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Spatially modulated gain (SMG) E/O tunable laser 
Final report for research project: Award N00173-10-1-G034 

Yifei Li, ECE, UMass Dartmouth, yli2@umassd.edu 

I. Summary 
Numerous critical DoD applications call for a single wavelength, narrow line-width, rapidly 
tunable laser with a wide continues tuning range and a large output power. Such applications 
include: coherent optical receiver, CWFM lidar, RF/Optical waveform generation, etc. However, 
a laser that can simultaneously satisfy such attributes remains to be developed. 

Table 1 summarizes the existing tunable laser technologies. A tunable laser diode has an 
inherently large linewidth and large phase noise. A bulk solid state electro-optic tunable laser has 
a low frequency tuning sensitivity. An Erbium doped LiNbC>3 waveguide laser theoretically can 
provide both the narrow linewidth and the higher tuning sensitivity. However, at present its 
single mode selection mechanism is based on DFB, which is not robust and also contains large 
optical loss. This mode selection mechanism limited its power to <lmW. Their long cavity 
lengths limits the voltage tuning range (<lGHz). It also contain gain spatial hole burning that 
contributes to optical RIN/ phase noise. 

Table 1. Existing tunable laser technologies 
Technologies Advantage Disadvantage 
Tunable laser 

diode 
Large tuning range 
Fast tuning speed 

Large linewidth (~lMHz) 
Large optical phase noise 
Large RIN 

Bulk E-O laser Narrow linewidth (~10kHz) 
Low RIN 
Optical power (>100mW) 

Poor tuning sensitivity 
(<30MHz/volt) 

DFB Er:LiNb03 

Waveguide laser 
Narrow linewidth (~10kHz) 
Low RIN 
Good tuning sensitivity 
(~1 GHz/volt) 

Low output power (~lmW) 
Small continuous tuning range 
(<lGHz) 

The goal of this project is to investigate 
a novel spatially modulated gain (SMG) 
electro-optic waveguide laser concept on 
a LiNbC>3 substrate(see Fig. 1). 

The novelty of the SMG E-0 waveguide 
laser is the spatially modulated gain 
medium,  that   enforces   single   mode 
operation and eliminates gain spatial 
hole burning. As shown in Fig. 1, the 
optical gain is periodically placed along 
the   cavity   where   the   standing   wave 
pattern of the oscillating laser optical field is maximum. This is fundamentally different from 
all existing F-P cavity lasers (Fig. 2a). The spatial modulated gain medium will select a single 

Spatially modulated gain medium 
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preferred laser oscillation frequency. More importantly, the spatial-hole burning associated with 
the F-P laser cavity, which is responsible for unwanted multi-mode oscillation and noise, is 
eliminated (Fig. 2b). The laser behaves like a quiet unidirectional ring laser. The SMG 
mechanism should yield robust single mode laser oscillation. The SMG mechanism do not need 
other inhomogeneous intra-cavity frequency selection mechanism (such as a DFB section or 
DBR). Therefore, the laser cavity can be made very short, which enables very large cavity Free 
Spectra Range (FSR) and consequently large tuning range. 

F-P laser cavity 
Spatial hole burning 

Unsaturated gain gives rise to unwanted modes 

Ring laser cavity 

Standing wave pattern of lasing 
field 

Fig. 2 F-P laser cavity (a) and uni-directional ring laser cavity (b) 

The main goal of this project is to implement an active LiNbC>3 waveguide with the desired 
spatially modulated gain medium profile. We achieved this goal. In summary during this project 
we have accomplished the following : 

• Designed and analyzed spatially modulated gain electro-optical waveguide laser on 
LiNb03 substrate. In particular, we devised a novel approach of achieving spatially 
modulated gain by exploiting optical Birefringence, pump beam standing wave pattern, 
and resonance optical pumping. 

Developed the recipe for the SMG laser device 
fabrication and fabricated complete SMG laser 
devices (see Fig. 3) using Harvard University 
CNS clean room facilities 

warn   P 
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Fig. 3 Fabricated SMG laser device 

Comprehensively characterized the fabricated 
SMG laser devices: 

o   Measured over 2dB/cm (with 90mW optical pumping) small signal gain 
o   Measured small cavity loss (~2.2dB round trip) 
o    Measured strong resonance enhancement to pump coupling (~18dB) to the laser 

cavity 
o    Observed strong amplified spontaneous emission in the laser devices 

However, at present the lasing performance of the fabricated SMG laser devices are limited by 
available single frequency pump power 



II. SMG active waveguide 

Electrode 
lit^^g^^gBgUaglgalajllllajaljSaillta2MiaMMäMi^^MISai^o^M^ 

1480nm 
Pump 66ooo#O0OO I530nm lasing 

output 

Mirror 

(a) 

Erbium implantation sites 

LiNb03 substrate 

Mirror 

In the project we carefully studied four approaches for introducing spatially modulated gain as 
suggested by the original proposal. We focus on the last approach for SMG waveguide 
implementation. 

