydraulic grips suitable for testing tensile

coupons was purchased and installed. Consequently, a series of tests

were performed using tensile coupons made from 8 ply and some 4 ply

laminates. The 8 ply laminates had a lower per ply thickness and thus

they made it possible to test the stiffness properties of material with

a lower fraction of epoxy matrix, and a higher fiber volume. The 4 ply

laminates allowed the comparison of data with earlier beam tests.

Tensile coupon tests have some significant advantages. The test

specimens are easy to construct accurately. Also, unlike sandwich beams



their is no core material which may affect laminate properties particu-

larly Poisson's Ratio.

2.5 Cantilever Beam Specimens

Cantilever beam specimens are used to determine stiffness properties

under static tip loads, and dynamically from the determination of

natural frequencies.

In the cantilever beam test, the strain is linearly distributed

through the thickness such that the strains on the top and bottom are

approximately equal in magnitude and opposite in direction. This is

considerably different from sandwich beam or coupon tests where there is

little or no variation in strain through the laminate. The strain

distribution found in cantilever beams may be similiar to that found in

many aerospace structures including, vibration of fan blades or the

buckling of shel I structures. Therefore, it will be worthwhile to

compare results from cantilever beam tests to other test methods.



SECTION 3

CONSTRUCTION AND MEASUREMENT OF TEST SPECIMENS

3.1 Construction of Laminates

Al I laminates were made from 12 inch wide 3501/ASI-6 pre-preg tape.

Layups for each type of laminate were made by using sheet aluminum

templates to cut out pieces to the correct size, shape, and fiber orien-

tation. These pieces were stacked up to produce the desired sequence

and orientation of plies. Each layup was then placed between aluminum

plates with peel ply, porous teflon, correct number of fiberglass

bleeders, and non-porous teflon on each side of the layup. The laminate

was then cured in a hot press according to the cure cycle shown in

Table I.

After curing, laminates were cut from each layup using a table saw

with a diamond coated, water cooled saw blade.

3.2 Sandwich Beam Construction

The beam cores are constructed of styrofoam and mahogany as shown

in Figure I. The mahogany was cut roughly to size (2 x 7.5 x 13 cm) in

a table saw. The styrofoam was cut roughly to size (2.5 x 7.5 x 13.5 cm)

with a hot wire. The mahogany and styrofoam were glued together with

Titebond glue and allowed to set overnight. The beams were sanded down

until they were flat in a milling machine with the milling head replaced

by a sanding disk.



13

TABLE I: Cure Cycle

rMAHOGANY

STYROFOAM

TOP LAMINATE

o oo o C 0

LOWER LAMINATE

130 ----- +- - 135 S.130

DIMENSIONS: mm

FIG. I: SANDWICH BEAM CONSTRUCTION

TEMP PRESSURE TIME
(*F) (PSI) (MINUTES)

275 15 18

RAISE TO 15 5
300

300 100 30

RAISE TO 100 7
350

350 100 35

SMAHOGANY

/ 
o



Before the beams were bonded together thickness measurements were

taken on the cores and the laminates at the 18 locations shown in Fig. 2.

The laminates were bonded to the cores using Smooth-on EA-40 Epoxy

adhesive. This bonding process was carried out on a jig constructed from

aluminum and placed inside a vacuum bag during the bonding process.

The jig and vacuum bag assured that the laminates were kept flat and

correctly aligned; also importantly, the adhesive was squeezed out so

that only a thin layer remained.

After the beams were removed from the vacuum bag the edges were

sanded down to remove excess dried epoxy. The beam thicknesses were

then measured at the same 18 locations as before and widths were measured

at the 6 locations shown in Fig. 2.

Four strain gages were glued onto each beam. The strain gages used

were Micro-Measurements type EA-09-125AD-120 or type EA-06-125AD-120.

Each laminate had two strain gages glued on to give longitudinal strain

and transverse strain as shown in Fig. 3.

After the strain gages were glued on and wires soldered on, the

beams were ready to be tested.

3.3 Construction of Tensile Coupons

Tensile coupons consisted of a test laminate and loading tabs as

indicated in Fig. 4. The gage length was 275 mm for the (+/- 45 *)NS

laminates and 200 mm for other laminates.



I I

Width Measurements Top and
Bottom

I I

T--+-+--F ±H---I---t----i-

Dimensions: centimeters

FIG. 2: SANDWICH BEAM AND LAMINATE MEASUREMENT LOCATIONS

Longitudinal Gage

/-Transverse Gage

FIG. 3: STRAIN GAGE LOCATIONS

I



Test laminates were cut as described previously. Then sanded to a

constant width. After which width measurements were taken at five

locations and thickness measurements at ten as indicated in Fig. 5.

The loading tabs were cut from (0*, 904)2S sheets of 3M Scotchply,

fiberglass/epoxy. These were cured in the same way as graphite/epoxy

except that the cure cycle consisted of 40 minutes at 50 psi and 330*F

fol lowed by a gradual cool down to room temperature.

