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2D shallow water models (linear and non-linear) have been used to simulate tidal flow in Mississippi Sound and the Gulf of Maine/Bay of Fundy. 
We have implemented a wave-current bottom boundary layer model (BBLM) into GFS as a plug-in.
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Executive Summary 

This report describes the Gerris Flow Solver (GFS), which is also known as Gerris. GFS was 
developed primarily by Stephane Popinet of the National Institute of Water and Atmospheric 
Research (NIWA) of New Zealand.  
 

The Gerris Flow Solver (GFS) -- a free, open source, software system for computational fluid 
dynamics -- includes modules for the solution of time-dependent incompressible variable-
density Euler, Stokes or Navier-Stokes equations, and for the solution of both linear and non-
linear shallow water equations. GFS is designed as a reusable, object-oriented library of 
functions that facilitate the implementation of new models. GFS features dynamic adaptive 
mesh refinement (AMR) based on a semi-structured quadtree/octree mesh. A visualization tool 
(GfsView) is included that enables viewing model output on the adaptive mesh. The latest 
release of GFS is maintained in /common/gfs and is available for general use. We have applied 
GFS to a number of problems in estuary flow. The CFD model has been used for direct 
numerical simulation of 2D-vertical tidal flow in a macrotidal river, and interaction of a fluid 
mud layer with the flow. The 2D shallow water models (linear and non-linear) have been used 
to simulate tidal flow in Mississippi Sound and the Gulf of Maine/Bay of Fundy. In this talk we 
will give an overview of GFS (implementation and usage) along with a discussion of results 
from several application areas.  
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Section 1: Project Overview 

Introduction 

Ocean modeling has progressed rapidly in the last 20 years. The 1960's and 1970's saw the 
development of finite-difference solutions of the Reynolds Averaged Navier-Stokes (RANS) 
equations on Cartesian grids with no vertical layers (e.g., Jelesnianski, 1966) or fixed (z) levels 
for vertical discretization (Leendertse et al., 1973). As today, these models were applied to 
storm surge prediction and contaminant transport in estuaries, respectively. One of the most 
successful numerical ocean models is the Princeton Ocean Model (POM) (Blumberg and 
Mellor, 1987), which is still widely used. This model remains as a standard RANS formulation 
used in ocean prediction today (Yin et al., 2010), with terrain-following vertical coordinates 
and curvilinear horizontal coordinates. The finite-difference method was known by Euler in 
~1768 and was applied in its modern form in the 1950's. Thus, modern electronic computers 
have allowed the effective solution of nineteenth century equations. The difficulty of accurately 
simulating the multi-scale nature of physical processes in the ocean has proven problematic, 
however, and curvilinear coordinate systems and nested grids have been used to resolve these 
scales.  

The multi-scale problem in ocean flows was addressed in part by application of the finite 
element method (FEM) that was formalized by Zienkiewicz of the Imperial College (e.g., 
Zienkiewicz, 1966). It is the solver for the Imperial College Ocean Model (ICOM), which uses 
3D adaptive mesh methods (Ford et al., 2004). The finite volume method (FVM) was 
developed in the 1990's (Billett and Toro, 1996).   

Background 

Adaptive Mesh Refinement (AMR) was used by Berger and Jameson (1985) for a finite volume 
solution of the steady Euler equations on an airfoil. They used the error in the solution to 
increase local grid resolution. They used rectangles (2D) to standardize the solution and 
simplify the adaptation process. They used multiple levels of refinement. Each component grid 
has its own solution vector. The boundary conditions are supplied for each grid without 
interpolation in order to conserve energy and mass.  

Popinet and Zaleski (1999) describe a front-tracking algorithm for the 2D incompressible 
Navier-Stokes (N-S) equations that uses a staggered marker and cell (MAC) method for the 
pressure, volume fraction, momentum, and velocity discretization on a Cartesian grid. The 
solution technique is based on an explicit projection method (Peyret and Taylor, 1983) close to 
the one initially developed for the SURFER code (Lafaurie et al., 1994). Gerris was developed 
by merging a quad/octree implementation of AMR method with a Volume of Fluid (VOF) 
approach for solid boundaries and the MAC projection method (Popinet, 2003). The 3D Gerris 
model was used to study air turbulence associated with a complex shape with good match to 
observations (Popinet et al., 2004). The Ocean module of Gerris was described by Popinet and 
Rickard (2004) as an adaptive, finite-volume, 3D, incompressible, N-S fluid solver extended 
into a dynamical core able to model geophysical fluid flows. They demonstrate the accuracy of 
the 2D model for geostrophic adjustment, a wind-driven circular ocean, and a coastally trapped ________________
Manuscript approved October 16, 2012. 
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wave. The 3D model was tested for stratified flow over a Gaussian bump. They also show an 
example of adaptive barotropic flow in a complex coastline and bathymetry, Cook Strait in 
New Zealand. Rickard and Popinet (2007) demonstrate the application of the 2D solver in 
Gerris to internal wave breaking. They use a rigid lid because the CFD solver does not allow a 
free surface. O'Callaghan et al. (2010) followed this demonstration with an application of the 
2D CFD solver to the transient behavior of a buoyant plume at both laboratory and field scales. 
This work directly applies to the use of Gerris to simulate the dynamics of the turbidity 
maximum as observed in estuaries and the continental shelf. Gerris has also proven useful for 
wave modeling (Popinet et al., 2010), as well as tsunamis (Popinet 2011; 2012).  

The OMEGA model (Bacon et al., 2000; Boybeyi et al., 2001) took a different approach to 
adaptivity with a 3D mesh that is unstructured in the horizontal horizontal using triangular 
prisms. It solves 3D nonhydrostatic equations using a flux-based finite-volume method. Other 
examples of adaptive modeling are described by Jablonowski et al. (2006) and Penner et al. 
(2005; 2007). The best-known example of a finite-element adaptive mesh ocean model is the 
Imperial College Ocean Model (ICOM), which has been demonstrated for the lock-exchange 
test by Heister et al. (2011).  

Objectives 

This report describes the effort to implement Gerris at NRL for solving problems in estuaries. 
The relevant processes include the interaction of clay particles with turbulent flows driven by 
tides and waves. This study thus reinforces the lesson that understanding sedimentation 
processes necessitates first recognizing the importance of hydrodynamics. This effort has thus 
turned to AMR and FVM to solve this coupled multi-scale, multi-physics problem in a robust 
and consistent manner. The work consists of two tasks: (1) implementing Gerris; and (2) 
application of the model system to problems of interest.  
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Section 2: Implementation 

The Gerris environment consists of three main parts: the Gerris solver itself, a visualization 
application GfsView, and the Gnu Triangulated Surface (GTS) Library. The Gerris solver does 
not need interactive display and can run purely in terminal mode. This is useful when running 
applications on supercomputing systems which are often used in batch mode.  

The Gerris solver depends on the GTS library for geometrical operations and object-oriented 
programming. The GTS library in turns depends on the Glib library, a set of useful extensions 
for C programming. Glib is installed as part of the standard installation on many Linux systems, 
however the corresponding development files (library header files etc...) usually need to be 
installed explicitly.  

Additional information about obtaining source code and installation can be acquired from 
http://gfs.sourceforge.net/wiki/index.php/Installation_summary. A syntax reference is available 
at http://gerris.dalembert.upmc.fr/gerris/reference/index.html.  

Local Build Information 

Local versions of the Gerris stable source are maintained in /u/gfs/src. The darcs version control 
system is used to obtain the source code and updates directly from the Gerris stable repository. 
In the top-level of /u/gfs/src are the following scripts used to maintain the Gerris source and 
builds. Usage information for each script is obtained by invoking with the "-h" option.  
run_checkout : Check-out the Gerris packages from the darcs repositories. 

run_update : Download updates (patches) from the darcs repositories. 

run_install : Build and install the Gerris packages. 

run_clean : Clean out build files from the source directories. 
Local builds of Gerris stable are maintained in /common/gfs. Date tags are added to keep a 
history of available builds. Symbolic links are used to point to the latest build. For example,  
/common/gfs/20120605 

/common/gfs/bin -> 20120605/bin 

/common/gfs/include -> 20120605/include 

/common/gfs/lib -> 20120605/lib 

/common/gfs/logs -> 20120605/logs 

/common/gfs/share -> 20120605/share 

Creating a User-Specific Build 

The scripts in /u/gfs/src can be used to setup a user specific build of GFS. This can be done by 
either invoking the scripts directly or by making a local copy. Keep in mind that the usage of 
any of the scripts is obtained by invoking with the "-h" option. This section describes a method 
that includes making a local copy. The scripts are maintained as a darcs repository. Hence, one 
can use darcs to get a versioned copy of the scripts and a demo. This can be done with the 
following.  
%> darcs get --set-scripts-executable /u/gfs 
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This will create a gfs directory in the working directory that is a local copy of the /u/gfs 
repository. This includes the src and demo subdirectories. The scripts can now be used to get a 
copy of the stable or developmental GFS packages. This example will focus on getting the 
stable version of GFS. To get the stable packages of GFS do the following.  
%> cd src 

%> run_checkout -l stable 

The "-l" option is for a "lazy checkout", i.e., patch files will only be downloaded as needed. For 
a full checkout of all patch files do not include the "-l" option. Once the checkout is completed 
there will e three source directories in src: gerris, gfsview, and gts. To build and install GFS do 
the following.  
%> run_install -x /common/hypre 

This will install GFS into ${HOME}/gfs/YYYYMMDD, where YYYYMMDD is the current 
date. Symbolic links will be created (for bin, lib, etc...) that point to the subdirectories in 
YYYYMMDD. The "-x /common/hypre" option sets the build environment to point to the 
/common/hypre installation so that GFS will be compiled with HYPRE. HYPRE provides an 
optional higher performance multigrid solver. Options are available for more refined control of 
the build and installation. The run_clean script can be used for cleaning out the build files in the 
source directories. The run_update script can be used to query and pull patches from the GFS 
repositories.  

An alternate approach is to use the /u/gfs/src scripts directly. This involves first creating the gfs 
directory and src subdirectory. After which the checkout and install steps (described above) can 
be followed. For example,  
 %> mkdir -p gfs/src 

 %> cd gfs/src 

 %> /u/gfs/src/run_checkout -l stable 

 %> /u/gfs/src/run_install -x /common/hypre 

Settings for Run Environment 

In this section the bash environment is assumed. If one is using csh/tcsh, then change the syntax 
accordingly. It is useful to define the following environment variable in the top-level dot file for 
the environment.  
export GFS_DIR=/common/gfs 

To run Gerris executables and access man pages one needs to add the following to the PATH 
and MANPATH settings.  
export PATH=$GFS_DIR/bin:$PATH 

export MANPATH=$GFS_DIR/man:$MANPATH 

Gerris relies on pkg-config for obtaining and setting information about the installed libraries. 
The following environment settings are required for running the Gerris executables.  
export PKG_CONFIG_PATH=/usr/lib64/pkgconfig:${GFS_DIR}/lib/pkgconfig 
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The GFS Terrain module requires a search path (unless the path is specified in the GFS file) to 
find terrain databases. The search path is specified using the GFS_TERRAIN_PATH 
environment variable. For example, one would put the following in a Gerris run script.  
GFS_TERRAIN_PATH=/u/gfs/topo/global 

GFS_TERRAIN_PATH=/u/gfs/topo/regional:$GFS_TERRAIN_PATH 

export GFS_TERRAIN_PATH 

Local Batch System 

In the batch system there are 8 core nodes and 12 core nodes available. Depending on the 
number of cpus you want, you can set ncpus_per_node to either 8 or 12. The best utilization is 
having nprocs set to a multiple of ncpus_per_node. Batch jobs must be submitted and 
monitored from stennis. SSH to stennis and then you can use any of following commands.  

To check status of jobs  

%> qstat 

To peek at the log while running  

%> qpeek <job number> 

To watch the log while running  

%> qpeekf <job number> 

User <cntl-c> to quit 

To remove a job  

%> qdel <job number> 

A Demo 

In /u/gfs/demo is an example gfs input and associated scripts to demonstrate how to run gerris 
and gfsview.  

Package Dependencies for GTS, Gerris, & GfsView 

This section describes the required and optional packages for GFS. The package names are 
based on an Enterprise Linux (EL) or Scientific Linux (SL) distribution. The following 
packages are required.  

 
 glib2-devel 

 netpbm-devel 

 m4 

 proj-devel 
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 gsl-devel 

 gtk2-devel 

 gtkglext-devel 

 startup-notification 

 mesa-libOSMesa-devel 

 openmpi-devel 

 darcs 

The following packages are optional.  
  

 netcdf-devel 

 ode-devel 

 fftw-devel 

 hypre-devel 

 lis-devel 

 ftgl-devel 

 ffmpeg 

 gifsicle 

On the EL and SL systems use "yum info <package>" to obtain more detailed information on 
the packages listed above.  The darcs package is required for obtaining the GFS code from the 
source code repositories. Optionally, the source code may be downloaded from 
http://gfs.sourceforge.net/wiki/index.php/Download.   

Note that on the NRL systems OpenMPI is not installed via the package manager. Instead, 
OpenMPI is installed in /common/openmpi using the ~tjcamp/bin/install_openmpi script.  

Note that the hypre package is not available on EL or SL systems. On the NRL systems hypre is 
installed in /common/hypre using the ~tjcamp/bin/install_hypre script.  

The optional Gerris modules may require additional dependencies (shown in the optional 
packages list). The dependencies will be checked by the ./configure script and the 
corresponding modules will only be installed if they are present. A summary of which modules 
will be installed is given by ./configure. To find out why a particular module is not going to be 
installed, you need to check further up in the ./configure output which particular library failed 
to be detected.  

Details on Package Dependencies 

This section provides details on the packages listed above. This information is obtained using 
"yum info <package>." Some of the information returned by yum info has been removed. Also, 
the description section for the "-devel" packages includes description output for the non-devel 
version of the package. This was done because usually the description provided by the "-devel" 
version usually only stated that it was a package providing files needed for development.  
  

Name        : glib2-devel 

Version     : 2.22.5 

Release     : 6.el6 

Summary     : A library of handy utility functions 
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URL         : http://www.gtk.org 

Description : GLib is the low-level core library that forms the basis             

for projects such as GTK+ and GNOME. It provides data 

structure handling for C, portability wrappers, and interfaces 

for such runtime functionality as an event loop, threads, 

dynamic loading, and an object system. The glib2-devel package 

includes the header files for version 2 of the GLib library. 

  

Name        : netpbm-devel 

Version     : 10.47.05 

Release     : 11.el6 

Summary     : Development tools for programs which will use the netpbm 

libraries 

URL         : http://netpbm.sourceforge.net/ 

Description : The netpbm package contains a library of functions which 

support programs for handling various graphics file formats, 

including .pbm (portable bitmaps), .pgm (portable graymaps), 

.pnm (portable anymaps), .ppm (portable pixmaps) and others. 

The netpbm-devel package contains the header files and static 

libraries, etc., for developing programs which can handle the 

various graphics file formats supported by the netpbm 

libraries. 

 

Name        : m4 

Version     : 1.4.13 

Release     : 5.el6 

Summary     : The GNU macro processor 

URL         : http://www.gnu.org/software/m4/ 

Description : A GNU implementation of the traditional UNIX macro processor.  

M4 is useful for writing text files which can be logically 

parsed, and is used by many programs as part of their build 

process.  M4 has built-in functions for including files, 

running shell commands, doing arithmetic, etc.  The autoconf 

program needs m4 for generating configure scripts, but not for 

running configure scripts. 

 

Name        : proj-devel 

Version     : 4.7.0 

Release     : 1.el6.rf 

Summary     : Header files, libraries and development documentation for 

proj. 

URL         : http://trac.osgeo.org/proj/ 

Description : Proj and invproj perform respective forward and inverse 

transformation of cartographic data to or from cartesian data 
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with a wide range of selectable projection functions. This 

package contains the header files, static libraries and 

development documentation for proj. If you like to develop 

programs using proj, you will need to install proj-devel. 

 

Name        : gsl-devel 

Version     : 1.13 

Release     : 1.el6 

Size        : 1.2 M 

Summary     : Libraries and the header files for GSL development 

URL         : http://www.gnu.org/software/gsl/ 

Description : The GNU Scientific Library (GSL) is a collection of routines 

for numerical analysis, written in C. The gsl-devel package 

contains the header files necessary for developing programs 

using the GSL (GNU Scientific Library). 

 

Name        : gtk2-devel 

Version     : 2.18.9 

Release     : 6.el6 

Summary     : Development files for GTK+ 

URL         : http://www.gtk.org 

Description : GTK+ is a multi-platform toolkit for creating graphical user 

interfaces. Offering a complete set of widgets, GTK+ is 

suitable for projects ranging from small one-off tools to 

complete application suites. This package contains the 

libraries amd header files that are needed for writing 

applications with the GTK+ widget toolkit. If you plan to 

develop applications with GTK+, consider installing the gtk2-

devel-docs package. 

 

Name        : gtkglext-devel 

Version     : 1.2.0 

Release     : 11.el6 

Summary     : Development tools for GTK-based OpenGL applications 

URL         : http://gtkglext.sourceforge.net/ 

Description : GtkGLExt is an OpenGL extension to GTK. It provides the GDK 

objects which support OpenGL rendering in GTK, and GtkWidget 

API add-ons to make GTK+ widgets OpenGL-capable. The gtkglext-

devel package contains the header files, static libraries, and 

developer docs for GtkGLExt. 

 

Name        : startup-notification 

Version     : 0.10 
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Release     : 2.1.el6 

Summary     : Library for tracking application startup 

URL         : http://www.freedesktop.org/software/startup-notification/ 

Description : This package contains libstartup-notification which implements 

a startup notification protocol. Using this protocol a desktop 

environment can track the launch of an application and provide 

feedback such as a busy cursor, among other features. 

 

Name        : mesa-libOSMesa-devel 

Version     : 7.11 

Release     : 3.el6 

Summary     : Mesa offscreen rendering development package 

URL         : http://www.mesa3d.org 

Description : Mesa offscreen rendering development package 

 

Name        : openmpi-devel 

Version     : 1.5.3 

Release     : 3.el6 

Summary     : Development files for openmpi 

URL         : http://www.open-mpi.org/ 

Description : Open MPI is an open source, freely available implementation of 

both the MPI-1 and MPI-2 standards, combining technologies and 

resources from several other projects (FT-MPI, LA-MPI, 

LAM/MPI, and PACX-MPI) in order to build the best MPI library 

available.  A completely new MPI-2 compliant implementation, 

Open MPI offers advantages for system and software vendors, 

application developers, and computer science researchers. For 

more information, see http://www.open-mpi.org/ . This package 

contains development headers and libraries for openmpi 

 

Name        : darcs 

Version     : 2.4.4 

Release     : 3.el6 

Summary     : David's advanced revision control system 

URL         : http://www.darcs.net/ 

Description : Darcs is a revision control system, along the lines of CVS or 

arch. That means that it keeps track of various revisions and 

branches of your project, allows for changes to propagate from 

one branch to another. Darcs is intended to be an ``advanced 

revision control system. Darcs has two particularly 

distinctive features which differ from other revision control 

systems: 1) each copy of the source is a fully functional 
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branch, and 2) underlying darcs is a consistent and powerful 

theory of patches. 

 

Name        : netcdf-devel 

Version     : 4.1.1 

Release     : 3.el6.2 

Summary     : Development files for netcdf 

URL         : http://www.unidata.ucar.edu/software/netcdf/ 

Description : NetCDF (network Common Data Form) is an interface for array-

oriented data access and a freely-distributed collection of 

software libraries for C, Fortran, C++, and perl that provides 

an implementation of the interface.  The NetCDF library also 

defines a machine-independent format for representing 

scientific data.  Together, the interface, library, and format 

support the creation, access, and sharing of scientific data. 

The NetCDF software was developed at the Unidata Program 

Center in Boulder, Colorado. This package contains the netCDF 

header files, shared devel libs, and man pages. 

 

Name        : ode-devel 

Version     : 0.11.1 

Release     : 2.el6 

Summary     : Development files for ode 

URL         : http://www.ode.org 

Description : ODE is an open source, high performance library for simulating 

rigid body dynamics. It is fully featured, stable, mature and 

platform independent with an easy to use C/C++ API. It has 

advanced joint types and integrated collision detection with 

friction. ODE is useful for simulating vehicles, objects in 

virtual reality environments and virtual creatures. It is 

currently used in many computer games, 3D authoring tools and 

simulation tools. The ode-devel package contains libraries and 

header files for developing applications that use ode. 

 

Name        : fftw-devel 

Version     : 3.2.1 

Release     : 3.1.el6 

Summary     : Headers, libraries and docs for the FFTW library 

URL         : http://www.fftw.org/ 

Description : FFTW is a C subroutine library for computing the Discrete 

Fourier Transform (DFT) in one or more dimensions, of both 

real and complex data, and of arbitrary input size. This 

package contains header files and development libraries needed 

to develop programs using the FFTW fast Fourier transform 

library. 
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Name        : lis-devel 

Version     : 1.2.53 

Release     : 3.el6 

Summary     : Development headers and library for lis 

URL         : http://www.ssisc.org/lis/index.en.html 

Description : Lis, a Library of Iterative Solvers for linear systems, is a 

scalable parallel library for solving systems of linear 

equations and standard eigenvalue problems with real sparse 

matrices using iterative methods. This package contains the 

development headers and library. 

 

Name        : ftgl-devel 

Version     : 2.1.3 

Release     : 0.3.rc5.el6 

Summary     : Development files for ftgl 

URL         : http://ftgl.wiki.sourceforge.net/ 

Description : FTGL is a free open source library to enable developers to use 

arbitraryfonts in their OpenGL (www.opengl.org)  applications. 

Unlike other OpenGL font libraries FTGL uses standard font 

file formats so doesn't need a preprocessing step to convert 

the high quality font data into a lesser quality, proprietary 

format. FTGL uses the Freetype (www.freetype.org) font library 

to open and 'decode' the fonts. It then takes that output and 

stores it in a format most efficient for OpenGL rendering. The 

ftgl-devel package contains libraries and header files for 

developing applications that use ftgl. 

 

Name        : ffmpeg 

Version     : 0.10 

Release     : 53.el6 

Summary     : Hyper fast MPEG1/MPEG4/H263/RV and AC3/MPEG audio encoder 

URL         : http://ffmpeg.sourceforge.net/ 

Description : FFmpeg is a very fast video and audio converter. It can also 

grab from a live audio/video source. The command line 

interface is designed to be intuitive, in the sense that 

ffmpeg tries to figure out all the parameters, when possible. 

You have usually to give only the target bitrate you want. 

FFmpeg can also convert from any sample rate to any other, and 

resize video on the fly with a high quality polyphase filter. 

 

Name        : gifsicle 

Version     : 1.60 
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Release     : 1.el6 

Summary     : Powerful program for manipulating GIF images and animations 

URL         : http://www.lcdf.org/gifsicle/ 

Description : Gifsicle is a command-line tool for creating, editing, and 

getting information about GIF images and animations. 
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Section 3: Gerris Flow Solver Plug-Ins 

Introduction 

Much of the structure that makes Gerris and GTS so powerful is the implementation of plug-
ins. These programs are input by the user in the simulation file and parsed into a c 
programming language function as the file is read. They are then stored on the system and in 
hash tables to allow their use when Gerris runs. In combination with the linked list and surface 
representations of the domain, this allows a high degree of flexibility and power to be 
determined at run time.  

GfsFunction 

The key mechanism to create plug-ins is the implementation in c of pointers to non-static 
member functions as incorporated in C++. These pointers need a hidden argument, the this 
pointer to an instance of the class. These pointers are implicitly included through the (* 
GfsFunctionFunc) declarations in file, utils.c. This method replicates the this pointer using 
local scope.  
 

 typedef gdouble (* GfsFunctionFunc) ( const FttCell     * cell,  

                                       const FttCellFace * face,  

                                       GfsSimulation     * sim ); 

  

 typedef gdouble (* GfsFunctionDerivedFunc) (const FttCell     * cell, 

                                             const FttCellFace * face, 

                                             GfsSimulation     * sim, 

                                             gpointer            data ); 

 

The use of a typedef allows GfsFunction*Func to be used as types. The function templates 
implied by these statements require specific arguments: (a) a pointer to an FttCell structure; (b) 
a pointer to an FttCellFace structure; (c) a pointer to a GfsSimulation structure; and (d) a 
pointer to data of some kind. Arguments (a) and (b) allow access to the physical domain (grid). 
Argument (c) includes all of the information associated with a specific simulation. The final 
argument is used by the derived function type. These functions can be defined by the user at run 
time to complete a variety of tasks. The GfsFunction class has its initialization function 
contained in file, utils.c.  

The construction of a GfsFunction object follows the same instantiation paradigm as other 
GtsObjects, but it is fundamentally different from the other classes because it transforms user 
input to an executable file that is dynamically loaded while Gerris is running. This class 
constructs a c-programming language file from the strings contained in the simulation file, and 
calls the system function to explicitly compile the input into an object file that can be run (i.e., 
dynamically loaded) from within the calling function. It is placed in the /tmp directory on the 
file system and is implemented as a GModule (i.e., a plug-in).  
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struct _GfsFunction { 

   GtsObject            parent; 

   GString *            expr; 

   gboolean             isexpr; 

   GModule *            module; 

   GfsFunctionFunc      f; 

   gchar *              sname; 

   GtsSurface *         s; 

   GfsCartesianGrid *   g; 

   guint                index[4]; 

   GfsVariable *        v; 

   GfsDerivedVariable * dv; 

   gdouble              val; 

   gboolean             spatial, constant, nomap; 

   GtsFile              fpd; 

   gdouble              units; 

 }; 

 

There are three steps to generate a plug-in using the GfsFunction class in Gerris:  

1) read the expressions that comprise the function from the simulation file  

2) build a source code file and compile it as a c program  

3) create a GModule and store the executable's location in a hash table accessed as a GModule.  

All of the functions to complete these steps are contained in the file, utils.c. The first step is 
slightly different for functions that involve constant expressions only, and those that contain 
variables. There differences will be explored in the examples below.  

There is an important distinction to be made at this time with respect to the GfsFunctions 
associated with file input (e.g., B_AMP.gts) and pseudo-code input from the simulation file. 
The pointer for the gfs_surface_class_init assignment of the "read" function (surface_read) is 
the same as the "read" function pointer in read_simulation. This pointer is different from the 
"read" function for the solid class (gfs_solid_read). It is not clear what this means but it should 
be taken as a warning about the unintended use of user-supplied read functions.  

Read a Function from the Simulation File 

The GFS macro processing step replaces any defined substitutions in the simulation file before 
the file is parsed by function_read. An example of an expression with variables is shown on the 
Appendix A. A constant expression is given below. Note that the expression must include 
parentheses in order to be parsed correctly. This means that any Define statements must include 
parentheses, even constant expressions.  
The resulting expressions between parentheses or brackets "()" or "{}" are appended to the 
GString->expr member in the GfsFunction structure. Thus, the entire function is held in the 
module->expression member of the GfsFunction structure with "\n" used for carriage returns. 
This expression string will be accessed by the function_compile function.  
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Compose and Compile a GfsFunction 

The function, function_compile, automatically constructs a C source code file using fprintf 
statements. It uses the contents of the GfsFunction structure to determine what constructions are 
required in the executable. The code it can generate is necessarily limited by these selections. 
For example, static functions that include ellipses, spheres, and cubes can be included. There is 
also a header file (function.h) that includes a variety of functions used for boundary conditions.  

The list of tokens read from the simulation file is compared to the variable list in order to 
include non-constant functions, including derived variables. The constructed function does not 
include while or do loops but there is an if block for interpolating variable values to partially 
wet cells.  

The last action by function_compile is to call compile, which calls the system command to 
compile the code into an executable file, /tmp/gfsXXXXXX, where XXXXXX is replaced with 
a random string generated by the mkstemp system function. If this temporary file is not present 
on the function_cache hash table, it is compiled with a call to compile.  

The compiler command is constructed and executed with a system call:  
 

gcc `pkg-config gerris3D --cflags --libs` -O -Wall -Wno-unused -Werror   \ 

    -D_GFSLINE_=38 -fPIC -shared -x c /tmp/gfsysGucS -o /tmp/gfsQAjCMX    \ 

    `sed 's/@/#/g' < /tmp/gfsVOwGzv |  awk '{   if ($1 == "#" && $2 ==    \      

    "link") {     for (i = 3; i <= NF; i++) printf ("%s ", $i);   \ 

    print "" > "/dev/stderr";   }   else if ($1 == "#link")        \ 

    {     for (i = 2; i <= NF; i++)       \ 

        printf ("%s ", $i);     print "" > "/dev/stderr";   } else print $0  

        > "/dev/stderr";}'        \ 

        2> /tmp/gfsysGucS ` 2> /tmp/gfsYuoyZp 

The temporary source file is deleted after successful compilation. The executable file remains 
on the local file system with its name held in foutname.  

Create a GModule as a Plug-in 

A GModule is created in the compile function. The executable file, foutname is passed to the 
GModule function using gfs_module_new. This function also places it in the function_cache 
member of the GfsSimulation structure. It is made referential by the gfs_module_ref function, 
which also stores its location (pointer) in the (Gmodule *module) member of the GfsFunction 
structure. This pointer to the executable is the key for the pointers to the GfsModule 
(GfsModule * m) in the (GfsSimulation * sim)->function_cache hash table.  

GfsFunctionConstant Example 

The creation of a simple GfsFunction can be demonstrated with a GfsFunctionConstant object, 
which is a simple application of a GModule. The semidiurnal tidal frequency is defined in the 
tides.gfs simulation file as:  
 Define M2F (2.*M_PI/44700.) 
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This macro is substituted into the simulation file where appropriate. Here are three events for 
computing harmonic events:  
 EventHarmonic { start = 100000 istep = 10 } P A B Z EP M2F 

 EventHarmonic { start = 100000 istep = 10 } U AU BU ZU EU M2F 

 EventHarmonic { start = 100000 istep = 10 } V AV BV ZV EV M2F 

These lines are read and GfsEvent objects are created. The macro substitution produces a 
constant expression that is classified as a GfsFunctionConstant object.  

In Step (2), these objects are constructed for each line by the function, function_compile.  
 

 #include <stdlib.h> 

 #include <stdio.h> 

 #include <math.h> 

 #include <gfs.h> 

 double f (void) { 

 #line _GFSLINE_ "GfsFunction" 

   return (2.*M_PI/44700.); 

 } 

This is a constant function (i.e., (GfsFunction *f)->parent.klass->info.name = 
"GfsFunctionConstant").  

GfsFunction Example with GfsVariables 

A complex tidal statement wit time-dependence is assigned to the expr member of the 
GfsFunction structure (i.e., f->expr) that was created when function_read was entered for a 
Flather boundary condition.  

As with a constant function, function_compile is called to create the source code for the 
function. The includes and declarations are hard-wired in as strings to be placed in the 
temporary file (e.g., /tmp/gfsRhE3so):  
 

 #include <stdlib.h> 

 #include <stdio.h> 

 #include <math.h> 

 #include <gfs.h> 

 #include <gerris/function.h> 

 typedef double (* Func) (const FttCell * cell, 

                          const FttCellFace * face, 

                          GfsSimulation * sim, 

                          gpointer data); 

 double f (FttCell * cell, FttCellFace * face, GfsSimulation * sim) { 

   _sim = sim; _cell = cell; 

  

The basic variables (GfsVariables) are contained in (GfsDomain * domain)->variables; they are 
compared one-by-one to (GfsFunction * f)->expr->str, and the result is prepended to a list of 
variables (GSList *lv). This example contains "B_amp" and "A_amp" as GfsVariables. The 
same procedure is completed for GfsDerivedVariables and they are added to (GSList *ldv), 
which contains "t". Their declarations are printed to the temporary file:  



 

 

20 

 

 double B_amp; 

 double A_amp; 

 double t; 

The following lines are hard-coded in function_compile if there are any GfsVariables in lv:  
 if (cell) { 

   B_amp = gfs_dimensional_value (GFS_VARIABLE1 (0x2335600), 

          GFS_VALUE (cell, GFS_VARIABLE1 (0x2335600))); 

   A_amp = gfs_dimensional_value (GFS_VARIABLE1 (0x2335410), 

          GFS_VALUE (cell, GFS_VARIABLE1 (0x2335410))); 

 } else { 

   B_amp = gfs_dimensional_value (GFS_VARIABLE1 (0x2335600), 

          gfs_face_interpolated_value (face, GFS_VARIABLE1 (0x2335600)->i)); 

   A_amp = gfs_dimensional_value (GFS_VARIABLE1 (0x2335410), 

          gfs_face_interpolated_value (face, GFS_VARIABLE1 (0x2335410)->i)); 

 } 

This GfsFunction contains memory addresses (format = %p) instead of pointers as follows: 
0x2335600 = address of (GfsVariable *v) containing "B_amp"; 0x2335410 = address of 
(GfsVariable *v) containing "A_amp". The function gfs_dimensional_value returns the 
dimensional value of the second argument transformed to the dimensions of the first argument. 
This is where the GfsPhysicalParams function (i.e., L = 185e3) is used to transform the tidal 
amplitudes because gfs_dimensional_value returns "val*pow (L, v->units)". The 
gfs_face_interpolated_value function interpolates to a point that does not coincide with a tidal 
constituent location. Finally, the GfsDerivedVariable (v = t) is assigned a variable:  
 

 t = (* (Func) 0x7fa1d8152e60) (cell, face, sim, ((GfsDerivedVariable *) 

0xa78d50)->data); 

  

 * 0x7fa1d8152e60 = address of the (gpointer func) member of the 

(GfsDerivedVariable * v) object  

   (The typedef declaration matches that for the GfsFunctionDerivedFunc from 

utils.h) 

 * cell = FttCell pointer passed to this function 

 * face =  FttCellFace pointer passed to this function 

 * sim = pointer to the GfsSimulation that was passed 

 * 0xa78d50 = address of the GfsDerivedVariable * v 

 * data is the (gpointer data) member of a GfsDerivedVariable structure 

  

The consequence of this line is to access the model time, t. The following lines insert the 
"GfsFunction" statement into the executable that will be created when function compile is 
called, and return the tidal amplitude in domain units.  
 #line _GFSLINE_ "GfsFunction" 

 return (A_amp*cos ((2.*M_PI/44700.)*(t))+B_amp*sin ((2.*M_PI/44700.)*(t))); 

 } 

The (* GfsFunctionDerivedFunc) type is invoked by functions (gfs_function_value and 
gfs_function_face_value) in the following manner:  
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  dimensional = (* (GfsFunctionDerivedFunc) f->dv->func) (NULL,  

                                                          fa, 

                                                gfs_object_simulation (f), 

                                                          f->dv->data); 

 

where dimensional is a gdouble variable, f->dv is a GfsderivedVariable pointer member of a 
GfsFunction structure, and func is a gpointer member of the GfsDerivedVariable structure.  

GfsModule 

Non-static member functions are implemented in Gerris using the GfsModule class, which 
contains (GfsFunctionFunc f) and (GModule * module) members.  
typedef struct { 

   GModule         * module; 

   gchar           * expression; 

   guint             refcount; 

   GfsFunctionFunc   f; 

 } GfsModule; 

This class accesses the GModule library through its (* module) member. The (gchar * 
expression) member contains strings used to generate GfsFunctions and the (GfsFunctionFunc 
f) member serves as the this construct discussed above. The GModule code is physically 
constructed using the GfsFunction class.  

New GfsModule objects are created using the function, gfs_module_new.  

 static GfsModule * gfs_module_new (GtsFile     * fp,  

                                    const gchar * mname, 

                                    GHashTable  * cache,  

                                    const gchar * finname) 

 { 

   GModule * module; 

   GfsFunctionFunc f; 

   gchar * path = g_module_build_path (GFS_MODULES_DIR, mname); 

   module = g_module_open (path, 0); 

   g_free (path); 

   if (module == NULL) 

     module = g_module_open (mname, 0); 

   if (module == NULL) { 

     gts_file_error (fp, "cannot load module: %s", g_module_error ()); 

     return NULL; 

   } 

   if (!g_module_symbol (module, "f", (gpointer) &f)) { 

     gts_file_error (fp, "module `%s' does not export function `f'", mname); 

     g_module_close (module); 

     return NULL; 

   } 

   GfsModule * m = g_malloc (sizeof (GfsModule)); 

   m->module = module; 

   m->f = f; 

   m->refcount = 0; 
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   g_assert (g_file_get_contents (finname, &m->expression, NULL, NULL)); 

   g_hash_table_insert (cache, m->expression, m); 

   return m; 

 } 
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Section 4: Gerris Model Domains 

Model domains can be described using simple analytical functions. This section describes more 
complex methods used in the GfsOcean and GfsRiver modules.  

Defining a Domain with a GTS File 

The GTS input is used to define the bathymetry surface for the GfsOcean module (3D SWE 
with linearized free surface). The GTS file format is discussed on the GNU Triangulated 
Surface file page. The GTS input can also be used to represent data on a surface or curve. This 
file is accessed continuously by Gerris and it must be efficiently created to facilitate the model 
running. This will be demonstrated using a working example from Santa Rosa Island, Florida 
(Figure 4.1). This location is being studied with respect to development of a coupled modeling 
system in GFS. It was originally simulated using numerous NCOM grids and Shorecirc.  

 
Figure 4.1. Google Earth image of the general area of interest for the Santa Rosa Island simulation 
with Gerris. The box is located at the exact location of mooring B (Keen and Stavn, 2012). 
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Creating a GTS Domain File 

Several undocumented tests have been completed to arrive at the following guidelines. These 
impact how the GFS libraries process the bathmetry gts file for creating a mesh (e.g., Solid may 

not be closed...), computing the time step (e.g., segmentation violation in set_timestep...), 
computing advection (e.g., segmentation violation in cell_advection...), and implementing a 
boundary condition (e.g., nothing happens...). These examples are not exact quotes. The 
conclusion from these errors is that enough data must be available around the selected domain 
to ensure that the interpolation process is smooth. There are also potential problems in 
attempting to over-sample a coarse input bathymetry file.  

The Ocean module appears to require using the GfsMap module. This has only one projection, 
the Lambert Conformal. The domain is specified by the longitude and latitude of the center of 
the domain, and its width in meters. The domain can be rotated if desired. Only square domains 
are computed.  

 PhysicalParams { L = 130e3 } 

 GModule map 

 MapProjection { lon = -86.6035 lat = 30.33 angle = 0.0} 

 Refine 6  

The refinement specified here is for initialization only. Additional refinement is determined 
using either GfsAdapt or GfsAdaptFunction classes with any desired amount of complex 
refinement implemented as functions. Others are also available.  

The gts file can be created by using GFS standalone applications to process ASCII files. This 
begins with the starting files, which in this case consist of a local bathymetry database from SRI 
and the Gebco 8 minute data. The gebco data are in a standard location. These must be 
processed into an ASCII file:  

 echo "x1 y1 x2 y2" | kdtquery  /u/gfs/topo/global/gebco/gebco_08 > outfile 

The outfile contains columns of longitude, latitude, and topography (water depth is negative). 
This file is very useful because it contains all of the land points, which allows Gerris GfsBoxes 
to be located near the coast. The first example uses only the gebco_08 data. Because of the 
uncertainty of selecting the appropriate bathymetry, a very large region was selected: x1 = -90; 
x2 = -80; y1 = 25; and y2 = 35 (Simulation 1). This is much larger than the region represented 
by Figure 4.1 but it definitely works. We have specified L = 130 km. We will refer to these 
ASCII files as xyz files.  

Before the xyz file can be processed further, the water depths must be made positive. The xyx 
file is processed into a triangulated irregular network (TIN) using the happrox program.  

 happrox -f -r 1 -c 0.01 < xyz | transform --revert > gts 
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where xyz is the file created above and gts is the TIN representation of the water depths. The 
water depths have been made negative again in this file, but modifying these programs 
(kdtquery, transform, and happrox) is beyond the scope of the current work.  