2.1 Selective Erbium implantation 
(Fig. 4a). 

In this approach erbium ions are 
implanted selectively into a LiNbC>3 
waveguide via an implementation 
mask patterned over the LiNbÜ3 
substrate. The locations for the 
implantation sites are coincident with 
the maximum of the standing wave 
pattern of the optical field. For 
example, for 1.55 pm laser 
wavelength, the distance between the 
adjacent implantation sites is 0.35 
p.m. The implanted Erbium sites are 
later activated by annealing. 

We    simulated    the    Erbium    ion 
implantation    profile    to    LiNbCb 
substrate (see Fig. 5). We found that 
in order to get over 1 micron deep 
penetration large implantation energy 
(MeV)  is  needed.  In  addition,  we 
observed -0.2 microns lateral extension, which is marginally exceeds the tolerance of the 
required gain profile (with period of 0.35 microns). 
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Fig.4 Initially considered approaches for implementing spatially 
modulated gain, (a) Selective erbium implantation; (b). Selective 
erbium indiffussion (b) Grating coupled gain/electro-optic medium 
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However, our biggest concern is whether we can make a laser device using erbium implanted 
LiNb03. Through implantation, Erbium doping levels of- 1x10 ions/cm Erbium doping level 
[1] has been demonstrated in the literature. No degradation to the upper level lifetime and the 
emission / absorption cross sections as compared with the bulk Er doped LiNbC>3 crystals were 
observed there. In theory, these are sufficient to achieve over 1 dB/cm gain. However, we cannot 
find any information on optical loss introduce by the high energy implantation. Erbium 
implantation of LiNbC>3 is a still material science problem. Further research is needed to realize 
high quality Erbium ion implanted LiNb03 waveguide that are needed for realizing laser and 
optical amplifier devices. This is a major risk factor. We concluded that even though selective 
erbium implantation is a novel technology, it is not feasible for realizing the SMG active laser 
waveguide considering the scope of this specific project. 

2.2 Selective Erbium Indiffusion (Fig. 4b): Erbium ions are first diffused selectively to a Z-cut 
LiNbC>3 substrate, and then a layer of updoped LiNbC^ is deposited to cover the Erbium 
diffusion sites by pulsed laser deposition. The diffusion sites are coincident with the maximum 
of the standing wave pattern of the optical field. However, this approach requires re-deposition 
of LiNb03 films after selective erbium indiffusion, which is not a mature technology. The re- 
deposition interface contains large optical loss, prohibiting laser operation. 

2.3 Grating coupled gain/electro-optic medium (Fig. 4c). In this approach a grating pattern (or 
an array of trenches) is dry-etched over the waveguide. The locations of the trenches are only 
coincident with the maximum of the stand wave pattern of the oscillating optical field. However, 
This approaches requires a deep etch in to LiNb03 substrate (>1 micron) in order to obtain large 
coupling between the optical field and the gain medium. Our study showed that the deep etching 
will add very large scattering loss, which is significantly higher than the optical gain (~1 dB/cm). 

2.4 Pump beam defined spatial gain modulation (Fig. 6). The spatially modulated gain is 
introduced dynamically by the standing wave pattern of a single frequency 1480nm pump 
laser beam inside an erbium diffused optical waveguide. In order to align the standing wave 
patterns of the pump beam and the 1530nm laser oscillation, the optical birefringence of 
LiNb03 crystals is exploited. As shown in Fig. 6, an x-cut LiNb03 wafer is used. The 
polarization of the 1530nm laser oscillation is in the x direction (o-ray) as determined by the 
polarization dependency of the Er:LiNb03 emission crossection. On the other hand, the 
polarization of the 1480nm pump beam is set parallel to the y-z plane (e-ray). The direction of 
the optical waveguide offsets the crystal z axis by an angle 9. By selecting a proper 9 angle, the 
two standing wave patterns (1480nm e-ray and 1530nm o-ray) can be exactly aligned (see Fig. 
6). 
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Fig.6 Dynamically generate spatially modulated gain profile using the standing wave pattern of the I480nm pump 

beam. 