The loading tabs were bonded onto the test laminate with Cyanamid

FM123 film adhesive cured at 2404F, 40 psi for 90 minutes.

Longitudinal and transverse strain gages of the same types used on

beam specimens were then attached to the test coupons. They were centered

at the equivalent locations to those shown for beam specimens in Fig. 3.

3.4 Fabrication of Cantilever Beam Specimens

To make the cantilever beam specimens the cured graphite/epoxy was

cut as before and sanded carefully to be straight and square. After

which the mass of each laminate was measured. Measurements of thickness

were taken at 12 locations and width was measured at 6 locations as

indicated in Fig. 7. The next step was to bond onto the base a 25 mm x

25 mm loading tab machined from 1/8" aluminum as indicated in Fig. 6.

Finally, a strain gage was bonded on each laminate 5 mm from the loading

tab.



Fiberglass Loading Tabs

Film Adhesive

/ G/E Laminate

1 7 7 Z=

7.5- - -- Gage Length - 7.5

Dimensions: centimeters

FIG. 4: TENSILE COUPON CONSTRUCTION

Width Measurements

2

S4

-2 -

3

Dimensions: centimeters

FIG. 5: COUPON MEASUREMENT LOCATIONS

L7IIZZZI

'7
±F7++

+ ± + + +

r 7 7 7

4 --- =



Aluminum Loading Tabs

Film Adhesive

G/E Laminate

25

- -1- 7 5 - - - - - - - - -----

Dimensions:

FIG. 6: CANTILEVER BEAM CONSTRUCTION

2 3 4 5 6

25

S- 3+ -1-

> 2. 5 K 30 30 30 WE 30- 30 12.5<

Dimensions: mm

FIG. 7: CANTILEVER BEAM MEASUREMENT LOCATIONS



SECTION 4

TEST EQUIPMENT AND PROCEDURE

4.1 Sandwich Beam Tests

The sandwich beams were tested in a four point bending test jig

made from aluminum I-beams. The test jig transfered the load from the

Baldwin-Emery SR-4 test machine to the test specimen through four

cylindrical rollers. The strain gages were attached to four BLH-1200

strain indicators. Figure 8 shows the aluminum test jig in the test

machine with beam 3 after failure.

One person ran the test machine and called out the load every 10 or

every 20 pounds and four volunteers wrote down the strain readings:

Fig. 9.

Each beam was first tested upside down in the test jig up to a load

between 100 and 200 pounds depending on the type of laminate. Then the

beam was removed and tested right side up until it reached failure load.

This prodedure was followed so that data could be collected for each

laminate both in tension and compression.

4.2 Tensile Coupon Tests

The tensile coupons were tested in a 100,000 pound MTS testing

machine using hydraulic grips: Fig. 10. Strain indicators were used

as before.

The test procedure was similar to that used for sandwich beams:

one person ran the test machine and called out the load every few



hundred pounds and two others wrote down the strain readings. However,

the coupons were only tested in tension. As before, each specimen was

tested to failure.

FIG. 10: TENSILE/COUPON TEST SETUP

4.3 Cantilever Beam Experiments

The cantilever beams were first tested with static tip loads and

then tested dynamically with a shaker to find natural frequencies.

The static test was performed by first, clamping the test specimen

onto a 12" x 12" x 3" base of aluminum. Then a Kevlar thread was taped

on and draped over the center of the end of the specimen. Three

different weights were hung from the thread and the tip displacment was

measured for no load and then'the three weights individually. An Edmund



direct measuring microscope, NO. 70,266, was used to measure these dis-

placements accurately.

After each beam was tested statically it was tested to find the

frequencies of the first 3 natural modes of vibration. This was done

by clamping the specimen in an aluminum block attached to a Ling Model

420 shaker.5 An Endevco 7701-50 "Isoshear" accelerometer was mounted

to the aluminum block. This accelerometer and the specimen strain gage

were used to produce a signal that was amplified and displayed on an

osci l loscope.

By monitoring these signals resonances could be determined by

maximum signal amplitude and most clearly from a 90* phase shift.



SECTION 5

THEORY AND DATA ANALYSIS

5.1 Sandwich Beams With (0) 2(00) 4 and (900)4 Laminates

The sandwich beam data is analyzed by a computer program on an

IBM 370. The beam, laminate dimensions, and load vs. strain data are

input into the program. The program converts the load into metric units

and then calculates moments. The program finds the two best straight

lines through the moment vs. longitudinal strain data by linear regres-

sion.

