

AFRL-RQ-WP-TR-2013-0119

META II: MULTI-MODEL LANGUAGE SUITE FOR
CYBER PHYSICAL SYSTEMS

Ted Bapty, Sandeep Neema, and Janos Sztipanovits

Vanderbilt University

MARCH 2013
Final Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RQ-WP-TR-2013-0119 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
DOUGLAS R. RANEY JACK VONDRELL, Chief
Project Engineer Mechanical and Thermal Systems Branch
Mechanical and Thermal Systems Branch Power and Controls Division
Power and Controls Division Aerospace Systems Directorate

//Signature//
JOHN NAIRUS, Chief Engineer
Power and Controls Division
Aerospace Systems Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
March 2013 Final 30 September 2010 – 31 March 2013

4. TITLE AND SUBTITLE

META II: MULTI-MODEL LANGUAGE SUITE FOR CYBER PHYSICAL
SYSTEMS

5a. CONTRACT NUMBER
FA8650-10-C-7075

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62303FF

6. AUTHOR(S)

Ted Bapty, Sandeep Neema, and Janos Sztipanovits
5d. PROJECT NUMBER

3000
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

Q0MM
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Vanderbilt University
Institute for Software Integrated Systems (ISIS)
The Division of Sponsored Research, 110 21st Avenue S., Suite 937
Nashville, TN 37203-2416

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

 Defense Advanced Research Projects
 Agency/Tactical Technology Office
 (DARPA/TTO)
3701 North Fairfax Avenue
Arlington, VA 22203-1714

AGENCY ACRONYM(S)
DARPA
AFRL/RQQM

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)
AFRL-RQ-WP-TR-2013-0119

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
PA Case Number: 88ABW-2013-2996; Clearance Date: 20 Jun 2013. This report contains color.

14. ABSTRACT
The automatic vehicle monitoring metaheuristics (AVM META) projects have developed tools for designing cyber
physical (or Mechatronic) Systems. These systems are increasingly complex, take much longer to design and build, and
are increasingly costlier. The vision of the AVM program is to revolutionize the design methodology.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 28

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Douglas R. Raney
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited.

T a b l e o f C o n t e n t s

Section Page

List of Figures .. ii
1.0 Introduction ... 1

2.0 Project Overview ... 3

2.1 META Language Enabled META Design Flow ... 3

2.2 META Language Multi-Model Multi-Domain Components 4

2.3 META Language a Model Integration Language .. 5

2.4 META Language Compositional Semantics .. 7

3.0 Results ... 9

3.1 META Semantic Backplane ... 9

3.1.1 Metamodeling Languages ... 10

3.1.2 Meta-models .. 10

3.1.3 Meta-modeling Tools ... 12

3.2 Cyber Physical Modeling Language (CyPhy)... 13

3.2.1 Components .. 13

3.2.2 Design Spaces.. 14

3.2.3 Design Evaluation (Test Bench)... 16

4.0 Publications .. 19

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS.. 20

ii
Approved for public release; distribution unlimited.

L i s t o f F i g u r e s

F i g u r e P a g e

1. Meta Language Suite .. 3
2. Cyber/Physical Components ... 4
3. Integration of Domains within Modeling Languages ... 6
4. A Meta-Model ... 8
5. Semantic Backplane Overview ... 9
6: Example Component Model ... 13
7. Physical – Inside the Structural Aspect .. 14
8: Example Dynamics Model.. 14
9: Example Design Space Alternative .. 15
10: Example Constraints ... 15
11: Design Space Exploration. Before and After Constraint Application 16
12: Example Test Bench ... 18

1
Approved for public release; distribution unlimited.

1.0 INTRODUCTION

The Adaptive Vehicle Make (AVM) program “META” projects have developed tools for
designing cyber physical (CPS) (or Mechatronic) systems. Exemplified by modern amphibious
and ground military vehicles, these systems are increasingly complex, take much longer to
design and build, and are increasingly costlier. The vision of the AVM program is to
revolutionize the design methodology of such systems and reduce the design time to one-fifth
(1/5) of the traditional systems engineering V methodology (MIL – STD 499).

