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1.0 INTRODUCTION 

The Adaptive Vehicle Make (AVM) program “META” projects have developed tools for 
designing cyber physical (CPS) (or Mechatronic) systems. Exemplified by modern amphibious 
and ground military vehicles, these systems are increasingly complex, take much longer to 
design and build, and are increasingly costlier. The vision of the AVM program is to 
revolutionize the design methodology of such systems and reduce the design time to one-fifth 
(1/5) of the traditional systems engineering V methodology (MIL – STD 499).  

The META tools realize this vision by advancing a novel design flow geared around the 
following core concepts: 

• Component-Based Design enables design cycle compression by reuse of existing 
technology and knowledge, encapsulated in integrated and customizable components that 
can be rapidly used in a design. Components in CPS are heterogeneous, span multiple 
domains (physical – thermal, mechanical, electrical, fluid, and computational – software, 
computing platforms), and require multiple models to soundly represent the behavior, 
geometry, and interfaces, at multiple levels of abstractions. The META Language allows 
creating multi-model multi-domain representation of CPS components that are 
composable by design.  

Design Space Construction is supported by the META Language using concepts 
to represent design choices and parameterized components. These constructs in META 
enable a designer to systematically engineer a flexible and comprehensive design space 
for sub-systems and system that can be explored for satisfying product-specific 
requirements. The design spaces for subsystems and systems are assets that encapsulate 
design knowledge, which can be reused in a context different for which it was originally 
created.  

• Multi-Scale Design Space Exploration incorporates multiple methods that trade accuracy 
with computation time for exploring the large design spaces. A combinatorial design 
space exploration tool (DESERT), rapidly prunes design space using highly scalable 
constraint satisfaction methods over static properties of components and designs (i.e., 
weight, power, cost, etc.). Higher fidelity, higher computation time methods such as 
qualitative reasoning, ODE simulations, are used to further explore and reduce the design 
space, iteratively converging over to solutions of interest, given a set of requirements. 

• Test-benches for Design Evaluation capture requirements in a form that can be 
automatically evaluated for a system-under-test, using a large set of domain-specific 
analyses – ranging from hybrid dynamics simulation, software platform timing 
simulation, geometric parameter evaluation, finite element analysis, probabilistic 
certificate of correctness, qualitative simulation, among others. The model composition 
tools included in META operate over defined test-benches and synthesize artifacts 
necessary for executing analysis in domain tools such as Dymola, Pro-e/Creo, Truetime, 
Qualitative Envisionment, Abaqus, etc.  

The META design flow and tools are built around the META Language, labeled the Cyber 
Physical Modeling Language (CyPhy). CyPhy is a model integration language which integrates 



2 
Approved for public release; distribution unlimited. 

models from different domains in a semantically sound manner that enables reasoning for 
correctness of models and modeling languages. This report describes the development of the 
CyPhy and related specifications and tools under the META Language contract (FA8650-10-C-
7075).  
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2.0 PROJECT OVERVIEW 

The charter of project, as envisioned in the proposal, was to develop a multi-modeling language 
suite for design and synthesis of Cyber Physical Systems.  

2.1 META Language Enabled META Design Flow 

The META design flow (separate contracted effort) articulates a design methodology and the 
associated tool flow for the CPS system design. The figure below summarizes the key elements 
of the META design flow, and motivates the key functionality that was needed in META 
language to enable the design flow. 

 

Figure 1: Meta Language Suite 

The META design flow involves three core groups of activities: 

1. Initial Architecture design involves modeling and rapid Exploration of early design space 
sketched out with the system requirements. These activities in design flow require that 
the META language includes concepts for modeling system design space and constraints, 
enable representing the key architectural variants that can broadly support the customer 
requirements. The early architecture exploration also requires low compute intensity 
methods that can allow examination of lots of design options. The META language needs 
to support modeling low-resolution components to enable coarse grain exploration. 

2. The Integrated Multi-Physics and Cyber Design stage expands upon the broadly 
identified architecture, and refines them with integrated design of physical and cyber 
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components and conducts relevant tradeoffs. These activities in addition to modeling of 
the design space and constraints require dynamics modeling for progressively refined 
performance simulation of the system. This phase also requires support for computational 
modeling to analyze the behavior and interaction of software with physical components. 
Geometry and geometry-driven analyses are central to the Physical nature of CPS, and 
consequently the modeling language suite needs to support CAD and derivative analysis 
such as thermal, FEA, and allow evaluation of designs for manufacturability. 

