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1 Objectives

Supervised machine learning can be formulated in a mathematically rigorous way as the
problem of inferring an underlying functional relation behind data. However, unsupervised
machine learning is often defined in an ambiguous way—extracting some useful knowl-
edge hidden in the data without explicit guidance. Nevertheless, unsupervised learning
methods such as clustering and change detection are indispensable to various real-world
applications. However, due to its vague formulation, studies of unsupervised learning tend
to be ad-hoc, and thus development of unsupervised learning methods is still far behind
supervised learning. The aim of this project is to overcome this difficulty by providing
a systematic approach to a class of ill-defined unsupervised learning problems based on
information measures.

Mutual information (MI) is a standard information measure that has been exten-
sively explored in the field of information theory. However, MI is hard to approximate
from data samples and it is not robust against outliers. In our project, we consider an
alternative information measure called squared-loss mutual information (SMI), which is
more robust against outliers by definition. To develop a family of machine learning al-
gorithms based on SMI, we utilize its robust and computationally efficient approximator
called least-squares mutual information (LSMI), which is one of the major deliverables
of my previous project, “A Density-Ratio Approach to Machine Learning”, supported by
AFOSR/AOARD (AOARD-09-4071). The usefulness of the proposed approach is demon-
strated through experiments.

2 Status of effort

My project consists of two subjects: (A) Development of information-based machine
learning algorithms and (B) Improvement of information estimators for further advances.

For the subject (A), we have actively explored various unsupervised machine learn-
ing topics and developed novel information-based algorithms, including clustering, in-
dependence testing, object matching, class-imbalance adaptation, change detection, and
canonical dependency analysis. We further developed methods of supervised dimension
reduction, probabilistic classification, and non-stationarity adaptation in the same frame-
work.

For the subject (B), we explored novel paradigms for further improving the accu-
racy and robustness of information estimators, including information estimation with
dimension reduction for coping with high dimensionality, information estimation with
a relative-divergence and a difference-divergence for enhancing robustness against out-
liers, and a unified framework of information estimation for better understanding mutual
relation among different information measures.
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3 Abstract

We developed various information-based machine learning algorithms:

• Object matching: Given two sets of unpaired objects (such as speech signals from
two different subjects, a set of photos and a photo frame, and images taken from
different modalities), we pair them by maximizing their mutual dependency (Pub-
lication 4).

• Clustering: Given input-only samples, we determine their cluster labels by finding
the most dependent label assignments on the original input samples (Publications
5 and 14).

• Canonical dependency analysis: Given two sets of paired samples, we find the pro-
jections to maximize their dependencies (Publication 20).

• Statistical testing: Given two sets of samples, we decide whether they are drawn
from the same probability distribution (Publications 13 and 17). Similarly, given
paired samples, we decide whether they are independence (Publication 11).

• Class-prior change adaptation: Given labeled training data and unlabeled test data
having different class balances, we estimate the class-balance of unlabeled test data
by matching the distribution of unlabeled test data with the class-wise mixture of
training data (Publication 9).

• Change-detection in time-series: Given time-series, we detect change points at which
properties of time-series switch by comparing the probability distributions of current
and past data (Publication 19).

• Given labeled training data and unlabeled test data having different input distribu-
tions, we perform distribution-adaptive learning for reinforcement learning (Publi-
cation 15) and probabilistic classification (Publication 16).

• Supervised dimension reduction: Given input-output paired data, we reduce the
dimensionality of input data by maximizing the dependency (Publication 7 and 24).

• Computationally efficient probabilistic classification: Given labeled data, we esti-
mate the posterior probability of labels given an input pattern in a computationally
efficient way (Publication 12).

We also investigated various properties of information estimators for further develop-
ment:

• Elucidation of statistical and numerical properties of a least-squares kernel-based
information estimator (Publication 18 and 25).

• Information estimation with dimension reduction for coping with high dimensional-
ity (Publication 6).
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• Information estimation with a relative-divergence and a difference-divergence for
enhancing robustness against outliers (Publications 8, 26, and 10).

• A unified framework of information estimation for better understanding mutual
relation among different information measures (Publication 21).

• Relation to a kernel-based independence measure (Publication 22).

Finally, we published monographs and review articles related to the current project:

• Monograph on density-ratio estimation (Publication 1).

• Monograph on non-stationarity adaptation (Publication 2).

• Review article on non-stationarity adaptation (Publication 3).

• Review article on information-based learning (Publication 23).

4 Personnel Supported

The research activity of the following people was supported.

• Masashi Sugiyama (Tokyo Institute of Technology),

• Makoto Yamada (Tokyo Institute of Technology),

• Gang Niu (Tokyo Institute of Technology),

• Marthinus Christoffel du Plessis (Tokyo Institute of Technology).

5 Publications

During the 24 months, the following papers were published. The papers indicated by ‘*’
were attached to this report, and all the publications are available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/publications.html”.

Books and Articles

1. Sugiyama, M., Suzuki, T., & Kanamori, T. Density Ratio Estimation in Machine
Learning, 344 pages, Cambridge University Press, Cambridge, UK, 2012.

2. Sugiyama, M. & Kawanabe, M. Machine Learning in Non-Stationary Environments:
Introduction to Covariate Shift Adaptation, 308 pages, MIT Press, Cambridge, MA,
USA, 2012.

3. * Sugiyama, M. Learning under non-stationarity: covariate shift adaptation by im-
portance weighting. In Handbook of Computational Statistics: Concepts and Meth-
ods, 2nd edition, Chapter 31, pp.927-952, Springer, Berlin, Germany, 2012.
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Conference Papers

4. * Yamada, M. & Sugiyama, M. Cross-domain object matching with model selection.
In Proceedings of Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS2011), vol.15, pp.807-815, Fort Lauderdale, Florida, USA, Apr.
11-13, 2011.

5. * Sugiyama, M., Yamada, M., Kimura, M., & Hachiya, H. On information-
maximization clustering: Tuning parameter selection and analytic solution. In
Proceedings of 28th International Conference on Machine Learning (ICML2011),
pp.65-72, Bellevue, Washington, USA, Jun. 28-Jul. 2, 2011.

6. Yamada, M. & Sugiyama, M. Direct density-ratio estimation with dimensional-
ity reduction via hetero-distributional subspace analysis. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI2011), pp.549-554,
San Francisco, California, USA, Aug. 7-11, 2011.

7. Yamada, M., Niu, G., Takagi, J., & Sugiyama, M. Computationally efficient suffi-
cient dimension reduction via squared-loss mutual information. In Proceedings of
the Third Asian Conference on Machine Learning (ACML2011), vol.20, pp.247-262,
Taoyuan, Taiwan, Nov. 13-15, 2011.

8. Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., & Sugiyama, M. Relative
density-ratio estimation for robust distribution comparison. In Advances in Neural
Information Processing Systems 24 (NIPS2011), pp.594-602, 2011.

9. * du Plessis, M. C. & Sugiyama, M. Semi-supervised learning of class balance under
class-prior change by distribution matching. In Proceedings of 29th International
Conference on Machine Learning (ICML2012), pp.823-830, Edinburgh, Scotland,
Jun. 26-Jul. 1, 2012.

10. * Sugiyama, M., Suzuki, T., Kanamori, T., du Plessis, M. C., Liu, S., & Takeuchi,
I. Density-difference estimation. In Advances in Neural Information Processing
Systems 25 (NIPS2012), pp.692-700, 2012.

Journal Papers

11. Sugiyama, M. & Suzuki, T. Least-squares independence test. IEICE Transactions
on Information and Systems, vol.E94-D, no.6, pp.1333-1336, 2011.

12. Yamada, M., Sugiyama, M., Wichern, G., & Simm, J. Improving the accuracy
of least-squares probabilistic classifiers. IEICE Transactions on Information and
Systems, vol.E94-D, no.6, pp.1337-1340, 2011.

13. * Sugiyama, M., Suzuki, T., Itoh, Y., Kanamori, T., & Kimura, M. Least-squares
two-sample test. Neural Networks, vol.24, no.7, pp.735-751, 2011.
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14. Kimura, M. & Sugiyama, M. Dependence-maximization clustering with least-
squares mutual information, Journal of Advanced Computational Intelligence and
Intelligent Informatics. vol.15, no.7, pp.800-805, 2011.

15. Hachiya, H., Peters, J., & Sugiyama, M. Reward weighted regression with sample
reuse for direct policy search in reinforcement learning. Neural Computation, vol.23,
no.11, pp.2798-2832, 2011.

16. Hachiya, H., Sugiyama, M. & Ueda, N. Importance-weighted least-squares proba-
bilistic classifier for covariate shift adaptation with application to human activity
recognition. Neurocomputing, vol.80, pp.93-101, 2012.

17. Kanamori, T., Suzuki, T., & Sugiyama, M. F-divergence estimation and two-sample
homogeneity test under semiparametric density-ratio models. IEEE Transactions on
Information Theory, vol.58, no.2, pp.708-720, 2012.

18. Kanamori, T., Suzuki, T., & Sugiyama, M. Statistical analysis of kernel-based least-
squares density-ratio estimation. Machine Learning, vol.86, no.3, pp.335-367, 2012.

19. Kawahara, Y. & Sugiyama, M. Sequential change-point detection based on direct
density-ratio estimation. Statistical Analysis and Data Mining, vol.5, no.2, pp.114-
127, 2012.

20. Karasuyama, M. & Sugiyama, M. Canonical dependency analysis based on squared-
loss mutual information. Neural Networks, vol.34, pp.46-55, 2012.

21. * Sugiyama, M., Suzuki, T., & Kanamori, T. Density ratio matching under the
Bregman divergence: A unified framework of density ratio estimation. Annals of
the Institute of Statistical Mathematics, vol.64, no.5, pp.1009-1044, 2012.

22. Sugiyama, M. & Yamada, M. On kernel parameter selection in Hilbert-Schmidt
independence criterion. IEICE Transactions on Information and Systems, vol.E95-
D, no.10, pp.2564-2567, 2012.

23. * Sugiyama, M. Machine learning with squared-loss mutual information. Entropy,
vol.15, no.1, pp.80-112, 2013.

24. Suzuki, T. & Sugiyama, M. Sufficient dimension reduction via squared-loss mutual
information estimation. Neural Computation, vol.25, no.3, pp.725-758, 2013.

25. Kanamori, T., Suzuki, T., & Sugiyama, M. Computational complexity of kernel-
based density-ratio estimation: A condition number analysis. Machine Learning,
vol.90, no.3, pp.431-460, 2013.

26. * Yamada, M., Suzuki, T., Kanamori, T., Hachiya, H., & Sugiyama, M. Relative
density-ratio estimation for robust distribution comparison. Neural Computation,
vol.25, no.5, pp.1324-1370, 2013.
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6 Interactions

I had discussion with my program manager, Dr. Hiroshi Motoda, during the Third Asian
Conference on Machine Learning in Taiwan on Nov. 13-15, 2011, and received detailed
technical comments and suggestions for this project. On Nov. 20, 2012 at my office at
Tokyo Institute of Technology, I had a meeting with Dr. Hiroshi Motoda and Lt Col Brian
Sells and received comments and suggestions for further development.

Below is the list of my presentations related to the project.

1. Jul. 5, 2011: NEC Laboratories America, USA.

2. Jul. 21, 2011: ATR Computational Neuroscience Labs., Japan

3. Aug. 12, 2011: Yahoo! Research, USA.

4. Aug. 23, 2011: ERATO Project Meeting, Japan.

5. Sep. 15, 2011: Hokkaido University, Japan.

6. Oct. 21, 2011: SICE seminar, Japan.

7. Nov. 16, 2011: National Cheng Kung University, Taiwan.

8. Nov. 17, 2011: National Taiwan University, Taiwan.

9. Nov. 22, 2011: Symposium on Innovative Algorithms for e-Science, Japan.

10. Dec. 10, 2011: Empirical Inference Symposium, Germany.

11. Dec. 20, 2011: Toshiba Corporation, Japan.

12. Jan. 23, 2012: Mines ParisTech, France.

13. Jan. 24, 2012: Ecole Normale Superieure, France.

14. Jan. 25, 2012: INRIA Lille, France.

15. Jan. 27, 2012: FIRST Project Meeting, Japan.

16. Feb. 17, 2012: IPAB Seminar, Japan.

17. Apr. 25, 2012: Computational Science Simulation Symposium, Japan.

18. Jun. 11, 2012: Keio University, Japan.

19. Aug. 6, 2012: Workshop on Machine Learning and Applications to Biology, Japan.

20. Aug. 8, 2012: Hokkaido University, Japan.

21. Sep. 7, 2012: 21st Machine Learning Summer School, Japan.
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22. Sep. 25, 2012: BBCI Summer School 2012, Germany.

23. Dec. 14, 2012: PRESTO Project Meeting, Japan.

24. Dec. 17, 2012: Toshiba Corporation, Japan.

25. Feb. 20, 2013: International Winter Workshop on Brain-Computer Interface, Korea.

26. Feb. 22, 2013: Seoul National University, Korea.

27. Feb. 26, 2013: NTT Communication Science Laboratories, Japan.

28. Mar. 6, 2013: Nagoya Institute of Technology, Japan.

29. Mar. 18, 2013: Aalto University, Finland.

30. Mar. 20, 2013: VALO Research and Trading, Finland.

31. Mar. 20, 2013: University of Helsinki, Finland.

32. Apr. 25, 2013: Omron Corporation, Japan.

33. May 21, 2013: JSAE-SICE Symposium, Japan.

7 Inventions

None.

8 Honors/Award

I received four awards related to the current project.

1. Jun. 19, 2012: IBISML Award Finalist, IEICE, Information-Based Induction Sci-
ences and Machine Learning Technical Group.

2. Apr. 14, 2012: Funai Award, Funai Foundation for Information Technology.

3. Dec. 16, 2011: JNNS Best Paper Award, Japanese Neural Network Society.

4. Jun. 2, 2011: Nagao Special Researcher Award, Information Processing Society of
Japan.

9 Archival Documentation

Selected papers (Publications 3, 4, 5, 9, 10, 13, 21, 23, and 26) are attached as archival
documentation. All the publications listed in Section 5 are available from

“http://sugiyama-www.cs.titech.ac.jp/~sugi/publications.html”.
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10 Software

Implementation of various machine learning algorithms (mostly in MATLAB) is available
from my web page:

“http://sugiyama-www.cs.titech.ac.jp/~sugi/software/index.html”.
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1In J. E. Gentle, W. Härdle, and Y. Mori (Eds.),
Handbook of Computational Statistics: Concepts and Methods,
2nd edition. Chapter 31, pp.927–952, Springer, Berlin, Germany, 2012.

Learning under Non-stationarity:
Covariate Shift Adaptation by Importance Weighting

Masashi Sugiyama
Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
sugi@cs.titech.ac.jp http://sugiyama-www.cs.titech.ac.jp/˜sugi

Abstract

The goal of supervised learning is to estimate an underlying input-output function
from its input-output training samples so that output values for unseen test input
points can be predicted. A common assumption in supervised learning is that the
training input points follow the same probability distribution as the test input
points. However, this assumption is not satisfied, for example, when outside of the
training region is extrapolated. The situation where the training and test input
points follow different distributions while the conditional distribution of output
values given input points is unchanged is called covariate shift. Since almost all
existing learning methods assume that the training and test samples are drawn from
the same distribution, their fundamental theoretical properties such as consistency
or efficiency no longer hold under covariate shift. In this chapter, we review recently
proposed techniques for covariate shift adaptation.

1 Introduction

The goal of supervised learning is to infer an unknown input-output dependency from
training samples, by which output values for unseen test input points can be predicted.
When developing a method of supervised learning, it is commonly assumed that the input
points in the training set and the input points used for testing follow the same probability
distribution (Wahba, 1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al.,
2001; Schölkopf & Smola, 2002). However, this common assumption is not fulfilled, for
example, when outside of the training region is extrapolated or when training input points
are designed by an active learning (a.k.a. experimental design) algorithm (Wiens, 2000;
Kanamori & Shimodaira, 2003; Sugiyama, 2006; Kanamori, 2007; Sugiyama & Naka-
jima, 2009). Situations where training and test input points follow different probability
distributions but the conditional distributions of output values given input points are un-
changed are called covariate shift (Shimodaira, 2000). In this chapter, we review recently
proposed techniques for alleviating for the influence of covariate shift.



Learning under Non-stationarity 2

Under covariate shift, standard learning techniques such as maximum likelihood esti-
mation are biased. It was shown that the bias caused by covariate shift can be asymptot-
ically canceled by weighting the loss function according to the importance—the ratio of
test and training input densities (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller,
2005; Sugiyama et al., 2007; Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe,
2011). Similarly, standard model selection criteria such as cross-validation (Stone, 1974;
Wahba, 1990) or Akaike’s information criterion (Akaike, 1974) lose their unbiasedness
under covariate shift. It was shown that proper unbiasedness can also be recovered by
modifying the methods based on importance weighting (Shimodaira, 2000; Zadrozny,
2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007).

As explained above, the importance weight plays a central role in covariate shift adap-
tation. However, since the importance weight is unknown in practice, it should be esti-
mated from data. A naive approach to this task is to first use kernel density estimation
(Härdle et al., 2004) for obtaining estimators of the training and test input densities, and
then taking the ratio of the estimated densities. However, division by estimated quan-
tities can magnify the estimation error, so directly estimating the importance weight in
a single-shot process would be more preferable. Following this idea, various methods for
directly estimating the importance have been explored (Silverman, 1978; Ćwik & Miel-
niczuk, 1989; Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007; Bickel et al., 2007;
Sugiyama et al., 2008; Kanamori et al., 2009a). These direct estimation approaches have
been demonstrated to be more accurate than the two-step density estimation approach.

Examples of successful real-world applications of covariate shift adaptation include
brain-computer interface (Sugiyama et al., 2007), robot control (Hachiya et al., 2009;
Akiyama et al., 2010; Hachiya et al., 2011), speaker identification (Yamada et al., 2010a),
age prediction from face images (Ueki et al., 2011), wafer alignment in semiconductor ex-
posure apparatus (Sugiyama & Nakajima, 2009), and natural language processing (Tsuboi
et al., 2009).

The rest of this chapter is organized as follows. In Section 2, the problem of supervised
learning under covariate shift is mathematically formulated. In Section 3, various learning
methods under covariate shift are introduced. In Section 4, the issue of model selection
under covariate shift is addressed. In Section 5, methods of importance estimation are
reviewed. Finally, we conclude in Section 6.

A more extensive description of covariate shift adaptation techniques is available in
Sugiyama and Kawanabe (2011).

2 Formulation of Supervised Learning under Covari-

ate Shift

In this section, we formulate the supervised learning problem under covariate shift.
Let us consider the supervised learning problem of estimating an unknown input-
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Figure 1: Framework of supervised learning.

output dependency from training samples. Let

{(xtr
i , y

tr
i ) | xtr

i ∈ X ⊂ Rd, ytri ∈ Y ⊂ R}ntr
i=1,

be the training samples. xtr
i is a training input point drawn from a probability distribution

with density ptr(x). ytri is a training output value following a conditional probability
distribution with conditional density p(y|x = xtr

i ). p(y|x) may be regarded as the sum of
the true output f(x) and noise ε:

y = f(x) + ε.

We assume that the noise ε has mean 0 and variance σ2. This formulation is summarized
in Figure 1.

Let (xte, yte) be a test sample, which is not given to the user in the training phase, but
will be provided in the test phase in the future. xte ∈ X is a test input point following
a probability distribution with density pte(x), which is different from ptr(x). yte ∈ Y is
a test output value following p(y|x = xte), which is the same conditional density as the

training phase. The goal of supervised learning is to obtain an approximation f̂(x) to
the true function f(x) for predicting the test output value yte. More formally, we would

like to obtain the approximation f̂(x) that minimizes the test error expected over all test
samples (which is called the generalization error):

G := E
xte

E
yte

[
loss(f̂(xte), yte)

]
,

where Exte denotes the expectation over xte drawn from pte(x) and Eyte denotes the ex-
pectation over yte drawn from p(y|x = xte). loss(ŷ, y) is the loss function which measures
the discrepancy between the true output value y and its estimate ŷ. When the output
domain Y is continuous, the problem is called regression and the squared-loss is often
used.

loss(ŷ, y) = (ŷ − y)2.
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On the other hand, when Y = {+1,−1}, the problem is called (binary) classification and
the 0/1-loss is a typical choice.

loss(ŷ, y) =

{
0 if sgn(ŷ) = y,

1 otherwise,

where sgn(y) = +1 if y ≥ 0 and sgn(y) = −1 if y < 0. Note that the 0/1-loss corresponds
to the misclassification rate.

We use a parametric function f̂(x;θ) for learning, where θ is a parameter. A

model f̂(x;θ) is said to be correctly specified if there exists a parameter θ∗ such that

f̂(x;θ∗) = f(x); otherwise the model is said to be misspecified. In practice, the model
used for learning would be misspecified to a greater or less extent since we do not generally
have enough prior knowledge for correctly specifying the model. Thus it is important to
consider misspecified models when developing machine learning algorithms.

In standard supervised learning theories (Wahba, 1990; Bishop, 1995; Vapnik, 1998;
Duda et al., 2001; Hastie et al., 2001; Schölkopf & Smola, 2002), the test input point xte

is assumed to follow the same distribution as the training input point xtr. On the other
hand, in this chapter, we consider the situation called covariate shift (Shimodaira, 2000),
i.e., the training input point xtr and the test input point xte have different distributions.
Under covariate shift, most of the standard learning techniques do not work well due to
the differing distributions. Below, we review recently developed techniques for mitigating
the influence of covariate shift.

3 Function Learning under Covariate Shift

A standard method to learn the parameter θ in the model f̂(x;θ) would be empirical
risk minimization (ERM) (Vapnik, 1998; Schölkopf & Smola, 2002):

θ̂ERM := argmin
θ

[
1

ntr

ntr∑
i=1

loss(f̂(xtr
i ;θ), y

tr
i )

]
.

If ptr(x) = pte(x), θ̂ERM converges to the optimal parameter θ∗ (Shimodaira, 2000):

θ∗ := argmin
θ

[G].

However, under covariate shift where ptr(x) �= pte(x), θ̂ERM does not converge to θ∗ if the
model is misspecified1.

In this section, we review various learning methods for covariate shift adaptation and
show their numerical examples.

1θ̂ERM still converges to θ∗ under covariate shift if the model is correctly specified.
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3.1 Importance Weighting Techniques for Covariate Shift Adap-
tation

Here, we introduce various regression and classification techniques for covariate shift adap-
tation.