The META tools realize this vision by advancing a novel design flow geared around the
following core concepts:

• Component-Based Design enables design cycle compression by reuse of existing
technology and knowledge, encapsulated in integrated and customizable components that
can be rapidly used in a design. Components in CPS are heterogeneous, span multiple
domains (physical – thermal, mechanical, electrical, fluid, and computational – software,
computing platforms), and require multiple models to soundly represent the behavior,
geometry, and interfaces, at multiple levels of abstractions. The META Language allows
creating multi-model multi-domain representation of CPS components that are
composable by design.

Design Space Construction is supported by the META Language using concepts
to represent design choices and parameterized components. These constructs in META
enable a designer to systematically engineer a flexible and comprehensive design space
for sub-systems and system that can be explored for satisfying product-specific
requirements. The design spaces for subsystems and systems are assets that encapsulate
design knowledge, which can be reused in a context different for which it was originally
created.

• Multi-Scale Design Space Exploration incorporates multiple methods that trade accuracy
with computation time for exploring the large design spaces. A combinatorial design
space exploration tool (DESERT), rapidly prunes design space using highly scalable
constraint satisfaction methods over static properties of components and designs (i.e.,
weight, power, cost, etc.). Higher fidelity, higher computation time methods such as
qualitative reasoning, ODE simulations, are used to further explore and reduce the design
space, iteratively converging over to solutions of interest, given a set of requirements.

• Test-benches for Design Evaluation capture requirements in a form that can be
automatically evaluated for a system-under-test, using a large set of domain-specific
analyses – ranging from hybrid dynamics simulation, software platform timing
simulation, geometric parameter evaluation, finite element analysis, probabilistic
certificate of correctness, qualitative simulation, among others. The model composition
tools included in META operate over defined test-benches and synthesize artifacts
necessary for executing analysis in domain tools such as Dymola, Pro-e/Creo, Truetime,
Qualitative Envisionment, Abaqus, etc.

The META design flow and tools are built around the META Language, labeled the Cyber
Physical Modeling Language (CyPhy). CyPhy is a model integration language which integrates

2
Approved for public release; distribution unlimited.

models from different domains in a semantically sound manner that enables reasoning for
correctness of models and modeling languages. This report describes the development of the
CyPhy and related specifications and tools under the META Language contract (FA8650-10-C-
7075).

3
Approved for public release; distribution unlimited.

2.0 PROJECT OVERVIEW

The charter of project, as envisioned in the proposal, was to develop a multi-modeling language
suite for design and synthesis of Cyber Physical Systems.

2.1 META Language Enabled META Design Flow

The META design flow (separate contracted effort) articulates a design methodology and the
associated tool flow for the CPS system design. The figure below summarizes the key elements
of the META design flow, and motivates the key functionality that was needed in META
language to enable the design flow.

Figure 1: Meta Language Suite

The META design flow involves three core groups of activities:

1. Initial Architecture design involves modeling and rapid Exploration of early design space
sketched out with the system requirements. These activities in design flow require that
the META language includes concepts for modeling system design space and constraints,
enable representing the key architectural variants that can broadly support the customer
requirements. The early architecture exploration also requires low compute intensity
methods that can allow examination of lots of design options. The META language needs
to support modeling low-resolution components to enable coarse grain exploration.

2. The Integrated Multi-Physics and Cyber Design stage expands upon the broadly
identified architecture, and refines them with integrated design of physical and cyber

4
Approved for public release; distribution unlimited.

components and conducts relevant tradeoffs. These activities in addition to modeling of
the design space and constraints require dynamics modeling for progressively refined
performance simulation of the system. This phase also requires support for computational
modeling to analyze the behavior and interaction of software with physical components.
Geometry and geometry-driven analyses are central to the Physical nature of CPS, and
consequently the modeling language suite needs to support CAD and derivative analysis
such as thermal, FEA, and allow evaluation of designs for manufacturability.