Before a simulation can be run the following environmental variables should be set:  

 PATH    /common/gfs/bin:/common/openmpi/gnu/bin 

 MPI_DIR /common/openmpi/gnu 

 GFS_DIR /common/gfs/bin 

The model is run with the following command:  

 /common/gfs/bin/gerris3D -m waves.gfs |  

                  /common/gfs/bin/gfsview3D -s waves.gfv 

The waves.gfv file contains instructions for running gfsview3D while gerris is running in order 
to view the results. It must be edited for personal preference.  

The simulation was run with different gts file descriptions of the domain to achieve the best 
combination of results and speed. Simulation 1 used the 10° square surface file and was very 
slow. We need to decrease the size of the gts file to improve speed, however. This domain used 
a 10°×10° bathymetry whereas the required area (Figure 4.2) spans ~1° of longitude and 
latitude. The gts file for Simulation 1 is very slow processing but it allows Gerris to produce the 
following initial mesh, which uses R = 6 to produce a uniform mesh with Δx = 130 km / 64 = 
1.5625 km.  

 
Figure 4.2. Screen dump from GfsView3D showing water depths (Simulation 1). 

We next explore the required minimum gts file. The size of the gts file domain was reduced to 
"-88.0 28.0 -84.0 32.0" (Simulation 2) for the kdtquery command above and the simulation was 
rerun with no changes to parameters. The resulting bathymetry is the same. When the input to 
kdtquery and subsequently the size of the gts file was reduced to "-87.0 -29.0 -85.0 31.0", 
Gerris failed in setting the solid fraction from a surface. This is apparently too small; The 
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model domain is approximately from (-86.6035, 30.33) and 130 km across, or from -87.1° to -
86.1° of longitude and 29.7° to 30.9° of latitude. This explains the failure. A gts surface file 
described by "-88.0 29.0 -85.0 32.0" works; it thus appears reasonable to pad with ~1° 
(Simulation 4).  

Sensitivity Testing for GTS Domains 

This section discusses implementation issues for the GfsOcean module. Two domains are used, 
as represented by TIN files: beach.gts and bight.gts. The simulations will be done in pairs for 
the beach, which is a synthetic bathymetry that is processed into a TIN by happrox, and the 
bight, which is the original bathymetry. The waves approach from the east (rt side); the west, 
north, and south are GfsBoundary edges. A higher resolution synthetic bathymetry is in the file, 
beach2.gts.  

The large bathymetry file for the Mississippi Bight (MSB) is used as the basis of some small 
domains in this example (Figure 4.3). This is used to evaluate the synthetic bathymetry used  

Figure 4.3. Plots of water surface anomaly for short waves (T = 5 s) on the original grid and refinement of 6.  

 
A. After 15 minutes for a domain of 100 km. 

 
B. After 10 minutes for a domain of 10 km. 

 
C. After 15 minutes for a domain of 10 km. 

 
D. After 2 minutes for a domain of 1 km. 

The second series of simulations are the same but using the synthetic domain seen Figure 4.4A 
(center at lon = 271.01° lat = 29.1°). This grid has a cell size of 0.0001° (~100 m) and 
2000×2000 cells. The grid based on the real MSB bathymetry (Figure 4.4B) has almost flat 
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water depths. This has the same mesh size; the only difference should be the files, which are 
read before assignment of the water depths for each mesh adjustment as well as applying the 
boundary condition. This has a profound impact on the resulting mesh, boundary condition, and 
computations.  

Figure 4.4. Plots of water depth and mesh for MSB and synthetic domains with refinement of 6 for R 
= 26, Δx = 15 m on 1 km domains.  

 
A. Synthetic domain. 

 
B. Natural domain. 

The gradient of the synthetic beach is ~10 cm in 100 m or 10-3, which is relatively steep. The 
max depth is 50 m. The resulting wave field is partly resolved by this mesh size, as seen in 
Figure 4.5. The linear free surface cannot adequately calculate the wave front and the result is 
disorganized, even at the boundary (Figure 4.5A). After only 120 s (Figure 4.5B), the wave 
crests are breaking up. The waves reflect from the steep beach and produced an irregular patter 
after 15 minutes. However, the maximum water elevation remained below 50 cm. A poorly 
resolved domain has been found to produce unreal water levels (~3 m) from the incident 14 cm 
crests. In this case, the errors were associated with an initially low resolution bathymetry that is 
oversampled for the requested refinement. The irregular waves from Figure 1D are very similar 
to those from this simulation because of the common problem with the linear free surface.  

Figure 4.5. Plots of water level on the synthetic 1 km domain with refinement of 6.  

 
A. 60 s. 

 
B. 120 s. 
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A 10 km domain (centered at lon = 271.525°, lat = 29.2°) was simulated using a different initial 
synthetic bathymetry that had a cell size of 0.001°, or ~ 1 km. The resulting wave field is phase 
averaged because the same refinement was used (R = 6, Δx = 156 m). The shallowest depths in 
the grid are 20 cm (Figure 4.6A). The resulting wave field after 5 min. (Figure 4.6B) shows the 
wave front has a maximum height of 9.5 cm and is propagating smoothly. After 15 min (Figure 
4.6C) the wave height has reached 17 cm at the coast from an initial value of 14 cm.  

Figure 4.6. Plots of synthetic 10 km domain with refinement of 6.  

 
A. Water depth in meters. 

 
B. Water level (~wave height) at 300 s. 

 
C. Water level (~wave height) at 900 s. 

 

A final test was completed using a very simple input bathymetry. The domain was described by 
the longitude, latitude, and depth at the four corners of the domain. The result was good for a 10 
km domain centered 0.2° from the shoreline (western edge) but the minimum depth was 6 m. 
When the projection was shifted west to have a minimum depth of 2.5 m, the boundary 
condition was not applied although the simulation completed smoothy.  

Terrain Databases (KDT) 

The Gerris Terrain module contains a set of objects which can be used to define solid 
boundaries using large Digital Terrain Model (DTM) databases. The databases are only limited 
in size by the amount of disk space available and include a Kd-tree spatial index for efficient 
retrieval of subsets of the original data.  
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A Gerris terrain database consists of three files: basename.kdt, basename.pts, basename.sum. 
Where basename is the base name of the terrain database.  

The Gerris Terrain databases are usually created with the xyz2kdt utility that is available with 
the Gerris installation. Type "xyz2kdt -h" to see the usage. The basic process involves piping 
xyz output from a DTM to the xyz2kdt utility.  

Here is an example of the steps for creating the ETOPO Gerris terrain database.  

 (1) Unzip the etopo1 package: unzip etopo1_ice_g_i2.zip 

 (2) Edit etopo_i2_to_xyz.c to make sure the defines match the etopo1 header 

     file (etopo1_ice_g_i2.hdr). 

 (3) Compile: cc etopo_i2_to_xyz.c -o etopo_i2_to_xyz 

 (4) Run (pipe xyz output to xyz2kdt utility): 

     ./etopo_i2_to_xyz < etopo1_ice_g_i2.bin | xyz2kdt -v etopo1_ice_g 

The kdtquery utility (available with the Gerris installation) can be used to query a KDT 
database for points that lie within a lon/lat box.  

Local KDT Databases 

Local KDT databases are maintained in /u/gfs/topo/global and /u/gfs/topo/regional. As the 
names imply, /u/gfs/topo/global contains global terrain databases and /u/gfs/topo/regional 
contains regional terrain databases. At the top-level of these directories are symbolic links to 
the available KDT databases. The symbolic links at the global and regional level simplify the 
database search path settings for finding KDT databases.  

Here is a description of the available global KDT databases.  

 NRL DBDB 2 minute version 4.0: 

   Vertical reference: MSL 

   Basename: dbdb2.v40 

     dbdb2.v40.kdt -> /u/gfs/topo/global/dbdb2/dbdb2.v40.kdt 

     dbdb2.v40.pts -> /u/gfs/topo/global/dbdb2/dbdb2.v40.pts 

     dbdb2.v40.sum -> /u/gfs/topo/global/dbdb2/dbdb2.v40.sum 

 ETOPO 1 minute: 

   URL: http://www.ngdc.noaa.gov/mgg/global/global.html 

   Vertical reference: MSL 

   Basename: etopo1_ice_g 

     etopo1_ice_g.kdt -> /u/gfs/topo/global/etopo/etopo1_ice_g.kdt 

     etopo1_ice_g.pts -> /u/gfs/topo/global/etopo/etopo1_ice_g.pts 

     etopo1_ice_g.sum -> /u/gfs/topo/global/etopo/etopo1_ice_g.sum 

 GEBCO 30 second: 

   URL: https://www.bodc.ac.uk/data/online_delivery/gebco 

   Vertical reference: MSL 

   Basename: gebco_08 

     gebco_08.kdt -> /u/gfs/topo/global/gebco/gebco_08.kdt 

     gebco_08.pts -> /u/gfs/topo/global/gebco/gebco_08.pts 

     gebco_08.sum -> /u/gfs/topo/global/gebco/gebco_08.sum 
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 GEBCO 1 minute: 

   URL: https://www.bodc.ac.uk/data/online_delivery/gebco 

   Vertical reference: MSL 

   Basename: gebco_1min 

     gebco_1min.kdt -> /u/gfs/topo/global/gebco/gebco_1min.kdt 

     gebco_1min.pts -> /u/gfs/topo/global/gebco/gebco_1min.pts 

     gebco_1min.sum -> /u/gfs/topo/global/gebco/gebco_1min.sum 

Here is a description of the available regional KDT databases.  

 NOAA Geophysical Data Center (NGDC) Coastal Relief Maps (CRM): 

 URL: http://www.ngdc.noaa.gov/mgg/coastal/crm.html 

 Vertical reference: MSL 

 Northeast Atlantic CRM 

   Basename: ne_atl_crm_v1 

     ne_atl_crm_v1.kdt -> /u/gfs/topo/regional/ngdc_crm/ne_atl_crm_v1.kdt 

     ne_atl_crm_v1.pts -> /u/gfs/topo/regional/ngdc_crm/ne_atl_crm_v1.pts 

     ne_atl_crm_v1.sum -> /u/gfs/topo/regional/ngdc_crm/ne_atl_crm_v1.sum 

 Southeast Atlantic CRM 

   Basename: se_atl_crm_v1 

     se_atl_crm_v1.kdt -> /u/gfs/topo/regional/ngdc_crm/se_atl_crm_v1.kdt 

     se_atl_crm_v1.pts -> /u/gfs/topo/regional/ngdc_crm/se_atl_crm_v1.pts 

     se_atl_crm_v1.sum -> /u/gfs/topo/regional/ngdc_crm/se_atl_crm_v1.sum 

 Eastern Gulf of Mexico CRM 

   Basename: fl_east_gom_crm_v1 

     fl_east_gom_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/fl_east_gom_crm_v1.kdt 

     fl_east_gom_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/fl_east_gom_crm_v1.pts 

     fl_east_gom_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/fl_east_gom_crm_v1.sum 

 Central Gulf of Mexico CRM 

   Basename: central_gom_crm_v1 

     central_gom_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/central_gom_crm_v1.kdt 

     central_gom_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/central_gom_crm_v1.pts 

     central_gom_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/central_gom_crm_v1.sum 

 Western Gulf of Mexico CRM 

   Basename: western_gom_crm_v1 

     western_gom_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/western_gom_crm_v1.kdt 

     western_gom_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/western_gom_crm_v1.pts 

     western_gom_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/western_gom_crm_v1.sum 

 Southern California CRM 

   Basename: southern_calif_crm_v1 

     southern_calif_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/southern_calif_crm_v1.kdt 
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     southern_calif_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/southern_calif_crm_v1.pts 

     southern_calif_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/southern_calif_crm_v1.sum 

  

Central California CRM 

   Basename: central_calif_crm_v1 

     central_pacific_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/central_pacific_crm_v1.kdt 

     central_pacific_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/central_pacific_crm_v1.pts 

     central_pacific_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/central_pacific_crm_v1.sum 

Northwest Pacific CRM 

   Basename: nw_pacific_crm_v1 

     nw_pacific_crm_v1.kdt-> 

/u/gfs/topo/regional/ngdc_crm/nw_pacific_crm_v1.kdt 

     nw_pacific_crm_v1.pts-> 

/u/gfs/topo/regional/ngdc_crm/nw_pacific_crm_v1.pts 

     nw_pacific_crm_v1.sum-> 

/u/gfs/topo/regional/ngdc_crm/nw_pacific_crm_v1.sum 

Hawaii CRM 

   Basename: hawaii_crm_v1 

     hawaii_crm_v1.kdt -> /u/gfs/topo/regional/ngdc_crm/hawaii_crm_v1.kdt 

     hawaii_crm_v1.pts -> /u/gfs/topo/regional/ngdc_crm/hawaii_crm_v1.pts 

     hawaii_crm_v1.sum -> /u/gfs/topo/regional/ngdc_crm/hawaii_crm_v1.sum 

USGS Gulf of Maine 3 second: 

   Vertical reference: MSL 

   Basename: gom03_v31 

     gom03_v31.kdt -> /u/gfs/topo/regional/gulf_of_maine/gom03_v31.kdt 

     gom03_v31.pts -> /u/gfs/topo/regional/gulf_of_maine/gom03_v31.pts 

     gom03_v31.sum -> /u/gfs/topo/regional/gulf_of_maine/gom03_v31.sum 

Northern Gulf Littoral Initiative (NGLI) 3 second: 

   URL: file:///u/gfs/topo/regional/ngli/DATA/ngli_map_bathy_topo.htm 

   Domain covered: (-90,29) to (-87,31) 

   Vertical reference: MSL 

   Basename: ngli_bathy_topo 

    ngli_bathy_topo.kdt -> /u/gfs/topo/regional/ngli/ngli_bathy_topo.kdt 

    ngli_bathy_topo.pts -> /u/gfs/topo/regional/ngli/ngli_bathy_topo.pts 

    ngli_bathy_topo.sum -> /u/gfs/topo/regional/ngli/ngli_bathy_topo.sum 

Adriatic 7.5 second: 

   Vertical reference: MSL 

   Basename: adriatic_7.5sec 

     adriatic_7.5sec.kdt-> /u/gfs/topo/regional/adriatic/adriatic_7.5sec.kdt 

     adriatic_7.5sec.pts-> /u/gfs/topo/regional/adriatic/adriatic_7.5sec.pts 

     adriatic_7.5sec.sum-> /u/gfs/topo/regional/adriatic/adriatic_7.5sec.sum 

The scripts and programs within the subdirectories of /u/gfs/topo/global and 
/u/gfs/topo/regional can be used as a guide for generating kdt databases. In each of the database 
subdirectories in /u/gfs/topo/global and /u/gfs/topo/regional is a program for reading the 
associated DTM and outputting to stdout the xyz points.  
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Using The Terrain Module 

The Terrain module is initialized by adding the following line to the Gerris parameter file.  

 GModule Terrain 

The Terrain module defines the following objects.  

 GfsRefineTerrain -- Refines the mesh and creates the corresponding terrain 

model 

 GfsTerrain -- Creates a solid boundary following a given terrain model 

 GfsVariableTerrain -- Defines a variable containing the terrain height 

The syntax description for the Terrain module is found at 
http://gfs.sourceforge.net/wiki/index.php/Object_heirarchy#Terrain.  There are two ways to 
specify the search path for KDT databases. One method is to set the path parameter in 
GfsRefineTerrain or GfsVariableTerrain. For example,  

 GfsRefineTerrain 8 H { 

   path = /u/gfs/topo/regional:/u/gfs/topo/global 

   basename = gebco_08 

 } TRUE 

The path parameter defaults to "." (the local directory) when not specified. This default value 
can be changed by setting the GFS_TERRAIN_PATH environment variable. For example,  

 GFS_TERRAIN_PATH=/u/gfs/topo/global 

 GFS_TERRAIN_PATH=/u/gfs/topo/regional:$GFS_TERRAIN_PATH 

 export GFS_TERRAIN_PATH 

Terrain Data Base Example 

There are several bathymetry sources for this area. It is not available as a single file, but these 
data have been compiled from NOAA, NGLI, and ETOPO sources. The first step in creating a 
GFS terrain database is to format all desired sources into the KDT file format, which is readable 
by the GfsTerrain module. The terrain data are archived in 
/home/keen/ARCHIVE/grids/gulf_of_mexico:  

 Bay_St_Louis/bay_st_louis_3s.xyz  (~92 m) 

 gulf_of_mexico/mississippi_sound/ngli_bathy_3s.xyz  (3 arc-second or ~92 m) 

The third is a standard terrain database from NOAA (/u/gfs/topo/regional):  

 central_gom_crm_v1  (3 arc-second or ~92 m) 

Others are available but these are the best coverage. This section will discuss how it was 
determined that these were the best to use. The xyz files are individually transformed into KDT 
files using the following commands:  
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 cat ngli_bathy_3s.xyz | /common/gfs/bin/xyz2kdt -v ngli_bathy_3s 

 cat bay_st_louis_3s.xyz | /common/gfs/bin/xyz2kdt -v bay_st_louis_3s 

Examples of the resulting tree-based data are stored in the following files:  

 msgom007_010799.kdt 

 msgom007_010799.pts 

 msgom007_010799.sum 

These preliminary topo/bathy databases are examined using Gerris' Shallow Water Module 
(GfsRiver) to create gfs files for viewing with Gfsview2D. This is necessary because we do not 
have a utility for viewing the KDT terrain files. The general contents can be printed to the 
screen or sent to a file with kdtquery as follows:  

echo "-90 30 -89 31" |  ngli_bathy_3s 

This command reveals that there are a lot of land points in addition to water values, which are 
less than zero. The simulation file, tides.gfs was adjusted to produce a reasonable that can be 
used for the Ocean Module. The resulting terrain (ngli_1s-3s.xyz) is gridded to ~80 m and is 
more than large enough (Figure 4.7).  

 
Figure 4.7. Screen shot of gfsview2D showing the NGLI bathy (~80 m) to be used for a GTS file. 

But how good is it? We can use the AMR in Gerris to evaluate this terrain in detail. The 
GfsAdaptError class is a subclass of the GfsAdaptGradient class, which is a subclass of the 
GfsAdapt (Event) class. The included GfsFunction increases refinement wherever the bottom 
depth changes rapidly.  

 AdaptError { istart = 0 istep = 1 iend = 1 } { 

      cmax = 1.0 
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      cfactor = 4 

      weight = 1.0 

      minlevel = 0 

      maxlevel = bathyLEVEL 

      maxcells = 10000000 

 } (Zb <= 0 && Zb > -1500 ? Zb : 0) 

where cmax = max allowable cell cost; cfactor = divisor for coarsening a cell (i.e., cost is 
smaller than cmax/cfactor); weight = weight for each factor. The resulting cell plot (Figure 4.8) 
shows that there is a major discontinuity at ~89° (off the delta) due to using multiple 
bathymetry with major differences in depths.  

 
Figure 4.8. Screen shot of gfsview2D showing the NGLI bathy with initial cell refinement for depths 
<1500 m. 

A lower resolution terrain file for the northern gulf of mexico (ngom05_060612.xyz) shows a 
much better likelihood of matching with the higher resolution terrain that was specifically 
created from the NGLI data (Figure 4.9). 
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Figure 4.9. Screen shot of gfsview2D showing a low-resolution terrain with initial cell refinement 
based on depth changes <1500 m. 

This terrain is much too coarse for the Mississippi Sound and Bay St. Louis areas, however. We 
can use a 3 arc-second terrain from NOAA for Bay St. Louis and merge it with the coarser one 
to get this result (Figure 4.10).  

 
Figure 4.10. Screen shot of gfsview2D showing a low-resolution terrain mixed with a 3 second terrain for 
Bay St. Louis, with 1-hour cell refinement based on depth curvature and wetting/drying. 

These terrains do not overlap and the Miss. Sound area is resolved at the lower resolution. This 
can be addressed with an intermediate terrain (msgom_01_040497) (Figure 4.11).  
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Figure 4.11. Screen shot of gfsview2D showing an intermediate-resolution terrain for the Miss. 
Bight region, with 1-hour cell refinement based on depth curvature and wetting/drying. 

The use of all three terrains demonstrates several aspects of such a merging (Figure 4.12). First, 
the smallest area of special interest (Bay St. Louis) has been resolved at the highest resolution 
as desired. However, the mismatch in grids at the SE corner of the intermediate grid is apparent. 
This is caused by a practice of making a constant depth for small areas with much deeper water, 
which would impose a small CFL constraint on the model time step otherwise. This practice 
has apparently worked its way into many of the available bathymetry files.  

 
Figure 4.12. Screen shot of gfsview2D showing the result of all three terrains for the Miss. Bight region, 
with 1-hour cell refinement based on depth curvature and wetting/drying. 
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One way to address this problem is to remove all depths in the intermediate terrain that are 80 
m. This results in only the valid points being available for the merged mesh. Before examining 
the result, it is useful to use available ground truth, which in this case is available from 
GoogleEarth because they include altimetry-derived bathymetry in this area. The image below 
(Figure 4.13) shows salt domes and a sharp drop-off from 60 m to 200 m.  

 
Figure 4.13. Screenshot from Google Earth of Mississippi Bight bathymetry derived from 
altimetry. 

The mesh that results from the modified MS grid (intermediate) lacks the square mismatch area 
but does indicate a slightly angular gradient in the vicinity of the drop-off east of the delta 
(Figure 4.14). This is consistent with the altimetry and may be acceptable if it is representative 
of the terrain rather than the gridding procedure.  

 
Figure 4.14. Screen shot of gfsview2D showing the result of all three terrains for the Miss. Bight 
region, with 1-hour cell refinement based on depth curvature and wetting/drying. 
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There is a problem with this grid, however; it reflects the southern edge of the intermediate 
terrain and is unrealistic. These problems indicate the difficulties of working with previously 
gridded bathymetry: (1) it often neglects land and thus cannot be used for intertidal 
computations; (2) it may include artificial depths that are intended for specific simulations; (3) 
grids may not overlap and may have serious mismatched terrain values in overlapping areas.  
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Section 5: Boundary Conditions 

Introduction 

Gerris implements a number of standard boundary conditions as standard functions. The 
boundary conditions are introduced through the GfsBc class (Figure 5.1) and they are processed 
as GfsInit events. Note that this is not part of the GTS library. It is used in the ocean module.  

 
Figure 5.1. Simplified diagram for the GfsBc Class. 

The structure GfsBc is defined in the boundary.h file of GFS and not a part of the tide module 
(see section below). This is per the standard template constructions within GTS and inherited 
by GFS. The GfsBc structure contains members:  

 GtsObject           parent; 

 GfsLinearProblem *  lp; 

 GfsBoundary *       b; 

 GfsVariable *       v; 

 gboolean            extra; 

 FttFaceTraverseFunc bc, homogeneous_bc; 

 FttFaceTraverseFunc homogeneous_bc_stencil; 

 FttFaceTraverseFunc face_bc; 
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This class contains GTS members, so it is a low-level class (sort of) that utilizes existing GTS 
functionality directly. The function tide is associated with a general tide (GfsBc.bc). To 
summarize,  

 tide calls tide_value, which calls amplitude_value,  

 which finally calls fes. This appears to be a direct connection to the 

fes2004  

 database. The GfsBc class does not differentiate sources or types of 

boundary  

 conditions. This is up to the user. 

The classes that comprise the boundary conditions are illustrated in Figure 5.2.  

 
Figure 5.2. Schematic diagram of the relationships between members of the GfsBcClass. 

 

Tidal Boundary 

Tide processing is started when a GFS class is encountered in the simulation file and its "read" 
function is invoked. For example, if the string ".gts" is parsed, function read_surface (utils.c) is 
called whereas a float or int is parsed directly. For gts file input, the sequence is more complex 
because the initial processing by read_surface only results in the surface data (i.e., x, y, and z 
values) being placed in containers.  
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A GModule for processing the tides is not created until the boundary conditions are processed. 
The constituents are stored as GfsEvent objects until the GfsBcFlather class is processed in 
function ocean_run.  

I found a note in ocean.c referring to modules/tide.mod, which is used to generate the tide.c 
program. There is no difference between tide.c and tide.mod. If changes are to be made, 
however, they need to done in tide.mod. The tide module is not used in the Cook Strait problem 
because the tide amplitudes are read from files and not imported from the database. This class is 
not part of the GfsBc class (Figure 5.2).  

General Observations in tide.mod:  

 Struct _GfsBcTide is defined with members: 

   GfsBcValue     parent,  

   gdouble **     amplitude, **phase, x, and size;  

   GfsVariable *  h, p.  

P is going to be pressure (or anomaly) and h = water depth, based on the standard used in the 
simulation input file (tide.gfs). The usual procedure is followed with the macros 
GFS_BC_TIDE and GFS_IS_BC_TIDE.  

This section discusses the apparent sequence in which the tidal input is processed in Gerris. 
Some of this algorithm is also discussed in simulation file processing analysis (Appendix A).  

There are several steps to processing the tidal data into the model:  

 1. Reading the files 

 2. Storing the surface information 

 3. Processing the input GtsSurface into a GfsInit object 

 4. Processing the GfsInit objects into GfsBcFlather objects 

 5. Applying the values to the pressure equation along the boundary 

Constant Values Supplied in Simulation File 

The K1 tide is approximated using the data from Pensacola (see Keen et al., 2013,MR Report, 
Coupled Hydrodynamic and Morphologic Modeling with Gerris) with amplitude, phase values 
of 14 cm and 320° G. This is implemented as discussed in the Cook Strait example. The key 
elements as implemented here are:  

 Define RTIME 86400.0 

 Define RAMP(t) (t > RTIME ? 1.0 : t/RTIME) 

 Define K1F (2.*M_PI/86162) 

 Define K1p 320.0 

 Define K1a 0.14 

 Define K1(t) (A_amp*cos (K1F*t)+B_amp*sin (K1F*t)) 

 Define TIDE(t) (RAMP(t)*K1(t)) 

 ... 

 Init {} { 

     A_amp = K1a*cos(K1p*180./M_PI) 
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     B_amp = K1a*sin(K1p*180./M_PI) 

     flip = 1 

 } 

 ... 

 GfsBox { 

     left = Boundary {} 

     right = Boundary {}   

     bottom = Boundary { 

         BcFlather V 0 H P TIDE(t) 

     } 

     front = Boundary {} 

 } 

With the final bathymetry from Simulation 1 (previous section), the tide propagated smoothly 
with no noise during ramp up (Figure 5.3).  

Figure 5.3. Screen dump from GfsView3D showing tide propagation.  

 
A. Hour 1. 

 
B. Hour 24 

The simulation uses a ramp time (RTIME) of 1 day so the resulting time series of water levels at 
Mooring B from Santa Rosa Island have not reached full height. A longer time period (3.5 day) 
reveals a reasonable match between the model and the K1 tides at Pensacola (Figure 5.4A). The 
model has no time, and the match is coincidental. The tide should arrive somewhat earlier on 
the outer island shoreline than at the tide gauge. The detailed data for Mississippi Sound 
suggest about 20 minutes (Seim et al., 1987).  

Figure 5.4. Time series of K1 water level at Pensacola tide gauge (black line) and model 
prediction at the gulf side of Santa Rosa Island (blue line).  
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A. Simulation 2. B. Simulation 4. 

It is not clear why the ramp-up does not appear in Figure 5.4A but it is obvious in Figure 5.4B.  

Tides Module (from FES2004 only) 

There are two parameters defined as macros: N = 64 (number of discretization points), and NM 
= 14 (number of tidal modes, which must match FES2004). Fes2004 is a subdirectory of 
modules. It contains the following files:  

 fes2004_alloc.c,  
 fes2004_error.c,  
 fes2005_extraction.c: this function is passed a filename along with pointers to location, 

lat, lon, amplitude, and phase. It calls a series of functions directly related to the fes2004 
tide database.  

 fes2004_init.c,  
 fes2004_io.c: opens a netcdf file for each cpu. The name is contained in 'filename'. It 

passes a pointer to a structure to NC_OPEN as the unit number.  
 fes2004_kernel.c,  
 fes2004_prediction.c,  
 fes.h  
 fes2004_lib.h.  

The FES 2004 database is a global ocean tide spherical harmonic coefficients.  

 F. Lyard, F. Lefevre, T. Letellier, O. Francis, "Modelling the global ocean tides: insights 
from FES2004," Ocean Dynamics, 56, 394-415, 2006).  

This will generate the coefficients file that are referred to in the shell script used for this 
simulation. File tide.c includes the function, bc_tide_read. This function is passed a GtsFile 
and a pointer to an array of GtsObjects. The parameters, N and NM, are used to allocate 
memory for the amplitude. There is a block to "read embedded coefficients", which loops over 
N and NM. The file must contain only numbers for amplitude and phase. This is hard-wired for 
the fes2004 data. I believe this is referring to actual coefficients in the input simulation file 
instead of the 'A_amp = Am2.gts' statement. The second option is to "extract FES2004 tidal 
coefficients" using the environmental variable, GFS_FES2004" if it is defined, or the file 
"tide.fes2004.nc". An error will occur if neither is available.  

We need to check where this function (bc_tide_read) is called. It is assigned to the "klass-
>read" member of the GtsObjectClass, which is its parent, in gfs_bc_tide_class_init in the usual 
initialization paradigm. The calling function, gfs_bc_tide_class, initializes the gfs_bc_tide_info 
structure with its name. This function is called in a macro, GFS_BC_TIDE. This macro does 
not appear to be used to assign the tide amplitude from a file in the simulation file. This macro 
only appears in tide.c in function tide_value, where it is passed as a function argument 
(standard approach) for the depth to gfs_face_interpolated_value; the returned value is assigned 
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to H, which is a double scalar. The amplitude is calculated by another call to GFS_BC_TIDE 
passed to function amplitude_value. This is modified for the current time (sim->time.t + deltat) 
and corrected for the gravity wave velocity. Note that the reference depth is fixed at 5000 m.  

The function tide_value is called by tide, which is the "bc" member of the structure GfsBc 
initialized by gfs_bc_tide_init. At this point, specialized module names may no longer be used 
and it may become necessary to track instantiations of the GfsBc structure. There are several 
occurrences in file tide.c, and "bc" is passed to amplitude_value. This function occurred just 
above. However, if the end result of this line is to call the macro GFS_BC_TIDE, it is intended 
to extract/read the fes2004 tide solution only.  

Extracting tides from a database 

The tides will be extracted from the OSU tide database:  

 /home/keen/ARCHIVE/DATA/TYPE_OF_DATA/tides/TIDE_TABLES/osu_tides/" 

The tides will be processed using a program built from gts_tides.f, tiderot.F, and tide_egb.F. 
This simulation will only use the tidal heights. The tide extraction is completed for the northern 
Gulf of Mexico grid clipped to -90<x<-87 and 28<y<31. This reduced the number of points to 
3540. The tide extraction program was also modified to use a parameter to select only the tidal 
heights if desired (ncomp=1). This was necessary because the triangulation procedure was 
taking far too long for all of the grid points. The output consists of files, k1_coefficients, 
m2_coefficients, and o1_coefficients. These contain the following lines:  

       270.0230         28.0479          0.1452         11.8485 

       270.0230         28.0979          0.1451         11.7649 

       270.0230         28.1479          0.1450         11.681... 

The columns are longitude, latitude, amplitude, and phase for the given constituent. These files 
are piped to the delaunay program that is part of the GFS software library:  

 print $1 " " $2 " " $3*cos($4*3.14159265357/180.) \ 

                    < m2_coefficients | delaunay > AM2.gts 

  

 print $1 " " $2 " " $3*sin($4*3.14159265357/180.) \ 

                    < m2_coefficients | delaunay > BM2.gts 

where $1, $2, $3, and $4 refer to the longitude, latitude, amplitude, and phase columns from the 
input file, respectively. The format of these files looks like this:  

 3540 10383 6844 GtsSurface GtsFace GtsEdge GtsVertex 

 272.823 30.6479 -0.0003878 

 272.773 30.6479 -0.000242959 

 272.773 30.6979 -0.00012148 

 272.373 29.7479 -0.00712594 

 272.323 29.7479 -0.00779957... 
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This should be the correct format to be read by Gerris as a GtsSurface.  

Tidal Constituents from GTS Files 

I believe that tides read from gts files are implemented through the boundary class in GFS and 
NOT as a module. In directory, src, we find the boundary.c file, which has similar functions to 
the tide.c file, except its functions do not include "tide" within their names. This sequence is 
PROBABLY started by the "GfsBoundary" (sometimes the "Gfs" is not used--optional) in the 
simulation file.  

Boundary heights and/or currents must come from elsewhere. The structure, GfsBcValue has 
only two members:  

 GfsBc         parent 

 GfsFunction * val 

The function "GfsBcValue.val" is initialized in gfs_bc_value_init by a call to gfs_function_new, 
which creates (if necessary) a new GfsFunction. However, (GfsFunction *val) has no value yet. 
The function gfs_bc_value_class_init assigns the key structure members:  

 klass->write   = bc_value_write; 

 klass->read    = bc_value_read; 

 klass->destroy = bc_value_destroy; 

We want to look at occurrences of the bc_value_read function to look for errors. This function 
receives an array of pointers to GtsObjects, which represent the boundary condition values, and 
a pointer to the (PROBABLY) simulation file. The file has been read up to the appropriate line 
and the keyword "Boundary" will cause this function to be called from some, as yet 
undetermined, location in the code. There are two read statements in bc_value_read. First is the 
"read" function for the parent class of the GfsBcClass parent, which is a GtsObjectClass. This 
function is set to NULL by the underlying GtsObjectClass init function. The standard 
arguments to a GtsObject read function are an array of pointers to structures and a pointer to a 
file, in this case **o and *fp, which were passed to bc_value_read.  

The basic read function for a binary gts file is gts_file_read, which is a wrapper for the c 
function fread. Function gts_file_read is located in file, misc.c, but the declaration is in gts.h. If 
the gts file is ASCII, function atof is called by gts_point_read to recast 1 point at a time from 
the gts file. The points are read by gts_file_next_token. There are three calls; the x coordinate, y 
coordinate, and z coordinate. Function gts_point_read is the "read" function for the point class, 
which is a subclass of the GtsObject class. The arguments passed to gts_point_read are the 
same as the GtsObjectClass "read" function, **o and *fp. I THINK that the gts_point_read 
function is inherited from the point class by the definition of the "read" function in 
gfs_bc_value_class_init, which invokes the GTS_OBJECT_CLASS macro with the 
gfs_bc_value_class function and its "read" member. In other words, the parent of a boundary 
value is a point value, which makes perfectly good sense (to me). We need to locate the 
function that calls gts_point_read because it only reads one line.  
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The GTS tide files are implemented as GfsInit objects included in the simulation file:  

 GfsInit {} {  

              A_amp = AM2.gts 

              B_amp = BM2.gts 

            } 

Their contents will be placed in a GfsEvent structure that is associated with an object from the 
pseudoclass, GfsInit. The unique operation of Gerris allows these statements to be transformed 
into a c-function when Gerris runs. This begins with the GfsInit class being read from the file 
before gfs_function_read is called to parse the strings included between the opening "{ " and 
closing "} " tokens. This is a user-supplied function that is defined in file utils.c. It calls the 
read member of the GfsFunction class' parent (GtsObject), which is function_read.  

 gfs_function_read: (* GTS_OBJECT (f)->klass->read) (&o, fp); (read = 

function_read) 

 static void function_read (GtsObject ** o, GtsFile * fp) 

where: &o is a pointer to a GfsFunction and fp is the GfsFile pointer. This function interprets 
the input from the simulation file as a c function and returns a pointer. Within the "Boundary" 
block we find "BcFlather" defined.  

Flather Boundary Condition 

If the key word "Boundary" is parsed from the simulation file, a GfsBoundary object will be 
created. Furthermore, if the keyword "Flather" is encountered, a GfsBcFlather object will be 
created.  Class gfs_bc_flather_class() is initialized as an entry in the array, classes by function 
gfs_classes. This is its only occurrence in this file (init.c).  

The GfsBcFlather class contains the following functions:  

 bc_flather_write 

 set_gradient_boundary 

 bc_flather_read 

 bc_flather_destroy 

 flather_value 

 flather 

 homogeneous_flather 

 face_flather 

 gfs_bc_flather_class_init 

 gfs_bc_flather_init 

 gfs_bc_flather_class 

There is a macro defined for the flather bc: GFS_BC_FLATHER, which creates a new 
GfsFlather object. The GfsBcFlather structure has the following members:  

 GfsBcValue    parent 

 GfsVariable * h, *p 

 GfsFunction * val 
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As part of evaluating the functionality of the Mississippi Bight tidal simulations, I have been 
tracking the processing of the Flather BC.  

Methodology 

The tidal constituents are implemented through the GfsBox object. Function gfs_box_read, 
reads all of the boundary conditions and a new GfsBc object is created by gfs_bc_new. This 
function is invoked when "Boundary" is parsed from the simulation file.  

 GfsBox { 

      left = Boundary { 

          BcFlather U 0 H P M2(t) 

      } 

 } 

The type of boundary condition, "BcFlather", is read by other functions that are called by the 
read member of the GfsBc class, which is gfs_boundary_read (assigned in function 
gfs_boundary_class_init). This schematic shows the sequence:  

 gfs_boundary_read>>boundary_read_extra_bc>>gts_file_next_token  /* reads 

"BcFlather" */ 

This operation identifies the type of boundary condition only. The "BcFlather" BC is processed 
by function boundary_read_extra_bc (in file boundary.c). The read function for a 
GfsBcFlather object is bc_flather_read. This is initialized by gfs_bc_flather_class_init; the 
functions for this object are contained in file, ocean.c because there is no class defined for a 
GfsBcFlather object. The boundary_read_extra_bc function calls the read function for the 
"BcFlather" object in this innocuous statement:  

 (* klass->read) (&object, fp) 

where: klass is the class returned from gfs_object_class_from_name being passed "BcFlather"; 
read is pointing to bc_flather_read; object is a pointer to the GtsObject associated with klass; 
and fp is a pointer to the simulation file. Function, bc_flather_read calls the read function for 
the GfsBcValue class (bc_value_read); i.e., the input for the Flather BC is the same as for 
Dirichlet or other objects that are variations of a GfsBcClass structure, which is itself a wrapper 
for a GtsObjectClass structure (see file, boundary.h). All of the boundary conditions return a 
GfsBcClass pointer. The GfsBcFlather is the only one not contained in file boundary.c; it is 
located in ocean.c and headers are in ocean.h.  

Using GTS Files for Input 

The tides are supposed to be implementable using GTS files like with the topography. This was 
an original problem with using them. We have revisited this issue for the idealized domain at 
Santa Rosa Island using a GTS topo file that we know works. The tidal elevations are extracted 
from the OSU tidal model using standard methods (FILES: gts_tides.f, tide_egb.F, tiderot.F) 
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and placed in an *xyz file. This file is processed using library routines that are part of GFS 
using this shell script:  

 #tides.sh 

 lines=`wc -l k1_coefficients | awk '{print $1}'` 

 awk -v lines=$lines ' 

 BEGIN { 

   print lines " 0 0" 

 } { 

   print $1 " " $2 " " $3*cos($4*3.14159265357/180.) 

 }' < k1_coefficients | delaunay > AK1.gts 

 awk -v lines=$lines ' 

 BEGIN { 

   print lines " 0 0" 

 } { 

   print $1 " " $2 " " $3*sin($4*3.14159265357/180.) 

 }' < k1_coefficients | delaunay > BK1.gts 

This produced two files that replace the macros in the previous method.  

 ... 

 Init {} { 

       A_amp = AK1.gts 

       B_amp = BK1.gts 

 } 

This does not work. The user-defined variables A_amp and B_amp are all zeros when viewed 
with gfsview3D. The gts files are ascii and can be viewed. They look very similar to those from 
the Gerris tutorial and from initial attempts for Mississippi Bight, which were unsuccessful.  