3. The Detailed Design stage involves further refinement, and analysis, of designs leading 
towards production, which shifts the emphasis of modeling capabilities from design space 
to domain model elaboration.  

2.2 META Language Multi-Model Multi-Domain Components  

In addition to the diversity of the design and modeling activities, the META Language Suite 
needs to facilitate representation of a diverse range of cyber physical components. 

 

Figure 2: Cyber/Physical Components 

The components that constitute a typical cyber physical system such as a military ground vehicle 
span a broad range from commodity physical components such as nuts and bolts, to large 
complex dynamical components like Engines, Transmissions, Sensors, Actuators, and 
Controllers. These components can generally be categorized as:  

1. Physical – components consist purely of electro-hydro-mechanical elements with little or 
no programmability. Examples of such components include transmissions, differentials, 
gears, clutches, starter-generators, servos, among others. These can be further 
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categorized as: functional – implementing a function in the design, or interconnect – that 
act as facilitator for physical energy flow or provide linkages such as nuts, bolts, pipes, 
and tubes. 

2. Cyber – components are software components that require a computer processor to run, 
and implement some function such as the Vehicle Management Software, or controller 
algorithms implemented in software 

3. Cyber-Physical – components cross-cut cyber and physical domains, such that they are 
physical and implement some function, however, contain deeply embedded computing 
and communication functions that enable configuration and control of the designed 
function. Modern combustion engines are a good example of cyber-physical 
components, in that they include programmable controllers that will interface with rest 
of the vehicle management system over communication buses (such as Controller Area 
Network (CAN) and TT/FlexRay), and allow optimizing torque delivery by controlling 
air/fuel mixture and valve timing for optimal combustion.  

Figure 2 depicts the fact that META components span across different energy and physics 
domains. A combustion engine, for example, turns chemical energy into rotational mechanical 
energy while a battery delivers electrical energy from stored chemical energy, or an integrated 
starter generator (ISG) delivers mechanical rotational energy from electrical energy.  

Moreover, the components depicted in figure require multiple models to describe and analyze 
their behavior. A combustion engine has a Computer Aided Design (CAD) model which 
represents the physical geometry including mass distribution, center-of-gravity, a dynamics 
model will describe the performance of the engine as a function of the driver and torque demand, 
a thermal model will describes heat generation, distribution, and dissipation as a function of the 
driver and torque demand. 

Furthermore, these different models are often developed in different domain tools i.e. 
ProE/CREO or SolidWorks© tools are used for CAD modeling, while Dymola and Simulink© 
might be used for modeling dynamics. Often these models constitute an asset base of different 
engineering organizations, and have been developed with significant time and resource 
investment. 

These motivating and constraining factors had a strong impact on the design of the META 
Language. The META Language had to be designed to represent components that are 
“Heterogeneous, Multi-Physics, and Multi-Model”, in such a way that it could leverage and 
integrate existing model assets in domain tools. 

2.3 META Language a Model Integration Language 

The consequence of these factors was that we developed the META Language that we call 
CyPhy as a Model Integration Language. A Model Integration Language is a thin layer wrapping 
language that wraps the domain models and exports only the key interface and parameters that 
are relevant for integration. The wrapping maintains the link to the domain model – to allow 
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integration in the domain tool. The integration language has a very small set of native modeling 
constructs by design. The native construction includes concepts such as hierarchical ported 
modules and interconnects, structured design spaces, and includes a variety of meta-model 
composition operators which enables systematic integration across different domain modeling 
languages.  

 

 

Figure 3: Integration of Domains within Modeling Languages 

The integration is done in a manner that abstracts the key properties and interfaces from the 
domain models that are relevant for integration across domains. These constitute the key 
variables, or design parameters that must be reasoned about in a multi-domain context. For 
example, when modeling system architecture the detailed and exact geometry may not be 
important, however, the key concepts of relevance are the join interfaces, surfaces and constraint 
with which components must be physically attached to each other.  A systematic linkage of the 
abstractions and modeling concepts automatically enables the projection from architecture 
models back into the domain models.  

The Domain Tools and Frameworks depicted in the figure above are rich engineering 
infrastructures that were developed with significant investment, and have accumulated a large 
volume of Design Assets, Intellectual Property, Designer Expertise. The Model Integration 
Language approach enables reuse of these assets in the form of a META Component Library, 
and when systems are built using the components, the Model Integration Language approach 
allows the projection of the integrated models back into to the Domain Tools and Frameworks to 
analyze, visualize and refine the design. 
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A model integration language approach also allows opportunistic linking and adds new design 
languages on demand enabling an open language framework, that allows for adapt languages to 
accommodate evolving needs of design flows. 

