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PROPERTIES OF A CLASS OF RELIABILITY GROWTH PLANNING MODELS 

 

1. EXECUTIVE SUMMARY 

 

 DoD Directive-Type Memorandum (DTM) 11-003- Reliability Analysis, Planning, 

Tracking, and Reporting, March 21, 2011 [1], applies to all major DoD developmental 

acquisition programs.  This DTM requires that reliability growth curves (RGC) for such 

programs be included in the Systems Engineering Plan (SEP) at Milestone A, and be updated in 

the Test and Evaluation Master Plan (TEMP) beginning at Milestone B.  The RGC is to “reflect 

the reliability growth strategy and be employed to plan, illustrate, and report reliability growth.”  

Additionally, the Office of the Assistant Secretary of the Army for Acquisition, Logistics , and 

Technology (ASA(ALT)) issued a Memorandum dated June 26, 2011 [2], addressing the subject 

”Improving the Reliability of U.S. Army Materiel Systems.”  This document states that 

“Program Managers (PMs) of all Acquisition Category I (ACAT I) systems and for ACAT II 

systems where the sponsor has determined reliability to be an attribute of operational importance 

shall place reliability growth planning curves in the SEP, TEMP, and Engineering and 

Manufacturing (EMD) contracts and ensure that U.S. Army systems are resourced to accomplish 

this requirement.”  The ASA(ALT) document stipulates that “Reliability growth planning is 

quantified and reflected through a reliability growth planning curve using the Planning Model 

based on Projection Methodology (PM2).”  The document also states “Where warranted by 

unique system characteristics, the Army Test and Evaluation Command (ATEC), in consultation 

with the Project Manager, may specify an alternative reliability growth planning method.” 

 

 Due to the focus on the PM2 reliability growth planning model [3,4] in the ASA(ALT) 

document, it has become widely used.  Recently, an Army organization that wished to utilize an 

alternate method had a consultant conduct a review of this planning model.  A number of 

properties of PM2 were identified by the organization and their consultant that were deemed to 

be in conflict with their engineering experience.  These model properties were examined by the 

consultant for the continuous version and discrete version of PM2.  The continuous version 

addresses the case where growth test duration is measured on a continuous scale such as 

simulated mission hours or miles.  The discrete version applies to the case where test duration is 

measured in a discrete scale such as trials or rounds.  The consultant concluded that four of the 

five properties examined for the continuous version “are counterintuitive and are not properties 

typically desired to be in a reliability growth planning model.”  For the discrete version, four 

properties were examined that closely align with four corresponding continuous model properties 

examined.  The consultant again concluded that three of these discrete properties “are 

counterintuitive and are not properties typically desired to be in a reliability growth planning 

model.”  Since the PM2 discrete version properties examined mimic the corresponding 

continuous version properties, only the continuous version of PM2 is addressed in this paper. 

 

 These properties for the PM2-Continuous Model will be examined in this report for a 

large class of problem failure mode expected rate of occurrence functions, which includes the 

PM2 function.  As noted in Section 3, this large class of functions includes the problem mode 

expected rate of occurrence functions for a family of growth models advocated by the late 

Professor Miller [5] for use in modeling the occurrence of new software bugs in reliability 

growth testing. It will be demonstrated that the “counterintuitive” properties noted in the review 
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of PM2 are shared by reliability growth planning models that are based on this large class of 

problem failure mode rate of occurrence functions. Furthermore, it will be shown that the 

review’s label of “counterintuitive” for the first three examined properties is based on sensitivity 

analyses that induce tradeoffs between growth parameters.  It will be demonstrated that the 

induced tradeoffs do not conform to the conditions under which a reliability growth test is 

conducted.   The last “counterintuitive” property examined is shown to follow from general 

guidance given in a PM2 software program regarding a planning risk.  Adhering to the guidance 

yields a constraint associated with the initial failure rate.  However, following the guidance 

would lead to exactly the same constraint for a large class of growth models that includes PM2. 

This class of planning models is even broader than the class mentioned above and further 

considered in Sections 3 through 6 with regard to discussing the first three “counterintuitive” 

properties. In fact, as shown in Section 7, the resulting associated “counterintuitive” property of 

PM2 that occurs if one decides to adhere to this risk criterion is shared by every reliability 

growth planning model that utilizes a function that is a suitable candidate for portraying the rate 

of occurrence of problem failure modes. 

  



    3 

2. INTRODUCTION 

 

 Reliability Growth (RG) planning is an area of reliability growth that addresses program 

schedules, amount of testing, resources available, and the realism of the test program in 

achieving its goals. Reliability growth planning is quantified and reflected through a reliability 

growth program planning curve. Planning curves typically express a measure of reliability such 

as Mean Time Between Failure (MTBF) as a function of cumulative test duration and other 

programmatic resources. The measure of test duration for MTBF is test simulated mission hours. 

A RG planning curve serves as a baseline against which reliability assessments may be compared 

throughout the test program. The key features of a planning curve include the following: (1) The 

initial MTBF, MI, and the goal MTBF, MG; (2) Test phases with MTBF steps over each test 

phase, where the step represents the benchmark MTBF for the test phase; (3) Corrective Action 

Periods (CAPs) which are scheduled calendar periods between test phases for implementing 

corrective actions (termed fixes). Most growth often occurs due to corrective actions in the 

CAPs, although some fixes may occur in the test phases; (4) An idealized MTBF curve from 

which the benchmark MTBF steps over the test phases are obtained.  A sample reliability growth 

curve and its features are illustrated in Figure 1. 