SLOPE I

SLOPE 2

IL' S2L

M = Moment

e IL = Upper Laminate Longitudinal

62L = Lower Laminate Longitudinal

Strain

Strain



The location of the neutral axis is calculated:

ZNA t + SLOPE I
SLOPE 2

The moment of inertia for each laminate about the neutral axis is calcu-

lated:

I A [t 2/l2 + (Z - Z 2
1 ~ 1 I 1 ZNA

I = A [t /12 + (Z - Z ) 2
2 1 2 2 NA

Where

II = Moment of Inertia

I2 = Moment of

for the Upper Laminate

Inertia for the Lower Laminate

t

t2

Beam Cross Section

A, =W It

A2 W2 2

W = Width of Upper Laminate

W 2 Width of Lower Laminate



Moment and force equilibrium yield the formulas used to determine

Young's Moduli, E1 , E2

A (SLOPE )Y

2 Z NA Z2
A2 2NZz2 + I2A

2 Z 1 NA,

E = [(SLOPE )Y - E2 Y2 ]/I

The stresses are

E IY IM

I E I + E2 2

E2 2
2TE2 I 2+ E 2

Poisson's Ratio's are

IT

IL

2T
V2  c2L

The program plots stress vs. strain, Poisson's Ratio vs. strain,

and the best straight line through the stress-strain data for each

laminate in tension and compression.

The graphical results are Figs. 14 to 23 and Figs. 40 to 47.



5.2 Sandwich Beams with (+/- 45) Laminates

The sandwich beams with (+/- 45) laminates are used to determine

the shear stress-strain behavior and shear modulus, G. Using a (+/- 45)

laminate in a uniaxial stress state to determine shear properties was

proposed by Petit and others. 2,34 Testing the laminates on beams made

it possible to further check the validity of the test by seeing if it

worked equally well for a laminate in tension and compression.

The test data was again analyzed with a computer program on an IBM

370. This program calculates the longitudinal stresses alL' a2L in the

same way as the previous program. Rotating the axis 450 gives the shear

stresses:

T 2 IL

2 2 2L

and the shear strains

= 'IL IT

Y2 =2L - 2T

The program performs a linear regression analysis on the shear

stress-strain data to calculate the shear moduli:

dT

I dy



dT
2

G2  dy
2

The shear stress-strain behavior becomes nonlinear above a strain

of 3000 microstrain. Therefore, only data points with a shear strain of

less than 3000 microstrain are used in the linear regression analysis.

The program plots shear stress vs. strain and the best straight

line through the data for each (+/- 45) laminate in tension and

compression.

The graphical results are Figs. 56 to 63.

5.3 Analysis of Tensile Coupons

Computer programs are also used to analyze data from tensile coupons.

Longitudinal stresses are just calculated on the basis of load divided

by cross sectional area. Longitudinal and transverse strain data having

been read during the test.

The modulus of the (0*)N and (900)N laminates is calculated directly

by doing a linear regression analysis on the stress-strain data.

The program plots stress vs. strain, Poisson's Ratio vs. strain, and the

best straight line through the stress-strain data for each laminate.

The graphical results are Figs. 23 to 36 and Figs. 45 to 52.

For the (+/- 45)NS laminates the shear stress is half the longitu-

dinal stress and the shear strain is the difference between the longitu-

dinal and transverse strain, The shear modulus, G is determined by per-

forming a linear regression on the shear stress-strain data for shear



strain of less than 3000 microstrain. Shear stress vs. strain is plotted

along with the best straight line through the data for each of the

(+/- 45)NS laminate. The graphical output is given in Figs. 64 to 74.

5.4 Analysis of Cantilever Beam Experiments

In the static tip load

simple beam theory:

test the modulus can be determined from

L3
q = Q

differentiating

dq L3

dQ 3EI

Then

E = d 3

where

= length of

= moment of

beam: from tab to tip

inertia: assumed constant along the beam

= the slope of tip load vs. displacement

1 being determined from a linear regression analysis done on
dq

tip load vs. displacment data.

For the (0*)8 laminates E is the longitudinal modulus, EL and for

the (900)8 laminates E is the transverse modulus, ET. For the (+/- 45*)2S

laminates E is some effective longitudinal modulus, the significance of

which will be discussed later.



The cantilever beams are also tested dynamically to determine the

lowest 3 resonances. From beam theory the first 3 natural frequencies

of a clamped-free beam are

I = (1.8751041)2 
E

mL

2 = (4.6940911)2 EI
mL

3 = (7.8547574)2 /
mL

Employing these formulas the modulus can be determined from the

frequencies. As with the static tests E and ET are found from the (00)8

and (90*)8 laminates.

Now to consider how to effectively analyze cantilever beams made

with (+/- 450)2S laminates. One difficulty with analyzing these

laminates is that they exhibit bending-twisting coupling. That is to

say, if one considers one of these laminates as plate, the bending stiff-

ness terms D 112, D2212 / 0. If simple beam theory is to be applied it

is necessary to neglect these terms.