2.4 META Language Compositional Semantics  

A major challenge in realizing a model integration approach, relates to the heterogeneous 
semantics of the modeling languages integrated together. The project addresses this challenge by 
formally specifying the semantics of the integrated domain languages, as well as formally 
specifying the composition semantics. The figure below illustrates the compositional semantics 
of integrated the Dynamics Modeling Language with the Architecture Modeling Language 
(AML).  

Figure 4 depicts a subset of the meta-model (meta-models are definition of modeling 
languages using a UML class diagram notation) of the AML. The figure also shows a subset of 
the Bond Graph language, which is a multi-physics modeling language. The complete Bond 
Graph language is pretty large and complex, however, for integration with architecture language 
the core concepts that are relevant for integration are abstracted out. The PhysicalComponent is a 
term in Bond Graph notation referring to a component, and PowerPort are the interface of 
BondGraph components. In the integration language the composition is accomplished as follows: 

   a) A PowerPortType is defined in the AML, and is inherited from the Port concept in the 
AML. This allows for creation of power ports in architecture component model, and 

   b) a containment relation is established between the AML Components and Bond Graph 
components, which allows embedding Bond Graph components in architecture components, and  

   c) The PowerPort of Bond Graph is linked with PowerPortType in AML 

However, while this enables drawing Bond Graphs within Architecture model, several 
crucial question remains regarding the semantics and well-formed compositions. In the META 
language project these questions are addressed by use of FORMULA, a constraint logic 
programming environment, developed at Microsoft Research. The FORMULA tool allows 
specification and reasoning over well-formed domain composition. 
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Figure 4: A Meta-Model 
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3.0 RESULTS  

The outcome of this research was the integration of some modeling as well as the development 
of META modeling suite of software.  

3.1 META Semantic Backplane 

The Semantic Backplane includes modeling languages, models and tools for the semantic 
integration of Domain Specific Tool Chain (DSTC) configurations. The semantic integration is 
performed by 

1. Metamodeling - defining structural and behavioral semantics of domain specific 
modeling languages  

2. Metamodel Analysis and Verification - composing and relating DSTC-level domain 
specific modeling languages) and  

3. Metagenerators  - automatically generating model translators from formal  specification 
of relationship between modeling languages.  

Figure 5: Semantic Backplane Overview 

 

Tools and methods developed for the Semantic Backplane are not targeting the general 
engineering users: these are for a relatively small group of specialized experts responsible for the 
semantic integrity of the evolving domain specific tool chains. 
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An essential element of the Vanderbilt MIC tool suite is that most of the Semantic Backplane 
tools are “metaprogrammable” and used both in the Semantic Backplane and DSTC levels. In the 
followings we summarize the delivered components. 

Meta-modeling provides the formal specification of the semantics of the META modeling 
language suite.   

3.1.1 Metamodeling Languages 

The meta-modeling languages listed below are part of the deliverables. We expect that the meta-
modeling languages will continue to evolve beyond this project as an overall consolidation in the 
practical use cases for semantics. We are also investigating other alternatives such as BIP 
(developed by Joseph Sifakis – 2008 Turing Award Laurate) for capturing interaction semantics 
among cyber components.  

The meta-modeling languages are: 

1. MetaGME++: the mature meta-modeling language MetaGME (a variant of UML class 
diagrams and OCL) extended with generative constructs. MetaGME++ is used as meta-
modeling language for all meta-programmable tools. It has well established relationship 
with various standards.   

2. FORMULA: constraint logic programming language developed by Microsoft Research. 
FORMULA is used as formal language for defining the structural semantics of 
MetaGME++ and domain specific modeling languages defined using MetaGME++.  
(MSR and Vanderbilt ISIS collaborates in evolving FORMULA;  e.g. current work 
expands the logic used  in FORMULA with metric first order linear temporal logic). 

3. ASML: a language variant for the Abstract State Machine (ASM) formal framework. We 
use ASMs  as  common semantic domain for specifying discrete behavioral  semantics of 
modeling languages. ASML was selected because of its availability in the Visual Studio 
tool suite. (We expect that in the future we migrate to FORMULA as the supporting 
theory evolves). ASML-based behavioral semantics are operational specifications (as 
opposed to denotational) therefore they are executable and suitable for generating 
reference traces. 

