Army Research Laboratory

Generation of Ballistic Meteorological Messages - Surface to Surface (METB3s) from Computer Meteorological Messages (METCMs)

by James Cogan and David Sauter

ARL-TN-0550

July 2013

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

Δ	RI	TN.	.055()
H	NL	- T 1 4.	0330	,

July 2013

Generation of Ballistic Meteorological Messages - Surface to Surface (METB3s) from Computer Meteorological Messages (METCMs)

James Cogan and David Sauter Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

Path expenses of the outburster is examine to ensage and the receives and houses, useding ensage and even the formal database of the outburst in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct in the even of the outburst is does and holy a construct it is does and holy a construct in the even of the outburst is does and holy a construct it is		REPORT DO	Form Approved OMB No. 0704-0188					
1. REPORT DATE (D0-MM-YVYY) 2. REPORT TYPE 3. DATES COVERED (From - To) July 2013 Final 09/2012 to 05/2013 4. TTLE AND SUBTILE 5. CONTRACT NUMBER Generation of Ballistic Meteorological Messages (METCMs) 5. CONTRACT NUMBER 5. AUTHOR(S) 5. CRANT NUMBER James Cogan and David Sauter 5. ACTION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRI-CIE 5. ARK NUMBER SUBO Powder Mill Road Addphi, MD 20783-1198 8. CONTACT NUMBER Sub Soutor Mill Road Addphi, MD 20783-1198 10. SPONSORMONTOR'S ACRONYMANE(S) AND ADDRESS(ES) Sub Soutor Mill Road Addphi, MD 20783-1198 10. SPONSORMONTOR'S ACRONYMANE(S) AND ADDRESS(ES) Marine Corps Systems, AFSS PG14 2020 Lester Street Quantico, VA 221134-4050 10. SPONSORMONTOR'S ACRONYM(S) 11. SPONSORMONTOR'S Actin VIAME(S) AND ADDRESS(ES) 10. SPONSORMONTOR'S ACRONYMANE AGENEY NAME(S) AND ADDRESS(ES) 12. DESTRUETORMONTOR'S ACRONY NAME(S) AND ADDRESS(ES) 10. SPONSORMONTOR'S ACRONYMANE AGENEY NAME(S) AND ADDRESS(ES) Marine Corps Systems, AFSS PG14 200 lester Street Quantico, VA 221134-4050 13. SUPPLEMENTARY NOTES 10. SPONSORMONTOR'S Acconvertion (S) 14. ABSTRACT The armod forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorologicial	Public reporting burden data needed, and comple burden, to Department o Respondents should be a valid OMB control num PLEASE DO NOT	for this collection of informat sting and reviewing the collect of Defense, Washington Head aware that notwithstanding an ber. RETURN YOUR FORM	ion is estimated to average 1 hc tion information. Send commer quarters Services, Directorate fc ny other provision of law, no p A TO THE ABOVE ADD	our per response, including the tts regarding this burden esti or Information Operations an erson shall be subject to any RESS.	the time for reviewing i mate or any other aspe d Reports (0704-0188 penalty for failing to	instructions, searching existing data sources, gathering and maintaining the ect of this collection of information, including suggestions for reducing the i), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. comply with a collection of information if it does not display a currently		
July 2013 Final 09:2012 to 05:2013 4. TTLE AND SUBTILE Generation of Ballistic Meteorological Messages - Surface to Surface (METB3s) from Computer Meteorological Messages (METCMs) So. CONTRACT NUMBER 6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER So. CONTRACT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 10. SPONSORMOMONTORY ACCONTANT STATEMENT 7. DERFORMING ORGANIZATION REPORT NUMBER 7. DERFORMING ORGANIZATION REPORT 7. DERFORMING ORGANIZATION REPORT NUMBER 7. DERFORMING ORGANIZATION REPORT 7. DERFORMING ORGANIZATION REPORT 7. DER	1. REPORT DATE	(DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Generation of Ballistic Meteorological Messages - Surface to Surface Sa. CONTRACT NUMBER 6. AUTHOR(\$) Sc. PROGRAM ELEMENT NUMBER James Cogan and David Sauter Sc. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) S. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) S. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) S. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) S. PERFORMING ORGANIZATION 8. SPONSORNOMONTORING AGENCY NAME(\$) AND ADDRESS(E\$) S. PROGRAM ELEMENT NUMBER 2800 Powder Mill Road ARL-TN-0550 3. SPONSORNOMONTORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSORMONTOR'S ACCONYM(\$) 11. SUPPLEMENTARY NOTES 11. SPONSORMONTOR'S REPORT 12.00 ULSTER Street 11. SPONSORMONTOR'S REPORT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) message storgramet have any decades. If was developed before users and ready access to computer MET message MET messages, the name implies, after the advent of battlefield computers and other nations have used ballistic meteorological (MET) message storgram that co	July 2013		Final			09/2012 to 05/2013		
Generation of Ballistic Meteorological Messages - Surface to Surface (METB3s) from Computer Meteorological Messages (METCMs) 56. GRANT NUMBER 6. AUTHOR(9) James Cogan and David Sauter 5d. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(E5) 5d. PROGRAM ELEMENT NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(E5) 8. PERFORMING ORGANIZATION Research Laboratory ATTN: RDRL-CIE 9. PERFORMING ORGANIZATION RESONCE NOMENTIAL STATEMENT Adelphi, MD 20783-1198 3. SPONSORINGAMING NORMACTORING A GENEY NAME(6) AND ADDRESS(E5) 8. PERFORMING ORGANIZATION RESONCE NOMENTIAL STATEMENT Adelphi, MD 20783-1198 10. SPONSORMONTOR'S ACRONYM(S) 4. STREET 10. SPONSORMONTOR'S ACRONYM(S) 11. SPONSORMONTOR'S ACRONYM(S) 11. SUPFLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYM(S) 11. SPONSORMONTOR'S ACRONYM(S) 13. SUPFLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYM(S) 11. SPONSORMONTOR'S ACRONYM(S) 13. SUPFLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYM(S) 11. SPONSORMONTOR'S ACRONYM(S) 13. SUPFLEMENTARY NOTES 13. SUPFLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYMES 13. SUPFLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYMES 11. SPONSORMONTOR'S ACRONYMES 14. ABSTRACT 11. SPONSORMONTOR'S ACRONYMES 11. SPONSORMONTOR'S ACRONYMES 15. SUPLEMENTARY NOTES 11. SPONSORMONTOR'S ACRONYMES	4. TITLE AND SUE	BTITLE				5a. CONTRACT NUMBER		
(METB3s) from Computer Meteorological Messages (METCMs) 56. GRANT NUMBER 6. AUTHOR(5) 56. PROGRAM ELEMENT NUMBER James Cogan and David Sauter 56. TASK NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 56. TASK NUMBER U.S. Army Research Laboratory 57. SPROFRAM CORGANIZATION NAME(5) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 2800 Powder Mill Road Adelphi, MD 20783-1198 8. PENFORMING ORGANIZATION REFORT NUMBER 7. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(5) 71. SPONSORING/MONITORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(5) 71. SPONSORMONITOR'S AGENCY NAME(5) AND ADDRESS(ES) 11. SPONSORMONITOR'S ACRONYM(5) 71. SPONSORMONITOR'S REPORT 11. SPONSORMONITOR'S REPORT 72. DISTRIBUTION/WAULABLITY STATEMENT 7. SPONSORMONITOR'S REPORT 73. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 74. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (METT) messages (METGA), Nevertheless, for certain applications and as abackup, there is a requirement to be able to produce a METB3 from a METCM into a METCM same use MECTM, and in some NATO nations, the more recent gridded MET message (METCM), Nevertheless, for certain applications and as abackup, there is a requirement to be able to produce a METB3 from a METCM i	Generation of	Ballistic Meteorol	ogical Messages -	Surface to Surfac	e			