3.1.1 Importance Weighted ERM

The inconsistency of ERM is due to the difference between training and test input dis-
tributions. Importance sampling (Fishman, 1996) is a standard technique to compensate
for the difference of distributions. The following identity shows the essence of importance
sampling:

E
xte

[g(xte)] =

∫
g(x)pte(x)dx =

∫
g(x)

pte(x)

ptr(x)
ptr(x)dx = E

xtr

[
g(xtr)

pte(x
tr)

ptr(xtr)

]
,

where Extr and Exte denote the expectations over xtr and xte drawn from ptr(x) and
pte(x), respectively. The quantity

pte(x)

ptr(x)

is called the importance. The above identity shows that the expectation of a function
g(x) over pte(x) can be computed by the importance-weighted expectation of g(x) over
ptr(x). Thus the difference of distributions can be systematically adjusted by importance
weighting.

Applying the above importance weighting technique to ERM, we obtain importance-
weighted ERM (IWERM):

θ̂IWERM := argmin
θ

[
1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtr
i )

loss(f̂(xtr
i ;θ), y

tr
i )

]
.

θ̂IWERM converges to θ∗ under covariate shift, even if the model is misspecified (Shi-
modaira, 2000). In practice, IWERM may be regularized, e.g., by slightly flattening the
importance weight and/or adding a penalty term as

argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

loss(f̂(xtr
i ;θ), y

tr
i ) + λθ�θ

]
,

where 0 ≤ γ ≤ 1 is the flattening parameter, λ ≥ 0 is the regularization parameter, and
� denotes the transpose of a matrix or a vector.

3.1.2 Importance-Weighted Regression Methods

Least-squares (LS) would be one of the most fundamental regression techniques. The
importance-weighted regression method for the squared-loss (see Figure 2), called
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Figure 2: Loss functions for regression. y is the true output value at an input point and
ŷ is its estimate.

importance-weighted LS (IWLS), is given as follows:

θ̂IWLS := argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ (
f̂(xtr

i ;θ)− ytri

)2

+ λθ�θ

]
. (1)

Let us employ the following linear model:

f̂(x;θ) =
b∑

�=1

θ�φ�(x), (2)

where {φ�(x)}b�=1 are fixed linearly-independent basis functions. Then the solution θ̂IWLS

is given analytically as

θ̂IWLS = (Xtr�W γXtr + ntrλIb)
−1Xtr�W γytr, (3)

where Xtr is the design matrix, i.e., Xtr is the ntr × b matrix with the (i, �)-th element

Xtr
i,� = φ�(x

tr
i ), W is the diagonal matrix with the i-th diagonal element

pte(xtr
i )

ptr(xtr
i )
, Ib is the

b-dimensional identity matrix, and ytr is the ntr-dimensional vector with the i-th element
ytri .

The LS method often suffers from excessive sensitivity to outliers (i.e., irregular values)
and less reliability. A popular alternative is importance-weighted least absolute (IWLA)
regression—instead of the squared loss, the absolute loss is used (see Figure 2):

θ̂IWLA = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ ∣∣∣f̂(xtr
i ;θ)− ytri

∣∣∣+ λθ�θ

]
.

For the linear model (2), the above optimization problem is reduced to a quadratic pro-
gram, which can be solved by a standard optimization software. If the regularization term
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θ�θ is replaced by the �1-regularizer
∑b

�=1 |θ�|, the optimization problem is reduced to a
linear program, which may be solved more efficiently. Furthermore, the �1-regularizer is
known to induce a sparse solution (Williams, 1995; Tibshirani, 1996; Chen et al., 1998).

Although the LA method is robust against outliers, it tends to have a large variance
when the noise is Gaussian. The use of the Huber loss can mitigate this problem:

θ̂Huber = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

ρτ

(
f̂(xtr

i ;θ)− ytri

)
+ λθ�θ

]
,

where τ (≥ 0) is the robustness parameter and ρτ is the Huber loss defined as follows (see
Figure 2):

ρτ (y) :=

⎧⎨⎩
1
2
y2 if |y| ≤ τ,

τ |y| − 1
2
τ 2 if |y| > τ.

Thus, the squared loss is applied to ‘good’ samples with small fitting error, and the
absolute loss is applied to ‘bad’ samples with large fitting error. The above optimization
problem can be reduced to a quadratic program (Mangasarian & Musicant, 2000), which
can be solved by a standard optimization software.

Another variant of the IWLA is importance-weighted support vector regression
(IWSVR):

θ̂SVR = argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ ∣∣∣f̂(xtr
i ;θ)− ytri

∣∣∣
ε
+ λθ�θ

]
,

where | · |ε is the deadzone-linear loss (or Vapnik’s ε-insensitive loss) defined as follows
(see Figure 2):

|x|ε :=
{
0 if |x| ≤ ε,

|x| − ε if |x| > ε.

For the linear model (2), the above optimization problem is reduced to a quadratic pro-
gram (Vapnik, 1998), which can be solved by a standard optimization software. If the
regularization term θ�θ is replaced by the �1-regularizer

∑b
�=1 |θ�|, the optimization prob-

lem is reduced to a linear program.

3.1.3 Importance-Weighted Classification Methods

In the binary classification scenario where Y = {+1,−1}, Fisher discriminant analysis
(FDA) (Fisher, 1936), logistic regression (LR) (Hastie et al., 2001), support vector machine
(SVM) (Vapnik, 1998; Schölkopf & Smola, 2002), and boosting (Freund & Schapire, 1996;
Breiman, 1998; Friedman et al., 2000) would be popular learning algorithms. They can
be regarded as ERM methods with different loss functions (see Figure 3).

An importance-weighted version of FDA, IWFDA, is given by

θ̂IWFDA := argmin
θ

[
1

ntr

ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ (
1− ytri f̂(x

tr
i ;θ)

)2

+ λθ�θ

]
,
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Figure 3: Loss functions for classification. y is the true output value at an input point
and ŷ is its estimate.

which is essentially equivalent to Eq.(1) since (ytri )
2 = 1.

An importance-weighted version of LR, IWLR, is given by

θ̂IWLR := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

log
(
1 + exp

(
−ytri f̂(x

tr
i ;θ)

))
+ λθ�θ

]
,

which is usually solved by (quasi-)Newton methods.
An importance-weighted version of SVM, IWSVM, is given by

θ̂IWSVM := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

max
(
0, 1− ytri f̂(x

tr
i ;θ)

)
+ λθ�θ

]
,

whose solution can be obtained by a standard quadratic programming solver.
An importance-weighted version of Boosting, IWB, is given by

θ̂IWB := argmin
θ

[
ntr∑
i=1

(
pte(x

tr
i )

ptr(xtr
i )

)γ

exp
(
−ytri f̂(x

tr
i ;θ)

)
+ λθ�θ

]
,

which is usually solved by stage-wise optimization.

3.2 Numerical Examples

Here we illustrate the behavior of IWERM using toy regression and classification data
sets.

3.2.1 Regression

Let us consider one-dimensional regression problem. Let the learning target function be
f(x) = sinc(x), and let the training and test input densities be

ptr(x) = N(x; 1, (1/2)2) and pte(x) = N(x; 2, (1/4)2),
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(b) γ = 0
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Figure 4: An illustrative regression example with covariate shift. (a) The probability
density functions of the training and test input points and their ratio (i.e., the importance).
(b)–(d) The learning target function f(x) (the solid line), training samples (‘◦’), a learned

function f̂(x) (the dashed line), and test samples (‘×’).

where N(x;μ, σ2) denotes the Gaussian density with mean μ and variance σ2. As illus-
trated in Figure 4(a), we are considering a (weak) extrapolation problem since the training
input points are distributed in the left-hand side of the input domain and the test input
points are distributed in the right-hand side.

We create the training output value {ytri }ntr
i=1 as ytri = f(xtr

i ) + εtri , where {εtri }ntr
i=1 are

i.i.d. noise drawn from N(ε; 0, (1/4)2). Let the number of training samples be ntr = 150,
and we use the following linear model:

f̂(x;θ) = θ1x+ θ2.

The parameter θ is learned by IWLS.
Here we fix the regularization parameter to λ = 0, and compare the performance

of IWLS for γ = 0, 0.5, 1. When γ = 0, a good approximation of the left-hand side of
the sinc function can be obtained (see Figure 4(b)). However, this is not appropriate
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ples, while ‘�’ and ‘+’ denote the positive and
negative test samples.

Figure 5: An illustrative classification example with covariate shift.

for estimating the test output values (‘×’ in the figure). Thus, IWLS with γ = 0 (i.e.,
ordinary LS) results in a large test error. Figure 4(d) depicts the learned function when
γ = 1, which tends to approximate the test output values well, but having a large variance.
Figure 4(c) depicts a learned function when γ = 0.5, which yields even better estimation
of the test output values for this particular data realization.

3.2.2 Classification

Let us consider a binary classification problem on the two-dimensional input space. Let
the class posterior probabilities given input x be

p(y = +1 |x) = 1

2

(
1 + tanh

(
x(1) +min(0, x(2))

))
, (4)

where x = (x(1), x(2))� and p(y = −1 |x) = 1 − p(y = +1 |x). The optimal decision
boundary, i.e., a set of all x such that p(y = +1 |x) = p(y = −1 |x) = 1/2 is illustrated
in Figure 5(a).

Let the training and test input densities be

ptr(x) =
1

2
N

(
x;

[−2
3

]
,

[
1 0
0 4

])
+

1

2
N

(
x;

[
2
3

]
,

[
1 0
0 4

])
,

pte(x) =
1

2
N

(
x;

[
0
−1

]
,

[
1 0
0 1

])
+

1

2
N

(
x;

[
4
−1

]
,

[
1 0
0 1

])
,
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where N(x;μ,Σ) is the multivariate Gaussian density with mean μ and covariance matrix
Σ. This setup implies that we are considering a (weak) extrapolation problem. Contours
of the training and test input densities are illustrated in Figure 5(a).

Let the number of training samples be ntr = 500, and we create training input points
{xtr

i }ntr
i=1 following ptr(x) and training output labels {ytri }ntr

i=1 following p(y|x = xtr
i ). Sim-

ilarly, let the number of test samples be nte = 500, and we create nte test input points
{xte

j }nte
j=1 following pte(x) and test output labels {ytej }nte

j=1 following p(y|x = xte
j ). We use

the following linear model:

f̂(x;θ) = θ1x
(1) + θ2x

(2) + θ3.

The parameter θ is learned by IWFDA.
Here we fix the regularization parameter to λ = 0, and compare the performance of

IWFDA for γ = 0, 0.5, 1. Figure 5(b) depicts an example of realizations of training and
test samples, and decision boundaries obtained by IWFDA. For this particular realization
of data samples, γ = 0.5 or 1 works better than γ = 0.

4 Model Selection under Covariate Shift

As illustrated in the previous section, importance-weighting is a promising approach to
covariate shift adaptation, given that the flattening parameter γ is chosen appropriately.
Although γ = 0.5 worked well both for the toy regression and classification experiments
in the previous section, γ = 0.5 may not always be the best choice. Indeed, an appro-
priate value of γ depends on the learning target function, models, the noise level in the
training samples, etc. Therefore, model selection needs to be appropriately carried out
for enhancing the generalization capability under covariate shift.

The goal of model selection is to determine the model (e.g, basis functions, the flat-
tening parameter γ, and the regularization parameter λ) so that the generalization error
is minimized (Akaike, 1970; Mallows, 1973; Akaike, 1974; Takeuchi, 1976; Schwarz, 1978;
Rissanen, 1978; Craven & Wahba, 1979; Akaike, 1980; Rissanen, 1987; Shibata, 1989;
Wahba, 1990; Efron & Tibshirani, 1993; Murata et al., 1994; Konishi & Kitagawa, 1996;
Ishiguro et al., 1997; Vapnik, 1998; Sugiyama & Ogawa, 2001; Sugiyama & Müller, 2002;
Sugiyama et al., 2004). The true generalization error is not accessible since it contains the
unknown learning target function. Thus, some generalization error estimator needs to be
used instead. However, standard generalization error estimators such as cross-validation
(CV) are heavily biased under covariate shift, and therefore they are no longer reliable.
In this section, we review a modified CV method that possesses proper unbiasedness even
under covariate shift.

4.1 Importance-Weighted Cross-Validation

One of the popular techniques for estimating the generalization error is CV (Stone, 1974;
Wahba, 1990). CV has been shown to give an almost unbiased estimate of the general-
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ization error with finite samples (Luntz & Brailovsky, 1969; Schölkopf & Smola, 2002).
However, such almost unbiasedness is no longer fulfilled under covariate shift.

To cope with this problem, a variant of CV called importance-weighted CV (IWCV)
has been proposed (Sugiyama et al., 2007). Let us randomly divide the training set
Z = {(xtr

i , y
tr
i )}ntr

i=1 into k disjoint non-empty subsets {Zi}ki=1 of (approximately) the same

size. Let f̂Zi
(x) be a function learned from {Zi′}i′ �=i (i.e., without Zi). Then the k-fold

IWCV (kIWCV) estimate of the generalization error G is given by

ĜkIWCV =
1

k

k∑
i=1

1

|Zi|
∑

(x,y)∈Zi

pte(x)

ptr(x)
loss(f̂Zi

(x), y),

where |Zi| is the number of samples in the subset Zi.
When k = ntr, kIWCV is particularly called IW leave-one-out CV (IWLOOCV):

ĜIWLOOCV =
1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtr
i )

loss(f̂i(x
tr
i ), y

tr
i ),

where f̂i(x) is a function learned from {(xtr
i′ , y

tr
i′ )}i′ �=i (i.e., without (xtr

i , y
tr
i )). It was

proved that IWLOOCV gives an almost unbiased estimate of the generalization error
even under covariate shift (Sugiyama et al., 2007). More precisely, IWLOOCV for ntr

training samples gives an unbiased estimate of the generalization error for ntr−1 training
samples:

E
{xtr

i }ntr
i=1

E
{ytri }ntr

i=1

[
ĜIWLOOCV

]
= E

{xtr
i }ntr

i=1

E
{ytri }ntr

i=1

[G′] ≈ E
{xtr

i }ntr
i=1

E
{ytri }ntr

i=1

[G],

where E{xtr
i }ntr

i=1
denotes the expectation over {xtr

i }ntr
i=1 drawn i.i.d. from ptr(x), E{ytri }ntr

i=1

denotes the expectation over {ytri }ntr
i=1 each drawn from p(y|x = xtr

i ), and G′ denotes
the generalization error for ntr − 1 training samples. A similar proof is also possible for
kIWCV, but the bias is slightly larger (Hastie et al., 2001).

The almost unbiasedness of IWCV holds for any loss function, any model, and any
parameter learning method; even non-identifiable models (Watanabe, 2009) or non-
parametric learning methods (Schölkopf & Smola, 2002) are allowed. Thus IWCV is
a highly flexible model selection technique under covariate shift. For other model selec-
tion criteria under covariate shift, see Shimodaira (2000) for regular models with smooth
losses and Sugiyama and Müller (2005) for linear models with the squared loss.

4.2 Numerical Examples

Here we illustrate the behavior of IWCV using the same toy data sets as Section 3.2.

4.2.1 Regression

Let us continue the one-dimensional regression simulation in Section 3.2.1.
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As illustrated in Figure 4 in Section 3.2.1, IWLS with flattening parameter γ = 0.5
appears to work well for that particular realization of data samples. However, the best
value of γ would depend on the realization of samples. In order to investigate this sys-
tematically, let us repeat the simulation 1000 times with different random seeds, i.e., in
each run {(xtr

i , ε
tr
i )}ntr

i=1 are randomly drawn and the scores of 10-fold IWCV and 10-fold
ordinary CV are calculated for γ = 0, 0.1, 0.2, . . . , 1. The means and standard deviations
of the generalization error G and its estimate by each method are depicted as functions
of γ in Figure 6. The graphs show that IWCV gives very accurate unbiased estimates of
the generalization error, while ordinary CV is heavily biased.

Next we investigate the model selection performance. The flattening parameter γ
is chosen from {0, 0.1, 0.2, . . . , 1} so that the score of each model selection criterion is
minimized. The mean and standard deviation of the generalization error G of the learned
function obtained by each method over 1000 runs are described in Table 1. This shows
that IWCV gives significantly smaller generalization errors than ordinary CV, under the
t-test (Henkel, 1976) at the significance level 5%. For reference, the generalization error
when the flattening parameter γ is chosen optimally (i.e., in each trial, γ is chosen so that
the true generalization error is minimized) is described as ‘Optimal’ in the table. The
result shows that the performance of IWCV is rather close to that of the optimal choice.

4.2.2 Classification

Let us continue the toy classification simulation in Section 3.2.2.
In Figure 5(b) in Section 3.2.2, IWFDA with a middle/large flattening parameter γ

appears to work well for that particular realization of samples. Here, we investigate the
choice of the flattening parameter value by IWCV and ordinary CV. Figure 7 depicts the
means and standard deviations of the generalization error G (i.e., the misclassification
rate) and its estimate by each method over 1000 runs, as functions of the flattening
parameter γ in IWFDA. The graphs clearly show that IWCV gives much better estimates
of the generalization error than ordinary CV.

Next we investigate the model selection performance. The flattening parameter γ
is chosen from {0, 0.1, 0.2, . . . , 1} so that the score of each model selection criterion is
minimized. The mean and standard deviation of the generalization error G of the learned
function obtained by each method over 1000 runs are described in Table 2. The table shows
that IWCV gives significantly smaller test errors than ordinary CV, and the performance
of IWCV is rather close to that of the optimal choice.

5 Importance Estimation

In the previous sections, we have seen that the importance weight

w(x) =
pte(x)

ptr(x)



Learning under Non-stationarity 14

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

γ

 

 

(a) True generalization error

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

γ

 

 

(b) IWCV score

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

γ
 

  

(c) Ordinary CV score

Figure 6: Generalization error and its estimates obtained by IWCV and ordinary CV as
functions of the flattening parameter γ in IWLS for the regression examples in Figure 4.
Thick dashed curves in the bottom graphs depict the true generalization error for clear
comparison.

Table 1: The mean and standard deviation of the generalization error G obtained by each
method for the toy regression data set. The best method and comparable ones by the
t-test at the significance level 5% are indicated by ‘◦’. For reference, the generalization
error obtained with the optimal γ (i.e., the minimum generalization error) is described as
‘Optimal’.

IWCV Ordinary CV Optimal
◦0.077± 0.020 0.356± 0.086 0.069± 0.011
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Figure 7: The generalization error G (i.e., the misclassification rate) and its estimates
obtained by IWCV and ordinary CV as functions of the flattening parameter γ in IWFDA
for the toy classification examples in Figure 5. Thick dashed curves in the bottom graphs
depict the true generalization error for clear comparison.

Table 2: The mean and standard deviation of the generalization error G (i.e., the mis-
classification rate) obtained by each method for the toy classification data set. The best
method and comparable ones by the t-test at the significance level 5% are indicated by
‘◦’. For reference, the generalization error obtained with the optimal γ (i.e., the minimum
generalization error) is described as ‘Optimal’.

IWCV Ordinary CV Optimal
◦0.108± 0.027 0.131± 0.029 0.091± 0.009
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plays a central role in covariate shift adaptation. However, the importance weight is
unknown in practice and needs to be estimated from data. In this section, we review
importance estimation methods.

Here we assume that in addition to the training input samples {xtr
i }ntr

i=1 drawn in-
dependently from ptr(x), we are given test input samples {xte

j }nte
j=1 drawn independently

from pte(x). Thus the goal of the importance estimation problem addressed here is to
estimate the importance function w(x) from {xtr

i }ntr
i=1 and {xte

j }nte
j=1.

5.1 Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric technique to estimate a probability
density function p(x) from its i.i.d. samples {xi}ni=1. For the Gaussian kernel

Kσ(x,x
′) = exp

(
−‖x− x′‖2

2σ2

)
, (5)

KDE is expressed as

p̂(x) =
1

ntr(2πσ2)d/2

n∑
�=1

Kσ(x,x�).

The performance of KDE depends on the choice of the kernel width σ. It can be
optimized by cross-validation (CV) as follows (Härdle et al., 2004): First, divide the
samples {xi}ni=1 into k disjoint non-empty subsets {Xr}kr=1 of (approximately) the same
size. Then obtain a density estimator p̂Xr(x) from {Xi}i �=r (i.e., without Xr), and compute
its log-likelihood for the hold-out subset Xr:

1

|Xr|
∑
x∈Xr

log p̂Xr(x),

where |X | denotes the number of elements in the set X . Repeat this procedure for
r = 1, 2, . . . , k and choose the value of σ such that the average of the above hold-out
log-likelihood over all r is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence from p(x) to p̂(x), up to an
irrelevant constant.

KDE can be used for importance estimation by first obtaining density estimators p̂tr(x)
and p̂te(x) separately from {xtr

i }ntr
i=1 and {xte

j }nte
j=1, and then estimating the importance

by ŵ(x) = p̂te(x)/p̂tr(x). However, division by an estimated density can magnify the
estimation error, so directly estimating the importance weight in a single-shot process
would be more preferable.

5.2 Kullback-Leibler Importance Estimation Procedure

The Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et al., 2008)
directly gives an estimate of the importance function without going through density esti-
mation by matching the two densities ptr(x) and pte(x) in terms of the Kullback-Leibler
divergence (Kullback & Leibler, 1951).
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Let us model the importance weight w(x) by the following kernel model:

ŵ(x) =
nte∑
�=1

α�Kσ(x,x
te
� ),

where α = (α1, α2, . . . , αnte)
� are parameters to be learned from data samples and

Kσ(x,x
′) is the Gaussian kernel (see Eq.(5)). An estimate of the density pte(x) is given

by using the model ŵ(x) as p̂te(x) = ŵ(x)ptr(x). In KLIEP, the parameters α are
determined so that the Kullback-Leibler divergence from pte(x) to p̂te(x) is minimized:

KL(α) := E
xte

[
log

pte(x
te)

ŵ(xte)ptr(xte)

]
= E

xte

[
log

pte(x
te)

ptr(xte)

]
− E

xte

[
log ŵ(xte)

]
,

where Exte denotes the expectation over xte drawn from pte(x). The first term is a
constant, so it can be safely ignored. We define the negative of the second term by KL′:

KL′(α) := E
xte

[
log ŵ(xte)

]
. (6)

Since p̂te(x) (= ŵ(x)ptr(x)) is a probability density function, it should satisfy

1 =

∫
D
p̂te(x)dx =

∫
D
ŵ(x)ptr(x)dx = E

xtr

[
ŵ(xtr)

]
. (7)

The KLIEP optimization problem is given by replacing the expectations in Eqs.(6) and
(7) with empirical averages:

max
{α�}nte

�=1

[
nte∑
j=1

log

(
nte∑
�=1

α�K(xte
j ,x

te
� )

)]

subject to
1

ntr

nte∑
�=1

α�

(
ntr∑
i=1

K(xtr
i ,x

te
� )

)
= 1 and α1, α2, . . . , αnte ≥ 0.

