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1.0 INTRODUCTION 

 

 The process of mixing is an interesting fluid dynamical phenomenon possessing a wide 

range of industrial applications. Many materials used by society rely upon the formation of 

mixtures of constituent “purer” materials. For instance, concrete is a mixture formed from sand, 

water, aggregate (rock) and dry concrete powder. The latter material is itself a mixture of solid 

particulate materials. Also, even more common applications of mixing are found in the food 

service industry since many common foods are mixtures, e.g., soups, sauces, cereals, soft drinks 

and many, many others. In order to achieve a level of industrial efficiency, we must endeavor to 

understand the mixing process since mechanical energy is consumed by mixing. At the industrial 

scale, an inefficient mixing process slows the process of combining of ingredients and adds to 

the required mixing time. This inefficiency increases the cost of mixing; hence, it raises the price 

of the product. In other ways, mixing may create undesirable effects on the material such as 

temperature excursions and void formation. High shear mixing can easily cause fluid cavitation, 

the sudden formation and catastrophic collapse of tiny voids. This process consumes valuable 

energy and raises the fluid temperature. It also generates noise. When creating mixtures of 

energetic materials, it is, in most cases, necessary to prevent these mixing-related phenomena 

from occurring. High shear mixing can also damage many fluids such as human blood and 

enzymes like insulin (by either breaking or folding chemical chains). 

 

 High shear mixing is a common mixing process of some familiarity to nearly everyone. It 

is the process employed by household cake mixers. Arrays of metal or plastic blades are rotated 

through the material in question. The basic property of viscosity requires that there be no 

velocity difference between the blade surface and the fluid. As a result, the fluid adjacent to the 

blade surface is dragged along with the blade causing shear. The layer of fluid at the blade 

surface moves at a different speed than adjacent fluid layers creating a shear layer. This layer 

tends to roll up with adjacent fluid layers, a phenomenon that typifies the mixing process. The 

roll up of the layer places thin regions of different materials together. Repetition combines 

material layers over ever smaller scales making for thorough or more complete mixing. High 

shear mixing is effective and simple, but it does engender some deleterious side effects. The 

action of viscosity leads to friction that dissipates mechanical energy into heat. In certain cases, 

the material being mixed may reach high temperatures. For energetic materials, this heating is 

not welcome. Also, for complex biological fluids, mixing can cause the formation of material 

“strands” that change the mechanical properties of the fluid. In these cases, it is beneficial to 

employ an alternative mixing process, one that does not rely on direct material shear. 

 

 Resonant Acoustic Mixing (RAM) is a process that employs acoustic waves, at a 

relatively low frequency (60 Hz), to drive the mixing process.[1] In RAM, the fluid and vessel 

are envisioned as a spring-mass-damper system where energy is transferred between the springs 

and the moving fluid masses. A condition of resonance is sought where acoustic energy from a 

driving source is directed into the kinetic energy of fluid eddies. The purpose of the present work 

is to determine whether or not some aspects of this process can be captured by high fidelity 

numerical simulation, i.e., by solving the Navier-Stokes equations. This project is interesting 

because the resonance condition sought in [1] is related to a linear, second order ordinary 

differential equation whereas the Navier-Stokes equations are inherently nonlinear through the 

participation of the advective terms for fluid motion.[2] Questions also arise in the context of the 
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type of mixing encountered. Turbulent fluid motions tend to result in the most effective mixing 

because the turbulent cascade of energy tends to direct energy into smaller and smaller scales of 

motion. That is to say, fully developed turbulence is characterized by the generation of ever 

smaller sized eddies (regions of circulating fluid). The direct interpretation of this process is that 

ever smaller masses of fluid are combined together; hence, more effective mixing occurs. Yet, 

turbulence is generally confined to high Reynolds number flow fields, those flow fields where 

inertial forces tend to dominate over viscous forces. Viscous forces tend to dissipate or regularize 

fluid motion toward laminar flow. For these reasons, turbulence is not likely to occur for high 

viscosity mixing. Still, even at high viscosities, this fact does not preclude organized rotational or 

unstable fluid motion. Purely hydrodynamic instabilities such as Rayleigh-Taylor and 

Richtmyer-Meshkov instabilities also occur.[3] These phenomena are true fluid instabilities that 

do not possess some of the physical features of turbulence such as randomness and 

intermittency.[4] Yet, these instabilities may support highly efficient mixing. 