4.  DE: lumped parameter differential equations as a common denotational semantic domain 
for a wide range of continuous time dynamics. We use a syntactic form that can be easily 
transformed. DEs provide a bridge toward symbolic mathematics tools developed for 
order reduction. The provided semantics for continuous dynamics is independent from 
simulation algorithms. 

3.1.2 Meta-models 

Meta-models are models of domain specific modeling languages describing the use of meta-
modeling languages. Their goal is to capture the formal structural and behavioral semantics of 
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modeling languages. The Semantic Backplane includes the CyPhy Meta-model Library that 
integrates semantic aspects of a given configuration of the META DSTC. 

Being a model integration language, CyPhy includes a core set of language constructs for model 
and design space integration as well as an evolving suite of abstracted languages imported from 
various META tools. The abstracted sublanguages are the simplest possible  well-formed subsets 
of the domain specific modeling languages of constituent META tools – still sufficient for  
capturing cross-domain interactions (structural and behavioral).  Abstracting sublanguages for 
multi-model integration from bloated and complex domain languages is an important step toward 
making META DSTC-s practical. 

At this point, the CyPhy Metamodel Library includes metamodels for the following 
sublanguages: 

1. ADML (Architecture Design Modeling Language): represents hierarchical component 
architectures and typed interfaces. Precise relationship is being defined between ADML 
and component modeling sublanguages of various standards or frequently used modeling 
languages, such as SySML (in progress), AADL (planned) and SL/SF. This relationship 
is defined as model transformation in GReAT (the MIC tool suite graph model 
transformation specification language) – and in some cases in FORMULA. 

2. Architecture Design Space Modeling Language (ADSML): extends the design modeling 
languages with constructs for design space modeling, allowing traditional design 
languages to capture design spaces instead of just point designs. The extensions come in 
the form of introducing design containers with model structure variability such as 
Alternatives, Optional, and variable cardinality containment, as well as Parameterization 
of design elements. Introduction of these design space extensions at all levels within the 
design hierarchy provides a powerful and compact mechanism of representing very large 
design spaces. 

3. Bond Graph Modeling Language (BGML) (Extended): is a multi-domain (energy and 
physical) formalism for representing lumped parameter dynamics of physical systems. A 
Bond Graph represents energy flow across systems in an energy domain neutral manner. 
Hybrid Bond Graphs are also able to represent hybrid dynamics with the aid of switched 
junctions, and support derivation of causality relation across systems. 

Beyond the core model and design space integration language elements, CyPhy has been 
complemented with the following abstracted sublanguages imported from integrated tools: 

1. Simulink/Stateflow Interface Language: The cyber aspects, specifically the controller 
design, are captured using Simulink/Stateflow models. The CyPhy meta-model integrates 
an abstracted Simulink/Stateflow meta-model, capturing the input, output, and parametric 
interface of Simulink models and defines associations with CyPhy components and 
component interfaces. 

2. Embedded Systems Modeling Interface Language (ESMoL): The ESMoL language 
defines software components, computation and communication platform, and allocation 
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of software components on platform. CyPhy meta-model defines the relation of software 
components with CyPhy components and allows defining the sensing, actuation, and 
control path by specifying associations between energy interface of physical components, 
sensors and actuators with data interface of software components.  

3. CAD Constraint ML: represents geometrical constraints (axial alignment, surface 
placement,  between CAD components (linked into CyPhy components) and allow 
derivation of CAD assemblies with a network of geometric constraints 

4. Manufacturing (Cost) ML: represents manufacturing cost drivers for buy and make parts. 
These drivers include factors such as parts types, complexity, and counts, join types, 
complexity, and counts for part assemblies. The Manufacturing ML is integrated within 
CyPhyML allowing associating manufacturing cost parameters with CyPhy components.  

5. Hydraulics ML (in progress): is an abstraction of hydraulics systems modeling primitives 
as used for modeling Hydraulic systems in COTS tools (Boeing ICCA). These 
abstractions are being linked into the Fluid aspect of the CyPhy component model. 

 

The meta-models are represented in MetaGME++ and translated for verification and validation 
to FORMULA. (We do not expect the verification step fully completed by the end of September. 
Rather, we expect that the CyPhy Meta-model  Library will continue evolving during the tool 
maturation period and beyond following the evolution of the META tool chain.) 