This is a convex optimization problem and the global solution—which tends to be sparse
(Boyd & Vandenberghe, 2004)—can be obtained, e.g., by simply performing gradient
ascent and feasibility satisfaction iteratively. A pseudo code is summarized in Figure 8.
The Gaussian width σ can be optimized by CV over KL′, where only the test samples
{xte

j }nte
j=1 are divided into k disjoint subsets (Sugiyama et al., 2008).

A MATLAB R© implementation of the entire KLIEP algorithm is available from the
following web page.

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/
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Input: {xtr
i }ntr

i=1, {xte
j }nte

j=1, and σ
Output: ŵ(x)

Aj,� ←− Kσ(x
te
j ,x

te
� ) for j, � = 1, 2, . . . , nte;

b� ←− 1
ntr

∑ntr

i=1 Kσ(x
tr
i ,x

te
� ) for � = 1, 2, . . . , nte;

Initialize α (> 0nte) and ε (0 < ε � 1);
Repeat until convergence

α ←− α+ εA�(1nte ./Aα); % Gradient ascent

α ←− α+ (1− b�α)b/(b�b); % Constraint satisfaction
α ←− max(0nte ,α); % Constraint satisfaction

α ←− α/(b�α); % Constraint satisfaction
end
ŵ(x) ←− ∑nte

�=1 α�Kσ(x,x
te
� );

Figure 8: Pseudo code of KLIEP. 0nte denotes the nte-dimensional vector with all zeros,
and 1nte denotes the nte-dimensional vector with all ones. ‘./’ indicates the element-wise
division, and inequalities and the ‘max’ operation for vectors are applied in the element-
wise manner.

5.3 Numerical Examples

Here, we illustrate the behavior of the KLIEP method.
Let us consider the following one-dimensional importance estimation problem:

ptr(x) = N(x; 1, (1/2)2) and pte(x) = N(x; 2, (1/4)2).

Let the number of training samples be ntr = 200 and the number of test samples be
nte = 1000.

Figure 9 depicts the true importance and its estimates by KLIEP, where three different
Gaussian widths σ = 0.02, 0.2, 0.8 are tested. The graphs show that the performance
of KLIEP is highly dependent on the Gaussian width. More specifically, the estimated
importance function ŵ(x) is highly fluctuated when σ is small, while it is overly smoothed
when σ is large. When σ is chosen appropriately, KLIEP seems to work reasonably well
for this example.

Figure 10 depicts the values of the true J (see Eq.(6)) and its estimate by 5-fold
CV; the means, the 25 percentiles, and the 75 percentiles over 100 trials are plotted as
functions of the Gaussian width σ. This shows that CV gives a very good estimate of J ,
which results in an appropriate choice of σ.

6 Conclusions and Outlook

In standard supervised learning theories, test input points are assumed to follow the
same probability distribution as training input points. However, this assumption is often
violated in real-world learning problems. In this chapter, we reviewed recently proposed
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Figure 9: Results of importance estimation by KLIEP. w(x) is the true importance func-
tion and ŵ(x) is its estimation obtained by KLIEP.

techniques for covariate shift adaptation, including importance-weighted empirical risk
minimization, importance-weighted cross-validation, and direct importance estimation.

In Section 5, we introduced the KLIEP algorithm for importance estimation, where
linearly-parameterized models were used. It was shown that the KLIEP idea can also
be naturally applied to log-linear models (Tsuboi et al., 2009), Gaussian mixture mod-
els (Yamada & Sugiyama, 2009), and probabilistic principal component analysis mixture
models (Yamada et al., 2010b). Other than KLIEP, various methods of direct impor-
tance estimation have also been proposed (Silverman, 1978; Ćwik & Mielniczuk, 1989;
Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Kanamori et al.,
2009a). Among them, the method proposed in Kanamori et al. (2009a) called uncon-
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CV is its estimate by 5-fold CV.

strained least-squares importance fitting (uLSIF) gives an analytic-form solution and the
solution can be computed very efficiently in a stable manner. Thus it can be applied to
large-scale data sets.

Recently, importance estimation methods which incorporate dimensionality reduction
have been developed. A method proposed by Sugiyama et al. (2010a) uses a supervised
dimensionality reduction technique called local Fisher discriminant analysis (Sugiyama,
2007) for identifying a subspace in which two densities are significantly different (which
is called the hetero-distributional subspace). Another method proposed by Sugiyama
et al. (2011) tries to find the hetero-distributional subspace by directly minimizing the
discrepancy between the two distributions. Theoretical analysis of importance estimation
has also been conducted thoroughly (Silverman, 1978; Ćwik & Mielniczuk, 1989; Gijbels
& Mielniczuk, 1995; Jacob & Oliveira, 1997; Qin, 1998; Cheng & Chu, 2004; Bensaid &
Fabre, 2007; Nguyen et al., 2010; Sugiyama et al., 2008; Chen et al., 2009; Kanamori
et al., 2009b; Kanamori et al., 2010).

It has been shown that various statistical data processing tasks can be solved through
importance estimation (Sugiyama et al., 2009; Sugiyama et al., 2012), including multi-task
learning (Bickel et al., 2007), inlier-based outlier detection (Silverman, 1978; Hido et al.,
2008; Smola et al., 2009; Hido et al., 2011), change detection in time series (Kawahara &
Sugiyama, 2011), mutual information estimation (Suzuki et al., 2008; Suzuki et al., 2009b),
independent component analysis (Suzuki & Sugiyama, 2011), feature selection (Suzuki
et al., 2009a), sufficient dimension reduction (Suzuki & Sugiyama, 2010), causal inference
(Yamada & Sugiyama, 2010), conditional density estimation (Sugiyama et al., 2010b),
and probabilistic classification (Sugiyama, 2010). Thus, following this line of research,
further improving the accuracy and computational efficiency of importance estimation
as well as further exploring possible application of importance estimation would be a
promising direction to be pursued.
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Ćwik, J., & Mielniczuk, J. (1989). Estimating density ratio with application to discrimi-
nant analysis. Communications in Statistics: Theory and Methods, 18, 3057–3069.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York, NY,
USA: Wiley. Second edition.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York, NY,
USA: Chapman & Hall/CRC.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7, 179–188.

Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. Berlin,
Germany: Springer-Verlag.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Proc.
13th International Conference on Machine Learning (pp. 148–156). Morgan Kaufmann.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statis-
tical view of boosting. The Annals of Statistics, 28, 337–407.

Gijbels, I., & Mielniczuk, J. (1995). Asymptotic properties of kernel estimators of the
Radon-Nikodym derivative with applications to discriminant analysis. Statistica Sinica,
5, 261–278.

Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. (2009). Adaptive importance
sampling for value function approximation in off-policy reinforcement learning. Neural
Networks, 22, 1399–1410.

Hachiya, H., Peters, J., & Sugiyama, M. (2011). Reward weighted regression with sample
reuse. Neural Computation, 11, 2798–2832.
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Abstract

The goal of cross-domain object matching
(CDOM) is to find correspondence between
two sets of objects in different domains in
an unsupervised way. Photo album summa-
rization is a typical application of CDOM,
where photos are automatically aligned into
a designed frame expressed in the Cartesian
coordinate system. CDOM is usually for-
mulated as finding a mapping from objects
in one domain (photos) to objects in the
other domain (frame) so that the pairwise
dependency is maximized. A state-of-the-art
CDOM method employs a kernel-based de-
pendency measure, but it has a drawback
that the kernel parameter needs to be de-
termined manually. In this paper, we pro-
pose alternative CDOM methods that can
naturally address the model selection prob-
lem. Through experiments on image match-
ing, unpaired voice conversion, and photo al-
bum summarization tasks, the effectiveness
of the proposed methods is demonstrated.

1 Introduction

The objective of cross-domain object matching
(CDOM) is to match two sets of objects in different
domains. For instance, in photo album summariza-
tion, photos are automatically assigned into a designed
frame expressed in the Cartesian coordinate system.
A typical approach of CDOM is to find a mapping
from objects in one domain (photos) to objects in the
other domain (frame) so that the pairwise dependency
is maximized. In this scenario, accurately evaluating
the dependence between objects is a key challenge.

Appearing in Proceedings of the 14th International Con-
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Kernelized sorting (KS) (Jebara, 2004) tries to find
a mapping between two domains that maximizes the
mutual information (MI) (Cover and Thomas, 2006)
under the Gaussian assumption. However, since the
Gaussian assumption may not be fulfilled in practice,
this method (which we refer to as KS-MI) tends to
perform poorly.

To overcome the limitation of KS-MI, Quadrianto
et al. (2010) proposed using the kernel-based depen-
dence measure called the Hilbert-Schmidt indepen-
dence criterion (HSIC) (Gretton et al., 2005) for KS.
Since HSIC is distribution-free, KS with HSIC (which
we refer to as KS-HSIC) is more flexible than KS-
MI. However, HSIC includes a tuning parameter (more
specifically, the Gaussian kernel width), and its choice
is crucial to obtain better performance (see also Ja-
garlamudi et al., 2010). Although using the median
distance between sample points as the Gaussian ker-
nel width is a common heuristic in kernel-based de-
pendence measures (see e.g., Fukumizu et al., 2009a),
this does not always perform well in practice.

In this paper, we propose two alternative CDOM
methods that can naturally address the model se-
lection problem. The first method employs another
kernel-based dependence measure based on the nor-
malized cross-covariance operator (NOCCO) (Fuku-
mizu et al., 2009b), which we refer to as KS-NOCCO.
The NOCCO-based dependence measure was shown to
be asymptotically independent of the choice of kernels.
Thus, KS-NOCCO is expected to be less sensitive to
the kernel parameter choice, which is an advantage
over HSIC.

The second method uses least-squares mutual infor-
mation (LSMI) (Suzuki et al., 2009) as the depen-
dence measure, which is a consistent estimator of the
squared-loss mutual information (SMI) achieving the
optimal convergence rate. We call this method least-
squares object matching (LSOM). An advantage of
LSOM is that cross-validation (CV) with respect to the
LSMI criterion is possible. Thus, all the tuning param-
eters such as the Gaussian kernel width and the regu-
larization parameter can be objectively determined by
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CV.

Through experiments on image matching, unpaired
voice conversion, and photo album summarization
tasks, LSOM is shown to be the most promising ap-
proach to CDOM.

2 Problem Formulation

In this section, we formulate the problem of cross-
domain object matching (CDOM).

The goal of CDOM is, given two sets of samples of the
same size, {xi}n

i=1 and {yi}n
i=1, to find a mapping that

well “matches” them.

Let π be a permutation function over {1, . . . , n}, and
let Π be the corresponding permutation indicator ma-
trix, i.e.,

Π ∈ {0, 1}n×n, Π1n = 1n, and Π�1n = 1n,

where 1n is the n-dimensional vector with all ones and
� denotes the transpose. Let us denote the samples
matched by a permutation π by

Z(Π) := {(xi, yπ(i))}n
i=1.

The optimal permutation, denoted by Π∗, can be ob-
tained as the maximizer of the dependency between
the two sets {xi}n

i=1 and {yi}n
i=1:

Π∗ := argmax
Π

D(Z(Π)),

where D is some dependence measure.

3 Existing Methods

In this section, we review two existing methods for
CDOM, and point out their potential weaknesses.

3.1 Kernelized Sorting with Mutual
Information

Kernelized sorting with mutual information (KS-MI)
(Jebara, 2004) matches objects in different domains so
that MI between matched pairs is maximized. Here,
we review KS-MI following alternative derivation pro-
vided in Quadrianto et al. (2010).

MI is one of the popular dependence measures between
random variables. For random variables X and Y , MI
is defined as follows (Cover and Thomas, 2006):

MI(Z) :=
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy,

where p(x, y) denotes the joint density of x and y,
and p(x) and p(y) are marginal densities of x and y,

respectively. MI is zero if and only if x and y are in-
dependent, and thus it may be used as a dependency
measure. Let H(X), H(Y ), and H(X,Y ) be the en-
tropies of X and Y and the joint entropy of X and Y ,
respectively:

H(X) = −
∫

p(x) log p(x)dx,

H(Y ) = −
∫

p(y) log p(y)dy,

H(X, Y ) = −
∫∫

p(x,y) log p(x,y)dxdy.

Then MI between X and Y can be written as

MI(Z) = H(X) + H(Y ) − H(X,Y ).

Since H(X) and H(Y ) are independent of permuta-
tion Π, maximizing MI is equivalent to minimizing
the joint entropy H(X, Y ). If p(x,y) is Gaussian with
covariance matrix Σ, the joint entropy is expressed as

H(X,Y ) =
1
2

log |Σ| + Const.,

where |Σ| denotes the determinant of matrix Σ.

Now, let us assume that x and y are jointly normal
in some reproducing Kernel Hilbert Spaces (RKHSs)
endowed with joint kernel K(x, x′)L(y, y′), where
K(x,x′) and L(y, y′) are reproducing kernels for x
and y, respectively. Then KS-MI is formulated as fol-
lows:

min
Π

log |Γ(K ◦ (Π�LΠ))Γ|, (1)

where K = {K(xi, xj)}n
i,j=1 and L = {L(yi, yj)}n

i,j=1

are kernel matrices, ◦ denotes the Hadamard product
(a.k.a. the element-wise product), Γ = In − 1

n1n1�
n

is the centering matrix, and In is the n-dimensional
identity matrix.

A critical weakness of KS-MI is the Gaussian assump-
tion, which may not be fulfilled in practice.

3.2 Kernelized Sorting with Hilbert-Schmidt
Independence Criterion

Kernelized sorting with Hilbert-Schmidt independence
criterion (KS-HSIC) matches objects in different do-
mains so that HSIC between matched pairs is maxi-
mized.

HSIC is a kernel-based dependence measure given as
follows (Gretton et al., 2005):

HSIC(Z) = tr(K̄L̄),

where K̄ = ΓKΓ and L̄ = ΓLΓ are the centered
kernel matrices for x and y, respectively. Note that
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smaller HSIC scores mean that X and Y are closer to
be independent.

KS-HSIC is formulated as follows (Quadrianto et al.,
2010):

max
Π

HSIC(Z(Π)), (2)

where

HSIC(Z(Π)) = tr(K̄Π�L̄Π). (3)

This optimization problem is called the quadratic as-
signment problem (QAP) (Finke et al., 1987), and
it is known to be NP-hard. There exists several
QAP solvers based on, e.g., simulated annealing, tabu
search, and genetic algorithms. However, those QAP
solvers are not easy to use in practice since they con-
tain various tuning parameters.

Another approach to solving Eq.(2) based on a lin-
ear assignment problem (LAP) (Kuhn, 1955) was pro-
posed in Quadrianto et al. (2010), which is explained
below. Let us relax the permutation indicator matrix
Π to take real values:

Π ∈ [0, 1]n×n, Π1n = 1n, and Π�1n = 1n. (4)

Then, Eq.(3) is convex with respect to Π (see Lemma
7 in Quadrianto et al., 2010), and its lower bound can
be obtained using some Π̃ as follows:

tr(K̄Π�L̄Π)

≥ tr(K̄Π̃�L̄Π̃) + 〈Π − Π̃,
∂HSIC(Z(Π̃))

∂Π
〉

= 2tr(K̄Π�L̄Π̃) − tr(K̄Π̃�L̄Π̃),

where 〈·, ·〉 denotes the inner product between matri-
ces. Based on the above lower bound, Quadrianto
et al. (2010) proposed to update the permutation ma-
trix as

Πnew = (1 − η)Πold + η argmax
Π

tr
(
Π�L̄ΠoldK̄

)
,

(5)

where 0 < η ≤ 1 is a step size. The second term is an
LAP subproblem, which can be efficiently solved by
using the Hungarian method (Kuhn, 1955).

In the original KS-HSIC paper (Quadrianto et al.,
2010), a C++ implementation of the Hungarian
method provided by Cooper1 was used for solving
Eq.(5); then Π is kept updated by Eq.(5) until con-
vergence.

In this iterative optimization procedure, the choice of
initial permutation matrices is critical to obtain a good

1http://mit.edu/harold/www/code.html

solution. Quadrianto et al. (2010) proposed the follow-
ing initialization scheme. Suppose the kernel matrices
K̄ and L̄ are rank one, i.e., for some f and g, K̄ and
L̄ can be expressed as K̄ = ff� and L̄ = gg�. Then
HSIC can be written as

HSIC(Z(Π)) = ‖f�Πg‖2. (6)

The initial permutation matrix is determined so that
Eq.(6) is maximized. According to Theorems 368 and
369 in Hardy et al. (1952), the maximum of Eq.(6) is
attained when the elements of f and Πg are ordered in
the same way. That is, if the elements of f are ordered
in the ascending manner (i.e., f1 ≤ f2 ≤ · · · ≤ fn),
the maximum of Eq.(6) is attained by ordering the
elements of g in the same ascending way. However,
since the kernel matrices K̄ and L̄ may not be rank
one in practice, the principal eigenvectors of K̄ and
L̄ were used as f and g in the original KS-HSIC pa-
per (Quadrianto et al., 2010). We call this eigenvalue-
based initialization.

Since HSIC is a distribution-free dependence measure,
KS-HSIC is more flexible than KS-MI. However, a crit-
ical weakness of HSIC is that its performance is sensi-
tive to the choice of kernels (Jagarlamudi et al., 2010).
A practical heuristic is to use the Gaussian kernel with
width set to the median distance between samples (see
e.g., Fukumizu et al., 2009a), but this does not always
work well in practice.

4 Proposed Methods

In this section, we propose two alternative CDOM
methods that can naturally address the model selec-
tion problem.

4.1 Kernelized Sorting with Normalized
Cross-Covariance Operator

The kernel-based dependence measure based on
the normalized cross-covariance operator (NOCCO)
(Fukumizu et al., 2009b) is given as follows (Fukumizu
et al., 2009b):

DNOCCO(Z) = tr(K̃L̃),

where K̃ = K̄(K̄ + nεIn)−1, L̃ = L̄(L̄ + nεIn)−1,
and ε > 0 is a regularization parameter. DNOCCO was
shown to be asymptotically independent of the choice
of kernels. Thus, KS with DNOCCO (KS-NOCCO) is
expected to be less sensitive to the kernel parameter
choice than KS-HSIC.
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The permuted version of L̃ can be written as

L̃(Π) = Π�L̄Π(Π�L̄Π + nεIn)−1

= Π�L̄(L̄ + nεIn)−1Π

= Π�L̃Π,

where we used the orthogonality of Π (i.e., Π�Π =
ΠΠ� = In). Thus, the dependency measure for Z(Π)
can be written as

DNOCCO(Z(Π)) = tr(K̃Π�L̃Π).

Since this is essentially the same form as HSIC, a local
optimal solution may be obtained in the same way as
KS-HSIC:

Πnew = (1 − η)Πold + η argmax
Π

tr
(
Π�L̃ΠoldK̃

)
.

(7)

However, the property that DNOCCO is independent
of the kernel choice holds only asymptotically. Thus,
with finite samples, DNOCCO does still depend on the
choice of kernels as well as the regularization parame-
ter ε which needs to be manually tuned.

4.2 Least-Squares Object Matching

Next, we propose an alternative method called least-
squares object matching (LSOM), in which we em-
ploy least-squares mutual information (LSMI) (Suzuki
et al., 2009) as a dependency measure. LSMI is a con-
sistent estimator of the squared-loss mutual informa-
tion (SMI) with the optimal convergence rate. SMI is
defined and expressed as

SMI(Z)

=
1
2

∫∫ (
p(x, y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy

=
1
2

∫∫ (
p(x, y)

p(x)p(y)

)
p(x,y)dxdy − 1

2
. (8)

Note that SMI is the Pearson divergence (Pearson,
1900) from p(x, y) to p(x)p(y), while the ordinary
MI is the Kullback-Leibler divergence (Kullback and
Leibler, 1951) from p(x, y) to p(x)p(y). SMI is zero
if and only if x and y are independent, as the ordi-
nary MI. Its estimator LSMI is given as follows (Suzuki
et al., 2009) (see Appendix for the derivation of LSMI):

LSMI(Z) =
1
2
α̂�ĥ − 1

2
,

where

α̂ = (Ĥ + λIn)−1ĥ,

Ĥ =
1
n2

(KK�) ◦ (LL�),

ĥ =
1
n

(K ◦ L)1n.

Here, λ (≥ 0) is the regularization parameter. Since
cross-validation (CV) with respect to SMI is possi-
ble for model selection, tuning parameters in LSMI
(i.e., the kernel parameters and the regularization pa-
rameter) can be objectively optimized. This is a no-
table advantage over kernel-based approaches such as
KS-HSIC and KS-NOCCO, since the choice of ker-
nels heavily affects the sensitivity of the independence
measure in the kernel-based independence measures
(Fukumizu et al., 2009a).

Below, we use the following equivalent expression of
LSMI:

LSMI(Z) =
1
2n

tr
(
LÂK

)
− 1

2
, (9)

where Â is the diagonal matrix with diagonal elements
given by α̂. Note that we used Eq.(73) and Eq.(75) in
Minka (2000) for obtaining the above expression.

LSMI for the permuted data Z(Π) is given by

LSMI(Z(Π)) =
1
2n

tr
(
Π�LΠÂΠK

)
− 1

2
,

where ÂΠ is the diagonal matrix with diagonal ele-
ments given by α̂Π, and α̂Π is given by

α̂Π = (ĤΠ + λIn)−1ĥΠ,

ĤΠ =
1
n2

(KK�) ◦ (Π�LL�Π),

ĥΠ =
1
n

(
K ◦ (Π�LΠ)

)
1n.

Consequently, LSOM is formulated as follows:

max
Π

LSMI(Z(Π)).

Since this optimization problem is in general NP-hard
and is not convex, we simply use the same optimization
strategy as KS-HSIC, i.e., for the current Πold, the
solution is updated as

Πnew =

(1 − η)Πold + η argmax
Π

tr
(
Π�LΠoldÂΠoldK

)
.

(10)

5 Experiments

In this section, we experimentally evaluate our pro-
posed algorithms in the image matching, unpaired
voice conversion, and photo album summarization
tasks.

In all the methods, we use the Gaussian kernels:

K(x, x′) = exp
(
−‖x − x′‖2

2σ2
x

)
,

L(y,y′) = exp
(
−‖y − y′‖2

2σ2
y

)
,
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(a) KS-HSIC with different Gaussian
kernel widths.
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(b) KS-NOCCO with different Gaus-
sian kernel widths and regularization
parameters.
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(c) LSOM (tuned by CV), optimally-
tuned KS-NOCCO, and optimally-
tuned KS-HSIC.

