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ABSTRACT
Memristor, the fourth passive circuit element, has attracted increased
attention since it was rediscovered by HP Lab in 2008. Its distinc-
tive characteristic to record the historic profile of the voltage/current
creates a great potential for future neuromorphic computing system
design. However, at the nano-scale, process variation control in the
manufacturing of memristor devices is very difficult. The impact of
process variations on a memristive system that relies on the contin-
uous (analog) states of the memristors could be significant. We use
TiO2-based memristor as an example to analyze the impact of ge-
ometry variations on the electrical properties. A simple algorithm
was proposed to generate a large volume of geometry variation-
aware three-dimensional device structures for Monte-Carlo simu-
lations. A neuromorphic computing system based on memristor-
based bidirectional synapse design is proposed as case study. We
analyze and evaluate the robustness of the proposed system in pat-
tern recognition based on massive Monte-Carlo simulations, after
considering input defects and process variations.

Categories and Subject Descriptors
C.2.6 [Computing Methodologies]: Artificial Intelligence–Learning

General Terms
Design, Performance, Reliability

Keywords
Memristor, process variation, neural network, pattern recognition.

1. INTRODUCTION
In 1971, Professor Leon Chua predicted the existence of the

memristor [1]. However, the first physical realization of memristors
was first demonstrated in 2008 by HP Lab, in which the memristive
effect was achieved by moving the doping front along a TiO2 thin-
film device [2]. Soon, memristive systems on spintronic devices
were proposed [3].

The unique properties of memristors create great opportunities in
future system design. For instance, the non-volatility and excellent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

scalability make it a promising candidate as the next-generation
high-performance high-density storage technology [4]. More im-
portantly, memristors have an intrinsic and remarkable feature called
a “pinched hysteresis loop” in the i − v plot, that is, memristors
can “remember” the total electric charge flowing through them by
changing their resistances (memristances) [5]. For example, the ap-
plications of this memristive behavior in electronic neural networks
have been extensively studied [6][7].

As process technology shrinks down to decananometer (sub-50nm)
scale, device parameter fluctuations incurred by process variations
have become a critical issue affecting the electrical characteristics
of devices [8]. The situation in a memristive system could be even
worse when utilizing the analog states of the memristors in design:
variations of device parameters, e.g., the instantaneous memris-
tance, can result in the shift of electrical responses, e.g., current.
The deviation of the electrical excitations will affect memristance
because the total charge through a memristor indeed is the historic
behavior of its current profile. In this work, we explore the impli-
cations of the device parameters of memristors to the circuit design
by taking into account the impact of process variations.

The device geometry variations significantly influence the elec-
trical properties of nano-devices [10]. For example, the random
uncertainties in lithography and patterning processes lead to the
random deviation of line edge print-images from their ideal pattern,
which is called line edge roughness (LER) [11]. Thickness fluctu-
ation (TF) is caused by deposition processes in which mounds of
atoms form and coarsen over time. We propose an algorithm to gen-
erate a large volume of three-dimensional memristor structures to
mimic the geometry variations for Monte-Carlo simulations. Here,
we mainly focus on the impacts of geometry variations because
previous experimental results showed that the geometry variations
are the dominate fluctuation source as process technology further
scales down [8].

Memristive function can be achieved by various materials and
device structures. For its popularity, TiO2-based memristor [3] is
analyzed and evaluated in our work. However, our proposed mod-
eling methodologies and design philosophies are not limited by the
specific types of devices and can be easily extended to the other
structures/materials with necessary modifications.

To demonstrate the impact of process variations on neuromor-
phic systems, we proposed a bidirectional synapse design and build
a computing system using for pattern recognition. After embed-
ding input defects and process variations, Monte-Carlo simulations
were conducted to analyze and evaluate the system robustness. In-
terestingly, our experiments show that even if a large process varia-
tion exists in memristor devices, the performance of the memristor-
based neuromorphic system is not affected much.

