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ABSTRACT 

In this work, we present insight on the internal gaseous flow of artificially ventilated supercavities. Using multiphase 

computational fluid dynamics, the major mechanism of gas leakage from a ventilated supercavity is identified as occurring though 

gaseous shear layers forming at the gas-water interface. These observations corroborate previous theory developed for toroidal 

cavities, and display evidence that shear-layer mechanisms remain important for twin-vortex cavities and cavities interacting with 

bodies. Additionally, shear mechanisms appear to influence cavity hysteresis behavior. These observations are used to guide improved 

supercavitating-vehicle analyses including numerical predictions, experiments, and modeling. 

INTRODUCTION 

Supercavitating vehicles are underwater vehicles contained in a gaseous cavity (or supercavity) with the overall goal of drag 

reduction. This drag reduction is achieved by virtually eliminating the viscous drag components on a vehicle hull. These gaseous 

cavities can be formed by either ventilating gas or vaporizing the liquid. Ventilated cavities are the most favorable type for practical 

purposes, as such cavities are controllable. The cavity can then be stabilized, thus, mitigating buffeting, surface damage, large-scale 

vehicle vibrations, and other negative consequences typical to cavitation. Supercavitation is one, of many, practical underwater-vehicle 

concepts with potential to significantly increase underwater vehicle speeds. 

Gas entrainment is studied because of its clear impact on supercavitating-vehicle design. In steady operation, the ventilation 

requirement for a supercavity is equal to the amount of gas being entrained from the cavity. Thus, the gas entrainment rate is directly 

related to gas storage requirements. The cavity shape can also be approximated using the gas-entrainment rate. These models become 

useful for designing hull forms, positioning of control surfaces, as well as developing vehicle-controller models. These benefits creates 

the need for physically-accurate, design-level models that approximate the cavity shape based on a gas-ventilation rate. Such models 

can only be developed with an understanding of the physical processes that govern them. 



In this work, computational fluid dynamics (CFD) simulations are used to improve the understanding of supercavitating flows. 

The results contain evidence that corroborates the theory of Spurk [1], which ties the gas entrainment to shear layers forming on the 

cavity interface. Although the original work was limited to toroidal-vortex closing cavities [1], the present CFD solutions contain 

evidence that the cavity-shear layers remain a primary gas-entrainment mechanism for twin-vortex-closing cavities. These insights 

reveal improved CFD formulations for supercavitation, help to develop reliable models of the process, and improve the interpretation 

of scale-model experiments. 

BACKGROUND 

Theories developed for modeling supercavities, supercavity cavity-closure modes, and the impact that these closure modes have 

on gas entrainment are reviewed. Note that the reviewed models and investigations are restricted to horizontal supercavities, therefore, 

buoyancy is assumed to act perpendicular to the free stream velocity. 

Classical Models of Supercavities 

Scaling Parameters 

Several nondimensional parameters are useful to present the behavior of ventilated supercavities. The cavitation number, ac, is 

defined as 

The gas-ventilation rate, Q, can be nondimensionalized by the cavitator diameter, DN, and the free-stream speed, Vm resulting in the 

gas entrainment coefficient, CQ, 

CQ=y-rJ (2) 

Lastly, the Froude number, FrN, is a scaling parameter given by 

JgDs 
Fr"=-nr (3) 

where g is the gravitational acceleration. These are the primary scaling parameters considered in supercavitation. However, in many 

cases these parameters are rescaled using an equivalent disk-cavitator diameter, DNDisk, defined as 

DN.Disk=DN\-^- (4) 
'D.Disk 



Note that the drag coefficient, cD, is defined as D/(p„,VjDN
2i{/4). DN,Di5k refers to the size of a flat, circular-disk cavitator that produces 

the same drag as another cavitator (of any shape). This modified scaling becomes convenient as the cavity shape and ventilation rate 

scale with cavitator drag [4]. Thus, data from canonical cavitators (such as a disk) can be used to approximate cavity behavior forming 

over different cavitators. This is accomplished by replacing DN with DN,Disk within all of the scaling parameters. 

Other scaling parameters exist, but are readily considered less significant. Viscous effects are secondary, thus, Reynolds number ( 

Re^p&VaDK/ix') scaling is rarely considered. Lack of viscous scaling is supported by experiments for the cavitator drag and the 

cavity shape over a range of Reynolds numbers [2]. However, viscous scaling importance can be inferred from other experiments. 

Experiments of Epshtein suggest that the microscale gas-entrainment processes are altered over different ReN values [6]. Similarly, 

surface tension (scaled via the Weber number, We=pa,Vja"') is rarely considered in supercavitation. It was also determined, 

experimentally, that surface tension also impacts the microscale gas-entrainment processes suggesting importance in scaling We [6]. 

Cavity Shape Approximations 

Semi-empirical approximations of the cavity shape exist by correcting the analytic, potential-flow based, solution with ac=0 [4]. 

These methods use geometric (cavitator radius, RN) and integral parameters (cD and ex) to define the cavity shape. In this work, the 

models are based on the those reviewed by Semenenko [3]. 

Consider cavity-size approximations. The maximum cavity radius, Rc may be approximated using Eq. 5. 

V    KG 

The parameter k, in Eq. 5, remains near 1.0 [3]. An approximate cavity length, Lc, can be computed as 

yßr 
Lc=2RN,DbkA±^- = 2RcAjk. (6) 

Another parameter, A, takes values near 2.0. Finally, the axial profile, R(x), can be expressed as a function of cavity length as 

Rx(l + 3x/Rxf for:x<x, 

R(x> 
'-,;'      l-Ml-2(A-*,)(I-2^)-']2"'    for:x>xl 

In this relation, the K parameter is introduced and remains near 1.0. Also, X] is the location where two profile relations are matched. A 

cavitator-dependent approximation for x <x/ is intended to capture the cavity profile from the separation point on the cavitator to Xj. 

The one-third power relation, for j;ä,, is suited to approximate cavities detaching from disk-shaped cavitators. However, for other 

cavitator shapes this relation may be replaced. For X>Xj, the relation is a semi-analytic cavity shape. The second relation is initialized 

to match the first relation at an xt of 2RN. 