6. AUTHOR(6) 5c. PROGRAM ELEMENT NUMBER James Cogan and David Sauter 5d. PROJECT NUMBER 5c. TASK NUMBER 5c. TASK NUMBER 7. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5. FORORT NUMBER U.S. Army Research Laboratory 5. PERFORMING ORGANIZATION NAME(5) AND ADDRESS(ES) 5. PERFORMING ORGANIZATION RUMERS 2800 Powder Mill Road ARL-TN-0550 REPORT NUMBER 3. SPONSORINGMONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONTOR'S ACRONYM(5) Marine Corps Systems Command 11. SPONSOR/MONTOR'S REPORT Fire Support Systems, AFSS PG14 200 Lester Street Quantico, VA 221134-0050 11. SPONSOR/MONTOR'S REPORT 12. DISTRIBUTIONAVALABLITY STATEMENT ARBURTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 form a METCM (DE generated locally or transmitted from another ather ondifications, and outlines an oudfined version for a handheld device. The program applications and as a backup, there is a requirement to be able to produce a METB3 form a METCM (DE generate) locally or transmitted from an	(METB3s) from	m Computer Mete	eorological Message	es (METCMs)		5b. GRANT NUMBER		
6. AUTHOR(S) James Cogan and David Sauter 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: RDRL-CIE 2800 Powder Mill Road Adelphi. ND 20783-1198 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORINGMONTORING AGENCY NAME(S) AND ADDRESS(ES) Marine Corps Systems Command Firs Support Systems, AFSS PG14 2000 Lester Street Quantico, VA 221134-6050 10. SPONSORIMONTOR'S ACENCY NAME(S) AND ADDRESS(ES) 11. SPONSORINGMONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONTOR'S ACENCY NAME(S) AND ADDRESS(ES) 12. DISTRIBUTIONWAILABUITY STATEMENT Approved for public release; distribution unlimited. 11. SPONSORIMONTOR'S REPORT NUMBER(S) 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) cane into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METBT message VMET Systems This Report briefly discusses a program that converts a METCM into a METBA which can be applied to specific torm a similar spreadsheet-based method developed at the Armament Research, Development and En						5c. PROGRAM ELEMENT NUMBER		
James Cogan and David Saliter 5. TASK NUMBER 5. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) 5. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Research Laboratory ATTN: RDRL-CIE 2800 Powder Mill Road ARL-TN-0550 Adelphi, MD 20783-1198 10. SPONSOR/MONITORING GENEY NAME(\$) AND ADDRESS(E\$) 5. SPONSOR/ING/MONITORING GENEY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) Marine Corps Systems Command 11. SPONSOR/MONITOR'S REPORT Fire Support Systems, AFSS PG14 11. SPONSOR/MONITOR'S REPORT 2000 Lester Street Quantico, VA 221134-6050 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM), Nevertheless, for central applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted form a similar spreakheet	6. AUTHOR(S)	and Devid Seators				5d. PROJECT NUMBER		
5. WORK UNT NUMBER 12. SATTAN Research Laboratory ATTN: RDRL-CIE 2800 Powder Mill Road Adelphi, MD 20783-1198 8. PERFORMING ORGANIZATION REPORT NUMBER 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ARL-TN-0550 Marine Corps Systems Command Fire Support Systems, AFSS PG14 2200 Lester Street Quantico, VA 221134-6050 10. SPONSOR/MONITOR'S ACCONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 14. ABSTRACT 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some never artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET systems. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted form a similar spreadsheet-based method developed at the Armame	James Cogan a	ind David Sauter				5e. TASK NUMBER		
T. PERFORMING ORGANIZATION NAME(\$) AND ADDRESS(E\$) B. PERFORMING ORGANIZATION U.S. Army Research Laboratory ATTN: RDRL-CIE 2800 Powder Mill Road ARL-TN-0550 Adelphi, MD 20783-1198 I.S. PONSOR/MONITOR'S ACRONYM(\$) 5. SPONSORINGMONITORING AGENCY NAME(\$) AND ADDRESS(E\$) I.S. PONSOR/MONITOR'S ACRONYM(\$) Marine Corps Systems, AFSS PG14 I.S. PONSOR/MONITOR'S ACRONYM(\$) 2200 Lester Street Uantico, V.A 221134-6050 12. DISTRIBUTION/AVALABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES I.A. ABSTRACT 14. ABSTRACT Marine Corcs of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METCM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in asimilar spreadsheet-based method developed at the Armam								
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Army Research Laboratory ATTN: RDRL-CIE 2800 Powder Mill Road ARL-TN-0550 Adelphi, MD 20783-1198 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACCONYM(S) Marine Corps Systems Command 11. SPONSORMONITOR'S ACCONYM(S) 11. SPONSORMONITOR'S ACCONYM(S) Yumber Systems, AFSS PG14 200 Lester Street 9. SPONSORMONITOR'S ACCONYM(S) 2000 Lester Street Quantico, VA 221134-6050 11. SPONSORMONITOR'S REPORT 12. DISTRIBUTIONAVALABILITY STATEMENT Approved for public release; distribution unlimited. 11. SPONSORMONITOR'S REPORT 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB 3 from a METCM generated locally or transmitted from another artillery MET systems no longer generate METB3 since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB 3 from a METCM generated locally or transmitte								
U.S. Army Research Laboratory ATTN: RDRL-CIE REPORT NUMBER 2800 Powder Mill Road Adelphi, MD 20783-1198 ARL-TN-0550 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Marine Corps Systems Command Fire Support Systems, AFSS PG14 10. SPONSOR/MONITOR'S ACRONYM(S) 2200 Lester Street Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 11. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3 since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METCM). Nevertheless, for certain applications and as a backup, MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods forund in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted form a similar spreadsheet-based method developed at the	7. PERFORMING	ORGANIZATION NAM	E(S) AND ADDRESS(ES	6)		8. PERFORMING ORGANIZATION		
ATTN: RDRL-CIE ARL-TN-0550 2800 Powder Mill Road Adelphi, MD 20783-1198 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Marine Corps Systems Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fire Support Systems, AFSS PG14 11. SPONSOR/MONITOR'S REPORT 2200 Lester Street WUMBER(S) Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3)s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3 since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM genorthelesd from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program were	U.S. Army Res	search Laboratory	.,			REPORT NUMBER		
2800 Powder Mill Road Adelphi, MD 20783-1198 ARCPTINE0500 9. SPONSOR/MONTORING AGENCY NAME(5) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Marine Corps Systems Command Fire Support Systems, AFSS PG14 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 2200 Lester Street Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET systems with appropriate modifications, and outlines a modified version for a handheld device. The program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS 17. UnitTATION ABSTRACT 18. NUMBER (Include area code)	ATTN: RDRL	-CIE				ARI TN 0550		
Adelphi, MD 20783-1198 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Marine Corps Systems Command Fire Support Systems, AFSS PG14 10. SPONSOR/MONITOR'S REPORT NUMBER(S) 2200 Lester Street 11. SPONSOR/MONITOR'S REPORT Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTIONAVALLABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3 since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 16. SECURITY CLASSIFICATION OF: 17. UMITATION	2800 Powder M	Mill Road				ARL-111-0350		