 

 
Figure 1.  Reliability Growth Planning Curve 

 

 The idealized MTBF curve at cumulative test time t represents the MTBF that can be 

obtained if all the problem failure modes discovered in test by time t have corrective actions 

implemented by t. The steps are drawn underneath the idealized curve to reflect an average lag 

time from when a problem failure mode is first observed to when a corrective action can be 

physically implemented. More details can be found in [3,4]. To obtain achievable MTBF steps, 

the idealized MTBF curve should be expressed in terms of achievable input planning parameters 

that are under the control of the Program Office.  PM2 utilizes such planning parameters. 

IOT 

IOT MTBF Goal (MG,IOT) 

MTBF Requirement (MR) 
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 The key planning parameters in the PM2 model are:  (1) The initial MTBF goal to be 

obtained by scheduled and funded design for reliability activities prior to the growth test 

developmental period;  (2) The goal developmental test (DT) MTBF that supports achieving a 

successful demonstration of the MTBF requirement with a measure of assurance (e.g. statistical 

confidence); (3) The developmental test time, T, over which problem failure modes are 

discovered that are expected to be addressed and implemented prior to or during the last DT 

CAP; (4) The planned management strategy, MS, defined to be the expected fraction of the 

initial failure intensity due to failure modes that will be addressed by corrective actions if seen 

during the DT. Such modes are termed B-modes [3] and are the modes that were previously 

referred to as problem modes. The remaining failure modes are termed A-modes [3]; and (5) The 

average fix effectiveness factor expected to be achieved during the DT program. For an 

individual B-mode, the fraction reduction in the initial rate of occurrence of failures due to the 

mode as a result of a fix is called the mode’s fix effectiveness factor (FEF). The expected 

average of these mode FEFs is the planning parameter referred to in (5) above.  

 

 Section 3 provides several key reliability growth planning concepts associated with the 

idealized MTBF growth curve.  Also the assumed properties of the B-mode rate of occurrence 

function, denoted by h(t), are stated and motivated.  In Sections 4 - 7 it is shown how replacing 

the h(t) utilized in PM2 by any h(t) in the class of rate of occurrence functions that satisfy the 

assumed properties, which includes the PM2 h(t), gives rise to a reliability growth model that has 

the same four properties deemed counterintuitive in the review and gives rise to the three areas of 

concern noted by the Army organization.  Section 8 contains remarks about the addressed 

properties based on the facts demonstrated in the report. 
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3. BACKGROUND 

 

 The MTBF idealized curve mentioned above is generated by considering the two types of 

failure modes defined in Section 2, i.e., the A-modes and B-modes.  The MTBF idealized curve 

is generated through the following equation for its reciprocal, the rate of occurrence of all 

failures (termed the failure intensity) 

 

             
 
                (1) 

 

 In the above equation, h(t) is the rate of occurrence of B-modes at time t.  It is also equal 

to the expected failure intensity due to the B-modes not surfaced by time t.  Using this 

interpretation of h(t), the last term is the contribution to the failure intensity due to these 

unobserved B-modes. In this equation  B equals h(0), the expected failure intensity due to all the 

B-modes at the start of the first test phase. Thus  B  – h(t) represents the expected failure 

intensity due to the B-modes that were surfaced by time t.  In the second term,  d denotes the 

average planned fix effectiveness factor.  Thus, the second term represents the failure intensity 

contribution due to the B-modes surfaced by time t after they have been corrected with the 

planned fix effectiveness factor.  Finally, the first term represents the failure intensity 

contribution due to the A-modes. 

 

 An important concept associated with reliability growth planning is the MTBF growth 

potential and its reciprocal, the failure intensity growth potential. These are denoted by MGP and 

 GP, respectively. The value  GP is approached in the limit as h(t) goes to zero.  Thus, MGP can be 

viewed as a ceiling on the MTBF that can be achieved for a given design. By Equation (1),  GP 

and its reciprocal MGP are given as follows: 

 

 
 
  
        

 
              

  
       

 

 (2) 

 

 These equations and concepts not only apply to the PM2 planning model, but are equally 

valid for any reliability growth planning model that utilizes an appropriate form for h(t).  For 

PM2, h(t) is given by 

 

 
     

  

  β 
 (3) 

 

where β is a positive scale parameter for h(t). 

 

 In Sections 4 - 7, the properties of PM2 that were deemed counterintuitive will be 

discussed for a class of growth planning models that are generated via Equation (1) by a large set 

of h(t) functions.  It will be assumed that the h(t) in this class of functions satisfies a set of 

assumptions that include the fundamental properties advocated by Miller [5].  Miller deemed 

these properties appropriate for modeling the pattern of the rate of occurrence of new software 

bugs for reliability growth models. These fundamental properties can be motivated by first 

considering the exact expression for the expected failure intensity due to the B-modes not 

surfaced by t, denoted hex(t).  To do so, let k be the number of B-modes residing in the system at 
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the start of the test period, and let  i be the rate of occurrence of failures due to B-mode i at the 

start of the test period prior to corrective actions.  It can be shown [6] 

 

 

           
    

 

   

 (4) 

 

It is assumed that at least one of the  i is positive. 