 

 The discussions that follow constitute only a beginner’s investigation of acoustic mixing. 

Much of the data associated with commercial RAM is likely to be of a proprietary nature and not 

available to the individuals outside of the Resonant Acoustic Mixers corporation. The mixer 

documentation indicates that the acoustic excitation is truly based in physical vibration of the 

sample (instead of actual sound) with a fundamental frequency of 60 Hz.[1] Yet, the mixer 

design professes to have the ability to sense conditions of resonance and adjust the excitation 

accordingly. The studies shown below do use true acoustic excitation with fixed amplitude and at 

the fundamental frequency. The fluid dynamics are genuine as predicted by numerical solutions 

of the Navier-Stokes equations calculated by using the Large Eddy Simulation with LInear  Eddy 

modeling in 3 Dimensions (LESLIE3D) multiphase physics computer program. LESLIE3D is 

developed cooperatively by the Air Force Research Laboratory and Professor Suresh Menon at 

the Georgia Institute of Technology. Hands-on development of this computer code is 

accomplished by staff at Professor Suresh Menon’s Computational Combustion Laboratory.  
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2.0 METHODS, ASSUMPTIONS AND PROCEDURES 

 

 In the manner of review, sound or acoustic radiation is a longitudinal compression-

rarefaction wave. In most cases, these waves travel as weak (linear) disturbances in a gas, liquid 

or solid material medium. Every isotropic medium at constant thermodynamic conditions has a 

fixed speed of sound (or celerity), and this speed is the maximum possible propagation speed for 

a weak or linear disturbance. Although not routinely encountered, there are cases where strong 

acoustic waves exhibit nonlinear behavior.[5] This phenomenon does occur in regions near the 

tips of turbo-machinery blades. Common acoustic waves retain linear character and may be 

superposed. In spite of their linear behavior, the propagation of sound waves in moving media is 

accurately modeled by the Navier-Stokes equations. These equations admit solutions for both 

linear and nonlinear waves for all speed regimes where the medium is modeled as a continuum. 

This system of equations is solved by LESLIE3D, so we begin our theoretical discussion with a 

presentation of these equations. 

 

2.1 Navier-Stokes Equations 

 

 The Navier-Stokes equations constitute a system of conservation laws for mass, 

momentum and energy (when expressed in homogeneous form).[6] For problems involving 

multiple phases (such as a dispersed phase of particles), the equations become nonhomogeneous. 

The overall system still retains conservative behavior but recognizes the presence of mass, 

momentum and energy “sources”. The present work involves no dispersed phase. In Cartesian 

coordinates, the conservation of mass equation may be written as 
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with the summation convention in effect. The conservation of momentum is enforced by the 

following equation. 
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where the stress tensor ij  is defined as 
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Coefficient  is the dynamic viscosity while   is a parameter put forth by Stokes to represent the 

effect of dilatational stress.[2] By Stoke’s hypothesis, this factor is normally taken as 
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It follows that the first term in (3) is the dilatational stress while the second term is the shear 

stress. The conservation of energy equation is expressed in a similar form, i.e., 
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where 

 

                                                                   
j

j
x

T
Kq



                                                                (6) 

 

represents the components of the heat conduction vector within the fluid (Fourier’s Law). In (5), 

we have also introduced the total energy per unit mass E, i.e., 
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This system of conservation laws is not mathematically closed. In order to achieve closure, we 

must add a sixth equation, namely the equation of state. The equation of state, in most cases and 

for pure, single phase substances, is a relation that relates three thermodynamic variables. A 

frequently encountered form for gases is 

 

                                                                    ),( ePP                                                                 (8) 

 

For the configurations discussed in this report, we employ a special form of (8) commonly 

known as the perfect gas equation of state. 
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The simulations conducted here exist at an early stage in research, so (9) is applied in the 

calorically perfect manifestation where 
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pC  and vC  are both constant for the calorically perfect gas model.[6] For chemically reacting 

flow fields, a set of species equations are included within the system. The species equations may 

be expressed as 
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For a flow field containing N species, the mass fractions are constrained so that 
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The diffusion velocity components are defined as 
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with the constraint (summation convention does not apply to m) 
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For multi-species flow fields, the internal energy has an alternative expression from that shown 

in (11). Based upon species enthalpies we have that 
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where 
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2.2 Navier-Stokes Equations in Dimensionless Form 

   

 One may often derive great insight for a physical problem by considering the pertinent 

governing equations in dimensionless form. This assertion is particularly true for the Navier-

Stokes equations. One may remove the dimensions from these equations by replacing the 

dimensioned variables occurring in the equations with a set of scaled, dimensionless variables. 