The organization of this paper is as follows: Section 2 introduces
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Figure 1: TiO2 thin-film memristor. (a) structure, and (b)
equivalent circuit.

the physical mechanisms of TiO2 thin-film memristors; Section 3
analyzes the memristor model under process variations; Section 4
explains the three-dimensional memristor structure algorithm; Sec-
tion 5 presents and analyzes the impact of geometry variation on
the memristor electrical properties; Section 6 describe the neuro-
morphic system composed of bidirectional synapses and analyze
its performance for pattern recognition; at last, Section 7 concludes
our work.

2. TIO2 THIN-FILM MEMRISTOR
In 2008, HP Lab demonstrated the first intentional memristive

device by using a Pt/TiO2/Pt thin-film structure [2]. The concep-
tual view is illustrated in Figure 1(a): two metal wires on Pt are
used as the top and bottom electrodes, and a thick titanium dioxide
film is sandwiched in between. The stoichiometric TiO2 with an
exact 2:1 ratio of oxygen to titanium has a natural state as an insu-
lator. However, if the titanium dioxide is lacking a small amount
of oxygen, its conductivity becomes relatively high like a semicon-
ductor. We call it oxygen-deficient titanium dioxide (TiO2−x) [9].
The memristive function can be achieved by moving the doping
front: A positive voltage applied on the top electrode can drive the
oxygen vacancies into the pure TiO2 part and therefore lower the
resistance continuously. On the other hand, a negative voltage ap-
plied on the top electrode can push the dopants back to the TiO2−x

part and hence increase the overall resistance. For a TiO2-based
memristor, RL (RH ) is used to denote the lowest (highest) resis-
tance of the structure.

Figure 1(b) illustrates a coupled variable resistor model for a
TiO2-based memristor, which is equivalent to two series-connected
resistors. The overall resistance can be expressed as

M(α) = RL · α+RH · (1− α). (1)

Here α (0 ≤ α ≤ 1) is the relative doping front position, which is
the ratio of doping front position over the total thickness of TiO2

thin-film.
The velocity of doping front movement v(t), which is driven by

the voltage applied across the memristor V (t) can be expressed as

v(t)

h
=

dα

dt
= μv · RL

h2
· V (t)

M(α)
(2)

where, μv is the equivalent mobility of dopants, h is the total thick-
ness of the TiO2 thin-film; and M(α) is the total memristance when
the relative doping front position is α.

Filamentary conduction has been observed in nano-scale semi-
conductors, such as TiO2. It shows that the current travels through
some high conducting filaments rather than passes the device evenly
[16][17]. However, there is no device model based on filamen-
tary conduction mechanism yet. Considering that the main focus
of this work is the process variation analysis method of the mem-
ristor, which can be separated from the explicit physical model of

Table 1: The device dimensions of TiO2 memristor.

Length(L) Width(z) Thickness(h)

Thin-film 50 nm 50 nm 10 nm

memristor, the popular bulk model of TiO2 is applied. Recent ex-
periments showed that μv is not a constant but grows exponentially
when the bias voltage goes beyond certain threshold voltage [18].
Nevertheless, the structure of TiO2 memristor model, i.e., Eq. (1),
still remains valid.

3. MATHEMATICAL ANALYSIS
The actual length (L) and width (z) of a memristor is affected

by LER. The variation of thickness (h) of a thin film structure is
usually described by TF. As a matter of convenience, we define
that, the impact of process variations on any given variable can be

expressed as a factor θ =
ω′

ω
, where ω is its ideal value, and ω′

is the actual value under process variations. The ideal geometry
dimensions of the TiO2 thin-film memristor used in this work are
summarized in Table 1.

In TiO2 thin-film memristors, the current passes through the de-
vice along the thickness (h) direction. Ideally the doping front has
an area S = L · z. To simulate the impact of LER on the elec-
trical properties, the memristor device is divided into many small
filaments between the two electrodes. Each filament i has a cross-
section area ds and a thickness h. Figure 2 demonstrates a non-
ideal 3D structure of a TiO2 memristor (i.e., with geometry varia-
tions in consideration), which is partitioned into many filaments in
statistical analysis.

