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ABSTRACT 
 

The inverse problem of real-time reconstruction of full-field structural  
displacements, strains, and stresses is addressed using an inverse finite element  
method based on shear deformable shell finite element technology. Utilizing surface  
strain measurements from strain sensors mounted on load-carrying structural  
components, the methodology enables accurate computations of the three-dimensional  
displacement field for a general built-up shell structure undergoing multi-axial  
deformations. The strain and stress computations are then carried out at the element  
level using strain-displacement and constitutive relations. This high fidelity  
computational technology is essential for providing feedback to the actuation and  
control systems of the next generation of aerospace vehicles, and for assessing real- 
time internal loads and structural integrity.  
 
INTRODUCTION  

 
Structural health management systems, which by way of real-time monitoring help 

mitigate accidents due to structural failures, will become integral technologies of the 
next-generation aerospace vehicles. Advanced sensor arrays and signal processing 
technologies are utilized to provide optimally distributed in-situ sensor information 
related to the states of strain, temperature, and aerodynamic pressure. To process the 
massive quantities of measured data and to infer physically admissible structural 
behavior requires robust and computationally efficient physics-based algorithms.  

The inverse Finite Element Method (iFEM) introduced by Tessler and co-workers 
[1-7] is a computational methodology that integrates sensor strain data across the 
entire structural domain and produces a continuous displacement field of the 
discretized structure, i.e., the algorithm solves an inverse problem. The method’s 
mathematical foundation is a weighted least-squares variational principle which relies 
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on the discretization of structural geometry by any type of structural element including 

beam, frame, plate, shell, and solid. Displacement boundary conditions and in situ 

strain measurements are used as prescribed input quantities imposed on a model. The 

discretized model results in a system of linear algebraic equations that has a 

nonsingular square matrix dependent on the strain-sensor positions. For a given model 

and fixed strain-sensor locations, the matrix is decomposed (inverted) only once. The 

right-hand-side vector is a function of the strain values that change as the structure 

deforms under loading. Thus, the computational algorithm involves multiplication of a 

matrix, that stays unchanged, and a right-hand-side vector that is recomputed in real 

time, reflecting changes in strain-sensor readings during deformation. The algorithm is 

capable of producing reliable and accurate displacement predictions of structural 

deformations in real time. The reconstructed displacements are then used to compute 

strains, stresses, and failure criteria, thus providing the requisite information for an 

onboard structural-integrity analysis tool. 

This paper discusses the latest advances in the iFEM formulation for built-up plate 

and shell structures aimed at constructing the full-field displacements, strains, and 

stresses from strain data provided by in-situ strain sensors. The application focus is on 

the stain data obtained from FBG (Fiber Bragg Grating) sensor arrays that provide 

either single-core (axial) or rosette (tri-axial) strain measurements. The new 

formulation is based upon the minimization of a weighted-least-squares functional that 

uses the complete set of strain measures corresponding to the first-order shear 

deformation theory. The error functional uses the least-squares-difference terms 

comprised of the strain measures which are expressed in terms of the assumed element 

displacements and the corresponding strains that are measured experimentally. All 

strain-displacement relations are enforced explicitly whereas the analytical and 

measured strains are matched in the least-squares sense. By virtue of these 

assumptions, all strain compatibility relations are explicitly satisfied. The 

methodology does not require elastic or inertial material properties. The inverse shell 

element used is a three-node triangle which has six conventional degrees-of-freedom 

at each node, i.e., three displacements and three rotations. The kinematic variables are 

interpolated using the lowest-order anisoparametric 0C -continuous functions, i.e., 

linear in-plane displacements and bending rotations, and a constrained-type quadratic 

deflection. These functions were adopted from an earlier plate-element formulation 

[8].  The formulation is implemented as a user-element routine in the ABAQUS code 

[9]; the latter is used as an engine for solving the algebraic equations resulting from 

iFEM models, as well as a pre- and post-processing tool.  