The fluid dynamical variables may be scaled as follows. 
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where L, T, L/T and 0  are the length, time, velocity and density scales for the problem. In the 

momentum equation, pressure must be scaled, so the consistent units for pressure are 
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Also, in the scope of dimensional analysis, (7) provides the scale for energy, i.e., 
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Hence, 
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Absolute temperature requires a slightly different treatment; informally for calorically perfect 

gases, we may write that 

 

                                                                       pCE                                                                (23) 

 

By asserting that 
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we can apply (22) and show that 
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By using (3) and (19), we can show that 
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and that 
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By using (19), we can write the dimensionless continuity equation as 
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The application of (19) and (26) to (2) leads to the dimensionless momentum equation 
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where the Reynolds number, Re, is defined as 

 

                                                                  


 Lu00Re                                                               (31) 

 

Similarly, equations (19), (27) and (28) may be used to convert (5) into the dimensionless energy 

equation 
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In (32), the Prandlt number, Pr, is defined as 

 

                                                                     
k
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Both the Reynolds and Prandtl numbers are dimensionless quantities that are strongly related to 

the properties of a compressible, viscous flow field. The Reynolds number represents the ratio of 

inertial to viscous forces. On the other hand, the Prandtl number conveys the ratio of the flow 

field’s ability to transport momentum to its ability to transport heat.[2] These dimensionless 

numbers (or groups) are drawn from the mathematical theory of similarity, a system of powerful 

techniques useful for solving a wide array of problems in physics.[7] As it relates to fluid flow 

problems such as the RAM, we can say that two different flow fields that possess the same 

geometry (streamline configuration) and the same Reynolds and Prandtl numbers are similar for 

slow speed (Mach zero) flows. That is to say, their flow solutions map onto one another through 

the use of the scaling system discussed above. 

 

 For the RAM problem, dimensionless groups are important, particularly the Reynolds 

number. The extent of mixing is, in part, dictated by the scales of shear motion in a given flow 

field. The widest division of shear motion scales is encountered in turbulent flow fields, and 

turbulence thus provides the most efficient mixing. Yet, the level of turbulence is closely 

associated with the Reynolds number. It is interesting that the amount of data available for the 

RAM permits that an estimate of the Reynolds number be made. These calculations are shown 

later in Sections 3.1 and 3.2. The target problem, mixing at high values of dynamic viscosity, 

presents an interesting departure for LESLIE3D. The first reason for this departure is 

straightforward; we are trying to simulate either a liquid-liquid of liquid-solid mixing problem by 

using a multiphase gas dynamics code. The second reason is of equal interest. LESLIE3D is 

designed for the dynamic large eddy simulation of turbulence. High viscosity mixing, in this 

case, is confined to low Reynolds numbers; hence, it is unlikely to involve turbulence. As a 

result, LESLIE3D is operated in direct numerical simulation (DNS) mode for laminar mixing. 



Distribution A 

8 

 

For LESLIE3D, this territory is unexplored. Part of the knowledge to be gained from working on 

this problem is how to operate the computer code for this class of mixing problem. We also hope 

to determining the limitations of using this approach. 

 

2.3 Vector Forms for the Finite Volume Method 

 

 LESLIE3D is programmed to solve multiphase flow problems with descriptive units. 