9. SPONSORING/MONITORING AGENCY NAME(\$) AND ADDRESS(E\$) 10. SPONSOR/MONITOR'S ACRONYM(\$) Marine Corps Systems Command 11. SPONSOR/MONITOR'S ACRONYM(\$) Fire Support Systems, AFSS PG14 11. SPONSOR/MONITOR'S REPORT Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S ACRONYM(\$) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some new artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC).	Adelphi, MD 2	20783-1198						
Marine Corps Systems Command Fire Support Systems, AFSS PG14 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 2200 Lester Street Quantico, VA 221134-6050 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 11. ABSTRACT 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 19a. NAME OF RESPONSIBLE PERSON James Cogan 16. SECURITY LLASSIFICATION OF:	9. SPONSORING/	MONITORING AGENC	Y NAME(S) AND ADDR	ESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
Fire Support Systems, AFSS PG14 18. NUMBER 2200 Lester Street Quantico, VA 221134-6050 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS 17. LIMITATION OF: 18. NUMBER OF RESPONSIBLE PERSON James Cogan 19a. NAME OF RESPONSIBLE PERSON James Cogan 19b. TELEPHONE NUMBER (Include	Marine Corps	Systems Comman	d			11. SPONSOR/MONITOR'S REPORT		
2200 Lester Street Quantico, VA 221134-6050 12. DISTRIBUTIONAVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METCM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program applies methods found in axialable field manuals and NATO publications. Some of the algorithms embodied in the program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted for ABSTRACT 15. SUBJECT TERMS III. LIMITATION OF: 11. LIMITATION ABSTRACT 19a. NAME OF RESPONSIBLE PERSON James Cogan	Fire Support S	ystems, AFSS PG	14			NUMBER(3)		
Quanto, VA 221134-0030 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF RESPONSIBLE PERSON James Cogan 19. NAME OF RESPONSIBLE PERSON James Cogan 19. NAME OF RESPONSIBLE PERSON JAMESCOGAN 19. TLEPHONE NUMBER (Include area code) <tr< td=""><td>2200 Lester St</td><td>reet</td><td></td><td></td><td></td><td></td></tr<>	2200 Lester St	reet						
Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METC into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION Defined 18. REPORT b. ABSTRACT 19. ABSTRACT	Quantico, VA	221134-0030 Navali abii ity stat	FMENT					
13. SUPPLEMENTARY NOTES 14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF PAGE 19a. NAME OF RESPONSIBLE PERSON James Cogan 18. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) (301) 394-2304	Approved for p	public release; dis	tribution unlimited.					
14. ABSTRACT The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF BASTRACT c. THIS PAGE UL 28 19a. NAME OF RESPONSIBLE PERSON James Cogan James Cogan a. REPORT b. ABSTRACT c. THIS PAGE UL 28 James Cogan	13. SUPPLEMENT	ARY NOTES						
The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) messages for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET message, ballistic message, computer MET message unclassified Unclassified Unclassified Unclassified	14 ABSTRACT							
Internet of the anneed of t	The armed for	oog of many North	Atlantia Traaty O	ranization (NAT	O) mombors	and other notions have used ballistic		
Interformation of the state of sufface to sufface the second of the state of t	meteorological	(MET) messages	for surface to surf	iganization (NAT	(FTB3s) for	many decades. It was developed before users		
Intervention of the outperformance of the intervention of	had ready acce	ess to computers o	n the battlefield and	t is normally app	lied in a man	al mode. The later computer MET message		
Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs, and in some NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC).15. SUBJECT TERMS MET messages, ballistic message, computer MET message17. LIMITATION OF ABSTRACT18. NUMBER OF ABSTRACT19a. NAME OF RESPONSIBLE PERSON James Cogana. REPORT Unclassifiedb. ABSTRACT Unclassifiedc. THIS PAGE Ulu2819a. NAME OF RESPONSIBLE PERSON James Cogan	(METCM) can	ne into use, as the	name implies, afte	r the advent of ba	ttlefield com	outers and continues to be widely used.		
NATO nations, the more recent gridded MET message (METGM). Nevertheless, for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Unclassified Unclassified Unclassified	Some newer an	tillery MET syste	ms no longer gener	ate METB3s since	e modern fire	e control systems use METCMs, and in some		
there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE UU 28 Unclassified Unclassified Unclassified UU 28 17. LIMITATION 28 19a. NAME OF RESPONSIBLE PERSON James Cogan 19b. TELEPHONE NUMBER (<i>Include area code</i>) (301) 394-2304	NATO nations	, the more recent	gridded MET mess	age (METGM). N	Nevertheless,	for certain applications and as a backup,		
MET system. This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT c. THIS PAGE UU 28 19b. TELEPHONE NUMBER (Include area code) (301) 394-2304	there is a requi	rement to be able	to produce a MET	B3 from a METC	M generated	locally or transmitted from another artillery		
systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON 19a. NAME OF RESPONSIBLE PERSON 19a. NAME OF RESPONSIBLE PERSON 19a. Struct 19b. TELEPHONE NUMBER (<i>Include area code</i>) 19b. TELEPHONE NUMBER (<i>Include area code</i>) 19b. TELEPHONE NUMBER (<i>Include area code</i>) 19b. TELEPHONE NUMBER (<i>Include area code</i>)	MET system.	This report briefly	discusses a program	m that converts a	METCM into	b a METB3, which can be applied to specific		
found in available field manuals and NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE Unclassified Unclassified Unclassified	systems with a	ppropriate modifi	cations, and outline	es a modified vers	sion for a han	dheld device. The program applies methods		
from a similar spreadsheet-based method developed at the Armament Research, Development and Engineering Center (ARDEC). 15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT b. ABSTRACT Unclassified C. THIS PAGE UU 28 19a. NAME OF RESPONSIBLE PERSON James Cogan 19b. TELEPHONE NUMBER (Include area code) (301) 394-2304	found in availa	ble field manuals	and NATO publica	ations. Some of th	ne algorithms	embodied in the program were extracted		
15. SUBJECT TERMS MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT Unclassified Unclassified Unclassified Unclassified Unclassified Unclassified	from a similar (ARDEC).	spreadsheet-based	l method developed	l at the Armamen	t Research, D	evelopment and Engineering Center		
MET messages, ballistic message, computer MET message 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON James Cogan a. REPORT b. ABSTRACT c. THIS PAGE UU 28 19b. TELEPHONE NUMBER (Include area code) (301) 394-2304	15. SUBJECT TER	MS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF OF ABSTRACT 18. NUMBER OF ABSTRACT 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE UU 28 19b. TELEPHONE NUMBER (Include area code) Unclassified Unclassified Unclassified UU 28 194. NAME OF RESPONSIBLE PERSON	MET messages	s, ballistic messag	e, computer MET 1	nessage				
a. REPORT b. ABSTRACT c. THIS PAGE UU 28 James Cogan Unclassified Unclassified Unclassified UU 28 (301) 394-2304	16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION OF	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON		
Unclassified Unclassified Unclassified UU 28 (301) 394-2304	a. REPORT		C. THIS PAGE	ABSTRACT	PAGES			
	Unclassified	Unclassified	Unclassified	UU	28	(301) 394-2304		