Therefore, with this approximation a straightforward analysis can

be performed assuming the only stress acting is a stress along the axis

of the beam:

_ Mz
(YI :- I

G22



For each +45* ply

[45]

[45]

[45]

2E1 1 12[ 45]

[45]

[45]

With the approximation of no twist, E 12 = 0, this becomes

E [45]

E221 1[45]

E 2[45]] r
1 122 1Il

E 2222[~45] 22

This last relationship also holds for the -45* plies. Inverting the

above relationship and using &22 = 0:

[45]- CFI

Therefore, the effective modulus determined from tip loads and beam

natural frequencies is

E[ ]
.E45]-1

[45] [45]

E 2222 E45]

In terms of the orthotropic properties for a 04 ply

E [E45] = IE * +i-E * + E *
42222 21122 11

a,

'12

E 1111 45 E 1122

E2211 E2222

L 1211 E1222

La2

22

E 2 [ 45]- E [~12 45]

+ 1212



E [45] _ E * + E * + E * -E *
11224 4 2222 2 1122 1212

Also,

E t45] = E2222 45]

E 1122 45] = E221 [45]

For convenience define

A = El* + E22 + 2E*24 111 4 2222 2 1122

and note that

E * G
1212

Then

E =4 GG4G

or

G=

Putting in previously determined properties to calculate A and G shows

that changing the value of A by 20% only changes G by 2.5%: showing the

results for G determined by this method are not overly sensitive to

values assumed for other stiffness properties. Therefore, the values of

G are calculated from cantilever beam tests with (+/- 450)2S laminates.



SECTION 6

COMPARISON OF TEST RESULTS

6.1 Difference in Test Methods

Of the three different test methods employed: sandwich beams,

tensile coupons, and cantilever beams, the first two methods are

basically similar and give comparable results. Therefore, results from

these two methods will be considered together. Then the results from

the cantilever beam tests will be analyzed and compared to the other

test methods.

Al I test results are summarized and tabulated in Appendix B for

easy comparison.

6.2 Stiffness Properties Determined from Sandwich Beams &Tensile Coupons

When looking at the test results it is worthwhile to try and deter-

mine what parameters seem to affect the stiffness properties. One would

expect the fraction of material that is graphite fibers, the fiber

volume, VF should be one of the parameters.

Test results clearly show the effect of fiber volume, V F on material

properties. Laminates of only a few plies have a greater per ply thick-

ness and consequently a lower fiber volume. The effect of this on

material properties is apparent in Table 4 where the average stiffness

properties are summarized for 2, 4, and 8 ply laminates.

The dependence of E on fiber volume is shown by Fig. 13. This
L

includes data from (ON I, 2 and 4 ply, laminates tested on sandwich



beams. This graph shows similar results for E in tension and com-

pression. Also, a linear regression through this data has a near zero

intercept indicating that it is possible to approximate the affect of

VF on EL by neglecting the stiffness of the epoxy matrix.

Table 4 indicates that the transverse modulus, ET goes down very

slightly with fiber volume. This i

just be an anomaly from a small amo

results for the (90*)8 laminates on

cut from one sheet have a 15% lower

However, the slope of the load vs.

indicate there is

(900)8 coupons. T

indicate some loca

significant proble

likely that ET is

On the other

direction expected

fiber volume becau

than the epoxy mat

fiber volume as ex

behavior is shown

s certainly not expected and could

test data.

II it appea

n those cut

Looking at the

rs that laminates

from another sheet.

stroke graphs made during each test

less than 3% variation in the overall stiffness of all

herefore, it is felt that the variation in ET must

I soft or hard spots in the material. This may be a

m in testing (90*)N laminates. Consequently, it is

not reduced for high fiber volume G/E.

hand the properties v LT and G vary with VF in the

. The major Poisson's Ratio goes down with increasing

se the graphite fibers have a lower Poisson's Ratio

rix. Similarly, G increases slightly with increasing

pected. The nonlinear nature of the shear stress-strain

in Figs. 56 to 74. Figure II is a photograph of beam 5

being tested. It shows the large deflection and distinct anticlastic bend-

ing caused by the large longitudinal and transverse strains of (+/- 450)
s

specimens. For the laminates tested on sandwich beams, the measured value

of 'VTL is about half that needed to satisfy the relation ELVTL = ETVLT



which should hold for ideally orthotropic laminates. However, for the

8 ply laminates tested on coupons the average properties agree with this

relationship within 10%. Perhaps testing the laminates on sandwich beams

restricts the transverse strains and affects the measured Poisson's

Ratios. Also, there is a certain amount of inaccuracy in the measurement

of VTL for small stresses. This is the result of a small amount of drift

in the strain readings due to temperature variation. This has its

greatest effect on the smal I strain readings of the transversely mounted

gage (parallel to the fibers). Looking at the plots of vTL, Figs. 37 to

52 and comparing the results from sandwich beams to those from tensile

coupons, it is noticeable that, temperature drift was not a problem for

the tensile coupons. Consequently, the coupon data for vTL is probably

more reliable than that from sandwich beams and the coupon data agrees

closely with the previous relatinship indicating that vTL can be deter-

mined from the other stiffness properties.

Taking into account the variation of stiffness properties with fiber

volume, values for these properties are calculated for the manufacture's

specified per ply thickness. These values are included in Table 3.

6.3 Stiffness Properties from Cantilever Beam Tests

In looking at the stiffness properties determined from cantilever

beam tests there are several important considerations. First, are the

test results consistent and are there exp-lanations for any variation.

Second, how do stiffness properties determined statically and from the

first three bending frequencies compare. Third, how do the cantilever
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beam results compare with results from the other test methods and

particularly with tensile coupons cut from the same sheets of cured G/E.