That is to say, every property is expressed in an appropriate system of units. By default, the 

meter-kilogram-second (MKS) system is employed by the computer code. As a result, 

LESLIE3D applies the governing equations in dimensional form as shown in Section 2.1 To 

numerically solve this system, we may place the system in vector form to facilitate its solution 

via the finite volume method.[6] Since the system (1-13) is cast in conservative form (with 

source terms), this process is not difficult. Note that we do not admit the presence of chemical 

reactions (nor of mass sources). The vector Navier-Stokes equations for multi-species flow may 

be written as 
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where the vector of conserved variables is given by 
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The remaining terms in (34) are Cartesian derivatives of the flux vectors (for n species), i.e., 
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Equation (34) has a very special form. Let us denote 
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then (34) becomes 
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Let us integrate (40) in space over a hexahedral control volume such as the one shown in Figure 

1. Doing so is a key step for this discretization method. The integration is annotated as follows. 

 

 
Figure 1. Hexahedral control volume (volume V ) for the finite volume method 
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Application of the divergence theorem yields 
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Note that in both (41) and (42), the time derivative is now ordinary. All of the spatial dependence 

of its argument has been removed by integration. The right hand term has been transformed into 

an integral computed over a closed surface. For the hexahedral volume shown in Figure 1, this 

integral is evaluated as the sum of surface integrals computed over the six sides of the control 

volume, i.e., 

                                                      0ˆ
6

1




m

m

m

V

snd
dt

d
AU                                                  (43) 

Equation (43) is a semi-discrete form that can be integrated by the same algorithms used for 

solving ordinary differential equations. The fully explicit Multi-step Runge-Kutta methods offer 

a great deal of utility in solving this type of equation in time.[9] The right hand term addresses 

that dependence of the fluid system on space. It contains several space derivatives, particularly 

for the physics of viscosity, heat conduction and molecular diffusion. From the standpoint of 

pragmatics, this method completely separates the algorithms for temporal and spatial 

discretization. If we center the discretization on the cell indexed by (i, j, k ), we can evaluate the 

volume integral by U
~

(an averaged value for U theoretically existing at the cell center) 

multiplied by the cell volume. The current version of LESLIE3D utilizes structured grids, so the 



Distribution A 

10 

 

right hand term in (43) (a sum of flux vectors) possesses an underlying order. The flux vectors 

are oriented along three curvilinear directions delineated by ordinal indices i, j and k. As a result, 

this term can be written as the differences in flux computed along these directions. The time 

derivative may be evaluated by using a general Newton divided difference. With these 

qualifications, (43) can be rewritten as 

 

                      )()ˆ()ˆ(

~
3

1

3

1

,,

,,








 
 i

ii

i

iiiikji

n

kji
ffsnsnV

t
AA

U
                      (44) 

 

In (44), index i represents the three directions i, j and k on the grid. The + and – signs represent 

the sign of the flux given by its cell face as is shown in Figure 1. This structured grid approach 

permits the computationally efficient form existing on the right side of (44). This form illustrates 

that the change in properties within a cell is determined by the difference in flux across the cell. 

Several discretization schemes may be applied to (44), but the present work is concentrated on 

applying MacCormack’s method.[10] 

 

2.4 MacCormack Discretization 

 

 MacCormack’s method is a classic predictor-corrector scheme. The predictor step uses 

information available at the current time level to produce a solution estimate at an “intermediate” 

time level. The estimate at this step possesses an error that is biased in the forward space 

direction. The corrector step uses information at both the current and intermediate time levels to 

estimate the solution at the new time level. In the calculation of this step, error is biased in the 

backward space direction. The strength of this method is that by reversing the sign of error 

generation at each step, the new growth of numerical error is maintained small. In the notation of 

(44), the predictor step is written as 
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whereas the corrector step is written as 
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The half-index notation used in (45) and (46) allows flexibility in setting the formal order of 

accuracy for the flux calculation.[6] As an example, a second order MacCormack scheme may be 

constructed by assigning 
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with similar expressions for directions j and k. The problems addressed in the results section 

apply the second order MacCormack scheme is pure form with no artificial viscosity. Hence, the 

attendant solutions form a baseline case for more in-depth simulations to be performed later. 

 

2.5 Boundary Conditions 

 

 When solving partial differential equations, boundary conditions frequently become an 

issue of contention due to the difficulties associated with the proper representation of physics at 

the boundary. Significant numerical theory is often required to create reasonably good boundary 

conditions. Fortunately, the configurations considered in this work involve only solid surface 

boundaries. The exception to this rule is the boundary where acoustic forcing is implemented. 