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

Lis	t of Figures	iv
Lis	t of Tables	iv
1.	Introduction	1
2.	Method	1
3.	Mobile Device Application	6
4.	Summary of Results	7
5.	Conclusion	7
6.	References	8
Ap	pendix A. Sample METCM Input from YPG and CMD-P and METB3 Output	9
Ap	pendix B. Weighting Tables from STANAG 4061	15
Lis	t of Symbols, Abbreviations, and Acronyms	19
Dis	tribution List	20

List of Figures

Figure 1. Illustration of the METCM and METB3 zone midpoint heights and the method of	
obtaining METB3 zone values from METCM zone values. X represents any variable and	
the subscripts (b3 for METB3 and cm for METCM) indicate the message type and	
midpoint. All heights are m above ground level (AGL).	4

List of Tables

Table 1. Variables and formats for the first 3 lines/zones of a sample METCM based on radiosonde data from YPG2
Table 2. Variables and formats for the first 3 lines/zones of a sample METB3 based on radiosonde data from YPG. See text for format of percent of standard values2
Table 3. Part of the table of temperature weighting factors for computing METB3 weighted zone values. Table B-1 has the complete set of weighting factors along with the supplement shown in table B-2
Table A-1. Input METCM produced from a radiosonde sounding from YPG dated 0800 MST on 11 FEB 2013. The GMT time (1430) indicates the approximate launch time of the radiosonde
Table A-2. Output METB3 derived from the YPG METCM of table A-1. The exact format of the METB3 may be different for other systems, but the variables and units are the same. No extrapolation was performed
Table A-3. Output METB3 derived from the YPG METCM of table A-1 where the message was extrapolated to the maximum METCM zone. The exact format of the METB3 may be different for other systems, but the variables and units are the same
Table A-4. Input METCM from a CMD-P obtained at YPG dated 6 FEB 2013 at 2130 GMT12
Table A-5. Output METB3 derived from the METCM of A-414
Table B-1. Weighting factors for temperature. See text for method of use. This table has zero values for weighting factors above line 9. 15
Table B-2. Supplemental temperature weighting factors for lines 10–15 from STANAG (4061). They were not used in the current program or in the ARDEC spreadsheet. However, they could be added using a modification to the one temperature weighting parameter file (as verified with test cases) without modifying the program
Table B-3. Weighting factors for density. 16
Table B-4. Weighting factors for wind. These factors are used to weight the wind components (u, v)

Table B-5. Atmospheric structure of MET messages from FM 3-09.15 (FM6-15)/	
MCWP 3-16.5. The second and third columns (labeled COMPUTER for METCM and	
BALLISTIC for METB3) are relevant to this report1	7

INTENTIONALLY LEFT BLANK.

1. Introduction

The armed forces of many North Atlantic Treaty Organization (NATO) members and other nations have used ballistic meteorological (MET) message for surface to surface trajectories (METB3s) for many decades. It was developed before users had ready access to computers on the battlefield and is normally applied in a manual mode. The later computer MET message (METCM) came into use, as the name implies, after the advent of battlefield computers and continues to be widely used. Some newer artillery MET systems no longer generate METB3s since modern fire control systems use METCMs and, in some NATO nations, the more recent gridded MET message (METGM). Nevertheless for certain applications and as a backup, there is a requirement to be able to produce a METB3 from a METCM generated locally or transmitted from another artillery MET system.

This report briefly discusses a program that converts a METCM into a METB3, which can be applied to specific systems with appropriate modifications, and outlines a modified version for a handheld device. The program applies methods found in available field manuals and related NATO publications. Some of the algorithms embodied in the program were extracted from a similar spreadsheet-based method developed at the Armaments Research, Development, and Engineering Center (ARDEC). In addition, the report contains some samples of input and respective output messages.

2. Method

The METCM normally contains 32 data lines (zone or line 0 through 31), one for each message zone or layer. Except for the surface each line of MET data has mean values for the respective zones. The surface essentially repeats the values measured or generated by a numerical weather prediction (NWP) model for the surface. When a METCM is transmitted manually or when it is derived from radiosonde data, it may have fewer than 32 lines. The METB3 has 19 lines of data, but unlike the METCM each line above the surface (line or zone 0) contains a weighted mean of the mean values for that zone and all zones below not including zone 0. For example, the temperature for zone 5 is a weighted mean of the mean zone values for zones 1 through 5. The weighted mean value at line or zone 1 (0–200 m) is the zone value itself (weight of 1.00). Details on the METCM and METB3 may be found in Army field manuals (e.g., FM 3-09.15 (FM6-15)/MCWP 3-16.5, FM 6-16, and FM 6-40/MCWP 3-1.6.19) and NATO standardization agreements (e.g., STANAG 4061 and STANAG 4082) including information on message formats, variables, and required header data. The METGM is outside the scope of this report, but a description may be found in STANAG 6022.