Figure 1: Image matching results. The best method in terms of the mean error and comparable methods
according to the t-test at the significance level 1% are specified by ‘◦’.

and we set the maximum number of iterations for up-
dating permutation matrices to 20 and the step size η
to 1. To avoid falling into undesirable local optima, op-
timization is carried out 10 times with different initial
permutation matrices, which are determined by the
eigenvalue-based initialization heuristic with Gaussian
kernel widths

(σx, σy) = c × (mx,my),

where c = 11/2, 21/2, . . . , 101/2, and

mx = 2−1/2median({‖xi − xj‖}n
i,j=1),

my = 2−1/2median({‖yi − yj‖}n
i,j=1).

In KS-HSIC and KS-NOCCO, we use the Gaussian
kernel with the following widths:

(σx, σy) = c′ × (mx,my),

where c′ = 11/2, 101/2. In KS-NOCCO, we use the
following regularization parameters:

ε = 0.01, 0.05.

In LSOM, we choose the model parameters of LSMI,
σx, σy, and λ by 2-fold CV from

(σx, σy) = c × (mx,my),

λ = 10−1, 10−2, 10−3.

5.1 Image Matching

Let us consider a toy image matching problem. In
this experiment, we use images with RGB format used
in Quadrianto et al. (2010), which were originally ex-
tracted from Flickr2. We first convert the images from

2http://www.flickr.com

Figure 2: Image matching result by LSOM. In this
case, 234 out of 320 images (73.1%) are matched cor-
rectly.

RGB to Lab space and resize them to 40 × 40 pixels.
Next, we convert an image into a 4800-dimensional
vector (4800 = 40×40×3). Then, we vertically divide
images of size 40 × 40 pixels in the middle, and make
two sets of half-images {xi}n

i=1 and {yi}n
i=1. Given

that {yi}n
i=1 is randomly permuted, the goal is to re-

cover the correct correspondence.

Figure 1 summarizes the average correct matching
rate over 100 runs as functions of the number of im-
ages, showing that the proposed LSOM method tends
to outperform the best tuned KS-NOCCO and KS-
NOCCO methods. Note that the tuning parameters
of LSOM (σx, σy, and λ) are automatically tuned by
CV. Figure 2 depicts an example of image matching
results obtained by LSOM, showing that most of the
images are correctly matched.
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Figure 3: True spectral envelopes and their estimates.

5.2 Unpaired Voice Conversion

Next, we consider an unpaired voice conversion task,
which is aimed at matching the voice of a source
speaker with that of a target speaker.

In this experiment, we use 200 short utterance sam-
ples recorded from two male speakers in French, with
sampling rate 44.1kHz. We first convert the utter-
ance samples to 50-dimensional line spectral frequen-
cies (LSF) vector (Kain and Macon, 1988). We denote
the source and target LSF vectors by x and y, respec-
tively. Then the voice conversion task can be regarded
as a multi-dimensional regression problem of learning
a function from x to y. However, different from a stan-
dard regression setup, paired training samples are not
available; instead, only unpaired samples {xi}n

i=1 and
{yi}n

i=1 are given.

By CDOM, we first match {xi}n
i=1 and {yi}n

i=1, and
then we train a multi-dimensional kernel regression
model (Schölkopf and Smola, 2002) using the matched
samples {(xπ(i), yi)}n

i=1 as

min
W

n∑
i=1

‖yi − W�k(xπ(i))‖2 +
δ

2
tr(W�W ),

where

k(x) = (K(x,xπ(1)), . . . , K(x, xπ(n)))�,

K(x,x′) = exp
(
−‖x − x′‖2

2τ2

)
.

Here, τ is a Gaussian kernel width and δ is a regular-
ization parameter; they are chosen by 2-fold CV.

We repeat the experiments 100 times by randomly
shuffling training and test samples, and evaluate the
voice convergence performance by log-spectral distance
for 8000 test samples1 (Quackenbush et al., 1988). Fig-
ure 3 shows the true spectral envelope and their es-
timates, and Figure 4 shows the average performance

1The smaller the spectral distortion is, the better the
quality of voice conversion is.
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Figure 4: Unpaired voice conversion results. The best
method in terms of the mean spectral distortion and
comparable methods according to the t-test at the sig-
nificance level 1% are specified by ‘◦’.

over 100 runs as the number of training samples. These
results show that the proposed LSOM tends to outper-
form KS-NOCCO and KS-HSIC.

5.3 Photo Album Summarization

Finally, we apply the proposed LSOM method to a
photo album summarization problem, where photos
are automatically aligned into a designed frame ex-
pressed in the Cartesian coordinate system.

First, we use 320 images in the RGB format obtained
from Flickr2. We consider a rectangular frame of
16 × 20 (= 320), and arrange the images in this rect-
angular frame. Figure 5(a) depicts the photo album
summarization result, showing that images are aligned
in the way that images with similar colors are aligned
closely.

Similarly, we use the Frey face dataset (Roweis and

2http://www.flickr.com
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(a) Layout of 320 images into a 2D
grid of size 16 by 20 using LSOM.

(b) Layout of 225 facial images into a
2D grid of size 15 by 15 using LSOM.

(c) Layout of 320 digit ‘7’ into a 2D
grid of size 16 by 20 using LSOM.

Figure 5: Images are automatically aligned into rectangular grid frames expressed in the Cartesian coordinate
system.

(a) Layout of 120 images into a
Japanese character ‘mountain’ by
LSOM.

(b) Layout of 153 facial images into
‘smiley’ by LSOM.

(c) Layout of 199 digit ‘7’ into ‘777’ by
LSOM.

Figure 6: Images are automatically aligned into complex grid frames expressed in the Cartesian coordinate
system.

Saul, 2000), which consists of 225 gray-scale face im-
ages with 28×20 (= 560) pixels. We similarly convert
a image into a 560-dimensional vector, and we set the
grid size to 15 × 15 (= 225). The results depicted in
Figure 5(b) show that similar face images (in terms of
the angle and facial expressions) are assigned in nearby
cells in the grid.

Next, we apply LSOM to the USPS hand-written digit
dataset (Hastie et al., 2001). In this experiment, we
use 320 gray-scale images of digit ‘7’ with 16 × 16
(= 256) pixels. We convert an image into a 256-
dimensional vector, and we set the grid size to 16× 20
(= 320). The result depicted in Figure 5(c) shows that
digits with similar profiles are aligned closely.

Finally, we align the Flickr, Frey face, and USPS im-
ages into more complex frames—a Japanese charac-
ter ‘mountain’, a smiley-face shape, and a ‘777’ digit
shape. The results depicted in Figure 6 show that im-
ages with similar profiles are located in nearby grid-
coordinate cells.

6 Conclusion

In this paper, we proposed two methods of cross-
domain object matching (CDOM). The first method
uses the dependence measure based on the normalized
cross-covariance operator (NOCCO), which is advan-
tageous over HSIC in that NOCCO is asymptotically
independent of the choice of kernels. However, with
finite samples, it still depends on kernels which need
to be manually tuned. To cope with this problem,
we proposed a more practical CDOM approach called
least-squares object matching (LSOM). LSOM adopts
squared-loss mutual information as a dependence mea-
sure, and it is estimated by the method of least-squares
mutual information (LSMI). A notable advantage of
the LSOM method is that it is equipped with a natural
cross-validation procedure that allows us to objectively
optimize tuning parameters such as the Gaussian ker-
nel width and the regularization parameter in a data-
dependent fashion. We applied the proposed methods
to the image matching, unpaired voice conversion, and
photo album summarization tasks, and experimentally
showed that LSOM is the most promising.
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Appendix

SMI cannot be directly computed since it contains un-
known densities p(x,y), p(x), and p(y). Here, we
briefly review an SMI estimator called least-squares
mutual information (LSMI) (Suzuki et al., 2009).

Suppose that we are given n independent and identi-
cally distributed (i.i.d.) paired samples {(xi, yi)}n

i=1

drawn from a joint distribution with density p(x, y).
A key idea of LSMI is to directly estimate the density
ratio:

w(x, y) =
p(x,y)

p(x)p(y)
,

without going through density estimation of p(x, y),
p(x), and p(y).

In LSMI, the density ratio function w(x,y) is directly
modeled by the following linear model:

wα(x, y) =
b∑

�=1

α�ϕ�(x, y) = α�ϕ(x, y), (11)

where b is the number of basis functions, α =
(α1, . . . , αb)� are parameters, and ϕ(x,y) =
(ϕ1(x, y), . . . , ϕb(x,y))� are basis functions. Note
that, we set b = n in this paper.

The parameter α in the model wα(x,y) is learned so
that the squared error between w(x,y) and wα(x,y)
— this is formulated as

α̂ = argmin
α

[1
2
α�Ĥα − ĥ�α + λα�α

]
,

where a regularization term λα�α is included for
avoiding overfitting, and

Ĥ =
1
n2

n∑
i,j=1

ϕ(xi, yj)ϕ(xi, yj)�,

ĥ =
1
n

n∑
i=1

ϕ(xi, yi).

Here, we use the product kernel of the following form
as basis functions:

ϕ�(x, y) = K(x, x�)L(y,y�),

where K(x, x′) and L(y, y′) are reproducing kernels
for x and y.

Then Ĥ and ĥ can be rewritten as (Petersen and Ped-
ersen, 2008)

Ĥ =
1
n2

(KK�) ◦ (LL�),

ĥ =
1
n

(K ◦ L)1n.

Differentiating the above objective function with re-
spect to α and equating it to zero, we can obtain an
analytic-form solution:

α̂ = (Ĥ + λIb)−1ĥ.

Given a density ratio estimator ŵ = w
bα, SMI can be

simply approximated as

LSMI(Z) =
1
2
α̂�ĥ − 1

2
.

In order to determine the kernel parameter and the
regularization parameter λ, cross-validation (CV) is
available for the LSMI estimator: First, the sam-
ples {(xi,yi)}n

i=1 are divided into K disjoint subsets
{Sk}K

k=1, Sk = {(xk,i, yk,i)}nk
i=1 of (approximately) the

same size, where nk is the number of samples in the
subset Sk. Then, an estimator α̂Sk

is obtained using
{Sj}j �=k, and the approximation error for the hold-out
samples Sk is computed as

J
(K-CV)
Sk

=
1
2
α̂�

Sk
ĤSk

α̂Sk
− ĥ�

Sk
α̂Sk

,

where, for [KSk
]ij = K(xi, xk,j), [LSk

]ij = L(yi, yk,j)
i = 1, . . . , n, j = 1, . . . , |Sk|,

ĤSk
=

1
n2

k

(KSk
K�

Sk
) ◦ (LSk

L�
Sk

),

ĥSk
=

1
nk

(KSk
◦ LSk

)1nk
.

This procedure is repeated for k = 1, . . . , K, and its
average J (K-CV) is outputted as

J (K-CV) =
1
K

K∑
k=1

J
(K-CV)
Sk

.

We compute J (K-CV) for all model candidates, and
choose the model that minimizes J (K-CV).
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Abstract

Information-maximization clustering learns
a probabilistic classifier in an unsupervised
manner so that mutual information between
feature vectors and cluster assignments is
maximized. A notable advantage of this
approach is that it only involves continu-
ous optimization of model parameters, which
is substantially easier to solve than dis-
crete optimization of cluster assignments.
However, existing methods still involve non-
convex optimization problems, and there-
fore finding a good local optimal solution is
not straightforward in practice. In this pa-
per, we propose an alternative information-
maximization clustering method based on a
squared-loss variant of mutual information.
This novel approach gives a clustering so-
lution analytically in a computationally ef-
ficient way via kernel eigenvalue decompo-
sition. Furthermore, we provide a practical
model selection procedure that allows us to
objectively optimize tuning parameters in-
cluded in the kernel function. Through ex-
periments, we demonstrate the usefulness of
the proposed approach.

1. Introduction

The goal of clustering is to classify data samples into
disjoint groups in an unsupervised manner. K-means
is a classic but still popular clustering algorithm. How-
ever, since k-means only produces linearly separated
clusters, its usefulness is rather limited in practice.

Appearing in Proceedings of the 28 th International Con-
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To cope with this problem, various non-linear clus-
tering methods have been developed. Kernel k-means
(Girolami, 2002) performs k-means in a feature space
induced by a reproducing kernel function. Spectral
clustering (Shi & Malik, 2000) first unfolds non-linear
data manifolds by a spectral embedding method, and
then performs k-means in the embedded space. Blur-
ring mean-shift (Fukunaga & Hostetler, 1975) uses
a non-parametric kernel density estimator for model-
ing the data-generating probability density and finds
clusters based on the modes of the estimated den-
sity. Discriminative clustering (Xu et al., 2005; Bach
& Harchaoui, 2008) learns a discriminative classifier
for separating clusters, where class labels are also
treated as parameters to be optimized. Dependence-
maximization clustering (Song et al., 2007; Faivi-
shevsky & Goldberger, 2010) determines cluster as-
signments so that their dependence on input data is
maximized.

These non-linear clustering techniques would be capa-
ble of handling highly complex real-world data. How-
ever, they suffer from lack of objective model selection
strategies1. More specifically, the above non-linear
clustering methods contain tuning parameters such as
the width of Gaussian functions and the number of
nearest neighbors in kernel functions or similarity mea-
sures, and these tuning parameter values need to be
heuristically determined in an unsupervised manner.
The problem of learning similarities/kernels was ad-
dressed in earlier works, but they considered super-
vised setups, i.e., labeled samples are assumed to be
given. Zelnik-Manor & Perona (2005) provided a use-
ful unsupervised heuristic to determine the similarity
in a data-dependent way. However, it still requires the
number of nearest neighbors to be determined man-

1‘Model selection’ in this paper refers to the choice of
tuning parameters in kernel functions or similarity mea-
sures, not the choice of the number of clusters.
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ually (although the magic number ‘7’ was shown to
work well in their experiments).

Another line of clustering framework called
information-maximization clustering (Agakov &
Barber, 2006; Gomes et al., 2010) exhibited the
state-of-the-art performance. In this information-
maximization approach, probabilistic classifiers such
as a kernelized Gaussian classifier (Agakov & Barber,
2006) and a kernel logistic regression classifier (Gomes
et al., 2010) are learned so that mutual information
(MI) between feature vectors and cluster assignments
is maximized in an unsupervised manner. A notable
advantage of this approach is that classifier training
is formulated as continuous optimization problems,
which are substantially simpler than discrete opti-
mization of cluster assignments. Indeed, classifier
training can be carried out in computationally ef-
ficient manners by a gradient method (Agakov &
Barber, 2006) or a quasi-Newton method (Gomes
et al., 2010). Furthermore, Agakov & Barber (2006)
provided a model selection strategy based on the
common information-maximization principle. Thus,
kernel parameters can be systematically optimized in
an unsupervised way.

However, in the above MI-based clustering approach,
the optimization problems are non-convex, and find-
ing a good local optimal solution is not straightfor-
ward in practice. The goal of this paper is to over-
come this problem by providing a novel information-
maximization clustering method. More specifically,
we propose to employ a variant of MI called squared-
loss MI (SMI), and develop a new clustering algo-
rithm whose solution can be computed analytically in
a computationally efficient way via eigenvalue decom-
position. Furthermore, for kernel parameter optimiza-
tion, we propose to use a non-parametric SMI esti-
mator called least-squares MI (LSMI) (Suzuki et al.,
2009), which was proved to achieve the optimal con-
vergence rate with analytic-form solutions. Through
experiments on various real-world datasets such as im-
ages, natural languages, accelerometric sensors, and
speech, we demonstrate the usefulness of the proposed
clustering method.

2. Information-Maximization
Clustering with Squared-Loss
Mutual Information

In this section, we describe our novel clustering algo-
rithm.

2.1. Formulation of Information-Maximization
Clustering

Suppose we are given d-dimensional i.i.d. feature vec-
tors of size n,

{xi | xi ∈ Rd}ni=1,

which are assumed to be drawn independently from a
distribution with density p∗(x). The goal of clustering
is to give cluster assignments,

{yi | yi ∈ {1, . . . , c}}ni=1,

to the feature vectors {xi}ni=1, where c denotes the
number of classes. Throughout this paper, we assume
that c is known.

In order to solve the clustering problem, we take the
information-maximization approach (Agakov & Bar-
ber, 2006; Gomes et al., 2010). That is, we regard clus-
tering as an unsupervised classification problem, and
learn the class-posterior probability p∗(y|x) so that ‘in-
formation’ between feature vector x and class label y
is maximized.

The dependence-maximization approach (Song et al.,
2007; Faivishevsky & Goldberger, 2010) is re-
lated to, but substantially different from the
above information-maximization approach. In the
dependence-maximization approach, cluster assign-
ments {yi}ni=1 are directly determined so that their
dependence on feature vectors {xi}ni=1 is maximized.
Thus, the dependence-maximization approach intrin-
sically involves combinatorial optimization with re-
spect to {yi}ni=1. On the other hand, the information-
maximization approach involves continuous optimiza-
tion with respect to the parameter α included in a
class-posterior model p(y|x;α). This continuous op-
timization of α is substantially easier to solve than
discrete optimization of {yi}ni=1.

Another advantage of the information-maximization
approach is that it naturally allows out-of-sample clus-
tering based on the discriminative model p(y|x;α),
i.e., a cluster assignment for a new feature vector can
be obtained based on the learned discriminative model.

2.2. Squared-Loss Mutual Information

As an information measure, we adopt squared-loss mu-
tual information (SMI). SMI between feature vector x
and class label y is defined by

SMI :=
1

2

∫ c∑
y=1

p∗(x)p∗(y)
(

p∗(x, y)
p∗(x)p∗(y)

− 1

)2

dx,

(1)
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where p∗(x, y) denotes the joint density of x and y,
and p∗(y) is the marginal probability of y. SMI is the
Pearson divergence (Pearson, 1900) from p∗(x, y) to
p∗(x)p∗(y), while the ordinary MI (Cover & Thomas,
2006) is the Kullback-Leibler divergence (Kullback &
Leibler, 1951) from p∗(x, y) to p∗(x)p∗(y):

MI :=

∫ c∑
y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx. (2)

The Pearson divergence and the Kullback-Leibler di-
vergence both belong to the class of Ali-Silvey-Csiszár
divergences (which is also known as f -divergences, see
(Ali & Silvey, 1966; Csiszár, 1967)), and thus they
share similar properties. For example, SMI is non-
negative and takes zero if and only if x and y are
statistically independent, as the ordinary MI.

In the existing information-maximization clustering
methods (Agakov & Barber, 2006; Gomes et al., 2010),
MI is used as the information measure. On the other
hand, in this paper, we adopt SMI because it allows
us to develop a clustering algorithm whose solution
can be computed analytically in a computationally ef-
ficient way via eigenvalue decomposition, as described
below.

2.3. Clustering by SMI Maximization

Here, we give a computationally-efficient clustering al-
gorithm based on SMI (1).

We can express SMI as

SMI =
1

2

∫ c∑
y=1

p∗(x, y)
p∗(x, y)

p∗(x)p∗(y)
dx− 1

2
(3)

=
1

2

∫ c∑
y=1

p∗(y|x)p∗(x)p
∗(y|x)
p∗(y)

dx− 1

2
. (4)

Suppose that the class-prior probability p∗(y) is set to
be uniform: p∗(y) = 1/c. Then Eq.(4) is expressed as

c

2

∫ c∑
y=1

p∗(y|x)p∗(x)p∗(y|x)dx− 1

2
. (5)

Let us approximate the class-posterior probability
p∗(y|x) by the following kernel model:

p(y|x;α) :=
n∑

i=1

αy,iK(x,xi), (6)

where K(x,x′) denotes a kernel function with a ker-
nel parameter t. In the experiments, we will use a

sparse variant of the local-scaling kernel (Zelnik-Manor
& Perona, 2005):

K(xi,xj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(
−‖xi − xj‖2

2σiσj

)
if xi ∈ Nt(xj) or xj ∈ Nt(xi),

0 otherwise,

(7)

where Nt(x) denotes the set of t nearest neighbors for
x (t is the kernel parameter), σi is a local scaling factor

defined as σi = ‖xi−x
(t)
i ‖, and x

(t)
i is the t-th nearest

neighbor of xi.

Further approximating the expectation with respect
to p∗(x) included in Eq.(5) by the empirical average
of samples {xi}ni=1, we arrive at the following SMI
approximator:

ŜMI :=
c

2n

c∑
y=1

α�
y K

2αy − 1

2
, (8)

where � denotes the transpose, αy :=
(αy,1, . . . , αy,n)

�, and Ki,j := K(xi,xj).

For each cluster y, we maximize α�
y K

2αy under2

‖αy‖ = 1. Since this is the Rayleigh quotient, the
maximizer is given by the normalized principal eigen-
vector of K (Horn & Johnson, 1985). To avoid all the
solutions {αy}cy=1 to be reduced to the same princi-
pal eigenvector, we impose their mutual orthogonality:
α�

y αy′ = 0 for y �= y′. Then the solutions are given
by the normalized eigenvectors φ1, . . . ,φc associated
with the eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of K. Since
the sign of φy is arbitrary, we set the sign as

φ̃y = φy × sign(φ�
y 1n),

where sign(·) denotes the sign of a scalar and 1n de-
notes the n-dimensional vector with all ones.

On the other hand, since

p∗(y)=
∫
p∗(y|x)p∗(x)dx≈ 1

n

n∑
i=1

p(y|xi;α)=α�
y K1n,

and the class-prior probability p∗(y) was set to be uni-
form, we have the following normalization condition:

α�
y K1n = 1/c.

Furthermore, probability estimates should be non-
negative, which can be achieved by rounding up nega-
tive outputs to zero. Taking these issues into account,

2Note that this unit-norm constraint is not essential
since the obtained solution is renormalized later.
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cluster assignments {yi}ni=1 for {xi}ni=1 are determined
as

yi = argmax
y

[max(0n, φ̃y)]i

max(0n, φ̃y)
�1n

,

where the max operation for vectors is applied in the
element-wise manner and [·]i denotes the i-th element

of a vector. Note that we used Kφ̃y = λyφ̃y in the
above derivation.

We call the above method SMI-based clustering
(SMIC).

2.4. Kernel Parameter Choice by SMI
Maximization

Since the above clustering approach was developed
in the framework of SMI maximization, it would be
natural to determine the kernel parameters so that
SMI is maximized. A direct approach is to use the
above SMI estimator ŜMI also for kernel parameter
choice. However, this direct approach is not favor-
able because ŜMI is an unsupervised SMI estimator
(i.e., SMI is estimated only from unlabeled samples
{xi}ni=1). In the model selection stage, however, we
have already obtained labeled samples {(xi, yi)}ni=1,
and thus supervised estimation of SMI is possible. For
supervised SMI estimation, a non-parametric SMI esti-
mator called least-squares mutual information (LSMI)
(Suzuki et al., 2009) was shown to achieve the optimal
convergence rate. For this reason, we propose to use
LSMI for model selection, instead of ŜMI (8).