The set-up of this condition is discussed in the next section. Otherwise, solid surface boundaries 

are enforced through the use of the first adjacent ghost cell. The details are omitted, but both slip 

and no-slip boundaries are easily treated by the processes described in Hirsch [6] or Poinsot and 

Lele.[11] 

 

2.6 Acoustic Forcing 

 

 The RAM mixes materials by exploiting the coupling that can occur between acoustic 

pressure (or velocity) fluctuations with fluctuating vorticity. Adjacent “layers” of fluid are 

wrapped together by circulating fluid loops established by the rotation existing in vortices. 

Viscosity is an important contributor to this process since it makes the fluid layers “adhere” to 

one another. Acoustic forcing must be expressed in an algorithmic form that can be incorporated 

in LESLIE3D. Specifically, this algorithm is established within a solid surface boundary routine 

that sets ghost (or phantom) cell values for the boundary where excitation is employed. Forcing 

is applied as a perturbation added to main flow values of pressure and velocity.[8] Consistent 

values of ghost cell density and internal energy are then calculated to complete the update. The 

manifestation of acoustic excitation applied for this report is described as follows. We assume 

that the acoustic pressure has fixed amplitude and angular frequency, i.e., 

 

                                                        )2sin(1.0 tPP atmac                                                        (34) 

 

The magnitude of pressure forcing may be adjusted by changing the “0.1” in (34) to some other 

value. Yet, this magnitude may be kept small to ensure that the perturbation does not exceed the 

acoustic level. The accompanying velocity perturbation is calculated from the equation 

 

                                                                 
c

P
v ac

ac


                                                                    (35) 

 

where  and c  are calculated in the flow field cell immediately adjacent to the wall.[8] The 

acoustic pressure perturbation is added to the flow field pressure found in the boundary adjacent 

flow field cell and then stored in the ghost cell. The acoustic velocity perturbation is added to the 

flow field velocity normal to the boundary and stored similarly. Internal and total energies for the 

ghost cell are then computed as discussed in Section 2.1. In essence, this algorithm is a good 

representation for the situation where an acoustic wave enters the flow field at this boundary. 
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However, RAM acoustic forcing seems more mechanical in nature. That is to say, the mixing 

canister is essential shaken at a frequency of about 60 Hz. This condition is more difficult to 

represent in terms of a boundary condition algorithm since the entire container is shaken on a 

platform. Still, the algorithm described above is suitable for initial estimates. 

 

3.0 RESULTS 

 

 In this report, we simulate the physics for two notional problems where mixing is driven 

by continuous wave acoustic excitation. While both test problems employ a cylindrical mixing 

vessel, the first problem involves the mixing of Nitrogen and Oxygen gases. The equations of 

state and transport algorithms built into LESLIE3D are well suited for solving this problem. This 

problem lends insight into the basic physics of mixing. The second problem presents a far greater 

challenge for LESLIE3D. In this case, we employ high viscosity fluids that, in truth, should be 

modeled by the use of a liquid equation of state. However, we also treat these fluids as gases in 

order to minimize required changes to the computer program. The attendant viscosities are very 

high therefore increasing the natural damping in the system and weakening the acoustic waves. 

 

3.1 Oxygen – Nitrogen Mixing 

 

 LESLIE3D possesses transport data (temperature dependent viscosity and thermal 

conductivity data) for both Oxygen and Nitrogen. As perfect gases, these substances are well 

understood, so their mixture defines an excellent test case for the new acoustic excitation 

algorithm. This problem is designed to execute as a multi-block problem using 25 blocks or 

subdomains. The geometry is that of a cylinder one meter in diameter with a height of 3 meters. 

The block structure and initial gas concentration plots are shown in Figure 2. 

 

 
Figure 2.  Set-up of the Oxygen-Nitrogen mixing test problem. 

 Figure 2(a) presents the block structure. The mixer is cut into a set of thick disks along 

the z axis. Each disk is then divided into five hexahedral regions. The center block is box-shaped 

while the remaining four regions have the same shape with a circular outer boundary. Each block 

has the same volume and the same number of cells and grid points. Figure 2(b) offers a simple 
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view of the initial mass fractions for species Nitrogen and Oxygen. This plots shows two slices 

cut through the flow field, one parallel to the xz-plane and one parallel to the yz-plane. The blue 

color represents Nitrogen; red indicates pure Oxygen. Colors intermediate between blue and red 

indicate a mixture of the two. As is indicated by the figure, the Nitrogen mass is situated atop the 

Oxygen bubble. There is no gravity in this simulation. No-slip boundary conditions are enforced 

along the top and sides of the cylinder. Of course, the acoustic forcing condition is implemented 

on the plane at z = 0 and begins at time zero. This cylinder is quite large, so the time step for the 

explicit computer code is quite large. The Reynolds number for this configuration is about 

500,000, so the flow field is likely to be turbulent. Note that flow fields possessing Reynolds 

number exceeding 2000 are expected to exhibit turbulence.[2] Still, for comparison with the 

configuration to be described in the next subsection, we are using the laminar flow equations. 