Demonstration of Method 

This is being tested by comparison with the results for Cook Strait, which works just as 
presented in the tutorial.  

 The first step is to define a small area using the original topo file from Popinet, 
bathymetry. The domain is centered at the middle of the Cook Strait region and is 18 km 
across (file = cook1.gts). It works well using the original coefficients file after processing 
with the tides.sh script.  

 The second step is to modify the idealized grid to fit the Cook Strait domain (174° - 174.2° 
longitude and -40.6° to -40.8° latitude). This is done using the original coefficients file (M2 
from larger model). It works but is not very smooth.  

 Then, we extract K1 tides from OSU database for this southern hemisphere domain and 
process them using tides.sh. The result is successful.  

 The last step is to take the modified cook1 bathymetry and make it northern hemisphere. 
The input files are sri01.gts (bathymetry), AK1_sri01.gts (A amplitude file), 
BK1_sri01.gts (B amplitude file). The center of the domain is: lon = 174.1° lat = 40.7°. The 
bathymetry file ranges from: lon = 174/174.2; lat= 40.6/40.8, and is 4 km across. The 
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simulation runs very slowly because Refine is 8 for lat > 29. This has been changed to R = 
6; it runs fine and looks good (enough).  

 Now, the latitude is reduced to ~30° as for Santa Rosa Island (lat range = 29.6° to 29.8°), 
file = sri02.xyz. This file is processed into sri02.gts with happrox. The K1 tides are 
extracted from the OSU database with gts_tides.f and placed in file, k1_coefficients_sri02. 
This is then processed using tides.sh to produce files, AK1_sri02.gts and BK1_sri02.gts. 
This works but with lots of reflections because of the closed BCs on all but the bottom 
(south).  

This last test is very close to the idealized domain that did not work. The last step is to move the 
longitude across the International Dateline (180°).  

 Now, the longitude range is changed to 272° - 272.2°, file = sri03.xyz. This file is 
processed into sri03.gts with happrox. The K1 tides are extracted from the OSU database 
with gts_tides.f and placed in file, k1_coefficients_sri03. This is then processed using 
tides.sh to produce files, AK1_sri03.gts and BK1_sri03.gts. The simulation has no values 
for A_amp, the user-defined variable read from file, AK1_sri03.gts. The values in file 
AK1_sri03.gts (~ 14 cm) are larger than in AK1_sri02.gts (~0.044 m). This is because of 
the location of the domain on the shelf rather than the middle Pacific Ocean.  

The only change from sri02 was the longitude is >180°.  

 Now, we define the longitude to be negative: -88° to -88.2°, file = sri04.xyz. This file is 
processed into sri04.gts with happrox. The K1 tides are extracted from the OSU database 
with gts_tides.f and placed in file, k1_coefficients_sri04, which has amplitudes and phases 
of ~ 0.14 m and 18°, respectively. This is then processed using tides.sh to produce files, 
AK1_sri04.gts and BK1_sri04.gts. These also have valid ranges. The results are correct.  

The problem is the convention for longitude. The bug appears to be within Gerris itself, as 
indicated by simulation sri03, which used the same values for the grid and the map projection 
(i.e., 270.1° for the center). The bathymetry and tides should always be in agreement as long as 
the initial xyz file is used to create the coefficient file. This is not a requirement, however; it 
has been tested for Mississippi Bight. This simulation (OceanModule03) uses a pre-existing 
bathymetry file, bath.gts, and new tidal files, AK1_msb01.gts and BK1_msb01.gts, as 
discussed in this section. The map projection uses a longitude of 270.9°.  

Note that the time step will be decreased if a higher frequency output time is chosen; for 
example, if OutputSimulation is set to (step = 0.1) whereas dt is exceeding 100., the model will 
slow down to dt = 0.1 s. The value of A0 (see Figure below) is representative of pressure (P) in 
the model, so it must be divided by the gravity constant, 9.81. The tidal amplitude is 
represented by the in-phase component of the harmonic decomposition A0 (Figure 5.5A) and 
the out-of-phase component, B0 (Figure 5.5B).  
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Figure 5.5. Result after 3.47 days from OM03 using file input for K1 tides. The units are meters.  

 
A. In-phase component, A0. 

 
B. Out-of-phase component, B0. 
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This demonstration concludes the original difficulty that was encountered in attempting to 
replicate the Cook Strait example for a location in a different part of the world. In this case, we 
were not only in the northern hemisphere, but also in the western hemisphere; New Zealand is 
SE quarter of globe and Gulf of Mexico is NW quadrant.  

Surface Forcing with Wind 

There are no good examples of how to force with a wind boundary condition. The closest 
example is The 3D CFD simulation (GfsSimulation) of air flow around a ship, the RV 
Tangaroa, which applies a constant wind speed of U = 1 (nondimensional) as a Dirichlet BC. 
The WaveWatch cyclone simulation uses a GfsGlobal function to define U10 and V10 for the 
wave model. These are specific to the wave model, however, and are not standard domain 
variables. The last is the wind-driven lake example, which uses the 2D version of the 
GfsSimulation module. This test case applies a Neumann boundary along the top with no 
gradient (U = 1).  

The first approach is to use the GfsSource class to implement U = 0.5, but nothing happened, 
not even an error. The next method was to attempt to implement a Dirichlet boundary condition 
on the front of the domain (surface of water). This was designed to implicitly assign a velocity 
as a function of the surface drag. Nothing happened. The next method is to use the GfsInit 
function in a similar method as the linear bottom friction.  

 Define Uwind -10.0 

 Define Vwind 5.0 

 Define CD_TOP 2.0e-3 

 ... 

 Define Omega (2*M_PI/86400.) 

 Define Lat_Center 30.33 

 Define Cor (2*Omega*sin(Lat_Center*M_PI/180.)) 

 ... 

 SourceCoriolis  Cor 

 ... 

 Init { istart = 0 istep = 1} { 

      Wind = (sqrt(Uwind*Uwind + Vwind*Vwind)) 

      TauxW = Uwind*Wind*CD_TOP/(1000.*H) 

      TauyW = Vwind*Wind*CD_TOP/(1000.*H) 

      TauB = Velocity*CD_BOT/H 

 } 

 ... 

 Init { istep = 1 } { 

      U = U + dt*TauxW 

      V = V + dt*TauyW 

 } 

 ... 

 front = Boundary {} 

The SourceCoriolis function inserts the f-plane value directly into the equations as a term. It 
should be calculated from 2ω⋅sin θ, which for ~30° N is 7.27×10-5.  
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The wind stress is plotted in Figure 5.6A. The boundary conditions were the default, which 
consists of no normal flow and no-slip for parallel flow. This simulation thus produces 
unrealistic results for long integrations. The steady-state condition after 24 hr is useful for 
evaluating the overall behavior of the model. The vertically averaged currents (Figure 5.6B) 
show the expected increase in shallow water and the westward alongshore flow that is common 
to this region. The maximum current speed is 14 cm/s, which is quite reasonable. It is apparent 
that this simulation is becoming unreasonable, however, because of the closed eddy developing 
offshore. The coastal setup (Figure 5.6C) reflects the wind blowing along the axes of the 
estuaries. Set-down is predicted to the east while setup occurs in the west. The set-down 
exceeds 20 cm whereas setup is < 15 cm. The coastal setup is as expected with a > 10 cm.  

Figure 5.6. Screen dump from GfsView3D for an E-SE wind of 11.2 m⋅s-1.  

 
A. Wind stress vectors plotted over contours of the 
wind stress magnitude. 

 
B. Vertically average current vectors plotted over 
contours of the current speed at 24 hr. 

 
C. Vertically average current vectors plotted 
over contours of the water anomaly at 24 hr. 
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Section 6: Gerris Input/Output Processing 

and GIS 

GNU Triangulated Surface (GTS) Files 

Triangulated Irregular Networks (TINs) are common objects for describing surfaces. They are 
used by ArcGIS, ADCIRC (and other Finite Element models), and the GTS library for input to 
Gerris and related software (e.g., Gfsview2D). A TIN is a vector-based model which represents 
geographic surfaces as contiguous non-overlapping triangles. The vertices of each triangle are 
known data points (x,y) with values in the third dimension (z) taken from surveys, topographic 
maps, or digital elevations models (DEMs). The surface of each triangle has a slope, aspect, 
surface area, and continuous, interpolated elevation values. The selective inclusion of points 
within a TIN gives the triangles their irregular pattern and reduces the amount of data storage 
required relative to the regularly distributed points in a DEM.  

This section describes the conventions in use and explores how they can be integrated within 
the GAMES environment.  

The format of the gts file is given in the comments for gts_surface_write (contained in GTS 
file, surface.c):  

  All the lines beginning with #GTS_COMMENTS are ignored. The 

first line contains three unsigned integers separated by spaces. 

The first integer is the number of vertices, nv, the second is 

the number of edges, ne and the third is the number of faces, nf. 

  

 Follows nv lines containing the x, y and z coordinates of the 

vertices.  Follows ne lines containing the two indices (starting 

from one) of the vertices of each edge. Follows nf lines 

containing the three ordered indices (also starting from one) of 

the edges of each face.   

The format described above is the least common denominator to all GTS files. Consistent with 
an object-oriented approach, the GTS file format is extensible. Each of the lines of the file can 
be extended with user-specific attributes accessible through the read() and write() virtual 
methods of each of the objects written (surface, vertices, edges or faces). When read with 
different object classes, these extra attributes are just ignored.  

Details of the GtsSurfaceClass implementation in Gerris are discussed on the GfsSurface Main 
Page. The GtsSurface members are read from the gts file, as a text file (FILE *fptr). The 
number of vertices, edges, and faces are on the first line. The lon/lat/coefficient lines are read as 
vertices where the values are z from the format above.  

These files can be created from xyz files using the following command:  

 /common/gfs/bin/happrox -f -r 1 -c 0.05 < FILE.XYZ | \ 
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                          /common/gfs/bin/transform --revert > FILE.gts 

These files can also be created using GFS tools as described in the Gerris Domain (Section 4) 
and Boundary Condition (Section 5) pages. Examples are given in the Applications Section 
(Section 11).  

Output Arc Grid File 

One of the simplest formats for gridded 2D data is the ArcInfo ASCII Grid format. This format 
can be produced by Gerris. It is simple to open with Matlab also. However, to make use of the 
full capabilities of ArcView with the ARCOAS Add-In, it is convenient to translate this format 
to a NetCDF file, which has been developed for several applications. It can also be opened by 
Matlab as well as Panoply (WinOS) and Ncview (Linux) applications. The ArcInfo file 
contains a header followed by the data on one line:  

 ncols 157 

 nrows 171 

 xllcorner -156.08749650000 

 yllcorner 18.870890200000 

 cellsize 0.00833300 

 0 0 1 1 1 2 3 3 5 6 8 9 12 14 18 21 25 30 35 41 47 53 

 59 66 73 79 86 92 97 102 106 109 112 113 113 113 111 109 106 

 103 98 94 89 83 78 72 67 61 56 51 46 41 37 32 29 25 22 19 

 etc... 

Map Projections 

In order to compare different data types, it is necessary to view them in a standard framework 
like ArcMap. This section discusses this question and the method used to rectify different 
projections.  

Using the MapProjection Module 

The GfsOcean module uses a Lambert Conformal grid. It is defined in the simulation file as 
follows. First, the size of the box enclosing the domain is defined in meters:  

PhysicalParams { L = 205e3 }                          > 205 km across 

MapProjection { lon = 270.9 lat = 30.0 angle = 0 }    > center of box 

Refine 7                                   > Minimum refinement level 

RefineSurface 10 combined_bath.gts    > Read bathy from file and refine 

                                        to 210 (1024). The resulting 

                                        finest resolution is 200.19 m. 

This simulation will output the grid file at the highest resolution of 200.19 m. This should be 
the answer in the related files (*.asc). Instead, the answer in the associate *asc files is  
 cellsize 180.6640625000 
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This cell size may reflect the projection some how. This is not discussed in the Gerris 
documentation.  

Projecting Arc Grid files in ArcMAP  

Transforming a grid of values from one projection to another may be necessary when model 
output is written in a file on a grid in the projection of the model computational grid which is 
many times not spherical, a typically gridding requirement. Data from model output in the 
ARCINFO format can be read directly into ArcMAP and saved as a raster layer. The 
assumption is that the grid spacing is the all the same in both x and y directions in units as 
dictated by the projection. The procedure is described at 
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//0012000000s000000. The 
ASCII-to-Raster tool is available in the Conversion Tools Section in the Arc Toolbox under 
ToRaster.  

In the Data Management Tools under Projections and Transformations is the Define Projection 
tool in which the user can enter in a custom projection like that of the new model data. The 
custom projection can be saved as a favourite for later use on other similar rasters. A raster 
projection file somehow appears as a .prj file, maybe through some exporting action of that 
layer though I have not caught it doing this yet.  

To get the layers in the right place, have a world map of some sort in the TOC to establish the 
map display before you bring in other projected data. Presumably, the new rasters being 
brought in will have a reference to the already placed layer which could be in geographic 
coordinates or also in some projection. Layers of differing projections or coordinate systems 
can coexist in the same map and correctly be located with respect to each other.  

Reformatting ArcInfo Grid Files to NetCDF 

There are multiple methods for reformatting non-georeferenced output from Gerris into 
NetCDF files that can be displayed in a GIS program like ArcMap: (1) rewriting using known 
geographic coordinate (e.g., longitude/latitude) data; (2) rewriting using pseudo-geographic 
coordinates; 3) interpolation to a georeferenced grid using known coordinates values. These 
methods have different advantages and disadvantages. The method used is open to modification 
in the future. This report discusses current methods only. There are two goals to the 
transformation of non-georeferenced output from Gerris: (a) make it georeferenced so that it is 
consistent with GIS data; and (b) put it into a NetCDF file with metadata conforming to the 
COARDS standard.  

The ArcInfo grid output is set in the simulation file using the OutputGRD keyword. The 
OutputGRD class can write multiple fields to one grid file by not indicating a time in the 
simulation file; for example, p-%g.asc indicates that only one field should be written to the file. 
If no format specifier is given, multiple times will be placed in the same file. This has a 
potential advantage for processing the fields into NetCDF files because ARCOAS can read time 
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series of variables from multiple NetCDF files. If separate grid files are used, they can be 
joined as follows:  

 [keen@typhoon NS-6]$ cat w-*.asc >> w_all.asc 

This will append all of the w files to the w_all.asc file, assuming the dates sort correctly; 
otherwise, it must be done manually.  

Gerris has an error in the printing function that does not place a carriage return "\n" before each 
new field (i.e., "ncols"). Consequently, the header (see above) begins on the same line as the 
preceding data field and is not read properly. The first step, therefore, is to edit these multiple-
field files and insert a carriage return before every occurrence but the first of "ncols".  

Reformatting to COARDS without Georeferencing 

The ArcInfo grid file contains geographic coordinate data that is not gridded because of the 
Lambert Conformal projection. If the region is small enough, the errors can be acceptable. This 
translation of an ArcInfo Grid file to a NetCDF file is accomplished using a perl script. The 
attributes of the variables can be made to conform to the COARDS File Format when writing 
the NetCDF files. The original script was written to translate files written by FORTRAN 
programs, which are indexed from the bottom up. An option was added to read files from the 
top down. This script is:  

 /home/keen/common/ascii2coards/ascii2coards.pl.  

The script is used as follows:  

     Usage: ./ascii2coards.pl [-d dFile -i inFile -o outFile] | [-h] 

  

       -d dFile   : file of descriptors (describes the data in inFile,  

                    ASCII format)  

       -i inFile  : file of block data (ASCII format) 

       -o outFile : name of NetCDF file to be created 

       -h         : what you see here. 

The ascii2coards script can be invoked for each variable/file and it is added to NetCDF files to 
fit any desired format. The resulting NetCDF files can be made COARDS compliant.  

Output from the 2D Vertical CFD Model 

The ArcInfo grid file is used for the 2D vertical CFD model in addition to the GfsOcean and 
GfsRiver modules. There are no geographic coordinates in these files; both axes are from -0.5 to 
0.5 (plus any defined translations). The ascii2coards descriptor file contains variables that 
control the tranformation to pseudo-geographic coordinates for display in a GIS program. This 
is unnecessary for plotting with Matlab or other general programs.  
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This example is for the output from the 2DV CFD model from the Tamar River (Keen et al., 
2013b, MR NRL 7300, Hydrodynamics and Finne-Grained-Sediment Dynamics in the Estuary 

Turbidity Maximim). In order for these fields to display properly in ArcView (using ARCOAS) 
and Panoply, they must use a 2DH convention. This requires using the COARDS dimensions, 
longitude and latitude, where latitude is the name for the vertical axis. This is not a 
straightforward process; however, because of an error in the writing of the .grd file by Gerris.  

 Parm = 'water_v' 

 longName = 'Vertical Velocity' 

 varType = 'float' 

 units = m/s 

 fillValue = -9 

 missing_value = -1.e+34 

 dataMultiplier = 1. 

 scale_factor = 1. 

 dataAddend = 0. 

 NWstartFlag = T 

 headerCount = 6 

 xAxisName  = 'longitude' 

 yAxisName  = 'latitude' 

 zAxisName  = 'depth' 

 tAxisName  = 'time' 

 xAxisPars  = 'longitude' 

 yAxisParm  = 'latitude' 

 zAxisParm  = 'depth' 

 tAxisParm  = 'time' 

 xAxisLongName  = 'Distance along channel' 

 yAxisLongName  = 'Distance from channel center' 

 yAxisLongName  = 'Height' 

 tAxisLongName  = 'Time Step' 

 xUnits = 'Meters' 

 yUnits = 'Meters' 

 zUnits = 'metres' 

 tUnits = Minutes 

 xOrigin = -4.215455 

 yOrigin = 50.497538 

 zOrigin = 0. 

 tOrigin = 0. 

 tOriginDate = 1998-09-16 15:48:00 

 xIncrement = 0.00563 

 yIncrement = 0.00563 

 zIncrement = -0.0625 

 tIncrement = 1. 

 xStart = 0 

 yStart = 0 

 zStart = 0 

 tStart = 0 

 xCount = 768 

 yCount = 64 

 zCount = 1 

 tCount = 6 

Figure 6.1 shows how such a result looks when put into pseudo-geographic coordinates in 
Panoply. The upper left corner is placed on the world map where it is indexed; this can serve as 
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a technique for placing the image geographically. These files are easily processed using 
ARCOAS tools.  

 
Figure 6.1. Example of output from Gerris transformed to lat/lon coordinates using ascii2coards.pl 

Output from the GfsOcean Module 

A more traditional grid orientation that can be processed into a NetCDF file is the 2DH grid 
used for the tidal study (Gerris Mississippi Bight Tides). This is a more conventional 
orientation that utilizes geographic coordinates in the ArcInfo Grid file. The domain in Gerris is 
specified by the latitude and longitude of the center and the total size of the box. This is done 
because there is no grid a priori. We will use an example with the following domain 
specification:  

 PhysicalParams { L = 185e3 } 

 MapProjection { lon = 270.9 lat = 30.2 angle = 0 } 

The headers from the p-200000.asc file are:  

 ncols            911 

 ncows            628 

 xllcorner        -72174.060938 

 yllcorner        -92469.800000 

 cellsize         180.6640625000 

 nodata_value     -9999 

The approximate length of an output cell along the x axis is (360°) ⋅ 
(180.6640625000)/[cos(30°) ⋅ (40008×103)] = 0.001806279°. The lower left corner would then 
be 270.9° - 0.001806279° ⋅ 455 = 270.081°. The y axis would not be corrected for latitude; 
30.2° - 0.001625° ⋅ 314 = 29.68975°.  

Two additional parameters have been added to the ascii2coards.pl script to assist in processing 
the Gerris ouput from the Arc Grid files: (1) transform, which is a simple multiplicative 
coefficient for data; and (2) badvalue, which is set to the missing/fill values from the ascii file. 
This is useful to maintain these flags for later processing. These are assigned in the 
ascii2coards*.in file. The default values are 1 and -9999, respectively, for transform and 
badvalue.  
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The ascii2coards Perl script can be used to write a COARDS compatible NetCDF file from the 
grd file but it is not georeferenced because the cell size in the grid header is constant, which is 
not the case for the Lambert Conformal projection used in Gerris. The resultant raster file 
displayed in Arc (Figure 6.2) does not match the satellite images. This can be seen in the 
western part of the domain in the image below.  

 
Figure 6.2. Screen dump of ArcMap view of K1 amplitudes (cm) from GfsOcean module after 
processing by the ascii2coards script; and the observed/modeled values at selected points. 

Creating Georeferenced NetCDF Files 

This section describes two methods for producing accurately georeferenced data sets that can be 
plotted by any GIS-based visualization program. The first uses ArcMap interpolation functions 
and will work on unstructured data with (potentially) coastline data used as a barrier to produce 
the file or mask the resultant. The second uses ArcMAP projection functions that only work on 
structured data sets.  
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Projecting to Georeferenced Coordinates with ArcMap 

Gerris outputs an ASCII file in the Arc Info Grid format. This is not a georeferenced file, 
however, and it must be processed to be accurately represented on the Earth's surface using 
ArcMap. This section discusses methods for completing this. The projection used by Gerris is 
the Lambert Conformal Conic, which is included in the proj library. The first step is to output 
the desired model variable (e.g., pressure) as well as the x and y coordinates. For the ocean 
module these are longitude and latitude, respectively. The model output is written at the finest 
refinement and the grid is extrapolated outside of the Gerris domain. The resulting files indicate 
the ghost grid points as special values (-9999). This file can be opened by Arc but it is not 
georeferenced because of the special values for non-grid points. It is thus imported as a point 

file.  

Georeferenced layers can be created from the grid (ASCII) files output from Gerris Grid files 
using the following method. The ASCII files are easily read by Matlab 
(remove_nan_from_grd.m) using the fgetl function to read the header and data lines as strings 
that are parsed using sscanf. Each grid file contains only one variable and time, because of a 
bug in Gerris that fails to place a carriage return (\n) at the end of a data line; thus, if multiple 
times are written, they are concatenated in a ridiculously long line that must be deciphered with 
substantial trial and error. The script writes only valid data values to a file (e.g., surf_el-

XXX.csv) with one longitude, latitude, and data value (times a conversion factor) on each line 
with separating commas. This script also finds the global minimum and maximum for all of the 
data. This is used to restrict the data range that is plotted by ArcMap.  

The csv files are imported into ArcMap using the File.Add_Data.Add_XY_Data function 
(Figure 6.3A). It is convenient to collect these into a Group Layer as seen in the Table of 
Contents from the Screen Dump. The data are displayed as points (Figure 6.4) that are 
georeferenced. The ArcToolbox is used to run the necessary functions to transform these point 
data into a usable format like a NetCDF file. This Toolbox is represented as a tiny red tool box 
on the tool menu. It is very difficult to see. For this project we selected the IDW (Inverse 
Distance Weighted) interpolation method to make a raster layer of these points. This function is 
found as ArcToolbox.Spatial_Analyst_Tools.Interpolation.IDW. Selecting this tool opens a 
dialog box (Figure 6.3B), which allows the desired point file to be selected.  
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Figure 6.3. ArcMap menus used for entering and interpolating point data. 

 
A. Menu for adding the Gerris *grd files to the current ArcMap Document. 

 
B. IDW dialog box used to generate a raster object from a set of points. 



 

 

62 

 

The point data (Figure 6.4) are accurately located and georeferenced but they cannot be used for 
advanced processing because they are not raster data. They must be interpolated to a specified 
grid using a method like inverse-distance-weighted (IDW) (Figure 6.3B). A barrier can be used 
to constrain the resulting contouring by features like islands. The resulting raster objects 
(Figure 6.5A) from surface elevation output from Gerris are stored in the Surf_el_raster data 
Group Layer. These are not files, but they appear as directories in the file system; for example, 
on Tornado they are found in D:\keen\PROJECTS\NGOM_Shelf_Processes\Workspace as a set 
of directories (e.g., surf_el-59). They are not intended for user access.  

 
Figure 6.4. Screen dump of one of the converted Grd files as point data in ArcMap. 

These raster objects are exported as Arc NetCDF files using the 
ArcToolbox.Multidimension_Tools.Raster_to_NetCDF function from the tool box. This dialog 
box is very similar to the IDW box but it allows selecting the raster object from either the file 
system or the Table of Contents. The output location should be selected to fit into the data 
structure; however, this is not a permanent file. These files are placed in the 
D:\keen\PROJECTS\NGOM_Shelf_Processes\Workspace\msb_refine10 folder (surf_el-56.nc, 
etc). They are not included in the Table of Contents for the current ArcMap Document, 
however.  
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Figure 6.5. Screen dumps from ArcMap raster output.  

 
A. Data view map of Gerris output at τ = 27 hours, showing the effect of IDW interpolation 
without a barrier. 

 

 
B. Data view map of Gerris output at τ = 27 hours, showing the effect of a mask IDW 
interpolation without a barrier. 
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These exported NetCDF files plot correctly in either ncview (Linux) or Panoply (WinOS) but 
they do not contain the required attributes to meet the COARDS standard.  

The new NetCDF raster layers are listed in the Table of Contents under the coards_netcdf 
Group Layer. These are no different than the raw NetCDF files or Surf_el raster data groups 
except for having caps on data and extra attributes not used by ArcMap. All of these raster 
objects have data extending throughout the extent of the map because of the use of IDW with 
no barriers. This is masked by the World_Administrative_Divisions data base from Arc (Figure 
6.5B). The mask has no impact on the data, however; it is only for visual reference. This 
surface still contains values that may be invalid. The spline produced more bad values in the 
delta area, which made the IDW more useful for this study.  

Georeferencing using ArcMap Projection Tools 

ASCII GRID files with the appropriate header as described in the ESRI Help can simply be 
dragged and dropped into the map view (or you can got through the Add Layer menu) and 
displayed. Until the projection for the data is defined, the header has no meaning and the image 
of the data will be incorrectly placed geographically.  

To add a projection to the resulting raster layer, select the Define Projection tool (Figure 6.6A) 
in the Data Management Tools toolbox (Figure 6.6A).  
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Figure 6.6. ArcMAP Menus for Define Projection.  

 
A. Tool box menu. 

 

 
 

 
 

B.Toolbox Selection Define Projection. 

 

C. Spatial Reference Properties selected in tool to 
Define Projection. 

Go to the ESRI Help page for more information on using the Define Projection tool.  

Gerris uses a Lambert Conformal Conic grid projection, for which the two critical pieces of 
information are: (1) the Central_Meridian; and (2) the Latitude_of_Origin. The file is p-
1.01e+06.asc was transformed using the following parameters (Figure 6.7) in the properties 
menu (Figure 6.6C):  
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False_Easting: 0.0 

False_Northing: 0.0 

Central_Meridian: -89.1 

Standard_Parallel_1: 60.0 

Standard_Parallel_2: 30.0 

Latitude_Of_Origin: 30.2 

Linear Unit: Meter (1.0) 

The central Meridian and Latitude of Origin are taken from the MapProjection line in the 
Gerris simulation file (see above). Save your work to an MXD file and both the project file and 
raster files will retain the projection information. Additional files are created in the process: .prj 
and .xml with the same root names as the original file. Compare this georeferenced data to the 
non-georeferenced data in Figure 6.7.  

 
Figure 6.7. Transformed data from the Ocean module displayed in ArcMap. 

Creating a COARDS-compatible NetCDF File 

The NetCDF files from the ArcMAP methods described in the previous section are 
georeferenced but they are not COARDS compatible. Thus, they cannot take advantage of 
ARCOAS NetCDF database functionality.  

In order to make them fully compliant, they are opened by a Matlab script 
(make_coards_compliant.m), which adds attributes, makes a final conversion for desired units, 
and caps the range to aid in visualization. The input NetCDF files are named following the 
COARDS standard: [model name]_[region]_[cycle date]_t[forecast hour], where: cycle date 
refers to the time when the forecast model was reinitialized with a new initial condition 
generated by (typically) some form of data assimilation; forecast hour is the number of hours 
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since the initialization (referred to as tau). It is noteworthy that no reversing of the y axis is 
necessary (the usual Fortran to C problem) if the files are to be imported into ArcMap using the 
ArcToolbox.Multidimension_Tools.Make_NetCDF_Raster_Layer function. If the alternative is 
used (ARCOAS.Add_Layer_Tools.Add_layer), the ARCOAS functionality may be available but 
this necessitates reversing the y axis because external libraries are used to import the NetCDF 
files through ARCOAS. These libraries have undocumented differences that cause this 
problem.  
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Section 7: Testing CFD Solvers 

Two-Dimensional CFD Testing 

This section describes efforts to explore the capabilities and implementation issues related to 
using Gerris for both micro-scale and field-scale problems. The CFD engine is used for the 
small scale whereas there are several modules implemented in GFS for ocean problems. One of 
the first tasks that Gerris is being used for is to simulate tidal flow in an estuary. This work was 
actually undertaken prior to the. One of the conclusions from this work was that it is better for 
geophysical flows to use dimensions in setting up the model. However, this does not preclude 
the need to have a solid understanding of the use of non-dimensional models because this 
approach is the norm in computational fluid dynamics. There is a discussion of some of the 
issues related to this approach in this section.  

This page is the main location to discuss tests intended to explore the operation and accuracy of 
the Gnu Flow Solver (GFS or Gerris). Two tests have been undertaken thus far: (1) the lock-
exchange problem; and (2) the incorporation of tidal constituents in the Mississippi Bight. Any 
attempt to implement a new theory or technology is expected to be difficult. Gerris and CFD 
are no exception.  

Gerris is a very robust code and it comes with a good data visualizer that allows the adaptive 
grid output to be analyzed accurately. This viewer is called gfsview2D or gfsview3D, 
depending on the dimensions of the simulation to be viewed. Gerris also has a built-in function 
to print *ppm files. These files are fast to visualize and can be examined while the program is 
still running. They are viewed using the animate program (Linux). In addition, an ESRI grid 
ASCII file can be produced for 2D scalar fields. These files output the results at the highest 
refinement in use at the time the output is generated. They are easily plotted using Matlab or 
imported into a GIS application. The results presented in this report use these three programs. 
Screen dumps are used for the gfsview2D and animate results and EPS files from Matlab. 
These files are translated to JPEG for the wiki. Arc has not been used to date.  

The starting point for applying Gerris is the page on the Gerris web site 
(http://gerris.dalembert.upmc.fr/gerris/examples/examples/index.html). These can typically be 
reproduced with very little difficulty. This is useful to develop some level of competence with 
the code. They are also useful as templates to develop new problem simulations. The web page 
has a lot of documentation and is evolving continuously but there are still some limitations with 
respect to accessing Gerris variables and how to implement user-defined variables using 
macros.  

This page describes some simple experiments that were completed with Gerris prior to the lock-
exchange tests. The goal is simple; can the 2DV CFD model be used to simulate tidal flow with 
density variations and associated sedimentation processes? To address this objective, we have 
examined the use of an oscillatory boundary layer at the downstream end of the domain. This 
boundary is further examined with respect to a prescribed logarithmic profile for the boundary 
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condition. We also investigated the use of bottom friction to develop a logarithm profile within 
the channel. This flow was then examined in combination with a equation of state (EOS) for a 
tracer that represents salt. The final simulation uses a volume of fluid (VOF) model that is part 
of Gerris.  

These simulations began by following principle (4) for using Gerris. The closest example from 
the Gerris web page is Example 2.1, the Benard-von Karman vortex street. They were all 
completed without dimensions.  

Dimensionless Scaling 

CFD codes like Gerris are often nondimensional. I have noted this in several papers. This 
requires a set of characteristic dimensions and other fundamental properties that are used to 
scale the input and output. There is a good discussion of [scaling parameters] online. An 
important relationship is that Re_M = Re_R, where Re = U_C∙L_C/ν is the Reynolds number; 
U_C = a reference velocity, L_C = a reference length, and ν = the kinematic viscosity. The M 
and R subscripts refer to the model and real properties, respectively, but we can simplify this 
further by using upper case letters for real variables and lower case for model variables.  

The Gerris users guide states that, by default, the density is 1 and molecular viscosity (μ) is 
zero. This means that there is no explicit viscous term in the momentum equation. The size of 
the unit GfsBox is 1. It is furthermore suggested that all physical input parameters be scaled by 
a reference length (the physical length of the GfsBox). One example that is discussed is for a 
ship 150 m in length and a wind speed of 50 m/s. The unit GfsBox can be 450 m (i.e., L) so that 
the ship model must be scaled by 1/450. This is required to transform the ship to a length 
relative to 1, which is the nondimensionalized unit GfsBox. To interpret the results in terms of 
physical units, is is necessary to multiply the length output by 450. Analogously, the wind 
speed can be nondimensionalized using the maximum wind speed of 50 m/s (i.e., divide by U = 
50). Velocities are rescaled on output by multiplying by 50. The reference time T = L/U = 9 s 
for this problem. We multiply both t and dt by T = 9 s for output.  

As long as we have not set a physical parameter (GfsPhysicalParams), the input is implicitly as 
follows: l = 1 m, u = 1 m/s, and t = 1 s. The density is 1 kg/m^3 and the dynamic viscosity  is 
0 (kg/m/s). The dynamic viscosity is a characteristic property of all liquids, but the input value 
can be used as a tuning parameter to produce a flow with the desired value of Re.  

We can apply this methodology to the tidal flow from this section. We can find the appropriate 
kinematic viscosity  to use in Gerris.  

  = u ∙  / U ∙ l / L 

     = u ∙  / U ∙  scaling factor  

Using the peak tidal current and water depths for the model and real cases. The mid-depth 
current varies continuously over the wave period of 15 steps. One value of U that we can use in 
our scaling is 0.7 m/s, which is the approximate maximum flood tide current speed. It shouldn't 
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matter what reference velocity we use as long as we are consistent in applying it. For this 
problem, we want the characteristic length to be the approximate depth of the Tamar River at 
high tide, 4 m.  

  = (1 m/s)∙(1.00610-6 m^2/s)/(0.7 m/s)∙(1 m)/(4 m)  

   =  3.5710-7 

We want to verify our result using dimensions. The channel is nine times as long as it is deep 
(i.e., 9 GfsBoxes end-to-end), which represents 36 m. The oscillation period is 15 steps and the 
entire simulation is 15 steps. We expect this simulation to end with the wave front where it 
began because we set the maximum model time to be the oscillation period. We can check the 
real time by:  

 T = t ∙ L / l / U  

   = 15 ∙ (4 m) / 1 / (0.7 m/s) = 85.7 s 

In other words, our oscillation period t is ~86 s and dt = 5.7 s. The model velocity referred to by 
u is a reference velocity as is the real velocity U. We can refer to arbitrary velocities with lower 
case subscripts: The wave current at some time would then be given by:  

 Ur = um / u ∙ U 

For example: if um = 0.4, Ur = (0.4) / (1) ∙ (0.7) = 0.28 m/s.  

The average velocity of the wave front can be estimated from the tracer plot: the front reaches 
its maximum extent (4.46 GfsBoxes/~18 m) in < 8 steps (~43 s). The mean velocity is thus 0.42 
m/s. The mean of a sine curve for the interval (0 to л/2) is (л/2)-1 or 0.64. The mean velocity in 
real dimensions is thus consistent with the theoretical value (0.64∙0.7 m/s = 0.45 m/s). This 
alternate value of U demonstrates a potential problem with using dimensionless analysis for 
time-dependent problems.  

In order to interpret the result for a tidal period of 12 h, we must rescale the characteristic 
length L and reference time T of the real flow. We can estimate LR from uR using the desired 
simulation length (12 hr) and number of GfsBoxes (9):  

 L = (0.42 m/s) ∙ (43,200 s) / (9 boxes) = 2016 m 

This simulation represents a tidal flow with a mean current of 42 cm/s in a channel 2 km deep 
and ~18 km long. The mean velocity for this "larger" problem is the same as for the "smaller" 
problem. The reference time T = L / U = (2016 m)/(0.42 m/s) = 4800 s. The model time step, dt 
= T/t = (9∙4800 s) / (15) = 2880 s. The rescaled model viscosity,  = (1 m/s)∙(1.00610-6 
m^2/s)/(0.42 m/s)∙(1 m)/(2016 m) ~ 10-9.  



 

 

71 

 

Oscillatory flow 

These simulations used a 12 hr tidal period and a prescribed logarithmic boundary condition 
given by: U = (u*/K)LOG(z/z0) where: u* = 0.04 m/s; K = 0.4; and z0 = 0.001 m. The bottom 
was frictionless (free-slip). The surface velocity is 0.7 m/s and the mean is 0.5 m/s by default. 
This is very close to that during a flood tide in the Tamar River. This is implemented as a 
Dirichlet BC on the left side of GfsBox 1.  

 GfsBox { 

    left = Boundary { 

           BcDirichlet U ( (1. * sin(2.0*M_PI*t/(15.0))) * \ 

                                (0.04/0.4)*log((y+0.5)/.001)) 

           BcDirichlet T ( 1. ) 

    } 

 } 

The tracer is transported by the current, with limited mixing because there is no vorticity. The 
dynamic viscosity (μ) is 0.0078125 kg/m/s. The Re = U*L/ν, where: ν = μ/ρ; U = 0.5 m/s; and L 
= U*T. We estimate T from the model input and results; for example, the simulation length of 
15 steps represents 12 hours. The tidal front propagates a total of 5.9 GfsBoxes in 12 hr. Thus, 
the average or characteristic time scale T to transit a box is (5.9)/12 ~ 1/2 hour or 1800 s. 
Consequently, U is 900 m and Re ~ 2.3108. We note that  = 1000 kg/m^3.  

The flow is smooth (Figure 7.1) despite the large Re because there is no density difference and 
the frictionless bottom generates no turbulence.  
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Figure 7.1 Tidal inflow boundary condition. (A) profile of nondimensional current; (B) 
nondimensional current at mid-depth at nondimensional time; (C) conservative tracer after 13 
nondimensional time steps. 

We note that the tracer profile at t = 13 is a logarithmic profile (Figure 7.1C) that matches the 
inflow profile. The period of the oscillation is 15 time units, so the flow is to the left. This 
doesn't make sense until we remember that the bottom is free slip. If the profile remains 
logarithmic within the domain, it should have reversed and the final profile should be vertical 
as it was at the beginning. This didn't happen because the model adjusted for the inflow and 
produced a uniform profile within a few boxes of the right boundary. This was verified.  

Methods that can be used to create a logarithmic profile within the domain will be addressed in 
the next section.  

Logarithmic current profile 

The flow within a channel naturally develops a logarithmic profile in response to bottom 
friction. We were not able to maintain such a profile with a boundary condition at the inflow 
end of the channel. This can be approached in two ways for Gerris, which does not include a 
parametrization for subgridscale processes. If we maintain a high resolution at the boundary 
(i.e., a DNS problem), we can supply roughness elements in the flow that will create vorticity. 
These eddies will propagate within the flow as they are dissipated by the viscosity. We can also 
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implement an eddy viscosity model like Mellor-Yamada or k-Epsilon. This would allow us to 
solve the Reynolds-Averaged N-S equations (RANS).  

The first type of simulation we can examine is a no-slip bottom with viscosity. This simulation 
uses a uniform inflow of 0.7 m/s, a dynamic viscosity of 0.0078125 kg/m/s, and Pr = 10. The 
mixing is revealed by an initial vertical tracer front at x = 4 (~ mid-length), which rapidly 
becomes logarithmic. The channel must be longer than the maximum excursion length of the 
front. Otherwise the OutflowBoundary at the right end will cause a stratified distribution when 
the front re-enters the channel. The length of the domain was therefore increased to 9 boxes. 
The conditions are otherwise the same as for the previous example but the simulation goes for 
30 steps (two tidal cycles).  