3. The Detailed Design stage involves further refinement, and analysis, of designs leading
towards production, which shifts the emphasis of modeling capabilities from design space
to domain model elaboration.

2.2 META Language Multi-Model Multi-Domain Components

In addition to the diversity of the design and modeling activities, the META Language Suite
needs to facilitate representation of a diverse range of cyber physical components.

Figure 2: Cyber/Physical Components

The components that constitute a typical cyber physical system such as a military ground vehicle
span a broad range from commodity physical components such as nuts and bolts, to large
complex dynamical components like Engines, Transmissions, Sensors, Actuators, and
Controllers. These components can generally be categorized as:

1. Physical – components consist purely of electro-hydro-mechanical elements with little or
no programmability. Examples of such components include transmissions, differentials,
gears, clutches, starter-generators, servos, among others. These can be further

5
Approved for public release; distribution unlimited.

categorized as: functional – implementing a function in the design, or interconnect – that
act as facilitator for physical energy flow or provide linkages such as nuts, bolts, pipes,
and tubes.

2. Cyber – components are software components that require a computer processor to run,
and implement some function such as the Vehicle Management Software, or controller
algorithms implemented in software

3. Cyber-Physical – components cross-cut cyber and physical domains, such that they are
physical and implement some function, however, contain deeply embedded computing
and communication functions that enable configuration and control of the designed
function. Modern combustion engines are a good example of cyber-physical
components, in that they include programmable controllers that will interface with rest
of the vehicle management system over communication buses (such as Controller Area
Network (CAN) and TT/FlexRay), and allow optimizing torque delivery by controlling
air/fuel mixture and valve timing for optimal combustion.

Figure 2 depicts the fact that META components span across different energy and physics
domains. A combustion engine, for example, turns chemical energy into rotational mechanical
energy while a battery delivers electrical energy from stored chemical energy, or an integrated
starter generator (ISG) delivers mechanical rotational energy from electrical energy.

Moreover, the components depicted in figure require multiple models to describe and analyze
their behavior. A combustion engine has a Computer Aided Design (CAD) model which
represents the physical geometry including mass distribution, center-of-gravity, a dynamics
model will describe the performance of the engine as a function of the driver and torque demand,
a thermal model will describes heat generation, distribution, and dissipation as a function of the
driver and torque demand.

Furthermore, these different models are often developed in different domain tools i.e.
ProE/CREO or SolidWorks© tools are used for CAD modeling, while Dymola and Simulink©
might be used for modeling dynamics. Often these models constitute an asset base of different
engineering organizations, and have been developed with significant time and resource
investment.

These motivating and constraining factors had a strong impact on the design of the META
Language. The META Language had to be designed to represent components that are
“Heterogeneous, Multi-Physics, and Multi-Model”, in such a way that it could leverage and
integrate existing model assets in domain tools.

2.3 META Language a Model Integration Language

The consequence of these factors was that we developed the META Language that we call
CyPhy as a Model Integration Language. A Model Integration Language is a thin layer wrapping
language that wraps the domain models and exports only the key interface and parameters that
are relevant for integration. The wrapping maintains the link to the domain model – to allow

6
Approved for public release; distribution unlimited.

integration in the domain tool. The integration language has a very small set of native modeling
constructs by design. The native construction includes concepts such as hierarchical ported
modules and interconnects, structured design spaces, and includes a variety of meta-model
composition operators which enables systematic integration across different domain modeling
languages.

Figure 3: Integration of Domains within Modeling Languages

The integration is done in a manner that abstracts the key properties and interfaces from the
domain models that are relevant for integration across domains. These constitute the key
variables, or design parameters that must be reasoned about in a multi-domain context. For
example, when modeling system architecture the detailed and exact geometry may not be
important, however, the key concepts of relevance are the join interfaces, surfaces and constraint
with which components must be physically attached to each other. A systematic linkage of the
abstractions and modeling concepts automatically enables the projection from architecture
models back into the domain models.