The METCM and METB3 differ in some variables and formats. The METCM has wind speed in knots, wind direction in tens of mils, virtual temperature in tenths of K, and pressure in mb. The METB3 has weighted values as noted above for wind speed in knots, wind direction in hundreds of mils, sensible temperature in percent of the standard atmosphere value, and density in percent of standard. For temperature and density, round the percent of standard to the nearest tenth of a percent and multiply by 10, and for numbers ≥1000 subtract 1000 (e.g., 98.3 becomes 983 and 100.9 becomes 009). Table 1 shows a sample METCM for the first three lines with the relevant units, and table 2 has a sample for a METB3. Both samples were based on messages from Yuma Proving Ground (YPG) that were derived from a radiosonde sounding. More complete examples may be found in appendix A. Different versions of the input routine of the program briefly described in this report can read other formats such as the METCM produced by the Computer, Meteorological Data – Profiler (CMD-P), also found in appendix A.

Zone height	Line	Wind Direction	Wind Speed	Temp (virtual)	Pressure
(m at top)	Number	(10s of mils)	(knots)	(U.I K)	(mb)
Surface	00	533	005	2788	0989
200	01	566	011	2817	0977
500	02	014	009	2815	0948

Table 1. Variables and formats for the first 3 lines/zones of a sample METCM based on radiosonde data from YPG.

Table 2. Variables and formats for the first 3 lines/zones of a sample METB3 based on radiosonde data from YPG. See text for format of percent of standard values.

Zone height (m at top)	Line Number	Wind Direction (100s of mils)	Wind Speed (knots)	Temperature (% std)	Density (% std)
Surface	00	53	05	968	009
200	01	57	11	980	996
500	02	63	09	983	992

Part of the primary method used to produce METB3s employed variations of some of the algorithms found in the spreadsheet method from ARDEC (Ray, 2013). It used the same type of calculation of METB3 zone values prior to weighting and an algorithm for extrapolating METCM levels above the highest line where the input has less than the full 32 METCM zones. Both methods also compute and weight the horizontal wind components and then convert them to wind speed and direction. As noted above, the standard METB3 message contains sensible temperature, but the METCM has virtual temperature. Normally the difference is small above the lowest zones and usually can be ignored for trajectory calculations. The method of this report uses the virtual temperatures of the METCM for the METB3. Also, it's more accurate to use virtual temperature to calculate density than sensible temperature, especially where they differ by more than a very small amount.

The program's data ingest routine reads a METCM starting at the surface or zone 0. If the METCM ends before the highest zone (line 31), the user has the option of having the ingest routine extrapolate from the last input data line through line 31. Following the spreadsheet's method, the extrapolation sets the wind speed and direction the same as at the METCM's uppermost zone. The percent of standard of temperature at the highest input zone is multiplied by the standard temperature values for the extrapolated zones. The same procedure gives the extrapolated pressures, that is, the percent of standard at the highest input zone is multiplied by the standard pressures.

The following process calculates the un-weighted zone values for the METB3 from the input METCM. For the data lines above the surface, the METCM zone values are taken as the values at the midpoints. For the surface and where the zone midpoints of both messages are the same (e.g., for zone 2, midpoint at 350 m), the values from the METCM are copied into the METB3. For those zone midpoints that differ from one another, the program takes the average of the values for the METCM zone midpoints immediately above and below the midpoint of the relevant METB3 zone. Wind speeds and directions from the METCM zones are converted into their respective horizontal components (u, v) before being converted into METB3 zone values. Figure 1 illustrates the relation between the message zones and the two ways of generating the METB3 midpoint values.

An alternate method to the one described herein uses a process for computing METB3s similar to that employed for other types of data such as from radiosondes (Cogan and Jameson, 2004) or climatological tables (Cogan and Haines, 2013). This second method treats the METCM as it would any appropriate vertical profile, where above the surface the values at each line of the METCM are considered as data at the height of the midpoint of the zone. This method is nearly the same as the primary one except they differ with respect to obtaining the midpoint values for the individual METB3 zones prior to weighting.

Since the METCM does not have density it is computed from the virtual temperature and pressure for the heights of the zone midpoints. The ideal gas law equation modified for moisture via the use of virtual temperature is used to compute density (ρ):

$$\rho = P/RT_v \tag{1}$$

where P is pressure (mb), T_v is virtual temperature (K), and R is the gas constant for dry air. Density is in units of g/m^3 .

Using the form of the equation outlined in the FMs as modified by ARDEC, we use the value of the inverse of 1/R to obtain

$$\rho = 348.36764 \text{ P/T}_{v} \tag{2}$$

The weighting procedure is the same for both the primary and alternate methods. Weighting tables were developed some years ago and may be found in FM 6-16 and STANAG 4061. Appendix B reproduces the weighting tables as extracted from STANAG 4061. The concept is not difficult, though the programming of the process is somewhat complicated. Here we reproduce a part of the temperature (T) weighting table as table 3. Note that since METCM input is T_v , for the METB3 computations and output $T = T_v$.

Line		Zone						
	1	2	3	4	5			
1	1.00							
2	0.27	0.73						
3	0.13	0.20	0.67					
4	0.08	0.12	0.25	0.55				
5	0.05	0.10	0.20	0.21	0.44			

Table 3. Part of the table of temperature weighting factors for computing METB3 weighted zone values. Table B-1 has the complete set of weighting factors along with the supplement shown in table B-2.

For zone 0 (surface), there is no weighting and the METB3 uses the METCM values as noted above directly or as input for calculation of, for example, temperature and density as percent of standard. Line 1 has a weight of 1.00 and therefore is not modified except for the conversion to percent standard, etc. Using the temperature weighting factors of table 3 to obtain the value for line 2 the temperature at zone 1 is multiplied by the zone 1 weighting factor for line 2 (0.27), which is added to the temperature at zone 2 multiplied by its weighting factor for line 2 (0.73). For example, if $T_{zone1} = 290$ K and $T_{zone2} = 288$ K, then $T_{line2} = 290*0.27 + 288*0.73 = 288.54$ K. This result is then converted to % standard (% relative to 285.9K), which comes to 100.92%. For this example, the line 2 value would appear as 009 using the format described above. A similar procedure is followed for density, which also is expressed as a percent of standard.

For wind speed and direction, the procedure is somewhat different. For the surface (line 0), the wind components are the same as in the METCM. For lines 1 and above, up through METB3 line 18 (16–18 km AGL), the wind components are computed as above from the METCM's wind components. The components are weighted using the table for wind (appendix B). The weighted values of u and v are then converted into wind speed (knots) and direction (hundreds of mils). The procedure does not compare wind speed and direction with a standard set of values.

The output from this program is in a generalized format that has the variables and the structure of the METB3, but not the exact same format and header information as in the FMs. As suggested in appendix A, different users have somewhat different forms of the METB3 (e.g., Yuma

Proving Ground vs. FM 3-09.15 (FM6-15)/MCWP 3-16.5) as well as the formats of the input METCMs (Yuma vs. CMD-P vs. MMS-P, etc.). Modifications to the input and output routines can be made to accommodate different input and output formats, but the computation routines would not change. The program also may be revised so that it can run on a variety of processors including handheld or mobile computers.