 

 Note the following fundamental properties of hex(t):  (i) hex(0) is a finite positive number; 

(ii) hex(t) approaches 0 as t increases; and (iii) (-1)
n
hex

(n)
(t) > 0 for all nonnegative integers n, 

where hex
(n)

(t) denotes hex(t) for  n = 0 and the n’th derivative with respect to t of hex(t) for 

positive n.  A function that has property (iii) is called completely monotone [5].  Observe hex(t) 

has too many parameters for use in a reliability growth planning model. Thus, for complex 

systems, a parsimonious approximation to hex(t) is typically utilized. In the remainder of the 

paper h(t) will denote a parsimonious approximation for hex(t). It will be assumed that h(t) 

satisfies the fundamental properties (i) through (iii) above. It will also be assumed that (iv) the 

parameters for h(t) include a scale parameter, β > 0, and expected initial B-mode rate of 

occurrence,  B = h(0). Note, by definition, β is a scale parameter of h(t) if and only if there exists 

a function g for which g(βt) = h(t) for all positive β and nonnegative t for each minimal fixed set 

of parameters that, in addition to scale parameter β, define h.  As implied above, the minimal 

parameter set need not be limited to just h(0) and the scale parameter. However, it is assumed the 

minimal set of parameters that define h includes β and  B, and can be specified independently 

within their defined parameter domains, in the absence of any imposed conditions other than 

satisfying (i) through (iii).  It is interesting to observe that the power law function, which has 

been used for reliability projection [3], h(t) =  ω t
ω-1 

 , where   > 0 and   0 < ω < 1, can be 

reparameterized in terms of a scale parameter, s > 0 , and ω. In this parameterization, h(t) = 

ω(st)
ω-1

 where s =  
-{1/(1-ω)}

 . Observe there is a one-to-one correspondence between (s,ω) ϵ ϴ and 

( ,ω) ϵ ϴ where ϴ = {(x,y)|0 < x and 0 < y < 1}.  Note however, the power law h(t) does not 

satisfy Property (i).  Also note the PM2 h(t) function given in Equation (3) is parameterized in 

terms of the scale parameter β  > 0 and  B = h(0).  To specify the next assumption for h(t), let µ(t) 

denote the expected number of B-modes surfaced by test time t. Thus µ(t) =         
 

 
  Observe   

h(t)÷{ µ(t)/t} < 1 for all t > 0.  The assumption is that (v)                        < 1, where 

the parameters that define h are held constant as t→∞.  By Proposition A.1 in Appendix A it 

follows that this limit equals 0 when            < ∞. Also, when              = ∞ and t{h(t)} 
is bounded above by a finite value one has                         = 0. For the h(t) utilized by 

PM2 the latter situation occurs and hence the limit of the ratio h(t)÷{  (t)/t} goes to 0 as t→∞.  

For the power law h(t) =  ω t
ω-1 

, one has                        = ω. Note to have the rate of 

occurrence of B-modes approach zero as t → ∞ requires 0 < ω < 1. This choice of h(t) with ω < 1 

satisfies the above  limit assumption, even though h(0) is not finite.  The final assumption is that 

(vi) h(t) can be expressed as the product  B{h0(t)}, where h0(t) does not depend on  B. The PM2 

h(t) satisfies this as well. More generally, the h(t) function for each member of the family of 

Gamma Exponential Order Statistic (EOS) Models considered by Miller [5,Section 5] satisfy 

Assumption (vi) as well as Assumptions (i) through (v) above. The h(t) function for this family 

can be expressed as follows: 
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 (5) 

 

where α > -2.  Note β in Equation (5) equals the reciprocal of the β parameter in [5] and the α in  

(5) is one less than the α parameter in [5].   

 

 For α > -1, the limit of the expected number of B-modes as t→∞  is finite. In this case the 

model is referred to as a Pareto Nonhomogeneous Poisson Process (NHPP) [5, Section 5]. When 

α > -1,  if              is a positive integer, then h(t) can also represent the expected rate 

of occurrence function for B-modes associated with an Independent and Identically Distributed 

Order Statistic (IIDOS) process [5] .For this IIDOS process the B-mode initial failure rates are 

viewed as the realization of a random sample of size k drawn from a gamma distribution with 

mean equal to          and variance          The h(t) function for this case corresponds to 

the h(t) of the finite-k AMSAA Maturity Projection Model (AMPM) in [6]. If one re-

parameterizes h(t) in (5) in terms of  B      and k and utilizes the domains  B  > 0, β > 0 and k a 

positive integer  then, with respect to these parameters and associated domains, h(t) satisfies 

assumptions (i) through (vi). The PM2 h(t) function  corresponds to the case where   α = -1. For 

this case, the limit of the expected number of B-modes as t→∞ is infinite. This form for h(t) was 

utilized by Musa and Okumoto [7] as the rate of occurrence of software failures in a NHPP 

model.  For -2 < α < -1 the expected number of B-modes is also infinite. The resulting model is 

termed a Generalized Power Law NHPP Model [5].  In [5, Section 5], the power law µ(t) 

function is shown to be a limit of µ(t) functions that belong to Generalized Power Law NHPP 

Models. From (5), one can show µ(t) for a Generalized Power Law NHPP Model is as follows: 

 

 
      

  
       

                  (6) 

 

 To obtain the power law expected B-mode function, the limit of  (t) in (6) is taken as β 

approaches ∞. To avoid degenerate limits that correspond to either    (t) = ∞  or  (t) = 0 for all t 

≥ 0, the limit  is taken subject to   (t0) = m0 where t0  > 0   and m0  is a positive integer. These 

parameters are held fixed, along with α ϵ (-2,-1), as β → ∞. From the condition that           
and (6) one obtains 

 

 
   

         
         

         
 (7) 

 

Substituting the expression for    in (7) into (6) yields 

 

 
        

              

        
       

  (8) 

 

 To emphasize that t0, m0 and α in (8) are held fixed as β → ∞, the  (t) in (8) will be 

denoted by µ(t; t0, m0, α, β). Note 



    8 

 

                    
    

     
 
      

 

   
 

            

   
 

        
     

   (9) 

 