As shown in Figure 2, ideally, the cross-section area of a filament
is ds/S of the entire device area and its thickness is h. Thus, for fil-
ament i, the ideal upper bound and lower bound of the memristance
can be expressed as

Ri,H = RH · S

ds
, and Ri,L = RL · S

ds
. (3)

Here, θi,s represents the variation ratio on the cross-section area
ds, which is caused by 2-D LER. Similarly, θi,h is the variation
ratio on thickness h due to TF. The resistance of a filament is de-
termined by its section area and thickness, i.e., R = ρ · h

s
, where ρ

is the resistance density. Therefore, the actual upper and the lower
bound under the process variations can be expressed as

R′
i,H = Ri,H · θi,h

θi,s
, and R′

i,L = Ri,L · θi,h
θi,s

. (4)

If a filament is small enough, we can assume it has a flat doping
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3−D model for TiO2 memristor

Figure 2: An example of 3D TiO2 memristor structure, which
can be partitioned into many filaments in statistical analysis.
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front. Then, the actual doping front velocity in filament i consid-
ering process variations can be calculated by replacing the ideal
values with actual values in Eq.(2). We have

v′i(t) = μv · R
′
i,L

h′2 · V (t)

M ′
i(α

′
i)
. (5)

Here h′ and M ′
i are the actual thickness and memristance of fila-

ment i. Then, we can get a set of related equations for filament i,
including the doping front position

α′
i(t) =

∫ t

0

v′(τ) · dτ, (6)

the corresponding memristance

M ′
i(α

′
i) = α′

i ·R′
i,L + (1− α′

i) ·R′
i,H , (7)

and the current through the filament i

I ′i(t) =
V (t)

M ′
i(α

′
i)
. (8)

By combining Eq. (5) – (8), the doping front position in every
filament i under process variations a′

i(t) can be obtained by solving
the differential equation

dα′
i(t)

dt
= μv · R

′
i,L

h′2 · V (t)

α′
i(t) ·R′

i,L + (1− α′
i(t)) ·R′

i,H

. (9)

Eq. (9) indicates that the behavior of the doping front movement
is dependent on the specific electrical excitations, e.g., V (t).

For instance, applying a sinusoidal voltage source to the TiO2

thin-film memristor such as

V (t) = Vm · sin(2πf · t), (10)

the corresponding doping front position of filament i can be ex-
pressed as:

α′
i(t) =

Ri,H −
√

R2
i,H −A ·B(t) · 2

θ2
i,h

+ 2C ·A · θi,s
θi,h

A
.

(11)
Where, A = Ri,H − Ri,L, B(t) = μv · Ri,L · Vm · cos(2πf · t),
and C is an initial state constant.

The term B(t) accounts for the effect of electrical excitation on
doping front position. The terms θi,s and θi,h represent the effect of
both LER and TF on memristive behavior. Moreover, the impact of
the geometry variations on the electrical properties of memristors
could be affected by the electrical excitations. For example, we can
set α(0) = 0 to represent the case that the TiO2 memristor starts
from M(0) = RH . In such a condition, C becomes 0, and hence,
the doping front position α′

i(t) can be calculated as:

α′
i(t) =

Ri,H −
√

R2
i,H −A ·B(t) · 2

θ2
i,h

A
, (12)

which is affected only by TF and electrical excitations. LER will
not disturb α′

i(t) if the TiO2 thin-film memristor has an initial state
α(0) = 0.