This tracer pattern over two tidal cycles is shown in Figure 7.2. The current profile is 
logarithmic well before it reaches the front, which then forms a characteristic profile as well. 
This sequence of images shows that the logarithmic current profile does not generate any 
mixing and the tracer always returns to almost the same distribution at any given point in the 
tidal cycle after the initial flood tide. Mixing is occurring but slowly.  

Figure 7.2. Time evolution of tracer distribution.  

 
A. Time = 0. 

 
B. High tide (~6.4 hr). 

 
C. Low tide (~12.2 hr). 

 
D. Final low tide (24 hr). 

Implementing bottom roughness elements 

The previous simulation demonstrates that a no-slip bottom can produce a logarithmic current 
profile but there is insufficient vorticity to mix the water column well. The result is obviously 
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sensitive to the viscosity, which was 0.0078 kg/m/s in those simulations ( ~ 0.001 kg/m/s for 
water at 20 C). The resulting profile displays a boundary layer that extends over half of the 
water column. This is not realistic for surface flows in water. For example, the turbulent 
boundary layer thickness,  = 0.382 X / (Re0.2). For the problem at hand, Re = 
(1000)(0.7)(900)/(0.0078125) ~ 108, X = 4900 = 3600, and thus  = 55 m. This is ~6% of the 
flow depth. We note that the refinement for this simulation is 26 = 1/64 and thus the highest 
resolution is 14 m.  

If the boundary layer is laminar, we use  = (4.91)X/(Re) 1/2 ~ 6 m. This is unlikely given the 
large Re. There are several ways to calculate Re but it is not important for our purposes because 
they all predict a much thinner boundary layer. Since we have already determined that the no-
slip bottom predicts the boundary layer to be far too thick (~ half the water depth), we can 
examine the impact of a bedform on this layer. The next simulation uses a single ellipse to 
represent morphology:  

  GfsSolid (ellipse (4.0, -0.5, 0.2, 0.05) ) 

This will place an ellipse centered on the bottom of the channel that is 180 m long and 45 m 
high. This is unrealistic for the desired geometry but it demonstrates the impact of vorticity 
generation by the bottom. This size feature is slightly lower than the predicted boundary layer 
thickness. Its impact is strongest within the lower fifth of the water column with s slightly 
logarithmic current profile higher in the water (Figure 7.3). As expected, the simulation with a 
bed form and a no-slip bottom grossly over-predicts the bottom boundary layer height.  

 
Figure 7.3. Tracer plots at low tide for free slip (top) and no slip (bottom) boundaries. 

These results can be scaled for more realistic geometry. For example, we can reduce h (water 
depth) and the viscosity by 10 and achieve the same Re. For this problem, we have a 70 cm/s 
flow in a 90 m deep channel with a water viscosity = 0.00078 kg/m/s that is appropriate. For 
this scaling, the bottom feature could be a large tidal sand ridge (18 m long and 4.5 m high). 
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This would be dimensionally applicable to the Dutch continental shelf (water depth < 100 m), 
where sand waves are 100 - 800 m long with heights of 1 -12 m and currents exceed 65 cm/s.  

Current profile development 

It is unreasonable to simulate the entire tidal cycle in the Tamar River with the CFD model 
because of the dramatic changes in water depth. This is not a major problem, however, because 
the data collection periods were limited in duration, lasting less than 6 hr most of the time. The 
measurements were typically focused on the ebb or flood stages. The water depth during a 
sampling interval changed by as much as 2.5 m during a spring tide. These changes must be 
accounted for in simulating hydrodynamics in the estuary, especially for near-surface currents.  

With these cautions in mind, we will examine equilibrium flow conditions using Gerris. These 
simulations were completed using 25 GfsBoxes and nondimensional input. These simulations 
incorporated buoyancy forcing as well as an inflow boundary condition. The maximum 
refinement was 26. The size of a box is 3 m, which results in a minimum cell size of 4 cm.  

The current profiles measured during a flood tide on 22 September (Figure 7.4A) demonstrate 
the nature of the flow. This demonstrates the high variability of the flood tide. The right panel 
shows representative profiles at 17 h and 8 h (squares and circles). It also contains log profile 
fits using u* (cm/s)/ y0 (cm) values of 18.5 / 018.5 and 5.3 / 4.1 for 17 h and 18 h, respectively, 
when the water depth was 3 m and 4.3 m.  

Figure 7.4. Current profiles from the Tamar River, UK.  

 
A. Measured current profiles during a flood tide. 
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B. Gerris current profile (dash line) and an analytical profile for a rough bottom. 

A no-slip bottom and viscosity can be used to create reasonable current profiles in Gerris 
(Figure 7.4B). The simulation shown here uses a mean inflow current of 50 cm/s and a 
viscosity of 6.710-4. The solid line is near the inflow and the dash line at 56 m along the 
channel. The roughness parameters, u* and y0, are equal to 8.5 cm/s and 8.5 cm, respectively. 
No roughness elements were used.  

Volume of Fluid (VOF) Simulation 

The large density contrast between air and water can be simulated using the VOF method in the 
CFD model. For general ocean circulation in a primitive-equation model, a free-surface is 
represented instead by the continuity equation with a surface anomaly. Here we will use a 
density contrast surface as described in the Gerris examples. The justification for the VoF 
method is seen in height-time plots from the Tamar River (Figure 7.5).  
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Figure 7.5. Height-time plots of observations during a spring tide on 7 July 1982. 

These simulations start using the Rayleigh-Taylor instability and the Cargo vessel wake 
problems as templates. There is no transformation of units.  

The VOF method was examined for an initial sinusoidal surface (Figure 7.6). The domain 
consists of 4 GfsBoxes (e.g., 4 m). The ratio of upper:lower fluids is 1.2:1000 (air:water). The 
VOF variable tracer is filtered using GfsVariableFiltered because of the high density contrast. 
The surface has an amplitude of 5 cm and is located at 50 cm above the bottom. Gravity is 
introduced as a source for V = 9.81. The dynamic viscosity of the fluids is 0.001 and 1∙110-6. 
The ends are closed and the bottom is no-slip, whereas the top is a Neumann BC for P and T. 
The result can be interpreted as waves of 5 cm waves with wavelength = 1 m at the ocean 
surface.  

 
Figure 7.6. Interface between water (red) and air (blue) using the Volume of Fluid method in 
Gerris. 

Simulations with a single GfsBox were completed to examine the dimensionality of the 
problem. If we want our domain to be 100 m in length but the mean water depth to be only 3 m, 
we need to initialize the surface to be (1 m + 4 m(tidal range) / 2) /100 m, or y = 0.03. Thus, the 
initialization for the VOF variable is  



 

 

78 

 

 InitFraction {} T (- (y + 0.03)) 

because y is from -0.5 to 0.5. This is the initial still water level. The tidal amplitude is 
represented by A = 2 m/100 m = 0.02, but we cannot use this as a boundary condition in the 
VOF method (yet). The open boundary on the left is represented by  

 left = Boundary { 

   BcDirichlet U ( UT ∙ sin(2π ∙ t/ TT ))  

 } 

where UT and TT are adjusted to get the correct values compared to measured currents and 
tidal period, respectively. The gravity flux is (hopefully) introduced by (9.8 ∙ 100)/2002. We 
use 200 because a 0.5 m/s current will cross the 100 m box in 200 s; thus, G` = -0.0245. The 
tidal period becomes (12 ∙ 3600) / 200 = 216 time steps. We will discuss reduced gravity in 
more detail with respect to the lock-exchange test cases. The result (Figure 7.7) demonstrates 
the feasibility of the VoF method for the air-water interface. We will attempt to implement this 
technique using an equation of state for the water (red) as has been discussed in the Lock-
exchange tests.  

 
Figure 7.7. Sequence of water depths from VoF simulation for a 12 hr tide. 
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Section 8: Model Setup 

Using the GfsOcean Module 

Introduction 

Gerris can deal with arbitrarily complex solid boundaries embedded in the quad/octree mesh. 
The geometry of the solid boundaries is described differently for the Ocean and River modules. 
The steps for setting up a simulation are somewhat different for the two modules. They will 
thus be discussed separately. There are three main components to a coastal simulation: (1) 
domain; (2) tidal boundary condition; and (3) wind forcing. These are discussed in this section. 
There are examples of both modules in Section 10.  

Domain Definition with GTS Files 

This is described in detail in Section 4.  

Tidal Boundary Condition 

Two tidal boundary conditions have been applied in examples: (1) input values from the 
simulation file, either constant or using an analytical function to describe spatiotemporal 
variations in tidal amplitude and phase as well as mixed tides; and (2) input of single 
constituent tides from a standard database using GTS files. These methods are explained in 
Section 5.  

Surface Forcing with Wind 

The method that is being used so far is to include a wind stress as a uniform, constant source of 
velocity as described in Section 5.  

Using the GfsRiver Module 

For the GfsRiver module (2D Nonlinear SWE) the bathy surface is defined with a Gerris terrain 
database (KDT). The basic description of GTS and KDT files is presented in Section 4. The 
extensive library of KDT database files is discussed as well. This module has been used 
primarily for tides. This boundary condition is discussed in Section 5. There are examples in 
Section 10.  
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Section 9: Lock Exchange Simulations 

Introduction 

Extensive simulations have also been completed for the lock-exchange problem because it is 
considered a robust test of a CFD solver. This test has been abused and misused, however, to 
the point where I felt it was necessary to find out what the authors did to arrive at their 
published results.  

Gravity currents are driven by density differences in a fluid. The resulting pressure gradients 
are responsible for cold-fronts in the atmosphere and turbidity currents in the ocean. Numerous 
theoretical and numerical studies have been completed to clarify the inner structure of gravity 
currents (Hartel et al., 2000), their propagation speed (Maxworthy et al., 2002), and their 
mixing with ambient fluid (Benjamin, 1968). The laboratory experiments (Figure 9.1) have 
been limited in the range of conditions that could be reproduced. This has led to the use of 
numerical models that solve the Navier-Stokes (N-S) equations with different simplifying 
assumptions (e.g., incompressible and Boussinesq). The goal of much of this modeling work 
has been to extend the laboratory experiments using direct numerical simulation (DNS) of the 
N-S equations. This is difficult because the model grid must resolve the smallest dissipative 
scales up to the integral scale. The smallest scale is the Kolmogorov microscale, which is less 
than 1 mm for typical flows (O'Callaghan et al., 2010).  

 

 
Figure 9.1. First of two physical and numerical lock-exchange domains discussed in this report 
(Hartel et al. (2000). 

The most pertinent applications of Gerris with respect to the Tamar Estuary are the surface 
plume experiments of O'Callaghan et al. (2010). It seems likely that the section on the lock-
exchange test was added to the O'Callaghan paper at the request of a reviewer because it is not 
well written and has some inconsistencies that will be discussed below. The initial purpose of 
our tests was to simply reproduce the results from O'Callaghan but this proved difficult because 
of incomplete simulation reporting in the paper. As I followed up the references within the 
O'Callaghan paper, I found that they too did not supply sufficient information to 
unambiguously reproduce their results. Finally, I reached some of the initial laboratory 
experiments on gravity currents (Simpson and Britter, 1979; Hartel et al., 1997; Maxworthy et 
al., 2002). I started these tests by reproducing these experimental results as well as I could, 
because they also did not report all of their test conditions but only summarized them in plots of 
dimensionless parameters.  
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Ocean processes are not a typical application of CFD models, which are often used for 
nondimensional simulations of laboratory or engineering problems. This was one of the major 
problems in understanding and reproducing published results. The next section is thus intended 
to introduce some of the relevant parameterizations used to characterize gravity currents before 
examining the published examples.  

Background 

The Navier-Stokes equations can be made nondimensional using the Reynolds number, which 
represents the ratio of momentum and viscous forces; Re = UL /ν, where U = a characteristic 
velocity, L = a characteristic length, and ν = the kinematic viscosity (Chorin, 1968). The 
conservation equation for tracers in Gerris also includes the Prandtl number, Pr = ν/D, where D 
= molecular diffusivity. The diffusion term in the equations is multiplied by 1/RePr. Flow 
similarity for a given problem is maintained by changing these variables to maintain the values 
of Re and Pr. However, the determination of U and L is problematic for complex flows in fluids 
of different densities (Lindgren, 1956).  

A gravity current results from the interaction of buoyancy forces and viscosity. The ratio of 
buoyancy to viscous forces acting on a fluid is approximated by the Grashof number, which is 
analogous to Re for buoyancy problems:  

 

 Gr = [g β (TS - T0 ) Lc
3] /ν2                        (9.1) 

where: g = gravity acceleration; β = volume expansion coefficient; TS = surface temperature; T0 
= bulk temperature; and Lc = length. As with other dimensionless numbers, it has been applied 
to a number of problems, including flat plates, pipes, and bluff bodies. An analogous form of 
Gr can be used in natural convection mass transfer, in which case, TS and T0 are replaced by Ca,s 
and Ca,a, respectively (concentrations of species a at surface and in ambient medium). The 
volumetric thermal expansion coefficient β is then given by:  

 

 β = -1/ρ (∂ρ/∂Ca ) T,p                            (9.2) 

where: ρ = fluid density; Ca = concentration of species a; T = constant temperature; and p = 
constant pressure. The value of β is 20710-6 K-1 for water at 20 C. The impacts of (2) on Gr 
are not discussed by Härtel et al. (1997). They represent temperature as a tracer that is 
initialized with a continuous function across the front, but do not present a constitutive equation 
for ρ. It is not, therefore, possible to compute ub because information on the dependence of ρ on 
T is not given. They state that their simulations are for light and heavy gases; their Figure 7 
refers to lock-exchange experiments with Ar (ρ1 ~ 1.7 g/L) and CO2 (ρ2 ~ 2 g/L). If we assume 
their simulations are at 0 C and 1 atmosphere, ρ' = (ρ1 – ρ2)/ ρ2 ~ 0.17. It is not clear how these 
gasses relate to the initial T distribution because they have different densities at a constant T, 
which makes an initial condition for T somewhat redundant. It is possible that the dependence 
of density on T is used as a proxy for these gases. It is further unclear why their simulations 
used Pr = 2 because Pr = 0.68 and 2.38 for Argon and CO2, respectively, at 0 C.  
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The relationship between momentum and the diffusivities of momentum (viscosity) and heat 
(temperature) is seen in the product, RePr = UL/ν × ν/k = UL/k, which is the ratio of 
momentum and heat diffusivity. The 1/RePr coefficient in the diffusion term for T in Gerris can 
thus be interpreted as the thermal diffusivity normalized by the characteristic dimension and 
speed of the overall flow, which makes sense.  

The formulation of Gr is often rewritten in fluid dynamics as:  

 Gr = [ (ub h)/υ ]2                                     (9.3) 

where: ub = (g'h)1/2 = the buoyancy velocity; g' = reduced gravity; and h = the channel half-
depth (Hartel et al 1997). The buoyancy velocity ub is the maximum propagation speed for a 
sub-critical gravity wave front. It replaces the thermal expansion coefficient β and the 
concentration of the species of interest Ca in estimating Gr in Equation (3).  

The Navier-Stokes equations can be nondimensionalized using Gr for problems that are 
dominated by buoyancy forces rather than inertia. For example Maxworthy et al. (2002) use 
√Gr to nondimensionalize the vorticity equation and √(Gr Sc^2 ) for the density equation, 
where Sc = the Schmidt number (ν/D), which is analogous to Pr. The numerical models that we 
are examining (Maxworthy et al 2002; O'Callaghan et al 2010) use Sc = 1 and Pr ~ 7, 
respectively.  

The value of Re must be estimated for gravity current problems because the characteristic 
velocity U is unknown a priori. We can estimate the frontal Reynolds number, Ref = (uf×hf)/ν, 
where uf is estimated from the propagation speed of the gravity wave front, which becomes a 
constant very soon after release (Hartel et al 1997). The characteristic length LC in Equation 
(9.1) is typically taken as either the height of the front hf or the water depth, H. It is also 
estimated from experiments, but it is usually ~0.5 times the channel depth for the problem of 
interest. Thus it is often represented by h as in Equation (9.3).  

Values of uf obtained from the experimental data of Maxworthy et al. (2002, Fig. 5) ranged 
from a low of 0.025 m/s (Run 11) to a high of 0.12 m/s (Run 5). These experiments used an 
initial height of dense fluid of 0.05 m. The slower gravity wave that resulted from Run 11 used 
a dense fluid (ρc) with the same density (1.034) as the bottom of the stratified ambient fluid 
(ρb), which was 0.031 greater than the surface fluid (ρ0). The faster gravity wave in Run 5 
resulted from ρc - ρb = 0.082, and ρc - ρ0 = 0.116. It is very difficult to estimate dimensionless 
flow parameters for these experiments because ρ' is not straightforward to compute. An 
experimental study of saline water flowing into freshwater with ρ' = 0.004 produced typical 
gravity wave characteristics of hf = 0.022 m and uf = 0.027 m/s (Simpson & Britter 1979).  

The buoyancy velocity introduces the relationship between buoyancy and gravity forces, which 
can be parametrized using the Brunt-Väisälä buoyancy frequency:  

  

N = (-g/ρ_o   dρ/dz) 1/2 ≈ (g'/H)1/2              (9.4) 

This oscillatory frequency (1/s) is exploited by Maxworthy et al. (2002) in describing the 
relationship between density gradients and gravity wave frontal properties. The values of g' = 
g(ρc - ρa)/ρa found using density data from Appendix A (Table 9.1) are 0.14 m/s2 and 0.95 m/s2, 
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respectively, for N = 0.97 1/s and 2.5 1/s. They use an alternative formulation NC because of 
their experimental setup (Figure 9.2), however. The values of g' = (ρc - ρ0)/ ρ0 used in their 
analysis are somewhat larger—0.303 m/s2 and 1.13 m/s2, respectively, and NC = 1.42 1/s and 
2.75 1/s. This buoyancy frequency best describes the current both within and above the gravity 
flow itself, as the waves generated by the flow reinforce the front; however, the propagation 
speed of the front is somewhat less than this velocity. Following the physical mechanism by 
which the front propagates, the buoyancy velocity can also be defined as ub = NH.  The value of 
Pr for water at 20 C is 7.  

Table 9.1. Experimental conditions from Maxworthy et al. (2002). 
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Figure 9.2. Sketch of experimental conditions of Maxworthy et al. (2002) 

The ratio Frf = uf /ub is the frontal Froude number, which represents the observed propagation 
speed uf relative to the theoretical limit. In the experiments of Simpson and Britter (1979), Frf 
exceeded 1 for hf < 0.2H; however, their data were restricted to hf < 0.3H. The critical value for 
Frf is 1/ (0.318) (Maxworthy et al 2002). If the front propagates at this speed, it is in step with 
the gravity wave that drives it. The theoretical limit for Frf is √2 for a free-slip boundary 
(Benjamin 1968). We can calculate Frf for Runs 5 and 11 from above to check for consistency. 
Using NC for the buoyancy frequency, ub = 0.21 m/s and 0.41 m/s for the slow and fast gravity 
waves, respectively. The values of Frf for these experiments can thus be estimated as 0.117 
(Run 11) and 0.29 (Run 5), which suggests that neither of these gravity flows was supercritical. 
However, Maxworthy et al. (2002) report a much larger value of Frf for Run 5 (0.565) whereas 
they have a similar value for the slower wave (Frf = 0.131). This discrepancy occurs because 
they used experimental data from a previous study (Rottman & Simpson 1983) to compute Frf 
rather than directly estimating ub as we have done. Since their scaling analysis was based on 
experimental results that are substantially different than we are examining, we will use the more 
direct method discussed by O’Callaghan et al. (2010).  

There is a fundamental relationship between Re and Gr that is discussed by previous authors. 
Several quantitative comparisons are made as well. Despite these attempts to be accurate in 
applying these dimensionless numbers to the experimental and simulation results, however, 
there remain some discrepancies that must be explained to interpret their results correctly. A 
comparison of the momentum equation in its velocity-pressure formulation solved in Gerris 
(O'Callaghan et al 2010) and the vorticity-stream function form applied by Härtel et al. (2000) 
shows that Gr is equivalent computationally to Re2. The motivation for using Gr instead of Re 
is its dependence on g' and thus the density distribution, rather than measured values of uf and 
hf. This difference is explicitly used by Härtel et al. (1997) in characterizing the lock-exchange 
problem. They restrict their discussion to Ref and Gr as defined in Equation (9.3).  

Simulations with a Non-Hydrostatic 2D Model 

Preliminary lock-exchange simulations have been completed with a nonhydrostatic 2D (NH2D) 
model:  

 2nd-order Adams-Bashforth in time. 
 2nd-order centered advection with Laplacian diffusion. 
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 Diffusion:  background value of 0.01 cm2/s,  
 same in both x and z.  Background value is increased 
 to maintain a max grid-cell Re Number = 10, i.e.,  
 K = max[ K0, u⋅dx/10 ] 

The results from simulation LEX#10 can be viewed in this animation file:  lex10.fli. The 
following parameters were used.  

 2DV domain is 2 × 0.3 m  
 inflow on the left 
 dx = 1 mm 
 dt = 0.001 s 
 number of cells = 2004 × 301 
 Km = 10-6 m2/s (0.01 cm2/s) 
 KS = 10-6 m2/s (0.01 cm2/s) 
 Max cell Re = 10 
 βS = 7.418×10-4 (volume expansion for salt) 
 S fields saved every 10 iterations (0.01s) for 1 m (half-length) 

  

 Initial Condition: 
  

 constant T 
 ΔS = 40.44 psu 
 xF = 4 mm (half-width of front) 
 S(i,k) = 0.5⋅ΔS*tanh[ (i-xic)/4.0 ] 
 xic = 2005/2 

Results 

With the high grid resolution, low viscosity/diffusivity, and thin initial frontal width, the 
Kelvin-Helmholtz (K-H) rolls are well formed at ~2 s (Figure 9.3A), and the salinity patterns 
become quite elaborate at later times. Some of the details of the smaller-scale flow patterns are 
"hidden" in the larger scale flow. It is necessary to plot the stream function in a frame of 
reference moving with the smaller-scale feature in order to see the circulation associated with 
the feature. Note that the larger-scale flow may have a vertical as well as horizontal component, 
so that shifting the point of reference in just the horizontal may not be sufficient to see the local 
circulation associated with the smaller feature.  
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Figure 9.3. Salinity distribution for run LEX#10.  

 
A. T = 1.69 s. 

 
B. T = 3.25 s. 

 
C. T = 5.12 s. 

 
D. T = 7.02 s. 

The initial salinity range is +/- 20.22. Before 5.88 s (Figures 9.3B and 9.3C), the salinity 
remains in the range of +/- 21.0, i.e., the advective overshoots are small. At later times (Figure 
9.3D), however, the range increases to +/- 24.0 and sometimes more. There may be problems 
with the bc at the end walls, or just trouble with advective overshoot in the corner when the 
front hits the corner. At 10s, the adv CFLs are 0.266 in x and 0.172 in y;, i.e., it seems the 
timestep could be doubled, although I know that the AB2 advection does not like having a CFL 
over 0.5. At earlier times, the vert adv CLF sometimes exceeds 0.4.  

Discussion 

Look at the visous/diffusive limit for water:  
 

 kinematic viscosity = 0.010   cm2/s   data from Bachelor, p 597 
 thermal diffusivity = 0.00142 cm2/s   values are for T = 20 C 
 diffusivity salt    = 0.00014 cm2/s 

 

Requirement for viscous limit: Cell Re = 10 = udx/ν. With max u = 20 cm/s, and ν = 0.01 
cm2/s, we need dx = 0.005 cm. For salt we need 70 times higher resolution, i.e., ~ 0.0001 cm. 
For this experiment, minimum mixing coefficients are 0.01 cm2/s, and max mixing coefficients 
are ~ 0.2 cm2/s.  

The question of what happens in reality (i.e., if we could perform the actual experiment), 
depends on the initial frontal thickness and any initial perturbations that exist. It might be 
impossible to perform the actual experiment to look at the initial instabilities, i.e., what happens 
initially would depend on things you could not control sufficiently well.  

Note that a (vertical) length scale is set by the critical Richardson Number (Rc). Given the 
salinity and velocity differences across the interface, Rc will define a length scale  
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 Rc = g⋅Δρ⋅Lz/(ρ⋅(Δv)2)   Lz = ρ⋅(Δv)2 × Rc/(g⋅Δρ) 

During the initial acceleration of the fluid, the small velocity differential across the interface 
will generate a small vertical scale and small K-H rolls. The final velocity, which is related to 
the frontal propagation speed (which depends ~ on the internal wave, IW, speed), will define 
the eventual thickness of the interface region for a propagating plume in the region behind the 
front. In this case, with Δρ = 0.03 gm/cm3, a final velocity difference across the interface of 
2⋅16 = 32 cm/s, and Rc = 0.25, the interface thickness will be ~8.7 cm.  
Defining the interface thickness in terms of Rc, however, begs the question of what is actually 
going on, in that Rc is a result of the action of the K-H instabilities. There is still the more basic 
question of understanding the K-H instability itself. In the literature it is said that the shear-
instability becomes turbulent for about Re > 300. For this experiment, Re ~ u⋅Lz/K = 20*10/0.2 
= 1000. Hence, the results agree with the theory that the K-H rolls will develop into turbulence 
for Re = 1000. If I were to increase the viscosity to 1 cm2/s so that Re = 200, we should expect 
that the K-H rolls would NOT become turbulent.  

Since the velocity depends on the internal wave (IW) speed, which depends on the stratification 
and depth, the length scale for this problem, as defined by the Richardson Number, can be 
expressed in terms of just the density stratification and the depth of the channel. For a channel 
of depth, H, with fluids of different density in layers of thickness H = H1 + H2:  

 Lz = ρ⋅(Δv)2*Rc/(g⋅Δρ)    Rc ~ 0.25 

 IW speed for 2-layer system: 

 c2 = g⋅(Δρ/ρ)⋅(H1⋅H2)/(H1 + H2)  

For H1 = H2 = H/2:  

 c2 = g⋅(Δρ/ρ)⋅0.25⋅H 
 (Δv)2 = (2⋅c)2 = g ⋅ (Δρ/ρ)⋅H 

Therefore:  

 Lz = H⋅Rc 

Hence, we get the curious result that the vertical scale of the interface thickness for stability is 
independent of the density gradient and is proportional to the depth. Note that this is consistent 
with all my results for this problem, i.e., the vertical scale of the largest K-H rolls, relative to 
the channel depth, is fairly constant.  

For the case of a thin plume near the surface (H1 << H2), where the lower layer velocity is 
small, we get:  
 

 c2 = g⋅(Δρ/ρ)⋅H1 
 (Δv)2 = c2   = g⋅(Δρ/ρ)⋅H1 
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Therefore:  

 Lz = H1⋅Rc 
This scaling of the K-H mixing is consistent with my results for a thin plume (SPF #43-47). 
(Note - the thin plume expts needed higher resolution.) An unresolved question remains, 
however; what about the timescale of the evolution of the K-H instability?  

Simulations with Gerris (2D CFD) 

The preliminary experiments discussed above lead directly to a more formal series of 
simulations designed to examine the suitability of this idea to reproducing buoyancy flow in an 
estuary. These are fully discussed on the Gerris Lock Exchange page.  

Before proceeding, however, it is instructive to jump ahead slightly and apply some of the 
concepts that will be applied in these experiments to the experiment with section 9.3. First, we 
can apply the concept of the Grashof number, which is analogous to the Re number for 
buoyancy flows:  

Gr = ((ub⋅h)/ν)2 
where the buoyancy speed ub is analogous to the propagation velocity c for internal waves. We 
can thus estimate ub from the supplied conditions:  

ub = [g⋅Δρ/ρ⋅h]½ 

    = [(9.81 m/s2)⋅(0.03)⋅(0.15 m)]½ 
    = 0.21 m/s 

where the thickness of the gravity wave is estimated as h = H/2 (0.15 m) following Hartel et al. 
(1997) or 0.3 m. We have used the former in this case for consistency with the Gerris results. 
We can estimate the gravity wave front propagation speed uf from the salinity distribution 
predicted by the NH2D model. The internal wave front reached the end of the channel in ~7 s, 
which indicates uf = (1 m)/(7 s) ~ 14.5 cm/s. We used this value because it is very likely that the 
length of the domain refers to one-half of the channel length (see Hartel et al., 1997).  

The Grashof number is estimated from:  

Gr = [(0.21)⋅(0.15) / 10-6]2    ~ 109 

and the Froude number of the front:  

Frf  = uf / ub 

      = (0.145)/(0.21) 

      = 0.7 

This is slightly larger than other model results for a free-slip bottom but it is lower than the 
theoretical maximum for naturally forced buoyancy. Buoyancy driven flows cannot exceed Fr = 
1/√2 ~ 0.707 (Hartel et al., 2000). Results from Gerris (no-slip bottom) for this approximate 
value of Gr indicate that Fr is about 0.65.  
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More complex computations are available but they give the same answer. A calculation with 
program igw_modes shows the IW speed for a two-layer flow with an interface thickness of 2 
cm, Δρ = 0.03 g/cm3 and depth = 30 cm, is about 14.4 cm/s. Hence, the wave should propagate 
to the edge of the domain in just over 7 sec. With an interface thickness of 10 cm, the phase 
speed of the IW decreases to 13.0 cm/s.  

This brief comparison demonstrates that the behavior of an internal wave/buoyancy front is 
equally described by different parameterizations of the simulation and flow. The expected 
uncertainties in the exact values of these properties are due to the nature of these perturbations.  

Hartel et al. (1997) 

We begin our simulations of previous lock-exchange reports with the earliest that appears to be 
directly relevant to the present work. We would like to use Simpson and Britter (1979) but their 
experimental apparatus is not readily simulated and hasn't been reproduced in previous model 
studies either. The experiments of Hartel et al. (1997) will be reproduced as completely as 
possible. As suggested by the previous discussion, however, we shall be satisfied with similar-
looking flows to those from research papers. This does not mean that the original works lacked 
detailed analysis but only that the published reports were not intended as standards.  

The model results of Härtel et al. (1997; hereinafter H97) (Figure 9.4) can be used to check our 
results for consistency. We note that the results in the figure are probably for gases, Ar and 
CO_2. This should not be a problem if the dimensionless approach is valid. We must keep this 
in mind when evaluating these results. In order to confirm our speculation that the use of T in 
their study was a proxy for solving the DNS problem for two gases, we have completed a series 
of experiments with Gerris to attempt to reproduce their results (Figure 9.4).  

 
Figure 9.4. Results for (a) Gr = 2.5103 (b); 2.5104; (c) 105; (d) 6.125105 (Härtel et al., 1997). 
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For these simulations, h = 0.1 m, the length of a GfsBox, L = 0.2 m, there are 12 GfsBoxes, and 
GfsRefine = 6 (i.e., minimum dx = 0.2×26 = 3.1 mm). We will calculate Gr = ((u_b×h)/ν)2 
using different combinations of parameters. Note that our simulations have the denser fluid on 
the left rather than the right as in the original work. The experimental parameters include the 
dynamic viscosity mu and the molecular diffusivity of heat (mass), D. These are listed because 
they are the parameters included in a Gerris simulation file. The kinematic viscosity ν = mu/ρ. 
As discussed above, we cannot compute the exact flow parameters from the information given 
in H97. Furthermore, we are using dimensions based on the discussion. We include diffusivity 
for our tracer (salt) that is 1/7th the value of ν (i.e, Pr = 7).  

Our results (Figure 9.5) are presented for approximately the same values of Gr as in Figure 6 of 
H97. Equation (9.3) is used to calculate Gr to compare to the original work. These simulations 
use ρ' = 0.001 and adjust Gr using the viscosity ν. We used Pr = 7 because we are primarily 
interested in water. This is much less mixing than Pr = 2 as used by H97.  

 
Figure 9.5. Summary of NRL results for H97 at t = 30 s (see Figure 11.4). 

The first experiment (9.5A) has Gr = 2500 by setting ν = 0.00006 m2/s. A reasonable mixing 
band is attained along the interface between the fluids with D = 2×10-3 m^2/s (Pr = 0.5). This 
compares well to H97 (Figure 9.4A). The tracer section at t = 30 s shows somewhat less mixing 
than H97 because the molecular diffusivity D was not reported. This diffusion can decrease ub 
for small Gr. This mixing is partly a function of Sc = ν/D, which unlike Pr, is not an inherent 
material property; it depends on the chemical species, temperature, salinity, and pressure. The 
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values of D (molecular diffusivity) for Na+ and Cl- (separately) at 20 C and 10 PSU are ~0.11 
and 0.12 m2/s, respectively (Boudreau 1997). With the values of diffusion and kinematic 
viscosity ( /1000) I used, Sc (~  /(D×10^3) varied between 0.5 and 20 to get reasonable 
results. 

The value of Gr increases to 25,000 when ν is reduced to 0.000019 m2/s  (Figure 9.5B) and a 
result similar to that from H97 is produced (Figure 9.4B) but with less diffusion. Note that Frf 
has increased from 0.4 to 0.51, which is still too low for Figure 9.4 (Hartel et al., 2000). H97 
completed numerical simulations for Gr = 105 (Figure 9.4C). Gerris predicts Kelvin-Helmholtz 
instabilities that are a little better developed because of our decreased mixing. Our result for Gr 
= 6.125×105 (Figure 9.5D) is very similar to H97 (Figure 9.4D) with the better-developed 
turbulence as discussed above.  

We can further evaluate the simulations numerically by comparing the value of x = 26 = 
0.0031 m to the recommended value of (Gr×Pr2)-1/4 for a DNS (H97), for which we get 0.0029 
m. This value is close enough that the monotonically integrated large eddy simulation (MILES) 
approximation is more than adequate (Popinet et al., 2004). We note that the Kolmogorov scale 
(~1/Ref) ~ 0.000625 m, which we can use to estimate a dimensional value using L = 0.2 m, or 
0.12 mm.  

Hartel et al. (2000) 

The next series of simulations are from another modeling study of the original laboratory 
experiments (Hartel et al 1997; Hartel et al 2000). These results (Figure 9.6) analyze the 
behavior of the gravity-current head and flow topology for Gr = 1.25×106, 1.5×106, 4×108, and 
2×109 in a symmetrical lock domain as shown above. This extends the results of Hartel et al. 
(1997) to stronger buoyant forcing. The original Boussinesq numerical model is used by the 
authors in addition to a Fourier solution of the same equations. I have limited our Gerris 
simulations to realistic fluids. 
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Figure 9.6. Development of 2D flow at Gr = 1.25106 (Hartel et al., 2000). 

The first flow examined is for Gr = 1.25×106 (Figure 9.7). Since the objective of our work is to 
better understand gravity flows in brackish water, we would like to use reasonable dimensional 
values of ρ', viscosity, and diffusivity. Our simulations were for Gr = 1.33×106 with mu 
(dynamic viscosity) = ~0.0026 kg/m/s and g' = 0.00981 m2/s. For the first simulation we used 
Pr (Sc) = 7. The gravity flow contains the same number of vortices as H00 (Figure 3), but they 
are less regular because of the reduced diffusion. Positive vorticity (yellow) is generated along 
the fluid interface and negative vorticity (blue) is created at the solid boundaries. H00 used 
much more diffusion as represented by Pr (Sc) = 0.7. Our simulations with this ratio were very 
similar but had the expected wider interface between fluids.  
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Figure 9.7. Gerris simulation results for evolving gravity flow at Gr = 1.33106 for Pr (Sc) = 7. 

The head of the gravity flow is of interest because of its impact on the entrainment of ambient 
fluid into the flow. H00 examined the gravity flow head structure for Gr = 4108 and 2109. 
The fluid properties from H00 are not given. The results shown here (Figure 9.8) demonstrate 
the smooth, elongate nose at Gr = 4×108 in both models. It was very difficult to exactly match 
the higher Gr from H00 because the result is very sensitive, so the results below are for Gr = 
7.7×109; however, they are sufficiently similar to demonstrate that the model is responding to 
the large density gradient correctly. Hartel et al. (2000) computed uf by estimating the position 
of the front but they do not report these data. They go on to plot Frf as a function of Gr (Figure 
4 in H00). They define Frf as the ratio of the asymptotic front velocity, uf, to the buoyancy 
velocity ub, which is estimated by Equation (9.4).  
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Figure 9.8. Comparison of H00 (top) and NRL (bottom) results at similar Gr numbers. 

Our results (Table 9.2) fall along the no-slip line from H00 (Figure 9.9) but we have extended 
the plot slightly with the following simulations.  

 

Table 9.2. Summary of NRL Experiments.  

Gr  Frf  

2.5103  0.40  

2.5104  0.51  

9.0104  0.54  

6.2105  0.58  

2.9107  0.65  

1.61010  0.66  

 

The value of Frf = 0.66 for the last case in the table would fall nicely on the extrapolated solid 
line from Figure 9.9.  
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Figure 9.9. Plot of results for Fr as a function of Gr from several sources (Hartel et al., 2000). 

 

Maxworthy et al. (2002) 

This section began by examining the experimental results of Maxworthy et al. (2002) 
(hereinafter M02), but it was not possible to fully reproduce their numerical simulations 
because of peculiarities of their apparatus (Figure 9.2). They used a stratified ambient fluid with 
a denser fluid released from an area that was not necessarily the full height of the tank. The 
density ratio is more complex to calculate for this setup; R = (ρc - ρ0)/(ρb - ρ0) = NC

2/N2, where 
ρc = density of heavier fluid; ρ0 = density of ambient fluid at surface; and ρb = density of 
ambient fluid at bottom. Here N2 = (g/ρ0)(-dρ/dz) = g(ρb - ρ0)/ ρ0H. Furthermore, NC

2 = g(ρc - 
ρ0)/ ρ0H (Equation 9.4). The difference between these two versions of the buoyancy frequency 
is the use of the bottom ambient density for N versus the density of the fluid in the lock for NC. 
Thus, R is the ratio of the density differences for the lock and ambient fluids. For a large 
contrast in these density differences (i.e., R large), the density difference can be given by, ρc - 
(ρb + ρ0)/2. For this case, the average density of the ambient fluid is used. R needs to be 
substantially larger than this average to create a gravity flow. This is an issue because the only 
visualization of a flow simulation (Figure 9.10) is for an unlabeled run with parameters not 
listed in their Table 1.  
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Figure 9.10. Results from Maxworthy et al. (2002), showing gravity flow evolution from a 
laboratory experiment. 

This experiment was reproduced using Gerris with estimates for the appropriate fluid 
properties. The simulation uses dimension,Lc = 15 cm and there are 16 boxes. This gives a total 
length of 240 cm. This box size matches the length of original laboratory tank but it is only half 
as deep because of an inconsistency in the description of the experimental apparatus in M02. 
They label the fluid depth as H = 15 cm in the caption for their Figure 1. In the text, the say the 
tank is 30 cm deep. Their figure 9 (reproduced here as Figure 10.10) says the numerical 
calculations are scaled with H/2 and H = 15 cm. What the figure caption should have said is, 
H/2 = 15 cm. We can verify this using the relationship between Frf and uf: uf = Frf  ub ~ Frf  
NH = (0.489)(1.981)(0.15) = 0.15 m/s. This speed can be estimated from Figure 9 (M02) to be 
31 cm/s, which is twice the estimate. This discrepancy cannot be reconciled with the available 
data. The photographs of laboratory experiments are unlabeled. Figure 10.10 may not show the 
entire model domain. If we assume that H = 15 cm, the value of uf is half and matches the 
estimate.  

With the uncertainty associated with the M02 report, I first reproduced the results for the slower 
speed using a reduced value of gravity in the simulation; these results (Figure 9.11) are in good 
agreement with the slower interpretation of M02. The measured uf is 14.2 cm/s, which is very 
close to that from M02. A large density contrast was required to match their simulation. This 
gravity-flow head velocity is similar to that from the previous experiments from Härtel et al. 
(1997; 2000). These are not directly comparable, however, but they are similar enough to 
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demonstrate that unrealistic ocean density gradients are required to reproduce many of these 
results. From their paper, we do know that Maxworthy et al. (2002) used water but they did use 
unusual compounds to adjust the density as much as they did. For our purposes, we have 
succeeded in reproducing their experimental results. We are not going to try and reproduce 
everything else, however. A full value of gravity was also used and had the expected result of 
approximately doubling the value of uf to 27 cm/s. These results are not shown. 