Also observe 

 

 -2 < α < -1 ↔ -1 < α + 1 < 0 ↔ 0 < -(α  + 1) < 1 (10) 

 

It follows from (9) and (10) that 

 
                  

   
                   

 

  
 
      

      (11) 

where 

 

   
  

  
        

                       (12) 

 

Setting      , from (12) one obtains 

 

                     (13) 

 

 Equations (11), (12) and (13) show that each power law mean value function           
where      and            can   be obtained as the limit of Generalized Power Law NHPP 

Models that satisfy Assumptions (i) through (vi) above.  Note the associated power law expected 

B-mode rate of occurrence function is  h(t) =  ω t
ω-1  

= m0{
 
-(α + 1)}t

-(α+1)-1
 for t > 0 . Observe the 

power law itself does not correspond to a member of the Generalized Power Law NHPP family 

since h(t) is not finite at the origin. It is interesting to note that the Generalized Power Law 

Models provide examples of h(t) functions that, unlike the power law h(t), satisfy all the 

assumptions (i) through (vi) above and, for Assumption (v) ,                        = -(α + 1)  

where 0 < -(α + 1 ) < 1. Miller conjectures [5, pg.59] that the family of Gamma Exponential 

Order Statistic Models “may be rich enough to represent adequately the entire family of EOS 

Models (defined in [5]).” With respect to the family of EOS Models, Miller [5, pg.59] states 

“The possible patterns of underlying failure rates are unlimited.”   

 

 To obtain the associated reliability growth model, the parsimonious approximation, h(t), 

for the expected B-mode rate of occurrence function is utilized in Equation (1). The resulting 

idealized failure intensity would be used with test phases, specified lag times, and the program 

test schedule to obtain the test phase MTBF benchmarks and associated metrics as described in 

MIL-HDBK 189-C [3] for the PM2 h(t) function. As indicated above, the PM2 h(t) is one 

member of the large class of h(t) functions that satisfy Assumptions (i) through (vi) above. 
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4. PROPERTY 1 – EFFECT OF VARYING TEST TIME FOR FIXED GOAL MTBF 

 

 The first property, corresponding to the first topic of concern of the Army organization 

sponsor of the PM2 review, can be paraphrased as follows: Every growth curve will achieve the 

DT goal MTBF at time T, for any T. This statement is correct from the point of view that as long 

as the DT goal MTBF is less than the growth potential MTBF, expressed in Equation (2) in terms 

of input parameters, then one can construct a growth curve that goes from the user input initial 

MTBF to the goal MTBF in the specified time T with user prescribed values for the management 

strategy and average FEF. This was one of the model properties deemed counterintuitive by the 

consultant and will be referred to as Property 1 in the paper.  This scenario in which T varied and 

the other planning parameters were held fixed, forces a tradeoff between T and the model scale 

parameter β, as illustrated in Figure 2.  Here, β denotes the scale parameter for h(t), where h(t) is 

assumed to meet the assumptions of the class of B-mode rate of occurrence functions described 

in Section 3. 

 

 
Figure 2.  Property 1 Tradeoff between T and β 

 

 To address Property 1, let θ(t) be defined as follows: 

 

 
θ    

       

  
=1 
    

    
 (14) 

 

 Observe θ(t) is the expected fraction of  B  contributed by the B-modes discovered in test 

by time t. Since β is a scale parameter for h(t), it is also a scale parameter for θ(t). Thus there 

exists a function φ(x) such that φ(βt) = θ(t) for all β > 0 and t nonnegative. Note from (14), 

 

           θ       {1 φ(βt)} (15) 

 

From the definition of management strategy for  I = (MI)
-1

, 
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         =

  

  
           = (1 MS)   = 

    

  
 (16) 

 

 From Equations (1), (15) and (16), one can express the idealized MTBF at time T, M(T), 

as follows: 

 
        

  
       

 
φ β  

 (17) 

 

 For the scenario for Property 1, the initial and DT goal MTBF are fixed, as is the 

management strategy and the average FEF.  Thus as T is varied, β must vary such that 

 

 β    (18) 

 

where C is a positive constant for which (17) is satisfied. A unique such constant exists since 

 

           (19) 

 

 The existence and uniqueness of such a constant follows from the facts that (i) φ(x) is an 

increasing continuous function over [0,1); (ii) φ(0)=0; and (iii) the limit of φ(x) equals 1 as 

x→∞. Thus each idealized growth curve, corresponding to an h(t) from the considered class of 

B-mode rate of occurrence functions, can be made to yield a specified MG for every T > 0, 

provided Equation (19) holds. Of course reducing T too far will yield an unrealistically large 

value of β > 0 as measured by risk metrics analogous to those considered in MIL-HDBK-189C 

[3] for PM2. One risk metric is based on the following fact: Under this scenario, one can show as 

β increases, the jump from the first MTBF benchmark step to the second MTBF step will be an 

increasing percentage of the total growth from MI to MG.  Furthermore, one can show the 

expected number of B-modes that contribute to this jump will be decreasing as β increases. 

 

 It is interesting to consider the original MIL-HDBK-189 planning model [3] whose 

model equation is shown below. 

 

 
      

  
  α

  
 

  
 
α

 (20) 

 

 In this equation, M(T) denotes the DT goal MTBF to be obtained by T. Also t1 denotes 

the test time in the first test phase and M1 denotes the average MTBF over the first test phase. 