For complete alignment of the two standing wave patterns (1480nm pump and 1530 laser 
oscillation), the refractive index of the pump beam should satisfy: 

* = 1480-nOI530w,/1530 (1) 

where n0j53onm is the refracitve index of the 1530nm ordinary ray, n0j53o„m=2.2\\19. This 
requires the angle 9 to satisfy: 

cot(0) 
In Ine |480„„,     1 

(2) 

where tlej480nm arid tlojmnm are the refractive indices of the extraordinary and the ordinary 
waves at 1480nm wavelength. They are 2.13962 and 2.2135, respectively. As shown in Fig. 7, 
the desired waveguide orientation is a strong function the pump wavelength. For 1480.07 nm 
pump wavelength, the desired waveguide direction is 90 degrees relative to the optical axis. For 
1482nm pump, the direction of the waveguide should be 78 degrees. It should be noted that for 
pump wavelength less than 1480.07nm, the right hand side of Eq. 2 became negative and it is not 
possible to match the standing wave pattern of the pump with that of the lasing wavelength. 
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This approach of realizing the spatially modulated gain profile by the pump beam has the 
following advantages: 

• It uses erbium in-diffusion on LiNb03 wafer, which is already a mature process. 
• There is no need to artificially pattern a fine periodic structure. 
• It is of low optical loss as it requires no physical perturbation to the waveguide. 
• The pump beam and the laser oscillation mode can achieve almost perfect longitudinal 

and transverse spatial overlap. This shall help laser efficiency. 

One drawback of this approach is that it requires a 1480nm single frequency pump laser, which 
generally have much lower power compared with a commercial multimode 1480nm pump laser 
diode. In addition, pump absorption along the optical waveguide reduces the standing wave ratio 
of the pump beam. For mitigation, the pump absorption length should be much larger than the 
length of the laser cavity. 

Without adversely affecting the pump absorption efficiency, we will use a resonance pumping 
scheme (see Fig. 8), where the 1480nm pump beam is also set to resonate with the laser cavity. 
When the pump beam is set at resonance, the large pump absorption (>90%) even with very 
small round trip loss absorption of the pump (see Fig. 9) provided the cavity round trip loss is 
small. 
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Fig.8 Resonant pump is used for retaining large pump beam standing wave ratio without hurting the laser efficiency. 
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Fig. 9.Enhanced pump absorption with resonant pumping 

III. SMG laser performance modeling 

3.1 Threshold, efficiency, and single mode output power 
We developed the following quazi two-level rate equations to model the SMG laser. 

dN2 _ _N± 

dt        r2 

N.+N.^N 

■tr.'WXNi-Nii + WW'l*! 

dl. 
dt        T 

In    ,   TIL'**' f/.(*)-(tfa-tfi)<* 
/p(z) = 4-/p -sin2 kpz 

/„(*) = 4- /.. sin2 kLx 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 



where N\ and N2 are the densities of the Erbium ions in the ground and the excited states, 
respectively; Ip (z) and /m(z) are the intensities of the pump and the lasing mode, respectively;; 
/p and Im are the intensities of the forward propagating waves of the pump and the lasing mode, 
respectivelyn,   is the overlap factor between the pump optical field and the gain medium; r|L is 

the overlap factor between the lasing mode and the gain medium; oeand aaare the emission and 
the absorption cross-sections of the Erbium ions, respectively, and N is the density of the Erbium 
ions; xr is cavity round trip time, xc is the cold cavity decay time for a laser photon, and 12 is the 
upper level life time of the Erbium ions. 

In steady state, the time derivatives in Eq. 1 should be zero. These gives: 

SN(z) = 
CTa'IÄz)-\lz2 

aa-Ip(z) + \/T2+2ac-Im(z) 

^ = 4r]l-ac-i'sm\kmz)-SN(z)-dz 
7- JO 

-N 
(4a) 

(4b) 

where 5N is the inversion density, 5N=N2-Ni. 