LSMI is an estimator of SMI based on paired samples
{(xi, yi)}ni=1. The key idea of LSMI is to learn the
following density-ratio function,

r∗(x, y) :=
p∗(x, y)

p∗(x)p∗(y)
, (9)

without going through density estimation of p∗(x, y),
p∗(x), and p∗(y). More specifically, let us employ the
following density-ratio model:

r(x, y;θ) :=
∑

�:y�=y

θ�L(x,x�), (10)

where L(x,x′) is a kernel function with kernel param-
eter γ. In the experiments, we will use the Gaussian
kernel:

L(x,x′) = exp

(
−‖x− x′‖2

2γ2

)
. (11)

The parameter θ in the above density-ratio model is
learned so that the following squared error is mini-

mized:

1

2

∫ c∑
y=1

(
r(x, y;θ)− r∗(x, y)

)2

p∗(x)p∗(y)dx. (12)

Among n cluster assignments {yi}ni=1, let ny be the
number of samples in cluster y. Let θy be the
parameter vector corresponding to the kernel bases
{L(x,x�)}�:y�=y, i.e., θy is the ny-dimensional sub-
vector of θ = (θ1, . . . , θn)

� consisting of indices
{� | y� = y}. Then an empirical and regularized ver-
sion of the optimization problem (12) is given for each
y as follows:

min
θy

[
1

2
θ�
y Ĥ

(y)
θy − θ�

y ĥ
(y)

+ δθ�
y θy

]
, (13)

where δ (≥ 0) is the regularization parameter. Ĥ
(y)

is the ny × ny matrix and ĥ
(y)

is the ny-dimensional
vector defined as

Ĥ
(y)
�,�′ :=

ny

n2

n∑
i=1

L(xi,x
(y)
� )L(xi,x

(y)
�′ ),

ĥ
(y)
� :=

1

n

∑
i:yi=y

L(xi,x
(y)
� ),

where x
(y)
� is the �-th sample in class y (which corre-

sponds to θ̂
(y)
� ).

A notable advantage of LSMI is that the solution θ̂
(y)

can be computed analytically as

θ̂
(y)

= (Ĥ
(y)

+ δI)−1ĥ
(y)

.

Then a density-ratio estimator is obtained analytically
as follows:

r̂(x, y) =

ny∑
�=1

θ̂
(y)
� L(x,x

(y)
� ).

The accuracy of the above least-squares density-
ratio estimator depends on the choice of the ker-
nel parameter γ and the regularization parameter δ.
They can be systematically optimized based on cross-
validation as follows (Suzuki et al., 2009). The sam-
ples Z = {(xi, yi)}ni=1 are divided into M disjoint sub-
sets {Zm}Mm=1 of approximately the same size. Then
a density-ratio estimator r̂m(x, y) is obtained using
Z\Zm (i.e., all samples without Zm), and its out-of-
sample error (which corresponds to Eq.(12) without
irrelevant constant) for the hold-out samples Zm is
computed as

CVm :=
1

2|Zm|2
∑

x,y∈Zm̂

rm(x, y)2− 1

|Zm|
∑

(x,y)∈Zm̂

rm(x, y).
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This procedure is repeated for m = 1, . . . ,M , and the
average of the above hold-out error over all m is com-
puted. Finally, the kernel parameter γ and the regu-
larization parameter δ that minimize the average hold-
out error are chosen as the most suitable ones.

Based on the expression of SMI given by Eq.(3), an
SMI estimator called LSMI is given as follows:

LSMI :=
1

2n

n∑
i=1

r̂(xi, yi)− 1

2
, (14)

where r̂(x, y) is a density-ratio estimator obtained
above. Since r̂(x, y) can be computed analytically,
LSMI can also be computed analytically.

We use LSMI for model selection of SMIC. More specif-
ically, we compute LSMI as a function of the kernel pa-
rameter t of K(x,x′) included in the cluster-posterior
model (6), and choose the one that maximizes LSMI.

MATLAB implementation of the proposed clus-
tering method is available from ‘http://sugiyama-
www.cs.titech.ac.jp/˜sugi/software/SMIC’.

3. Existing Methods

In this section, we qualitatively compare the proposed
approach with existing methods.

3.1. Spectral Clustering

The basic idea of spectral clustering (Shi & Malik,
2000) is to first unfold non-linear data manifolds by
a spectral embedding method, and then perform k-
means in the embedded space. More specifically, given
sample-sample similarity Wi,j ≥ 0, the minimizer of
the following criterion with respect to {ξi}ni=1 is ob-
tained under some normalization constraint:

n∑
i,j

Wi,j

∥∥∥∥∥ 1√
Di,i

ξi −
1√
Dj,j

ξj

∥∥∥∥∥
2

,

where D is the diagonal matrix with i-th diagonal el-
ement given by Di,i :=

∑n
j=1 Wi,j . Consequently, the

embedded samples are given by the principal eigenvec-

tors of D− 1
2WD− 1

2 , followed by normalization. Note
that spectral clustering was shown to be equivalent to
a weighted variant of kernel k-means with some spe-
cific kernel (Dhillon et al., 2004).

The performance of spectral clustering depends heav-
ily on the choice of sample-sample similarity Wi,j .
Zelnik-Manor & Perona (2005) proposed a useful un-
supervised heuristic to determine the similarity in a
data-dependent manner, called local scaling : Wi,j =

exp
(
−‖xi−xj‖2

2σiσj

)
, where σi is a local scaling factor de-

fined as σi = ‖xi − x
(t)
i ‖, and x

(t)
i is the t-th nearest

neighbor of xi. t is the tuning parameter in the local
scaling similarity, and t = 7 was shown to be use-
ful (Zelnik-Manor & Perona, 2005; Sugiyama, 2007).
However, this magic number ‘7’ does not seem to work
always well in general.

If D− 1
2WD− 1

2 is regarded as a kernel matrix, spec-
tral clustering will be similar to the proposed SMIC
method described in Section 2.3. However, SMIC does
not require the post k-means processing since the prin-
cipal components have clear interpretation as parame-
ter estimates of the class-posterior model (6). Further-
more, our proposed approach provides a systematic
model selection strategy, which is a notable advantage
over spectral clustering.

3.2. Blurring Mean-Shift Clustering

Blurring mean-shift (Fukunaga & Hostetler, 1975) is a
non-parametric clustering method based on the modes
of the data-generating probability density.

In the blurring mean-shift algorithm, a kernel density
estimator (Silverman, 1986) is used for modeling the
data-generating probability density:

p̂(x) =
1

n

n∑
i=1

K
(
‖x− xi‖2/σ2

)
,

where K(ξ) is a kernel function such as a Gaussian
kernel K(ξ) = e−ξ/2. Taking the derivative of p̂(x)
with respect to x and equating the derivative at x = xi

to zero, we obtain the following updating formula for
sample xi (i = 1, . . . , n):

xi ←−
∑n

j=1 Wi,jxj∑n
j′=1 Wi,j′

,

where Wi,j := K ′
(
‖xi − xj‖2/σ2

)
and K ′(ξ) is the

derivative of K(ξ). Each mode of the density is re-
garded as a representative of a cluster, and each data
point is assigned to the cluster which it converges to.

Carreira-Perpiñán (2007) showed that the blur-
ring mean-shift algorithm can be interpreted as
an EM algorithm (Dempster et al., 1977), where
Wi,j/(

∑n
j′=1 Wi,j′) is regarded as the posterior prob-

ability of the i-th sample belonging to the j-th clus-
ter. Furthermore, the above update rule can be ex-
pressed in a matrix form as X ←− XP , where X =
(x1, . . . ,xn) is a sample matrix and P := WD−1 is
a stochastic matrix of the random walk in a graph
with adjacency W (Chung, 1997). D is defined as
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Di,i :=
∑n

j=1 Wi,j and Di,j = 0 for i �= j. If P is
independent of X, the above iterative algorithm cor-
responds to the power method (Golub & Loan, 1996)
for finding the leading left eigenvector of P . Then,
this algorithm is highly related to the spectral clus-
tering which computes the principal eigenvectors of

D− 1
2WD− 1

2 (see Section 3.1). Although P depends
on X in reality, Carreira-Perpiñán (2006) insisted that
this analysis is still valid since P and X quickly reach
a quasi-stable state.

An attractive property of blurring mean-shift is that
the number of clusters is automatically determined as
the number of modes in the probability density es-
timate. However, this choice depends on the kernel
parameter σ and there is no systematic way to deter-
mine σ, which is restrictive compared with the pro-
posed method. Another critical drawback of the blur-
ring mean-shift algorithm is that it eventually con-
verges to a single point (Cheng, 1995), and therefore a
sensible stopping criterion is necessary in practice. Al-
though Carreira-Perpiñán (2006) gave a useful heuris-
tic for stopping the iteration, it is not clear whether
this heuristic always works well in practice.

4. Experiments

In this section, we experimentally evaluate the perfor-
mance of the proposed and existing clustering meth-
ods.

4.1. Illustration

First, we illustrate the behavior of the proposed
method using artificial datasets described in the top
row of Figure 1. The dimensionality is d = 2 and the
sample size is n = 200. As a kernel function, we used
the sparse local-scaling kernel (7) for SMIC, where the
kernel parameter t was chosen from {1, . . . , 10} based
on LSMI with the Gaussian kernel (11).

The top graphs in Figure 1 depict the cluster assign-
ments obtained by SMIC, and the bottom graphs in
Figure 1 depict the model selection curves obtained
by LSMI. The results show that SMIC combined with
LSMI works well for these toy datasets.

4.2. Performance Comparison

Next, we systematically compare the performance of
the proposed and existing clustering methods using
various real-world datasets such as images, natural lan-
guages, accelerometric sensors, and speech.

We compared the performance of the following meth-
ods, which all do not contain open tuning parame-
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Figure 1. Illustrative examples. Cluster assignments ob-
tained by SMIC (top) and model selection curves obtained
by LSMI (bottom).

ters and therefore experimental results are fair and
objective: K-means (KM), spectral clustering with the
self-tuning local-scaling similarity (SC) (Zelnik-Manor
& Perona, 2005), mean nearest-neighbor clustering
(MNN) (Faivishevsky & Goldberger, 2010), MI-based
clustering for kernel logistic models (MIC) (Gomes
et al., 2010) with model selection by maximum-
likelihood MI (Suzuki et al., 2008), and the proposed
SMIC.

The clustering performance was evaluated by the ad-
justed Rand index (ARI) (Hubert & Arabie, 1985)
between inferred cluster assignments and the ground
truth categories. Larger ARI values mean better per-
formance, and ARI takes its maximum value 1 when
two sets of cluster assignments are identical. In addi-
tion, we also evaluated the computational efficiency of
each method by the CPU computation time.

We used various real-world datasets including im-
ages, natural languages, accelerometric sensors, and
speech: The USPS hand-written digit dataset (‘digit’),
the Olivetti Face dataset (‘face’), the 20-Newsgroups
dataset (‘document’), the SENSEVAL-2 dataset
(‘word’), the ALKAN dataset (‘accelerometry’), and
the in-house speech dataset (‘speech’). Detailed expla-
nation of the datasets is omitted due to lack of space.

For each dataset, the experiment was repeated 100
times with random choice of samples from a pool.
Samples were centralized and their variance was nor-
malized in the dimension-wise manner, before feeding
them to clustering algorithms.

The experimental results are described in Table 1. For
the digit dataset, MIC and SMIC outperform KM, SC,
and MNN in terms of ARI. The entire computation
time of SMIC including model selection is faster than
KM, SC, and MIC, and is comparable to MNN which
does not include a model selection procedure. For the
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Table 1. Experimental results on real-world datasets (with
equal cluster size). The average clustering accuracy (and
its standard deviation in the bracket) in terms of ARI and
the average CPU computation time in second over 100 runs
are described. The best method in terms of the average
ARI and methods judged to be comparable to the best
one by the t-test at the significance level 1% are described
in boldface. Computation time of MIC and SMIC cor-
responds to the time for computing a clustering solution
after model selection has been carried out. For references,
computation time for the entire procedure including model
selection is described in the square bracket.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

ARI 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
Time 835.9 973.3 318.5 84.4[3631.7] 14.4[359.5]

Face (d = 4096, n = 100, and c = 10)
KM SC MNN MIC SMIC

ARI 0.60(0.11) 0.62(0.11) 0.47(0.10) 0.64(0.12) 0.65(0.11)
Time 93.3 2.1 1.0 1.4[30.8] 0.0[19.3]

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
Time 77.8 9.7 6.4 3.4[530.5] 0.3[115.3]

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
Time 6.5 5.9 2.2 1.0[369.6] 0.2[203.9]

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

ARI 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
Time 0.4 3.3 1.9 0.8[410.6] 0.2[92.6]

Speech (d = 50, n = 400, and c = 2)
KM SC MNN MIC SMIC

ARI 0.00(0.00) 0.00(0.00) 0.04(0.15) 0.18(0.16) 0.21(0.25)
Time 0.9 4.2 1.8 0.7[413.4] 0.3[179.7]

face dataset, SC, MIC, and SMIC are comparable to
each other and are better than KM and MNN in terms
of ARI. For the document and word datasets, SMIC
tends to outperform the other methods. For the ac-
celerometry dataset, MNN and SMIC work better than
the other methods. Finally, for the speech dataset,
MIC and SMIC work comparably well, and are signif-
icantly better than KM, SC, and MNN.

Overall, MIC was shown to work reasonably well, im-
plying that model selectoin by maximum-likelihood MI
is practically useful. SMIC was shown to work even
better than MIC, with much less computation time.
The accuracy improvement of SMIC over MIC was
gained by computing the SMIC solution in a closed-
form without any heuristic initialization. The compu-
tational efficiency of SMIC was brought by the analytic
computation of the optimal solution and the class-wise
optimization of LSMI (see Section 2.4).

The performance of MNN and SC was rather unsta-
ble because of the heuristic averaging of the number
of nearest neighbors and the heuristic choice of local
scaling. In terms of computation time, they are rela-

Table 2. Experimental results on real-world datasets under
imbalanced setup. ARI values are described in the table.
Class-imbalance was realized by setting the sample size of
the first classm times larger than other classes. The results
for m = 1 are the same as the ones reported in Table 1.

Digit (d = 256, n = 5000, and c = 10)
KM SC MNN MIC SMIC

m = 1 0.42(0.01) 0.24(0.02) 0.44(0.03) 0.63(0.08) 0.63(0.05)
m = 2 0.52(0.01) 0.21(0.02) 0.43(0.04) 0.60(0.05) 0.63(0.05)

Document (d = 50, n = 700, and c = 7)
KM SC MNN MIC SMIC

m = 1 0.00(0.00) 0.09(0.02) 0.09(0.02) 0.01(0.02) 0.19(0.03)
m = 2 0.01(0.01) 0.10(0.03) 0.10(0.02) 0.01(0.02) 0.19(0.04)
m = 3 0.01(0.01) 0.10(0.03) 0.09(0.02) -0.01(0.03) 0.16(0.05)
m = 4 0.02(0.01) 0.09(0.03) 0.08(0.02) -0.00(0.04) 0.14(0.05)

Word (d = 50, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.04(0.05) 0.02(0.01) 0.02(0.02) 0.04(0.04) 0.08(0.05)
m = 2 0.00(0.07) -0.01(0.01) 0.01(0.02) -0.02(0.05) 0.03(0.05)

Accelerometry (d = 5, n = 300, and c = 3)
KM SC MNN MIC SMIC

m = 1 0.49(0.04) 0.58(0.14) 0.71(0.05) 0.57(0.23) 0.68(0.12)
m = 2 0.48(0.05) 0.54(0.14) 0.58(0.11) 0.49(0.19) 0.69(0.16)
m = 3 0.49(0.05) 0.47(0.10) 0.42(0.12) 0.42(0.14) 0.66(0.20)
m = 4 0.49(0.06) 0.38(0.11) 0.31(0.09) 0.40(0.18) 0.56(0.22)

tively efficient for small- to medium-sized datasets, but
they are expensive for the largest dataset, digit. KM
was not reliable for the document and speech datasets
because of the restriction that the cluster boundaries
are linear. For the digit, face, and document datasets,
KM was computationally very expensive since a large
number of iterations were needed until convergence to
a local optimum solution.

Finally, we performed similar experiments under im-
balanced setup, where the the sample size of the first
class was set to be m times larger than other classes.
The results are summarized in Table 2, showing that
the performance of all methods tends to be degraded
as the degree of imbalance increases. Thus, clustering
becomes more challenging if the cluster size is imbal-
anced. Among the compared methods, the proposed
SMIC still worked better than other methods.

Overall, the proposed SMIC combined with LSMI was
shown to be a useful alternative to existing clustering
approaches.

5. Conclusions

In this paper, we proposed a novel information-
maximization clustering method, which learns class-
posterior probabilities in an unsupervised manner so
that the squared-loss mutual information (SMI) be-
tween feature vectors and cluster assignments is maxi-
mized. The proposed algorithm called SMI-based clus-
tering (SMIC) allows us to obtain clustering solutions
analytically by solving a kernel eigenvalue problem.
Thus, unlike the previous information-maximization
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clustering methods (Agakov & Barber, 2006; Gomes
et al., 2010), SMIC does not suffer from the prob-
lem of local optima. Furthermore, we proposed to use
an optimal non-parametric SMI estimator called least-
squares mutual information (LSMI) for data-driven
parameter optimization. Through experiments, SMIC
combined with LSMI was demonstrated to compare
favorably with existing clustering methods.
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Carreira-Perpiñán, M. Á. Gaussian mean shift is an EM
algorithm. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29:767–776, 2007.

Cheng, Y. Mean shift, mode seeking, and clustering. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 17:790–799, 1995.

Chung, F. R. K. Spectral Graph Theory. American Math-
ematical Society, Providence, 1997.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. John Wiley & Sons, Inc., 2nd edition, 2006.

Csiszár, I. Information-type measures of difference of
probability distributions and indirect observation. Stu-
dia Scientiarum Mathematicarum Hungarica, 2:229–318,
1967.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, series B, 39(1):
1–38, 1977.

Dhillon, I. S., Guan, Y., and Kulis, B. Kernel k-means,
spectral clustering and normalized cuts. ACM SIGKDD,
pp. 551–556, 2004.

Faivishevsky, L. and Goldberger, J. A nonparametric infor-
mation theoretic clustering algorithm. ICML, pp. 351–
358, 2010.

Fukunaga, K. and Hostetler, L. D. The estimation of
the gradient of a density function, with application in
pattern recognition. IEEE Transactions on Information
Theory, 21(1):32–40, 1975.

Girolami, M. Mercer kernel-based clustering in feature
space. IEEE Transactions on Neural Networks, 13(3):
780–784, 2002.

Golub, G. H. and Loan, C. F. Van. Matrix Computations.
Johns Hopkins University Press, 1996.

Gomes, R., Krause, A., and Perona, P. Discriminative clus-
tering by regularized information maximization. NIPS
23, pp. 766–774. 2010.

Horn, R. A. and Johnson, C. A. Matrix Analysis. Cam-
bridge University Press, 1985.

Hubert, L. and Arabie, P. Comparing partitions. Journal
of Classification, 2(1):193–218, 1985.

Kullback, S. and Leibler, R. A. On information and suf-
ficiency. Annals of Mathematical Statistics, 22:79–86,
1951.

Pearson, K. On the criterion that a given system of devia-
tions from the probable in the case of a correlated system
of variables is such that it can be reasonably supposed to
have arisen from random sampling. Philosophical Mag-
azine, 50:157–175, 1900.

Shi, J. and Malik, J. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(8):888–905, 2000.

Silverman, B. W. Density Estimation for Statistics and
Data Analysis. Chapman and Hall, 1986.

Song, L., Smola, A., Gretton, A., and Borgwardt, K. A
dependence maximization view of clustering. ICML, pp.
815–822, 2007.

Sugiyama, M. Dimensionality reduction of multimodal la-
beled data by local Fisher discriminant analysis. Journal
of Machine Learning Research, 8:1027–1061, 2007.

Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. Ap-
proximating mutual information by maximum likelihood
density ratio estimation. JMLR Workshop and Confer-
ence Proceedings, 4:5–20, 2008.

Suzuki, T., Sugiyama, M., Kanamori, T., and Sese, J. Mu-
tual information estimation reveals global associations
between stimuli and biological processes. BMC Bioin-
formatics, 10(1):S52, 2009.

Xu, L., Neufeld, J., Larson, B., and Schuurmans, D. Max-
imum margin clustering. NIPS 17, pp. 1537–1544. 2005.

Zelnik-Manor, L. and Perona, P. Self-tuning spectral clus-
tering. NIPS 17, pp. 1601–1608, 2005.



Semi-Supervised Learning of Class Balance
under Class-Prior Change by Distribution Matching

Marthinus Christoffel du Plessis CHRISTO@SG.CS.TITECH.AC.JP
Masashi Sugiyama SUGI@CS.TITECH.AC.JP

Department of Computer Science, Tokyo Institute of Technology, Tokyo, Japan

Abstract

In real-world classification problems, the class
balance in the training dataset does not necessar-
ily reflect that of the test dataset, which can cause
significant estimation bias. If the class ratio of
the test dataset is known, instance re-weighting
or resampling allows systematical bias correc-
tion. However, learning the class ratio of the
test dataset is challenging when no labeled data
is available from the test domain. In this paper,
we propose to estimate the class ratio in the test
dataset by matching probability distributions of
training and test input data. We demonstrate the
utility of the proposed approach through experi-
ments.

1. Introduction
Most supervised learning algorithms assume that train-
ing and test data follow the same probability distribution
(Vapnik, 1998; Hastie et al., 2001; Bishop, 2006). How-
ever, this de facto standard assumption is often violated
in real-world problems, caused by intrinsic sample selec-
tion bias or inevitable non-stationarity (Heckman, 1979;
Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe,
2012).

In classification scenarios, changes in class balance are of-
ten observed—for example, the male-female ratio is almost
fifty-fifty in the real-world (test set), whereas training sam-
ples collected in a research laboratory tends to be domi-
nated by male data. Such a situation is called a class-prior
change, and the bias caused by differing class balances can
be systematically adjusted by instance re-weighting or re-
sampling if the class balance in the test dataset is known
(Elkan, 2001; Lin et al., 2002).