To address the first consideration, look at Tables 9, 12, and 16.

It is clear that, there is little variation in the ET determined for the

4 (900 )8 laminates. However, for the (0*)8 and (+/- 45*)2S laminates

both have a test specimen that appears to have signific

ness properties than the other laminates. In the first

where this difference is most pronounced the (0) 8- 2

modulus 12% lower than the other 3 (00)8 cantilever bea

(+/- 454)2S - 2 - D specimen has a modulus 16% lower th

(+/- 450)2S laminates. The measurements of these 2 spe

they are thicker at the tip than the root and the 6 rem

(+/- 45 0)2S specimens are thicker at the root than the

possible to approximate this thickness variation as str

root to tip. A taper involving a difference between ro

ness of about 4% for the (04)8 specimens and as much as

(+/- 45
4)2S specimens. A Ritz analysis is performed in

effect of beam taper on first bending frequency. This

that to get the 12% and 16% difference in moduli found

(+/- 450)2S laminates would require a thickness taper of

pectively. This compares fairly well with the 4% and 8%

ness variation. Consequently, the variation in measured

easily explained.

antly lower stiff-

bending frequency

- B specimen has a

ns and the

an the other

cimens indicate

aining (0)8 and

tip. It is

aight taper from

ot and tip thick-

8% for the

Appendix A on the

analysis indicates

in the (0)8 and

5% and 6% res-

measured thick-

stiffness is
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The second consideration is how the properties determined from the

first 3 bending frequencies and from static tests compare for the canti-

lever beam specimens. The difference between static and dynamic modulus

is only 2 to 3% for the (00)8, (900)8 specimens, and as much as 6% for

the (+/- 450)2S specimens. A 2 to 3% difference is insignificant and the

small 6% difference for the (+/- 450)2S could easily be caused by the

bending-twisting-coupling they exhibit, or the variation in thickness.

The difference in modulus determined from each of the 3 bending modes is

insignificant when the moduli are averaged for the 4 specimens of each

type. Something that is noticeable is that the moduli data is less

scattered for the higher natural frequencies of the (0*)8 and (+/- 45*)2S

which could be because the thickness variation of these laminates has

less effect on the frequencies of the higher modes. Consequently, there

are no significant differences between the moduli determined from the 3

lowest natural frequencies and the static tests of the cantilever beam

specimens.

The third and most interesting consideration is how the cantilever

beam test results compare to moduli from the other test methods. Table

3 provides a summary of moduli from the cantilever beam tests compared

to the results from the other test methods and design stiffness proper-

ties used by Grumman. The shear modulus, G is not significantly differ-

ent from that determined from the other tests. The transverse modulus,

ET is somewhat lower. However, the longitudinal modulus, E is some 30%

lower than that found in other test methods.
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The difference in measured E is a direct result of the test method

rather than a difference in material properties between the cantilever

beam specimens and other test specimens. Consult Table 8, the (0)8 - 2

laminates cut from the same sheet of cured G/E as the (04)8 cantilever

beams and tested as tensile coupons have a much higher E than found in

the cantilever beam tests. As a final confirmation the (0*)8 cantilever

beam specimens were made into tensile coupons by cutting off the aluminum

tabs and bonding on 25 cm x 25 cm fiberglass loading tabs. The specimens

were strain gaged and tested like other tensile coupons. The results

are included in Table 9 and the test data is Figs. 37 to 39. These re-

sults agree with the other tensile coupon data. This indicates that the

same material tested with different methods exhibits a different modulus

E L.

In summary, it appears that cantilever beam specimens give consis-

tent results from the beam natural frequencies and static tip loads but

E is significantly lower than that found by other test

methods. The cantilever beams are sufficiently long and thin that

transverse shear will have little effect on test results. Therefore,

it would appear that the stiffness may vary through the thickness perhaps

due to the distribution of fibers.



SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

The test results and analysis in this report make it possible to

draw some significant conclusions about the stiffness properties of

Graphite/Epoxy and the test and analysis methods used to determine those

properties for composite materials. First, useable stiffness properties

and some variables that may affect those properties have been determined.

Second, the effectiveness of the test and analysis methods has been con-

firmed but some important differences have been found in stiffness pro-

perties from tests that involve laminate bending or flexure.

Considering the stiffness properties first, Tables 3 and 4 give a

good summary of stiffness properties that can be expected from ASI/3501-6

G/E used at M.I.T. One important conclusion is that these properties are

the same in tension and compression. Also, the per ply thickness or

fiber volume has some effect on all the stiffness properties. The longi-

tudinal modulus is most sensitive: the quantity of fiber being the most

important item in determining this property.

From comparison of the test and analysis methods several conclusions

can be drawn. First, tests using coupon specimens are easier to perform

than those using sandwich beams but they both give similar results.

Also, cantilever beam tests indicate that laminates exhibit different

material properties in bending.

The results in this report indicate some techniques that may be

useful in the future and some areas that warrant further investigation.