A computational example is presented for a statically loaded cantilevered plate for 

which experimentally measured strains are represented (or simulated) by strain results 

obtained by a high-fidelity solution using the ABAQUS finite element code. The input 

surface strains are only provided along sparsely distributed lines to simulate strain data 

from FBG (Fiber Bragg Grating) arrays that provide either single-core (axial) or 

rosette (tri-axial) strain measurements. Several types of discretization strategies are 

examined and comparisons of the reconstructed iFEM and direct FEM displacement 

solutions are provided. It is demonstrated that in the absence of available sensor-strain 

data and under conditions of relatively sparse sensor-strain data, it is possible to 

reconstruct a relatively accurate deformed structural shape even on high-fidelity 

meshes by exploiting judiciously the weighting function capability of the 

methodology. 



FORMULATION OF INVERSE SHELL ELEMENT 

 

Using Mindlin-theory kinematic assumptions, the three components of the 

displacement vector ( , , )x y zu u uu  in the local Cartesian reference frame of a three-

node inverse shell element, iMIN3, are defined as (refer to Figure 1): 

 

 
( , , ) , ( , , ) , ( , , )x y y x zu x y z u z u x y z v z u x y z w              (1) 

 

where ( , )u u x y  and ( , )v v x y  are the mid-plane displacements in the x  and y  

directions, respectively; ( , )x x x y   and ( , )y y x y   are the rotations of the normal 

about the negative 



x  and positive 



y  axes, respectively; and ( , )w w x y  is the 

deflection variable which is constant across the thickness coordinate 



z [t,t], with 

2t denoting the total shell thickness.  
 

 
Figure 1. iMIN3: a three-node inverse shell element. 

 

The strain-displacement relations, taking into account Eqs. (1), have the form 
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where the membrane strain measures associated with the stretching of the middle 

surface are given as 
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and the bending curvatures are 
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The transverse shear strains can also be expressed in terms of the same five kinematic 

variables as 
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Assuming the structure is instrumented with strain sensors (e.g., conventional strain 

rosettes or fiber-optic Bragg-grating sensors), strains are measured at the locations 

( , , )i i ix y t x  representing the top and bottom shell surfaces. Evaluating Eqs. (2) at 

these discrete locations, the relationships between the measured surface strains and the 

reference plane strains and curvatures can be readily established as  
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where 



 signifies the existence of experimental error in the strain measurements and, 

hence, in 



e i

 and 



ki

. 

 

VARIATIONAL FRAMEWORK AND THREE-NODE INVERSE SHELL 

ELEMENT 

 

Using the aforementioned kinematic assumptions, a simple and versatile inverse 

shell element is developed consisting of three nodes and six engineering degrees-of-

freedom (dof’s) at each node, as illustrated in Figure 1. To avoid singular solutions in 

the modeling of built-up shell structures, a drilling rotation,



z , degree-of-freedom can 

be readily added. 

The element matrices are derived using a weighted-least-squares smoothing 

functional, for which a stationary value is sought by minimization with respect to the 

unknown displacement degrees-of-freedom. For an inverse shell finite element of area 

Ae, this functional can be expressed as 
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where the squared norms are given as 
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in which 



n 1 is the number of strain sensor locations that fall within the element 

domain, and  , ,e k gw w w are the weighting coefficients. The procedure, leading up to 

Eqs. (6) and (7), gives rise to 



e i

 and 



ki

 that are computed from the in-situ strains that 

are measured by strain sensors; however, the experimental transverse shear measures, 

i


g , cannot be directly obtained from the surface strains. To determine i


g , the analytic 

plate equilibrium equations that relate the transverse-shear forces to the bending 

moments can be used [4]. 

The key advantage of this revised variational formulation rests on the introduction 

of the weighting coefficients  , ,e k gw w w  in Eq. (8). This seemingly small change in 

the element functional ( )e u , compared to the original form, permits the use of high-

fidelity discretizations even when the measured strain data are sparse, as it is often the 

case when FBG sensors are used. For an inverse element without strain-sensor data, 

the squared norms are given as 
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For such elements, the weighting coefficients are required to be small; for example, 

they can be set in the range of (10
-3

 – 10
-6

) ( , , )e k gw w w , compared to the values used 

in the elements that possess strain data. These ‘strainless’ elements, with very small 

weighting coefficients, provide the requisite interpolation connectivity to the elements 

that have strain-sensor data. Importantly, they ensure the sufficient regularization of 

the iFEM models that have very sparse measured strain data. In a more general case, 

the weighting coefficients are defined per strain measure, i.e., each of the eight 

squared differences, between interpolated and measured strains, has its own weighting 

coefficient. This allows for a robust, regularized solution even when a particular 

measured strain component is not available or has a sufficiently unreliable value. 