3. Mobile Device Application

Earlier, the U.S. Army Research Laboratory (ARL) developed a capability to produce METCMs and METB3s directly from a surface MET observation and upper air wind vectors computed from the visual tracking and recording of pilot balloon (PIBAL) azimuth and elevation data measured at specific times after release. It consisted of an application that would run on a Windows Mobile based personal digital assistant (PDA) and also added the capability to compute a METB3 from the surface and PIBAL data. This application as described in Jameson and Sauter (2007) was tested, accepted, and fielded. A further capability was requested to convert a METCM that was already resident on the PDA or received from another system to a METB3 on the PDA. Consequently, the conversion software discussed in this report was rehosted onto the PDA.

The requested METCM conversion utility also involved the receipt and transmission of MET messages to/from an Advanced Field Artillery Tactical Data System (AFATDS) via tactical radios. Thus, ARL teamed with ARDEC to develop the combined enhanced capability. ARDEC has extensive experience in the use of tactical communications to transmit and receive artillery-based information from the ruggedized PDA. Due to the concurrent development of the conversion and communications functionalities, it was decided to develop a version of the conversion routine as a dynamic link library (dll) for the PDA. This dll also would incorporate the existing PDA based capabilities and then be transitioned to ARDEC for integration with their current software package. As of the date of this report, an initial dll had transitioned to ARDEC, and was tested and integrated with their software. A formal testing and evaluation by the Marine Corps was slated for fall 2013. The dll is written in C++ and was developed using the Visual Studio 2008 Integrated Development Environment (IDE). The advantage of a dll implementation is that the library functions can be readily invoked via applications on other systems as well.

4. Summary of Results

The output from the program was tested against the ARDEC spreadsheet as well as output from YPG. Not surprisingly, the output using extrapolation matches that from the spreadsheet since both use the same basic algorithms for computing individual METB3 line values and weighted line values, as well as the same extrapolation algorithm. The only exception was the % density for lines ≥ 13 (midpoint at 11000 m). The ballistic standard for that line in the FM is slightly larger than that in the spreadsheet. When that one number was changed, the output METB3 from the two systems had the same values for all variables. Here we used the value found in the FM.

The METB3 output from YPG radiosonde data is slightly different. If the METB3 is computed directly from the radiosonde data, one would expect it to be somewhat different than if derived from the accompanying METCM. Unfortunately, the exact method of computing METB3s at YPG is not known since the software is proprietary and apparently no documentation is currently available. Appendix A contains a sample of METCM input and two resultant METB3s where one did not use extrapolation and other did. An additional example shows a METCM for YPG computed by a CMD-P and the consequent METB3. No extrapolation was needed since the METCM had all 32 zones.

The PDA dll implementation results were tested against the standalone version results for a number of cases, including a range of METCM lines from only line 0 to the maximum 32. The overwhelming majority of all of the output parameters matched exactly while a limited number differed by a value of ± 1 in the least significant digit. This is deemed to be the result of rounding errors between the different processors on the standalone and PDA implementations and is not a concern.

5. Conclusion

This report briefly describes a computer program for producing a ballistic MET message for surface to surface fires (METB3) using a METCM for input. Though at first developed independently, it later incorporated certain algorithms expressed in a spreadsheet developed at the Firing Tables and Ballistics Division in ARDEC. The program was developed for eventual use on a handheld or mobile device, where a CMD-P or similar MET system would not be available. Nevertheless, it can be applied to any system where a METB3 is not directly computed as part of the primary software package. The only required modifications to the program as it currently exists would be in the input and output routines plus revisions to enable it to run with different operating systems and devices. A variant of the program already can read METCMs from a CMD-P, so in some cases little or no change to the input section would be needed. The net result is software to compute a METB3 from a METCM that can be applied with minimal modification to many systems that can generate or receive a METCM.

6. References

- Cogan, J.; Haines, P. *METCM-based Messages from Climatological Data*; ARL-TN-0528; U.S. Army Research Laboratory: Adelphi, MD, 2013.
- Cogan, J.; Jameson, T. *Meteorological Message and Test Analysis Software for an Army Meteorological System*; ARL-TR-3249; U.S. Army Research Laboratory: Adelphi, MD, 2004.
- FM 3-09.15 (FM6-15)/MCWP 3-16.5, Department of the Army, *Tactics, Techniques, and Procedures for Field Artillery Meteorology*, 2007, Washington, DC, 270 pp.
- FM 6-16, Department of the Army, *Tables for Artillery Meteorology (Electronic) Ballistic Type* 3 and Computer Messages, 1979, Washington, DC, 142 pp.
- FM 6-40/MCWP 3-1.6.19, Department of the Army and United States Marine Corps, *Tactics, Techniques, and Procedures for Field Artillery Manual Cannon Gunnery*, 1999, Washington, DC, 757 pp.
- Jameson, T; Sauter, D. Addendum to a PDA-based Backup System for Generating Marine Corps Artillery Meteorological Messages; ARL-TN-279; U.S. Army Research Laboratory: Adelphi, MD, 2007, 14 pp.
- Ray, C. Private communication, 2013.
- STANAG 4082 (Edition 2), North Atlantic Treaty Organization Military Agency for Standardization, Adoption of a Standard Artillery Computer Meteorological Message, 2000, Brussels, Belgium, 15 pp.
- STANAG 4061 (Edition 4), North Atlantic Treaty Organization Military Agency for Standardization, Adoption of a Standard Ballistic Meteorological Message, 2000, Brussels, Belgium, 28 pp.
- STANAG 6022 (Edition 2), North Atlantic Treaty Organization NATO Standardization Agency, *Adoption of a Standard Gridded Data Meteorological Message*, 2010, Brussels, Belgium, 36 pp.

Appendix A. Sample METCM Input from YPG and CMD-P and METB3 Output

Tables A-1 through A-5 include a sample of METCM type input from YPG and a METCM from a CMD-P along with output METB3 type data from the program. One of the YPG cases used extrapolation of the input METCM, the other did not. No extrapolation is needed for CMD-P METCMs since to date they have always had all 32 zones.

Table A-1. Input METCM produced from a radiosonde sounding from YPG dated 0800 MST on 11 FEB 2013. The GMT time (1430) indicates the approximate launch time of the radiosonde.