Just as for the h(t) scale parameter β, for a specified M(T), the smaller T is the larger the MIL-

HDBK-189 growth rate α will be in Equation (20) (which does not represent the parameter α 

used in Section 3 for the Gamma EOS Model), indicating a larger average rate of increase in the 

MTBF over the test period of length T. For PM2, the relevant concern should be whether the 

inputted values of the five planning parameters result in a value of the scale parameter β that is 

realistic. Does this resulting value of β conform to one’s engineering experience and 

understanding of the current system under development? This is comparable to asking the 

following with respect to the MIL-HDBK-189 Planning Model: Given current planning 

parameters M1, t1, T, and M(T) in Equation (20), is the associated value of the growth rate α 
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realistic? In the case of the MIL-HDBK-189 growth rate, one could compare the resulting 

growth rate to historically achieved growth rates to attempt to assess the risk associated with the 

planning parameters. For the PM2 Model, one can utilize the risk metrics in [3], as well as any 

available experience, to judge the plausibility of the β value implied by the input planning 

parameters. 
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5. PROPERTY 2 – TEST TIME EFFECT ON EXPECTED NUMBER OF B-MODES 

 

 The second property, corresponding to an area of concern, can be expressed as follows: 

As the test time T utilized to surface problem modes that contribute to growing to the DT goal 

MTBF increases, the PM2 model yields the same DT MTBF goal.  Engineering experience 

indicates that as the number of corrective actions increase due to increasing T, the resultant 

reliability level should increase. The sensitivity analsyis conducted in the review for this property 

utilized the scenario in which the initial MTBF, DT goal MTBF, management strategy, and 

average FEF were held fixed, while T was varied. This scenario is the same as for the sponsor’s 

first topic of concern addressed above for Property 1.  Such a scenario does not pertain to the 

kind of engineering experience referenced by the Army organization sponsor, since it leads to a 

tradeoff between T and model parameter β. Changing β alters the assumed distribution of the B-

mode expected initial rates of occurrence (termed the B-mode profile) arrived at by design for 

reliability (DFR) activities conducted prior to the growth test. This is reflected in the change of 

the average expected B-mode failure intensity for the B-modes surfaced over any time period 

[0,t0]. To see this, observe by Equation (15), the average expected B-mode failure intensity for 

the B-modes surfaced over any time period [0,t0]  is given by 

 

 
          β  

        

     
 

βφ β   

    φ      
β  

 

 (21) 

 

where µ(t) is the expected number of B-modes surfaced by t. 

 

 However, as for Property 1, it is still of interest to see whether the class of h(t) functions 

with a scale parameter considered in Property 1 give rise to Property 2 which was deemed 

counterintuitive in the review of PM2. To do so, let h(t;β) and  (t;β) denote h(t) and  (t), 

respectively, with scale parameter β.  

 

 Also let T2 > T1 > 0. Note Ti under the postulated scenario forces βi to satisfy Equation 

(18) for i = 1,2.  Thus 0 < β2  < β1 . Recall g(x) is decreasing for x ≥ 0 and g(βt) = h(t) for all       

β > 0 and t ≥ 0. Thus, as illustrated in Figure 3, 

 

 
     β        β    

  

 

      β
 
   

  

 

      β
 
   

  

 

      β   (22) 
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Figure 3.  Expected Number of B-modes Relationship 

  

 This shows that Property 2 holds for any planning growth model for the associated 

scenario whose h(t) is a member of the class described in Section 3. 

 

 Note the tradeoff and resulting model behavior is not reflective of the engineering 

experience referenced by the Army organization since the average of the expected surfaced B-

mode failure intensities is just a function of the design for reliability activities accomplished 

prior to the growth test and thus should remain constant across the test period.  Holding β fixed 

along with the planning parameters except for test time T and MG , one can inquire whether h(t) 

gives rise to a planning model that conforms to the referenced engineering experience. Note that 

for this modified scenario, the corrective actions are increasing.  To see this, using Equation (15), 

one has: 

 
           φ β     

 

 

 
  

β
    φ      

β 

 

 (23) 

 

 Observe  (T) is increasing via Equation (23) since  B and β are fixed and T is increasing.  

Thus the number of corrective actions increases as T increases.  This, in turn, based on the 

referenced engineering experience, should lead to a higher achieved value of MG. This occurs by 

Equation (17) since φ(x) is an increasing function. 
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6. PROPERTY 3 – EFFECT OF VARYING MI FOR A SPECIFIED GOAL MTBF 

 

 The third property addressed in the review that was an area of concern can be expressed 

as follows: For any time T, increasing MI increases the expected number of corrective actions to 

achieve the DT goal MTBF MG. The engineering expectation of the Army organization was that 

for a fixed management strategy, average FEF, and DT goal MTBF, the expected number of 

corrective actions to achieve MG should decrease as the initial MTBF is raised towards MG. This 

is a reasonable expectation as long as the average failure intensity associated with the B-modes 

surfaced over the test period T remains constant, as would be the case during the conduction of a 

system reliability growth test. However in the sensitivity analysis conducted in the review, MI is 

varied and all the other PM2 planning inputs (including T) remain constant. Thus, by Equation 

(17), this scenario forces β to decrease towards zero as MI increases towards MG. This postulated 

scenario is not reflective of engineering experience associated with executing a system reliability 

growth test. As shown by Equation (21), the average B-mode failure intensity for B-modes 

surfaced during the test period from 0 to T is just a function of β and does not change over the 

test period. However, the postulated test scenario forces β to change, which in turn, by Equation 

(21), would lead to a changing average B-mode failure intensity for the test period. This 

postulated scenario in which a forced tradeoff between MI and β occurs will be explored in 

Section 6.2 for the class of h(t) functions discussed in Section 3 that are used in Equation (1) to 

generate the idealized failure intensity and associated MTBF step reliability growth planning 

curve. 