 
Figure 9.11. Gerris results at 0.9 s steps. The panels coincide with those from Figure 10.9. 

 

O'Callaghan et al. (2010) 

The final simulations that we wish to reproduce are from O’Callaghan et al. (2010) (hereinafter 
O10). We use the same procedure as before; we want to match the published figures of flow 
using as much data from the paper as possible. This is more difficult than it sounds for this 
paper because there are discrepancies between the description of the simulations and the results. 
I will discuss some of these inconsistencies before attempting to devise experiments to test our 
understanding of what was actually done.  

O’Callaghan simulated a tank with dimensions 0.2×2.4 m using 12 GFS boxes. This is the same 
as the experiments described by Hartel et al. (1997). The gate between dense and light fluids is 
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at the center, which limits the computational domain to 1.2 m. The right side represents a 
gravity flow at the seafloor and the left side simulates a surface plume of less-dense water.  

 They state that Pr ~ 7 for all simulations because they used ν = 10-6 m2/s and D = 1.4×10-6 
m2/s. The Prandtl number, Pr = ν/D (ratio of kinematic viscosity to diffusivity) is then equal 
to 10-6/1.4×10-6 or approx. 0.72; the value for water is 7. It is possible that D = 1.4×10-7 
m2/s, which is the thermal diffusivity of water. The actual input parameters for the GFS 
simulation file are: the dynamic viscosity  (kg/m/s) and D, the diffusivity. The thermal 
analog of  is k/cp, where k = thermal conductivity (W/m/K) and cp = specific heat capacity 
(J/kg/K). When these two material properties are combined the units are (J/s/m/K)/(J/kg/K) 
or (kg/m/s). This thermal analog to the dynamic viscosity μ apparently has no formal name, 
which may have confused them as much as it has me. The model input thus requires 
different units for these parameters, perhaps because the viscosity appears in the heat 
transport equation whereas Pr is used to represent thermal diffusivity. Density is used to 
normalize viscosity for the dimensionless Navier-Stokes equations.  

 They introduce Gr as defined in Equation (9.3) above for their initial tracer distribution per 
Härtel et al. (1997). I do not know whey they did this since Gerris has no problem with a 
discontinuous distribution as did the wave-solution model from the prior study. This means 
that h is the half-channel width, not the gravity wave front height. Furthermore, they state 
that √Gr ~ Re.  

They define ub (buoyancy velocity) as in Equation (9.3), and Ref = uf ⋅ hf/ ν as described above 
and following Härtel et al. (1997).  

 They refer to their Table 1 for the values of Re (UL/ ν), Gr, and ν that were used in their test 
cases. This implies that the value of Re is not Ref because U and L are traditional names of 
nondimensional variables. In this case, Table 1 makes no sense. For example (3.13105)1/2 ~ 
600 (559.5 actually), not ~300 as reported in row 1 of the table. The other rows have similar 
discrepancies. Where does this factor of ~2 come from? This table is only referred to at this 
point. I think this section was just inserted with little or no proofreading.  

 They justify the use of a slip boundary condition as being appropriate for transport of low-
density water over high-density water, as in a surface plume. However, the boundary is not 
between fluids but at the top and bottom of the channel (actually a pipe). I think they mean 
the free surface between water and air is representable by a slip BC, and the edges of the 
pipe represent this air-water interface (remember it is symmetrical). Thus, the low-density 
water side is representing the plume.  

 The discussion of x ~ 2.4 mm for Re ~ 10,500 is obtuse. Higher values of Re occur for 
either larger U or smaller ν in Gerris. The minimum cell size is only a function of the 
refinement level and the characteristic length L. They must have used a refinement of 9. I 
had to use really high refinements for high Re problems. Also, 0.2/2y cannot equal 2.4 mm 
for any x; e.g., x = 3.1 mm and 1.6 mm, for y = 6 and 7, respectively. I think this is another 
typo— x = 0.4 mm for y = 9. It is possible it is something else if they intend L to be other 
than 0.2 m, which is their stated value.  

 Of course, the minimum cell size for DNS, x = (GrPr2)-0.25 is meaningless in light of the 
uncertainties in both Gr and Pr discussed above.  
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I am not going to treat the rest of the discussion as discrepancies unless I have to. We will now 
proceed to reproduce their results (see Figure 9.12). The analysis of this figure requires using 
the caption as well as the text. In referring to the Re we must also keep in mind the multiple 
issues listed above. I cannot simply reproduce any of this work because insufficient information 
is given. To the best of my reading of the methods section, the results in their Figure 2 
(reproduced here as Figure 9.12) used the following parameters: μ = 0.001 kg/m/s (ν = 10-6 
m2/s, from which D = νρ/Pr = 1.4×10-4 m2/s because Pr = 7 and ρ = 1 (kg/m3) for a 
nondimensional simulation. Note the discrepancy here; D is given as 1.4×10-6 m2/s in the 
methods section ( and D are synonyms).  

 
Figure 9.12. Reproduction of Figure 2 from O'Callaghan et al. (2010). 

All of the prior studies used Gr as defined in Equation (9.3) to compare results. This has been 
useful because it can be computed relatively easily from published results. This has made this 
report feasible when other input parameters were unavailable. However, O10 use Re to relate 
their simulations and used the approximation, Re ~ Gr0.5 instead of Ref ~ 1.1Frf(Gr0.5) (Hartel 
et al., 2000).  

Figure 9.12A is for Re = 300, for which O10 report Gr = 3.13×105. The flow should be 
intermediate between flows for Gr = 105 and 6.125×105 (Härtel et al., 1997) (Figures 9.4C and 
9.4D). In fact, it is similar to these as well as the NRL experiments for Gr = 6×105. The result 
for Re = 2600 (Gr ~ 3.13×107) is similar to results from Härtel et al. (2000) for Gr = 4×108, as 
well as the NRL simulation for this flow. The nose result for Gr = 4×108 from our simulation 
does not reveal as much structure as O10s simulation (Figure 9.12C) for Re = 10,500 (Gr ~ 
6.25×108) but it is very similar.  
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The other issue we need to address with respect to Figure 9.12 is the propagation velocity, ub = 
(g' h)1/2, estimated from the model results. This is important because h can be defined in 
different ways. Another discrepancy in O10 comes out here. They report uf = 0.54 (Re = 300), 
0.607 (Re = 2600), and 0.625 (Re = 10,500) for their simulations (Figure 10.12). The 
approximate values of Gr for these simulations are 105, 107, and 108. The values of Frf from 
H00 for these Gr are 0.51, 0.6, and 0.63, respectively. It seems that O10 are referring to Fr and 
not uf in their discussion of these simulations. We can check this with our results as well.  

We can compare some of our simulations (Figure 9.13) to these results to understand this 
relationship better.The first simulation (NS-2a) uses a large viscosity (0.01 kg/m/s) and small ρ' 
= 0.1% to get Gr = 9104 (Re ~ 300). The gravity flow front propagates at u_f = 0.016 m/s and 
ub = 0.03 m/s. The resulting Frf = 0.54 (h = 0.1 m), which is slightly high for this flow. 
Simulation NS-1 has a smaller viscosity and a ρ' of 6.3%; thus, ub = 25 cm/s. The resulting flow 
at t = 6 s (Figure 9.12B) is very similar to the result from O10 for Re = 2600, with Frf = 0.61, 
very close to the data H00 (Figure 9.9). We reproduced the flow for Re = 10,500 using ρ' = 
6.3% and μ = 2.38⋅10-3. The resulting Frf is very close to the result form H00. These 
simulations demonstrate that it is likely that O10 are reporting Frf rather than uf in their Table 1.  

 
Figure 9.13. Plots of Gerris simulations at T = 11 s for low density gradients. 

If the results from O10 are at t = 11 s, we can estimate the simulation conditions for their Re = 
300 flow based on estimates and given values of parameters. The flow height hf ~ 0.1 m and the 
total domain is 2.4 m (the flow travels at most 1.2 m). If we take Frf from H00 (Figure 9.9) or 
interpret O10's statement as a typo, we get Frf ~ 0.51. We estimate uf = 0.05 m/s from travel 
distance and t = 11s. Consequently, ub = uf/Frf ~ 0.1 m/s. We can then use the relation for ub = 
(g' hf)1/2 to estimate ρ' as 0.01. Their higher Re flows were limited by adjusting the flow 
parameters to keep them in the same region of the domain.  
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Summary 

The lock-exchange simulations were intended to make certain that I understand the basic 
requirements for using density variations and interpreting the simulations with respect to 
nondimensional CFD principles. The primary question that has come up is, When should 

reduced gravity be used?  

Simpson and Britter (1979) introduce the Boussinesq approximation to reduce their 
experimental variables (ρ1, ρ2, g) to g' = (ρ2 – ρ1)g / ρ1, because their fluids have small density 
differences; (ρ2 – ρ1)/ ρ1 ranged from 0.0037 to 0.03. Their tank was 12 cm deep, which is 
comparable to those from other studies. They plot the dimensionless velocity, Frf = uf / (g' h)1/2, 
for several different studies in their Figure 11 but they do not list experimental values. 
However, we can infer typical values from their report (e.g., 0.003 < ρ' < 0.03 and h = 12 cm), 
and thus estimate 6 cm/s < ub < 19 cm/s. Note that ub is calculated using the total water depth 
rather than the gravity current height.  

The conclusion of these comparisons is that we have reproduced the flow results from prior 
work within the uncertainties associated with the incomplete reporting of previous papers. 
Furthermore, these simulations were dimensional and the results are thus unambiguous. This is 
not meant to imply that there is anything ambiguous about the nondimensional results we have 
been examining. The issue is in the reporting, which must give complete descriptions of the 
physical problem because the Grashof number is sensitive to a number of fluid and flow 
parameters. This is exemplified in Figure 10.9 for a full-gravity simulation.  
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Section 10: Example Applications 

Tidal Simulation in the Gulf of Maine 

Introduction 

This activity is preliminary for potential use of GFS to simulate the tides in the Gulf of Maine 
(GM). The GM is an extension of the North Atlantic Ocean, and as such it is dominated by the 
M2 semidiurnal tide, which rotates counterclockwise with an amphidromic node in the central 
N. Atlantic (Figure 10.1). Thus, the tidal wave propagates SW along the N. America shelf and 
interacts with the wide platform in the GM. This interaction is complicated by the inertial 
frequency, f = 2Ω sinθ, where Ω is the rotation rate of the Earth (7.292×10-5 rad/s). The inertial 
period is then given by Ti = (2π)/f. The approximate latitude of GM is 43°N and Ti is 17.54 
hours. There should be very little modification of the tidal wave as it propagates through the 
area, in contrast to the northern Gulf of Mexico, where the inertial period is equal to the K1 
diurnal period at ~30°.  

 

 
Figure 10.1. Cotidal chart of the M2 tide in North Atlantic. 

 

The shelf is quite large in this area because it incorporates George's Bank, however, and the M2 
tide is dissipated by passing over it. For example, the phase difference for this constituent 
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across the opening to the GM between stations FUNDY 21 on the north (phase = 241°) and 
IAPSO #30-1.2.32 on the south (phase = 347°) is ~106° or 3.6 hours. This is a distance of 600 
km, which indicates a tidal propagation speed of 46.3 m⋅s-1. The approximate depth of the shelf 
is 200 m, and the theoretical propagation speed of the wave should be ~44 m⋅s-1, which is in 
good agreement with the estimate from the station data.  

The large tides in the GM-Bay of Fundy (BF) region are attributed to a resonance relationship 
between the M2 tidal forcing at the shelf break and the western Gulf of Maine (Brown, 1984). 
The cotidal chart (Figure 10.2) shows that the phase difference between the edge of Georges 
Bank and the upper bay is ~90°, or 1/4 of the tidal period. This mechanism has been discussed 
in several papers (Garrett 1972; 1984; Ku et al. 1985). Brown (1984) suggested, based on a 
dynamical balance approach, that the tidal wave behaved differently within different areas of 
the basin: (1) a progressive wave is indicated over the shallower water of Georges Bank; (2) the 
tide behaves as a standing wave within the western Gulf of Maine; and (3) weak progressive 
wave dynamics on the New England shelf. The tide must propagate over the relatively shallow 
Georges Bank in a consistent manner to the western Gulf of Maine, which produces much 
larger currents than elsewhere. This rapid propagation south of Nova Scotia is seen in the 90° 
phase cotidal isopleth being ~200 km advanced into the Bay of Fundy relative to the western 
GM. This suggests that a standing wave is generated after the tidal wave reaches the 100 cm 
isoline.  

 

 
Figure 10.2. An M2 cotidal chart for the Gulf of Maine and Bay of Fundy system. 

It is further suggested by Brown (1984) that bottom friction is unimportant in the western GM 
because of the small bottom currents. However, he does not address the potential tidal 
dynamics in the Bay of Fundy. The the tidal propagation across Georges Bank is examined in 
detail by Chen et al. (2011) using FVCOM. This model used triangular cells that varied from 
300 m to 15 km at the open boundary. They used eight tidal constituents: M2; N2; S2; K2; K1; 
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O1; P1; and Q1. They integrated the 3D equations for 90 days using an external time step of 12 
s, and an internal time step of 120 s. Bottom stress was parametrized using a logarithmic 
bottom boundary layer with spatially varying z0 except where the water depth is less than 40 m, 
for which z0 was 3 mm. They do not discuss the wetting and drying formulation so it appears 
not to be present. This would explain why they do not discuss the upper Bay of Fundy in the 
paper.  

Chen et al. (2011) focus on the New England shelf and western GM. They discuss tidal energy 
balances including dissipation. Their grid extended into the Bay of Fundy and they show high 
dissipation in the areas where the tide is very high. Their results further demonstrate that eddy 
generation by islands over Nantucket Shoal is the source of an observed phase lead for the M2 
from the slope to Nantucket Island. There is no discussion of the possible generation of a 
standing wave in BF.  

The FVCOM model was also applied to sediment transport in the Minas Basin and Copequid 
Bay (Wu et al. 2011) (Figure 10.3). Flooding/drying was simulated using a mass-conserving 
wet/dry point treatment. The smallest cells were 100 m in Minas Basin. They used a much 
smaller domain, however, than previous studies. They adjusted the bottom roughness z0 based 
on grain size, ranging from 0.5 to 0.0025. The model was very accurate for both elevations and 
currents.  

 
Figure 10.3. Model domain used by Wu et al. (2011) for sediment transport. 

One of the most interesting results from their study was the depth-averaged residual flow, 
which indicates a CCW eddy in Minas Channel with a magnitude of ~1 m⋅s-1, and an 
accompanying CW eddy inside Minas Basin with weaker flow.  

Objectives 

This report is intended as a preliminary study on the potential use of Gerris for simulating tides 
in a macrotidal estuary like the Gulf of Maine and Bay of Fundy system. The scientific purpose 
follows from previous studies as described above. The missing part of these previous studies is 
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the mechanism and dynamics for the apparent standing wave (resonance) response of the M2 
tide in the Bay of Fundy. This is unique because the tide propagates over the Georges Bank and 
the NE margin of the Gulf of Maine as a progressive wave with significant energy dissipation. 
Yet, a resonance condition appears to exist in the Bay of Fundy.  

The tidal behavior within the Minas Basin has also been reproduced accurately using boundary 
conditions near West Advocate and Minas Passage (entrance to the upper basin). Our purpose is 
to verify that Gerris is usable for the integrated problem and assist the USGS in implementing 
Gerris if they choose to. This effort will also become part of a larger study of macrotidal 
behavior in estuaries with substantial intertidal areas.  

Methods 

This study consists of three components: (1) setting up the necessary simulation conditions like 
the tides and bathymetry; (2) evaluating the necessary calibrations to get reasonable results 
from Gerris; and (3) verifying its result and completing preliminary validation using ArcGIS 
methods.  

Simulation Description 

The bathymetry is based on a data set from the WHOI THREDDS portal 
(http://geoport.whoi.edu/thredds/ncss/grid/bathy/gom03_v31/dataset.html). This NetCDF file 
was processed into an *xyz file, which was then transformed into a kdt file by the GFS utility, 
xyz2kdt. This is a terrain file used by the GfsTerrain module, which is used by the GfsRiver 
module. The general method for setting up the simulation is described for the Karamea flood 
tutorial (http://gfs.sourceforge.net/wiki/index.php/Karamea_flood_tutorial).  

The tidal forcing at the SE and NE edges is supplied for the M2 constituent using a constant 
amplitude of 45 cm and phase of 350° (Brown 1984). The tides are ramped up for 1 day. A 
single GfsBox centered at 42°N and 66.4°W is transformed to a Lambert Conformal projection 
rotated 25° CW. The box is 760 km in width. The initial refinement is 3, which is a minimum 
cell size of 11.87 km. A maximum refinement of 11, or 371 m, is used. The high-resolution 
bathymetry is melded with the Etopo1 database to fill the rotated grid completely. This is 
accomplished within the GfsTerrain module and requires no user action. The AMR capability 
in Gerris requires some adjustment to achieve the best results.  

This section describes the input file, tides.gfs. The top of the file defines a number of C-like 
macros that are used when the model runs. First are some physical parameters, gravity and the 
Earth's angular speed. Note that M_PI is an internal constant to Gerris (π).  
 

Define GRAVITY 9.80616 
Define OMEGA (2.0*M_PI/86400.0) 

Define the domain using macros for size in meters, longitude and latitude of center, and the 
rotation angle.  
 

Define LENGTH 760e3 
Define LONGITUDE -66.4 
Define LATITUDE 42.0 



 

 

108 

 

Define ANGLE -25.0 

Define the end time of the simulation in seconds.  

Define ENDTIME 1728000 

Define a minimum depth to call a cell dry.  

Define DRY 1e-2 

Define bottom drag.  

Define CD_BOT 1e-2 

Set max refinement level for coastline (a maximum resolution of 760e3/2^MAXLEVEL)  

Define coastLEVEL 11 

Set max refinement level for bathy curvature. Here weep a coarse band, 0.04 wide, on all 
boundaries of the domain to act as a "sponge" layer before waves exit the domain. This coarse 
band also helps to keep from introducing the Northumberland Strait into the simulation domain.  

Define bathyLEVEL (fabs(rx) < 0.46 && fabs(ry) < 0.46 ? 9 : 5) 

The following defines a simple ramp function that is applied to the boundary forcing to 
decrease initial oscillations. Note that t is a domain variable that Gerris uses. It is available for 
creating GfsFunctions in the input file.  

Define RTIME 86400.0 
Define RAMP(t) (t > RTIME ? 1.0 : t/RTIME) 

The M2 tide constituent is defined as a macro using amplitude (m) and phase (degrees 
Greenwich).  
 

Define M2f (2.0*M_PI/44712.0) 
Define M2a 0.45 
Define M2p 350.0 
Define M2(t) (A_M2*cos(M2f*t) + B_M2*sin(M2f*t)) 

A tide function is defined using the time-dependent amplitude (M2) and ramp function.  
  

Define TIDE(t) (RAMP(t)*M2(t)) 

This is the end of the user-defined variables (macros). The simulation uses 1 GfsBox and the 
GfsRiver module, which solves the St. Venant (2D Non-linear Shallow Water) equations. The 
model simulation is given dimensions and time variables. Note that internal variables like lon 
and lat are assigned the defined variables from above. The two *kdt files are listed; the terrain 
module will do the merging as necessary and assign the result to model variable, Zb.  

1 0 GfsRiver GfsBox GfsGEdge { } { 
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Set physical length and time scales using the defined macros. Also, set the end time and max 
time step for the simulation.  

PhysicalParams { L = LENGTH g = GRAVITY } 
Time { end = ENDTIME dtmax = 60 } 

Here we load cartographic projection module and set a Lambert conformal conic projection 
using the defined macros.  

GModule map 
MapProjection { lon = LONGITUDE lat = LATITUDE angle = ANGLE } 

We load the Terrain module and define terrain variable (model variable, Zb). The basename is a 
list of terrain databases that will be used. These must be created beforehand and be accessible 
within GFS_TERRAIN_PATH. The terrain module will do the merging as necessary. We set 
the reconstruction of the terrain to preserve the lake-at-rest balance.  

GModule terrain 
VariableTerrain Zb { 
basename = gom03_v31,etopo1_ice_g 
} { 
reconstruct = 1 
} 

We set some non-default advection parameters. The CFL is restricted to 0.5 for stability. Also, 
we choose a less dissipative limiter than the default minmod.  

AdvectionParams { 
cfl      = 0.5 
gradient = gfs_center_sweby_gradient 
} 

Here we specify the Coriolis.  

SourceCoriolis 2.0*OMEGA*sin(y*M_PI/180.0) 

We allow the model to initialize over the first 100 steps to gradually fill and refine the coastal 
areas. After the first 100 steps the tide forcing is "turned on" (ramp included).  
 

Init { istart = 0 } { 
A_M2 = 0. 
B_M2 = 0. 
} 
Init { istart = 101 } { 
A_M2 = M2a*sin(M2p*M_PI/180.) 
B_M2 = M2a*cos(M2p*M_PI/180.) 
} 
Init { istart = 0 istep = 1 iend = 100 } { 
P = MAX(-Zb, 0.) 
} 

For convenience (useful for graphics) we define the elevation of the wet surface variable.  
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Init { istart = 0 istep = 1 } { 
Hwet = (P > DRY ? H : NODATA) 
} 

 

Implicit scheme for quadratic bottom friction with coefficient CD_BOT is applied.  
 

Init { istart = 0 istep = 1 } { 
U = (P > DRY ? U/(1. + dt*Velocity*CD_BOT/P) : 0.) 
V = (P > DRY ? V/(1. + dt*Velocity*CD_BOT/P) : 0.) 
} 

 

We refine the mesh (at beginning only) based on local curvature of terrain. The maxcells is set 
so that a global adaptation cost function is constructed and this "initial" refinement is not 
undone by the wetting/drying refinement.  
 

AdaptError { istart = 0 istep = 1 iend = 1 } { 
cmax = 1.0 
cfactor = 4 
weight = 1.0 
minlevel = 0 
maxlevel = bathyLEVEL 
maxcells = 10000000 
} (Zb <= 0 && Zb > -1500 ? Zb : 0) 

 

During the simulation we refine mesh in the wetting/drying areas. The Zbn > 1 condition means 
refine only if the cell is coarse enough to contain at least two terrain database samples. Zbdmax 
is the maximum elevation of any database sample contained within the cell. H is the water 
elevation. The cost function is the maximum height above the local water level of any database 
sample. Cmax is set to zero so adaptation will go the the maximum resolution (maxlevel) 
whenever a wet cell contains at least one "dry" sample.  
 

AdaptFunction { istart = 1 istep = 1 } { 
cmax = 0 
cfactor = 2 
weight = 1.0 
minlevel = 0 
maxlevel = coastLEVEL 
maxcells = 10000000 
} (P > DRY && Zbn > 1 ? MAX(Zbdmax - H, 0) : 0) 
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We check for load balancing every 10 time steps (needed for a parallel run). We also print some 
run statistics to the screen, and output a simulation file (with all of the domain variables) that 
can be read by gfsview2D, which is part of the GFS software package.  
  

EventBalance { istep = 10 } 0.1 
OutputTime { istep = 100 } stderr 
OutputBalance { istep = 100 } stderr 
OutputSimulation { start = 0 step = 3600 } sim-%08.f.gfs 
OutputTiming { start = end } stderr 

 

These are the adjusted locations of some sample stations from the IHO data base.  
 

GfsOutputLocation {step=900} BURNTCOAT_HEAD_ts.txt {-63.818 45.3076 -1} 
…OUTER_WOOD_ISLAND_ts.txt {-66.8043 44.5814-1 } 
…ST._ANDREWS_ts.txt {-67.0372 45.0619 -1 } 
…ROCKLAND_ts.txt { -69.0931 44.009102 -1 } 
…PORTSMOUTH_NAVY_YARD_ts.txt{-70.721 43.081 -1} 
…BOSTON_COMMONWEALTH_PIERS_ts.txt {-71.005 42.341 -1 } 
…EAST_CAPE_COD_CANAL_ts.txt { -70.486 41.774 -1 } 
…FUNDY_6_ts.txt { -67.7085 42.4494 -1 } 
…IAPSO_ts.txt { -70.8874 40.2794 -1 } 
…FUNDY_4_ts.txt { -66.8328 40.7267 -1 } 
…FUNDY_22A_ts.txt { -65.5003 42.1068 -1 } 
…FUNDY_1_ts.txt { -63.197 42.8016 -1 } 
…MILL_COVE_ts.txt { -64.059 44.4779 -1 } 
…YARMOUTH_ts.txt { -66.1355 43.744 -1 } 
…DIGBY_ts.txt { -65.7302 44.625 -1 } 
…WEST_ADVOCATE_ts.txt { -64.8202 45.3437 -1 } 

} { 

Use a second-order time integration scheme and set a minimum water level.  

time_order = 2 
dry = DRY 
} 

Define the boundary conditions for the model domain. Apply tide forcing as Dirichlet BC  

GfsBox { 
left = Boundary 
top = Boundary 
right = Boundary { 
BcDirichlet P MAX(TIDE(t) - Zb, 0) 
} 
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bottom = Boundary { 
BcDirichlet P MAX(TIDE(t) - Zb, 0) 
} 
} 

 

Calibrating GfsRiver (non-linear SWE) 

The relevant files are located in /u/gfs/tides/gfsriver_gulf_of_maine. Within the driver script, 
run_tides.sh, there are two flags (INTERACTIVE and PARALLEL) to set the type of run. If 
INTERACTIVE=1, then the run will be in foreground with output piped to gfsview. If 
PARALLEL=1, then the run will be executed in parallel on 4 processors. The parallel run is 
currently set to split the gfs input (tides.gfs) to three levels (i.e., 64 boxes) and then partition the 
64 boxes for a 4 processor domain decomposition. The refinement functions were adjusted to 
achieve the primary goal of reproducing the tides at a number of stations, which result from a 
resonance at the semidiurnal period. This turns out to require adequate resolution of the slope 
and shelf break. The run_topo.sh script can be used for generating a gfsview visualization of the 
terrain.  

The first example (Figure 10.4A) did not refine to the bathymetry and the resulting simulation 
failed to produce the required amplification. This is seen in the low resolution of the shelf 
break. The higher refinement (Figure 10.4B) easily resolves the steep slope and produced the 
desired result, which will be discussed in the next section.  

 

 
A. This simulation did not use the adaptError function. Contours are black. 
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B.This simulation used the simulation file described above. Contours are white. 

Figure 10.4. Images from gfsview showing the cells and bathymetry contoured at 30 m intervals 
from 0-300 m depths.  

Tidal Data from International Hydrographic Office (IHO) 

There are a large number of tidal stations in the Gulf of Maine (Figure 10.5).  

 
Figure 10.5. Map of 30 m bathymetry from USGS and locations of IHO stations used in this study. 
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We will use representative ones (Table 10.1) to evaluate the tidal elevations predicted by 
Gerris. They are listed here as they appear in the database. 

 

Table 10.1. Tidal Stations used for Model Evaluation  

Name  East Longitude  North Latitude  

BURNTCOAT HEAD  -63.787125  45.285748  
OUTER WOOD ISLAND  -66.804282  44.581428  
ST. ANDREWS  -67.042228  45.066838  
PORTSMOUTH (NAVY YARD)  -70.725634  43.077609  
BOSTON (COMMONWEALTH PIERS)  -71.020687  42.344735  
FUNDY_1  -63.197  42.8016  
FUNDY 22A  -65.500337  42.106789  
MILL COVE  -64.063143  44.562392  
WEST ADVOCATE  -64.815053  45.342856  

 

We have noted some problems in the past with respect to the locations given in the IHO 
database. Some corrections may be in order; for example, YARMOUTH definitely appears to 
be in the center of town. A better longitude/latitude for this station would be -66.138E, 
43.812N. There is no simple method for assigning lon/lat values because the model results are 
interpolated to the requested position. In addition, there are uncertainties in assigning the water 
depths to the mesh at each time step because it adapts continuously. A maximum refinement 
can be used in specified areas of interest in addition to the method used for these simulations. 
The cells seen in Figure 10.4B result from refining to a large level wherever Zb is 0 (i.e., 
shoreline). There were difficulties in the original as well as the modified output locations. They 
were thus manually relocated to make sense. The new locations are listed in the simulation file 
above.  

This study is not attempting to reproduce the detailed tidal elevations from the database. 
However, it is useful to identify the contribution from different astronomical forcing and the 
interaction between these motions. This can be examined at station FUNDY 22A (Figure 10.6). 
The plot shows the result of 32 constituents. We see two principle factors in the time series, 
however, that it would be useful to examine. The first is a fortnightly signal (e.g., spring-neap). 
This kind of variability is often caused by two constituents with about the same period and 
phase interacting. In fact the largest constituents are M2 and S2 with amplitudes of 45.8 and 9.4 
cm, respectively. This image captures the primary signal in the region but with smaller 
amplitudes. If we include the other semidiurnal constituents, there is very little change. When 
the largest diurnal constituent, O1 (amp = 5.5 cm) is added, we see the second visual impact; the 
alteration of high and low high tides every day. We note that this is not a perfectly repeating 
pattern, however, because the period and phase of these motions are not exact multiples. 
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Finally, when we include the larger semidiurnal and primary diurnal constituents, the signal is 
very similar. These three are potential candidates for mixed-tide simulations.  

 

 
A. Fundy 22A using 32 constituents. 

 
B. Burntcoat Head with 9 constituents. 

 
C. West Advocate using 9 constituents. 

 
D. Boston using 11 constituents. 
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Figure 10.6. Sample tidal predictions from IHO data base. 

Results 

We are only plotting the M2 tides for the first set of experiments. The results can be analyzed 
with respect to the amplitude and phase because there are no overlapping tides.  

Validation 

The harmonic analysis script is run in Matlab to compute the M2 amplitude and phase as 38 cm 
and 236°, respectively, for the model versus 45.8 cm and 248° from the database. The next 
largest is the M6, with an amplitude of 2.2 mm. This is an over-tide. The largest constituent 
otherwise is the S2 with amp = 0.4 mm. The other constituents are not real in the model analysis 
and act as a check for the harmonic result. This indicates that the harmonic analysis is 
reasonable.  

The validation for the tidal model consists of comparisons between the water levels from the 
IHO database and Gerris (Figure 10.7). The model has no real time so the output is shifted so 
that the most northern station (Fundy 1) has the correct time correlation with the database.  

 
A. Fundy 1 on the NE shelf. 

 
B. Fundy 4 east of Georges Bank. 

 
C. Boston. 

 
D. Cape Cod Canal. 

 
E. St. Andrews Bay in the Bay of Fundy. 

 
F. Burntcoat Head in Minas Basin. 
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Figure 10.7. IHO M2 tide time series. Gerris is shown as a dashed line. 

The tidal amplitude at Fundy 1 (Figure 10.7A) is too low even though the amplitude used for 
the boundary condition is 45 cm. This is due to the distance from the boundary to the station. 
This error is more apparent at Fundy 4 (Figure10. 7B), where the tide is propagating from deep 
water and has obviously lost amplitude before reaching the shelf break. It is also noteworthy 
that the amplitude at Fundy 4 decreases with time, from a maximum at ~1.5 days. There is 
apparently no appreciable phase difference between these stations.  

A key element of the tides in the western Gulf of Maine is the amplification of the M2 by 
resonance. This is evident in the tide at Boston (Figure 10.7C), which is 130 cm. The model 
does have a phase error of 1.2 hr here, which could be caused by adjusting the plot to coincide 
with Fundy 1. The amplitude is increasing for several days, just as it is decreasing at Fundy 4. 
This is probably associated with an error in the amplitude at the model boundary. The tide at 
Cape Cod Canal (Figure 10.7D) is also slightly ahead in phase and has an amplitude that is 
several cms high after 3 days of simulation. This is consistent with slight errors in both the 
boundary condition and the bottom friction. The bottom drag coefficient used for this 
simulation was 0.001, which is somewhat low for shelf waters but consistent with Brown 
(1984); however, his results were for an analytical model and may not be appropriate. Chen et 
al. (2011) used a uniform bottom roughness formulation with zo = 3 mm.  

We can also compare the tide in the Bay of Fundy where the station location is reasonably 
located. For example, St. Andrews is located in a back bay at the mouth of the Bay of Fundy 
but the tide is very well reproduced (Figure 10.7E) with excellent phase. This demonstrates the 
importance of adjusting the boundary condition as well as bottom friction. It is noteworthy, 
however, that the tide within this region is a result of a progressive wave entering the NE side 
of the GOM and apparent resonance within the GOM-BF system. This is also seen in the 
comparison at West Advocate, where the model is very accurate with only a few minutes phase 
error.  

The model requires some additional work, however, in Minas Basin. The predicted M2 tide at 
Burntcoat Head (Figure 10.7F) is large and the model is drying out. The depth is apparently <3 
m whereas the station is in a water depth of at least 5.5 m. It is not clear exactly where the 
station is located because the original lat/lon placed it in the town, possibly on a canal.  

These comparisons demonstrate that Gerris is capturing the fundamental dynamics of the GM-
BF system without detailed tuning of the boundary condition or bottom friction. It is consistent 
with previous results and the available data. We are not going to evaluate the currents because 
that is beyond the scope of this preliminary study.  

Tidal flooding and drying 

The most interesting aspect of this preliminary study is the simulation of wetting and drying 
during tides. The nonlinear SWM easily reproduces the physical mechanism but no effort has 
been given to using realistic bottom friction and it is evident that the available bathymetry falls 
short of reality. This discussion will focus on these questions. The best location to use as an 
example is the Minas Basin at the southern head of the Bay of Fundy. This is the area simulated 
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by Wu et al. (2011) for sedimentation. We will examine several locations in this area (Figure 
10.8) that demonstrate the problems and opportunities that are inherent in tidal modeling in 
macrotidal estuaries.  

 
Figure 10.8. Satellite image of the Minas Basin, showing the three area discussed in the text. 

We are interested in three locations from this area: (1) the SW corner of the basin where the 
large river enters; (2) the northern margin about half-way down the length where a headland 
protrudes; and (3) the narrow extremity at the end of the basin. Area (1) is occupied by farms 
and homes, and a delta from the river, with a permanent island and linear features intertidal and 
possibly subtidal features extending into the basin. Estimates of the water depth from the 
Google Earth data vary from -2 m nearshore to 10 m in the light-colored area where the fields 
are located. This is obviously not intertidal. The original 30 sec bathymetry indicates that this 
area is at -5 m and, consequently, Gerris predicts flooding during high tide (Figure 10.9). This 
area is so low in fact that it remains partly flooded during low tide, which is -5 m in this area. 
The model predicts extensive tidal flats around the river and the linear sand bar is emergent.  
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Figure 10.9. Predicted water anomaly from Gerris at high tide (upper left) and low tide(lower right). 
The box indicates the southern part of Minas Basin. 

The second area of interest is the western margin of the north-central headland (box 2 in Figure 
10.8). The satellite image shows a large light-colored area with filaments that resemble sand 
bars and spits associated with river flow, but there is no river at this location. The estimated 
elevation of this area varies from -6 m to 10 m. This suggests that it is a tidally reworked sand 
flat. It is evidently long-lived and appears to be eroding from the headland, which is probably 
of glacial origin (moraine). There is also a circular shoal to the west with an estimated depth of 
2-3 m. This area is quite different in the 30 s bathymetry and in the model response. The 
original bathymetry does indicate the shoal, which is emergent in the model during low tide 
only. This is indicated in the image by the grey area that is circled. However, the bathymetry 
indicates a hole where the light-colored (sandy) area is evident in the image. This hole is 60 m 
deep; this is indicated by the closely spaced contour lines. The maximum estimated depth from 
the image is <10 m.  

The third area is in the vicinity of Burntcoat Head (Box 3 in Figure 10.8). This area is 
interesting because the model predicts drying out during low tide, which is not consistent with 
the tidal database. The original bathymetry indicates depths of ~2 m, which explains why the 
model drys out with a 5 m tidal amplitude. This area is farmland on top of a rolling landscape 
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with a 5 m scarp at the coast. The reported location of the tide gauge is in a copse of trees 1.6 
km from the coast at an elevation of 64 m. The estimated water depths do not exceed 5 m for ~2 
km offshore to the north and west. The average depth of the bay is less than 5 m to the east with 
a narrow channel <10 m deep, whereas the 30 sec bathymetry indicates a wide channel with a 
max depth of ~20 m. This area also appears lighter colored, which suggests very shallow water 
and possibly intertidal. Of course, the actual tide level when the image was taken is unknown. 
The estimated depth in the bay 10 km east of Burntcoat is 30 m, which is consistent with the 
bathymetry. This deep basin terminates in a broad intertidal area in both databases. However, 
even further to the east, the 30 sec bathymetry indicates several holes up to 65 m deep. The 
largest of these is coincident with a depression having an estimated depth of 15 m just north of 
the river mouth.  

Summary 

This is a preliminary report on the potential use of Gerris for tidal modeling. It has 
demonstrated that with very little calibration the model can reasonably predict tidal elevations 
in one of the most challenging areas. The results indicate that the model has reproduced the 
resonance of the M2 tide in the western Gulf of Maine. It has also simulated the combination of 
a progressive wave propagating across Georges Bank and resonance in the Bay of Fundy. The 
comparisons with available tidal stations indicate that complex estuaries are easily simulated 
with a minimum resolution of only 370 m. The dynamics of the Minas Basin, where the 
greatest tidal range occurs, was hampered by poor bathymetry rather than model dynamics.  

We can confidently conclude that Gerris is a good candidate for tidal simulations in macrotidal 
estuaries. Two factors should be further investigated, however: (1) the use of a better open 
boundary condition; and (2) implementation of spatially variable bottom friction. We also 
recommend evaluating the potential use of the Ocean module because it is much faster due to 
its linear surface solution.  
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Non-Acoustic Optical Vulnerability Assessment Software 

(NOVAS) 

To create hydrodynamical signatures of moving underwater platforms needed to derive 
algorithms for the associated soft 3-D signatures due to bioluminescence and bottom sediment 
resuspension. These signatures will then be incorporated into the Non-acoustical Optical 
Vulnerability Assessment Software (NOVAS) model, currently identified by NAVOCEANO as 
a potential operational simulation of daytime and nighttime vulnerability.  

Background 

Airborne detection of Navy underwater assets as they operate in the challenging littoral 
environment is a major concern for clandestine operations. As a submerged vehicle transits, a 3-
D hydrodynamic field (3-Dhf) is generated whose characteristics will depend on platform size, 
shape and speed. During the daytime, sediment resuspension generated by the vehicle can 
become a major factor in its vulnerability as it attempts to remain as close as possible to the 
ocean bottom in order to avoid airborne detection of its hard signature. The inhomogeneous 
cloud of resuspended sediment around the vehicle, resulting from the interaction of its 3-Dhf 
with the bottom sediment, may increase its detectability by increasing its environmental 
footprint . During nighttime operations in biologically active waters, fluid shear present in the 
same 3-Dhf stimulates bioluminescence activity, resulting in a non-uniform distribution of 
blueish light that can be easily seen by an airborne observer. Because both phenomena are 
generated by the 3-Dhf surrounding the moving platform, it plays a crucial role in any realistic 
modeling of both daytime and nighttime vulnerability.  

The motivation for the proposed work is best presented with a brief synopsis of NOVAS’s 
present capabilities and needed improvements. Its interactive GUI (Figure 10.10A) allows the 
user to navigate through the manifold of parameters, most of which are dedicated to specifying 
the characteristics of the environment (wind speed for sea surface wave creation, depth profiles 
of absorption and scattering coefficients, depth profiles of bioluminescence potential for 
nighttime scenario) (Figure 10.10B) and an airborne low-light level camera (altitude, look 
angle, heading, aperture diameter, focal length to adjust optical zoom, and electronics).  
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A. Main screen for the NOVAS system. 