Computer ID METCM	Met Me Octan 1	ssage F t Loca 329	or Flight: tion Date 140 11	13021108 Time I (GMT) 145	3 Date: 02-11 Duration Stat (Hours) (2	-13 Time: 08 ion HGT MSL 10's M) 023	00 MST Pressure (MBS) 989
Zc Hei (Met	one ight ters)	Line Number	Wind Dir 10s/mils	Wind Spd Kts	Тетр (1/10 К)	Pressure (Millibars)
	SFC 200 500	00 01 02 03	533 566 014	005 011 009	2788 2817 2815 2785	0989 0977 0948	
	1500 2000 2500	04 05 06	593 559 599	005 007 005	2783 2747 2702 2658	0903 0849 0797 0748	
	3000 3500 4000 4500	07 08 09 10	612 477 487 502	003 008 017 022	2614 2576 2539 2499	0701 0656 0614 0574	
	5000 6000 7000	11 12 13	507 468 436	028 049 062	2459 2431 2371	0535 0482 0418	
1	8000 9000 L0000 L1000	14 15 16 17	445 467 451 473	058 061 060 069	2331 2316 2297 2267	0362 0312 0269 0232	
1	L2000 L3000	18 19	464 445	075 080	2256 2234	0199 0171	

Table A-2. Output METB3 derived from the YPG METCM of table A-1. The exact format of the METB3 may be different for other systems, but the variables and units are the same. No extrapolation was performed.

METB3 output Date: 02-11-13 Time: 0800 Latitude: 32.90000 Longitude: 140.00000 Elevation: 23.00 Wind Speed Temperature Height Line Wind Direction Density (100s of mils) (kts) (pcnt std) (pcnt std) (m)

Table A-3. Output METB3 derived from the YPG METCM of table A-1 where the message was extrapolated to the maximum METCM zone. The exact format of the METB3 may be different for other systems, but the variables and units are the same.

METB3 ou	tput				
Date: 02 Time: 08	-11-13 00				
Latitude	: 32.9	0000			
Longitud	e• 140	00000			
Elevatio	n• 23	00			
Height	Line	Wind Direction	Wind Speed	Temperature	Density
(m)	TTUC	(100s of mils)	(kts)	(pont std)	(pcnt_std)
(111)		(1000 01 11110)	(1100)	(pone bea)	(pene bea)
0	0	53	05	967	009
200	1	57	11	980	996
500	2	63	09	983	993
1000	3	63	07	983	992
1500	4	61	06	982	992
2000	5	58	06	980	993
3000	6	60	05	974	995
4000	7	51	08	971	997
5000	8	51	15	966	998
6000	9	48	25	964	997
8000	10	45	40	964	993
10000	11	46	42	964	982
12000	12	46	48	964	975
14000	13	45	52	964	975
16000	14	45	54	964	977
18000	15	45	53	964	978

Table A-4. Input METCM from a CMD-P obtained at YPG dated 6 FEB 2013 at 2130 GMT.

•

UNCLASSIFIED

To: AFATDS	°M						
Location: 7 66669 36 40617 0240 11 Latitude (deg): 32.871264 Longitude (deg): -114.149975 Day: 06 Time: 21.5 Duration (hours): 0 Station Height (10's m): 024 MDP Pressure (mb): 0986							
Line Number	Wind Direction (10s mils)	Wind Speed (knots)	Air Temp (K)	Pressure (mb)			
00	505	007	292.3	0986			
, 01	507	008	291.6	0975			
02	511	009	289.4	0946			
03	519	008	286.0	0902			
04	513	006	282.6	0850			
05	540	006	279.2	0800			
06	546	009	276.4	0752			
07	534	014	273.7	0707			
08	520	018	270.6	+ 0664			
09	515	022	267.1	0623			
10	518	024	263.5	+ 0584			
11	519	027	260.0	++ 0547			
12	508	031	254.3	+ 0495			
13	497	036	246.0	0432			
14	494	042	237.7	0375			
15	487	050	231.0	0324			
16	485	060	226.8	0279			
17	483	068	225.0	0240			
+	+	UNCLASSIF: UNCLASSIF:		++			

18	480	073	223.8	0206
19	473	074	221.9	0177
20	465	072	218.8	0151
21	459	068	214.4	0129
22	455	063	210.3	0110
23	452	056	207.0	0093
24	450	047	204.5	0079
25	444	, 037	203.8	0067
26 +	430	027	206.8	0057
27	420	, 015	208.1	0044
28	475	, 008	207.1	0032
29 +	478	015	210.6	0023
30 +	473	027 +	217.9	0017
31 +	471 +	039 +	225.5	0012

Table A-5. Output METB3 derived from the METCM of A-4.

METB3 output Date: 06 Time: 21.5 Latitude: 32.87126 Longitude: -114.14998 Elevation: 24.00 Height Line Wind Direction Wind Speed Temperature Density (100s of mils) (kts) (pcnt std) (m) (pcnt std) 8 0

Appendix B. Weighting Tables from STANAG 4061

Tables B-1 through B-4 show the weighting tables for temperature, density, and wind as published in FM 6-16. The table numbers on the charts are those used in FM 6-16. Also included are the definition of standard atmosphere and the atmospheric structure of various meteorological messages from FM 3-09.15 (FM6-15)/MCWP 3-16.5 (table B-5). The standard atmosphere definition is that of the International Civil Aviation Organization (ICAO).

Table B-1. Weighting factors for temperature. See text for method of use. This table has zero values for weighting factors above line 9.

	Zone No.												
Line No.	1	2	3	•	5	6	7	8	9	10-15			
1	1.00												
2	0.27	.73			1								
3	0.13	.20	.67					i					
4	0.08	.12	.25	.55									
5	0.05	.10	.20	.21	.44		1						
6	0.04	.04	.09	.11 .	.13	.59							
7	0.02	.04	.07	.09	.11	.26	.41		1				
8	0.01	.03	.05	.04	.10	.19	.23	.35					
9 to 15	0.01	.01	.02	.03	.03	.09	.13	.24	.44	0.00			

Table 2-7. Temperature Weighting Factors (Type 3 Message) (Surface-to-Surface Trajectories)

Table B-2. Supplemental temperature weighting factors for lines 10–15 from STANAG (4061). They were not used in the current program or in the ARDEC spreadsheet. However, they could be added using a modification to the one temperature weighting parameter file (as verified with test cases) without modifying the program.

e No.	STANDARD		ZONE NO ZONE NO.													
Ligne	ABOVE MDP	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Line No I	HAUTEUR AU-DESSUS DU MDP (M)	0 to 200	200 to 500	500 to 1000	1000 to 1500	1500 to 2000	2000 to 3000	3000 to 4000	4000 to 5000	5000 to 6000	6000 to 8000	8000 to 10000	10000 to 12000	12000 to 14000	14000 to 16000	16000 to 18000
10 11 12 13 14	8000 10000 12000 14000 16000	0.01 -0.04 -0.01 -0.02 -0.02	0.01 -0.01 -0.01 -0.07 -0.02	0.03 -0.02 -0.02 -0.08 -0.03	0.04 -0.01 -0.01 -0.02 -0.02	0.05 0.02 0.00 -0.01 -0.01	0.09 0.08 0.06 0.05 0.03	0.10 0.08 0.06 0.03 0.04	0.11 0.06 0.06 0.07 0.03	0.14 0.09 0.06 0.09 0.02	0.42 0.20 0.14 0.16 0.11	0.55 0.19 0.11 0.17	0.48 0.19 0.14	0.50 0.15	0.41	
15	18000	0.00	0.00	-0.03	-0.02	0.00	0.05	0.05	0.05	0.03	0.08	0.04	0.13	0.05	0.18	0.3

Table B-3. Weighting factors for density.