The laser threshold should satisfy: 

- = 4lL'°e-l    '   / 2      sin2(kmz)-SN(z)-dz 

J(T2<TJP+1/2) -T2<TJP 

+2rJ,.-&e- 
N 

^l^ah 

1 + 
IWjp 

1 + - 
2T2<TJP 

$o cos(2Akmz)-dz 

(5) 

Using Eqs. 4 and 5, we simulated the laser threshold and efficiency. The parameters used for this 
theoretical study were summarized in Tables 2 and 3. 



Table 2 Material properties of the SMG laser Ti:Er: LiNbQ3 waveguide 
Emission cross section : cre 2.8x10"2U cm2 

Absorption cross section: oa 0.2xlO"2Ucm2 

Erbium ion peak concentration: 
max(N(z)) 

0.8x102Ucm'J 

Upper level life time: x2\ 2.8ms 
Waveguide scattering loss (laser) ct| 0.2dB/cm 

Table 3 SMG laser design parameters 
Wafer orientation x-cut LiNb03 

Waveguide orientation y (90 degree to z-axis) 
Laser length: L 2 cm 

Laser waveguide width 6 microns 
Waveguide cross section: A ~70 micron2 

Input side dielectric mirror 80% R@ 1480 and 1530 
Output dielectric mirror 98% R 

We use x-cut LiNb03 wafer to realize the SMG laser. The laser waveguide in the y axis 
direction. The laser length is 2cm. The laser optical waveguide is defined through Ti diffusion 
(see Fig. 10a). The width of the Ti strip is 6 micron. This gives a mode crosssection of 
~70mciron2(see Fig. 10b). The laser input side has a dielectric mirror with 80% reflectivity and 
the output side has a dielectric mirror with 98%> reflectivity. 

Contour Map of Transverse Index Profile at Z=0 
Computed Transverse Mode Profite (m=0,neft=2 133637) 
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Fig. 10: Ti diffused optical waveguide, (a) index profile; (b) fundamental mode 

Fig. 11 shows the simulated threshold pump power (inside the laser cavity) as a function of the 
cavity round trip loss. For a cavity round trip loss of 2dB, the threshold pump power inside the 
cavity should be ~8.3mW. 

Fig. 12 shows the simulated laser output power vs. its input. The simulated laser slope efficiency 
is around 67%. Since Erbium doped LiNb03 is homogeneously broadened and the SMG laser 
contains no spatial hole burning, the single frequency operation is guaranteed. The maximum 
single mode output power is only limited by the laser waveguide damage threshold. In addition, 
from the simulation, we also find strongly frequency selection mechanism due to the designed 
spatial gain profile (see Fig 13). 
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The SMG waveguide laser use resonance pumping. The pump sees the same resonate cavity as 
the 1530nm laser signal. The Fig. 14 shows the pump to cavity coupling ratio as a function of the 
pump wavelength. The 3dB bandwidth of each resonance window is ~300MHz. At resonance, 
the pump power inside the cavity is ~1.4 larger than the input pump power. 

1480   1480.02  1480.04  1480.06  1480.08   1480.1   1480.12 

Pump wavelength: nm 
Fig. 14 pump to cavity coupling ratio as a function of pump wavelength during resonance pumping 

11 



IV. SMG laser fabrication 

We designed two mask sets for implementing the SMG laser devices. The first mask set focus on 
test structures (see Fig. 15a) and the second mask set focus on the actual laser devices (see Fig. 
15b). Each mask set contains three main mask layers: 

1. Erbium: erbium in-diffusion pattern for defining active gain region 
2. Titanium: patterning titanium diffusion pattern for defining low loss optical waveguide 
3. Gold: for patterning the electrode 
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Fig. 15 Two sets of mask layouts, (a) test structures; (b) laser devices 
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We used 2-inch X-cut LiNbOß wafer from MTI corporation for fabricating the SMG laser 
device. We performed device fabrication in Harvard University CNS cleanroom. The detailed 
fabrication process is shown in the Appendix Al. A complete fabrication run involves the 
following major steps: 

• Erbium evaporation 
• Wafer dicing 
• Erbium diffusion 
• Ti in-diffused waveguide 
• Device dicing 
• Facet polishing 
• Mirror coating 

4.1 Erbium evaporation 
Because erbium is slightly toxic, we cannot evaporate it ourselves using any e-beam evaporator 
in Harvard University CNS cleanroom. As results, we sent the LiNb03 wafer to the university of 
Delaware for Erbium evaporation. In this process step, 220 angstroms of erbium are sputtered to 
wafer surface. 