Finally, the vertical displacement of a cavity, h(x), can be determined using momentum theorem. Vertical cavity deflections arise 

from forces both cavity buoyancy and downwash from lifting cavitators. These effects can be computed using relations from 

Logvinovich [4], as 

1§\ rvAs) h(xh 
-K^B(S) 

•ds 
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c,D 
A       Jo 

1 

R(sf 
■ds (8) 
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Here, R(s) is the local cavity radius and V,(s) is the integrated volume of the cavity gas occupied from x-0 to s. Note that the separate 

gravity- and lift-induced terms are indicated with subscripts. The cavitator-lift coefficient, cL, is defined as L/(pccVa, DN~ir/4). 

When properly applied, the preceding relations provide an efficient, and accurate, prediction method of cavity shapes. For isolated 

supercavities, the only unknown quantities are the cavitator forces, i.e. cL and cD. Vx pm and ac are specified, k, K, and A must be 

determined from experience. Note that we apply the values reported in the summary of Semeneko [3]. As the ventilation rate for the 

specified <je remains unknown, a closure is needed. This is achieved by relating gas-entrainment rate to a given cavity pressure, ac. 

Need for this relation motivates the present work. 

Cavity-Closure Modes 

The cavity-closure pattern significantly impacts gas entrainment rate. In this work, two closure patterns are considered: (1) twin- 

vortex and (2) toroidal-vortex closures. Diagrams of the cavity types are displayed in the right portion of Fig. 1. 

0 75 

SIDE VIEW 

TOP VIEW 

1: Twin Vortex < jFr<1.0) 

2: Toroidal Vortex ,Fr>1.0 

3: Pulsating   

005 01 015 0 2 0 25 

Captation Number, o- 

Figure 1: Sample CQ-<Jcurve with corresponding cavity types. The diagrams displaying the cavity shapes are from Semenenko [3]. 



Twin-vortex closing cavities are longer and appear more stable. With an increased length the cavities experience stronger buoyant 

effects. As depicted in the diagram in Fig. 1, these cavities are characterized by a pair of axially aligned vortices forming at the cavity- 

closure location. These twin vortices instantaneously contain all (or nearly all) the gas entrained from the cavity. The formation of 

either a twin vortex or toroidal cavity has been shown, via empirical evidence [5], to be dependent on the crFrNDisk value. When values 

are less than one, the twin-vortex closure appears. For values greater than one, toriodal closure is expected. 

A toroidal cavity forms behind the same cavitator and at the same velocity, but at lower ventilation rates. Toroidal-vortex cavities 

are relatively small, unsteady, cavities with little-to-no gravitational effects. As displayed in the diagram in Fig. 1, these cavities close 

with axisymmetric, reentrant jets that evolve into toroid-shaped vortices that shed from the cavity. These gas-filled vortices continually 

shed pockets gas from the cavity, creating an unsteady shedding process. Such a process could induce undesirable, unsteady loading 

on vehicle components. 

Gas-Entrainment Models 

Physically-based models for CQ as a function of the cavity size have been developed throughout the literature. Because of the 

cavity size dependence on ac (recall Eqs. 5 and 6.), these models are described in terms of ac (i.e. CQ(OC) models). Sample plots of 

CQ((TC) are given in Fig. 1. Several important points can be drawn from these plots. These curves are greatly spaced indicating a clear 

Froude-number dependency. Along each Froude number curve, there is a discontinuity that distinguishes the twin-vortex and toriodal 

cavities. As indicated in the figure, the left-most portion of the curves are regions where twin-vortex cavities form. The right-most 

portions are where toriodal cavities form. In general, the cavitation number is asymptotically less sensitive to the ventilation rate for 

twin-vortex than for toroidal cavities. At each Froude number, there is a region where the cavitation number, as a function of Cg, is 

non-unique, implying a region of hysteresis. Correctly capturing these features present a challenge to model development. 

Gas Entrainmentfrom Twin-Vortex Cavities 

Models for gas-entrainment from twin-vortex cavities are based on modeling the amount of air exiting through the vortex tubes. 

Campbell and Hilborne [5] presented a frequently applied model based on a correlation of the circulation to the buoyant loads acting 

on the cavity. The circulation about the cavity centerline can then be conserved about the twin-vortex tubes enabling an estimation of 

the twin-vortex-core area. Multiplying this area by an approximation of the mean axial velocity through the tube yields a gas 

entrainment rate (Eq. 9). Note that VVT is the velocity of gas exiting the vortex tubes. Using approximations of Re and LQ that are 

similar (but different) to those in Eqs. 5 and 6, and assuming that VyT is Vm Eq. 9 becomes the Campbell and Hilborne [5] gas 

entrainment model, which is provided in the right-most relation in Eq. 9. 
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Note that Campbell and Hilborne [5] speculate that differences between experiment and theory result from errors in assuming that 

Vyf^Vc For future uses, a modified Campbell and Hilborne [5] model is considered. Eq. 9 can be rewritten such that improved models 

of VVT may be considered and using modified approximations for Dc/DNMsk and Lc/DNDisti, i.e. those given in Eqs. 5 and 6, 

respectively. This modified form is presented as 

7TA2(\ + CTC) 
'Q.CHm W-OkFr^ai 
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(10) 

Note that within this expression a disk-drag behavior from May [2], cD,Diskx0.82(l+<j), is assumed. 

Gas Entrainment from Toroidal-Vortex Cavities 

The gas entrainment from cavities closing in a toroidal-vortex pattern occurs via gaseous, toroidal-shaped, shedding cavities. 

Using high-speed photography, Epshtein [6] demonstrated that the entrained gas is a result of a reentrant jet splashing on the cavity 

walls, creating microcavities that eventually exit the cavity through these toroidal-vortical structures. These microcavities, and the 

resultant gas entrainment rate, were shown to be influenced by both viscous and surface-tension effects [6]. More recent theory of 

Spurk [1] suggests that the gas existing the cavity is transported though interfacial shear layers. This shear-layer gas consists of the gas 

filling the microcavities and subsequent toroidal cavities. Spurk's concept [1] is presented in Fig. 2, the figure illustrates a developed 

cavity-gas shear layer. The concept is further verified in the experimental data of Epshtein [6] that exhibits strong Reynolds number 

effects in the toroidal-vortex regime. We note that the concept of cavity-shear layers dragging gas from the cavity was previously 

hypothesized, as mentioned in May [2]. However, it was only recently incorporated into a useful, validated, gas entrainment model 

[!]■ 

Cavity 

Figure 2: Diagram of the gas-boundary layers within a cavity, theorized as an important mechanism for gas entrainment. The diagram 

is from Spurk [1]. 