The Domain Tools and Frameworks depicted in the figure above are rich engineering
infrastructures that were developed with significant investment, and have accumulated a large
volume of Design Assets, Intellectual Property, Designer Expertise. The Model Integration
Language approach enables reuse of these assets in the form of a META Component Library,
and when systems are built using the components, the Model Integration Language approach
allows the projection of the integrated models back into to the Domain Tools and Frameworks to
analyze, visualize and refine the design.

7
Approved for public release; distribution unlimited.

A model integration language approach also allows opportunistic linking and adds new design
languages on demand enabling an open language framework, that allows for adapt languages to
accommodate evolving needs of design flows.

2.4 META Language Compositional Semantics

A major challenge in realizing a model integration approach, relates to the heterogeneous
semantics of the modeling languages integrated together. The project addresses this challenge by
formally specifying the semantics of the integrated domain languages, as well as formally
specifying the composition semantics. The figure below illustrates the compositional semantics
of integrated the Dynamics Modeling Language with the Architecture Modeling Language
(AML).

Figure 4 depicts a subset of the meta-model (meta-models are definition of modeling
languages using a UML class diagram notation) of the AML. The figure also shows a subset of
the Bond Graph language, which is a multi-physics modeling language. The complete Bond
Graph language is pretty large and complex, however, for integration with architecture language
the core concepts that are relevant for integration are abstracted out. The PhysicalComponent is a
term in Bond Graph notation referring to a component, and PowerPort are the interface of
BondGraph components. In the integration language the composition is accomplished as follows:

 a) A PowerPortType is defined in the AML, and is inherited from the Port concept in the
AML. This allows for creation of power ports in architecture component model, and

 b) a containment relation is established between the AML Components and Bond Graph
components, which allows embedding Bond Graph components in architecture components, and

 c) The PowerPort of Bond Graph is linked with PowerPortType in AML

However, while this enables drawing Bond Graphs within Architecture model, several
crucial question remains regarding the semantics and well-formed compositions. In the META
language project these questions are addressed by use of FORMULA, a constraint logic
programming environment, developed at Microsoft Research. The FORMULA tool allows
specification and reasoning over well-formed domain composition.

8
Approved for public release; distribution unlimited.

Figure 4: A Meta-Model

9
Approved for public release; distribution unlimited.

3.0 RESULTS

The outcome of this research was the integration of some modeling as well as the development
of META modeling suite of software.

3.1 META Semantic Backplane

The Semantic Backplane includes modeling languages, models and tools for the semantic
integration of Domain Specific Tool Chain (DSTC) configurations. The semantic integration is
performed by

1. Metamodeling - defining structural and behavioral semantics of domain specific
modeling languages

2. Metamodel Analysis and Verification - composing and relating DSTC-level domain
specific modeling languages) and

3. Metagenerators - automatically generating model translators from formal specification
of relationship between modeling languages.

Figure 5: Semantic Backplane Overview

Tools and methods developed for the Semantic Backplane are not targeting the general
engineering users: these are for a relatively small group of specialized experts responsible for the
semantic integrity of the evolving domain specific tool chains.

10
Approved for public release; distribution unlimited.

An essential element of the Vanderbilt MIC tool suite is that most of the Semantic Backplane
tools are “metaprogrammable” and used both in the Semantic Backplane and DSTC levels. In the
followings we summarize the delivered components.

Meta-modeling provides the formal specification of the semantics of the META modeling
language suite.

3.1.1 Metamodeling Languages

The meta-modeling languages listed below are part of the deliverables. We expect that the meta-
modeling languages will continue to evolve beyond this project as an overall consolidation in the
practical use cases for semantics. We are also investigating other alternatives such as BIP
(developed by Joseph Sifakis – 2008 Turing Award Laurate) for capturing interaction semantics
among cyber components.