 

 
B. NOVAS system bioluminescence controls. 

 

Figure 10.10. Screens from the NOVAS software. 

 

Due to its fast execution speed, NOVAS uses slider bars to quickly change the values of 
parameters and displays a video-like Open-GL rendering of the scene recorded by the airborne 
camera, for both daytime and nighttime (shown above). A realistic simulation of an airborne 
searching for and hovering on top of an underwater platform can be performed.  

As seen from the Object Parameters tab page in NOVAS for nighttime modeling above, the 3-
Dhf signature of the bioluminescent source is modeled as a very cartoonish ellipse of variable 
length, width and thickness. In addition, the percent of bioluminescence radiated is a function 
of platform speed, modeled as a hyperbolic tangent with adjustable curvature through the 75% 
Bio-Potential slider shown above. The upper and lower limits of the curve seem reasonable, as 
an asymptotic behavior for the percent of bioluminescence radiated is expected when the 
platform speed becomes significant. In addition, due to this simplistic 3-Dhf signature, NOVAS 
does not presently have the capability to model the associated bottom sediment resuspension 
phenomenon in littoral waters or the platform’s wake. The increased realism of the NOVAS 
model resulting from this proposed effort will provide the Warfighter with a better awareness of 
his/her vulnerability, as well as an appreciation of the limitations and constraints imposed by 
the challenging littoral environment during the execution of a covert mission.  

Objectives 

Of central importance to incorporating these improvements into NOVAS is the generation of 
the 3-Dhf soft signature for a particular platform and to characterize its interaction with both a 
bioluminescing environment and a nearby ocean bottom where sediment resuspension can be 
initiated due to coupling with the 3-Dhf soft signature. Some obvious questions that arise for 
the nighttime (N) NOVAS scenario of bioluminescence are: N1) for what scenarios is the 
relationship between platform speed and percent bioluminescence potential a good 
approximation? N2) can a better characterization involving percent bioluminescence potential 



 

 

123 

 

as a function of shear stress be developed and quantified? N3) can the bioluminescence 
signature from the hydrodynamical field due to the propellers be quantified as well? N4) how 
does bottom sediment resuspension affect the vulnerability/detectability of a bioluminescing 
platform? The daytime (D) NOVAS scenario begs answers to additional questions: D1) how 
does the sediment resuspension alter platform vulnerability under various bottom 
compositions? D2) how does platform speed affect the minimum separation needed for the 
generation of bottom sediment resuspension? For both nighttime and daytime (ND) NAVO 
scenarios, questions to be addressed are: ND1) are there operating conditions in which 
vulnerability is reduced; ND2) how accurate must an object flow model be to provide optical 
vulnerability assessment, and ND3) can vulnerability be assessed in real-time with available 
information?  

General approach 

The key milestones needed for successful accomplishment of the stated objectives are:  

1. Run preliminary simulations with Gerris for the case of a simple solid (prolate spheroid) 
to estimate computational requirements for the projected effort. 

2. Generate autoCAD models of AFF1 (bare) and AFF8 (fully appended) hulls and save 
them in format compatible with Gerris (STL).  

3. For each autoCAD model, run Gerris at different vehicle speeds, altitudes, angles, and 
types of sediment to produce and save the corresponding 3-Dhf  lookup tables.  

4. Develop an algorithm to obtain a 3-D bioluminescence footprint from any of the 3-Dhf 
signatures. 

5. Develop an algorithm to obtain a  3-D distribution of resuspended sediment from any of 
the 3-Dhf signatures. 

6. Convert the 3-D distribution of resuspended sediment to a 3-D distribution of inherent 
optical properties. 

7. Improve NOVAS’s raytrace algorithm to sample the predicted 3-D bioluminescence and 
include the 3-D distribution of inherent optical properties into NOVAS’s radiative 
transfer module to provide a more realistic vulnerability assessment;   

8. Validate NOVAS’s predictions against field data. 

Numerical Modeling 

Direct Numerical Simulation (DNS) of turbulent flow past a vessel hull (Figure 10.11) has 
become possible in recent years with the advent of modern high-performance computing and 
adaptive grid, parallel computational fluid dynamics (CFD) models. For detailed turbulence 
calculations that affect the performance of the hull, these methods are still not in common use 
(e.g., Alin et al., 2010) but they can be used effectively for environmental computations (e.g., 
Popinet et al., 2004). Previous work with Large Eddy Simulation (LES) and Reynolds-
Averaged Navier-Stokes (RANS) models has indicated problems with the closure schemes used 
for turbulence near the hull. For more complex hull designs, such as including a fairwater and 
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fins, the LES produces better representation of secondary flows. It is expected that DNS will 
produce even better results for the pressure distribution.  

 

 
Figure 10.11. Pressure field computed for a standard hull configuration using the SUBOFF program. 

We propose to adapt and integrate a 3D adaptive-grid Navier-Stokes model called Gerris, which 
is being used to study flow in estuaries in a current 6.1 project at NRL-Stennis, to produce 3-
Dhf signatures of moving platforms and ingest them to existing bioluminescence simulation 
and sediment resuspension models to produce soft-body signatures. The Gerris code was 
developed to analyze flow around solid objects, which it reads from a standard CAD file 
format. This will allow multiple objects (e.g., the vehicle and the seafloor) constructed using an 
external program to be placed in the flow. For example, CFD analysis has been validated in 
designing submarines and towed underwater vehicles (Lee et al. 2003; Wu et al. 2005). We 
expect to be able to reproduce in-house the results shown below from a code called FEFLO 
(Finite Element FLOw solver) that was developed over 10 years ago at the Laboratory for 
Computational Physics and Fluid Dynamics for the SUBOFF program.  

However, the CFD needs for the proposed work are relatively simple and the computations can 
be completed with either FEFLO or Gerris. We chose the latter because we are familiar with 
Gerris and using it now for similar purposes and we are also going to be looking at pressure 
effects on the seafloor and resulting sediment resuspension (Keen). The Gerris code, which is a 
part of the Gnu Flow Solver (GFS), is undergoing continuing development and support for a 
range of applications (Popinet 2003; Popinet et al. 2004; Rickard et al. 2009). The submerged 
platform shape will be designed with available specifications using either a GNU or 
commercial CAD program. The CFD model computes the variations of the currents and 
pressure field around the object. The movement of the platform will be simulated by an 
upstream boundary condition representing the vehicle’s speed. For example, a Volume-of-Fluid 
(VOF) surface can be inserted as to examine water surface disturbance as a function of depth of 
the object (Popinet 2009). In addition to changing its speed, the vehicle can also move within 
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the material (e.g., changing depth). A bottom surface will be inserted to predict the impact of 
the flow field on sediment resuspension (Tang and Keen 2011). Furthermore, the independent 
interaction of control surfaces with the flow can be examined (Lee et al. 2005). This will permit 
a range of detail in examining the pressure field under realistic ocean conditions in 3D using the 
TecPlot visualization program.  

Preliminary experiments will represent a submarine hull with a prolate spheroid (6:1) at high 
Reynolds number in a 2d axisymmetric flow simulation. This is a common first-step in studying 
this problem (Givler et al., 1991). Although the focus of the proposed work will involve a 
towed hull, we will also explore and evaluate the possibility of modeling the propeller wake’s 
3-Dhf.  

Numerical experiments 

We will acquire either the specifications for the AFF1 (bare hull) and AFF8 (fully appended 
model) hulls used in the SUBOFF experiments completed with DARPA funding. Because of 
the expected high speeds of the submarine, these numerical simulations will be completed at 
Reynolds number >1×106. We will complete base experiments to determine the required degree 
of refinement of the numerical grid for the expected large number of simulations required for 
the look-up table product. The simulations will include increments of hull speed as well as 
angle. It is expected from previous work that the greatest turbulence and resulting pressure 
variations will result from changes in hull angle during maneuvering. The experiments will be 
scaled for either the SDV or a submarine. Any variations from this nondimensional result 
because of the unusually slow SDV speed will be accounted for by extending the lower 
Reynolds number bound.  

In addition to the base experiments with the AFF1 hull, some cases will be run with the more 
complex AFF8 hull in order to estimate the error associated with the simplified hull. It is 
expected that the computational requirements of the fully appended hull will restrict its use 
somewhat. The exact availability of these simulations will depend on the outcome of 
preliminary results. The experiments with the AFF8 hull will use the 3D Gerris solver for ½ of 
the hull (bilateral symmetry) to reduce computational requirements.  

The experimental setup will include steady flow in a wall-bounded channel with uniform 
temperature and salinity. The bare hull simulations will be axisymmetric 2D with a sea bottom 
represented by a no-slip boundary condition at the “bottom” of the channel and a free-slip 
condition for momentum at the “top”. Pressure fluctuations at either boundary resulting from 
turbulence generated by the hull will be used to compute either sea surface variations or 
sediment resuspension at the bottom. The suspension of sediment will be parameterized for 
several classes of materiel, including sand, clay, and organic detritus.  

Processing input 

Once an autoCAD model has been created for a particular platform, scripts will be written to 
generate input files for Gerris in order to automate the process of running Gerris for different 
vehicle speeds, altitudes, angles, and types of sediment, as well as to save the Gerris results in 
the form of 3-Dhf lookup tables needed for Milestones 4) and 5).  
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Create bioluminesence results 

The 3-Dhf produced in Milestone 3 will be converted to 3-D bioluminescence soft signatures 
via an algorithm that relates percent of bioluminescence radiated as a function of fluid shear, 
instead of platform speed as is presently done in NOVAS and explained earlier. Although fluid 
shear is expected to be proportional to platform speed, this perhaps intricate relationship can be 
directly by-passed with a direct conversion from fluid shear to percent of bioluminescence 
radiated. On-going collaboration with Mike Latz from Scripps Institution of Oceanography 
over the last few years will allow importing the results of his group’s efforts into NOVAS. To 
quote from one of his group’s recent annual reports (Latz et al., 2010): “once a transfer function 
between the flow agitator and flow field is known, it can be used with the NAVOCEANO 
METOC database of bioluminescence potential measurements to predict bioluminescence 
signatures in essentially any oceanic region. The Non-acoustical Optical Vulnerability 
Assessment Software (NOVAS) being developed ... has a placeholder in which the coupled 
BIOSTIM-CFD model can be incorporated into the nighttime visibility assessment 
component.”  

Create SPM fields 

The 3-Dhf produced in Milestone 3 will also be converted to a 3-D distribution of resuspended 
sediment by leveraging an in-house model (Keen) that presently predicts the 1-D depth profile 
of sediment that is resuspended due to bottom currents. The algorithm will be extended to 
predict a 3-D distribution that will be needed for Milestone 6.  

Create IOP fields 

The 3-D distribution of resuspended sediment from Milestone 5 will be converted to a 3-D 
distribution of inherent optical properties. An in-house algorithm developed by Haltrin to 
perform this conversion for a 1-D depth profile of resuspended sediment will be leveraged to 
reach this milestone.  

Extend ray-tracing algorithm 

Due to the simple cartoonish representation of the platform in NOVAS discussed previously, its 
present raytrace only interrogates the water column depth at which the platform is located. The 
raytrace routine will be extended to interrogate all the layers of the water column in order to 
sample the 3-D bioluminescence soft signature. The 3-D distribution of inherent optical proper 
property will be ingested into NOVAS’s radiative transfer module.  

Validate results 

Data on Swimmer Delivery Vehicle vulnerability and bioluminescence signatures is currently 
being collected by NSWCCD and is a potential source of validation data for the proposed 
bioluminescence modeling. In addition, other on-going work with JHU/APL (George Klaus) 
funded by NAVOCEANO N9 are underway to assure such data are available. Past data 
collection of low light signatures from JMMES or the NRL camera system are also available 
and will be used to provide validation of the predicted vulnerabilities.  
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Modeling approach with Gerris 

Initial NOVAS tests for a hull in a steady flow have been completed and are reported in this 
section. The top directory is /home/keen/PROJECTS/NOVAS/GERRIS on typhoon. The 
project is called NOVAS.  

Swimmer Delivery Vessel (SDV) represented by an ellipse in a single box with the following 
model characteristics  

 30 m box 
 GfsSolid { ellipse  {0, -0.5, 0.33, 0.1}} =  10 m × 3.3 m 

 m/s = 0.033 box/s 
 L = 30 m 
 U = 1 m/s 
 T = L/U = 30 s 

The refinement used for the adaptive mesh is 29 = 512 and the resulting highest resolution is 
~57 mm. This is borderline DNS computation.  

The response of zooplankton or other bioluminescence animals to the pressure anomaly 
predicted by Gerris can be parameterized using a simple function. This is implemented using 
the GfsSource function for the user-defined variable, CHLOR in the simulation file:  

Define MAXTIME 50 
Define PMAX  4e-3 
Define PMIN -4e-3 
# TPRINT is the real time step frequency to print fields 
Define TPRINT 2 
Define IPRINT 100 
3 2 GfsSimulation GfsBox GfsGEdge {} { 
Time { end = MAXTIME } 
Refine 6 
VariableTracer {} CHLOR 
Source CHLOR { return P > PMAX || P < PMIN ? 1.0 : CHLOR; } 
Init {} { U = 0.03333 } 
AdaptVorticity { istep = 1 } { maxlevel = 9 cmax = 1e-2 } 
AdaptGradient { istep = 1 } { maxlevel = 9 cmax = 1e-2 } P 
SourceViscosity {} 0.00078125 
GfsSolid ( ellipse ( 1.0, -0.5, 0.33, 0.10 ) ) 
OutputTime { istep = 1 } stderr 
OutputPPM { istep = IPRINT }  p.ppm  { v = P } 
OutputPPM { istep = IPRINT }  u.ppm  { v = U } 
OutputPPM { istep = IPRINT }  chl.ppm  { v = CHLOR } 
OutputGRD { step = TPRINT } u-%g.asc { v = U } 
OutputGRD { step = TPRINT } p-%g.asc { v = P } 
OutputGRD { step = TPRINT } chl-%g.asc { v = CHLOR } 
GfsOutputSimulation { step = TPRINT } sim-%g.gfs 
} 
GfsBox { 
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left = BoundaryInflowConstant 0.03333 
} 
GfsBox { } 
GfsBox { 
right = Boundary { 
BcDirichlet P 0 
BcDirichlet V 0 
BcNeumann CHLOR 0 
} 
} 
2 right 
3 right 

 

Whenever the pressure anomaly P varies 0.004 (0.4%) from the mean, chlorophyll will be 
created. This variable does not decay and will thus act as a wake tracer. This proxy for 
zooplankton is only used in the simulations with 3 boxes. It is also notable that these results are 
for a vessel moving at only 1 m/s. The resulting Reynolds number, Re = (d×U)/ν = (3 × 
1)/7.8125×10-7 = 3.84×106, which is very turbulent flow. This implies that the pressure field 
will reflect a wide range of turbulent motions ranging from the Kolmogorov scale to meters.  

Results 

One-Gerris Box results 

The first simulations use one box to represent the water around one-half of the hull. This 
assumes a radial symmetry. It is important to avoid interaction of turbulence with the closed 
upper and lower boundaries.  

 

For this single box example, it is difficult to compute the flow for very long because of the 
limiting length. From the result (Figure 10.12), it looks like I will need either a larger L or more 
boxes. The pressure increases dramatically at the bow (Figure 10.12B) while a low-pressure 
zone is predicted from mid-length to the stern. The pressure anomaly extends to the edge of the 
box, at 30 m from the hull centerline (Figure 10.12C). The ambient pressure anomaly is 0, of 
course. This indicates that the computational domain is not large enough. The pressure anomaly 
is very positive in front of the hull even at 15 m from the centerline. These results indicate that 
this small hull (20 m length and 3 m radius) has a measurable pressure signature at 10 radii. 
These results cannot show the influence along its path, however. We can improve this by using 
more refinement and changing the flow properties to reflect this change.  
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A. Anomaly. 

 
B. Radial anomaly at bow (dash) and midway 
(solid) from bow. 

 
C. Axial anomaly at 3 m (dash) and 15 m (solid) 
from centerline. 

 

 

Figure 10.12. Pressure distribution for SDV hull computed by Gerris with 1 box at 0.42 hour. 

 

These results indicate the next tests to complete:  

Need to find a way to propagate the effect of the pressure, either through a source of 
bioluminescence or a tracer of some kind that is a function of pressure.  
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Three-Gerris Box results 

The number of boxes was increased for these simulations, and the CHLOR tracer was added as 
described above. It is important to isolate the pressure anomaly created by the hull from the 
boundary conditions, in order to produce robust results. The pressure field for this simulation 
(Figure 10.13A) does not appear to be restricted to the domain after 5 minutes, however. The 
radial pressure anomaly (Figure 10.13B) at the bow exceeds 2×10-4 at 30 m from the centerline, 
but it returns to ambient values ~20 m from the centerline at midway along the hull. The 
pressure anomaly distribution along the path (Figure 10.13C) reflects the inflow boundary 
condition ahead of the hull, with a perturbation of ~2.5×10-4 at both 3 and 15 m. This is 
consistent with the result for one GfsBox above. The wake shows no discernible pressure 
distribution.  

 

 
A. Contour of anomaly. 

 
B. Radial anomaly. 

 
C. Axial anomaly. 

 

Figure 10.13. Pressure anomaly calculated by Gerris for SDV hull after 5 minutes. 
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It seems reasonable to treat an anomaly of 4 as a tolerance for creating CHLOR in the 
simulations (see the simulation file above). One of the interesting results from the anomaly for 
3 boxes is that negative anomalies extend >15 m away from the hull at the stern (solid line in 
Figure 10.13C), but not so far in the wake. A wake is visible but with small values.  

The results presented thus far are very likely a transient due to the flow impacting on the 
stagnant water surrounding the hull. The results after 48 time steps (24 minutes) (Figure 10.15) 
show the interaction of the flow (U,V shown as vectors) with the pressure anomaly (P 
contoured with a red line at δP = 4×10-4), and the bioluminescence (CHLOR contoured in black 
isopleths) in the figure. The interpretation of these relationships is straightforward. This would 
be the steady-state pattern associated with the hull moving through water at 1 m/s. The flow 
perturbation would be visible at the surface for water depths less than 20 m, as seen in the 
deflected vectors around the hull. The threshold for bioluminescence to begin is exceeded at the 
bow but the organisms are swept rearward past the hull. A larger threshold zone extends from 
mid-length to behind the stern, which further generates bioluminescence, especially near the 
hull where the velocity increases. These organisms accumulate at the stern and are swept into 
the ambient water where they will continue to be activated until they relax, at least a few meters 
behind the hull.  

 
Figure 10.15. Pressure anomaly threshold (red) and bioluminescence (black) contoured over flow 
around an SDV hull after 24 minutes. 

The bioluminescence wake is time dependent (Figure 10.16). When the flow first contacts the 
hull and begins to accelerate (as if the vessel were accelerating from a standstill), the pressure 
anomalies and resulting luminescence are at the bow. This is seen in timeseries of Relative 
Luminosity Units (RLU) at these locations.  
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Figure 10.16. Time series of bioluminescence at forward (red) and aft (white) parts of the hull. 
The sudden drops are artifacts of the plotting program. 

A series of plots of the RLUs (Figure 10.17) shows how the evolving flow advects the 
organisms as the hull reaches steady speed. The images here do not reflect the temporal 
response of bioluminescence organisms. It is unlikely that they continue emitting light for 25 
minutes, however. This is reflected in the growing curves, which only fall off after the pressure 
anomaly field has stabilized.  

 

 

A. 16 minutes. 

 

B. 32 minutes. 

 

C. 48 minutes. 

Figure 10.17. Relative Luminosity Units (RLU) calculated from the pressure anomaly. 

Instantaneous bioluminescence results 

The actual response times for organisms that illuminate is variable, but typically less than 1 
minute. We can simulate these organisms by not allowing CHLOR to be transported. For this 
simulation the following line was substituted for the GfsSource of CHLOR:  

Source CHLOR { return P > PMAX || P < PMIN ? 1.0 : 0.0; }  

This has the effect of resetting CHLOR to 0.0 whenever the pressure anomaly drops to less than 
the threshold. This is a reasonable approximation for organisms with response times much less 
than 1 minute. The reasoning is that in < 1 minute, the vessel will have traveled ~60 m at 1 m/s, 
which is more than its own length and any remnant bioluminescence (response time of 10 s) in 
its wake will be closely associated with it (~10 m). This scales inversely with hull size; for 
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example, a 100 m submarine hull would be equally visible for bio-response times < 100 s at this 
speed.  

Bottom pressure and potential sediment resuspension 

The hull was placed closer to the seabed in order to simulate a vessel cruising near the bottom, 
and the impact its flow field would have on bottom stresses and flow. This is further 
preparation for a second attempt at an NRL proposal. The Code 7322 tasks are defined as:  

 How does the sediment resuspension alter the vulnerability under various bottom 
conditions?  

 Are there operating conditions in which vulnerability is reduced?  

The first question would involve examining environmental and vessel factors individually. The 
impact of different kinds of seabed material is the first factor, and the vessel hull shape, speed, 
and elevation are included in the second. The second question involves the relative strength of 
natural versus vessel sedimentation processes, which could serve as masks for vessel presence. 
The optical properties of the bottom material are another factor.  

These simulations are based on the previous but with the hull moved up in the water column so 
that its lower edge is at the desired height above the bed. The first example (Figure 10.18) is for 
a slowly moving hull near the bed. The pressure anomaly is positive towards the front of the 
hull (Pmax = 0.0004) and negative aft of mid-hull (Pmin = -0.00167). The flow is much reduced 
beneath the hull as well.  

 
Figure 10.18. Pressure (contours) and flow vectors from Gerris for a 20 m hull 3 m above the 
seabed. Minimum cell is 5 cm. The max pressure anomaly at bow is 0.0004. 

A second example (Figure 10.19) simulates the flow around the same hull moving at 2 m⋅s-1 
and 6 m above the seabed. The highest resolution used was 23 cm. This case is somewhat 
different from the previous example. The largest pressure anomaly (Pmax = 0.0045) is well 
above the bed, where the anomaly is ~0.0007 near the bow. A large region of negative 
anomalies occurs below the hull, with Pmin = 0.0023. The isolines indicate the flow field. There 
is a large gradient above the bed and a region of uniform flow approximately equal in size to 
the hull, which coincides with the largest negative pressure anomalies.  
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Figure 10.19. Computation from Gerris for a 20 m hull 6 m above the seabed.  

 

 
A. GFS computations of pressure and currents for 2 m/s and 6 mab. The AMR is displayed as 

rectangles with min cell of 23 cm. The bow wave pressure anomaly reaches 0.002 and the 
current isopleths indicate reduced flow beneath the hull and acceleration behind. 

 

 
B. Total Suspended Solids field (contoured) and pressure anomaly isopleths for hull at 6 mab and 
speed = 2 m/s. 

 

 

Total suspended solids (TSS) were implemented into the simulation using a GfsFunction from 
the input file:  

Source TSS { return P > PMAX || P < PMIN ? 1.0 : 0.0; }  
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where the pressure anomaly is used to entrain TSS using: PMAX and PMIN = 10-6 and -10-6, 
respectively. Figure 9B shows isolines of the pressure anomaly and the nondimensional value 
of TSS. TSS remains low beneath the hull because of the reduced flow and lack of vertical 
mixing. However, it has been entrained by the pressure anomaly at the forward part of the hull. 
It is finally lifted above the bed by turbulence and advection in the hull wake. The negative 
values indicate areas from which TSS has been transported and positive values are local areas 
of increased concentration.  

These results are relevant to the 6.1 project ('Transport and Mixing of Terrigeneous Sediment in 
the Coastal Ocean')that is primarily developing Gerris as a littoral modeling system. The 
requirements for the NOVAS work are: (1) turbulence model; (2) sediment entrainment; and (3) 
the properties of the bed material. There is a small but growing literature on the impact of boat 
wakes on resuspension and water quality (e.g., Houser 2011; Donnelly and Walters 2008). They 
are more often studied for detection by remote sensing methods (e.g., Bunkin et al. 2011).  
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Gerris Ice Dynamics 

Introduction 

This section discusses of ice modeling using Gerris. Preliminary test have been completed in 
the following directory:  /home/keen/PROJECTS/ICE 

Method 

The idea behind these simulations is that the behavior of solids can be treated using a 
Newtonian fluid model with high viscosity. This has been demonstrated for a column of grains 
by Popinet, and fluid mud by Knoch and Malcherek (2011).  

A sample simulation file is:  

 
Define MAXSECS 60.0 
Define IPRINT 1 
Define TPRINT 60. 
Define TSPRINT 60.0 
Define Lref 100.0 
Define Uref 1.0   
Define RHOF -0.1 
Define SMAX 1.0 
Define RHO(Ice) (1000. * (1.0 + (Ice*RHOF/SMAX))) 
Define GRAV -9.81 

 
0 GfsSimulation GfsBox GfsGEdge {} { 

Time { end = MAXSECS } 
VariableTracer {} Ice 
PhysicalParams { L = Lref  alpha = 1./RHO(Ice) } 
Refine 6 
Init {} { U = 0 } 
# AdaptVorticity { istep = 1 } { maxlevel = (x > 70.5 ? 0 : 6)  cmax = 1e-2 } 
AdaptVorticity { istep = 1 } { maxlevel = 8  cmax = 1e-2 } 
AdaptGradient { istep = 1 } { maxlevel = 8 cmax = 1e-2 } Ice 
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Init {} { Ice = { return (y < 30 || y > 35) ? 0.0 : 1.0; } } 
#SourceDiffusion {} Ice 0.000001  
SourceViscosity {} { return (Ice < 1.) ? 0.001 : 1.0; } 

 
OutputTime { istep = IPRINT } stderr 
OutputPPM { istep = IPRINT } ice.ppm  { min = 0 max = 1 v = Ice } 
OutputGRD { step = TPRINT } u-%g.asc { v = U } 
OutputGRD { step = TPRINT } w-%g.asc { v = V } 
OutputGRD { step = TPRINT } s-%g.asc { v = Ice } 
OutputGRD { step = TPRINT } l-%g.asc { v = Level } 
OutputTiming { start = end } stderr 
OutputSimulation { step = 10 } ice-%g.gfs 
GfsOutputLocation   { step = TSPRINT } timeseries.dat 35.0 -1.25 0 
} 

 
GfsBox { 
left = Boundary { 
BcDirichlet U { return (y > 30 && y < 35) ? Uref : 0.0;  } 
}  
} 

Results 

A couple of simple ice representations have been completed. The results represent them. The 
images displayed in this report were made with the following graphics software:  
/common/gerris/devel/bin/gfsview2D *.gfs. 

Compression Example 

The mesh is initialized to a refinement of 26 = 64 (Figure 10.20). The resulting background 
resolution is 100/64 or 1.56 m. A maximum refinement of 28 = 256 is used as a function of ice 
concentration, resulting in the finest cells seen in the figures being 39 cm.  
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Figure 10.20. Initial condition for ice experiment. The red is solid ice. 

This simulation represents one side of a symmetrical compression zone in an ice sheet that is 5 
m thick. The water depth is 100 m. The top of the ice sheet is also water. The left boundary is 
being compressed in the ice sheet only at 1 m/s. The right boundary is closed, representing an 
infinitely wide ice sheet. The entire simulation is 60 seconds.  

As the ice is compressed, it bulges symmetrically because the fluid has the same density above 
and below it (Figure 10.21A). As the compression continues, it begins to flow and the density 
changes (Figure 10.21B). This simulation did not limit the density. Low values imply mixing 
with water, which represents void spaces and thus a lower bulk density. The large 
concentrations are unrealistic. This could be avoided by a cap on density, which should cause 
more deformation. The rate of compression is very unrealistic as well.  
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Figure 10.21. Ice properties calculated by Gerris. The density of the ice has changed due to the 
compression.  

 
A. Time = 30 s. 

 
B. Time = 60 s. 
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Other applications 

 Tamar River (On-line only) 

 Mississippi Bight Tides (On-line only) 

 Coupled Hydrodynamics and morphology (On-line only) 

 Yellow-Bohai-East China Seas (On-line only) 

 Wave Models (On-line only)  

 Error Covariance in a Reduced Model (On-line only) 
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Appendices 

Appendix A. Model Structure and Operation 

Introduction  

Gerris is a hybrid computer code. It is written in ANSI c to mimic object oriented 
programming. Specifically, Popinet (the author of GTS and Gerris) has implemented classes 
using c structures. He has gone to great lengths to emulate inheritance using a combination of 
pointers to structures and functions, and macros (c preprocessor directives). These details are 
useful for anyone wishing to modify or implement new modules. They are also helpful in 
understanding the potential use of the GfsFunction class.  

Gerris is a modular software system that consists of four main components: (1) the Gnu 
Triangulated Surface Library (GTS); (2) the Gerris Flow Solver (GFS); (3) the GfsView 
visualization utility; and (4) Gnu Library (Glib). The GTS library is fundamental to the object 
oriented approach to its structure. Both GTS and Gerris were developed by Stefane Popinet 
using pre-existing libraries like those from the GTK+ project.  

This section presents examples of the class structure of the GFS library, which is built on the 
GTS libraries in turn. The entire system of libraries is written using the c programming 
language in a manner that emulates object oriented programming as implemented in C++. This 
style is referred to as object-oriented programming in c.  

The method of solving the Navier-Stokes equations for a given domain rests on generating a 
Cartesian grid that is intersected by these surfaces in order to conserve mass. These triangulated 
surfaces represent boundaries within the model domain. This approach grew from the need to 
accurately represent the interface between fluids/gasses with very different densities and 
viscosities (Popinet and Zaleski, 1999).  

The second basic construction used in the GTS/Gerris system is the Quad/Octree 
disctretization. The implementation of these two concepts in solving the incompressible Euler 
equations is described by Popinet (2003). These requirements, the use of surfaces and time-
varying grid adaptation, are basic reasons for the unique structure of the Gerris code.  

The GfsSimulation Class 

The fundamental class for running Gerris is a GfsSimulation, which is the structure containing 
all of the conditions associated with a specific simulation. This class inherits all of the attributes 
and functions of its parents.  

 
 struct _GfsSimulationClass { 

   GfsDomainClass parent_class; 

   void    (* run) (GfsSimulation *); 

   gdouble (* cfl) (GfsSimulation *); 

 }; 
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 struct _GfsSimulation { 

   GfsDomain            parent; 

   GfsTime              time; 

   GfsPhysicalParams    physical_params; 

   GfsMultilevelParams  projection_params; 

   GfsMultilevelParams  approx_projection_params; 

   GfsAdvectionParams   advection_params; 

   GtsSListContainer  * refines; 

   GtsSListContainer  * adapts; 

   GfsAdaptStats        adapts_stats; 

   GtsSListContainer  * events, * maps; 

   GSList             * modules, * globals, * preloaded_modules; 

   GtsSListContainer  * solids; 

   guint                thin; 

   gboolean             output_solid; 

   gboolean             deferred_compilation; 

   gdouble              tnext; 

   GfsVariable        * u0[FTT_DIMENSION]; 

   GHashTable         * function_cache; 

 }; 

 

Most of the classes listed in this structure are found in the simulation file; Domain, Time, 
PhysicalParams, MultilevelParams, AdvectionParams, and AdaptStats. The most basic of these 
is the GfsDomain, which implements the physical region of the earth to be simulated through 
the GtsWGraph class. As an example of the modularity of the code, we list in pseudocode the 
algorithm for reading the domain data:  

 main<--gfs_simulation_read<--gfs_domain_read<--gts_graph_read<--(* klass->read) 
aka graph_read 

where "<--" indicates a called function to the right. The simulation and domain data are read by 
GFS functions whereas the graph data are read by a GTS function. Function, 
gfs_simulation_read calls the (* klass->read) member of a GfsSimulationClass, which is 
simulation_read. A similar procedure is applied to the GfsDomainClass and GtsGraphClass.  

The GtsSListContainer members of the GfsSimulation structure store the necessary parameters 
for a simulation. For example, a print statement was inserted in function container_add to 
identify how frequently container (pointers) were written to. This list of pointers was correlated 
to labels written in other functions to produce the following estimated container contents:  

 ...592(1)-- MapProjection  
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 ...528(2)-- Refine and RefineSurface (bath.gts) 
 ...720(19)--Init (AM2.gts and BM2.gts), Solid (bath.gts), SourceCoriolis, Init (U and 

V), EventHarmonic (3), EventStop, OutputTime, OutputProjectionStats, 
OutputSimulation(2), OutputPPM (2), OutputGRD (4), EventScript 

 ...464(1)-- Solid (bath.gts) 
 ...400(1)-- SourceCoriolis 
 ...560(1)-- SourceCoriolis  
 ...928(1)-- SourceCoriolis  
 ...072(1)-- Unknown 
 ...296(1)-- Same Unknown 

 

These are the last 3 digits from the pointers to the GtsContainers, followed by a brief 
description of items I think are added to them. The numbers in parentheses are the number of 
items in each container. For example, pointer number *464 is going to be solids whereas *720 
will be events.  

The GfsDomain Class 

The GfsDomain is part of the GFS library but it accesses the GTS software as well as the Glib 
functions. Its main member, however, is the GtsWGraph (i.e., GtsGraph parent):  

 
 struct _GfsDomain { 

   GtsWGraph parent; 

   int pid; 

   GfsClock * timer; 

   GHashTable * timers; 

   GtsRange timestep; 

   GtsRange size; 

   gboolean profile_bc; 

   GtsRange mpi_messages; 

   GtsRange mpi_wait; 

   guint rootlevel; 

   FttVector refpos; 

   FttVector lambda; 

   GArray * allocated; 

   GSList * variables; 

   GSList * derived_variables; 

   GfsVariable * velocity[FTT_DIMENSION]; 

   GSList * variables_io; 

   gboolean binary; 

   gint max_depth_write; 

   FttCellInitFunc cell_init; 

   gpointer cell_init_data; 

   gint version; 

   gpointer array; 

   gboolean overlap; /* whether to overlap MPI communications with 

computation */ 

  

   /* coordinate metrics */   

   gpointer metric_data; 
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   gdouble (* face_metric)       (const GfsDomain *, const FttCellFace *); 

   gdouble (* cell_metric)       (const GfsDomain *, const FttCell *); 

   gdouble (* solid_metric)      (const GfsDomain *, const FttCell *); 

   gdouble (* scale_metric)      (const GfsDomain *, const FttCell *, 

FttComponent); 

   gdouble (* face_scale_metric) (const GfsDomain *, const FttCellFace *, 

FttComponent); 

  

   /* Object hash table for (optional) object IDs */ 

   GHashTable * objects; 

  

   /* total number of parallel processes */ 

   int np; 

  

   /* real time */ 

   GTimer * clock; 

   GPtrArray * sorted; /**< array of sorted boxes */ 

   gboolean dirty;     /**< whether the sorted array needs updating */ 

 }; 

 

The GfsDomain structure contains many of the required classes (structures) of the problem 
domain. The first member of the GfsDomain structure is a (GtsWGraph parent), which 
introduces the data read from the file bath.gts. I have verified that the (GtsGraph *) returned by 
gts_graph_read is present in gfs_domain_read as &(domain->parent.graph).  

Function gfs_domain_class is called by GFS_DOMAIN and it returns a GfsDomainClass 
object, which is cast as a GfsDomain. Functions simulation_read, domain_read,, and 
graph_read are not present by name, but as the "read" members of their respective 
GtsObjectClassInfo structures through inheritance.  

The return value of gts_graph_read is checked to be a GfsDomain by a call of the macro, 
GFS_DOMAIN. This has the usual behavior of instantiating any required classes and casting 
the GtsGraph to a GfsDomain. This casting is a more complex because there is an intermediary 
structure between the GtsGraph and the desired GfsDomain (GtsWGraph).  

The GfsInit Class 

The GfsInit is an initialization event and thus it uses functions from the GfsEventClass. 
Specifically, it is a GfsGenericInit, which is exactly a GfsEvent. The GfsEvent class functions 
are contained in file, event.c. The "GtsObjectClassInitFunc" for the GfsEventClass is 
gfs_event_class_init. This class is initialized by a call to gfs_event_class by function 
gfs_classes at the beginning of a simulation.  

 
 typedef struct _GfsInit          GfsInit; 

 struct _GfsInit { 

   /*< private >*/ 

   GfsGenericInit parent; 

   GSList * f; 

 }; 

  

 typedef struct _GfsEvent         GfsGenericInit; 
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 typedef struct _GfsEventClass    GfsGenericInitClass; 

  

 typedef struct _GfsEvent         GfsEvent; 

 typedef struct _GfsEventClass    GfsEventClass;   

 struct _GfsEvent { 

   GtsSListContainee parent; 

   gdouble t, start, end, step; 

   guint i, istart, iend, istep; 

   guint n; 

   gboolean end_event, realised, redo; 

   gchar * name; 

 }; 

 

A GfsInit structure contains a GSList pointer (* f). This pseudoclass is initialized by gfs_init 
using function gfs_init_class(). The "read" function is initialized in gfs_init_class_init by 
gts_object_class_new (in the usual manner) to be gfs_init_read. I checked the pointer value for 
gfs_init_read and it is the same function called on ~line 362 of simulation_read (file 
simulation.c). A print statement verifies this. An event is a GtsSListContaineeClass. Function 
gts_object_class_new is called by gfs_event_class to construct a GtsSListContaineeClass. This 
function calls gts_object_class_new with the "gfs_event_info" structure containing the name 
(actually pointer) of the "class_init_func" (gfs_event_class_init).  

GfsSurfaceClass  

The triangulated surface is a basic construction implemented in Gerris to represent 2D fields. 
These surfaces are used for bathymetry and boundary conditions like water surfaces computed 
from tidal constituents. The GfsSurface structure contains a GtsSurface member, and thus 
inherits face, edge, and vertex members from it as well as including independent position 
information.  

 
 typedef struct _GfsSurface    GfsSurface; 

  

 struct _GfsSurface { 

   /*< private >*/ 

   GtsObject parent; 

   GtsVector rotate, scale, translate; 

   gboolean flip; 

   GfsFunction * f; 

   GtsMatrix * m; 

   GNode * bbtree; 

  

   /*< public >*/ 

   GtsSurface * s; 

   gboolean twod; 

  

   GtsFaceClass * face_class; 

   GtsEdgeClass * edge_class; 

   GtsVertexClass * vertex_class; 

 }; 
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There is no difference in the descriptions for these surfaces; the parent class of a GfsSurface is a 
GtsSurfaceClass by inheritance through its (GtsSurface *) member. These surfaces are read by 
the same read function, which is defined through the GtsObject parent. This section will 
discuss the incorporation of the GfsSurface only. There is no GfsSurfaceClass structure because 
the GtsSurfaceClass structure, which complements the GtsSurface structure in the pseudo-
object-oriented programming style used in GFS and GTS, is inherited from the (GtsSurface *s) 
member (see above):  

 
 struct _GtsSurfaceClass { 

   GtsObjectClass parent_class;   

   void (* add_face)    (GtsSurface *, GtsFace *); 

   void (* remove_face) (GtsSurface *, GtsFace *); 

 };  

 

Reading a GfsSurface from a File 

A GfsSurface is actually a subclass of the GtsSurface class. The surface is read entirely using 
the inherited GtsSurface class functionality. The reading functionality has been tested for tidal 
elevation data for the Mississippi Bight. Two files are read for a typical tidal simulation: 
AM2.gts and BM2.gts. These files are opened in read_surface (GFS/utils.c). The bath.gts file 
is opened by surface_read (GFS/surface.c) and cast as a GtsFile before being passed to 
gts_surface_read.  