Mixing processes for this model are driven by viscous hydrodynamics.  

 

 

 
Figure 3. Slices of (a) vertical velocity and (b) vorticity magnitude for the Oxygen-Nitrogen mixing test case at 

261.6 ms 

For this test case, LESLIE3D executes rather quickly with a time step of about 10
-5

 

seconds. In Figure 3, we show plots of vertical velocity and vorticity magnitude at a solution 

time of 261.6 ms. In Figure 3(a), fluctuations in vertical velocity near the base of the cylinder 

clearly show the presence of the continuous acoustic wave. A reflection from the top of the 

mixer is also visible. Perturbations in velocity also appear to crawl up the walls of the cylinder 

and into the core region. Satisfying the no-slip boundary condition generates vorticity at the base 

of the cylinder and along the walls. In fact, vorticity develops rather quickly even in the core of 

the cylinder creating an active mixing environment. Figure 4 exhibits plots of the same 

properties at 854.6 ms. By this time in the solution process, velocity perturbations have moved 

completely up the cylinder walls establishing motion throughout the gas. This behavior is evident 

in Figure 4(a). Figure 4(b) establishes that strong vorticity fluctuations have been established 

throughout the cylinder. We can conclude that the flow field is being effectively mixed by 

acoustic forcing. The extent of mixing may also be illustrated by examining a sequence of 

snapshots of the mass fraction field. Mass fraction plots for gas mixture are shown in Figures 5 

and 6. In the course of mixing, it is interesting to observe the Oxygen move upward along the 
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walls to the top of the mixer. Then it makes its way downward into the core. By the end of the 

first second, the Nitrogen and Oxygen masses have largely inundated one another. At this rate, 

thorough mixing is expected within two to three seconds. The maximum temperature exhibited 

during the first second about 306ºK. In Figures 5 and 6, we have again used slices cast along the 

xz and yz planes. The block edges have been removed from the plots for clarity. 

 

 

 

 
Figure 4. Slices of (a) vertical velocity and (b) vorticity magnitude for the Oxygen-Nitrogen mixing test case at 

854.6 ms 

 

 
Figure 5. Slices of mass fraction for Oxygen (red) and Nitrogen (blue) at (a) 516.9 ms and (b) 686.7 ms 
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Figure 6. Slices of mass fraction for Oxygen (red) and Nitrogen (blue) at (a) 854.6 ms and (b) 1020 ms 

 

3.2 High Viscosity Mixing 

 

 The end goal of a series of numerical studies (this study being the first in the series) is to 

develop a procedure for simulating the mixing physics for high viscosity materials. Until work 

began on this project, our experience was limited to the mixing of gases, particles and droplets in 

turbulent, shocked environments at high Reynolds numbers. Mixing high viscosity materials is a 

more down to earth project, but it presents significant challenges for LESLIE3D since high 

viscosity materials attenuate acoustic radiation and delay the destabilization of the two-fluids 

interface. Investigating methods of operating LESLIE3D to properly capture this type of mixing 

is an ongoing effort. The results shown below are preliminary. 

 

 
Figure 7. Grid volumes and initial mass fraction distribution for the high viscosity mixing configuration 

 The high viscosity mixing configuration is shown in Figure 7. The mixing chamber is a 

cylinder with a height and a diameter of 8.602 cm (3.39 in). The base of the cylinder is located at 
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z equal zero. The base is also the plane where acoustic excitation is implemented. The cylinder 

contains two unmixed high viscosity fluids. The interface between the two fluids exists at the 

cylinder’s half height. Both fluids are hydroxyl terminated polybutadienes; at the cylinder top, 

we have resin R45-HTLO while resin R20-LM resides at the bottom. Estimated properties for 

these substances are conveyed in Table 1. In most case, for properties such as specific heat and 

heat of formation, exact values are presently unavailable; reasonable substitutes are made from 

contemporary literature.[12,13,14] For the results that follow, these properties are assumed to 

remain constant (no variation with changing temperature). Since this simulation involves no 

chemical reactions, these results are not sensitive to the heats of formation. 