3.1.3 Meta-modeling Tools 

1. Generic Modeling Environment (GME):  Vanderbilt’s meta-programmable modeling tool 
is the modeling environment for MetaGME++. Except the newly implemented support 
for the generative extension of MetaGME, the tool is mature and has been tested in major 
academic and industrial projects. GME is open source and distributed for research as well 
as commercial use.  

2. Unified Data Model (UDM): is a meta-programmable API tool that provides API-s to 
programmatically manipulate domain-specific models built using GME (persisted in 
GME’s native format or conformant XML). UDM is open source, has multiple 
programming language support (Java, C++, .net, Python), is mature and tested in various 
academic and industrial projects. 

3. The Graphical modeling environment (and associated toolset) for formally defining/ 
modeling Model Transformations as Graph Rewriting specification over Domain Meta 
Models (GReAT). The model transformations defined with GReAT can be interpretively 
executed for rapid prototyping, or compiled into executable specifications for 
performance. The formal definition provides opportunities for verifying the 
transformation, and allows for systematic evolution of the model transformation as the 
domain meta-models evolve. 
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3.2 Cyber Physical Modeling Language (CyPhy) 

The CyPhy Modeling Language is defined using Meta-models (described earlier). The CyPhy 
Meta-model is provided as a deliverable of this project. This section documents the core 
concepts of CyPhy using sections of CyPhy meta-models. 

3.2.1 Components 

Components in Cyphy are the basic units for composing system design. Components are self-
contained models representing a physical or software part of the system.  As an atomic 
component, they are not intended to be further subdivided at the level of representation in 
CyPhy, but can be used as a standalone part.  

 

Figure 6: Example Component Model 

The component model represents several things about the actual component, including its 
physical representations and connections, its dynamic behavior, and numerical properties.  The 
component in figure 1 shows several connections for structurally connecting (Threaded Pin & 
Hole), dynamically connecting (flange_a/b), and parameters (Damping Constant,...).  These 
aspects are: physical implementation, Dynamic and Cyber. 

Physical implementation: The component will have a 3D shape, and various physical properties, 
such as mass, center of gravity, 3D geometry (CAD).  As the components are interconnected into 
assemblies, subsystems and systems, the interfaces are carefully defined to permit composition 
of models.  The physical properties of the model are shown in the Structural Aspect of the 
model. 

 

Figure 7: Physical – Inside the Structural Aspect 

Dynamics are the component behaviors in one or more domains (e.g., Electrical, Thermal, 
Mechanical-Rotational, Mechanical-Translational, Hydraulic, etc.  Dynamics is expressed in the 
Modelica language, which uses a mix of Causal (directional input or output is assigned to each 
port) and Acausal (power flows either direction based on its context, as in most physical 
systems). 
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Cyber is the software is a critical part of the cyber-physical system design, with many 
components having a physical, dynamic, and software implementation.  The Cyber aspect 
captures the software representation.   The Cyber aspect is intended primarily for specifying 
controller logic for the system.  Controllers can be specified in a combination of state diagrams 
and signal flow.  Software is automatically generated from these models.  

 

 

Figure 8: Example Dynamics Model 

In summary, components are multi-domain and multi-model, include interfaces for composition, 
have properties for informational and analytical evaluation, and can be parameterized. 

3.2.2 Design Spaces  

Using components and assemblies allows the designer to capture a single design architecture, 
with a single choice of components.  This has several drawbacks: 

Requirements often change during the design process, sometimes necessitating a redesign. 

Component and subsystem behavior is discovered during the design process, and the best choice 
of architecture and components may not be apparent until late in the design process. 

The design is applicable to a single target use, and can require substantial rework for other 
applications. 

Instead, CyPhy/OpenMETA offers the concept of a Design Space.  The design space allows the 
models to contain multiple alternatives for components and assemblies.  Any component or 
assembly can be substituted for another component or assembly with the same interface. 

The editor offers a simple syntax for capturing design options.  A design alternative container is 
created with an interface matching a component and the component is placed inside and wired to 
the external interfaces (there is a tool to automatically do this).  Additional alternative 
components (or assemblies) are added to the alternative design container. 

The semantics of this construct are to choose one of the internal components in place of the 
alternative container.   
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The design space is the combination of all options of all alternatives.  Consequently, the design 
space can get very large (i.e. Design space size is # Alt1 * # Alt2 * # Alt3 *...).  While this is a 
powerful mechanism to expand the range of designs under consideration, a mechanism is needed 
to limit the design space to a manageable size.  For this purpose, design space constraints can be 
specified, and used by the Design Space Exploration Tool (DESERT). 