 

6.1 Scenario Pertinent to a Reliability Growth Test as MI Varies.  First, consider an 

altered scenario that corresponds to engineering experience associated with conducting a 

reliability growth test over a test period T. In this scenario the management strategy, average 

FEF, and DT goal MTBF MG shall be held constant as the initial MTBF is raised towards MG. 

To have the scenario be pertinent to engineering experience associated with conducting a 

reliability growth test, the average expected failure intensity of B-modes surfaced over any test 

interval is fixed and determined by the design for reliability activities prior to the start of the test. 

Thus β is fixed. However, by Equation (17), the product βT must be decreasing as MI 
is 

increased towards MG. Thus the amount of test time T required to obtain the DT goal MTBF is 

decreasing, in accordance with engineering experience. Also, since T and  B = (MS)( I)  are  

decreasing and β is fixed , the expected number of B-modes surfaced by T is decreasing by 

Equation (23). This in turn implies that the expected number of corrective actions required to 

obtain the DT goal MTBF should be decreasing as the initial MTBF is raised, which conforms to 

engineering experience. 

 

6.2 Effect on Expected Number of B-modes as MI/MG Varies.  Now consider the scenario 

associated with Property 3, i.e., all planning parameters are assumed fixed except for MI.  This 

section assumes that 0 < (MS) d < 1.  Contrary to what Property 3 states in the review, for this 

scenario one can show that there exists η1 and η2 with 1-(MS)µd < η1 ≤ η2 < 1 that satisfy the 

following: As MI is increased towards MG, the expected number of B-modes by T is an 

increasing function of η= 
  

  
 for 1-(MS)µd < η ≤ η1 and, when  (MS) d > 0.5, a decreasing 

function of η for η2 ≤ η < 1. 
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 In the following, let η = f(y) denote the function that relates η to y = βT, where β > 0 is 

the scale parameter for h(t) and T is fixed. By Equation (17) in Section 4 one has 

 

   
  
 η              

 
φ    (24) 

     

 Since φ(y) is an increasing function of y > 0, η is a decreasing function of y > 0. By 

Equation (24), 

                 
  ∞
            

 
 (25) 

    

where 0 < 1-(MS)µd < 1. 

 

 Also note from Equation (17) and the definition of y, one has for y > 0, 

 

 
               

 
 

       
 
φ   
          β       (26) 

 

 For this section, let  (T;y) denote the expected number of B-modes surfaced by T where 

 B and β are given by the equations in (26). Next, it will be shown that there exists y1  and y2 such 

that 0 < y2 ≤ y1 < ∞  for which  (T; y) is an increasing function of y for 0 < y ≤ y2 , provided 

(MS) d > 0.5,  and a decreasing function of y for y1  ≤  y. Since η = f(y) and f(y) is a decreasing 

function for y > 0, it will follow that  (T)  is an increasing function of η for 1-(MS)µd < η ≤ η1 

and a decreasing function of η for η2 ≤ η < 1. These values of η are given by ηi = f(yi) for i =1,2 

(see Figure 4). 

 

 
Figure 4.  Relationship Between η = MI/MG and y = βT 
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6.2.1 Effect on Expected Number of B-modes as MI/MG Approaches One.  It will 

now be shown that when (MS) d > 0.5 there exists a y2 > 0 such that  (T;y) is an increasing 

function of y for 0 < y ≤ y2.  By Equations (23) and (26) one has 

 

 
        

     
 
 

       
 
φ   
    

 

 
 φ     
 

 

   (27) 

        

 Using Equation (27), one can obtain the derivative of µ(T;y) with respect to y. It can be 

shown that  

        

  
            

 

 
 φ     
 

 

  
 

 
 φ    

 

 
 φ     
 

 

  (28) 

         

where 

 

 

     
     

 

 φ   
  

       
 
φ   

 
(29) 

                              

 Note the limit of Q(y) as y goes to zero equals (MS)µdL where 

 

 
     
   

 φ   

  
 (30) 

      

 The limit in Equation (30) exists and is a finite positive number since h(t) satisfies the 

fundamental properties (i) through (iii). 

 

 Next consider the limit as y →0 of the second factor on the left-hand side of the second 

inequality in (28). This can be shown to equal to 1 by applying l’Hôpital’s Rule. Applying 

l’Hôpital’s Rule as y→0 to the right-hand side of the second inequality in (28) yields (0.5)L.  

Thus as y goes to zero, the limit of the left-hand side of the second inequality in (28) is greater 

than the corresponding limit of the right-hand side of the second inequality in (28), provided 

(MS)µd > 0.5.  

 

 Therefore, for (MS)µd > 0.5,  there exists y2 such that 

 

        

  
   (31)                               

       

for 0 < y <  y2  .  This implies, as discussed above,  (T) is a decreasing function of 
  

  
 η       

for η2 ≤ η < 1, where η2 = f(y2). This is in contradiction to the corresponding statement of  

Property 3 in the review of PM2. 