The meta-modeling languages are:

1. MetaGME++: the mature meta-modeling language MetaGME (a variant of UML class
diagrams and OCL) extended with generative constructs. MetaGME++ is used as meta-
modeling language for all meta-programmable tools. It has well established relationship
with various standards.

2. FORMULA: constraint logic programming language developed by Microsoft Research.
FORMULA is used as formal language for defining the structural semantics of
MetaGME++ and domain specific modeling languages defined using MetaGME++.
(MSR and Vanderbilt ISIS collaborates in evolving FORMULA; e.g. current work
expands the logic used in FORMULA with metric first order linear temporal logic).

3. ASML: a language variant for the Abstract State Machine (ASM) formal framework. We
use ASMs as common semantic domain for specifying discrete behavioral semantics of
modeling languages. ASML was selected because of its availability in the Visual Studio
tool suite. (We expect that in the future we migrate to FORMULA as the supporting
theory evolves). ASML-based behavioral semantics are operational specifications (as
opposed to denotational) therefore they are executable and suitable for generating
reference traces.

4. DE: lumped parameter differential equations as a common denotational semantic domain
for a wide range of continuous time dynamics. We use a syntactic form that can be easily
transformed. DEs provide a bridge toward symbolic mathematics tools developed for
order reduction. The provided semantics for continuous dynamics is independent from
simulation algorithms.

3.1.2 Meta-models

Meta-models are models of domain specific modeling languages describing the use of meta-
modeling languages. Their goal is to capture the formal structural and behavioral semantics of

11
Approved for public release; distribution unlimited.

modeling languages. The Semantic Backplane includes the CyPhy Meta-model Library that
integrates semantic aspects of a given configuration of the META DSTC.

Being a model integration language, CyPhy includes a core set of language constructs for model
and design space integration as well as an evolving suite of abstracted languages imported from
various META tools. The abstracted sublanguages are the simplest possible well-formed subsets
of the domain specific modeling languages of constituent META tools – still sufficient for
capturing cross-domain interactions (structural and behavioral). Abstracting sublanguages for
multi-model integration from bloated and complex domain languages is an important step toward
making META DSTC-s practical.

At this point, the CyPhy Metamodel Library includes metamodels for the following
sublanguages:

1. ADML (Architecture Design Modeling Language): represents hierarchical component
architectures and typed interfaces. Precise relationship is being defined between ADML
and component modeling sublanguages of various standards or frequently used modeling
languages, such as SySML (in progress), AADL (planned) and SL/SF. This relationship
is defined as model transformation in GReAT (the MIC tool suite graph model
transformation specification language) – and in some cases in FORMULA.

2. Architecture Design Space Modeling Language (ADSML): extends the design modeling
languages with constructs for design space modeling, allowing traditional design
languages to capture design spaces instead of just point designs. The extensions come in
the form of introducing design containers with model structure variability such as
Alternatives, Optional, and variable cardinality containment, as well as Parameterization
of design elements. Introduction of these design space extensions at all levels within the
design hierarchy provides a powerful and compact mechanism of representing very large
design spaces.

3. Bond Graph Modeling Language (BGML) (Extended): is a multi-domain (energy and
physical) formalism for representing lumped parameter dynamics of physical systems. A
Bond Graph represents energy flow across systems in an energy domain neutral manner.
Hybrid Bond Graphs are also able to represent hybrid dynamics with the aid of switched
junctions, and support derivation of causality relation across systems.

Beyond the core model and design space integration language elements, CyPhy has been
complemented with the following abstracted sublanguages imported from integrated tools:

1. Simulink/Stateflow Interface Language: The cyber aspects, specifically the controller
design, are captured using Simulink/Stateflow models. The CyPhy meta-model integrates
an abstracted Simulink/Stateflow meta-model, capturing the input, output, and parametric
interface of Simulink models and defines associations with CyPhy components and
component interfaces.