 
Table 1. Thermophysical, thermochemical and transport properties for high viscosity resins 

Resin 
Mol. Weight  

(g/mol) 

Viscosity  

(mPa.s) 

Thermal Cond. 

(W/K/m) 

Cp  

(J/kg/K) 

Heat of Form. 

(J/kg/K) 

R45-HTLO 2800 5000 0.1 52.63 54.40 

R20-LM 1400 1400 0.1 52.63 90.67 

 

 By using LESLIE3D, this test case is simulated for a problem time of about one-third 

second. Even on 25 processors, this configuration requires a significant amount of computer 

time. The temporal stepsize is one order of 10
-7

 seconds. The Reynolds number for this 

configuration is less than one, consistent with a laminar flow field. Plots of (a) vertical velocity 

and (b) vorticity magnitude at solution time 9.731 ms are shown in Figure 8. MKS units are used  

 

 
Figure 8. Plots of (a) vertical velocity and (b) vorticity magnitude for the high viscosity mixing problem at 

9.731 ms 

 

for all plots. It is evident from Figure 8 that acoustic oscillations attenuate rapidly in the highly 

viscous fluid. Velocity fluctuations deplete to a tenth of their starting magnitude before traveling 

half the cylinder’s height. Still, the effect of the forcing is felt throughout the cylinder. Vorticity 

inundates the cylinder volume greatly because of the velocity combined with the requirement for 

satisfying the no-slip condition along the walls. Similar plots are shown for 73.95 ms in Figure 9. 
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Figure 9. Plots of (a) vertical velocity and (b) vorticity magnitude for the high viscosity mixing problem at 

73.95 ms 

In Figure 9, the velocity field strengthens on the whole throughout the volume maintaining the 

level of vorticity through the mixer. The high vorticity bubble can be observed to move along the 

walls higher into the cylinder. Eddies, regions of circulation, begin to organize within the 

volume. Figure 10 contains similar information cast at 381.9 ms. At this time, fluid velocity is  

 
Figure 10. Plots of (a) vertical velocity and (b) vorticity magnitude for the high viscosity mixing problem at 

381.9ms 

well organized within the mixer and peaks strongly along the central axis. Vorticity fluctuations 

are becoming very strong along the walls. We expect to see a reasonably high level of 

perturbation of the interface between the two fluids. This interface is shown in Figure 11. As one 
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Figure 11. Mass fraction plot for the high viscosity mixing problem at 381.9 ms 

 

may suspect, the interface is spreading due to molecular diffusion and possesses a domed shape 

because of acoustic forcing. Also, the mass fraction contours are beginning to curl along the wall 

surfaces, an additional indicator of mixing potential. Yet, at the time this report is written, 

destabilization of the interface is not observed. As it is in the case of many other physical 

configurations presented as “new” to a computer code, this simulation is not without its 

difficulties. The primary difficulty encountered is an issue that we will refer to as overheating. In 

order to cause mixing, we inundate the flow field near the cylinder base with a strong, 

continuous acoustic wave. This oscillatory pressure wave creates strong density and temperature 

fluctuations. In the course of the simulation, temperature builds to an excessive level near the 

cylinder base. Molecular diffusion cannot remove heat from this area rapidly enough, so 

unrealistically high temperatures are achieved. This difficulty may be caused by an inadequacy 

of the equation of state, by an incorrect thermal conductivity value, or perhaps the acoustic 

excitation model should be cast in terms of a velocity boundary condition. A simple fix being 

tested now is to implement a non-constant wall temperature model at the cylinder base. This 

model has the ability to allow heat to escape from the base maintaining the temperature lower. 

So far, this fix has proven effective. 

 

 Other issues deal with the transport model. In truth, viscosity is a function of temperature. 

For liquids or soft solids, we expect viscosity to fall with rising temperature. This aspect of 

physics is not incorporated in the present model. Enough data does exist to build a temperature 

dependent model in the future, and it is not difficult to enter this type of model into LESLIE3D. 