 

6.2.2 Effect on Expected Number of B-modes as MI/MG Increases Near 1-(MS)μd.  

Next, it will be shown there exists y1 ≥ y2 such that  (T; y) is decreasing for y ≥ y1. In the 

following let y > 0.  By (28) one has 
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 φ     
 

 

  
 

 
 φ    

 

 
 φ     
 

 

  (32) 

              

Note, 

 
  
 

 
 φ     
 

 

 
 

 
    φ     

 

 

    (33) 

                                   

Thus by Equations (32) and (33) one has 

 
       

  
           

φ    
 
  φ     
 

 

   φ     
 

 

     (34) 

                                       

The second inequality in (34) can be written as follows: 

 

 
       

 φ     φ     
 

 

   φ     
 

 

 (35) 

                                                      

Inequality (35) is equivalent to the inequality below: 

 

 
    
 φ     φ     

 

 
 

   φ     
 

 

           (36) 

                                                   

Note 

 

 
    
 φ     φ     

 

 
 

   φ     
 

 

 
   φ     

 

 
  φ     φ     

 

 

   φ     
 

 

 
    φ    

    φ      
 

 

 (37) 

 

 

 From (37) and the equivalence of the inequalities in (34), (35) and (36) one obtains the 

following for y > 0: 

        

  
   

    φ    

    φ      
 

 

         (38) 

 

By (29), 

 

      
     

 
 
 φ   
  

       
 
φ   

 
(39) 

                                                                   

Note φ(y) is a nonnegative, increasing, bounded, and twice differentiable concave function.  

Thus by Proposition A.1 in Appendix A one has 
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 φ   

  
   (40) 

                                                                    

Also,              .  Thus the right hand side in the second inequality in (38), by (39) and 

(40), satisfies 

 

    
  ∞
             (41) 

 

To consider the limit of   
    φ    

    φ      
 
 

  as y→∞ in the second inequality in (38), some notation 

will first be established.  

 

 Let z ≥ 0. It will be convenient to express h(z) by h(z; p1, p2) where p1 and p2 are positive 

parameters that are held fixed as z → ∞ .  Also, it is assumed that any additional minimal set of 

parameters that are required to define h are kept fix.   With regard to p1 and p2, this notation will 

imply that p1 is a scale parameter for h(z; p1, p2) and p2 = h(0; p1, p2) . Also define                    

θ(z; p1 ,  p2) = {h(0; p1, p2) – h(z; p1, p2)} ÷ h(0; p1,  p2). Note θ(0; p1, p2) = 0. Also, by the 

assumptions imposed on h and the definition of θ, it follows that the values of θ do not depend 

on the value of p2. Thus, the value θ(z; p1, p2) will simply be expressed as θ(z; p1). One can show 

that p1 is a scale parameter for θ(z; p1) since p1 is a scale parameter for h(z; p1, p2). More 

precisely, it can shown there exists a function φ(x) such that φ(p1z)  = θ(z; p1)  for all z ≥ 0 and   

p1 > 0 , for each fixed minimal set of parameters that include p1, p2 and define h.  

 

Recall by the definition of y in Section (6.2), one has y = βT. Thus 

 

     φ    

    φ      
 

 

  
β    φ β   

    φ      
β 

 

  
β   φ  β  

 
 
      φ      

 β

 

 (42) 

 

Observe, by (15), 

 

   φ  β    θ β      β        (43) 

 

Let z = x ÷ T. Then 

 

 
    φ      
 β

 

        φ       
β

 

        θ        
β

 

 (44) 

                   

Thus 

 

 
 
 

 
     φ       
 β

 

 
 

 
        θ        

β

 

  (45) 

                       

Equations (15), (42), (43), and (45) yield 
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    φ      
 

 

  
β  β     

     θ        
β

 

 
β  β     

           
β

 

 
  β     

  β     
β

 
(46) 

 

Equation (46), the second equation in (26) and the previously stated assumption that 

                       < 1 

when the parameters defining h are fixed as t→∞ imply the following: 

 

 
   
   
 
         

    φ      
 

 

    
   

  β     

  β     
β

      
(47) 

                                   

 Thus Equations (38), (41), and (47) demonstrate there exists y1 ≥ y2 such that  (T; y) is 

decreasing for y ≥ y1. As discussed earlier, this implies that  (T) is an increasing function of  
  

  
 η              

 
φ    for 1-(MS)µd < η ≤ η1, where η1 = f(y1). 
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7. PROPERTY 4 – EFFECT OF LIMITING THE RATIO OF MG TO MGP 

 

 The last of the four “counterintuitive” properties in the review can be stated as follows: 

Using the criterion that an acceptable growth plan should have the DT goal MTBF no higher 

than 80% of the growth potential MTBF, the PM2 Model limits the use of commercial-off-the-

shelf items (COTS) from a low of 0% to a maximum of 70% of the initial system failure rate. In 

the review the low was actually mistakenly stated to be 38% which is the percent of the initial 

MTBF to the goal MTBF that limits the use of COTS to approximately zero percent of the initial 

system failure rate. Also, the DT goal MTBF was taken to be the Initial Operational Test (IOT) 

MTBF goal. The IOT is a demonstration test conducted by service personnel in simulated 

mission scenarios after the conclusion of the DT test program (see Figure 1). This IOT goal 

needs to be set sufficiently above the requirement MTBF to be demonstrated during the IOT, 

MR, to have a reasonable chance of being able to successfully demonstrate the requirement with 

statistical confidence during the IOT. Additionally, the DT MTBF goal is set higher than the IOT 

MTBF goal, MG,IOT, if a drop γ in reliability from the DT to the IOT environment is expected due 

to more realistic testing, i.e., MG,IOT = (1-γ)MG. Property 4 in the review was stated for γ = 0. The 

PM2 software characterizes as high risk a ratio of the DT goal to the growth potential greater 

than 0.80. However this is general guidance, independent of the particular growth model. The 

fact that the COTS percent contribution to the initial system failure rate must be less than 71% 

(not 70% as stated in the review) under the 0.80 guidance is independent of the PM2 model.  It is 

shown below this guidance results in the same 71% COTS restriction for a wide class of growth 

planning models. 

 

 The allowable COTS contribution also depends on the assumed drop γ and value of  d. 