Appearing in Proceedings of the 29 th International Conference
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However, the class ratio in the test dataset is often unknown
in practice. A possible approach to coping with this prob-
lem is to learn a classifier so that the performance for all
possible class balances is improved, e.g., through maxi-
mization of the area under the ROC curve (Cortes & Mohri,
2004; Clémençon et al., 2009). Another, possibly more di-
rect approach is to estimate the class ratio in the test dataset
and use the estimates for instance re-weighting or resam-
pling. In this paper, we focus on the latter scenario under
a semi-supervised learning setup (Chapelle et al., 2006),
where no labeled data is available from the test domain.

Saerens et al. (2001) is a seminal paper on this topic, which
proposed to estimate the class ratio by the expectation-
maximization (EM) algorithm (Dempster et al., 1977)—
alternately updating the test class-prior and class-posterior
probabilities from some initial estimates until conver-
gence. This method has been successfully applied to var-
ious real-world problems such as word sense disambigua-
tion (Chan & Ng, 2006) and remote sensing (Latinne et al.,
2001).

In this paper, we first reformulate the above algorithm,
and show that this actually corresponds to approximat-
ing the test input distribution by a linear combination of
class-wise input distributions under the Kullback-Leibler
(KL) divergence (Kullback & Leibler, 1951). In this pro-
cedure, the class-wise input distributions are approximated
via class-posterior estimation, for example, by kernel logis-
tic regression (Hastie et al., 2001) or its squared-loss vari-
ant (Sugiyama, 2010).

This new formulation motivates us to develop a new ap-
proach, since indirectly estimating the divergence by esti-
mating the individual class-posterior distributions may not
be the best scheme. Recently, KL divergence estimation
based on direct density-ratio estimation has been shown to
be promising (Nguyen et al., 2010; Sugiyama et al., 2008).
Furthermore, a squared-loss variant of the KL divergence
called the Pearson (PE) divergence (Pearson, 1900) can
also be approximated in the same way, with an analytic
solution that can be computed efficiently (Kanamori et al.,
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2009a). The PE divergence and the KL divergence both be-
long to the f -divergence class (Ali & Silvey, 1966; Csiszár,
1967), which share similar properties. In this paper, with
the aid of this density-ratio based PE divergence estimator,
we propose a new semi-supervised method for estimating
the class ratio in the test dataset. Through experiments, we
demonstrate the usefulness of the proposed method.

2. Problem Formulation and Existing Method
In this section, we formulate the problem of semi-
supervised class-prior estimation and review an existing
method (Saerens et al., 2001).

2.1. Problem Formulation

Let x ∈ Rd be the d-dimensional input data, y ∈
{1, . . . , c} be the class label, and c be the number of
classes. We consider class-prior change, i.e., the class-
prior probability for training data p(y) and that for test data
p′(y) are different. However, we assume that the class-
conditional density for training data p(x|y) and that for test
data p′(x|y) are the same:

p(x|y) = p′(x|y). (1)

Note that training and test joint densities p(x, y) and
p′(x, y) as well as training and test input densities p(x)
and p′(x) are generally different under this setup.

The goal of this paper is to estimate p′(y) from labeled
training samples {(xi, yi)}ni=1 drawn independently from
p(x, y) and unlabeled test samples {x′

i}n
′

i=1 drawn inde-
pendently from p′(x). Given test labels {y′i}n

′

i=1, p′(y) can
be naively estimated by n′

y/n
′, where n′

y is the number of
test samples in class y. Here, however, we would like to
estimate p′(y) without {y′i}n

′

i=1.

2.2. Existing Method

We give a brief overview of an existing method for semi-
supervised class-prior estimation (Saerens et al., 2001),
which is based on the expectation-maximization (EM) al-
gorithm (Dempster et al., 1977).

In the algorithm, test class-prior and class-posterior esti-
mates p̂′(y) and p̂′(y|x) are iteratively updated as follows:

1. Obtain an estimate of the training class-posterior
probability, p̂(y|x), from training data {(xi, yi)}ni=1,
for example, by kernel logistic regression
(Hastie et al., 2001) or its squared-loss variant
(Sugiyama, 2010).

2. Obtain an estimate of the training class-prior probabil-
ity, p̂(y), from the labeled training data {(xi, yi)}ni=1

as p̂(y) = ny/n, where ny is the number of training
samples in class y. Set the initial estimate of the test
class-posterior probability equal to it: p̂′0(y) = p̂(y).

3. Repeat until convergence: t = 1, 2, . . .

(a) Compute a new test class-posterior estimate
p̂′t(y|x) based on the current test class-prior es-
timate p̂′t−1(y) as

p̂′t(y|x) =
p̂′t−1(y)p̂(y|x)/p̂(y)∑c

y′=1 p̂
′
t−1(y

′)p̂(y′|x)/p̂(y′) . (2)

(b) Compute a new test class-prior estimate p̂′t(y)
based on the current test class-prior estimate
p̂′t(y|x) as

p̂′t(y) =
1

n′

n′∑
i=1

p̂′t(y|x′
i). (3)

This procedure was shown to converge to a local optimal
solution.

Note that Eq.(2) comes from the Bayes formulae,

p(x|y) = p(y|x)p(x)
p(y)

and p′(x|y) = p′(y|x)p′(x)
p′(y)

,

combined with Eq.(1):

p′(y|x) ∝ p′(y)
p(y)

p(y|x).

Eq.(3) comes from empirical marginalization of

p′(y) =
∫

p′(y|x)p′(x)dx.

3. Reformulation of the EM Algorithm as
Distribution Matching

In this section, we show that the above EM algorithm can
be interpreted as matching the test input density to a lin-
ear combination of class-wise input distributions under the
Kullback-Leibler (KL) divergence (Kullback & Leibler,
1951).

Based on the assumption that the class-conditional densi-
ties for training and test data are unchanged (see Eq.(1)),
let us model the test input density p′(x) by

q′(x) =
c∑

y=1

θyp(x|y), (4)

where θy is a coefficient corresponding to p′(y):
c∑

y=1

θy = 1. (5)
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We match the model q′(x) with the test input density p′(x)
under the KL divergence:

KL(p′‖q′) :=
∫

p′(x) log
p′(x)
q′(x)

dx

=

∫
p′(x) log p′(x)dx

−
∫

p′(x) log

(
c∑

y=1

θyp(x|y)
)
dx. (6)

Ignoring the first term (which is a constant) and approxi-
mating the expectation in the second term with its empirical
average give the following optimization problem:

max
{θy}c

y=1

1

n′

n′∑
i=1

log

(
c∑

y=1

θyp(x
′
i|y)

)
, (7)

subject to Eq.(5).

Since the above maximization is a convex optimiza-
tion problem, the Karush-Kuhn-Tucker (KKT) con-
ditions are necessary and sufficient for optimality
(Boyd & Vandenberghe, 2004). The KKT conditions for
the above problem is given by Eq.(5) and

1

n′

n′∑
i=1

p(x′
i|y)∑c

y′=1 θy′p(x′
i|y′)

= ν, ∀y = 1, . . . , c,

where ν is a Lagrange multiplier. From these equations, we
can determine ν as

ν = 1 · ν =

(
c∑

y=1

θy

)
·
⎛⎝ 1

n′

n′∑
i=1

p(x′
i|y)∑c

y′=1 θy′p(x′
i|y′)

⎞⎠
=

1

n′

n′∑
i=1

∑c
y=1 θyp(x

′
i|y)∑c

y′=1 θy′p(x′
i|y′)

= 1.

Then the solution {θy}cy=1 can be calculated by fixed-point
iteration as follows (McLachlan & Krishnan, 1997):

θy ←− θy

⎛⎝ 1

n′

n′∑
i=1

p(x′
i|y)∑c

y=1 θyp(x
′
i|y)

⎞⎠ . (8)

Making the substitution p(x′
i|y) = p(y|x′

i)p(x
′
i)/p(y),

canceling p(x′
i) in the numerator and denominator, and re-

placing p(y|x) with p̂(y|x), we can show that the above
updating formula is reduced to

θy ←− 1

n′

n′∑
i=1

θyp̂(y|x′
i)/p̂(y)∑c

y′=1 θy′ p̂(y′|x′
i)/p̂(y

′)
,

which is the same as Eq.(3) with Eq.(2) substituted.

Therefore, the EM method is essentially equivalent to
matching the training and test input distributions under the
KL divergence, which uses the class-conditional density
p(x|y) as a building block (see Eq.(8)). However, this fact
is not apparent in the EM expression because of the cancel-
lation of p(x′

i) in the numerator and denominator.

The convexity of Eq.(7) implies that there are no local min-
ima. However, this was not recognized in Saerens et al.
(2001) since the algorithm was derived via the incomplete
data EM method.

4. Class-Prior Estimation by Direct
Divergence Minimization

The analysis in the previous section motivates us to explore
a more direct way to learn coefficients {θy}cy=1. That is,
given an estimator of a divergence from p′ to q′, coeffi-
cients {θy}cy=1 are learned so that the divergence estimator
is minimized.

In this section, we first review a general frame-
work of approximating the f -divergences (Ali & Silvey,
1966; Csiszár, 1967) via Legendre-Fenchel convex duality
(Keziou, 2003; Nguyen et al., 2010). Then we review two
specific methods of divergence estimation for the KL di-
vergence and the Pearson (PE) divergence (Pearson, 1900).
Finally, we propose to use the PE divergence estimator for
determining the coefficients {θy}cy=1.

4.1. Framework of f -Divergence Approximation

An f -divergence (Ali & Silvey, 1966; Csiszár, 1967) from
p′ to q′ is a general divergence measure defined by a convex
function f such that f(1) = 0 as

Df (p
′‖q′) :=

∫
p′(x)f

(
q′(x)
p′(x)

)
dx.

It was shown that the f -divergence can be lower-bounded
via Legendre-Fenchel convex duality (Rockafellar, 1970) as
follows (Keziou, 2003; Nguyen et al., 2010):

Df (p
′‖q′) = max

r

[ ∫
q′(x)r(x)dx

−
∫

p′(x)f∗(r(x))dx

]
, (9)

where f∗ is the convex conjugate of f . The maximum is
achieved if and only if r(x) = q′(x)/p′(x). Eq.(9) is a
useful expression because the right-hand side only contains
expectations of r and f∗(r(x)), which can be simply ap-
proximated by sample averages.

Below, we show specific methods of divergence approx-
imation for the KL and PE divergences under model (4)
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and the following parametric expression of the density ra-
tio r(x):

r(x) =

b∑
�=0

α�ϕ�(x), (10)

where {α�}b�=0 are parameters and {ϕ�(x)}b�=0 are basis
functions. In practice, we use a constant basis and Gaussian
kernels centered at the training data points, i.e., for b = n
and � = 1, 2, . . . , n,

ϕ0(x) = 1 and ϕ�(x) = exp

(
−‖x− x�‖2

2σ2

)
.

This provides a non-parametric divergence esti-
mator (Nguyen et al., 2010; Sugiyama et al., 2008;
Kanamori et al., 2012).

4.2. KL-Divergence Approximation

With f(u) = − log u for u > 0 and +∞ for u ≤ 0, the
f -divergence is reduced to the KL divergence. For this f ,
the convex conjugate is given by f∗(v) = −1 − log(−v)
for v < 0 and +∞ for v ≥ 0. Then, if −α� is regarded
as α�, an empirical approximation of Eq.(9) under (4) and
(10) is given as follows (Nguyen et al., 2010):

KL(p′‖q′) ≈ max
{α�}b

�=0

[
−

c∑
y=1

θy
ny

∑
i:yi=y

b∑
�=0

α�ϕ�(xi)

+
1

n′

n′∑
i=1

log

(
b∑

�=0

α�ϕ�(x
′
i)

)
+ 1

]
,

subject to α0, α1, . . . , αb ≥ 0. A similar approach, which
directly estimates the inverted ratio p′(x)/q′(x) with the
same model (10), is also known (Sugiyama et al., 2008):

KL(p′‖q′) ≈ max
{α�}b

�=0

[
1

n′

n′∑
i=1

log

(
b∑

�=0

α�ϕ�(x
′
i)

)]
,

subject to α0, α1, . . . , αb ≥ 0 and
c∑

y=1

θy
ny

∑
i:yi=y

b∑
�=0

α�ϕ�(xi) = 1.

These are convex optimization problems, and thus global
optimal solutions can be obtained by naive optimization.
Tuning parameters possibly included in the basis func-
tion such as the kernel width can be systematically op-
timized by cross-validation (Sugiyama et al., 2008). The
KL-divergence estimator obtained above was proved to
possess superior convergence properties both in para-
metric and non-parametric setups (Sugiyama et al., 2008;
Nguyen et al., 2010).

However, computing the KL-divergence estimator is rather
time-consuming because optimization of {α�}b�=0 needs to
be carried out for each {θy}cy=1.

4.3. PE-Divergence Approximation

As an alternative to the KL-divergence, let us consider the
PE divergence defined by

PE(p′‖q′) := 1

2

∫ (
q′(x)
p′(x)

− 1

)2

p′(x)dx, (11)

which is a squared-loss variant of the KL divergence and is
a f -divergence with f(u) = (t− 1)2/2.

For this f , the convex conjugate is given by f∗(v) =
v2/2+v. Then, an empirical approximation of Eq.(9) under
(4) and (10) is given as follows (Kanamori et al., 2009a):

PE(p′‖q′) ≈ max
α

[
− 1

2
α�Ĝα+α�Ĥθ − 1

2

]
,

where

α = [α0 α1 · · · αb]
�
, Ĝ =

1

n′

n′∑
i=1

ϕ(x′
i)ϕ(x

′
i)

�,

ϕ(x) = [ϕ0(x) ϕ1(x) · · · ϕb(x)] , Ĥ =
[
ĥ1 · · · ĥc

]
,

ĥy =
1

ny

∑
i:yi=y

ϕ(xi), θ = [θ1 θ2 · · · θc]
�
.

A regularized solution to the above maximization problem
can be obtained analytically as

α̂ =
(
Ĝ+ λR

)−1

Ĥθ, (12)

where λ is a positive constant and R is defined as

R =

[
0 01×b

0b×1 Ib×b

]
.

The PE divergence estimator obtained above was proved
to have superior convergence properties both in parametric
and non-parametric setups (Kanamori et al., 2009a; 2012).
Tuning parameters possibly included in the basis func-
tion such as the kernel width or the regularization param-
eter can be systematically optimized by cross-validation
(Kanamori et al., 2009a; 2012).

4.4. Learning Class Ratios by PE Divergence Matching

As shown above, the KL and PE divergences can be
systematically estimated without density estimation via
Legendre-Fenchel convex duality. Among them, the PE di-
vergence estimator, explicitly expressed as

P̂E(θ) := −1

2
θ�Ĥ�

(
Ĝ+ λR

)−1

Ĝ
(
Ĝ+ λR

)−1

Ĥθ

+ θ�Ĥ�
(
Ĝ+ λR

)−1

Ĥθ − 1

2
,
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is more useful for our purpose of learning class ratios,
because of the following reasons: The PE-divergence
was shown to be more robust against outliers than
the KL-divergence, based on power divergence analysis
(Basu et al., 1998; Sugiyama et al., 2012). This is a use-
ful property in practical data analysis suffering high noise
and outliers. Furthermore, the above PE-divergence esti-
mator was shown to possess the minimum condition num-
ber among a general class of estimators, meaning that it is
the most stable estimator (Kanamori et al., 2009b).

Another, and practically more important advantage of the
above PE divergence estimator is that it can be computed
efficiently and analytically. This advantage is even more
crucial in our case because we minimize the above PE di-
vergence estimator with respect to θ:

min
θ

P̂E(θ)

subject to
c∑

y=1

θy = 1 and θ1, . . . , θc ≥ 0.

Because P̂E(θ) is given analytically as a function of θ, we
can easily obtain the minimizer θ̂ by simple optimization
strategies such as alternate gradient descent and projection
or just a grid search, without re-computing the PE diver-
gence estimator.

5. Experiments
In this section, we report experimental results.

5.1. Setup

The following five methods are compared:

• EM-KLR: The method of Saerens et al. (2001) (see
Section 2.2). The class-posterior probability of the
training dataset is estimated using �2-penalized ker-
nel logistic regression with Gaussian kernels. The
L-BFGS quasi-Newton implementation included in
the ‘minFunc’ package is used for logistic regression
training (Schmidt, 2005).

• KL-KDE: The KL divergence estimator based on ker-
nel density estimation (KDE). The class-wise input
densities are estimated by KDE with Gaussian ker-
nels. The kernel widths are estimated using likelihood
cross-validation (Silverman, 1986).

• PE-KDE: The PE divergence estimator based on
KDE. The class-wise input densities are estimated
by KDE with Gaussian kernels. The kernel widths
are estimated using least-squares cross-validation
(Silverman, 1986).

Table 1. Datasets used in the experiments.
Dataset d # samples # positives # negatives
Australian 14 690 307 383
Diabetes 8 768 500 268
German 24 1000 300 700
Ionosphere 34 351 225 126
SAHeart 9 462 302 160
Twonorm 20 7400 3697 3703

• KL-DR: The proposed method (see Section 4.2) using
a KL divergence estimator based on the density ratio
(DR). For the optimization, the L-BFGS with projec-
tion implementation ‘minFuncBC’ is used (Schmidt,
2005).

• PE-DR: The proposed method (see Section 4.4) using
the PE divergence estimator based on DR.

Below, we compare accuracy of class-prior estimation and
classification.

5.2. Benchmark Datasets

Here, we use binary-classification benchmark datasets
listed in Table 1. We select 10 samples from each of the
two classes for the training dataset and 50 samples for the
test dataset. The samples in the test set are selected with
probability θ∗ from the first class and (1− θ∗) from the
second class, where θ∗ = 0.1, 0.2, 0.3, 0.4, 0.5.

The average squared error of the estimated class ratios are
given in Figure 1. This shows that methods based on the
KL and PE divergences overall outperform EM-KLR, im-
plying that our reformulation of the EM algorithm as dis-
tribution matching (see Section 3) contributes to obtaining
accurate class-ratio estimates. Among the KL-based meth-
ods, KL-KDE tends to perform better than KL-DR. This
is because, in KL-KDE, we did not estimate the first term
in Eq.(6), which is the negative entropy and is a constant.
On the other hand, the negative entropy is also implicitly
estimated in KL-DR, possibly incurring additional estima-
tion error. Among the PE-based methods, PE-DR outper-
forms PE-KDE, showing that directly estimating density
ratios without density estimation is more promising as a
PE divergence estimator. Overall, PE-DR is shown to be
the most accurate.

Next, we compare classification accuracy when the learned
class-prior probabilities are used as instance weights. Fig-
ure 2 shows misclassification rates for a regularized least-
squares classifier (Rifkin et al., 2003) with instance weight-
ing. The results show that, as expected, a more accurate
estimate of the class ratio tends to give a lower misclassifi-
cation rate.
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Figure 1. Average squared error between the true class ratio θ∗ and estimated class ratio ̂θ for the benchmark datasets listed in Table 1.
The best method and comparable methods according to the t-test at significance level of 5% are indicated with a ‘�’
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Figure 2. Average misclassification rates for the datasets listed in Table 1. Classification is performed using a regularized least-squares
classifier with instance weighting. The best method and comparable methods according to the t-test at significance level of 5% are
indicated with a ‘�’.

5.3. Real-World Application

Finally, we demonstrate the usefulness of the proposed ap-
proach in a real-world problem of military vehicle classi-
fication from geophone recordings (Duarte & Hu, 2004).
This is a three class problem: Two vehicle classes and a
class of recorded noise. The features are 50-dimensional.
In this vehicle classification task, class-prior change is in-

evitable because the type of vehicles passing through dif-
fers depending on time (e.g., day and night).

n samples are drawn from each of the labeled classes for
the training set with the uniform class prior, whereas 100
samples are drawn with probabilities p = [0.6 0.1 0.3] from
each of the classes for the test set. Due to the prohibitive
computational cost, KL-DR was not included in this exper-
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iment.

In Figure 3, we plot the �2-distance between the true and es-
timated class priors and the misclassification rate based on
instance-weighted kernel logistic regression (Hastie et al.,
2001) averaged over 1000 runs as functions of the num-
ber of training samples. As can be seen from the graphs,
the performance of all methods improves as the number of
training samples increases. Among the compared methods,
PE-DR provides the most accurate estimates of the class
prior and thus yields the lowest classification error.

6. Conclusion
Class-prior change is a problem that is conceivable in many
real-world datasets, and it can be systematically corrected
for if the class-prior of the test dataset is known. In this
paper, we discussed the problem of estimating the test class
ratios under the semi-supervised learning setup.

We first showed that the EM-based estimator introduced in
Saerens et al. (2001) can be regarded as indirectly match-
ing the test input distribution by a linear combination
of class-wise input distributions. Based on this view,
we proposed to use an explicit and possibly more accu-
rate divergence estimator based on density-ratio estimation
(Kanamori et al., 2009a) for learning test class-priors. The
proposed method was shown to have various nice proper-
ties such as high robustness to noise and outliers, superior
numerical stability, and excellent computational efficiency.
Through experiments, we showed that the class ratios esti-
mated by the proposed method are more accurate than com-
peting methods, which can be translated into better classi-
fication accuracy.
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Abstract

We address the problem of estimating the difference between two probability den-
sities. A naive approach is a two-step procedure of first estimating two densities
separately and then computing their difference. However, such a two-step proce-
dure does not necessarily work well because the first step is performed without re-
gard to the second step and thus a small estimation error incurred in the first stage
can cause a big error in the second stage. In this paper, we propose a single-shot
procedure for directly estimating the density difference without separately esti-
mating two densities. We derive a non-parametric finite-sample error bound for
the proposed single-shot density-difference estimator and show that it achieves the
optimal convergence rate. We then show how the proposed density-difference es-
timator can be utilized in L2-distance approximation. Finally, we experimentally
demonstrate the usefulness of the proposed method in robust distribution compar-
ison such as class-prior estimation and change-point detection.

1 Introduction

When estimating a quantity consisting of two elements, a two-stage approach of first estimating
the two elements separately and then approximating the target quantity based on the estimates of
the two elements often performs poorly, because the first stage is carried out without regard to the
second stage and thus a small estimation error incurred in the first stage can cause a big error in the
second stage. To cope with this problem, it would be more appropriate to directly estimate the target
quantity in a single-shot process without separately estimating the two elements.

A seminal example that follows this general idea is pattern recognition by the support vector ma-
chine [1]: Instead of separately estimating two probability distributions of patterns for positive and
negative classes, the support vector machine directly learns the boundary between the two classes
that is sufficient for pattern recognition. More recently, a problem of estimating the ratio of two
probability densities was tackled in a similar fashion [2, 3]: The ratio of two probability densities is
directly estimated without going through separate estimation of the two probability densities.