2. Embedded Systems Modeling Interface Language (ESMoL): The ESMoL language
defines software components, computation and communication platform, and allocation

12
Approved for public release; distribution unlimited.

of software components on platform. CyPhy meta-model defines the relation of software
components with CyPhy components and allows defining the sensing, actuation, and
control path by specifying associations between energy interface of physical components,
sensors and actuators with data interface of software components.

3. CAD Constraint ML: represents geometrical constraints (axial alignment, surface
placement, between CAD components (linked into CyPhy components) and allow
derivation of CAD assemblies with a network of geometric constraints

4. Manufacturing (Cost) ML: represents manufacturing cost drivers for buy and make parts.
These drivers include factors such as parts types, complexity, and counts, join types,
complexity, and counts for part assemblies. The Manufacturing ML is integrated within
CyPhyML allowing associating manufacturing cost parameters with CyPhy components.

5. Hydraulics ML (in progress): is an abstraction of hydraulics systems modeling primitives
as used for modeling Hydraulic systems in COTS tools (Boeing ICCA). These
abstractions are being linked into the Fluid aspect of the CyPhy component model.

The meta-models are represented in MetaGME++ and translated for verification and validation
to FORMULA. (We do not expect the verification step fully completed by the end of September.
Rather, we expect that the CyPhy Meta-model Library will continue evolving during the tool
maturation period and beyond following the evolution of the META tool chain.)

3.1.3 Meta-modeling Tools

1. Generic Modeling Environment (GME): Vanderbilt’s meta-programmable modeling tool
is the modeling environment for MetaGME++. Except the newly implemented support
for the generative extension of MetaGME, the tool is mature and has been tested in major
academic and industrial projects. GME is open source and distributed for research as well
as commercial use.

2. Unified Data Model (UDM): is a meta-programmable API tool that provides API-s to
programmatically manipulate domain-specific models built using GME (persisted in
GME’s native format or conformant XML). UDM is open source, has multiple
programming language support (Java, C++, .net, Python), is mature and tested in various
academic and industrial projects.

3. The Graphical modeling environment (and associated toolset) for formally defining/
modeling Model Transformations as Graph Rewriting specification over Domain Meta
Models (GReAT). The model transformations defined with GReAT can be interpretively
executed for rapid prototyping, or compiled into executable specifications for
performance. The formal definition provides opportunities for verifying the
transformation, and allows for systematic evolution of the model transformation as the
domain meta-models evolve.

13
Approved for public release; distribution unlimited.

3.2 Cyber Physical Modeling Language (CyPhy)

The CyPhy Modeling Language is defined using Meta-models (described earlier). The CyPhy
Meta-model is provided as a deliverable of this project. This section documents the core
concepts of CyPhy using sections of CyPhy meta-models.

3.2.1 Components

Components in Cyphy are the basic units for composing system design. Components are self-
contained models representing a physical or software part of the system. As an atomic
component, they are not intended to be further subdivided at the level of representation in
CyPhy, but can be used as a standalone part.

Figure 6: Example Component Model

The component model represents several things about the actual component, including its
physical representations and connections, its dynamic behavior, and numerical properties. The
component in figure 1 shows several connections for structurally connecting (Threaded Pin &
Hole), dynamically connecting (flange_a/b), and parameters (Damping Constant,...). These
aspects are: physical implementation, Dynamic and Cyber.

Physical implementation: The component will have a 3D shape, and various physical properties,
such as mass, center of gravity, 3D geometry (CAD). As the components are interconnected into
assemblies, subsystems and systems, the interfaces are carefully defined to permit composition
of models. The physical properties of the model are shown in the Structural Aspect of the
model.

Figure 7: Physical – Inside the Structural Aspect

Dynamics are the component behaviors in one or more domains (e.g., Electrical, Thermal,
Mechanical-Rotational, Mechanical-Translational, Hydraulic, etc. Dynamics is expressed in the
Modelica language, which uses a mix of Causal (directional input or output is assigned to each
port) and Acausal (power flows either direction based on its context, as in most physical
systems).