The overall memristance of the memristor can be calculated as
the total resistance of all n filaments connected in parallel. Again,
i denotes the ith filament. When n goes to ∞, we can have

R′
H =

1∫∞
0

1/R′
i,H · di = RH · 1∫∞

0
θi,h/θi,s · di , (13)

and

R′
L =

1∫∞
0

1/R′
i,L · di = RL · 1∫∞

0
θi,h/θi,s · di . (14)

The overall current through the memristor is the sum of the current
through each filament:

I ′(t) =
∫ ∞

0

I ′i(t) · di. (15)

The instantaneous memristance of the overall memristor can be de-
fined as

M ′(t) =
V (t)

I ′(t)
=

1∫∞
0

1/M ′
i · di

. (16)

Since the doping front position movement in each filament will not
be the same because h′

i varies due to TF (and/or the roughness of
the electrode contact), we define the average doping front position
of the whole memristor as:

α′(t) =
R′

H −M ′(t)
R′

H −R′
L

. (17)

4. 3D MEMRISTOR MODELING
Analytic modeling is a fast way to estimation the impact of pro-

cess variations on memristors. However, we noticed that in mod-
eling some variations analytically, e.g. simulating the LER, may
be beyond the capability of analytic model [12]. The data on sili-
con variations, however, is usually very hard to obtain simply due
to intellectual property protection. To improve the accuracy of our
evaluations, we create a simulation flow to generate 3-D memristor
samples with the geometry variations including LER and thickness
fluctuation. The correlation between the generated samples and the
real silicon data are guaranteed by the sanity check of the LER
characterization parameters. The flow is shown in Figure 3.

Many factors affecting the quality of the line edges show dif-
ferent random effects. Usually statistical parameters such as the
auto-correlation function (ACF) and power spectral density (PSD)
are used to describe the property of the line edges.

ACF is a basic statistical function of the wavelength of the line
profile, representing the correlation of point fluctuations on the line
edge at different position. PSD describes the waveform in the fre-
quency domain, reflecting the ratio of signals with different fre-
quencies to the whole signal.

Considering that LER issues are related to fabrication processes,
we mainly target the nano-scale pattern fabricated by electron beam
lithography (EBL). The measurements show that under such a con-
dition, the line edge profile has two important properties: (1) the
line edge profile in ACF figure demonstrates regular oscillations,

 

START

3D Sample of
Memristor structure

Generate line edge

LER data analysis 

sample and smooth

Pass check?
N Y

Thickness fluctuations

Electrode cont. roughness

Combine

Thickness (h)LER (L, z) 

Figure 3: The flow of 3D memristor structure generation in-
cluding geometry variations.
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Table 2: The parameters/constraints in LER characterization.

Parameters Constraints
LLF 0.8 nm σLER 2.5nm ∼ 3.5nm
fmax 1.8 MHz σLWR 4.0nm ∼ 5.0nm
LHF 0.4 nm Sk 0.1nm ∼ 0.2nm

/ / Ku 2.5nm ∼ 3.5nm

which are caused by periodic composition in the EBL fabrication
system; and (2) the line edge roughness mainly concentrates in a
low frequency zone, which is reflected by PSD figure [12].

To generate line edge samples close to the real cases, we can
equally divide the entire line edge into many segments, say, n seg-
ments. Without losing the LER properties in EBL process, we mod-
ified the random LER modeling proposed in [19] to a simpler form
with less parameters. The LER of the ith segment can be modeled
by

LERi = LLF · sin(fmax · xi) + LHF · pi. (18)

The first term on the right side of Eq. (18) represents the regu-
lar disturbance at the low frequency range, which is modeled as
a sinusoid function with amplitude LLF . fmax the mean of the
low frequency range derived from PSD analysis. Without loss of
generality, a uniform distribution xi ∈ U(−1, 1) is used to repre-
sent an equal distribution of all frequency components in the low
frequency range. The high frequency disturbances are also taken
into account by the second term on the right side of Eq. (18) as
a Gaussian white noise with amplitude LHF . Here pi follows the
normal distribution N(0, 1) [12]. The actual values of LLF , LHF

and fmax are determined by ACF and PSD.
To ensure the correlation between the generated line edge sam-

ples with the measurement results, we introduce four constraints to
conduct a sanity check of the generated samples:

• σLER: the root mean square (RMS) of LER;

• σLWR: the RMS of line width roughness (LWR);

• Sk: skewness, used to specify the symmetry of the amplitude
of the line edge; and

• Ku: kurtosis, used to describe the steepness of the amplitude
distribution curve.