In this paper, we further explore this line of research, and propose a method for directly estimating
the difference between two probability densities in a single-shot process. Density differences would
be more desirable than density ratios because density ratios can diverge to infinity even under a
mild condition (e.g., two Gaussians [4]), whereas density differences are always finite as long as
each density is bounded. Density differences can be used for solving various machine learning tasks
such as class-balance estimation under class-prior change [5] and change-point detection in time
series [6].

For this density-difference estimation problem, we propose a single-shot method, called the least-
squares density-difference (LSDD) estimator, that directly estimates the density difference without
separately estimating two densities. LSDD is derived with in the framework of kernel regularized
least-squares estimation, and thus it inherits various useful properties: For example, the LSDD
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solution can be computed analytically in a computationally efficient and stable manner, and all
tuning parameters such as the kernel width and the regularization parameter can be systematically
and objectively optimized via cross-validation. We derive a finite-sample error bound for the LSDD
estimator and show that it achieves the optimal convergence rate in a non-parametric setup.

We then apply LSDD to L2-distance estimation and show that it is more accurate than the differ-
ence of KDEs, which tends to severely under-estimate the L2-distance [7]. Because the L2-distance
is more robust against outliers than the Kullback-Leibler divergence [8], the proposed L2-distance
estimator can lead to the paradigm of robust distribution comparison. We experimentally demon-
strate the usefulness of LSDD in semi-supervised class-prior estimation and unsupervised change
detection.

2 Density-Difference Estimation

In this section, we propose a single-shot method for estimating the difference between two proba-
bility densities from samples, and analyze its theoretical properties.

Problem Formulation and Naive Approach: First, we formulate the problem of density-
difference estimation. Suppose that we are given two sets of independent and identically distributed
samples X := {xi}ni=1 and X ′ := {x′

i′}n
′

i′=1 from probability distributions on Rd with densities
p(x) and p′(x), respectively. Our goal is to estimate the density difference,

f(x) := p(x)− p′(x),
from the samples X and X ′.

A naive approach to density-difference estimation is to use kernel density estimators (KDEs). How-
ever, we argue that the KDE-based density-difference estimator is not the best approach because
of its two-step nature. Intuitively, good density estimators tend to be smooth and thus the differ-
ence between such smooth density estimators tends to be over-smoothed as a density-difference
estimator [9]. To overcome this weakness, we give a single-shot procedure of directly estimating the
density difference f(x) without separately estimating the densities p(x) and p′(x).

Least-Squares Density-Difference Estimation: In our proposed approach, we fit a density-
difference model g(x) to the true density-difference function f(x) under the squared loss:

argmin
g

∫ (
g(x)− f(x)

)2

dx.

We use the following Gaussian kernel model as g(x):

g(x) =
n+n′∑
�=1

θ� exp

(
−‖x− c�‖2

2σ2

)
, (1)

where (c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′) are Gaussian kernel centers. If

n+ n′ is large, we may use only a subset of {x1, . . . ,xn,x
′
1, . . . ,x

′
n′} as Gaussian kernel centers.

For the model (1), the optimal parameter θ∗ is given by

θ∗ := argmin
θ

∫ (
g(x)− f(x)

)2

dx = argmin
θ

[
θ�Hθ − 2h�θ

]
= H−1h,

where H is the (n+ n′)× (n+ n′) matrix and h is the (n+ n′)-dimensional vector defined as

H�,�′ :=

∫
exp

(
−‖x− c�‖2

2σ2

)
exp

(
−‖x− c�′‖2

2σ2

)
dx = (πσ2)d/2 exp

(
−‖c� − c�′‖2

4σ2

)
,

h� :=

∫
exp

(
−‖x− c�‖2

2σ2

)
p(x)dx−

∫
exp

(
−‖x′ − c�‖2

2σ2

)
p′(x′)dx′.

Replacing the expectations in h by empirical estimators and adding an �2-regularizer to the objective
function, we arrive at the following optimization problem:

θ̂ := argmin
θ

[
θ�Hθ − 2ĥ

�
θ + λθ�θ

]
, (2)
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where λ (≥ 0) is the regularization parameter and ĥ is the (n+ n′)-dimensional vector defined as

ĥ� :=
1

n

n∑
i=1

exp

(
−‖xi − c�‖2

2σ2

)
− 1

n′

n′∑
i′=1

exp

(
−‖x′

i′ − c�‖2
2σ2

)
.

Taking the derivative of the objective function in Eq.(2) and equating it to zero, we can obtain the
solution analytically as

θ̂ = (H + λI)
−1

ĥ,

where I denotes the identity matrix.

Finally, a density-difference estimator f̂(x), which we call the least-squares density-difference
(LSDD) estimator, is given as

f̂(x) =
n+n′∑
�=1

θ̂� exp

(
−‖x− c�‖2

2σ2

)
.

Non-Parametric Error Bound: Here, we theoretically analyze an estimation error of LSDD.

We assume n′ = n, and let Hγ be the reproducing kernel Hilbert space (RKHS) corresponding to
the Gaussian kernel with width γ: kγ(x,x′) = exp

(−‖x− x′‖2/γ2
)
. Let us consider a slightly

modified LSDD estimator that is more suitable for non-parametric error analysis1:

f̂ := argmin
g∈Hγ

[
‖g‖2L2(Rd) − 2

(
1

n

n∑
i=1

g(xi)− 1

n

n∑
i′=1

g(x′
i′)

)
+ λ‖g‖2Hγ

]
.

Then we have the following theorem:
Theorem 1. Suppose that there exists a constant M such that ‖p‖∞ ≤ M and ‖p′‖∞ ≤ M .
Suppose also that the density difference f = p − p′ is a member of Besov space with regularity α.
That is, f ∈ Bα

2,∞ where Bα
2,∞ is the Besov space with regularity α, and

‖f‖Bα
2,∞ := ‖f‖L2(Rd) + sup

t>0
(t−αωr,L2(Rd)(f, t)) < c for r = �α+ 1,

where �α denotes the largest integer less than or equal to α and ωr,L2(Rd) is the r-th modulus of
smoothness (see [10] for the definitions). Then, for all ε > 0 and p ∈ (0, 1), there exists a constant
K > 0 depending on M , c, ε, and p such that for all n ≥ 1, τ ≥ 1, and λ > 0, the LSDD estimator
f̂ in Hγ satisfies

‖f̂ − f‖2L2(Rd)+λ‖f̂‖2Hγ
≤ K

(
λγ−d+γ2α+

γ−(1−p)(1+ε)d

λpn
+
γ− 2(1−p)d

1+p (1+ε+ 1−p
4 )

λ
3p−p2

1+p n
2

1+p

+
τ

n2λ
+
τ

n

)
with probability not less than 1− 4e−τ .

If we set λ = n− 2α+d
(2α+d)(1+p)+(ε−p+εp) and γ = n− 1

(2α+d)(1+p)+(ε−p+εp) , and take ε and p sufficiently
small, then we immediately have the following corollary.
Corollary 1. Suppose that the same assumptions as Theorem 1 hold. Then, for all ρ, ρ′ > 0, there
exists a constant K > 0 depending on M, c, ρ, and ρ′ such that, for all n ≥ 1 and τ ≥ 1, the
density-difference estimator f̂ with appropriate choice of γ and λ satisfies

‖f̂ − f‖2L2(Rd) + λ‖f̂‖2Hγ
≤ K

(
n− 2α

2α+d+ρ + τn−1+ρ′)
with probability not less than 1− 4e−τ .

1More specifically, the regularizer is replaced from the squared �2-norm of parameters to the squared RKHS-
norm of a learned function, which is necessary to establish consistency. Nevertheless, we use the squared
�2-norm of parameters in experiments because it is simpler and seems to perform well in practice.
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Note that n− 2α
2α+d is the optimal learning rate to estimate a function in Bα

2,∞. Therefore, the density-
difference estimator with a Gaussian kernel achieves the optimal learning rate by appropriately
choosing the regularization parameter and the Gaussian width. Because the learning rate depends
on α, the LSDD estimator has adaptivity to the smoothness of the true function.

It is known that, if the naive KDE with a Gaussian kernel is used for estimating a probability density
with regularity α > 2, the optimal learning rate cannot be achieved [11, 12]. To achieve the optimal
rate by KDE, we should choose a kernel function specifically tailored to each regularity α [13].
However, such a kernel function is not non-negative and it is difficult to implement it in practice.
On the other hand, our LSDD estimator can always achieve the optimal learning rate for a Gaussian
kernel without regard to regularity α.

Model Selection by Cross-Validation: The above theoretical analysis showed the superiority of
LSDD. However, in practice, the performance of LSDD depends on the choice of models (i.e.,
the kernel width σ and the regularization parameter λ). Here, we show that the model can be
optimized by cross-validation (CV). More specifically, we first divide the samples X = {xi}ni=1

and X ′ = {x′
i′}n

′
i′=1 into T disjoint subsets {Xt}Tt=1 and {X ′

t}Tt=1, respectively. Then we obtain a
density-difference estimate f̂t(x) from X\Xt and X ′\X ′

t (i.e., all samples without Xt and X ′
t ), and

compute its hold-out error for Xt and X ′
t as

CV(t) :=

∫
f̂t(x)

2dx− 2

|Xt|
∑
x∈Xt

f̂t(x) +
2

|X ′
t |

∑
x′∈X ′

t

f̂t(x
′),

where |X | denotes the number of elements in the set X . We repeat this hold-out validation proce-
dure for t = 1, . . . , T , and compute the average hold-out error. Finally, we choose the model that
minimizes the average hold-out error.

3 L2-Distance Estimation by LSDD

In this section, we consider the problem of approximating the L2-distance between p(x) and p′(x),

L2(p, p′) :=
∫

(p(x)− p′(x))2 dx,

from their independent and identically distributed samples X := {xi}ni=1 and X ′ := {x′
i′}n

′
i′=1.

For an equivalent expression L2(p, p′) =
∫
f(x)p(x)dx − ∫

f(x′)p′(x′)dx′, if we replace f(x)

with an LSDD estimator f̂(x) and approximate the expectations by empirical averages, we obtain
L2(p, p′) ≈ ĥ

�
θ̂. Similarly, for another expression L2(p, p′) =

∫
f(x)2dx, replacing f(x) with

an LSDD estimator f̂(x) gives L2(p, p′) ≈ θ̂
�
Hθ̂.

Although ĥ
�
θ̂ and θ̂

�
Hθ̂ themselves give approximations to L2(p, p′), we argue that the use of

their combination, defined by

L̂2(X ,X ′) := 2ĥ
�
θ̂ − θ̂

�
Hθ̂, (3)

is more sensible. To explain the reason, let us consider a generalized L2-distance estimator of the
form βĥ

�
θ̂ + (1 − β)θ̂

�
Hθ̂, where β is a real scalar. If the regularization parameter λ (≥ 0) is

small, this can be expressed as

βĥ
�
θ̂ + (1− β)θ̂

�
Hθ̂ = ĥ

�
H−1ĥ− λ(2− β)ĥ

�
H−2ĥ+ op(λ), (4)

where op denotes the probabilistic order. Thus, up to Op(λ), the bias introduced by regularization
(i.e., the second term in the right-hand side of Eq.(4) that depends on λ) can be eliminated if β = 2,
which yields Eq.(3). Note that, if no regularization is imposed (i.e., λ = 0), both ĥ

�
θ̂ and θ̂

�
Hθ̂

yield ĥ
�
H−1ĥ, the first term in the right-hand side of Eq.(4).
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Eq.(3) is actually equivalent to the negative of the optimal objective value of the LSDD optimization
problem without regularization (i.e., Eq.(2) with λ = 0). This can be naturally interpreted through a
lower bound of L2(p, p′) obtained by Legendre-Fenchel convex duality [14]:

L2(p, p′) = sup
g

[
2

(∫
g(x)p(x)dx−

∫
g(x′)p′(x′)dx′

)
−
∫

g(x)2dx

]
,

where the supremum is attained at g = f . If the expectations are replaced by empirical estima-
tors and the Gaussian kernel model (1) is used as g, the above optimization problem is reduced
to the LSDD objective function without regularization (see Eq.(2)). Thus, LSDD corresponds to
approximately maximizing the above lower bound and Eq.(3) is its maximum value.

Through eigenvalue decomposition of H , we can show that 2ĥ
�
θ̂ − θ̂

�
Hθ̂ ≥ ĥ

�
θ̂ ≥ θ̂

�
Hθ̂.

Thus, our approximator (3) is not less than the plain approximators ĥ
�
θ̂ and θ̂

�
Hθ̂.

4 Experiments

In this section, we experimentally demonstrate the usefulness of LSDD. A MATLAB R© implemen-
tation of LSDD used for experiments is available from

“http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LSDD/”.

Illustration: Let N(x;μ,Σ) be the multi-dimensional normal density with mean vector μ and
variance-covariance matrix Σ with respect to x, and let

p(x) = N(x; (μ, 0, . . . , 0)�, (4π)−1Id) and p′(x) = N(x; (0, 0, . . . , 0)�, (4π)−1Id).

We first illustrate how LSDD behaves under d = 1 and n = n′ = 200. We compare LSDD with
KDEi (KDE with two Gaussian widths chosen independently by least-squares cross-validation [15])
and KDEj (KDE with two Gaussian widths chosen jointly to minimize the LSDD criterion [9]). The
number of folds in cross-validation is set to 5 for all methods.

Figure 1 depicts density-difference estimation results obtained by LSDD, KDEi, and KDEj for μ = 0
(i.e., f(x) = p(x) − p′(x) = 0). The figure shows that LSDD and KDEj give accurate estimates
of the density difference f(x) = 0. On the other hand, the estimate obtained by KDEi is rather
fluctuated, although both densities are reasonably well approximated by KDEs. This illustrates an
advantage of directly estimating the density difference without going through separate estimation of
each density. Figure 2 depicts the results for μ = 0.5 (i.e., f(x) �= 0), showing again that LSDD
performs well. KDEi and KDEj give the same estimation result for this dataset, which slightly
underestimates the peaks.

Next, we compare the performance ofL2-distance approximation based on LSDD, KDEi, and KDEj.
For μ = 0, 0.2, 0.4, 0.6, 0.8 and d = 1, 5, we draw n = n′ = 200 samples from the above p(x)
and p′(x). Figure 3 depicts the mean and standard error of estimated L2-distances over 1000 runs
as functions of mean μ. When d = 1 (Figure 3(a)), the LSDD-based L2-distance estimator gives
the most accurate estimates of the true L2-distance, whereas the KDEi-based L2-distance estimator
slightly underestimates the true L2-distance when μ is large. This is caused by the fact that KDE
tends to provide smooth density estimates (see Figure 2(b) again): Such smooth density estimates
are accurate as density estimates, but the difference of smooth density estimates yields a small L2-
distance estimate [7]. The KDEj-based L2-distance estimator tends to improve this drawback of
KDEi, but it still slightly underestimates the true L2-distance when μ is large.

When d = 5 (Figure 3(b)), the KDE-based L2-distance estimators even severely underestimate
the true L2-distance when μ is large. On the other hand, the LSDD-based L2-distance estimator
still gives reasonably accurate estimates of the true L2-distance even when d = 5. However, we
note that LSDD also slightly underestimates the true L2-distance when μ is large, because slight
underestimation tends to yield smaller variance and thus such stabilized solutions are more accurate
in terms of the bias-variance trade-off.

Semi-Supervised Class-Balance Estimation: In real-world pattern recognition tasks, changes in
class balance between the training and test phases are often observed. In such cases, naive classifier
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Figure 1: Estimation of density difference when μ = 0 (i.e., f(x) = p(x)− p′(x) = 0).
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Figure 2: Estimation of density difference when μ = 0.5 (i.e., f(x) = p(x)− p′(x) �= 0).
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Figure 3: L2-distance estimation by LSDD, KDEi, and KDEj for n = n′ = 200 as functions of the
Gaussian mean μ. Means and standard errors over 1000 runs are plotted.

training produces significant estimation bias because the class balance in the training dataset does
not properly reflect that of the test dataset.

Here, we consider a binary pattern recognition task of classifying pattern x ∈ Rd to class y ∈
{+1,−1}. Our goal is to learn the class balance of a test dataset in a semi-supervised learning setup
where unlabeled test samples are provided in addition to labeled training samples [16]. The class
balance in the test set can be estimated by matching a mixture of class-wise training input densities,

qtest(x;π) := πptrain(x|y = +1) + (1− π)ptrain(x|y = −1),

to the test input density ptest(x) [5], where π ∈ [0, 1] is a mixing coefficient to learn. See Figure 4
for schematic illustration. Here, we use the L2-distance estimated by LSDD and the difference of
KDEs for this distribution matching. Note that, when LSDD is used to estimate the L2-distance,
separate estimation of ptrain(x|y = ±1) is not involved, but the difference between ptest(x) and
qtest(x;π) is directly estimated.

We use four UCI benchmark datasets (http://archive.ics.uci.edu/ml/), where we ran-
domly choose 10 labeled training samples from each class and 50 unlabeled test samples following
true class-prior π∗ = 0.1, 0.2, . . . , 0.9. Figure 6 plots the mean and standard error of the squared
difference between true and estimated class-balances π and the misclassification error by a weighted
�2-regularized least-squares classifier [17] with weighted cross-validation [18] over 1000 runs. The
results show that LSDD tends to provide better class-balance estimates than the KDEi-based, the
KDEj-based, and the EM-based methods [5], which are translated into lower classification errors.
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Unsupervised Change Detection: The objective of change detection is to discover abrupt prop-
erty changes behind time-series data. Let y(t) ∈ Rm be an m-dimensional time-series sample at
time t, and let Y (t) := [y(t)�,y(t + 1)�, . . . ,y(t + k − 1)�]� ∈ Rkm be a subsequence of time
series at time t with length k. We treat the subsequence Y (t) as a sample, instead of a single point
y(t), by which time-dependent information can be incorporated naturally [6]. Let Y(t) be a set of r
retrospective subsequence samples starting at time t: Y(t) := {Y (t),Y (t+1), . . . ,Y (t+ r− 1)}.
Our strategy is to compute a certain dissimilarity measure between two consecutive segments Y(t)
and Y(t+r), and use it as the plausibility of change points (see Figure 5). As a dissimilarity measure,
we use the L2-distance estimated by LSDD and the Kullback-Leibler (KL) divergence estimated by
the KL importance estimation procedure (KLIEP) [2, 3]. We set k = 10 and r = 50.

First, we use the IPSJ SIG-SLP Corpora and Environments for Noisy Speech Recognition (CEN-
SREC) dataset (http://research.nii.ac.jp/src/en/CENSREC-1-C.html). This
dataset is provided by the National Institute of Informatics, Japan that records human voice in a
noisy environment such as a restaurant. The top graphs in Figure 7(a) display the original time-
series (true change points were manually annotated) and change scores obtained by KLIEP and
LSDD. The graphs show that the LSDD-based change score indicates the existence of change points
more clearly than the KLIEP-based change score.

Next, we use a dataset taken from the Human Activity Sensing Consortium (HASC) challenge
2011 (http://hasc.jp/hc2011/), which provides human activity information collected by
portable three-axis accelerometers. Because the orientation of the accelerometers is not necessarily
fixed, we take the �2-norm of the 3-dimensional data. The HASC dataset is relatively simple, so
we artificially added zero-mean Gaussian noise with standard deviation 5 at each time point with
probability 0.005. The top graphs in Figure 7(b) display the original time-series for a sequence of
actions “jog”, “stay”, “stair down”, “stay”, and “stair up” (there exists 4 change points at time 540,
1110, 1728, and 2286) and the change scores obtained by KLIEP and LSDD. The graphs show that
the LSDD score is much more stable and interpretable than the KLIEP score.

Finally, we compare the change-detection performance more systematically using the receiver op-
erating characteristic (ROC) curves (i.e., the false positive rate vs. the true positive rate) and the
area under the ROC curve (AUC) values. In addition to LSDD and KLIEP, we test the L2-distance
estimated by KDEi and KDEj and native change detection methods based on autoregressive models
(AR) [19], subspace identification (SI) [20], singular spectrum transformation (SST) [21], one-class
support vector machine (SVM) [22], kernel Fisher discriminant analysis (KFD) [23], and kernel
change-point detection (KCP) [24]. Tuning parameters included in these methods were manually op-
timized. For 10 datasets taken from each of the CENSREC and HASC data collections, mean ROC
curves and AUC values are displayed at the bottom of Figure 7(b). The results show that LSDD tends
to outperform other methods and is comparable to state-of-the-art native change-detection methods.

5 Conclusions

In this paper, we proposed a method for directly estimating the difference between two probability
density functions without density estimation. The proposed method, called the least-squares density-
difference (LSDD), was derived within the framework of kernel least-squares estimation, and its
solution can be computed analytically in a computationally efficient and stable manner. Furthermore,
LSDD is equipped with cross-validation, and thus all tuning parameters such as the kernel width and
the regularization parameter can be systematically and objectively optimized. We derived a finite-
sample error bound for LSDD in a non-parametric setup, and showed that it achieves the optimal
convergence rate. We also proposed an L2-distance estimator based on LSDD, which nicely cancels
a bias caused by regularization. Through experiments on class-prior estimation and change-point
detection, the usefulness of the proposed LSDD was demonstrated.

Acknowledgments: We would like to thank Wittawat Jitkrittum for his comments and Zaı̈d Har-
chaoui for providing us a program code of kernel change-point detection. MS was supported by
MEXT KAKENHI 23300069 and AOARD, TK was supported by MEXT KAKENHI 24500340,
TS was supported by MEXT KAKENHI 22700289, the Aihara Project, the FIRST program from
JSPS initiated by CSTP, and the Global COE Program “The research and training center for new
development in mathematics”, MEXT, Japan, MCdP was supported by MEXT Scholarship, SL was
supported by the JST PRESTO program, and IT was supported by MEXT KAKENHI 23700165.
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(d) Statlogheart dataset
Figure 6: Results of semi-supervised class-balance estimation. Top: Squared error of class balance
estimation. Bottom: Misclassification error by a weighted �2-regularized least-squares classifier.
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Figure 7: Results of unsupervised change detection. From top to bottom: Original time-series,
change scores obtained by KLIEP and LSDD, mean ROC curves over 10 datasets, and AUC values
for 10 datasets. The best method and comparable ones in terms of mean AUC values by the t-test at
the significance level 5% are indicated with boldface. “SE” stands for “Standard error”.
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Abstract

The goal of the two-sample test (a.k.a. the homogeneity test) is, given two sets of
samples, to judge whether the probability distributions behind the samples are the
same or not. In this paper, we propose a novel non-parametric method of two-sample
test based on a least-squares density ratio estimator. Through various experiments,
we show that the proposed method overall produces smaller type-II error (i.e., the
probability of judging the two distributions to be the same when they are actually
different) than a state-of-the-art method, with slightly larger type-I error (i.e., the
probability of judging the two distributions to be different when they are actually
the same).