4.2 Wafer Dicing 
The wafer is then diced in order to fit into our diffusion tube furnace (with ~32 mm diameter). 
To achieve an accurate angle between waveguides and crystal Z-axial, a dicing pattern was 
firstly defined on the sample using SI805. Then wafer was diced using an automatic dicing saw 
into one 30 x35 mm sample. Afterwards the photoresist was removed. 

4.3 Erbium Diffusion 
The wafer is placed inside a tube furnace. The diffusion takes temperature is 1100 degrees and 
125 hours with Argon gas flow environment. The thermal diffusion is proceeded and followed 
by two hours of temperature ramp up and ramp down, respectively. Both are in dry Oxygen gas 
environment. 

After diffusion, the erbium diffused sample was cleaned by piranha etch (H2SO4 and H2O2). The 
surface of the sample was checked using atomic force microscopy (AFM) (see Fig. 16). 
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Fig. 16 AFM surface check of Er-diffused sample 

4.4 Titanium diffused waveguide 
A lift-off process is employed to define Titanium strips on the Erbium diffused sample. The lift- 
off process is depicted in Fig. 17. The sampled is first spin-coated a LOR 3A layer, and then a 
SI805 layer. After contact mask alignment and UV exposure, the sample was developed in CD- 
26. The sample was then checked under an optical microscope (see Fig. 18) for defects. Next, the 
sample was deposited with 95-nm Ti layer by an e-beam evaporator followed by lift-off inside 
Remover-PG. 
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Fig. 17 LOR-3A/SI 805 lift-off process 
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Fig 18 Waveguide pattern after CD-26 development 

Next the sample is placed inside a tube furnace for thermal diffusion. The diffusion takes 10 
hours inside a Oxygen gas environment. Fig. 19 shows a smooth surface profile and an 
microscope image of the Ti diffused waveguides. 

Fig 19 Ti diffused Erbium doped optical waveguide: (a) AFM surface profile; (b) optical microscope image 
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4.5 Device dicing 
The sample was first evaporated with 1 micron thick SiC>2 film and then bonded to a 1 mm thick 
Si02 substrate by crystal bond. The 1 micron Si02 film protects the waveguide during polishing. 
The 1mm thick Si02 substrate help maintain current N-face direction during the next polishing 
step. 

4.6 Polishing 
The front end and the back end of the sample are polished to obtain optical grade surfaces for 
laser mirror coating. Four polishing steps were used. The lapping films for each step are 30 urn, 9 
urn, 1 urn, and 0.1 urn, respectively. To protect the edges of the both ends, the sample was coated 
by a layer of SI 813 before polish. During the polishing, it is extremely important to maintain the 
correct n-face direction for minimizing the cavity loss. 

4.7 Mirror coating 
We outsource the mirror coating step to K-lab. Two dielectric mirrors were evaporated by an e- 
beam evaporator to the input and output facets of the laser samples, respectively. The input 
mirror (see Fig. 20a) is our customer designed mirror coating contains five layers of alternating 
quarterwave (reference to 1490nm center wavelength) SiCh and Ti02 films. The output mirror 
(see Fig. 20b) is K-lab's standard 1550HR coating. The input mirror has -80% R for both the 
laser and pump wavelength. The output mirror has -98% R for both. 
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Fig. 20 Dielectric mirrors for SMG laser cavities, (a) input mirror; (b) output mirror 
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V. Measurements 

The fabricated SMG waveguide laser samples were comprehensively characterized on the test 
bench shown in Fig. 21. Three sets of measurements have been performed: 

• SMG laser active gain waveguide characterization 
• Laser cavity quality factor measurement 
• Resonance optical pumping performance 

The first two measurements yields the targeted results. In the third measurement we were able to 
observe strong resonance pumping effects. However, due to lacking of optical pump power we 
are not able to achieve lasing. This is the biggest disappointment of this project. 