The results presented by Spurk [ 1 ] agree well with experimental measurements at high FrN conditions and for reentrant cavities 

with little buoyant effects. In a reduced form, Spurk's gas-entrainment model is given as 

C0„^=*G^^J—In—, (ID 

where kg is an empirically factor that may be calibrated using a single reentrant-cavity data point. Note that alternate forms of this 

entrainment model are based on laminar or turbulent shear layers [1]. However, this semi-empirical form can be tuned to handle both 

laminar, turbulent, or transitional shear layers. Also, scaling the effects of microcavities (We and /?e-dependent features) could also be 

captured using Eq. 11 as kg automatically accounts for the gas within these microcavities. 

DESCRIPTION OF COMPUTATIONAL METHODS 

The computations used in these studies use multiphase CFD. The CFD method is based on the finite-volume method that solves a 

form of the Navier-Stokes equations in both the gaseous and liquid regions. These simulations use higher-order numerics, 

RANS/DES/MILES turbulence modeling, and structured-overset grids. Additional details of the solver are described in Lindau et al. 

[7]. Spatial and temporal requirements have already been determined sufficient by Kinzel [8]. 

COMPUTATIONAL RESULTS 

The mechanisms of gas entrainment are examined using CFD simulations of supercavitating-fluid flows. Details of select flow 

solutions reported in Kinzel [8] are presented here. 

Description of Test Cases 

Models of isolated cavitators and cavities interacting with bodies are used to cover the expected range of cavity closure types in 

these studies. Details of the test cases are given below. 

Axisymmetric Disk Cavitator 

An isolated disk cavitator represents a basic supercavitating flow. The configuration is displayed in Fig. 3 (a). Several conditions 

are modeled for this geometry. A limiting case with no gravity (FrN=o$, ReN=90*10 , and Cg=0.5. And cases based on the 

experiments of Campbell and Hilborne [5] with FrN=15.54 over Reynolds numbers from ReN=6.2*-10 to 6.2x70*. For the buoyant 

cases, the solution is three-dimensional with assumed lateral symmetry. Otherwise, axisymmetric meshes are used. 



(a) isolated disk cavitator 

Figure 3: Diagram displaying the isolated cavitator test cases. 

(b) isolated 15 °cone cavitator 

Cone-Shaped Cavitator 

A 15°-half-angle, conical cavitator (displayed in Fig. 3 (b)) based on a summary of experiments by Kiceniuk [9] is also 

investigated. The cavitator is set to a lifting configuration that is relevant for trimming or maneuvering a vehicle. The corresponding 

conditions are: ReN=3.2xl07, FrN=72.0, and CQ=1.0. 

Supercavitating Body 

Lastly, a case with significant cavity-body interactions is investigated. The case is based on experiments conducted in the 

University of Minnesota, St. Anthony Falls Laboratory's high-speed water tunnel [10][11]. A diagram representing the test setup is 

given in Fig 4. Conditions corresponding to ReN of 56,000, Fr^=26.7, and a range of CQ values were simulated. Results compare 

favorably with the experiments. However, good results require modeling the support strut, implying a full three-dimensional model is 

needed [12]. The geometry of the body is modeled as specified by Schauer [11]. However, since it does not impact the physics under 

consideration, in work reported here the aforementioned support strut is omitted. 



V 
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Figure 4: Diagram displaying the cavity-body interaction test case. 

Gas Entrainment Behavior 

CFD solutions are interrogated to ascertain the dominate mechanisms of air entrainment. In order to highlight regions of axial 

moving gas, a local rate of gas entrainment is defined as 

C
Q.,=^g

uK- (12) 

This variable indicates the local, aftward-moving gas through a cavity. Note that its time-averaged surface integral over a given y-z 

plane aft of the cavitator is equivalent to the overall gas-entrainment rate. This parameter is used to highlight regions of gas 

entrainment. 

Cavity Gas Escaping a Twin-Vortex Cavity 

We first investigate the air-entrainment from a twin-vortex cavity. Consider the solution of a twin-vortex supercavity forming 

behind a cone-shaped cavitator presented in Fig. 5. In these plots, a grey-scale contour plot along the symmetry plane highlights the 

cavity region (indicated in black). Note that a pseudo body within in the cavity is colored white. The colored-spectrum contour-line 

plots, at select axial locations, display the CQ.I profile along the cavity axis. 

Consider the C&rcontour plots in Fig. 5 (a). The plots indicate that CQ.I is highest near the cavity interface. Such a condition 

implies that the aftward gaseous flow is dominated by physics local to the interface region. The most obvious mechanism being water 

tugging on the gas (via viscous mechanisms) driving this air entrainment. 



(a) Streamlines traced backwards from the maximum CQJ regions 

(b) Streamlines traced backwards from the minimum CQJ regions 

Figure 5: Gas flow in a twin vortex cavity formed over a cone-shaped cavitator. The cyan-colored cavitator is moving left-ward with 

the oncoming velocity indicated (black arrow). The streamlines (colored by pressure gradient and traced backwards in time) indicate 

the origin of gas entrainment. The colored contour line plots display local gas entrainment rate, CQJ. The grey-shaded contour plot 

along the centerline is colored by the gas volume fraction (black indicates gas). 

In Fig. 5, quasi-steady streamlines are used to demonstrate the/tow history of gas present in the aft end of the cavity. These 

streamlines are traced backwards in time at various CQJ magnitudes on the penultimate CQ /-contour plot (originating from the dots). 

As they originate from such an aft position, it is presumed that positive CQJ values (green to red) indicate regions where gas will 

inevitably entrain from the cavity. The negative values highlight regions where gas is recirculating back into the cavity. The history of 

gas at this position yields insight into gas entrainment. 

In Fig. 5 (a), the streamlines indicate entraining gas. There, the streamlines are seeded at the maximum CQJ levels (at Cpp-0.2), 

displaying the origin of entraining air. Interestingly, the streamlines originate directly from the injection port. Thus, the injected gas 

entrains into cavity shear layers and directly out of the cavity. 