Another potential issue lies in the initiation of the hydrodynamic instability at the material 

interface. In the Oxygen-Nitrogen model, this instability tripped on its own, probably due to a 

tiny grid irregularity located at interface between two blocks. So far for this case, we have not 

seen the flow instability trip perhaps due to the effects of high viscosity. This instability is the 

event that initiates realistic mixing. For the high viscosity model, it may be necessary to perturb 

the flow field at the material interface to initiate mixing. This type of perturbation is not difficult 

to implant within the problem, yet this change must be made with care. It is also important to 

remember that this problem is being solved by algorithms for gas dynamics, and gravity is not 

implemented. It follows that there will be some aspects of table-top RAM mixing that the 
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computer code cannot easily mimic. An example is that of a void above the material. In gas 

dynamics, we do not usually expect to see true voids in a slow speed flow solution. In general, 

we must fill the field with non-zero density gas everywhere. When mixing liquids or solids, the 

RAM does not have this limitation. In the long run, it is desirable to modify LESLIE3D to model 

RAM’s physics more closely, but for now, LESLIE3D is a serviceable tool for studying the 

process of RAM.  
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4.0 CONCLUSIONS 

 

 This technical report concentrates on studying the dynamics associated with Resonant 

Acoustic Mixing (RAM). This process involves the use of continuous wave acoustic signals (or 

vibrations) to mix materials by exploiting an interesting coupling between pressure and vorticity 

fluctuations. LESLIE3D, a parallel, multiphase physics computer program developed by the 

Georgia Institute of Technology is the tool applied to simulate two basic mixing cases. The 

theory behind LESLIE3D is discussed in this report focusing primarily on low Reynolds number 

flow fields. Also, the algorithm used to implement acoustic excitation in LESLIE3D is presented, 

and its inner workings are contrasted with some available information on the functioning of the 

resonant acoustic mixer. Two test cases are addressed in the report. The first is the mixing of 

Oxygen and Nitrogen. This test case is simple to implement and results in fully developed 

mixing. Much information on the fluid dynamics of mixing can be extracted from this test case. 

The second test case addresses our target application. Here, the problem of mixing two highly 

viscous resins is tackled. This simulation, although incomplete, generates a realistic velocity 

field and deforms the material interface in a realistic manner. The purpose of this test case is to 

educate the researcher on how to solve this type of problem using the computer code. We have 

detected difficulties in overheating near the acoustic boundary, and we may have determined a 

potential need for manually “tripping” the instability that initiates mixing. Still, the high 

viscosity mixing problem remains under investigation. 

 

 In the future, we plan to incorporate particles within the flow field, a step closer to the 

target application of this simulation technique. Also, a series of simple one or two component 

mixing problems are to be solved for comparison with experiment. It is desirable to see whether 

or not, with limitations in hand, that LESLIE3D can mimic the basic mechanism of mixing 

observed for resins. The acoustic boundary condition may also be modified in order to improve 

the way it performance in comparison with the laboratory mixer. We may also extend the size of 

the simulation for massively parallel execution. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

 

This section contains brief definitions of various terms and acronyms used throughout this 

document. Only terms and acronyms whose definitions are considered uncommon are included. 

Cp - Constant pressure specific heat 

Cv - Constant volume specific heat 

Dm - Diffusion coefficient for species m 

E - Total energy per unit mass 

e - Specific internal energy 

hm - Enthalpy of species m 

K - Heat conduction coefficient 

P - Thermodynamic pressure (absolute) 

qi - i
th

 component of heat conduction vector (Fourier’s Law) 

R - Species perfect gas constant 

T - Absolute temperature 

t - Time coordinate 

ui - i
th

 Cartesian velocity component 

Vim - i
th

 Cartesian component of diffusion velocity for species m 

xi - i
th

 Cartesian space coordinate 

Ym - Mass fraction of chemical species m 

 

  - Ratio of specific heats 
0

fmh  - Heat of formation for species m 

ij  - Dirac delta 

  - Stoke’s parameter 

  - Dynamic viscosity 

  - Mixture density 

ij  - Shear stress tensor 

m  - Production rate for species m 

  - Dimensionless temperature 
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