Fig. 21 SMG E/O waveguide laser test bench 
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5.1 Active waveguide performance 
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Fig. 22 SMG laser active optical waveguide measurement setup. Here, the laser waveguide is 
illuminated by a 980nm optical pump beam 

Prior to mirror coating, the active waveguide of the SMG laser device is examined by the 
measurement setup shown in Fig. 22. A tunable laser (HP8168F) is used for the signal source. It 
combined with an 1480nm pump laser diode through a 1530/1480nmWDM coupler. The 
combined signal is launched to the Ti:Er diffused optical waveguide by a single mode fiber 
(SM28). The output signal from the waveguide is coupled back to another optical fiber and 
analyzed by an optical spectrum analyzer (Ando AQ6317B). The coupling loss from the optical 
fiber to the laser waveguide is estimated to be around 2dB. Figure 23 shows measured the small 
signal gain as the function of pump optical power. With 90mW optical input, a small signal gain 
of 2dB/cm is achieved. 
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Fig. 23 Measured small signal gain of Ti:Erbium diffused optical waveguide 

5.2 Laser cavity quality factor measurement 
Next, we measured the laser resonant cavity quality factor for the pump wavelength. The cavity 
quality factor is determine through using a novel experimental setup (see Fig. 24) employing an 
optical phase modulator. The single frequency 1480nm optical output from a tunable laser 
(HP6168F) is first set off - resonance with the laser cavity. Then, it is amplified by an 
polarization maintaining semiconductor optical amplifier to 16mW. The amplified signal is 
phase modulated and launched to the laser sample through a polarization maintaining optical 
circulator. The polarization of the signal is set parallel to the z axis of the LiNb03 wafer. The 
reflected signal from the laser sample is first detected by a high speed photodetector, followed by 
an wideband RF amplifier. A vector network analyzer is used to measure the link transfer 
function (S21) from the phase modulator input to the RF amplifier output. From the 3dB 
bandwidth of the measured S21 peak, we determine the quality factor or the round trip loss the of 
the cavity. 
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Fig. 24 Laser cavity quality factor measurement. 

The measured transfer function (see Fig. 20) shows well-structured resonance peaks. It has a 
period around 3.8GHz, which corresponds to the free spectra range (FSR) of the 2cm long laser 
cavity. Within each period, there are two peaks that are caused by the two phase modulation 
sidebands scanning through the laser cavity resonance. The 3dB bandwidth of the spur is found 
to be ~250MHz, which corresponds to a cavity round trip loss of 2.2dB. The measured 2.2dB 
round trip loss includes waveguide absorption, cavity mirror misalignment, and finite mirror 
reflectivity. It is within the design target (~3dB round trip loss). 
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Fig. 20 Transfer function (S21) from phase modulator input to the RF amplifier output 

5.3 Resonance pumping 
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Fig. 22 Resonance pumping setup 

We use the same single frequency tunable laser (HP 8168F) for 1480nm optical pumping. The 
same 1480nm semiconductor optical amplifier is used to boost the pump power to 16mW (see 
Fig. 22). An spectrum analyzer is used to monitor the transmitted pump power as well as the 
laser signal. 

We observed strong resonance pumping effect. By fine tuning the pump wavelength, we were 
able to increase the transmitted pump power from -28dBm to -10.3dBm (see. Fig 23). Since the 
output side of the mirror reflectivity of the laser sample is 98% @ 1480nm, we determine the 
that pump power inside the laser cavity is ~7dBm (5mW) when the resonate condition is 
achieved. 
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Fig. 23 Resonance enhancement to optical pump, (a) input pump power; (b) output pump power when resonance; (c) 

output pump power when off resonance 

When the pump beam is at the cavity resonance, we observed strong amplified spontaneous 
emission from the laser sample output (see Fig. 24). However, lasing operation were ultimately 
limited by maximum power output from the optical amplifier. 
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Fig. 24 Amplified spontaneous emission near lasing wavelength 

VI. Conclusions and current efforts 

In this project we have achieved the following: 
• Designed and analyzed spatially modulated gain electro-optical waveguide laser on 

LiNb03 substrate. In particular, we devised a novel approach of achieving spatially 
modulated gain by exploiting optical Birefringence, pump beam standing wave pattern, 
and resonance pumping. 

• Developed the recipe for the SMG laser device fabrication and fabricated complete SMG 
laser devices using Harvard University CNS clean room facilities 

• Comprehensively characterized the fabricated SMG laser devices: 
o   Measured over 2dB/cm (with 90mW optical pumping) small signal gain 
o   Measured small cavity loss (~2.2dB round trip) 
o   Measured strong resonance enhancement to pump coupling (~18dB) to the laser 

cavity 
o    Observed strong amplified spontaneous emission in the laser devices 
o    Lasing performance is limited by available pump power 
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Currently, we are fine tuning laser mirror coating design and improving sample n-face polishing 
to further reduce the laser cavity loss. In addition, we are trying to get access to a higher pump 
1480nm optical amplifier to overcome the pump power limitation. 
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Appendix Al. 