The above four parameters are widely used in LER characteri-
zation and can be obtained from measurement results directly [12].
Only the line edge samples that satisfy the constraints will be taken
as valid device samples. Table 2 summarizes the parameters used
in our algorithm, which are correlated with the characterization
method and experimental results in [12]. And Figure 4 shows the
LER characteristic parameters distribution among 1000 Monte-Carlo
simulations.

Even the main function has captured the major features of LER,
it is not enough to mimic all the LER characteristics. The difference

Figure 4: LER characteristic parameters distribution among
1000 Monte-Carlo simulations. Constraints are shown in red
rectangles.

between real LER distribution and our modeling function results in
the fact that some generated samples are not qualified compared
to the characteristic parameters, or the constraints of the real LER
profile. Thus, sanity check which screens out the unsuccessful re-
sults is necessary. Only those samples in red rectangles shown in
Figure 4 satisfy the constraints and will be used for the device elec-
trical property analysis. The criteria of the sanity check are defined
based on the measurement results of real LER data.

The thickness fluctuation is caused by the random uncertainties
in sputter deposition or atomic layer deposition. It has a relatively
smaller impact than the LER and can be modeled as a Gaussian
distribution. Since the memristors in this work have relatively big-
ger dimensions in the horizontal plane than the thickness direction
(shown in Table 1), we also considered roughness of electrode con-
tact in our simulation: The means of the thickness of each memris-
tor is generated by assuming it follows the Gaussian distribution.
Each memristor is then divided into many filaments between the
two electrodes. The roughness of electrode contacts is modeled
based on the variations of the thickness of each filament. Here,
we assume that both thickness fluctuations and electrode contact
roughness follow Gaussian distributions with a deviation σ = 2%
of thin film thickness.

Figure 2 is an example of 3D structure of a TiO2 thin-film mem-
ristor generated by the proposed flow. It illustrates the effects of
all the geometry variations on a TiO2 memristor device structure.
According to Section 3, a 2-D partition is required for the statistical
analysis. In the given example, we partition the device into 25 small
filaments with the ideal dimensions of L = 10nm, z = 10nm,
and h = 10nm. Each filament can be regarded as a small memris-
tor, which is affected by either only TF or both LER and TF. The
overall performance of device can be approximated by paralleled
connecting all the filaments.

5. IMPACT ON MEMRISTOR PROPERTIES
To evaluate the impact of process variations on the electrical

properties of memristors, we conducted Monte-Carlo simulations
with 10,000 qualified 3-D device samples generated by our pro-
posed flow. A sinusoidal voltage source shown in Eq. (10) is ap-
plied as the external excitation. The initial state of the memristor
is set as M(α = 0) = RH . The device and electrical parameters
used in our simulations are summarized in Table 3. Both separate
and combined effects of geometry variations on various memristor
properties are analyzed, including:

• the distribution of RH and RL;

• the change of memristance M(t) and M(α);

• the velocity of wall movement v(α);

• the current through memristor i(t); and

• the I-V characteristics.

The ±3σ (minimal/maximal) values of the device/electrical pa-
rameters as the percentage of the corresponding ideal values are
summarized in Table 4. For those parameters that vary over time,
we consider the variation at each time step of all the devices. The
simulation results considering only either LER or TF are also listed.

Table 4 shows that the static behavior parameters of memristors,
i.e., RH and RL, are affected in a similar way by both LER and
thickness fluctuations. This is consistent to the analytical results

Table 3: TiO2 memristor electrical parameters.