14
Approved for public release; distribution unlimited.

Cyber is the software is a critical part of the cyber-physical system design, with many
components having a physical, dynamic, and software implementation. The Cyber aspect
captures the software representation. The Cyber aspect is intended primarily for specifying
controller logic for the system. Controllers can be specified in a combination of state diagrams
and signal flow. Software is automatically generated from these models.

Figure 8: Example Dynamics Model

In summary, components are multi-domain and multi-model, include interfaces for composition,
have properties for informational and analytical evaluation, and can be parameterized.

3.2.2 Design Spaces

Using components and assemblies allows the designer to capture a single design architecture,
with a single choice of components. This has several drawbacks:

Requirements often change during the design process, sometimes necessitating a redesign.

Component and subsystem behavior is discovered during the design process, and the best choice
of architecture and components may not be apparent until late in the design process.

The design is applicable to a single target use, and can require substantial rework for other
applications.

Instead, CyPhy/OpenMETA offers the concept of a Design Space. The design space allows the
models to contain multiple alternatives for components and assemblies. Any component or
assembly can be substituted for another component or assembly with the same interface.

The editor offers a simple syntax for capturing design options. A design alternative container is
created with an interface matching a component and the component is placed inside and wired to
the external interfaces (there is a tool to automatically do this). Additional alternative
components (or assemblies) are added to the alternative design container.

The semantics of this construct are to choose one of the internal components in place of the
alternative container.

15
Approved for public release; distribution unlimited.

The design space is the combination of all options of all alternatives. Consequently, the design
space can get very large (i.e. Design space size is # Alt1 * # Alt2 * # Alt3 *...). While this is a
powerful mechanism to expand the range of designs under consideration, a mechanism is needed
to limit the design space to a manageable size. For this purpose, design space constraints can be
specified, and used by the Design Space Exploration Tool (DESERT).

Figure 9: Example Design Space Alternative

Design space constraints are simple, static operations/equations that can be specified on the
properties or identities of components or assemblies in the design alternative space. Operations
on the properties such as total weight and cost, thresholds on a component property (e.g. TRL >
3), or identity (e.g., all wheel types must match – do not mix and match).

Figure 10: Example Constraints

The DESERT Tool uses scalable techniques to apply these constraints to very large design
spaces to rapidly prune the design space to a manageable size. The figure below shows the
design space for the simple drivetrain. Prior to applying constraints, there are 288
configurations. After, there are 48. Typical design spaces can easily reach 10B configurations.

16
Approved for public release; distribution unlimited.

After proper constraint application, these can be reduced to 1000s. Design space creation and
exploration is a process of expansion and contraction of the design space. It can be a powerful
tool to build adaptable, flexible designs.

Figure 11: Design Space Exploration. Before and After Constraint Application

3.2.3 Design Evaluation (Test Bench)

While application of constraints can eliminate design alternatives based on simple, static
properties, much of the system behavior (desirable and undesirable) emerges from the dynamic
interaction between components. These interactions occur across and between any and all of the
physical domains within the spectrum of the model coverage.

Evaluation of a model configuration can be done vs. requirements imposed on a system design.
Requirements are expressed in terms of Metrics that can be computed on the system models.
Metrics might include speed, maximum towing force, or acceleration time. Requirements are
tests on these metrics. Typically, the conditions and scenario will be specified for a requirement
CyPhy support, e.g. Level ground, Pavement, and the scenario of Driver Throttle at 100%. For
example, “the vehicle must accelerate from 0 to 60 MPH in less than 8 Seconds”.

System performance evaluation is specified via a Test Bench. A test bench is an executable
specification of a requirement analysis. The parts of a Test Bench are:

• Test Drivers, reproducing the stimulus to the system
• Wraparound environment, providing the interfaces at the periphery of the system (e.g. the

ground interface with the tires, the external air, ...)
• Metrics evaluation, taking measurements of the system properties and converting into a

value of interest. The metrics are also tied to requirements, which can convert the metric
to a design “score”. And,

17
Approved for public release; distribution unlimited.

• The system under test – either a point design or a design space. In the case of a design
space, the test bench can be applied over the entire set of feasible designs.