The use of several types of laminates such as (0*) N (90*)N, and

(+/- 450)NS laminates to determine basic material properties can be use-

ful in finding other characteristics of composite materials. This

approach could be applicable to finding strength characteristics, damping

properties, and fatigue damage. One area that warrants further investi-

gation is the determination of stiffness properties in flexure: particu-

larly, E . Making (0*)N laminates with different numbers of plies and

then testing them as 4 point bending flexure specimens could provide in-

sight into why EL is apparently lower in bending.

In conclusion, this work has determined stiffness properties,

compared test methods, and also in indicated where more research could

be worthwhile.
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APPENDIX A

RITZ ANALYSIS OF EFFECT OF BEAM THICKNESS

TAPER ON FIRST BENDING FREQUENCY

A Ritz analysis is performed using the first mode shape for a uni-

form cantilever beam. This analysis will yield a good approximation of

the frequency of the first mode for a slightly tapered beam.

For the harmonic transverse vibration of a beam the displacement is

of the form

w(xt) = $(x)e

The maximum potential and kinetic energy are

V = fL EI(x)(") 2dx
f0

T = I 2 fL m(x) 2dx
0

For convenience a new variable is introduced:

x = - I

The beam thickness of a uniformly tapered beam is

h( = + (h - hR T
2 TIP ROOT

Where h is the average thickness. If m and EI are the mass distribution

and stiffness for a uniform beam of thickness h, then for the tapered beam
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m h

M h

EI (h 3

f+1(h 3 (L 2 ,,)2 d
2 ET -l h

m~L- +l I(h 42 d
-- h

The function used for $ is the first bending mode for a uniform beam:

= os - - a (sin x - sin )
L LL L

Values of a and 8 are in Ref. 6 along with tables of $(x) and $"(x).

However, # and $" can easily be calculated on a programmable calculator.

The expression for w2 is evaluated for 5 cases: a uniform beam and

tapered beams with the tip thickness 4% less, 8% less, 4% greater, and

8% greater than the root thickness. The necessary integrals were eval-

uated numerically using Gauss quadrature on 6 points. In the case of the

uniform beam the integrals are equal to the exact result up to the sixth

decimal place.

The results of this analysis are presented in Table 2 and plotted

in Fig. 12.



TABLE 2: EFFECT OF BEAM TAPER ON FIRST BENDING FREQUENCY

2 2 -2
h -ROO h TIP
ROOT TIP -2

L4 
1

.08 13.63453 .10291

.04 12.9833 .05023

0 12.362364 0

-.04 11.7703 -.04790

-.08 11.2058 -.09356

h = Average beam thickness

m = Mass distribution for uniform beam of thickness h

EI = Bending stiffness for uniform beam of thickness h

w = First bending frequency for uniform beam of thickness h
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APPENDIX B

TABLE 3: SUMMARY OF IN-PLANE STIFFNESS PROPERTIES OF

AS1/3501-6 GRAPHITE/EPOXY

VALUE USED FROM SANDWICH 8 PLY LAMINATES
PROPERTY BY GRUMMAN BEAM AND* IN FLEXUREt

COUPON DATA

E 128 GPa 134 GPa 98 GPa
L (18.5 msi) (19.4 msi) (14.2 msi)

11.0 GPa 10.0 GPa 7.9 GPa
ET (1.60 msi) (1.45 msi) (1.15 msi)

VLT .25 .28 ---

4.5 GPa 5.7 GPa 5.6 GPa
G (.65 msi) (.83 msi) (.81 msi)

msi = 106 psi

*

Values estimated for manufacture's per ply thickness = .13335 mm.

tBased on cantilever beam tests with per ply thickness = .130 mm.



TABLE 4: EFFECT OF PER PLY THICKNESS ON THE STIFFNESS

PROPERTIES OF 2, 4, AND 8 PLY LAMINATES

BASED ON SANDWICH BEAM AND TENSILE COUPON TESTS

2 PLY LAMINATE 4 PLY LAMINATE 8 PLY LAMINATE
MEASURED PER MEASURED PER MEASURED PER

PROPERTY PLY THICKNESS PLY THICKNESS PLY THICKNESS
= .169 mm = .146 mm = .130 mm

E L(GPa) 104 125 142

E T(GPa) --- 10.6 9.4

V LT .33 .29 .27

G(GPa) --- 5.5 6.0



TABLE 5: SUMMARY OF (0*)2 SANDWICH BEAM DATA

AVERAGE E L(GPa)
RUN BEAM LAMINATE LAMINATE VLT

THICKNESS TENSION COMPRESSION
(mm)

1 3 (0)2-2-3 .341 103.255 100.477 .325

1 3 (0)2-2-2 .338 102.105 104.564 .338

8 7 (0) 2-2-4 .332 103.469 104.835 .325

8 7 (0)2-2-1 .341 100.702 101.340 .325

7 10 (0)2- 1-2 .348 106.754 111.468 .350

7 10 (0) 2-1-3 .341 104.476 106.999 .338

5 II (0) 2-1-4 .327 99.876 102.853 .338

5 II (0)2-1-1 .332 99.411 104.329 .325

Average EL Tension = 102.505 GPa (14.876 msi)