In Fig. 5 (b), the quasi-steady streamlines highlight recirculating gas. These streamlines are traced from a point the most negative 

CQJ values (at CQJ—0.6), displaying recirculating air. The results display that the gas in the cavity core behaves like a wake. The wake 

region interacts with the interface shear layer, but the net forward flow in this wake region near zero. In regards to gas entrainment, 

some gas in the wake region entrains into the interfacial shear layer. This process is similar to that described by Spurk [1]. However, 

this gas is stripped from the shear layer near the cavity terminus. This "thinning shear layer" region corresponds to an increasing 
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pressure (indicated by the axial-pressure-gradient color on the streamlines). This adverse pressure gradient promotes shear-layer 

thinning and drives gas recirculation. 

Using the results, the picture of the cavity gas flow opposes the conventional thinking that pressure gradients promote the gas to 

exit the cavity [14]. Recall that most of the reviewed theories completely neglect shear as a mechanism relevant to gas entrainment. 

Considering these results, it is evident that shear layers play a primary role in gas entrainment. In general, it is obvious that Spurk's 

hypothesized flow structure dominates gas entrainment from this twin-vortex cavity. However, additional physical processes are 

apparent. Namely, that these shear layers thin approaching the aft portions of the cavity. 

Gas Escaping a Reentrant Cavity Formed Over a Body 

Gas entrainment from a partial cavity is now compared to that from a supercavity. In Figs. 6 (a) and (b), streamlines are used to 

visualize the predicted gaseous cavity flow with the cavity closing on the body (i.e., a partial cavity). In Figs. 6 (c) and (d), these 

results are contrasted to a modeled supercavity (fully enclosing the vehicle). In 6 (a) and (c), the red streamlines are traced from the 

cavity interface region. Similar to results shown in Fig. 5, the streamlines indicate a clear path from the ventilation ports, into the shear 

layers, and out of the cavity. In Figs. 6 (b) and (d), the purple streamlines are seeded within the core of the cavity. In both cases the 

streamlines indicate that the cavity gas within this region remains nearly isolated and recirculatory. These plots reaffirm the hypothesis 

of Spurk [1], shear layers remain important with and without cavity-body interactions. 
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(a) Entrained gas with cavity-body interactions (Cß=0.45) (b) Recirculated gas with cavity-body interactions (Ce=0.45) 

(c) Entrained gas in a supercavity (Cg=1.0) (d) Recirculated gas in a supercavity (CgF 1.0) 

Figure 6: RANS prediction of the gaseous flow in a ventilated cavity over a body at Fr/^=26.1, /?ßAp56,000. Modeled flow for (a-b) a 

partial cavity (CQ=0A5) that impacts the body and (c-d) a supercavity (CQ=0A5). Body is colored gray and inlet ports are colored 

pink. Colored contour plots indicate CQ.,I at axial location of the maximum cavity-diameter. Streamlines indicate paths of the entrained 

gas (red) and recirculated gas (purple). 

Reynolds Number Effects in a Twin-Vortex Cavity 

The reviewed models and simulations suggest that cavity shear layers dominant gas entrainment. Consequently, one would expect 

that Reynolds number scaling be evident. Results are presented at a range of Reynolds numbers. Most design-level and controller 

models are based on small-scale experiments. For example, the experiments of Epshtein [6] use a 7 mm diameter cavitator 

(/?ejv=84,000), and Campbell and Hilborne [5] use a 25.4 mm disk cavitator (Re^= 116,000). However, at sea a two to three order-of- 

magnitude greater ReN would be expected. In Fig. 7, contour plots of CQ.I are displayed as the ReN is increased by decades, from 

6.2*1 Cr to 6.2*10 . The ventilation port covers about 2/3 of the rear face of the cavitator. The gas jet exiting the port, in particular, 

appears to be sensitive to ReN. At increased ReN (6.2*104 to 6.2*l(f) the jet persists axially about two cavitator diameters downstream 

of the port. Alternatively, for low ReN values (6.2 *102 to 6.2 *103), the jet immediately dissipates and the cavity shear layers thicken 

just downstream of the separation point from the cavitator. In this vicinity, the shear layer thickening displays a strong ReN effect. In 
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Fig. 7, one can easily see the trend of increased shear-layer thickness with a decreasing ReN. Interestingly, downstream of the 

dissipated of the jet, the water-attached cavity-shear-layer thickness does not display a strong Re effect. However, the wake appears 

more chaotic. These observations indicate when investigating body-filled cavities that Reynolds-number similarity should be 

considered. 

(b) ReN -- 

.... 

--6.2x10s 

00 c, Q-i 1.0 

Figure 7: Reynolds number effect on the gas flow in supercavity (Cg=0.283 and Fr#= 15.54). Filled contour plot through the centerline 

is Cg./. Cavity interface outlined in black. 

DISSCUSSION 

The tie between gas-shear layers and the gas entrainment rate impacts numerous aspects of modeling supercavitating flows. In this 

section, we highlight modeling issues within CFD formulations and discuss needs for improving CFD modeling. Issues with lumped- 

parameter models are also discussed and improved based on physical observations from the present CFD findings. 

CFD Predictions: Sensitivities Arising from Shear-Layer Mechanisms 

The predictions of the CQ-<JC relation using viscous CFD is sensitive to the models used within these gaseous shear layers [12]. 

Specifically, predicting Cg-crc has shown to be sensitive to the turbulence modeling approach. In this section, we assess the turbulence 

model and its impact to modeling shear-layer gas entrainment. 

Examination of the Turbulence Model Effects 

Turbulence model sensitivities are evaluated for the axisymmetric, disk-cavitator case by comparing results at the extremes of the 

turbulence model. Thus, cases with and without a RANS-style turbulence model (RANS vs. no TM) are used to examine this 
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sensitivity. Both cases use an identical computational mesh that has a high-resolution mesh through the interface regions. Specifically, 

the resolution is Ar~0.01RN, which corresponds to sixty cells through the cavity-interface shear layer. 

In Fig. 8, the extracted velocity profiles at an axial location 20.8 radii downstream of the cavitator are compared for the RANS and 

no TM results. In this plot, the horizontal axis is a measure of the axial gas velocity and the vertical axis is the distance from the cavity 

interface. Note that on the horizontal axis, a velocity of one indicates that the gas travels at the same speed and direction as the water. 