The remainder of the formulation follows standard finite element procedures; for 

brevity, this discussion is herein omitted. 

 

NUMERICAL EXAMPLE 

 

In this example, an aluminum rectangular plate (2 in  10 in, 2t =0.1 in) is 

clamped along the left edge and is subjected to a uniform transverse shear traction 

4.5 /zF lbf in  applied in the positive z direction along the right edge; the material 

elastic constants are 7( , ) (10 , 0.3).E psi 
 

Initially, a linear static analysis is performed using a high-fidelity mesh consisting 

of 1,280 S3R (three-node) shear-deformable shell elements in ABAQUS [9]. Figure 2 

depicts the resulting deflection solution and the underlying FEM mesh. This reference 

analysis is used as a source for the simulated sensor-strain data ( i


e , 



ki

 and i


g ), with 

their values mapped onto discrete ‘strain-rosette’ locations within the iFEM meshes. 

The FEM displacements are used to assess the predictive capability of the iFEM 

analyses.  

 

 
Figure 2.  Deflection of a cantilevered aluminum plate subjected to a uniform transverse shear traction at 

the free edge 
max( 0.1766 ).FEMw in

 
 

It is noted that when the iFEM discretization is the same as that of the reference FEM, 

and if there is a one-to-one mapping of the sensor strain data from FEM onto iFEM, 

the iFEM-reconstructed displacement field matches the reference displacements either 

identically or almost identically. The practical challenge, however, is when the strain 

sensor data are sparse and are not available everywhere in the iFEM discretization 

domain; the models in Figures 3-5 explore such possibilities. 

In Figure 3, a moderately fine mesh of iMIN3 elements is shown where the red 

dots denote positions of 26 strain rosettes distributed on the top surface of the plate. 

Thus, only 26 elements in the discretization have sensor strains; for these elements, 

( , , ) 1e k gw w w  . For an element that does not have any sensor strains, its weighting 

coefficients are set to 10
-5

. Figures 4 and 5 depict similar models and their predictions. 

In these examples, keeping the same iMIN3 mesh, there are fewer strain rosettes used, 

namely 22 and 18. 

 

 

 

 

 

 

 
 



(a) Strain rosettes at center of 3elementsiMIN
 

                            
(b) 

3deflectioniMINw  

 
Figure 3. (a) iMIN3 discretization using strain data from 26 strain rosettes (three strain components 

measured on the top surface) distributed close to plate edges; (b) iMIN3-reconstructed plate deflection 

distribution
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(a) Strain rosettes at center of 3elementsiMIN  

                         
(b) 

3deflectioniMINw  

 
Figure 4.  (a) iMIN3 discretization using strain data from 22 strain rosettes (three strain components 

measured on the top surface) distributed close to plate edges; (b) iMIN3-reconstructed plate deflection 

distribution
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(a) Strain rosettes at center of 3elementsiMIN
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Figure 5.  (a) iMIN3 discretization using strain data from 18 strain rosettes (three strain components 

measured on the top surface) distributed close to plate edges; (b) iMIN3-reconstructed plate deflection 

distribution 3

max max( / 0.948).iMIN FEMw w 
 

 



CONCLUSIONS 

 

A revised formulation of the inverse Finite Element Method (iFEM) has been 

presented and formulated as a user routine in the ABAQUS commercial code. The 

method uses arbitrarily distributed strain measurements to perform shape-sensing 

analyses (reconstruction of a deformed structural shape) of plate and built-up shell 

structures. The numerical studies included densely and sparsely distributed FBG 

(Fiber Bragg Grating) arrays that provide either single-core (axial) or rosette (tri-axial) 

strain measurements (only the rosette results have been highlighted in the paper). 

Various types of low- and high-fidelity discretization strategies have been explored. 

The numerical results have confirmed that in the absence of available strain-sensor 

data and under conditions of relatively sparse strain data, it is still possible to use high-

fidelity discretizations to reconstruct sufficiently accurate deformed structural shapes. 
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