Standard Deviation = 2.489 GPa (2.4%)

Average E Compression = 104.608 GPa (15.172 msi)

Standard Deviation = 3.459 GPa (3.3%)

Average of E Tension & E Compression = 103.557 GPa (15.020 msi)

Standard Deviation = 3.107 GPa (3.0%)

Average v LT = .333

Standard Deviation = .009 (2.7%)

Average Thickness = .338 mm

Standard Deviation = .007 mm (2.1%)



TABLE 6: SUMMARY OF (00) SANDWICH BEAM DATA

AVERAGE E (GPa)
RUN BEAM LAMINATE LAMINATE L V LT

THICKNESS TENSION COMPRESSION
(mm)

12 16 (0) -1-4 .575 127.213 120.205 .313

12 16 (0) -I-1 .571 118.174 114.231 .318

Average E Tension = 122.694 GPa (17.795 msi)

Standard Deviation = 6.392 GPa (5.2%)

Average EL Compression = 117.218 GPa (17.001 msi)

Standard Deviation = 4.224 GPa (3.6%)

Average of EL Tension & E Compression = 119.956 GPa (17.398 msi)

Standard Deviation = 5.437 GPa (4.5%)

Average V LT = .315

Average Thickness = .573 mm



TABLE 7: SUMMARY OF (0*) TENSILE COUPON DATA

Average EL = 126.830 GPa (18.395 msi)

Standard Deviation = 4.263 GPa (3.4%)

Average VLT = 0.284

Standard Deviation = .024 (8.5%)

Average Thickness = 0.567 mm

Standard Deviation = .015 mm (2.6%)

AVERAGE

RUN LAMINATE LAMINATE E (GPa) VLT
THICKNESS L L

(mm)

II (0) 4-2-I .572 129.224 .287

12 (0) -2-2 .584 130.768 .264

13 (0) -2-3 .549 121.093 .317

I4 (0)4-2-4 .564 126.234 .268



TABLE 8: SUMMARY OF (0*)8 TENSILE COUPON DATA

RUN LAMINATE AVG. THICKNESS E (GPa) v
(mm) L LT

I (0) 8- 1-1 1.053 134.183 .272

4 (0) 8-1-2 1.080 141.784 .281

5 (0)8-1-3 1.055 142.091 .259

3 (0)8-I-4 1.034 140.708 .280

6 (0) 8- 1-5 1.000 142.165 .257

7 (0) 8-2-I 1.020 144.325 .292

8 (0) 8 2-2 1.069 142.679 .297

9 (0) 8-2-3 1.070 144.430 .270

10 (0) -2-4 1.038 145.265 .254

Average EL = 141.959

Standard Deviation =

Average x)LT = 0.274

Standard Deviation =

GPa (20.589 GPa)

3.265 GPa (2.3%)

.015 (5.6%)

Average Thickness = 1.047 mm

Standard Deviation = .026 mm (2.5%)



TABLE 9: SUMMARY OF (00)8 CANTILEVER BEAM DATA

E (EGPa) 
v LT

BEAM THICKNESS STATIC Ist MODE 2nd MODE 3rd MODE STATIC STATIC
(mm) (TIP LOAD) (COUPON) (COUPON)

(0) 8-2-A 1.029 100.599 101.433 98.636 98. 129 142.236 .304

(0) 8-2-B 1.055 91.696 89.252 92.283 93.176 138.330 .310

(0) 8 2-C 1.044 99.716 101.060 97.669 96.627 142.253 .296

(0)8-2-D 1.031 101.996 102.447 99.900 98.941 ------- ----

AVERAGE 1.040 98.502 98.548 97.122 96.718 140.940 .303

STD.DEV. .012 4.633 6.225 3.353 2.549 2.260 .007
(1.2%) (4.7%) (6.3%) (3.5%) (2.6%) (1.6%) (2.3%)



TABLE 10: SUMMARY OF (904)4 SANDWICH BEAM DATA

Average ET Tension = 10.4

Standard Deviation = .47

Average ET Compression =

Standard Deviation = .441

Average of ET Tension and

Standard Deviation = .465

59 GPa (1.517 msi)

7 GPa (4.3%)

10.807 GPa (1.567 msi)

GPa (4.1%)

Compression = 10.633 GPa (1.542 msi)

GPa (4.4%)

Poissons Ratio .016 for all Laminates Tension and Compression

Average Thickness = .584 mm

Standard Deviation = .006 mm (1.0%)

AVERAGE E (GPa)
RUN BEAM LAMINATE LAMINATE T COMPRESSION

THICKNESS TENSION COMPRESSION
(mm)

3 13 (90) -3-2 .591 10.470 10.154

3 13 (90) 4-3-3 .595 9.807 11.275

9 1 (90) -4-3 .583 10.263 10.472

9 I (90) -4-2 .581 10.477 10.532

Il 4 (90) -3-4 .581 11.342 11.231

Il 4 (90) 4-3-I .587 10.380 11.380

10 15 (90) -4-4 .577 10.740 10.702

10 15 (90) -4-l .578 10.190 10.7024
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TABLE II: SUMMARY OF (904)8 TENSILE COUPON DATA