The test benches are tied to specific workflows. Currently, CyPhy/OpenMETA implements test
benches for:

• Dynamics, using a lumped parameter model executed in the Modelica language.
Dynamics cover mechanical, electrical, hydraulic, and thermal domains.

• Structural, using 3D CAD assemblies to evaluate the physical compatibility of parts,
locate potential interference, and compute physical properties such as Center of Gravity,
Bounding Box, and assembled location of specific points on the system.

• Finite Element, using Finite element techniques to compute stress/strain, thermal
propagation, computational fluid dynamics, etc.

• Mobility, using the NATO Reference Mobility Model to predict vehicle mobility based
on aggregate system properties,

• Cyber, co-simulating dynamics with a time-based software/processor/network simulation.
• Manufacturability; creating the 3D CAD files containing the properties of each

manufactured join between parts, and an electronic Bill of Materials. From this design
package, iFAB can predict a cost and schedule to manufacture the system.

• Complexity, evaluating the graph-energy complexity of the system based on its
component complexity and structure of its connections. The complexity metric will
correlate with system cost and schedule.

Test bench also has a set of limits associated with part minimum/maximum parameters, (such as
maximum torques on a drive shaft), design limits associated with an assembly or the use of a part
in a system (such as minimum allowed battery charge). The limits are automatically evaluated
with each evaluation of a test bench. If limits are exceeded, a test bench result can be ignored or
otherwise modified or treated with less trust.

18
Approved for public release; distribution unlimited.

Figure 12: Example Test Bench

19
Approved for public release; distribution unlimited.

4.0 PUBLICATIONS

Neema S., Bapty T., Karsai G., Sztipanovits J., Corman D., Herm T., Stuart D., and Mavris D.,
“A Multi-Modeling Language Suite for Cyber Physical Systems,” Proceedings of the 4th
International Workshop on Multi-Paradigm Modeling.

Lattman Z., et al., “Towards Automated Evaluation of Vehicle Dynamics in System-Level
Design,” Proceedings of the ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2012,
August 2012, Chicago, IL, USA.

Wrenn R., et al., “Towards Automated Exploration and Assembly of Vehicle Design Models,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, IDETC/CIE 2012, August 2012,
Chicago, IL, USA

Simko G., et al., “Foundation for Model Integration: Semantic Backplane,” Proceedings of the
ASME 2012 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, IDETC/CIE 2012, August 2012, Chicago, IL, USA

20
Approved for public release; distribution unlimited.

 LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACRONYM DESCRIPTION

AVM Adaptive Vehicle Make

AML Architecture Modeling Language

CPS Cyber-Physical Systems

CAN Controller Area Network

CAD Computer Added Design

ISG integrated starter generator

DSTC Domain Specific Tool Chain

DESERT Design Space Exploration Tool

META META is not an Acronym. This is the program name as presented
by DARPA/TTO AVM

OCL Object Constraint Language

UML Unified Model Language

	1.0 Introduction
	2.0 Project Overview
	2.1 META Language Enabled META Design Flow
	2.2 META Language Multi-Model Multi-Domain Components
	2.3 META Language a Model Integration Language
	2.4 META Language Compositional Semantics

	3.0 Results
	3.1 META Semantic Backplane
	3.1.1 Metamodeling Languages
	3.1.2 Meta-models
	3.1.3 Meta-modeling Tools

	3.2 Cyber Physical Modeling Language (CyPhy)
	3.2.1 Components
	3.2.2 Design Spaces
	3.2.3 Design Evaluation (Test Bench)

	1.0
	4.0 Publications
	LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS
	2013-0119SF298.pdf
	REPORT DOCUMENTATION PAGE