Although not stated, it appears that the review set  d = 0.70, and γ = 0.0, and assumed the failure 

modes associated with COTS items were all A-modes and that these modes were the only A-

modes. In general, neither of these assumptions need be true. Under these assumptions, the 

review results were closely reproduced by use of Equation (49) below. For this case, the portion 

of the initial system failure rate due to COTS is 
  

  
 = (1-MS). This ratio can be calculated as a 

function of 
  

      
, by solving Equation (48) for MS: 

 

   
   
 

  

 
  

       
 

 
 
       

 

  
   

(48) 

      

Utilizing the expression for MS, one obtains 

 

   

  
    

 

 
 

        γ  
  
   
   

  
      

   (49) 

     

 The only assumptions about the reliability growth model used to obtain Equation (49) are 

the following: (a) The idealized failure intensity associated with the reliability growth model is 

given by Equation (1); and (b) the B-mode rate of occurrence function in Equation (1) is a 

positive decreasing function of t ≥ 0 with a finite initial value  B = h(0). Also h(t)→0 as t→∞.  
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The review did not state the equation utilized to calculate 
  

  
 as a function of  

  

      
 . From the 

above, it is apparent that the “counterintuitive“ property concerning COTS ascribed to PM2  is 

shared by a large class of growth models whose h(t) function satisfies the basic properties 

described in (b) above. 
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8. REMARKS 

 

 The four properties of PM2-Continuous identified in a review as being counterintuitive 

were addressed in the paper. It was demonstrated that these properties are shared by reliability 

growth planning models that are based on a large class of B-mode rate of occurrence functions 

h(t) that  were advocated by Miller [5] for use in modeling the occurrence of new software bugs 

in reliability growth testing. The label of “counterintuitive” is based on a misapplication of the 

engineering experience associated with conducting a reliability growth test. In such a test the B-

mode initial rates of occurrence arrived at by up-front design for reliability activities are fixed. 

However, the implied model parameter trade-offs associated with these “counterintuitive” 

properties change the implied B-mode profile as reflected in a change to the average of the 

expected surfaced B-mode failure intensities. The paper demonstrated that if the scenarios 

associated with these properties are modified in such a way that this average remains constant, 

then a planning model generated by any h(t) in the class described conforms to the engineering 

experience referenced by the review’s sponsor.  
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APPENDIX A – LIMIT PROPOSITION FOR BOUNDED CONCAVE FUNCTIONS 
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LIMIT PROPOSITION FOR BOUNDED CONCAVE FUNCTIONS 

 

Proposition A.1.  A nonnegative, increasing, bounded, and twice differentiable concave function 

ψ(y) defined for y ≥ 0 satisfies the following:          
      . 

 

Proof. Let y ≥ 0. To show the above we shall utilize a function w(y) whose slope is       . 
Thus it will be shown that        

      . One can choose w(y) as follows: 

 

 
              

 

 

 (A.1) 

 

Note                 A useful representation for w(y) can be obtained by integration by parts. 

 

Observe                         for     and            . Thus        
and one can choose         Also x = 0 implies u = 0 and x = y implies u = y. From the above 

one obtains the following: 

 

 
         
 

 

        
 
        

 

 

              
 

 

 (A.2) 

    

Since        is increasing and bounded,               exists and is a finite positive 

number. From the concavity of ψ(x) it follows that       is decreasing.  Since         is 

decreasing for      one has the following for     (see Figure 5): 

  

 

                            
 

 

 (A.3) 

 

 
Figure 5.  Graphical Depiction of (A.3) 
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Next it will be shown that         
     exists. Observe 

 

 

                                      
 

 

 

 

 (A.4) 

 

Thus 

 
                            
 

 

 (A.5) 

 

The inequalities in (A.3) show that  ψ(y) is bounded above by    and that        lies in the 

finite open interval (0,   ). Thus (A.5) demonstrates that                 
 

 
  is bounded 

above. Also this integral is positive for     since             for       (as displayed 

in Figure 5). From Figure 5, one can see that this integral is an increasing function of    . This 

can also be demonstrated using (A.5). By (A.5) one obtains the following: 

 

  

  
              
 

 

                                    
 

 

Since                  
 

 
 has been shown to be a positive increasing bounded function 

for    , it follows that          
             

 

 
 exists and is finite. Note from (A.4) one 

obtains 

 

 
                             

 

 

 (A.6) 

 

Since it has been demonstrated that ψ(y) and                  
 

 
 have finite limits as    , 

it follows from (A.6) that          
     exists. Also from (A.3) one has 

 

      
   
             

 

Let           
    . Suppose    . Then there exists      such that 
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 Let     . Then 

 

 
      
 

 

                        
 

  

  

 

                 
 

  

  

 

     (A.8) 

 

Thus, by (A.8), 

 

 
          
 

 

                      
  

 

 (A.9) 
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Therefore, by (A.9), for      one obtains 

 

 
                                            

 

 

                      
  
 
 

  

 

 (A.10) 

 

Note 

 

 
   
   
                       

  
 
 

  

 

         (A.11) 

   

Thus, by (A.10) and (A.11), there exists        such that for       , 
 

 
             

 

 

         (A.12) 

 

By (A.2) one has 

 

 
                            

 

 

 

 

 (A.13) 

 

Note                       . Therefore                
 

 
. Thus by l’Hôpital’s 

Rule, 
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It follows from (A.13) and (A.14) that 

 

 
   
   
            

 

 

    
   
        

   
 
       
 

 

 
          (A.15) 

 

Observe (A.15) contradicts (A.12). Thus          
         . 

 

 



 

A-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 