Line No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1.00					-				1	-				-
2	.43	.57						1							
3	.22	.31	.47				1	1			1		1 T		1
4	.15	.21	.32	.32						1					
5	.11	.17	.25	.22	.25	1				1					1
6	.08	.11	.17	.17	.15	.32				1					
7	.06	.08	.14	.13	.12	.22	.25				1.1	1			1
8	.05	.06	.11	.11	.10	.19	.17	.21		1	1 1		K (
9	.04	.06	.09	.09	.08	.17	.15	.14	.18				1 5		1
10	.03	.04	.07	.07	.07	.13	.12	.11	.11	.25	1	1			1
11	.01	.03	.05	.05	.06	.12	.11	.09	.09	.16	.23	-			
12	.02	.03	.05	.05	.05	.11	.10	.09	.08	.14	.12	.16	i mad		1
13	.02	.02	.04	.05	.05	.11	.09	.09	.08	.14	.10	.09	.12		
14	.02	.03	.05	.05	.05	.10	.09	.08	.07	.13	.11	.08	.06	.08	
15	.02	.04	.05	.05	.05	.10	.09	.08	.07	.12	.09	.08	.05	.05	.06

Table 2-5. Density Weighting Factors (Type 3 Messages)

Table B-4. Weighting factors for wind. These factors are used to weight the wind components (u, v).

Line No.			S25-1//					Zone No.				000			
	1	2	3	•	5	6	7	8	9	10	11	12	13	14	15
1	1.00			56											
2	. 20	. 80	1	8									é - 1		
3	. 09	. 19	. 72	8									ŝ.		
4	. 06	. 12	. 26	. 56					1 2						
5	. 04	. 08	. 15	. 20	. 53		8 1			1	1				
6	. 03	. 05	. 08	. 09	. 12	. 63									
7	. 02	. 03	. 07	. 07	. 08	. 20	. 53	() ()							
8	. 02	. 02	. 06	. 06	. 06	. 14	. 19	. 45			1				
9	. 02	. 02	. 05	. 05	. 05	. 12	. 13	. 20	. 36						
10	. 01	. 02	. 02	. 04	. 03	. 07	. 08	. 09	. 09	. 55				1	
11	. 00	. 00	. 01	. 04	. 03	. 08	. 08	. 09	. 09	. 20	. 38				
12	. 00	. 01	. 01	. 02	. 04	. 07	. 07	. 07	. 08	. 17	. 16	. 30		1	
13	. 00	. 01	. 01	. 01	. 03	. 07	. 07	. 07	. 07	. 15	. 14	. 13	. 24	·	
14	. 00	. 01	. 01	. 01	. 02	. 07	. 07	. 07	. 07	. 13	. 13	. 13	. 10	. 18	
15	. 00	. 01	. 01	. 01	. 02	. 07	. 07	. 07	. 07	. 12	. 12	. 11	. 10	. 08	. 14

Table 2-9. Wind Weighting Factors (Type 3 Message)

HEIGHT	LINE (ZONE) NUMBERS											
(meters)	COMPUTER	BALLISTIC	TARGET ACQUISITION	SOUND RANGING	FALLOUT							
SURFACE	0	0	0	0	0							
50			1									
100	1	3	2	3								
200			- 3									
300	- 10 P		4	0								
400	2	2	5	2								
500	22.5	1	6									
600			7	3								
700			8		-							
800	3	3	9	4								
900			10									
1,000			11									
1,100			12									
1,200			15									
1.300	4	-4	14									
1,400			15									
1,500			16									
1-800			17	-								
1,700	8		15	-								
1.800	5	5	10	-								
1.900			20	-								
2.009	_		21	-								
2 100			23	-								
2 200			23	-								
2 300	6		34	-								
2,400		6	35	-								
2,500		2	26	-								
3.600	10		37	-	2							
3,000	+			-								
3,655			-									
3,000	0											
4,500	10		-									
5,000	114											
5 000	17	2	-		1. In 1997							
7.000	12	- K.	-									
6.000	13	10			× .							
9,000	16		-									
10,000	10	44										
11,000	10	-	-									
12,000	10	12										
13,000	10	14	-									
10,000	19											
14,000	20	13	-		1							
19,000	21	-										
15,000	22	- 14										
18,000	24	-	-		3							
19,000	25	-			32							
20,000	26	-			10							
	_	-		-								
30.000					15							

Table B-5. Atmospheric structure of MET messages from FM 3-09.15 (FM6-15)/MCWP 3-16.5. The second and third columns (labeled COMPUTER for METCM and BALLISTIC for METB3) are relevant to this report.

Standard Atmosphere as defined in FM 3-09.15 (FM6-15)/MCWP 3-16.5:

"When computing trajectories, ordnance ballisticians use the International Civil Aviation Organization (ICAO) standard atmosphere. This standard atmosphere is the basis for all data of the ballistic solution as well as a point of departure for ballistic MET corrections. The ICAO atmosphere at sea level is described as follows:

- Dry air.
- No wind.
- Surface temperature of 15 Celsius degrees with a decrease, or lapse rate, of -6.5 Celsius degrees per 1,000 meters up to a height of 11,000 meters and a constant temperature of -56.5 Celsius degrees between 11,000 and 25,000 meters.
- Surface pressure of 1,013.25 millibars, decreasing with height.
- Surface density of 1,225 grams per cubic meter (gm/m³), decreasing with height."

List of Symbols, Abbreviations, and Acronyms

AFATDS	Advanced Field Artillery Tactical Data System
AGL	above ground level
ARDEC	Armaments Research, Development, and Engineering Center
ARL	U.S. Army Research Laboratory
CMD-P	Computer, Meteorological Data – Profiler
dll	dynamic link library
ICAO	International Civil Aviation Organization
IDE	Integrated Development Environment
MET	meteorological
METB3	ballistic MET message for surface to surface trajectories
METCM	computer MET message
METGM	gridded MET message
NATO	North Atlantic Treaty Organization
NWP	numerical weather prediction
PDA	personal digital assistant
PIBAL	pilot balloon
YPG	Yuma Proving Ground

NO. OF COPIES ORGANIZATION

1 DEFENSE TECHNICAL (PDF) INFORMATION CTR DTIC OCA

2 DIRECTOR

- (PDFS) US ARMY RESEARCH LAB RDRL CIO LL IMAL HRA MAIL & RECORDS MGMT
 - 1 GOVT PRINTG OFC
- (PDF) A MALHOTRA
- 2 DIRECTOR
- (PDFS) US ARMY RESEARCH LAB RDRL CIE JAMES COGAN DAVID SAUTER