SMG laser fabrication process flow 

Sample Dicing 

Acetone/IPA/DI water rinse for five minutes 
Dry sample with nitrogen gun 

S1805 coating spin speed: 5000 rpm/second 
Time: 40 seconds 

Hard bake 115 degree for 5 mins in oven 

Suss MJB4 Mask Aligner Dose 50 mJ/CM2@ 405nm 
Soft contact 

H^B3W?f?PWy!IF^^Mf!WTf3TiIl 

CD-26 
20 seconds statically, shake the sample gently for 10 
seconds 
Soak sample in DI water for one minute 
Dry sample with nitrogen gun 
Check waveguides under microscope 

SI813 Coating spin speed: 5000 rpm/second 
Time: 40 seconds 

Hard Bake 115 degree for 5 mins in oven 
Cool down in room temperature 

Automatic Dicing Saw Blade type: 0.2 mm or 0.3 mm 
Dicing speed: 0.25 mm/s 
Blade height: 0.25 mm 
Tape thickness: 0.5 mm 

Erbium Diffusion 

p§ft|          HUF'IJDJSIäE 
Acetone/IPA/DI water rinse for five minutes 
Dry sample with nitrogen gun 

Furnace 1100 degree for 125 hours in Argon 
Warm up and cool down for two hours respectively in 
Oxygen 
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Pirana etch H2S04:H202 (3.5:1) 
Rinse for 10 mins at 80 degree 
Rinse into DI water for 5 mins 
Dry by Nitrogen gun 

Photolithography 

Acetone/IPA/DI water rinse for five minutes 
Dry sample with nitrogen gun 

^^^^^^^^^nH^WHHHpDI^^RSnH^^^VBViVVIJI^^V^P^^^^^^^I 

LOR 3A Coating spin speed: 4500 rpm/second 
Time: 40 seconds 

Hard Bake 180 degree for 120 seconds in oven 
SI805 Coating spin speed: 5000 rpm/second 

Time: 40 seconds 
Hard bake 115 degree for 5 mins in oven 

Suss MJB4 Mask Aligner Dose 80 mJ/CM2@ 405nm 
Soft contact 

CD-26 
30 seconds statically, shake the sample gently 
seconds 

for 15 

Soak sample in DI water for one minute 
Dry sample with nitrogen gun 
Check waveguides under microscope 

Titan ium Deposition and Lift-off 
/','■:■'■                             ,■   "  : ' 

Anatech Barrel Plasma 
System 02: 40 seem 

RF power: 75 w for 20 seconds 

EE-3 Sharon Evaporator Voltage: 10.5 V; current: 0.05 A 
Rate: 0.8 A/s~ lA/s 

Remover-PG Rinse for 15 mins at 80 degree 
Ultrasonic for 3 mins 
Rinse for 10 mins at 80 degree 

IPA Rinse in IPA for 5 mins 
DI Rinse in DI for 5 mins 
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Titanium Diffusion 

Acetone/IPA/DI water rinse for five minutes 
Dry sample with nitrogen gun 

Furnace 1050 degree for 10 hours in Oxygen 
Before diffusion, dry the tube using Nitrogen for one 
hour, and the relative humidity is around 20% 
Warm up and cool down for one hour and hours 
respectively in Oxygen 

Pirana etch H2S04:H202 (3.5:1) 
Rinse for 10 mins at 80 degree 
Rinse into DI water for 5 mins 
Dry by Nitrogen gun 

Polish 

NEXX PECVD Recipe name: "Si02HR" 
Thickness: 1 urn 
Temperature: 20 degree; deposit rate: 20 nm/min 

Cover the surface of the sample with a 1 mm thick glass 
wafer using crystal bonder at 110 degree. 

Automatic dicing saw Dice the sample together with the bonded glass sample 
Apply a little epoxy on the interface of LiNb03 and 
glass 
Now the sample is ready to be polished. Both the Si02 
and glass will protect the edge of the sample. 

_ 

Polisher 
Fix sample on the holder using wax (heating at 120 
degree). Due to the employment of epoxy, there will be 
no movement between LiNb03 wafer and glass. 

Lapping film 30 urn, 9 urn, 1 urn, and 0.1 urn 

Remove the LiNb03 sample from glass by dipping the it 
into Acetone for 30 mins 
IPA/DI water rinse for five minutes 
Dry sample with nitrogen gun 
Check the polish quality under microscope 
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