Also, positive velocities indicate forward flow and negative velocities indicate reversed flow. Deviations in the predictions highlight 

the effect of turbulence in the gaseous shear layer. Examining these deviations, the No TM (or laminar) profile displays a thinner shear 

layer than the RANS profile. Thus, the RANS model increases the quantity of gas in the shear layer and increases the gas entrainment 

through shear mechanisms. The direct link between the turbulence model and the quantity of gas within this shear layer implies that 

the turbulence model has strong potential to affect the CQ-OC relation. A secondary feature, indicated by the roughly constant velocity 

region just outside of the shear layer, is apparent in the No TM profile of Fig. 8. Although not initially obvious, this feature is a result 

of mass conservation through the steady cavity flow. As identical ventilation rates are prescribed, the integrated gas-mass must be 

equal between the two cases. Because the No TM case displays thinner shear layers, a consistent CQ is achieved through the increased 

centerline velocity. 
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Figure 8: Comparisons in the cavity shear layer velocity profiles between a RANS no turbulence model (no TM) case for an 

axisymmetric disk cavitator. 

Specific Issues with the Turbulence Model Behavior 

The turbulence model study is extended to a three-dimensional, unsteady, supercavitating flow with cavity closure on a body. 

Previous work exhibited that capturing of the correct Q)-crc relation is only feasible for specific turbulence model formulations [12]. 
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Note that this turbulence model sensitivity was only apparent for hysteretic cavities. The results are summarized in Fig. 9 (a). The 

unsteady RANS (URANS) formulation could not capture the Cg-ac behavior in hysteresis regions. However, with the DES 

formulation, capturing the CQ-CTC relation with hysteresis was recovered. Based on the findings of the previous investigation 

(exhibiting that turbulence model increases the cavity shear layer, thus increases CQ value for a given <rc), the solution sensitivity to 

the turbulence model formulation can be understood [12]. 

Consider the perceived improvement using a DES formulation versus URANS. It is customary to model the effect of turbulence 

on the mean flow via an effective, or eddy, viscosity, v,. Thus, the predicted v, values are investigated in each case. In DES, a URANS 

model reverts to large-eddy-simulation-like model for v, in regions where the mesh can support eddy structures. This locally 

diminishes the magnitude of v, to values between those of a RANS and No TM case (recall, from the previous disk-cavitator case). The 

reduction in modeled turbulence with the DES model, with respect to the URANS model, is verified in Fig. 9. There, the v,, for DES 

and URANS simulations, are compared for identical conditions. Both cases exhibit a peak in v, at the interface, however, the DES 

simulation exhibits significantly lower v, values than the URANS case. As the increased eddy viscosity correlates to increased 

entrained gas within the shear-layer, the URANS formulation increases the modeled air entrainment rate. These observations imply 

that the reduced eddy viscosities in the DES model enables the accurate CQ-<JC predictions [12], and indicates that a URANS 

formulation over-estimates the eddy viscosity in these interfacial shear layers. 

0.0 v, (m2/s)        2.4x10"4 L  1 
(a)   URANS 

0.0      v,(m/s)        2.4x10^ 

(b)  DES 

Figure 9: Comparison of URANS and DES predictions. 

Consider the cause for this over production of turbulence within the interfacial shear layer. A typical turbulence model is well 

tuned for wall-bounded flows, but not formulated specifically to an interfacial-shear-layer flow. The turbulence model constants are 

generally calibrated for each type of shear layer, and further controlled using damping functions to match boundary conditions. As the 

constants are not tuned and nor is dampening function applied to satisfy a boundary condition at the interface, such an over prediction 
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may be expected. Secondly, these interfacial shear layers are not well understood. The combination of these two issues implies further 

work to understand these interfacial shears is needed. 

In regards to developing an understanding of the interfacial shear layers, we can develop an understanding based on similar 

problems. Consider that the interfacial shear layer behaves like a boundary layer on a compliant wall. Stability theory for this 

condition suggests that compliant walls stabilize turbulence, and that when transitioned to turbulence, the turbulence occurs in the 

form of Kelvin-Helmholtz waves [15]. Thus, in we may expect a significant delay of transition to a turbulent shear layer. Furthermore, 

when a turbulence model is used, it should be calibrated to a turbulent, Kelvin-Helmholtz-based instability with significant surface 

tension effects. The properly formulated turbulence model may also apply a dampening function to moderate the turbulence level at 

the interface. These turbulence model advances are left for future research. 

IMPROVED MODELS OF GAS ENTRAPMENT 

The present simulations suggest that theory of toriodal cavity-air entrainment [1] is also applicable to buoyant cavities. Using this 

behavior, we adapt previous gas-entrainment models accordingly. These additions include the observed effects of shear layer 

contributions to the gas entrainment from a twin-vortex cavity, and the shear-layer gas thinning at the rear of the cavity. Incorporating 

these observed physical mechanisms into gas entrainment models should provide a more physically accurate model. 

Concept Overview 

We combine previously developed models, i.e. those of Spurk [1] (based upon cavity-shear layers for toroidal closure cavities) and 

Campbell and Hilborne [5] (for twin-vortex cavity closure), and include models of a thinning shear-layer to formulate a more 

physically accurate gas-entrainment model. In Fig. 10, the model components are depicted within a diagram of a twin-vortex cavity. 

Estimations of an effective displacement thickness of the shear layer are colored grey. We define a representative velocity within these 

shear-layer regions, VsL, that correlates to the component of gas entrainment due to shear, i.e. CQSL- Note that, in general, the shaded- 

gray regions of the cavity are assumed to travel at the velocity of the neighboring water flow, i.e. V   =Vv_yJ]+cr , however, for 

simplicity, the velocity of these shear-layer regions, Vsu is assumed to be equal to V^ The regions interior of the shear layers, colored 

white, is the cavity-flow region. This region has a different representative velocities; here we define one at the maximum cavity 

diameter, V& and another at the twin-vortex core, VVTp. These two velocities correlate to gas entrainment due to pressure-gradient 

driven effects, CQ,P. 
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(a) Twin-Vortex Cavity 

Section  A 

(b) Sectional properties 

Figure 10: Elements of economy in a twin-vortex cavity. The gray regions of the cavity represent die gas within the interfacial shear 

layers. The white regions represent the cavity regions, not directly impacted by the water flow, (a) Near-horizontal plane through the 

cavity containing cavitator, cavity, and both vortex tubes, (b) Two selected axial planes. A-A through the maximum cavity radius 

location. B-B is through one of the vortex tubes. 