Average

Standard

ET = 9.351 GPa (1.356 msi)

Deviation = .809 GPa (8.7%)

Average vTL = .019

Standard Deviation = .002 (13%)

Average Thickness = 1.041 mm

Standard Deviation = .010 mm (1.0%)

RUN LAMINATE AVG. THICKNESS E (GPa) v
(mm) T TL

14 (90) 8-II 1.037 10.187 .020

15 (90) 8-1-2 1.029 10.083 .020

16 (90) 8- 1-3 1.041 9.877 .023

17 (90) 8- 1-4 1.056 10.223 .020

21 (90) 8-2-I 1.054 8.423 .016

20 (90) 8-2-2 1.045 8.701 .017

18 (90) 8-2-3 1.029 8.485 .016

19 (90)8 2-4 1.040 8.825 .018



TABLE 12: SUMMARY OF (900)8 CANTILEVER BEAM DATA

BEAM THICKNESS 
ET (GPa)

(mm) STAT IC
(TIP LOAD) Ist MODE 2nd MODE 3rd MODE

(90) 8-2-A 1.071 7.724 7.961 7.998 7.878

(90) 8-2-B 1.083 7.777 7.960 7.809 8.001

(90) 8-2-C 1.073 7.822 7.971 8.362 8.168

(90) 8-2-D 1.064 7.841 7.854 7.921 8.025

AVERAGE 1.073 7.791 7.937 8.023 8.018

STD.DEV. .008 .052 .055 .239 .119
(.7%) (0.7%) (0.7%) (3.0%) (1.5%)



TABLE 13: SUMMARY OF (+/- 450) SANDWICH BEAM DATA

AVERAGE G(GPa)
RUN BEAM LAMINATE LAMINATE

THICKNESS TENSION COMPRESSION
(mm)

6 5 (+/- 450) -3-4 .596 5.184 5.238

6 5 (+/ 45*) -3-1 .611 5.974 5.964

13 8 (+/- 45*)S-4-3 .589 5.623 5.673

13 8 (+/- 450)S-4-2 .590 5.710 5.740

14 9 (+/ 450)-4-4 .595 5.619 5.542

14 9 (+/- 45*) -4-1 .601 6.057 5.936

4 12 (+- 450)-4-3 .594 5.008 4.789

4 12 (/ 45)-4-2 .594 5.048 5.109

Average G Tension = 5.528 GPa

Standard Deviation = .405 GPA

(.802 msi)

(7.3%)

Average G Compression = 5.499 GPa (.798 msi)

Standard Deviation = .418 GPa (7.6%)

Average of G Tension and G Compression = 5.513 GPa (.800 msi)

Standard Deviation = .398 GPa (7.2%)

Average Thickness = .596 mm

Standard Deviation = .007 mm (1.2%)



TABLE 14: SUMMARY OF (+/- 450) TENSILE COUPON DATA

Average G = 5.258 GPa

Standard Deviation = .305 GPa (5.8%)

Average Thickness = .586 mm

Standard Deviation = 0



TABLE 15: SUMMARY OF (+/-

RUN LAMINATE AVG. THICKNESS G(GPa)
(mm)

22 (+- 45*)2S-- 1.042 6.509

23 (+- 45*)2S- I-2 1.005 6.142

24 (/ 450) 2S- 1-3 1.021 5.583

25 ( 4 5 ) 2S- 1-4  1.032 6.145

26 (+/ 450) 2S-1-5 1.063 5.765

27 (±/- 450)2S-2-1 1.089 5.867

28 ( 45 )2S-2-2  1.059 6.117

29 (+/- 454) 2S-2-3 1.032 6.162

30 (/ 450)2S-2-4 1.040 5.423

Average G = 5.971 GPa (.866 msi)

Standard Deviation = .335 GPa (5.6%)

Average Thickness = 1.043 mm

Standard Deviation = .025 mm (2.4%)

45*) 2S TENSILE COUPON DATA



TABLE 16: SUMMARY OF (+/- 450)
2S CANTILEVER BEAM DATA

BEAM THICKNESS G(GPa)

(mm) LTATD) Ist MODE 2nd MODE 3rd MODE

(+1- 450)2S -2-A 1.095 5.172 5.685 5.466 5.641

(+/- 450) 2S-2-B 1.074 5.453 6.170 5.692 5.856

(+1- 450 ) 2S -2-C 1.076 5.483 6.193 5.843 5.984

(+/- 45) 2S-2-D 1.100 5.082 4.952 5.320 5.692

AVERAGE 1.086 5.298 5.750 5.580 5.793

STD. DEV. .013(1.2%) .201(3.8%) .581(10.1%) .233(4.2%) .157(2.7%)
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FIG. 8: SANDWICH BEAM 3 IN TEST JIG AFTER FAILURE

FIG. 9: SANDWICH BEAM TEST SETUP
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FIG. 11: BEAM 5 BEING TESTED AT A LOAD OF 740 POUNDS