The function surface_read is assigned to the "read" member of the parent GtsObject class. 
There is no explicit call of surface_read. It is invoked implicitly in a call to a function like 
simulation_read. Function surface_read (surface.c) instantiates a (GfsSurface *surface) and its 
(GtsSurface s) member using gts_surface_new. The (GfsSurface *surface), to which the 
bathymetry surface is assigned, is initialized by the macro GFS_SURFACE as a GtsObject. 
This function assigns/initializes face_class, edge_class, and vertex_class members of the 
GtsSurface. Function gts_surface_read then assigns values to surface->s. The x, y, and z values 
from the file must be processed into the vertices, edges, and faces of a surface. The specific 
method is not the same for all three member classes.  

The add_face function (see the GtsSurfaceClass definition above) is defined in file, graphic.c 
(GFS). It appears to be a wrapper for gts_surface_add_face, which it calls with the edges that 
have been passed. If all of the faces are read successfully from the gts file and inserted into the 
hashtable and GSList, function gts_surface_read returns 0.  

The functions used to read the gts files are a good example of using the available libraries, 
supplemented by user-defined functions:  

 
 read_surface                  GFS function 

   gts_surface_read            GTS function 

     gts_point_read            GTS function 

       gts_surface_add_face    GTS function 

         g_hash_table_insert   Glib function 
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The primary difference between this GfsSurface that is produced from the gts file and the 
GtsSurface is the inclusion of parameters for transforming the surface.  

Transforming a GfsSurface 

The GfsSurface class extends the GtsSurface class by including parameters for transforming the 
surface:  

 
 rotate[ ]: rx = rotation around x axis 

            ry = rotation around y axis 

            rz = rotation around z axis 

 scale[ ]:  sx = scaling along x axis 

            sy = scaling along y axis 

            sz = scaling along z axis 

 translate[ ]: tx = translation along x axis 

            ty = translation along y axis 

            tz = translation along z axis 

 scale = uniform scaling 

 flip = flip axes 

 twod = 1 for a 2D file 

 implicit = NULL 

 

A number of transformations are completed based on these parameters. The user can supply 
functions to complete some of them.  The following values are assigned in gfs_surface_init for 
a GfsSurface:  

 
 scale[0], [1], [2] = 1 

 flip = FALSE (0) 

  

After a GtsSurface *s has been defined by function gts_surface_read and the GfsFileVariable 
has been initialized in function surface_read, the surface is processed using 
gts_file_assign_variables (file GTS/misc.c).  

Some of the surface transformation parameters are initialized in gfs_surface_init as members of 
a GtsSurface, and INDEPENDENTLY as members of the GtsFileVariable structure array 
var[]. The var[] structure includes type, name, unique, data, set, line, and pos members. When 
surface_read initializes var[], it only assigns the first 4 elements for each transformation vector 
listed above. Furthermore, scalars scale and implicit are assigned local variables (scale = 1 and 
implicit = FALSE = 0). This leaves the set, line, and pos member/elements unassigned. Overall, 
14 rows are assigned to var[]. The last is GTS_NONE to signal the end of processing.  

Function gfs_assign_variables calls gts_file_assign_start first. This function marks a temporary 
(GtsFileVariable *) as unassigned (set = FALSE = 0) for all of the variables passed from 
surface_read. The result is to assign the var[].set member to FALSE (0) for each element of 
var.  

Function gts_file_assign_next is then called by gts_file_assign_variables. This function checks 
that each var[] (i.e., rotate[3], scale[3], translate[3], flip, and twod) was not previously assigned 
and that it is the correct type. It then returns the GtsFileVariable with the values from the 
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simulation file (e.g., tides.gfs). The transform values for flip are not set when it is assigned in 
the GfsInit block that reads the BM2.gts and AM2.gts files.  

Function gfs_surface_transformation is then called with the GfsSurface *, rotate, translate, 

scale, flip, and (GtsMatrix *) parameters. If flip is true (a value of 1), the function 
gts_surface_foreach_face is called with the gts_triangle_revert argument passed. This does not 
occur for the realistic example of flip = 0. The function gts_triangle_revert changes the 
orientation of a triangle, turning it inside out. For example, for a given face  

 
          edge 2                             edge 1 

      _____________                      _______________ 

      |                                  | 

   e  |                               e  | 

   d  |                               d  | 

   g  |                               g  | 

   e  |                               e  | 

      |                                  | 

   1  |                               2  | 

      |                                  | 

 
The edges are not necessarily oriented exactly N-S and E-W; they do, however, appear to be 
trending those directions. The actual class modified in gts_triangle_revert is:  
 (GtsTriangle *t)->(GtsEdge *e1)->(GtsSegment segment).(GtsVertex *v1)-

>(GtsPoint p).(gdouble x) 

where t is passed from gts_surface_foreach_face. This is accomplished by swapping the order 
of the edges in the hash table, faces, which is a member of the GtsSurface structure. A pointer 
to the function gts_triangle_revert is passed to the g_hash_table_foreach function; edge 2 
becomes edge 1, and edge 1 becomes edge 2 while edge 3 is unchanged. It looks like edge 1 is 
oriented ~N-S and edge 2 is ~E-W. It doesn't appear that the flip transformation will change the 
latitude. Note that the GSList associated with the GtsFace that contains the GtsTriangle is NOT 
updated to reflect this flipping. However, this action will change the hash table values for the 
faces.  

Bathymetry as a GfsSolid 

The bathymetry is transformed/recast as a GfsSolid object. The Solid object class has a new 
GtsObject created by gts_object_new, which calls gfs_solid_init. The file is read by (*klass-
>read) on line 353 of file, simulation.c. The pointer for this "read" function is the same as 
assigned in gfs_surface_class_init. The name of this object as printed by surface_read is 
"GfsSurface". It has the same pointer value as the Solid class from gfs_solid_class. The "read" 
function pointer printed by gfs_solid_read (the "read" function for the solid class) is different 
from that assigned in 'gfs_solid_class_init.  
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 typedef struct _GfsSolid         GfsSolid; 

  

 struct _GfsSolid { 

   GfsEvent parent; 

   GfsGenericSurface * s; 

 }; 

 

A GfsGenericSurface is equivalent (typedef statement) to a GtsObject. A GfsEvent contains a 
GtsSListContainee member as well as scalars for timing and tracking of events. The read 
function is the same as assigned in gfs_surface_class_init. This object is a GfsSurface with the 
same pointer value as the GfsSolid class.  

The bathymetry for a simulation is stored in a container. This takes us to the GtsHashContainer 
class contained in the GtsGraph structure. The bathymetry vertices will be contained in a 
GSList directly in the GfsSimulation object:  
 
1) (GfsSimulation *sim)->(GtsSListContainer *solids)->(GSList *items)->(gpointer data) 

or  

2) (GfsSimulation *sim)->(GtsSListContainer *solids)->(GtsContainer c).(GtsSListContainee 
object).(GSList * containers)->(gpointer *data) 

Tidal Constituents as Gfsinit (GfsEvent) Objects 

Tidal data are different from the bathymetry because they are not static. Something must be 
done with the constituents every time step. This necessitates their processing as events.  

Reading the GtsSurface Data 

The AM2.gts and BM2.gts files are processed by function, read_surface. The surface data are 
temporarily read into the hash table member of a GtsSurface with no additional characteristics. 
The function, gts_surface_add_face, is called by gts_surface_read and passed the input arg, 
(GtsSurface *surface) as well as a (GtsFace * new_face). The Glib function, 
g_hash_table_insert, inserts the current face from the file in the GHashTable *faces member of 
a GtsSurface with the face values used as the key. A print statement in gts_surface_add_face 
prints the data in the new face read from the AM2.gts and BM2.gts files exactly as they appear 
in the files.  

Now that a set of faces have been read from a file, they must be incorporated into the Gerris 
framework. Function read_surface (utils.c) returns a GtsSurface but read_surface is called by 
function_read, which assigns the structure pointer to the (GtsSurface *s) member of a 
GfsFunction. This can be diagrammed like this:  

 
 GfsFunction.                           f 

   ... 

   GtsSurface                           s 

     GtsObject                          object 

     GHashTable  *                      faces 

     ... 
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     GtsVertexClass                     vertex_class 

       GtsPointClass                    parent_class 

         GtsObjectClass                 parent_class 

         gboolean                       binary 

       void  (*intersection_attributes) (GtsVertex *, GtsObject *, GtsObject 

*) 

   ... 

   

To recap, the point data are placed in the (GtsSurface *s) that is passed as a pointer in the 
GfsFunction structure. This allows a range of processing to occur for the GtsSurface data that 
are to be applied as a GfsInit class, which is a GfsEvent. This structure contains a 
GtsSListContainee structure, which is the storage location for the tidal constituents. The 
instructions for applying the data are included through the GfsFunction mapped above.  

Processing Boundary Conditions as GfsInit Objects 

This section is referring specifically to the boundary condition of the tidal amplitudes read from 
the files, AM2.gts and BM2.gts. The GfsInit is a special kind of event class that is only 
executed once. The processing is supplied by the user in the gfs library. This is a little awkward 
but it works.  

After the tidal constituents are read from the *.gts files, the classes containing them are added 
to an event (GfsInit) container using gts_container_add. The (GfsSimulation-
>(GtsSListContainer *events)) structure is the container for the current object (GfsInit). 
Function gts_container_add uses the "klass->add" function to add the GfsInit structure pointer. 
Since (*events) is a GtsSListContainer, the "init" function is probably going to be 
slist_container_class_init, which initializes the "add" function to be slist_container_add. In 
fact, a print statement verified that GTS/slist_container_add is the "add" function, but it calls 
the "add" function for its parent, which was verified to be a GtsContainer. The "add" function 
for a GtsContainer is container_add. This function (GTS/container_add) calls its 
"add_container" function. The "add_container" member of a GtsContaineeClass is assigned 
NULL in function, containee_class_init. However, a GtsSListContaineeClass structure is 
merely a wrapper for a GtsContaineeClass (its parent_class). Furthermore, a 
GtsSListContaineeClass "add_container" member is initialized to 
slist_containee_add_container in function, slist_containee_class_init. This is verified by a print 
statement in slist_containee_add_container. Finally, the object passed from simulation_read 
(GfsInit) has the same pointer value in all of the intermediate functions:  

 
simulation_read passes (GfsSimulation *sim, GfsInit *object) to: 
   gts_container_add passes (GfsSimulation *sim, GfsInit *object) to: 
     slist_container_add as (GtsContainer * c, GtsContainee * item), which passes 
                        (GtsContainer *c)->items, GtsContainee *item) to:  
       g_slist_prepend to update the singly linked list of simulatio objects. 
  

It then passes (GtsContainer *c, GtsContainee *item) to: 
       container_add as (GtsContainer * c, GtsContainee * item), which passes 
                    (GtsContainee * item, GtsContainer * c, ) to: 
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         slist_containee_add_container as (GtsContainee * i, GtsContainer * c), 
 

which prepends the GtsContainer *c to the singly linked list 

          (GtsSListContainer *events) associated with the simulation. 

 

We want to know where the GfsInit event is stored so that it can be retrieved at will. We would 
like to print out these data in simulation_read. First, how do we get the keys to (GtsSurface *)-
>(GtsFace *)? A GfsInit object has no associated class. Instead, the macro GFS_IS_EVENT is 
used to see if it is an event.  
  

#define GFS_IS_EVENT(obj)  \ 

        (gts_object_is_from_class (obj, gfs_event_class ())) 

 
is defined in event.h. Function gfs_event_class returns a GfsEventClass pointer that is common 
to all such classes. The gts_object_is_from_class function is a "static inline gpointer" function 
in the header file, gts.h. It is passed a gpointer object and a gpointer klass. The passed object is 
cast to a (GtsObject *), which has a (GtsObjectClass *klass) member. The passed class pointer 
(klass) is compared to the hierarchy of parent classes for the recast object. When a match is 
found, its value is returned.  

The GTS library functions are used to place the GfsInit object within its proper location in the 
GfsSimulation structure. The (GfsSimulation *) is cast to a (GtsContainer *) when it is passed 
to gts_container_add. The (GfsInit *) object is cast to a (GtsContainee *). The purpose here is 
to make use of existing library functions to store data that would otherwise be placed in arrays 
or a number of different variables. The GfsInit structure is a good example of how difficult this 
can be. For example, It has only two members, a (GfsGenericInit parent) and a (GSList *f). The 
GfsGenericInit is a synonym for GfsEvent (I don't know why they bothered but maybe it was 
legacy). The parent of a GfsEvent is a GtsSListContainee. The "pattern" for related structures 
like GtsSListContainee and GtsContainee is that the GtsContainee is included in the 
GtsSListContainee, which also includes a (GSList *) for the containers contained within it. 
Thus, when we cast a (GfsInit *) as a (GtsContainee *), we are referring to only the (GtsObject 
object) member of the GtsSListContainee structure. It is of note that the GtsContainee structure 
has only a GtsObject member and nothing else. In other words, a GfsEvent is simply a 
GtsObject with some ordering information contained in a singly linked list. A GtsObject only 
contains information about the class and no data. Of course, a GfsEvent also contains some 
variables that control time dependency for the event.  

The input arguments to gts_container_new are passed without modification to the "add" 
function member of the GtsSListContainerClass structure. The "add" member is not part of the 
GtsObjectClass, but it is introduced by the initialization functions that are part of a 
GtsObjectClass structure. The basic container initialization is all part of the GTS library. This 
approach allows the user to implement new classes like the GfsEventClass. The "add" function 
is assigned in the class initialization functions for most classes, following the GTS prototype.  

Function gts_container_add calls slist_container_add. The arguments passed to 
slist_container_add are unchanged (GtsContainer * c, GtsContainee * item). The item is 
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prepended to the (GSList *items) member of the GtsSListContainer structure. The "item" is the 
pointer to the GfsInit structure into which we wish to place the tidal constituents. This can be 
represented by (GfsSimulation *sim)->(GtsSListContainer *events)->(GSList *items). The 
other member of the (GtsSListContainer *events) object is the (GtsContainer c). Note that "c" is 
not a pointer.  

Following the GTS prototype, the "add" function for the parent class of the 
GtsSListContainerClass (i.e., GtsContainerClass) is called with the input arguments passed 
unaltered. This function is called, container_add. The input arguments to container_add are not 
implicitly recast in the argument list. This function is part of the GTS library but it's purpose is 
ambiguous. It consists of a call to the "add_container" function of the GtsContaineeClass. This 
structure has a member as follows: 
  void     (* add_container)    (GtsContainee *, GtsContainer *); 

The GtsContaineeClass "init" function (containee_class_init) assigns NULL to the 
"add_container" member of its structure. However, the GtsSListContaineeClass structure 
follows the procedure for SLists, and contains a (GtsContaineeClass parent_class) member. 
This means that when the "init" function for this class is called (i.e., slist_containee_class_init), 
the "add_container" member of a GtsContaineeClass is assigned a value of 
slist_containee_add_container because this "init" function includes a cast to a 
GtsContaineeClass using the macro, GTS_CONTAINEE_CLASS. However, the arguments for 
slist_containee_add_container must match those given in the GtsContaineeClass structure, 
namely (GtsContainee *, GtsContainer *), which is reversed from the input arguments to 
function, container_add.  

The input (GtsContainee *i) is cast to (GtsSListContainee *item). Noting that the 
GtsSListContainee structure has only two members, (GtsContainee containee) and (GSList 
*containers), this cast populates the containee member of the GtsSListContainee object. The 
(GSList *containers) list is searched for the (GtsContainer *c) in the input (GtsContainee *i), 
which has been cast to (GtsSListContainee *item). This means it now has a GSList attached to 
it to keep track of the entries. The (GtsContainer *c) is placed at the beginning of this singly 
linked list (item->containers) using the Glib function, g_slist_prepend.  

To review, the original (GtsObject *object) created in simulation_read contains the tidal 
constituents. Furthermore, the input (GtsContainee *i) variable points to a member of the 
simulation class that is created when the simulation file, tides.gfs, is read.  

 

(GfsSimulation *sim)->(GtsSListContainer *events)->(GtsContainer c). ... (GfsFunction *f) 

                   ->(GtsSurface *s)->(GtsHashTable *faces)  

Overview of a simulation  

The primary input to Gerris is through the simulation file (*.gfs). An example will be referred 
to in this section, which will refer to program units as the file is read. The sample is tides.gfs. 
The tests referred to in this document include an original gerris example file and one I am 
attempting to run for the Mississippi Bight (MSB). The examples are in  
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TESTS/ GFS_TESTS-LOCAL_BUILD/Cook_Strait_Tides 

GTS_FILE_INPUT 

This report will walk through the file, tides.gfs, as it is read by the functions in the GFS/GTS 
libraries. I believe this is necessary after spending a lot of days following function and structure 
pointers with ambiguous names while attempting to locate an error in processing files for tidal 
constituents for MSB. The example is similar to the MSB case except that it is located in the 
southern hemisphere--latitudes are negative. This is the only difference that is readily seen.  

Initialize the Gerris Simulation 

The function gfs_init is called by Gerris to instantiate a GfsSimulation object (structure). This 
function is hard-wired to instantiate all of the Gerris classes to make sure they are available to 
create objects later: e.g., GfsOcean. These classes are initialized using the general GTS format: 
e.g., gfs_ocean_class, which will initialize the info member of the GtsObject structure i.e, 
"GfsOcean"). The initialization function (GtsObjectClassInitFunc) is assigned the location of 
the user-supplied function, like gfs_ocean_class_init. The function, gts_object_class_new, is 
then called with the name of the class function (e.g., gfs_simulation_class) passed to 
GTS_OBJECT_CLASS macro to initialize. This function (gts_object_class_new) creates a 
hash table for the classes and their parents.  

The simulation file (tides.gfs) is opened in the main program, gerris (file gerris.c). It is passed 
on command line. The c function fopen is directly called from Gerris with the first argument in 
the command line as its name. This file pointer is used to generate a new GtsFile object with 
gts_file_new.  

In order to use the many options that come with the GTS and Glib libraries, it is necessary to 
initialize a structure from the regular (ascii) file that was opened with fopen. This is done by the 
GTS function, gts_file_new. The GtsFile structure is located in file gts.h. The function 
gts_file_new is located in misc.c. The first act in gts_file_new is to call file_new, which 
initializes a GtsFile structure and returns a pointer to it. Gts_file_new then assigns the c file 
pointer to the file pointer that is a member of this structure. Several special character variables 
are assigned: type = "\0"; error = NULL; next_token = "\0"; delimiters = "\t"; comments = 
GTS_COMMENTS ("#!"); and tokens = "\n{}()=". It is passed the pointer to the GtsFile that 
includes the file, tides.gfs. The function members that indicate line and cursor position have 
been set to the start of the file.  

A frequently used function is now called for the first time, gts_file_next_token. At this point, 
the input file is open to line 1, column 1. The cursor is advanced through the file ignoring any 
comment tokens (#). Control returns to gerris with the input file at this line.  

Begin Reading the simulation file 

The entire file is read by the following line:  

 
 if (!(simulation == gfs_simulation_read (fp))) { 

   ...(error processing) 

 } 
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where fp is a pointer to the already-open simulation file. This section will describe what occurs 
when gfs_simulation_read is called by gerris.  

 

The next line in the simulation file is  
 Define M2F (2.*M_PI/44700.) 

This is a definition of the m2 tidal frequency. These are GFS macro definitions that are skipped 
by gfs_simulation_read, which moves down to read the number of GfsBoxes (nodes = 1) in the 
simulation. After the number of GfsBoxes has been read, function gfs_domain_read is called 
with the file pointer as its only argument. This function returns a GfsDomain pointer. The 
GfsDomain structure includes several kinds of parameters. The parent is a GtsWGraph,which is 
a weighted graph. A graph is a set of vertices connected by edges. A weighted graph associates 
a label (weight) with every edge in the graph. The weighted graph can be used to formulate the 
shortest path problem. The GtsWGraph structure contains a GtsGraph and a scalar, weight. The 
GtsGraph is a hash container with classes for the graph, its nodes, and its edges. What this 
means is that the domain is a weighted graph. The domain also includes timers,timestep 
parameters, mpi parameters,tree parameters, variable linked lists, the velocity array, cell 
initialization function pointers, grid metric arrays, and an object hash table.  

Initialize the Domain Graph 

The file pointer is now passed to gts_graph_read. This is a GTS function, which means that it 
will read a graph from a standard gts formatted file. No new characters have been read from the 
file, so the last number read, which was the number of GfsBoxes (referred to as nodes 
sometimes), is the number of nodes in the domain graph.  

Initialize graph data (i.e., vertices, edges, and faces) and GfsOcean module. The next integer (0) 
of the simulation file is assigned to the number of edges of the graph. The module name, 
GfsOcean is read by gts_file_next_token on line 1409 of GTS/graph.c. Function 
gts_graph_read initializes "GtsGraph", "GtsNode", and "GtsEdge" classes. It calls 
gts_object_class_from_name to get a pointer to the appropriate class for the name from the file 
(GfsOcean). A GfsOcean structure contains a GfsSimulation and a GfsDomain structure. The 
GfsDomain contains a GtsWGraph and thus a valid pointer is generated for the input data.  

A new GtsGraph object is created from the GfsOcean class that was initialized in gfs_init, and 
the pointer to the parent class is assigned to the graph_class member of the GtsGraph. The class 
read member is then called with the input file pointer and the new GtsGraph to receive the 
graph data. Function gts_graph_read calls the (*klass->read) function for the GfsOcean class 
(ocean_read). The read function (ocean_read) is passed a (GtsGraph *) after the function, 
gts_file_next_token, has been called to update (fp->token->str) to "GfsBox" instead of 
"GfsOcean". This is obvious from the klass pointer being accessed by the function 
gts_object_class_from_name before the name has been changed.  

Initialize GfsOcean Class 

Input the data for the GfsOcean class. The ocean_read function is passed a pointer to the 
GtsGraph (cast to a GtsObject **) and the GtsFile structure pointer. A GfsSimulation object is 
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created if necessary. The value of lambda.z is set to 1/maxlevels but this is noted as requiring 
change with a /* fixme */ note.  

There is no GfsOceanClass. This is a pseudoclass (or ghost) that is not explicitly declared. 
Instead, the gfs_ocean_class function returns a GfsSimulationClass. Thus, when 
(gfs_ocean_class()) is cast to a GtsObjectClass by ocean_read, the parent is a GfsDomainClass 
(parent of a GfsSimulationClass). The initialized (klass->read) for this class is domain_read 
(file domain.c). Read the simulation file with simulation_read. The function, domain_read, is 
called by ocean_read.  

Create a Domain/Graph Structure 

Initialize the grid defined in the simulation file. Initialize (GtsFileVariable var[ ]). The "read" 
member of the (GfsDomainClass->parent) is called next with file, tides.gfs as an argument. 
This is the GtsWGraphClass, but it has no "read" member initialized in function, 
wgraph_class_init. Its parent is a GtsGraphClass, which has the "read" member assigned a 
value of graph_read.  

Function domain_read calls function graph_read to create the GfsBoxes for the domain. This 
"read" member (graph_read) is a member of the GtsObjectClass; it is accessed through a 
sequence of parents (i.e., inheritance). This "read" occurs on line 222 of file domain.c in 
function, domain_read. In fact, a printf statement in GTS/graph_read prints next. Note that this 
is graph_read and not gts_graph_read. This function (graph_read) updates the class pointer 
from the current token, "GfsBox". It generates a GtsNodeClass and reads the next token, which 
is "GfsGEdge". A GfsBox structure includes the GtsGNode structure as a parent. The 
analogous class is the GfsBoxClass structure, which is a simple wrapper for a GtsGNodeClass. 
The GtsGNode includes a GtsSListContainer and a scalar, level. The GtsGNodeClass includes 
the GtsSListContainerClass and function pointers, "weight" and "write". A GtsGEdgeClass is 
created and the next token is read, "{", and the function returns to domain_read.  

Assign Variables 

Function domain_read calls gts_file_assign_variables to assign variables to the GtsFile 
structure. A lot happens in the next few lines of code. The (...file_assign...) functions are 
located in file, GTS/misc.c. This function is a while loop that calls gts_file_assign_next as long 
as there is a valid token in the input file. A token appears to be a string with no blanks.  

Function gts_file_assign_start is called to initialize the "set" member of the GtsFileVariable 
structure. Then, function gts_file_assign_next reads the simulation file one token at a time and 
places the read values into the var[] array until a closing "}" is encountered.  

...Control returns to domain_read  

...Control returns to simulation_read  

Process Keywords from Simulation File 

There are two kinds of input tokens that are processed differently. First are the keywords 
hardwired into the simulation_read code:  
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 GfsDeferredCompilation 
 GfsModule 
 GfsTime 
 GfsPhysicalParams 
 GfsProjectionParams 
 GfsApproxProjectionParams 
 GfsAdvectionParams.  

 

These keywords are associated with read/initialization functions that are hardwired in a series 
of if/else statements. The input data from these blocks are placed in the appropriate structures 
within the (GfsSimulation *sim) class, e.g., sim->physical_params, using the Glib function, 
g_slist_prepend. The GfsPhysicalParams class functions are contained in file, 
GFS/simulation.c.  

 

General objects are read next in the following sequence for the tides.gfs file:  

 
 MapProjection 
 Refine 
 Init 
 Solid 
 RefineSurface 
 SourceCoriolis 
 Init 
 EventHarmonic objects 
 EventStop 
 OutputProjectionStats 
 OutputSimulation objects 
 OutputPPM 
 OuputGRD objects 
 EventScript 

 

Apparently, the GfsOcean "module" is not actually a GModule. It is not processed in the same 
manner as the (GModule map) from the tides.gfs file. Function, load_module, is called to read 
and prepare a map. Call function, gfs_time_read, to read the GfsTime variables. Call function, 
gfs_physical_params_read, to read the simulation parameters. This function has several 
keyword options available in if/else blocks: g; L; and alpha. The keywords, "g" and "L" use a 
simple parsing function called, gfs_read_constant. The other keyword, "alpha", however, uses a 
gfs_function_read.  

GtsObjects 

Process GtsObject keywords that are user defined. It is not clear why the input changes from 
the keywords described above to more generic GtsObjects, but all of the other input tokens 
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from the simulation file are processed in the final "else" block. This may be because they are 
not a fundamental part of the Gerris engine, the CFD code. They thus have more complex 
functionality that has not been predefined as part of the fundamental model. Most of these 
functions, however, are part of the main library and are not included in the "modules" 
subdirectory. All of the possible GtsObjects that can be constructed are initialized in 
gfs_classes, which calls their constructors and returns pointers to their structures 
(GtsObjectClass *). New ones must be present in this function.  

The first GtsObject in the simulation file is a GfsMapProjection. The files associated with the 
map projection are included in file, map.c. The user-defined GtsObjects are constructed from 
the names, so the appropriate initialization functions must be available. Function 
gts_object_new then allocates a pointer for the class and passes the class pointer to 
gts_object_init, which calls the "object_init_func" member (event_init).  

The "read" functions are called by an abbreviated line:  
 (* klass->read) (&object, fp); 

where: klass is the class included in the object structure, the object is a new GtsObject of the 
appropriate type (e.g., GfsMapProjection), and fp is a pointer to the simulation file. The 
GfsMapProjection class is part of the map module (modules directory), which is distinct from 
the map.c source file contained in the GFS/src directory. This module (map.mod) is loaded by 
function load_module during the keyword processing described above.  

After the data have been read from the simulation file, a pointer to their memory location is 
stored in the (GfsSimulation *)->(GtsSListContainer *)(sim->maps) using the Glib function, 
gts_container_add.  

These steps are repeated for the GfsRefine object. The members of the maxlevel structure 
(GfsFunction member of a GfsRefine) are not available outside of the file, utils.c; because of 
this, the (gfs_function_*) functions are all kept in this file so that they can be accessed with a 
pointer to the structure and return the necessary variables. The GfsApproxProjectionParams 
object is read next; it consists of constant values for the variables, tolerance and nitermax.  

The next GtsObject processed from the simulation file is GfsInit. This object will be examined 
in detail.  

GfsInit Objects 

The simulation file is tested for a valid input token (int, float, string, "(", and "{"). If the next 
token is a string, and the flag for spatially variable is set (spatial = 1), and the token is more 
than 3 characters long, and the input ends with .gts, function read_surface is called to read the 
file. If the input ends with .cgd, the read_cartesian_grid function is called.  

The GfsInit is an initialization event and thus it uses functions from the GfsEventClass. The 
GfsEventClass was initialized by the call to gfs_event_class by function gfs_classes at the 
beginning of the simulation.  

A GfsInit structure contains a GSList pointer (* f) initialized by gfs_init using function 
gfs_init_class(). The "read" function is initialized in gfs_init_class_init to be gfs_init_read 
when the GfsInit object is instantiated. The read function for the GfsGenericInit class has the 
same pointer value as the initialized "read" function in gfs_event_class_init, i.e. pointing to 
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gfs_event_read. The processing of the tide files begins with the following output from function 
gfs_init_read at run time:  
 "Begin reading...Enter gfs_init_read:...".   

 

To recap, simulation_read calls gfs_init_read, which calls gfs_event_read as its first action.  

Function gfs_init_read calls gfs_event_read to read GfsEvent objects from the simulation file. 
The first token read from the file is "}" by gts_file_assign_next. This is the end of the empty 
block in the simulation file; i.e., "Init {}". It then reads the "{" that signals the beginning of the 
next block. Control returns to gfs_init_read, which makes certain that the current token is "{". 
A loop reads the file until the closing brace, "}" is read. Carriage returns "\n" are skipped but a 
string must be read. Local objects are constructed to hold the data: GfsInit, GfsDomain, 
GfsVariable, and GfsFunction. The next 3 tokens are "A_amp", "=", and "AM2.gts".  

Function gfs_function_new is called next to construct a GfsFunction to read the data files. This 
function has the same pointer value as function_read assigned in gfs_function_class_init at the 
beginning of the simulation. Function gfs_function_read is then called.  

Function gfs_function_read is primarily a wrapper for function_read (see discussion above) to 
make the appropriate casts to use the "read" function for the requested class, which is in this 
case, GfsEvent (GfsInit). There is a "function_read" defined and initialized in file, utils.c. This 
function, GTS/read_surface (file utils.c) is called with the file name (e.g., AM2.gts) and the 
file pointer (GtsFile) to the simulation file.  

The file, AM2.gts, is opened by read_surface. The input data are held in a GtsSurface structure 
that is returned to function_read. The (GtsSurface *s) is created in read_surface using 
functions, gts_surface_class, gts_face_class, gts_edge_class, and gts_vertex_class. These last 
three are all members of the GtsSurface structure. This GtsSurface is returned to function_read 
as (GfsFunction *f)->(GtsSurface *s) from read_surface.  

The GtsFace structure contains (GtsTriangle triangle) and (GSList *surfaces). The GtsTriangle 
contains (GtsEdge *e1, *e2, and *e3). These were computed from the vertices read from a *gts 
file. Each GtsEdge contains a (GtsSegment segment) and a (GSList *triangles). Each 
GtsSegment contains (GtsVertex *v1 and *v2) members. Each GtsVertex contains a (GtsPoint 
p) and a (GSList *segments). A GtsPoint contains (gdouble x, y, and z). This can be 
summarized:  
 GtsFace->GtsTriangle.GtsEdge->GtsSegment.GtsVertex->GtsPoint.x, y, and z. 

  

 There are multiple GtsFace members, 

   each with only one GtsTriangle, 

     each with multiple GtsEdge members, 

       each with only one GtsSegment, 

         each of which has multiple GtsVertex members, 

           for which there is only one GtsPoint, 

             that is defined by x, y, and z coordinates. 

 

Call function gts_surface_read to read the gts format files. Function gts_surface_add_face is 
called next to store the input surfaces in hash tables. At this point, we have confirmed that the 
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gts files (bath.gts, AM2.gts, and BM2.gts) are being read correctly by the gts_surface_read 

function, which is called by surface_read (bath.gts) or read_surface (AM2.gts and BM2.gts). 
The (GtsFace *new_face) in function gts_surface_read is thus inserted into the (GtsSurface 
*surface)->(GHashTable *faces) hash table. After all of the ordered pairs of edges describing 
the faces have been inserted into the hash table using their location (GtsFace *f) as the key, 
gts_surface_read returns to the calling function, read_surface, which does not cast the 
(GtsSurface *s) or even rename it. When control returns to function_read, however, the 
(GtsSurface *surface) is implicitly cast as (GfsFunction *f)->(GtsSurface *s). In other words, a 
valid (GfsFunction *f)->(GtsSurface *s)->(GHashTable *faces) is returned to function_read 
(file GFS/utils.c) by read_surface. This pointer (f->s->faces) appears to be correct.  

We need to identify the class structures in which the vertex data are stored. This will be used to 
access the input tidal data at different locations in the code. The GTS function, 
gts_surface_add_face, is called by GTS/gts_surface_read to add a new (GtsFace *new_face) to 
the existing (GtsSurface *s)->(GHashTable *faces).  

Process the surface data 

When gfs_function_read is called by gfs_init_read, it receives three arguments: 
(1)(GfsFunction *f); (2) (gpointer domain); and (3) (GtsFile *fp). These same arguments in 
gfs_init_read are: (GfsFunction *f); (GfsSimulation *) from the (GtsObject **o); and (GtsFile 
*fp). The object in argument (2) is the (GfsSimulation *) that is returned from a call to the 
macro, gfs_object_simulation(). This implicit cast is dependent on a macro defined in 
GFS/simulation.h:  
 #define  gfs_object_simulation(o)  GFS_SIMULATION(GTS_OBJECT (o)->reserved) 

Argument (2), (gpointer domain), can be returned as a (GfsSimulation *) because the parent of 
a GfsSimulation is (GfsDomain parent), and thus the pointer holds the correct location. The 
(GfsFunction *f) in gfs_init_read holds the face data, and the included classes are created or 
checked using the function, gfs_function_new. These are all populated with the just-read 
surface data as follows.  

In terms of member names, we can list all of the vertex, edge, and face coordinates for a single 
(GtsFace *)->(GtsTriangle *triangle) in terms of x, y, and z:  

 
 f->triangle.e1->segment.v1->p.x 

 f->triangle.e1->segment.v1->p.y 

 f->triangle.e1->segment.v1->p.z 

 f->triangle.e1->segment.v2->p.x 

 f->triangle.e1->segment.v2->p.y 

 f->triangle.e1->segment.v2->p.z 

 f->triangle.e2->segment.v1->p.x 

 f->triangle.e2->segment.v1->p.y 

 f->triangle.e2->segment.v1->p.z 

 f->triangle.e2->segment.v2->p.x 

 f->triangle.e2->segment.v2->p.y 

 f->triangle.e2->segment.v2->p.z 

 f->triangle.e3->segment.v1->p.x 

 f->triangle.e3->segment.v1->p.y 

 f->triangle.e3->segment.v1->p.z 

 f->triangle.e3->segment.v2->p.x 
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 f->triangle.e3->segment.v2->p.y 

 f->triangle.e3->segment.v2->p.z 

 

However, only the pointer to a GfsFunction has been declared locally in gfs_init_read, so the 
members are incomplete types. This pointer (GfsFunction *f) has the same value as in 
function_read. The data values listed above are not available in gfs_init_read because the full 
structure is not defined in this function. The data contained in a GfsFunction is copied to a 
GfsVariable using the function, var_func_new and the structure (VarFunc), both of which are in 
file, event.c.  

Structure VarFunc contains (GfsVariable *v) and (GfsFunction *f) members. Function, 
var_func_new, allocates memory for a VarFunc structure and assigns the (GfsVariable *v) and 
(GfsFunction *f) input arguments to their respective members in the structure. It returns the 
location of this pointer (VarFunc *vf). This pointer is appended to a singly linked list called 
(GfsInit *init)->(GSList *f). Note that the use of the identifier, f, for multiple variables is a little 
confusing. At this point, the surface data are pointed to by the (GfsFunction *) member of a 
VarFunc structure but they cannot be accessed without instantiations of the necessary classes 
(structures GfsFunction, etc).  

Function, gfs_init_read, reads from the simulation file (tides.gfs) until a closing "}" is reached. 
Each GfsInit object (i.e., "AM2.gts", "BM2.gts", and "flip") is read and placed in a local 
VarFunc structure, before being appended to (GfsInit *init)->(GsList *f).  

Insert data values into GtsContainers 

The GtsSurface data are contained in a GfsInit structure. This GfsInit structure contains the 
pointers to the hash tables containing the surface data in a singly linked list (GSList *f). The 
parent of a GfsInit object is a GfsGenericInit object, which is a synonym (i.e., typedef) for a 
GfsEvent. This GfsInit structure must be locatable within the GfsSimulation structure. The 
GfsSimulation class includes a GtsSListContainer pointer called "events". The "Init" events are 
contained within the GtsContainer named "events". They already exist and only need to be 
pointed to.  

The connection (between the already-extant face data and the simulation) is completed by 
function gts_container_add, which is called to add the surface data to the simulation structure. 
The first argument to gts_container_add is (GfsSimulation *sim)->(GtsSListContainer 
*events), which is implicitly cast to (GtsContainer c) when passed to gts_container_add. The 
second argument passed to gts_container_add is a (GfsInit *object), which is implicitly cast to 
a (GtsContainee *) by use of the macro, GTS_CONTAINEE. The (GfsInit *object) cum 
(GtsContainee *) will be placed in the (GtsSListContainer *events) member of the 
(GfsSimulation *sim) structure. The GtsContainee class has a GtsObject parent.  

The (GfsInit *)->(GtsSListContainee *) passed to gts_container_add as (GtsContainee) is 
added to the (GfsSimulation *sim) cum (GtsContainer) using functions, slist_container_add, 
container_add, and slist_containee_add_container. Function, gts_container_add, is an entry 
point to permanently store the surface data. A new GtsContainer object is constructed if 
necessary.  

During object instantiation, the (GtsContainerClass *) parent of the (GtsSListContainer *c) is 
also initialized. Its initialization function is container_class_init. This function sets 
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(GtsContainer *klass)->(void *add) member to be container_add. When slist_container_add 
calls the "add" member of its parent, it is referring to function, container_add. This has been 
verified with print statements. The value of the passed (GtsContainee *item) is the same as 
well. Function, container_add, calls the "add_container" function for a GtsSListContainee 
object, which is its parent. Following the general trend of an "SListContainee" class having a 
"Containee" class for a parent, we find that the GtsContaineeClass has an "add_container" 
member. However, this is where the standard method is a little different.  

The "add_container" function initialized in containee_class_init is NULL. Instead, the 
slist_containee_class_init function assigns "add_container" to be 
slist_containee_add_container after casting the (GtsSListContaineeClass *klass) to be a 
GtsContaineeClass using the macro, GTS_CONTAINEE_CLASS. This function is called by 
container_add. Note that container_add reverses the order of the arguments it receives before 
calling slist_containee_add_container. Function, slist_containee_add_container, prepends the 
(GtsContainee *i) pointer to the (GtsContainer *c) list. This is the same value as the (GfsInit 
*object) originally passed from function, simulation_read.  

Activate GfsEvents 

The initialization function for GfsEvents is gfs_event_init. This function is not directly called 
from ocean_run. There are wrapper "foreach" functions that will loop over all of the GfsEvents 
associated with the GfsSimulation.  

Function, ocean_run passes three arguments to gts_container_foreach, which are map to 
dummy arguments as follows:  

 
1. GTS_CONTAINER ((GfsSimulation *sim)->(GtsSListContainer *events)) => 

(GtsContainer *c) 
2. ((GtsFunc) gfs_event_init)                                         => (GtsFunc func) 
3. (GfsSimulation *sim)                                              => (gpointer data).  