RL(Ω) RH (Ω) μv(m2 · s−1 · V−1) Vm (V) f (Hz)

100 16000 10−14 1 0.5
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Table 4: 3σ min./max. of TiO2 memristor parameters

Sinusoidal LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -5.4 4.1 -5.5 4.8 -6.4 7.3
M(α) -5.4 4.1 -37.1 20.8 -36.5 24.1
α(t) 0.0 0.0 -13.3 27.5 -14.7 27.4
v(α) 0.0 0.0 -9.3 15.6 -10.4 16.9
i(α) -4.7 5.7 -9.3 15.7 -10.7 17.2
Power -4.7 5.7 -8.8 14.1 -10.1 15.6

Square wave LER only TF only overall
Voltage −3σ(%) +3σ(%) −3σ(%) +3σ(%) −3σ(%) +3σ(%)

RH&RL -5.3 3.7 -6.2 5.2 -6.6 6.9
M(α) -5.3 3.7 -17.8 13.2 -15.4 14.4
α(t) 0.0 0.0 -12.1 16.6 -13.0 15.6
v(α) 0.0 0.0 -11.6 17.7 -12.5 16.7
i(α) -4.0 5.2 -11.7 17.7 -12.6 17.6
Power -4.0 5.2 -7.7 9.8 -8.5 10.1

in Eq. (13) and (14), which show that θs and θh have the similar
effects on the variation of R′

H and R′
L.

However, thickness fluctuation shows a much more significant
impact on the memristive behaviors such as v(t), α(t) and M(α),
than LER does. It is because the doping front movement is along
the thickness direction: v(t) is inversely proportional to the square
of the thickness, and α(t) is the integral of v(t) over time as shown
in Eq. (5) and (6). For the same reason, thickness fluctuations
significantly affect the instantaneous memristance M(α) as well.

Because the thickness of the TiO2 memristor is relative small
compared to other dimensions, we assume the doping front cross-
section area is a constant along the thickness direction in our sim-
ulation. The impact of LER on α(t) or v(t), which is relatively
small compared to that of the thickness fluctuations, is ignored in
Table 4.

An interesting observation is that as the doping front α moves
toward 1, the velocity v regularly grows larger and reaches its peak
at the half period of the sinusoidal excitation. This can be explained
by Eq. (7): the memristance is getting smaller as α moves toward
1. With the same input amplitude, a smaller resistance will result in
a bigger current and therefore a bigger variation on v(t). Similarly,
memristance M(α) reaches its peak variance when α is close to 1.

We also conduct 10,000× Monte Carlo simulations on the same
samples by applying a square wave voltage excitation. The ampli-
tude of the voltage excitation is ±0.5V. The simulation results are
also shown in Table 4. The results of the static behavior parame-
ters, i.e., RH and RL, are exactly the same as those with sinusoidal
voltage inputs because they are independent of the external exci-
tations, The results of the memristive behavior parameters such as
v(t), α(t) and M(α) show similar trends as those with the sinu-
soidal voltage inputs. Based on Eq. (11), α(t)’s variance is sensi-
tive to the type and amplitude of electrical excitation, because B(t)
greatly affects the weight of the thickness fluctuation parameter.
That is why the thickness fluctuation has a significantly impact on
the electrical properties of memristors under sinusoidal and square
voltage excitations.

6. A CASE STUDY
A memristor behaves similarly to a synapse in biological systems

and hence can be easily used as the weighted connections in neu-
ral networks. Based on the memristor-based bidirectional synapse
design, we implement a network serving as neuromorphic comput-
ing system with units (artificial neurons) and weighted connections
(synapses). The neuron in this network is a binary threshold unit
that produces only two different values to represent its state. A
synapse works as a weighted connection to transmit a signal from

Figure 5: The neural network in pattern recognition: (a) the
standard patterns; (b) the noised input patterns; (c) the com-
parison of the input noised images (black bars) or the output
converged images (white bars) from their corresponding stan-
dard patterns.

one neuron to another. The activation function can be described as:

N0 =

{
1, if

∑n
i=1(Ni ×Wi) ≥ threshold

0, otherwise
(19)

Here, the neuron N0 collects signals from all the other neurons Ni

through the weighted connections Wi. The state of N0 could be ex-
citation (N0 = 1) or inhibition (N0 = 0) that is determined by the
relation between the summed weighted signals and the threshold.
Here, we use bidirectional synapses in the design to build a fully
connected neural network, in which any two connected neurons in-
teract each other.