Cavity closure type will impact the behavior of the regions described within Fig. 10. In a toroidal cavity, it can be assumed based 

on agreement of Spurk's theory with experimental measurements [1], that there is a net-zero axial flow within the white cavity region, 

and that the gray regions comprise of the gas filling the shedding toroidal cavities. This is the only conceivable condition for a toriodal 

cavity. 

Alternatively, a twin-vortex-closing cavity contains two distinct regimes that are distinguished by the limiting case of when Vc = 0 

and Vjv.p ~ 0, which occurs when CQ=CQSL. In this special case, the vortex tubes have sufficient cross-sectional area to relieve the gas 
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within the shear layers. The cavity would then behave differently if ventilated higher and lower than this unique value, which are 

described below: 

(1) Thinning Shear-Layer (TSL) Cavity: This cavity occurs when CQ<CQ,SL- and implies that Vc < 0 and VTv.P = 0. In this case, the 

vortex tubes are too small to support the shear-layer entrained gas. As viscous effects cannot be eliminated, the vortex tubes must 

be completely filled with CQSL- This imposes one of two possible conditions: (1) the shear-layer gas accelerates through the vortex 

tube (i.e. VyT>V^), imparting a positive viscous forces component onto the water flow, or (2) the shear-layer gas remains of 

constant velocity (i.e. Vyf=V^ through the vortex tubes, and the air is recovered back into the cavity upstream of the tubes. The 

CFD predictions clearly display that option (2) is favored. Thus, the air in the vortex tube is considered as being CQSL minus that 

recovered via shear-layer thinning. Then, based on a mass balance of the dashed control volume in Fig. 10, this recovered gas must 

establish a recirculating cavity behavior. 

(2) Pressure-Driven (PD) Cavity: When CQ>CQSL, an net positive cavity flow forms, Vc > 0. This is established when the vortex 

tubes open to an area larger than the shear-layer gas contains, thus, pressure-gradient driven axial flow can be established through 

the tubes. This is consistent with the classical theory of Cox and Clayden [14], and would tend to occur for high ventilation rates. 

When dividing the gas-entrainment into these two regimes, complex phenomena near the hysteretic cavities can be modeled. 

It is worth side tracking for a moment to discuss these effects in regards to application, that is, when a body is present. In the 

context of the posed cavity regions, if a body is limited to the white-cavity region it will not interfere with the cavity-shear layer, thus, 

it is contended that these entrainment mechanisms remain unaffected. This is consistent with conventional thinking that solid objects 

internal to an established cavity should not affect the cavity ventilation requirements or shape. However, if the shear-layer regions are 

altered, the cavity processes can prone to be disturbed; thus, supercavitating hull-forms should consider such effects in their design. 

Returning to the air entrainment, the described processes are then used to shape a new model for gas entrainment. The model is 

composed of two components, given by 

Q =     Q.SL + ^Q.p ■ (13) 

Here, CQSL is the contribution from shear-layer effects, paralleling Spurk [1]. And CQP is driven by pressure gradients, relating to the 

model of Cox and Clayden [14], but is based on the work of Campbell and Hilborne [5]. 

Shear-Layer Gas Entrainment 

First, consider the gas entrained through shear-layer mechanisms. Although the method presented by Spurk [1] fully accounts for 

the gas entrained into the shear layers, it does not consider the quantity stripped from the shear layer by adverse pressure gradients as 

observed in the present CFD simulations. This concept is considered as an addition to the model of Spurk. 
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Recovery Factor 

The quantity stripped from the shear-layer, recovered gas, can be determined by considering the remaining mechanisms effecting 

gas entrainment. The recovered gas can be quantified for a given case by taking the difference between the actual ventilation rate and 

the volume flow rate in the modeled interfacial shear layers. The flow rate in the shear layers is obtained using Eq. 11, and calibrated 

to a toroidal cavity for a given FrN and ReN. To study this effect, consider a recovery factor defined as 

CQ=(\-kRQ)CQSpiirk -> kRQ = 1 - —-2—.       (14) 
^Q.Spurk 

Note that Eq. 14 only remains valid for TSL cavities. 

Physically, kRg is the fraction of gas entrained into the cavity-shear layer that is recovered back into the cavity. When kRQ is 

between zero and one, a portion of the cavity-shear layer gas is recovered and returned to the cavity. Without accounting for this gas 

recovery, a straightforward application of the Spurk [1] model (Eq. 11) over predicts the gas entrainment rate for much of the curve, 

e.g. Fig. 11 (a). This is used as a measure of gas recovered back into the cavity via shear-layer thinning. Negative kR0 values indicate 

that the total ventilation rate is higher than that entrained by the boundary layers, implying that an additional mechanism of 

entrainment is occurring. Presumably, in this condition, a favorable axial-pressure-gradient exists, corresponding to the PD-type 

cavity. 

Recovery Factor in Hysteretic Cavities 

The data collected in experiments conducted by Campbell and Hilborne [5] include hysteretic phenomena with twin-vortex and 

toroidal cavity closures. Their data is useful to develop models of the gas entrainment. The particular case examined uses a ventilated 

circular-disk cavitator at FrN=J6 and ReN=62,000. In Fig. 11 (a), a straightforward application of Eq. 11 (the unmodified model 

developed by Spurk [1] for non-buoyant cavities) is compared to the data of Campbell and Hilborne [5]. Eq. 11 yields an excellent 

prediction for the toroidal cavities, occurring on the right portion of the curve, through the increasing-Cp hysteresis region. Beyond the 

hysteresis region, Eq. 11 clearly over predicts the ventilation rate (CQ) required for a given cavity pressure (<JC). For the time being, 

consider that the over prediction of the gas entrainment obtained using of Eq. 11 corresponds to the recovered gas; this is assessed in 

terms of kRQ, and computed using Eq. 14. These quantities are plotted in Fig. 11 (b). 