The (GtsContainer *c) is a pointer to the (GtsSListContainer *events) containing the GSList of 
pointers to the faces read from the gts files (e.g. AM2.gts and BM2.gts). (GtsFunc func) is a 
pointer to the user-supplied function, which for event initialization is gfs_event_init. This has 
been verified with pointers to this function. The (gpointer data) is a pointer to the 
GfsSimulation structure. Function, gts_container_foreach, is a wrapper for a user-supplied 
"foreach" function specific to the class. This "foreach" is identified using the following code:  
 (* GTS_CONTAINER_CLASS (GTS_OBJECT (c)->klass)->foreach) (c, func, data); 

We know the class is a GfsInit because it has been printed in function, gfs_event_init, with the 
same pointer value as (GSList *events) from simulation_read. The default class is 
GfsEventClass, which has no "foreach" member. Note, however, that GfsEventClass does 
contain an "event" member, which is initialized as "klass->event = gfs_event_event" in 
function, gfs_event_class_init. The parent is (GtsSListContaineeClass *parent_class), which 
has a (GtsContaineeClass) parent. The GtsContaineeClass structure has a "foreach" member, 
which is initialized to NULL in function, containee_class_init.  

The GfsInit class (GfsEventClass) is cast to a GtsContainerClass using the macro, 
GTS_CONTAINER_CLASS. The GtsContainerClass structure also has a "foreach" member, 
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which is initialized to NULL in function, container_class_init. The GtsSListContainerClass and 
GtsSListContaineeClass classes both have "foreach" equal to slist_containee_foreach. The 
(GtsContainer *c) received by slist_container_foreach (Argument 1) is (GfsSimulation *sim)-
>(GtsSListContainer *events), which was cast to a GtsContainer in ocean_run before it was 
passed to gts_container_foreach.  

The function to be substituted to the "foreach" function is passed to gts_container_foreach. For 
example, the GfsInit class under consideration has the function name, "gfs_event_init" 
hardwired in the call to gts_container_foreach in ocean_run. Thus, when 
slist_container_foreach is called by gts_container_foreach, it applies this function in the 
"while" loop over all items in the passed container,  

 
 ocean_run 

   call gts_container_foreach 

     call slist_container_foreach 

       loop over GfsEvents 

         call gfs_event_init 

         call gfs_event_event 

 

GfsInit events are activated by function, gfs_event_event, in the following line:  
 (* GFS_EVENT_CLASS (GTS_OBJECT (event)->klass)->event) (event, sim); 

This last function, gfs_event_event, activates the initial events as well as the recurring ones. In 
this case, "activated" refers to setting (GfsEvent *event)->(gboolean realized) true. This was 
verified with print statements.  

Loop over all (GfsDomain * domain)->(GSList * variables) to initialize. A while loop 
examines all of the variables in the (GSList *variables), and activates them using 
gfs_event_init. Function, gfs_domain_bc, is called to initialize the boundary conditions in 
@domain using function, gfs_domain_copy_bc. The boundary conditions are of specific 
interest and will be examined further. For now we note the following hierarchy in function, 
ocean_run:  
 (GfsSimulation *sim)->(GfsDomain *domain)->(GSList * variables) 

  

 struct GSList { 

   gpointer data; 

   GSList *next; 

 }; 

 

We loop over the items in the variables list by:  
 GSList * i = domain->variables; 

 while (i) { 

   gfs_event_init (i->data, sim); 

   gfs_domain_bc (domain, FTT_TRAVERSE_LEAFS, -1, i->data); 

   if (GFS_IS_VARIABLE_RESIDUAL (i->data)) 

     res = i->data; 

   i = i->next; 

 } 
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Open Boundary Conditions on a GfsBox 

The first operation in bc_value_read is to call the read function for its parent. The parent of a 
GfsBcValue object is a GfsBc structure; the read function for this class is bc_read, which 
parses the "U" and "0" strings from the simulation file but does not construct a function. It 
contains no calls to gfs_function_read. It does create a (GfsBc->variable) member (v) from "U" 
and the domain variables. Nothing is done with the "0" character read from the file. Control 
returns to bc_value_read, which immediately calls gfs_function_read to generate a GfsFunction 
object from whatever is parsed next from the simulation file.  

The "0" that was read from the simulation file is cast to a float in function_read and the "H" is 
read before control returns to gfs_function_read, and then to bc_value_read. Control then 
returns to bc_flather_read (file ocean.c), which reads the "P" from the simulation file. This 
token must be "P" or an error is incurred. A variable is added to the GfsBc structure from this 
name and the variable list for the grid (GfsDomain *domain)->(GsList * variables).  

The tidal amplitude function is read with the following replacement for "M2(t)":  
 (A_amp*cos (M2F*t)+B_amp*sin (M2F*t)) 

Thus, the next token read from the file in bc_flather_read is "(". A new GfsFunction object is 
created by a call to gfs_function_new and passed to gfs_function_read, which then calls 
function_read. This line is parsed into a new (GfsFunction *f), which is a synonym for non-
static member functions implemented as Gerris Plug-ins (Section 3). The first step is a call to 
gfs_function_expression, which produces the following string and returns it to function_read as 
a GString: 

  (A_amp*cos ((2.*M_PI/44700.)*(t))+B_amp*sin ((2.*M_PI/44700.)*(t))) 

This is assigned to the expr member of the GfsFunction (i.e., f->expr) that was created when 
function_read was entered. This is discussed further in the time-dependent GfsFunction 
example.  
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Appendix B. GNU Triangulated Surface (GTS) Library 

Introduction 

The Gnu Triangulated Surface (GTS) Library is open source free software intended to provide a 
set of useful functions to deal with 3D surfaces meshed with interconnected triangles. The 
fundamental process used in the GTS library is Delaunay triangulation (Figure B.1).  

 
Figure B.1. A Delaunay triangulation of a surface. 

The GTS library is built upon the base class, GtsObjectClass (Figure B.2). This system includes 
the geometric entities used to construct surfaces as well as utilities such as file processing.  

 
Figure B.2. Diagram of the basic classes within GTS. 
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Some of these classes should be recognizable; for example, points and segments are used to 
construct triangles, which are then used to build surfaces. The subclasses of these classes 
(shown in green) represent these geometrical relationships. The GtsSurfaceClass will be 
discussed in more detail below. These classes are implemented using c structures.  

GTS Objects, Classes, Constructors, and Inheritance 

The base class for all GTS and GFS objects is the GtsObjectClass (Figure B.3). This class 
defines generic functions used in the libraries: clone; destroy; read; write; color; and attributes. 
These functions have standard arguments; the read function requries a (GtsObject **), which is 
a pointer to an array of objects, and a GtsFile pointer. The actual name of the function is 
assigned in the GtsObjectClassInitFunc function supplied by the user for each class. For the 
GfsOcean object this is gfs_ocean_class_init. This function assigns ocean_read to the variable, 
read.  

 
Figure B.3. Class diagram for the GtsObject. The blue boxes contain variables and functions for 
the class structures (green). C preprocessor macros are listed in yellow boxes, and class functions 
are contained in red boxes. 

The structure, GtsObjectClassInfo contains (among others) a GtsObjectClassInitFunc named 
class_init_func. This structure is the first member of the GtsObjectClass and thus these special 
functions are included in every object class like GfsOcean. The functions that are used by a 
class are initialized in the class_init_func member of the GtsObjectClassInfo structure. This 
"info" structure was initialized in gfs_ocean_class (gfs_init at start of main) for this object.  
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Parent classes are automatically constructed when any class is created. This is completed by 
gts_object_class_init. This is done because this is the base class for all classes. It guarantees 
that the necessary members have been created for all new class structures. Thus, when 
gts_graph_read recognizes a GfsOcean class, it can assign a value to klass and make certain 
that the necessary included functions are ready. The GtsObjectClass named "GfsOcean" was 
created by gfs_init. There is redundancy here to fit the object-oriented concept but the functions 
all have checks that assure it will be error free.  

The procedure for implementing a new class is as follows:  

1. Call a class function like gts_slist_container_class(), which returns a pointer to a structure 
for that class (e.g., GtsSListContainerClass). 

2. This function has a static pointer variable to the desired class structure that will be available 
within this function only. If it has been assigned, nothing happens here. 

3. Initiate the GtsObjectClassInfo member of the GtsObjectClass that is part of the GTS 
library with a name for the class, its size, and init functions as declared in the GTS header 
file, gts.h. 

4. Call gts_object_class_new with the parent class constructor function (e.g., 
gts_container_class) and the "info" structure as args. It returns a pointer to the new class 
structure. 

5. The function, gts_object_class_new, uses the "info" structure to assign the memory 
locations of the "init" functions. The parent constructor will return a pointer to the parent 
class, which will be passed to gts_object_class_new. 

6. Part of the function of gts_object_class_new is to instantiate the requested class using the 
init function (e.g., slist_container_class_init). 

7. The "init" function defines function names that are consistent with the parent class. The 
example defines: add = slist_container_add, remove=slist_container_remove, 
foreach=slist_container_foreach, and size=slist_container_size (members of the 
GtsContainerClass structure defined in gts.h), and an additional function, 
destroy=slist_container_destroy. 

GtsObjectClass  

The most basic macros, classes, and functions are associated with the GTS library. Many are 
defined in the header file, gts.h. This can be demonstrated using the basic class, GtsObject, 
which is defined as a structure in gts.h:  
 typedef struct _GtsObject        GtsObject; /* line 69  in gts.h   */ 

The basic structure (class), _GtsObject, is not used in other declarations; instead, GtsObject is 
used. The object structure contains a pointer to a class (klass) of which it is a member. This will 
be used often for user-defined classes and objects, which must be consistent.  

A structure of class GtsObject includes information about the class itself. It thus includes a 
pointer to a structure of class GtsObjectClass, which includes listings of dummy functions for 
copying, etc. its members, as well as a GtsObjectClassInfo structure as a member (info), and a 
pointer to the GtsObjectClass of the class' parent (parent). The info member is a structure 
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containing the class name, object and class sizes, and dummy functions to initialize the object 
and its parent class, as well as setting and getting other arguments related to the object. Here are 
the listings of these structures, which represent classes in an object-oriented framework:  

 
 struct _GtsObject {     /* line 235 in gts.h

 */ 

   GtsObjectClass * klass; 

   gpointer reserved; 

   guint32 flags; 

 }; 

 struct _GtsObjectClass {    /* line 242 in gts.h

 */ 

   GtsObjectClassInfo info; 

   GtsObjectClass * parent_class; 

   void        (* clone)      (GtsObject *, GtsObject *); 

   void        (* destroy)    (GtsObject *); 

   void        (* read)       (GtsObject **, GtsFile *); 

   void        (* write)      (GtsObject *, FILE *); 

   GtsColor    (* color)      (GtsObject *); 

   void        (* attributes) (GtsObject *, GtsObject *); 

 }; 

 struct _GtsObjectClassInfo { 

   gchar name[GTS_CLASS_NAME_LENGTH]; 

   guint object_size; 

   guint class_size; 

   GtsObjectClassInitFunc class_init_func; 

   GtsObjectInitFunc object_init_func; 

   GtsArgSetFunc arg_set_func; 

   GtsArgGetFunc arg_get_func; 

 };  

Initializing a New GtsObject 

This procedure is repeated here because it is complex and almost always used. This section is 
referenced from several locations in this document with the name of the new class changed.  

(1) The (GfsInit *object) passed from simulation_read is implicitly cast as a (GtsContainer *c) 
because it is a dummy argument in gts_container_add.  

(2) The macro, GTS_OBJECT, is invoked for the actual pointer value. This macro is a call to 
gts_object_cast, with a pointer to the GtsInit parent class as returned from the function, 
gts_object_class.  

 
 #define GTS_OBJECT(obj)  \ 

         GTS_OBJECT_CAST (obj, GtsObject, gts_object_class ()) 

 #define GTS_OBJECT_CAST (obj, type, klass)  \ 

         ((type *) gts_object_check_cast (obj, klass)) 

 

(3) The macro, GTS_CONTAINER_CLASS, is passed the parent class, which in long form is 
(GtsContainer *c)->(GtsSListContainee object).(GtsContainee containee).(GtsContainee 
object). (GtsObject object).(GtsObjectClass *klass); this is abbreviated in the source code as, 
GTS_OBJECT(c)->klass, because the intermediate parents are all contained rather than using 
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pointers. A print statement verifies that: (GTS_CONTAINER_CLASS (GTS_OBJECT (c)-
>klass)->parent_class.parent_class.parent_class.info.name)) equals "GtsSListContainer".  

(4) Function gts_object_class checks that the base class GtsObjectClass is present. This class 
pointer is then passed to the analogous macro, GTS_CONTAINER_CLASS. It then passes the 
returned (GtsContainerClass *) pointer from function, gts_container_class, to macro, 
GTS_OBJECT_CLASS_CAST.  

 #define GTS_OBJECT_CLASS_CAST (objklass, type, klass) \ 

         ((type *) gts_object_class_check_cast (objklass, klass)) 

(5) Function, gts_container_class, initializes the "info" structure member 
"GtsObjectClassInitFunc" to be container_class_init. It then calls gts_object_class_new with 
the (GtsSListContaineeClass *) returned from function, gts_slist_containee_class; this is the 
first argument to GTS_OBJECT_CLASS.  

 
 #define GTS_OBJECT_CLASS (klass)  \ 

         GTS_OBJECT_CLASS_CAST (klass, GtsObjectClass, gts_object_class()) 

This iterative method assures that all required parent classes exist.  

(6) Function, gts_slist_containee_class, initializes the (GtsSListContaineeClass *)->info 
member, GtsObjectClassInitFunc, to be slist_containee_class_init. This is done only if this 
class does not exist already. Function, gts_object_class_new, is called to allocate memory and 
call gts_object_class_init, which checks for all parents all the way to the GtsObjectClass and 
calls their class_init_func members if needed.  

(7) The add function is a member of the GtsContainerClass structure, which is the parent of a 
GtsSListContainerclass. It is initialized in function, slist_container_class_init, to be 
slist_container_add. Thus, when the GtsSListContainer is cast as a GtsContainerClass, this add 
function is called.  

The trivial case for no type checking could lead to errors at run time. If GTS_CHECK_CASTS 
is defined, the rules for macro substitution indicate that "obj" will be passed directly to 
GTS_OBJECT_CAST. However, GtsObject and gts_object_class() are not defined in the 
macro. These strings will be substituted into any calls of GTS_OBJECT; for example, 
GTS_OBJECT(s) becomes GTS_OBJECT_CAST(s, GtsObject, gts_object_class()). GtsObject 
is defined in file gts.h, and thus is known to be a (struct GtsObject), which is really a class. This 
macro results in the following substitution from the original GTS_OBJECT:  

 ((GtsObject *) gts_object_check_cast (obj, gts_object_class ()) 

The function gts_object_check_cast() checks that obj exists and can be cast to the return value 
from the function gts_object_class(), but is not from this class. In other words, the function 
gts_object_class() is executed before the types are checked. The function, gts_object_class(), 
which initializes the structure for a gts_object_class, is defined in gts-0.7.6/src/object.c as:  
 /** 

 * gts_object_class: 

 * 

 * Returns: the #GtsObjectClass. 

 */ 
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 GtsObjectClass * gts_object_class (void) 

 { 

  static GtsObjectClass * klass = NULL; 

   if (klass == NULL) { 

     GtsObjectClassInfo object_info = { 

       "GtsObject", 

       sizeof (GtsObject), 

      sizeof (GtsObjectClass), 

       (GtsObjectClassInitFunc) object_class_init, 

       (GtsObjectInitFunc) object_init, 

       (GtsArgSetFunc) NULL, 

       (GtsArgGetFunc) NULL 

     }; 

     klass = gts_object_class_new (NULL, &object_info); 

   } 

   return klass; 

 } 

 

There are no args passed to this function because it automatically generates an object of class, 
“GtsObject”. The sequence of initializing a new base object using GTS is as follows:  

 

1. call gts_object_class (): Initialize a new GtsObjectClassInfo.object_info structure 
including replacing the dummy function class_init_func with object_class_init. 

2. call gts_object_class_new (); Check for info and parent; Initialize a hash table with 
g_hash_table_new and place the pointer to the class structure in it using the object class 
name as the key. The hash table pointer (class_table) is only accessible to the functions 
in file object.c because it is static within this file.  

3. Call gts_object_class_init (); This function is expecting (GtsObjectClass *) args for both 
the new  class and the parent      class, but it is passed the current class (klass) for both 
args. It is recursive as long as the parent class has a parent class itself. Since klass-
>parent_class is NULL, the recursive call results in an immediate return and the next 
statement is executed. 

4. Call class_init_func (); This is a dummy function that does nothing; it is only defined 
for generality. When the structure GtsObjectClassInfo is initialized, this dummy is 
replaced with object_class_init, which initializes the functions within the class for clone, 
destroy, read, write, color, and attributes. 

When this sequence has completed, an object of class 'GtsObject' has been generated along with 
its basic members. The object-oriented concept of inheritance is represented by the inclusion of 
parent classes (pointers to their structures) within a class structure. This is represented in the 
diagram above by the yellow boxes for the lower classes, which actually include classes from 
the green boxes, which in-turn include classes from the blue boxes. Ultimately, all classes 
(structures) inherit the GtsObjectClass and all of its members.  

GtsSurfaceClass  

As described in the Introduction, the triangulated surface is a basic construction for the finite-
volume method implemented in Gerris to conserve mass. These surfaces are used for the 
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coastline, the seafloor, and boundary condition like a water surface anomaly computed from 
tidal constituents. We will be discussing these applications in other sections.  

Class Structure 

The basic functionality of a surface is introduced through the GtsSurfaceClass:  

 
 typedef struct _GtsSurface       GtsSurface;  /* line 85 of gts.h  */ 

  

 struct _GtsSurface {     /* line 1062 of gts.h  

*/ 

   GtsObject object; 

 #ifdef USE_SURFACE_BTREE 

   GTree * faces; 

 #else /* not USE_SURFACE_BTREE */ 

   GHashTable * faces; 

 #endif /* not USE_SURFACE_BTREE */ 

   GtsFaceClass * face_class; 

   GtsEdgeClass * edge_class; 

   GtsVertexClass * vertex_class; 

   gboolean keep_faces; 

 }; 

The C structure, GtsObject, is a member of class GtsSurface. This means that a GtsSurface 
includes the information contained in the GtsObject class as well as data about the surface; i.e., 
its face, edge, and vertex description contained in objects of the GtsFaceClass, GtsEdgeClass, 
and GtsVertexClass classes (Figure B.4A). Note that a GtsFace, GtsEdge, and GtsVertex are all 
generated in an analogous manner to the GtsObject class described above. It also means that the 
a GtsSurface class includes the same data as a GtsObject class (inheritance).  

 

Figure B.4. Class diagrams for surfaces.  
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A. Simplified class diagram for the GtsSurface Class. 

 
B. Member functions for the GtsSurface class. 

 

The large number of functions associated with this class indicates the level to which surface 
operations have been modularized (Figure 4B). These functions are not modified by a user, 
however, but they can be implemented for user-defined operations.  

The GtsSurface structure contains a GHashTable * faces member. The hash table algorithm 
does not use the surface binary tree. This means that a hash table is used instead of a tree unless 
the macro USE_SURFACE_BTREE is set). Both are available in glib. The hash table is 
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initialized with g_hash_table_new and the tree with g_tree_new. There is a useful tutorial for 
the hash table library in glib. The surface->faces member is a new hash table with no entries 
(NULL, NULL).  

Creating a GtsSurface 

Generating a new GtsSurface is a two-step process; first, a class must be created and then a 
surface object is made every time an operation changes an existing one or instantiates one.  

 

 call gts_surface_class (); Initialize new GtsObjectClassInfo.surface_info structure, 
including replacing the dummy function class_init_func with surface_class_init, and 
object_init_func with surface_init. 

a. Call gts_object_class_new (gts_object_class (), &surface_info). Note that the 
embedded function gts_object_class will generate a new GtsObjectClass. The 
function,        surface_class_init (listed in GtsObjectClassInfo) declares 
surface_destroy, surface_write,  add_face, and remove_face function names. 

b. Return a pointer to the new GtsSurfaceClass. 

 

The static GtsSurfaceClass pointer, klass, in function gts_surface_class is used to prevent the 
generation of multiple surface classes because this would destroy information previously 
acquired. After a GtsSurface class has been instantiated, new surface objects are generated as 
computations are carried out because surfaces are constantly changing in response to the grid 
adapting. Thus, the gts_surface_new function is not called by gts_surface_class as was done for 
a new object class.  

The following list shows functions contained within file .../gts.../src/surface.c that call 
gts_surface_new:  

 static void traverse_boundary (GtsEdge * e, gpointer * data)  
 static void traverse_remaining (GtsFace * f, gpointer * data)  

There is a file called surface.c that is part of gerris. This is a bad idea but it is included in a 
different location so they did it. It does not repeat .../gts.../src/surface.c but supplements it with 
new classes. It also calls the function, gts_surface_new from the following functions:  

 static void surface_read (GtsObject ** o, GtsFile * fp)  
 static void face_overlaps_box (GtsTriangle * t, gpointer * data)  

To continue with generating a new GtsSurface:  
 call gts_surface_new ( GtsSurfaceClass  * klass, 

               GtsFaceClass  * face_class, 

           GtsEdgeClass  * edge_class, 

           GtsVertexClass  * vertex_class) 
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For all examples of this function, gts_surface_class is called (see above) from the argument list 
either directly (gfs_surface.c) or using macros defined in gts.h., but it does nothing if klass is 
not NULL. The instantiation of a (GtsSurface *) at line 137 of file .../gts../surface.c first calls 
GTS_OBJECT_CLASS(klass). The instantiations in surface.c checks that the requested object 
can be cast to the current value of klass. The cases in gfs_surface.c generate GtsSurface objects 
directly and do not need to complete this check. The macro GTS_SURFACE is used to check 
for compatibility of the new surface's parent object using the macro GTS_OBJECT_CLASS 
with the current klass object in the argument to the function gts_object_new. This name is 
similar but this function has not been invoked in generating a new GtsObject above.  

 Call function gts_object_new 

 Allocate memory using data in structure info. 

 Call gts_object_init, which calls the object_init_func function (initialized as        
object_init in structure GtsObjectClassInfo), which initializes only the reserved and 
flags parameters. This is done recursively as with the GtsObjects. 

 Return a new surface object of klass, 'GtsSurface'. 
 

Before a new surface object can be generated, however, the required face, edge, and vertex 
classes need to be instantiated. This is because surfaces are only generated by some operations 
as listed above and they are defined by their boundaries. I have tested this; the test printed the 
following output for the new object and its classes:  

 
 object_1_ptr->object.klass->info.name = GtsSurface 

 object_1_ptr->object.klass->parent_class->info.name = GtsObject 

 object_1_ptr->face_class->parent_class.parent_class.info.name = GtsFace 

 object_1_ptr->edge_class->parent_class.parent_class.info.name = GtsEdge 

 object_1_ptr->vertex_class->parent_class.parent_class.info.name = GtsVertex 

Reading a GtsSurface from a File 

The reading functionality has been tested for bathymetry and tidal elevation data for the 
Mississippi Bight. This analysis was motivated by problems I had when trying to read tidal data 
from files. There are three files read for this simulation: bath.gts; AM2.gts; and BM2.gts. File, 
bath.gts, is opened in surface_read (GFS/surface.c). This operation occurs twice with different 
file pointers generated. The first time occurs after gfs_solid_read and the second time appears 
to be after gfs_solid_class. AM2.gts and BM2.gts are opened in read_surface (GFS/utils.c). No 
wonder this is confusing--the bath file (bath.gts) is opened in surface_read (GFS/surface.c).  

The GTS file format is as follows:  

 
* All the lines beginning with #GTS_COMMENTS are ignored. The first line 

* contains three unsigned integers separated by spaces. The first 

* integer is the number of vertices, nv, the second is the number of 

* edges, ne and the third is the number of faces, nf. 

* 

* Follows nv lines containing the x, y and z coordinates of the 

* vertices.  Follows ne lines containing the two indices (starting 
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* from one) of the vertices of each edge. Follows nf lines containing 

* the three ordered indices (also starting from one) of the edges of 

* each face.   

* 

* The format described above is the least common denominator to all 

* GTS files.  Consistent with an object-oriented approach, the GTS 

* file format is extensible. Each of the lines of the file can be 

* extended with user-specific attributes accessible through the 

* read() and write() virtual methods of each of the objects written 

* (surface, vertices, edges or faces). When read with different 

* object classes, these extra attributes are just ignored.      

 
The read functions call the same GTS library functions, however, and thus read a gts formatted 
file. Here is an example of a simple surface, which requires a very small file to describe:  

 
 4 5 2 GtsSurface GtsFace GtsEdge GtsVertex 

 270.5 29.5 -20 

 270 29.5 0 

 270 29 0 

 270.5 29 -20 

 1 2 

 1 3 

 3 2 

 4 1 

 4 3 

 1 2 3 

 2 4 5 

 

The first line lists the number of vertices, edges, and faces that describe the surface. The 
vertices are read first.  

A vertex class is created with the macro, GTS_VERTEX, following the usual operation. A 
GtsVertex (Figure B.5) consists of the x, y, and z coordinates of a point. The GtsVertex 
structure contains a GtsPoint structure (p) and a GSList (segments). A temporary GtsObject, 
new_vertex, holds the x, y, and z values returned by the vertex_class read function, point_read, 
which is the read function for GtsPointClass (initialized in point_class_init). This is a generic 
function to read a point triplet from a file. Function, point_read, places the triplet it has read 
into the (gdouble) x, y, and z members of the GtsPoint structure. The vertices are then assigned 
to the nth element of a GtsVertex array (vertices[nv]). Note that the GSList pointing to these in 
order is called segments.  
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Figure B.5. Diagram of the pseudo-class, GtsVertex. 

The edges are listed next as pairs of vertices in the gts file. A (GtsEdge * new_edge) is assigned 
based on the values for the vertices[nv] read from a gts file using gts_edge_new. The GtsEdge 
array (edges[ne]) contains pointers to each edge read from the file. These ordered indices are 
read by gts_surface_read and placed in GtsEdge structures (Figure B.6) as GtsSegments 
(segment). The GtsSegment class contains GtsVertex pointers to the two vertices that describe 
an edge. Note that the GSList pointing to these is called triangles.  
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Figure B.6. Diagram of the pseudo-class, GtsEdge. 

The faces of the surface are read as point triplets to create a GtsFace object (Figure B.7) using 
function, gts_face_new. This loop is also used to add the new face to the (GtsSurface *surface)-
>(GHashTable *faces) hash table using gts_surface_add_face, which is a wrapper for the Glib 
function, g_hash_table_insert.  

 
Figure B.7. Diagram of the pseudo-class, GtsFace. 
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These triples are assigned to a new GtsFace object, * new_face, using function gts_face_new, 
which is passed the edges[ne] array. Function gts_face_new initializes a new GtsFace (if 
necessary) and calls gts_triangle_set to construct a triangle from a triple of edges. After the 
current face is read from the file and its structures populated, gts_surface_add_face is called 
with the (GtsSurface * surface) and the (GtsFace * new_face) arguments. Function 
gts_surface_add_face checks that the hashtable key (GtsFace *f) passed as an argument is 
associated with a value in the (GHashTable * faces) member of the GtsSurface *. If not (i.e., 
NULL is set during initialization of the table), the current (GtsSurface *s) is prepended to the 
(GSList *surfaces) member of (GtsFace *f). The (GHashTable *) member of (GtsSurface s)-
>faces is updated with the current (GtsFace *f) inserted as the key and the value; i.e., 
g_hash_table_insert (s->faces, f, f). After updating the hash table, the add_face member of the 
GtsSurfaceClass structure is called with arguments, (GtsSurface *s, GtsFace *f).  

GtsGraph Class 

The GtsGraph structure (aka class) is part of the GTS library. It bridges the geometric gap 
between a mathematical graph, a GtsContainer, a GtsHashTable, and input vector data (e.g., 
bathymetry). The GtsGraph is included in the GTS library as a container for general domain 
information (e.g., number of nodes and boxes), as well as containing other structures for the 
graph data read from the *.gts files by function, gts_graph_read. This class is represented by 
the following C structures:  

 
 struct _GtsGraphClass { 

   GtsHashContainerClass parent_class; 

   gfloat (* weight) (GtsGraph *); 

 }; 

  

 struct _GtsGraph { 

   GtsHashContainer object; 

   GtsGNodeClass * node_class; 

   GtsGEdgeClass * edge_class; 

 }; 

 

This is a utility that is not actually used by the GTS library itself. All of the usual GtsObject 
properties are included through the following inheritance path: 

 
(GtsGraphClass *)-

>GtsHashContainerClass.GtsContainerClass.GtsSListContaineeClass.  \ 

                                    GtsContaineeClass.GtsObjectClass.read 

 

In this pseudocode, each consecutive parent class is named rather than listed as a member of the 
child class. The functions are all assigned to the base class, the GtsObjectClass. This is an 
important lineage for understanding the way Gerris (and GTS) processes gridded fields. This is 
a generic structure that can be filled with any type of data through its GtsHashContainer 
member. It is used at the top level for the Gerris domain because it includes the most basic 
topological information--the number of nodes and edges in the simulation. An important 
distinction between this "graph" and the vector data (i.e. "graph") read from the *.gts files is 
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that there are no location data associated with the GtsGraph. That is, it contains information 
about the nodes in the simulation but no dimensional data at all.  

A new GtsGraph object is created by the following line:  
  

(1)  g = GTS_GRAPH (gts_object_new (GTS_OBJECT_CLASS (gts_graph_class ()))); 

 

The result of this line is instantiations of the following (classes) structures by the 
gts_graph_read function (including parents):  

 
 GtsGraph: 

   GtsHashcontainer         object 

     GtsContainer           c 

     GHashTable *           items 

     boolean                frozen 

   GtsGraphClass *          graph_class 

     GtsHashContainerClass  parent_class 

     gfloat                 (* weight) (GtsGraph *) 

   GtsGNodeClass *          node_class 

     GtsSListContainerClass parent_class 

     gfloat                 (* weight) (GtsGraph *) 

   GtsGEdgeClass *          edge_class 

     GtsContaineeClass      parent_class 

     GtsGEdge *             (* link) (GtsGEdge *e, GtsGNode *n1, GtsGNode 

*n2) 

     gfloat                 (* weight) (GtsGEdge *e) 

     void                   (* write ) (GtsGEdge *e, FILE * fp) 

 

The (GHashTable *items) is a pointer to any data associated with the GtsGraph. The function 
gts_hash_container_class in-turn initializes a GtsContainerClass and assigns the 
hash_container_add, *_remove, *_foreach, and *_size functions. These are part of the GTS 
library. They use the glib c commands for hash containers (e.g., g_hash_table_insert). It is 
important to note that the GtsGraph pointer, g, that has been created by line (1) is returned by 
the function, gts_graph_read. It is going to be the index to locate the vertex data elsewhere.  

The GtsWGraph class encapsulates a GtsGraph and adds a weight variable:  

 
 GtsWGraph: 

   GtsGraph  graph 

   gfloat    weight 

 

The function gts_graph_class() creates a GtsGraphClass and initializes the graph_info structure 
(including init and read function names). All of the GTS objects are instantiated as GtsObjects; 
for example, the function, gts_hash_container_class, is invoked from within the macro, 
GTS_OBJECT_CLASS, which will initialize a new class and create (if necessary) a new parent 
class for the hash container class, a GtsContainerClass. This recursive sequence will produce 
class pointers for all of these classes.  
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Function, gts_object_class_new, is called in gts_graph_class with the GtsHashContainerClass 
pointer cast as a GtsObject and passed as its first argument. The info structure is passed as the 
second argument. A static GHashTable is created and filled with dummy strings. The name of 
the class is entered as the key for the class pointer. This hash table is only used within the 
object class and not outside the file, object.c (i.e., static). The return value from 
gts_graph_class is a new class pointer if it doesn't already exist. Extra calls after initialization 
have no effect.  

After all required parent classes have been created/initialized by the GTS_OBJECT_CLASS 
macro, a new GtsGraph object is created by the call to gts_object_new, which allocates memory 
for the structure and initializes it by calling gts_object_init. Quoting from internal 
documentation, function gts_object_init... 

  
 "Calls the init method of @klass with @object as argument. This is done  

 recursively in the correct order (from the base class to the top). You 

 should rarely need this function as it is called automatically by the 

 constructor for each class." 

 

The init method is user supplied for GFS and part of the GTS library for its classes. For the 
GtsGraphClass, the init function (graph_class_init) is part of the GTS library. It initializes the 
write (graph_write) and read (graph_read) functions. These are referenced as "klass->read" in 
the code. The GtsObject pointer returned by gts_object_new is then passed to the macro 
GTS_GRAPH, which is replaced by the macro, GTS_OBJECT_CAST (GtsObject *, GtsGraph, 
gts_graph_class()). This checks the class and creates a GtsGraph object. The reason for this 
detailed class checking, creation, and initializing is the pseudo-object oriented structure being 
reproduced by GTS and GFS. It is necessary to have the creation of objects be independent of 
the program sequence.  

The result of the line above is instantiations of the following structures within the 
gts_graph_read function, as well as all parents.  

 
 GtsGraphClass: 

   GtsHashContainerClass  parent_class 

   gfloat                 (* weight) (GtsGraph *) 

 

where the argument to the function, weight, is a GtsGraph pointer.  

The (GHashTable *items) are pointers to any data associated with the GtsGraph. The function 
gts_hash_container_class in-turn initializes a gts_container_class and assigns the 
hash_container_add, *_remove, *_foreach, and *_size functions. These are part of the GTS 
library. They use the glib c commands for hash containers (e.g., g_hash_table_insert).  

Function gts_graph_read allocates the memory for (GtsGNode ** nodes), which is an array of 
pointers to GtsSListContainers. A new (GtsObject *new_node) is created for each of the nodes 
that is read from the bath.gts file. This node is filled by calling gts_container_add, which then 
calls the "add" function for the GtsContainerClass. The "add" function is container_add, which 
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is a short wrapper for calling the "add_container" function of the GtsContaineeClass. This 
member is initialized NULL in containee_class_init (line 27 of GTS/container.c).  

When gts_graph_read calls gts_container_add, it passes (GtsGraph *g) as arg[1] and 
(GtsObject *new_node) as arg[2]. Function gts_container_add then passes the arguments 
directly to the "add" function, which is container_add. To reiterate, the GtsGraph is the 
container and the new node is the item to be added (containee). Note that the new node is only 
an empty container. This container_add function then passes the node as arg[1] and the graph 
as arg[2] to the "add_container" function member, slist_containee_add_container. This 
function is a wrapper for g_slist_prepend, the glib function to prepend an item to a singly 
linked list. The new node from gts_graph_read is held in a temporary variable 
(GtsSListContainee *item). The (GSList *containers) member of this GtsSListContainee 
structure is searched for the GtsGraph structure, which has a (GtsHashContainer object) 
member. As expected, the GtsHashContainer includes a GtsContainer and a GHashTable. If the 
new node does not already have a pointer to the graph, its location (pointer) is prepended to the 
(GSList * containers) member of the GtsSListContainee that was searched. The containees 
pointer is updated to reflect this before returning.  

Now that the new node has been added to the node structure, the values of the vertices can be 
read from file *.gts by "(g->node_class)->read". The node_class is a GtsGNodeClass* member 
of a GtsGraph. The "read" function for the GtsGNodeClass indicated on line 1457 of file 
graph.c is probably pointing to the GtsObjectClass "read" function through inheritance.  

GtsContainers and GtsContainees 

A containee (Figure 4A) is contained within a container (Figure B.8B), but the relationship 
between classes in GTS is more complex than this because a container can become a containee 
for another object. This semantics allows composite objects that are recursively contained 
within objects while also containing other objects.  

Figure B.8. Class diagrams for containers.  

 
A. Diagram for the GtsContainee Class. 
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B. Diagram for the GtsContainer Class. 

 

For example, a GtsContainer has a GtsSListContainee object within it.  
 
 struct _GtsContainer { 

   GtsSListContainee object; 

 }; 

 

This structure has only one member, which introduces a singly linked list object. A singly 
linked list simply lists items in a specified sequence for processing. The definition of this object 
shows how the linkage is accomplished using a singly linked list (i.e., GSList):  
 
 struct _GtsSListContainee { 

   GtsContainee containee; 

   GSList * containers; 

 }; 

This brings us to the basic GTS class, the GtsObject (Figure 3):  

 struct _GtsContainee { 

   GtsObject object; 

 }; 

 

However, the GSList member (*containers) is the key; this is part of the glib library. It has two 
members, a gpointer (generic pointer type) named data, and a GSList object named, 
appropriately enough, next. The surface vertices that were read from the *.gts file are stored in 
the data member whereas the next index to be processed from the list is held in next. This entire 
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complex hierarchy has been worked out for the GfsSolid object into which the water depth data 
are placed:  
 
 GtsSListContainer *                     solids 

   GtsContainer                          c 

     GtsSListContainee                   object 

       GtsContainee                      containee 

         GtsObject                       object 

           GtsObjectClass *              klass 

           GtsObjectClassInfo            info 

             gchar                       name 

             guint                       object_size 

             guint                       class_size 

             GtsObjectClassInitFunc      class_init_func 

               void   (*GtsObjectClassInitFunc) (GtsObjectClass * objclass) 

             GtsObjectInitFunc           object_init_func 

               void                  (*GtsObjectInitFunc) (GtsObject * obj) 

             GtsArgSetFunc               arg_set_func 

               void                      (*GtsArgSetFunc) (GtsObject * obj) 

             GtsArgGetFunc               arg_get_func 

               void                      (*GtsArgGetFunc) (GtsObject * obj) 

           GtsObjectClass *              parent_class 

           void                          (* clone) 

           void                          (* destroy) 

           void                          (* read) 

           void                          (* write) 

           GtsColor                      (* color) 

             gfloat                      r 

             gfloat                      g 

             gfloat                      b 

           void                          (* attributes) 

         gpointer                        reserved 

         guint32                         flags 

       GSList *                          containers 

         gpointer                        data 

         GSList *                        next 

           Repeated recursively as required... 

     GSList *                            items 

       gpointer                          data 

       GSList *                          next 

     gboolean                            frozen 

 

A GtsContainer can be a member of a range of structures because its sole purpose is to supply a 
linked list with a hash table for accessing the members of the list in a specified manner.  I 
printed the pointer to the "add_container" member for the GtsContaineeClass in function 
container_add. I also printed the pointer to function slist_containee_add_container, which is 
the "add_container" member for the GtsSListContaineeClass. They are the same. This is 
because the GtsContaineeClass is the parent of the GtsSListContaineeClass. This is the function 
that adds items to a container. Function slist_containee_add_container is a wrapper for 
g_slist_prepend. The first argument is a (GtsContainee *) and the second is a (GtsContainer *).  
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GtsHashTables 

It convenient to define a GtsHashContainer as follows:  
 
 struct _GtsHashContainer { 

   GtsContainer c; 

   GHashTable * items; 

   gboolean frozen; 

 }; 

The GtsHashContainer structure is a wrapper for a GHashTable, which is part of the Glib 
library that comes with the operating system. It also has a GtsContainer member that inherits 
the functionality of this structure (Figure B.4B). The items member points to a hash table. This 
structure (aka class) also contains a GtsContainer, which is a collection of other objects. In the 
case of the GTS library, this collection is contained in a GtsSListContainee object.  

A GtsHashContainerClass (GtsHashContaineeClass) structure is a type of 
GtsContainer/GtsContainee (Figure B.2).  
 
 struct _GtsHashContainerClass { 

   GtsContainerClass parent_class; 

 }; 

 

Glib functions are used to access data contained within (GtsSurface *)->(GHashTable *faces). 
These functions are discussed in the glib documentation. Typical Glib functions used to access 
data in a GHashTable are:  
 
 void      g_hash_table_insert  \ 

         (GHashTable *hash_table, gpointer key, gpointer value); 

 gpointer  g_hash_table_lookup  \ 

  (GHashTable *hash_table, gconstpointer key); 

 void      g_hash_table_foreach \ 

  (GHashTable *hash_table, GHFunc func, gpointer user_data); 
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