 

Figure 9: Example Design Space Alternative 

Design space constraints are simple, static operations/equations that can be specified on the 
properties or identities of components or assemblies in the design alternative space.  Operations 
on the properties such as total weight and cost, thresholds on a component property (e.g. TRL > 
3), or identity (e.g., all wheel types must match – do not mix and match). 

 

Figure 10: Example Constraints 

The DESERT Tool uses scalable techniques to apply these constraints to very large design 
spaces to rapidly prune the design space to a manageable size.  The figure below shows the 
design space for the simple drivetrain.  Prior to applying constraints, there are 288 
configurations.  After, there are 48.  Typical design spaces can easily reach 10B configurations. 
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After proper constraint application, these can be reduced to 1000s. Design space creation and 
exploration is a process of expansion and contraction of the design space.  It can be a powerful 
tool to build adaptable, flexible designs. 

 

  

Figure 11: Design Space Exploration.  Before and After Constraint Application 

3.2.3 Design Evaluation (Test Bench) 

While application of constraints can eliminate design alternatives based on simple, static 
properties, much of the system behavior (desirable and undesirable) emerges from the dynamic 
interaction between components.  These interactions occur across and between any and all of the 
physical domains within the spectrum of the model coverage. 

Evaluation of a model configuration can be done vs. requirements imposed on a system design.  
Requirements are expressed in terms of Metrics that can be computed on the system models. 
Metrics might include speed, maximum towing force, or acceleration time. Requirements are 
tests on these metrics. Typically, the conditions and scenario will be specified for a requirement 
CyPhy support, e.g. Level ground, Pavement, and the scenario of Driver Throttle at 100%. For 
example, “the vehicle must accelerate from 0 to 60 MPH in less than 8 Seconds”.   

System performance evaluation is specified via a Test Bench.  A test bench is an executable 
specification of a requirement analysis.  The parts of a Test Bench are: 

• Test Drivers, reproducing the stimulus to the system 
• Wraparound environment, providing the interfaces at the periphery of the system (e.g. the 

ground interface with the tires, the external air, ...) 
• Metrics evaluation, taking measurements of the system properties and converting into a 

value of interest.  The metrics are also tied to requirements, which can convert the metric 
to a design “score”. And, 
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• The system under test – either a point design or a design space.  In the case of a design 
space, the test bench can be applied over the entire set of feasible designs. 

The test benches are tied to specific workflows.  Currently, CyPhy/OpenMETA implements test 
benches for: 

• Dynamics, using a lumped parameter model executed in the Modelica language.  
Dynamics cover mechanical, electrical, hydraulic, and thermal domains. 

• Structural, using 3D CAD assemblies to evaluate the physical compatibility of parts, 
locate potential interference, and compute physical properties such as Center of Gravity,  
Bounding Box, and assembled location of specific points on the system. 

• Finite Element, using Finite element techniques to compute stress/strain, thermal 
propagation, computational fluid dynamics, etc. 

• Mobility, using the NATO Reference Mobility Model to predict vehicle mobility based 
on aggregate system properties, 

• Cyber, co-simulating dynamics with a time-based software/processor/network simulation. 
• Manufacturability; creating the 3D CAD files containing the properties of each 

manufactured join between parts, and an electronic Bill of Materials. From this design 
package, iFAB can predict a cost and schedule to manufacture the system.  

• Complexity, evaluating the graph-energy complexity of the system based on its 
component complexity and structure of its connections.  The complexity metric will 
correlate with system cost and schedule. 

Test bench also has a set of limits associated with part minimum/maximum parameters, (such as 
maximum torques on a drive shaft), design limits associated with an assembly or the use of a part 
in a system (such as minimum allowed battery charge).  The limits are automatically evaluated 
with each evaluation of a test bench.  If limits are exceeded, a test bench result can be ignored or 
otherwise modified or treated with less trust. 
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Figure 12: Example Test Bench 
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 LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM DESCRIPTION 

AVM  Adaptive Vehicle Make 

AML Architecture Modeling Language 

CPS Cyber-Physical Systems 

CAN Controller Area Network 

CAD Computer Added Design 

ISG integrated starter generator 

DSTC Domain Specific Tool Chain 

DESERT Design Space Exploration Tool 

META META is not an Acronym. This is the program name as presented 
by DARPA/TTO AVM 

OCL Object Constraint Language 

UML Unified Model Language 
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