The trends in Fig. 11 (b), in the kRg-ac plot, display expected trends with an interesting behavior in the hysteretic (gray shaded) 

region. For toroidal cavities, kRQ remains near zero, as expected. For twin-vortex cavities, kRQ is bound between zero and one, 

suggesting that cavity shear layer recovery is occurring. In this region, an interesting feature is observed. For the twin-vortex regime 

(^-decreasing curve), kRg is maximized at a near constant value of 0.64. This behavior implies that, in this region, the relative amount 
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of gas recovered from the entrained-shear-layer gas remains constant and that the separated shear layer should be a dominant 

contributing mechanism to hysteresis. For the toroidal-vortex cavity, on the ß-increasing curve, kRO takes on a small negative value 

just prior to the cavity transition to a twin vortex. Perhaps, this is due to toroidal structures entraining additional cavity gas along with 

the shear-layer-en trained gas. Regardless, the consistency of the modeling with the data supports the concept of kRQ. 
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Figure 11: In part (a), is a comparison of a hysteretic CQ-CTC curve for a disk cavitator, from Campbell and Hilborne [5], to theory of 

Spurk [1]. Part (b) displays the corresponding kRQ curves for the hysteretic cavity. 

Approximating the Recovery Factor 
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Using physical arguments and experimental data, the recovery factor can be approximated. On the Cg-ac space, there are 

essentially three regions that need to be considered, i.e. twin-vortex, hysteretic, and toroidal. Using Campbell and Hilborne's data [5], 

a path to approximate this behavior is proposed. First, we assess kRQ as a function of aFr; this incorporates, the empirically determined 

[5], twin-vortex to toroidal-vortex transition criterion. Thus, a Heaviside function can be used to enforce this criterion in the kRg 

approximation for aFr values greater than unity, i.e. H(l-aFr). For the twin-vortex range, outside of the hysteresis region, a 

polynomial function with a minimum at <jFr = \, kRg=\ fits the data. Finally, it was observed above that within the hysteretic region of 

the twin-vortex cavities, kRg is maintained at a constant value, kgQjfyp This and a minimal value of zero are used to bound the function. 

The approximation is given as 

kRQ{oFr)= max I min I A$ + A2(aFr-\)~ ,k RQ H\,0\H [\- aFr),       (15) 

where the values of A0 and A2 were determined via a least squares fit to the data. For this specific case (from the experiments of 

Campbell and Hilborne [5]), ^«=0.815, A2=-\736, kRQ,Hys=^-654, and the Heaviside function is approximated as H(l-aFr) « 

0.5[l+tanh(1000{7-crF;-})]. The approximations are plotted below in Fig. 12 and follow the data quite well. 

1.00 
Twin Vortex•«—|<- Hysteresis   >[  >Toroidal 

0.75       0.80       0.85       0.90       0.95       1.00       1.05 

aFr 

Figure 12: Recovery factor versus aFr for the experiment and approximate function. 

The model appears to conform well to this particular case. The amount of shear layer entrained gas, CQ,SL, from Eq. 14 using the 

empirical correction to the recovery factor, kRQ, is compared to experimental measurements in Fig. 13. It is apparent that the model 

predicts the experimental data well. However, it appears that, approaching the highest CQ and lowest ac values, the model remerges 

into the CQ,Spwk curve, a undesired feature based on the mechanisms previously described. 
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Figure 13: Predicted gas entrainment rates using the proposed model with shear recovery, Spurk's model (Cp.sp,,,-*), and experiments 

from Campbell and Hilborne [5]. 

Although the presented approximation is an empirical fit to the data, a model of the physics is preferred. Such a model could 

enable an analytic function that remains valid over a range of conditions. It is presumed that this approximation is valid only for this 

particular ReN and FrN. However, with additional data the parameters Ao, A2, and kRg,Hys could be empirically determined using 

extended Re^ and FrN data sets. Such an approach should enable valid approximations over various cavitator configurations and 

conditions. 

Shear-Layer Gas and Potential Relation to Hysteresis 

Consider various model behaviors with respect to experimental measurements in Fig. 14. The CQCHW (Eq. 10) prediction, with an 

assumed vortex velocity, VVf=Vm is compared to C^spm* (Eq. 11) prediction, and hysteretic experimental data [5]. The C&CWm curve 

underpredicts CQ for toroidal cavities, overpredicts CQ for twin-vortex cavities near hysteresis, and that if the experimental data were 

extrapolated to higher ventilation rates, it would merge into the CQCOH prediction. Suggesting that the Cp <-//,„ prediction is most valid 

at high ventilation rates. Whereas the C&5pu;.t-curve only matches the toroidal-vortex region. Thus, a combination of these two models 

present a path to modeling the correct behavior. 

Comparing the Cgxnm- and Cgspw-k-c curves reveals interesting behavior relating to hysteresis. These curves intersect near the 

lowest point in the twin-vortex cavity hysteresis region, implying that the physics represented by the two models can be related to the 

hysteresis phenomenon. In terms of the modeled physics, this intersection occurs when the twin vortex tubes are just sufficiently large 

enough to support the shear-layer gas. This could potentially be used as an indicator of the transition from twin-vortex back to toroidal 
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cavity closure. Another interpretation is that the cavity remains in a twin-vortex state provided that the vortex tubes can support the 

volume of entrained gas within the cavity attached shear layers. However, this area is based on a effective "displacement thickness" 

rather than a "shear-layer thickness" (similar to a boundary layer thickness), suggesting that the vortex cores not need be adequate to 

support the entire shear layer, but perhaps just the high-velocity, most tightly entrained, portions. Then, the more slowly moving, but 

still attached, portion of the shear layer would be the gas susceptible to recovery. This appealing concept and fits the present data 

nicely, but requires additional support in data and/or observations. 
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Figure 14: Predicted gas entrainment rates using Campbell and Hilborne's model (Qj.o/m). Spurk's model (C^.s,,,,,;), and experiments 

from Campbell and Hilborne [5]. 