The proposed neural network can be used for pattern recognition:
first, multiple standard input images are used to train the connec-
tion weights of the system till they reach convergence; after that,
any input pattern will produce to a local minimum, which is a sta-
ble state corresponding to one the stored standard patterns. Such a
network system can even be used to recognize the input image with
defects.

In our experiment, we build a network with 100 (10×10) neurons
and store the character images ‘A’, ‘B’ and ‘C’ shown in Figure 5(a)
as the standard patterns. Each neuron in the network represents a
pixel of the image. Then the defected images in Figure 5(b) are
applied as inputs to initialize the network’s state. Figure 5(c) show
that each input has 13 defects compared to its corresponding stan-

Figure 6: The impact of memristance variations on the proba-
bility of failure (Pf ).
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Figure 7: Increasing the network size can reduce Pf .

dard images (see black bars). The proposed system can completely
eliminate the difference to zero and converge to one of the standard
patterns, as demonstrated by the write bars in Figure 5(c).

The maximal allowed stored standard patterns (capacity) of this
neural network design is determined by the amounts of neurons and
connections. Moreover, the more patterns stored in the system, the
higher precision of the connection weights is needed. Therefore, a
large number of stored patterns and the high process variation on
memristances will result in a higher failure probability (Pf ).

To quantitatively evaluate the impact of memristance variations
and robustness of the proposed neural network design, we con-
ducted Monte-Carlo simulations for the network with 100 (10×10)
neurons. Random variations following Gaussian distribution have
been injected to the memristors. And σ is the standard deviation
of the memristance. The system could fail to recognize the noised
patterns or mismatch an input with other standard patterns due to
the inaccurate connection weights. To test the failure probability
under different conditions, we ran 10,000 Monte-Carlo simulations
by varying the memristance variation σ when 7, 8, 9, or 10 pat-
terns are stored in the system. In this experiment, each input image
contain 21 defects among 100 pixels.

The simulation results in Figure 6 demonstrate that the proposed
memristor-based neuromorphic system has a high tolerance on mem-
ristance variations. When σ < 0.4, which already exceeds the up-
per bound of memristance variation in Table 4, Pf of all the four
configuration are close to the ideal condition at σ = 0. This in-
dicates that even a large process variation exists in memristor de-
vices, the performance of the proposed neuromorphic system is not
affected much. Further increasing σ > 0.5, Pf grows significantly.
As expected, under the same process variation condition, the sys-
tem suffers a higher Pf when more patterns are stored.

For the same amount of stored patterns, a larger network with
more neurons is more robust to process variations. Figure 7 com-
pares the performance of the systems with 100 neurons (the blue
line) and with 400 neurons (the green line). Both systems have 10
standard patterns. And the input defect rate remains at 21% for
the two designs. The simulations show that the impact of process
variations is smaller and therefore the required precision of con-
nection weights is lower in a bigger network. Hence, in a neural
network system design, the tradeoff between network capacity and
robustness need to considered.

7. CONCLUSION
In this work, we evaluate the impact of geometry variations on

the electrical properties of TiO2-based memristors by conducting
analytic modeling analysis and Monte-Carlo simulations. The re-
sponses of the static and memristive parameters under various pro-

cess variations are evaluated and their implication for the electrical
properties are analyzed. At the end, we propose a memristor-based
neuromorphic computing system and use it as the case study of ro-
bustness analysis. Our experiment results show that the proposed
design demonstrates high tolerance on process variation and input
defects, which is consistent to the intrinsic property of neuromor-
phic systems.
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