Pressure Driven Gas Entrainment 

Referring to the form of the present model (Eq. 13), a model is still lacking the pressure-gradient driven gas entrainment processes, 

or C&p. Recall from Fig. 14, that the modified Campbell and Hilborne [5] model, CQXHW, displays the expected trend at high CQ 

values, thus, the model and assumption that VVf=V<„ will be utilized. Therefore, an initial guess of CQ,P will be given by the difference 

between Cp.o/m and Cospurh However, to obtain a smooth transition, from the model TSL cavity to the model PD cavity, this quantity 

is multiplied by {\-kRQl kRQ,Hysy. The resulting model is then 

CQ,P ~ maX ( CQ.CH,,, - ^Q,Sp„rk > 0 j 

/ N 
"RQ (16) 

,vRQ,Hvs J   ■ 

The combined results of Eqns. 14 and 16, substituted into the proposed model (Eq. 13), are plotted in Fig. 15. Note that the prediction 

conforms nicely to the data for toroidal and twin vortex cavities, and behaves as expected approaching high CQ values. 
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Figure 15: Gas entrainment rates using the proposed model, Campbell & Hilborne model (Cg^Hm), and experiments from Campbell 

and Hilborne [5]. 

Application of Model 

Finally, to verify that it continues to produce valid results beyond the initial case the model is applied over a broad range of 

Froude numbers. As shown in Fig. 16, using the 1 inch diameter cavitator data from the experiments of Campbell and Hilborne [5], the 

model produces reasonable gas-entrainment-rate predictions over a range of conditions. In these cases, the empirical parameters (A0, 

A2, and kRQMys) are established using a least-squares fit to the data. As no toroidal closure data is available, the constant kg is 

determined using the observation from Fig. 14, that Cg.cHm and Cg^purk intersect at the minimum CQ that can sustain a twin-vortex 

cavity. This method of specifying kg is only a single observation. Additional hysteretic data is needed for further assessment. In any 

case, a reasonable extrapolation from data in the twin-vortex range into the toroidal regime is presented. 
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Figure 16: Gas entrainment rates using the proposed model and experiments from Campbell and Hilborne [5]. 

Summary of the Present Model 

Here we summarize the new model formulation. From Eq. 13 we define the gas entrainment rate as the combination of shear-layer 

gas and gas exiting through pressure-gradient mechanisms as 

c =c    +c 

The shear-layer component is defined through a modified form of the model of Spurk, accounting for recovered gas from the shear 

layers, given in Eq. 14 as 

c      -tfi±£llltal 
^Q,Spurk ~KQ *|     m 

o     V er    a 

Note that recovery factor is presently an empirically determined term, estimated using Eq. 15, 

kRQ {aFr) =max(min(4, + A, (aFr-if ,kRQHy^,0}H(\-<jFr). 

Finally, the pressure-gradient entrainment processes are modeled using previous theory of the vortex-tube size as a basis; the model is 

represented in Eq. 16, or 
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CQ.p = maX(CQ.CHn, ~ CQ,SP,^°)\  l 

KRQ.Hys 

c *A2(\ + o-f 
Q.CHm 41.6kFr*.ka 

N.DisIc 

These terms form the proposed model, which relies on three additional empirical constants, A0, A2, kng.Hrs- 

CONCLUSIONS 

Using viscous-based CFD simulations of long and slender cavities generated behind an axisymmetric cavitator, the gaseous flow 

regions within the cavity has been analyzed. For such cavities, the essence of the cavity-gas entrainment processes is observed to 

relate to the cavity-interface-attached shear layer, an observation that corroborates the theory of Spurk [1]. These observations indicate 

that the shear layer mechanism also contributes to the gas entrainment from twin-vortex cavities. The importance of these shear layers 

was shown related to CFD-based numerical schemes for supercaviting flows, models of gas entrainment, and an improved 

understanding of gaseous flow regions in a supercavity. 

The behavior of the entrainment process was repeatable and present in numerous modeled cavities. The process initiates rather 

abruptly, as the ventilation gas is entrained directly to the shear layer just aft of the cavitator. Moving downstream of the cavitator, the 

shear layer thickens, until, approximately, the maximum radius of the cavity, where it was observed that a shear-layer thinning 

mechanism initiates. Adverse pressure gradients, typical at the aft end of the cavity, are a likely mechanism that drives this thinning 

shear layer. At the cavity-closure region, the amount of gas actually departing the cavity is finally determined. If the closure 

mechanism is toroidal vortex, the shear layer entrained gas at the closure will exit unabated. If the closure mechanism is twin vortex, 

portions of the shear-layer entrained gas are likely to be stripped off and recovered back into the cavity. 

These observations have been used to formulate improved models of gas entrainment, address issues with CFD turbulence 

modeling approaches, and highlight potential experimental scaling issues. When applied straightforwardly, RANS approaches tend to 

overpredict the amount of gas entrained within cavity shear layers, ultimately over predicting CQ. Approaches that reduce the modled 

eddy viscosity within these shear layers, thus, are sensible. Additionally, Reynolds number effects on the internal cavity gas flow also 

show potential importance, in particular when considering body-filled cavities. Although integral effects may be small, such as cavity 

size and/or pressure, the internal flow effect is significant, which may be an overlooked scaling issue. Lastly, an improved gas- 
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entrainment model is proposed, combining the models of Campbell and Hilborne [5] with that of Spurk [1], and includes an additional 

model of shear-layer gas recovery. The final model displays an ability to capture hysteresis over a wide range of Froude numbers. 
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NOMENCLATURE 

Symbols 

CL three-dimensional lift coefficient, L/(p^V^DN"'K/4) 

CD three-dimensional drag coefficient, D/(pxVjDN
2ir/4) 

CQ ventilation rate coefficient, QV^'D'2 

CQ,I local gas entrainment rate, cai/V^ 

CQx.Hm modified Campbell and Hilborne model of CQ 

CQ.spwk modified Spurk model of CQ 

CQ,P pressure-gradient driven CQ terms 

CQ,SL shear-layer driven CQ terms 

DN cavitator diameter 

g gravity 

H heavyside function 

RQ empirical constant for shear-layer entrainment rate 

kRQ portion of recovered shear-layer gas 

Lc cavity length 

Q ventilation rate 

Rc cavity radius 

RN cavitator radius 

Re Reynolds number, pVL//.i 
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V velocity 

V] Integrated cavity volume 

VyT axial velocity in vortex tube 

Greek Symbols 

a gas volume fraction 

// molecular viscosity 

v dynamic viscosity 

p density 

ac cavitation number based on cavity pressure, (Pas-pJ/q^ 

Subscripts 

c reference to cavity properties 

Disk reference shape to an effective disk 

/ reference to local properties 

N reference to cavitator diameter 

oo reference to free stream 
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