Keywords

two-sample test, homogeneity test, density ratio estimation, unconstrained least-
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1 Introduction

Given two sets of samples, testing whether the probability distributions behind the sam-
ples are equivalent or not is a fundamental task in statistical data analysis. This problem
is referred to as the two-sample test or the homogeneity test (Kullback, 1959).

1.1 Motivation of Two-Sample Test

The two-sample test is useful in various practically important learning scenarios. Here we
describe some examples.

When learning is performed under non-stationary environment, e.g., in brain-computer
interface (Sugiyama et al., 2007) and robot control (Hachiya et al., 2009), testing homo-
geneity of data generating distributions allows one to determine whether some adaptation
scheme should be used or not. When the distributions are not significantly different,
one can avoid using data-intensive non-stationarity adaptation techniques, which highly
contributes to stabilizing the performance.

When multiple sets of data samples are available for learning, e.g., biological exper-
imental results obtained from different laboratories (Borgwardt et al., 2006), the homo-
geneity test allows one to make a decision whether all the datasets are analyzed jointly
as a single dataset or they should be treated separately.

Similarly, one can use the homogeneity test for deciding whether multi-task learning
methods (Caruana et al., 1997) are employed or not. The rationale behind multi-task
learning is that when several related learning tasks are provided, solving them simul-
taneously can give better solutions than solving them individually. However, when the
tasks are not similar to each other, using multi-task learning techniques can degrade the
performance. Thus, it is important to avoid using multi-task learning methods when the
tasks are not similar to each other. This may be achieved by testing the homogeneity of
datasets.

When several databases containing multiple fields are given, it is useful to identify the
correspondence between fields by comparing underlying distributions since this allows one
to merge databases (Gretton et al., 2007).

1.2 Methods of Two-Sample Test

The t-test (Student, 1908) is a classical method for testing homogeneity, which compares
the means of two Gaussian distributions with common variance. Its multi-variate ex-
tension also exists (Hotelling, 1951). Although the t-test is a fundamental method for
comparing the means, its range of application is limited to Gaussian distributions, which
may not be fulfilled in practical applications.

The Kolmogorov-Smirnov test and the Wald-Wolfowitz runs test are classical non-
parametric methods for the two-sample problem; their multi-dimensional variants have
also been developed (Bickel, 1969; Friedman & Rafsky, 1979). Since then, different types
of non-parametric tests have been studied (Anderson et al., 1994; Li, 1996).
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Recently, a non-parametric extension of the t-test called the maximum mean discrep-
ancy (MMD) was proposed (Borgwardt et al., 2006; Gretton et al., 2007). MMD compares
the means of two distributions in a universal reproducing kernel Hilbert space (universal
RKHS; Steinwart, 2001)—the Gaussian kernel is a typical example that induces a uni-
versal RKHS. MMD does not require a restrictive parametric assumption, so it could be
a flexible alternative to the t-test. MMD was experimentally shown to outperform other
homogeneity tests such as the generalized Kolmogorov-Smirnov test (Friedman & Rafsky,
1979), the generalized Wald-Wolfowitz test (Friedman & Rafsky, 1979), the Hall-Tajvidi
test (Hall & Tajvidi, 2002), and the Biau-Györfi test (Biau & Györfi, 2005).

The performance of MMD depends on the choice of universal RKHSs (e.g., the Gaus-
sian width in the case of Gaussian RKHSs). Thus, the universal RKHS should be carefully
chosen for obtaining the state-of-the-art performance. The Gaussian RKHS with width
set to the median distance between samples has been a popular heuristic in practice (Borg-
wardt et al., 2006; Gretton et al., 2007). Recently, a novel idea of using the universal
RKHS (or the Gaussian widths) yielding the maximum MMD value has been introduced
(Sriperumbudur et al., 2009).

1.3 Divergence Estimation

Another approach to the two-sample problem is to evaluate a divergence between two
distributions. The divergence-based approach is advantageous in that cross-validation
over the divergence functional is available for optimizing tuning parameters in a data-
dependent manner. A typical choice of the divergence functional would be the f -
divergences (Ali & Silvey, 1966; Csiszár, 1967), which includes the Kullback-Leibler diver-
gence (Kullback & Leibler, 1951) and the Pearson divergence (Pearson, 1900) as special
cases.

Various methods for estimating the divergence functional have been studied so far
(Darbellay & Vajda, 1999; Wang et al., 2005; Silva & Narayanan, 2007; Pérez-Cruz,
2008). Among them, approaches based on density ratio estimation have been shown to
be promising both theoretically and experimentally (Sugiyama et al., 2008; Gretton et al.,
2009; Kanamori et al., 2009a; Nguyen et al., 2010). So far, a parametric density ratio
estimator based on logistic regression (Qin, 1998; Cheng & Chu, 2004) has been applied
to the test of homogeneity (Keziou & Leoni-Aubin, 2005).

Although the density ratio estimator based on logistic regression was proved to achieve
the smallest asymptotic variance among a class of semi-parametric estimators (Qin, 1998),
this theoretical guarantee is valid only when the parametric model is correctly specified
(i.e., the target density ratio is included in the parametric model at hand). However,
when this unrealistic assumption is violated, a divergence-based density ratio estimator
(Sugiyama et al., 2008; Nguyen et al., 2010) was shown to perform better (Kanamori
et al., 2010).

Among various divergence-based density ratio estimators, a method called uncon-
strained least-squares importance fitting (uLSIF) was demonstrated to be accurate and
computationally efficient (Kanamori et al., 2009a). Furthermore, uLSIF was proved to
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possess the optimal non-parametric convergence rate and numerical stability (Kanamori
et al., 2009b). In this paper, we therefore develop a new method for testing homogeneity
based on uLSIF.

Similarly to MMD, our uLSIF-based homogeneity test processes data samples only
through kernel functions. Thus, the proposed method can be used for testing the homo-
geneity of non-vectorial structured objects such as strings, trees, and graphs by employing
kernel functions defined for such structured data (Lodhi et al., 2002; Duffy & Collins, 2002;
Kashima & Koyanagi, 2002; Kondor & Lafferty, 2002; Kashima et al., 2003; Gärtner et al.,
2003; Gärtner, 2003). This is an advantage over traditional two-sample tests.

1.4 Organization of This Paper

The rest of this paper is structured as follows. In Section 2, we review the uLSIF method
for density ratio estimation. In Section 3, we describe a method of divergence estimation
based on uLSIF, and investigate its theoretical properties. In Section 4, we give a two-
sample test based on the permutation test (Efron & Tibshirani, 1993), which we call
least-squares two-sample test (LSTT). We review the MMD method in Section 5, and
compare the experimental performance of LSTT with MMD in Section 6. Finally, we
conclude in Section 7.

2 Density Ratio Estimation

In this section, we consider the problem of density ratio estimation, and review a method
called unconstrained least-squares importance fitting (uLSIF; Kanamori et al., 2009a),
which will be used in the following sections. Since this section is devoted to reviewing
uLSIF, those who are familiar with it may skip this section and directly go to the next
section.

2.1 Formulation of Density Ratio Estimation

Suppose we are given a set of samples

X := {xi|xi ∈ Rd}ni=1

drawn independently from a probability distribution P with density p(x), and another
set of samples

X ′ := {x′
j|x′

j ∈ Rd}n′
j=1

drawn independently from (possibly) another probability distribution P ′ with density
p′(x):

{xi}ni=1
i.i.d.∼ P,

{x′
j}n

′
j=1

i.i.d.∼ P ′.
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The goal of density ratio estimation is to estimate the density ratio function

r(x) :=
p(x)

p′(x)
(1)

from the samples X and X ′, where we assume p′(x) > 0 for all x.

2.2 Least-Squares Approach to Density Ratio Estimation

Let us model the density ratio function r(x) by the following kernel model1:

r̂(x) := α0 +
n∑

i=1

αiK(x,xi)

= α�k(x),

where

α := (α0, α1, . . . , αn+1)
�

are parameters to be learned from data samples, � denotes the transpose of a matrix or
a vector,

k(x) := (1, K(x,x1), . . . , K(x,xn))
�

are kernel basis functions. A popular choice of the kernel is the Gaussian function:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
, (2)

where σ2 denotes the Gaussian variance.
We determine the parameter α in the model r̂(x) so that the following squared-error

J0 is minimized:

J0(α) :=
1

2

∫
(r̂(x)− r(x))2 p′(x)dx

=
1

2

∫
r̂(x)2p′(x)dx−

∫
r̂(x)p(x)dx+

1

2

∫
r(x)p(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) :=
1

2

∫
r̂(x)2p′(x)dx−

∫
r̂(x)p(x)dx

=
1

2
α�Hα− h�α, (3)

1We included the constant basis function, 1, in our model, which is different from the original uLSIF
paper (Kanamori et al., 2009a). In the context of two-sample test, we empirically found that including the
constant basis tends to improve the estimation accuracy since the density ratio function we approximate
can be close to constant (i.e., r(x) ≈ 1) when the two distributions are similar.
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where H is the (n+ 1)× (n+ 1) matrix defined by

H :=

∫
k(x)k(x)�p′(x)dx,

and h is the (n+ 1)-dimensional vector defined by

h :=

∫
k(x)p(x)dx.

2.3 Empirical Approximation

Since J contains the expectation over unknown densities p(x) and p′(x), we approximate
the expectations by empirical averages. Then we obtain

Ĵ(α) :=
1

2n′

n′∑
j=1

r̂(x′
j)

2 − 1

n

n∑
i=1

r̂(xi)

=
1

2
α�Ĥα−α�ĥ,

where Ĥ is the (n+ 1)× (n+ 1) matrix defined by

Ĥ :=
1

n′

n′∑
j=1

k(x′
j)k(x

′
j)

�,

and ĥ is the (n+ 1)-dimensional vector defined by

ĥ :=
1

n

n∑
i=1

k(xi). (4)

By including a regularization term, the uLSIF optimization problem is formulated as
follows.

α̂ := argmin
α

[
1

2
α�Ĥα−α�ĥ+

λ

2
α�α

]
, (5)

where α�α/2 is a regularizer and λ (≥ 0) is the regularization parameter that controls
the strength of regularization. By taking the derivative of the above objective function
with respect to the parameter α and equating it to zero, we can analytically obtain the
solution α̂ as

α̂ = (Ĥ + λIn+1)
−1ĥ, (6)

where In+1 is the (n+1)-dimensional identity matrix. Finally, the density ratio estimator
r̂(x) is given by

r̂(x) := α̂�k(x).
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Thanks to the analytic-form expression, uLSIF is computationally more efficient than
alternative density ratio estimators which involve non-linear optimization (Qin, 1998;
Cheng & Chu, 2004; Huang et al., 2007; Sugiyama et al., 2008; Nguyen et al., 2010).
It was theoretically shown that uLSIF possesses the optimal non-parametric convergence
rate and optimal numerical stability (Kanamori et al., 2009b).

2.4 Model Selection by Cross-Validation

The practical performance of uLSIF depends on the choice of the kernel function (the
kernel width σ in the case of Gaussian kernel (2)) and the regularization parameter λ.
Model selection of uLSIF is possible based on cross-validation with respect to the error
criterion J defined by Eq.(3) (Kanamori et al., 2009a).

More specifically, each of the sample sets X = {xi}ni=1 and X ′ = {x′
j}n′

j=1 is divided
into M disjoint sets2 {Xm}Mm=1 and {X ′

m}Mm=1. Then an uLSIF solution r̂m(x) is obtained
using X\Xm and X ′\X ′

m (i.e., all samples without Xm and X ′
m), and its J-value for the

hold-out samples Xm and X ′
m is computed as

ĴCV
m :=

1

2|X ′
m|

∑
x′∈X ′

m

r̂m(x
′)2 − 1

|Xm|
∑
x∈Xm

r̂m(x),

where |X | denotes the number of elements in the set X . This procedure is repeated for

m = 1, . . . ,M , and the average of ĴCV
m over all m is computed as

ĴCV :=
1

M

M∑
m=1

ĴCV
m .

Finally, the model (the kernel width σ and the regularization parameter λ in the current

setup) that minimizes ĴCV is chosen as the most suitable one.

3 Divergence Estimation

In this section, we describe a divergence estimator based on uLSIF, and investigate its
theoretical properties.

2M = 5 seems to be a popular choice (Hastie et al., 2001). We also follow this ‘rule-of-thumb’ choice
in this paper.
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3.1 Formulation of Divergence Estimation

Let us consider the Pearson divergence (Pearson, 1900) from P to P ′ as a discrepancy
measure between P and P ′, which is defined and expressed as follows:

PE(P, P ′) :=
1

2

∫ (
p(x)

p′(x)
− 1

)2

p′(x)dx

=
1

2

∫
r(x)p(x)dx−

∫
r(x)p′(x)dx+

1

2
, (7)

where r(x) is the density ratio function defined by

r(x) =
p(x)

p′(x)
.

PE(P, P ′) vanishes if and only if P = P ′. The Pearson divergence is a squared-loss
variant of the Kullback-Leibler divergence (Kullback & Leibler, 1951), and is an instance
of the f -divergences, which are also known as the Csiszár f -divergences (Csiszár, 1967)
or the Ali-Silvey distances (Ali & Silvey, 1966).

3.2 uLSIF-based Pearson Divergence Estimation

Approximating the expectations in Eq.(7) by empirical averages and replacing the density
ratio function r(x) by an uLSIF-based estimator r̂(x), we have the following Pearson
divergence estimator:

P̂E(X ,X ′) :=
1

2n

n∑
i=1

r̂(xi)− 1

n′

n′∑
j=1

r̂(x′
j) +

1

2

=
1

2
α̂�ĥ− α̂�ĥ

′
+

1

2
, (8)

where α̂ is given by Eq.(6), ĥ is defined by Eq.(4), and ĥ
′
is the (n + 1)-dimensional

vector defined by

ĥ
′
:=

1

n′

n′∑
j=1

k(x′
j).

Note that P̂E(X ,X ′) can take a negative value, although the true PE(P, P ′) is non-

negative by definition. Thus, the estimation accuracy of P̂E(X ,X ′) can be improved by
taking its positive part by rounding up a negative estimate to zero. However, we do not
employ this rounding-up strategy here since we are interested in the relative ranking of
the divergence estimates, as explained in Section 4.1.
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3.3 Theoretical Properties

Here, let us theoretically investigate asymptotic properties of the uLSIF-based Pearson
divergence estimator P̂E(X ,X ′). More specifically, we show the asymptotic convergence

rate of our non-parametric estimator P̂E(X ,X ′) to the true PE(P, P ′).
Since the derivation of the convergence rate is highly technical, we defer all the tech-

nical details in Appendix A. Here, we focus on explaining the insight we can gain from
our theoretical analysis.

Theorem 1. Under the technical assumptions described in Appendix A, we have

|P̂E(X ,X ′)− PE(P, P ′)| = Op

((
log n

n

) 2
2+γ

+ C

(
log n

n

) 1
2+γ

)
, (9)

where

C :=

√∫
(r(x)− 1)2 p′(x)dx. (10)

Op denotes the asymptotic order in probability, n := min(n, n′), and γ (0 < γ < 1) is a
constant determined by the kernel function K(·, ·).

The above theorem means that the convergence rate of P̂E(X ,X ′) to PE(P, P ′) is(
logn
n

) 1
2+γ in general. However, when the two distributions P and P ′ are the same, r(x) = 1

and thus C = 0 (see Eq.(10)). Then, the Op

((
logn
n

) 1
2+γ

)
-term in Eq.(9) disappears, and

therefore our estimator possesses an even faster convergence rate Op

((
logn
n

) 2
2+γ

)
.

4 Least-Squares Two-Sample Test

Theoretical properties of our Pearson divergence estimator P̂E(X ,X ′) have been eluci-

dated above. In this section, we propose a two-sample test based on P̂E(X ,X ′). We
first describe a basic procedure of our two-sample test, and study its theoretical proper-
ties. Then we illustrate its behavior using toy datasets, and discuss practical issues for
improving the performance.

4.1 Permutation Test with Finite Samples

Our two-sample test is based on the permutation test (Efron & Tibshirani, 1993).
We first run the uLSIF-based Pearson divergence estimation procedure using the orig-

inal datasets X and X ′, and obtain a Pearson divergence estimate P̂E(X ,X ′). Next, we

randomly permute the |X ∪ X ′| samples, and assign the first |X | samples to a set X̃ and

the remaining |X ′| samples to another set X̃ ′. Then we run the uLSIF-based Pearson
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Figure 1: The role of the variables α and β in Theorem 2.

divergence estimation procedure again using the randomly shuffled datasets X̃ and X̃ ′,
and obtain a Pearson divergence estimate P̂E(X̃ , X̃ ′). Since X̃ and X̃ ′ can be regarded as

being drawn from the same distribution, P̂E(X̃ , X̃ ′) would take a value close to zero. This

random shuffling procedure is repeated many times, and the distribution of P̂E(X̃ , X̃ ′)
under the null-hypothesis (i.e., the two distributions are the same) is constructed. Fi-

nally, the p-value is approximated by evaluating the relative ranking of P̂E(X ,X ′) in the

distribution of P̂E(X̃ , X̃ ′).
We refer to this procedure as the least-squares two-sample test (LSTT).

4.2 Theoretical Properties

Here, we investigate theoretical properties of the above permutation procedure under the
null-hypothesis P = P ′.

Theorem 2. Suppose |X | = |X ′|, and let F be the distribution function of P̂E(X̃ , X̃ ′).
Let

β := sup{t ∈ R | F (t) ≤ 1− α}

be the upper 100α-percentile point of F (see Figure 1). If P = P ′, we have

Prob
(
P̂E(X ,X ′) > β

)
≤ α,

where ‘Prob(e)’ denotes the probability of an event e.

A proof of Theorem 2 is provided in Appendix B.
Theorem 2 means that, for a given significance level3 α, the probability that P̂E(X ,X ′)

exceeds β is at most α when P = P ′. Thus, when the null hypothesis is correct, it will
be properly accepted with a specified probability.

3Conventionally, α = 0.01 or 0.05 is used.
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4.3 Numerical Examples

Let the number of samples be n = n′ = 500, and

X = {xi}ni=1
i.i.d.∼ P = N(0, 1),

X ′ = {x′
j}n

′
j=1

i.i.d.∼ P ′ = N(μ, σ2),

whereN(μ, σ2) denotes the normal distribution with mean μ and variance σ2. We consider
the following four setups:

(a) (μ, σ) = (0, 1.3): P ′ has larger standard deviation than P ,

(b) (μ, σ) = (0, 0.7): P ′ has smaller standard deviation than P ,

(c) (μ, σ) = (0.3, 1): P and P ′ have different means,

(d) (μ, σ) = (0, 1): P and P ′ are the same.

Histograms of X = {xi}ni=1 and X ′ = {x′
j}n′

j=1 for the above four cases are depicted in

Figure 2. Examples of randomly shuffled samples X̃ are also plotted at the bottom, where
X̃ is thought to follow 1

2
N(0, 1) + 1

2
N(μ, σ2). Since X̃ ′ has a similar histogram to X̃ , its

plot is omitted.
Figure 3 depicts histograms of P̂E(X̃ , X̃ ′) (i.e., shuffled datasets), showing that the

profiles of the null distribution (i.e., the two distributions are the same) are rather similar

to each other for the four cases. The values of P̂E(X ,X ′) (i.e., the original datasets) are
also plotted in Figure 3 using the ‘×’-symbol on the horizontal axis, showing that the
p-values tends to be small when P �= P ′ and the p-value is large when P = P ′. This is
desirable behavior as a hypothesis test.

Figure 4 depicts the mean and standard deviation of p-values over 100 runs as functions
of the sample size n (= n′), indicated by ‘plain’. The graphs show that, when P �= P ′, the
p-values tend to decrease as n increases. On the other hand, when P = P ′, the p-values
are almost unchanged and kept to relatively large values.

Figure 5 depicts the rate of accepting the null hypothesis (i.e., P = P ′) over 100 runs
when the significance level is set to 0.05 (i.e., the rate of p-values larger than 0.05). The
graphs show that, when P �= P ′, the null hypothesis tends to be more frequently rejected
as n increases. On the other hand, when P = P ′, the null hypothesis is almost always
accepted. Thus, the proposed test was shown to work properly for these toy datasets.

4.4 Choice of Numerator/Denominator Densities

In our test procedure, we are using uLSIF for estimating the density ratio function r(x):

r(x) =
p(x)

p′(x)
.
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(a) (μ, σ) = (0, 1.3)
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−4 −3 −2 −1 0 1 2 3 4
0

20

40

 

 

−4 −3 −2 −1 0 1 2 3 4
0

20

40

 

 

−4 −3 −2 −1 0 1 2 3 4
0

20

40

x

 

 

X

X
0

eX

(c) (μ, σ) = (0.3, 1)
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(d) (μ, σ) = (0, 1)

Figure 2: Histograms of original samples X ∼ N(0, 1) and X ′ ∼ N(μ, σ2), and the shuffled

samples (which are thought to follow X̃ ∼ 1
2
N(0, 1) + 1

2
N(μ, σ2)) for the toy datasets.
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Figure 3: Histograms of P̂E(X̃ , X̃ ′) (i.e., shuffled datasets) for the toy datasets. ‘×’

indicates the value of P̂E(X ,X ′) (i.e., the original datasets).
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Figure 4: Mean and standard deviation of p-values for the toy datasets.
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Figure 5: The rate of accepting the null hypothesis (i.e., P = P ′) for the toy datasets
under the significance level 0.05.
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By definition, the reciprocal of the density ratio r(x),

1

r(x)
=

p′(x)
p(x)

,

is also a density ratio function, assuming that p(x) > 0 for all x. This means that we can
use uLSIF in two ways, either estimating the original density ratio r(x) or its reciprocal
1/r(x).

To illustrate this difference, we also carried out the same experiments as Section 4.3
by swapping X and X ′. The obtained p-values and the acceptance rate are also plotted
in Figure 4 and Figure 5 as ‘reciprocal’. In the experiments, we prefer to have smaller
p-values when P �= P ′ and larger p-values when P = P ′. The graphs show that, when
(μ, σ) = (0, 1.3), estimating the inverted density ratio gives slightly smaller p-values
and a significantly lower acceptance rate. On the other hand, when (μ, σ) = (0, 0.7),
reciprocal estimation yields larger p-values and a significantly higher acceptance rate.
When (μ, σ) = (0.3, 1) and (μ, σ) = (0, 1), the ‘plain’ and ‘reciprocal’ methods result
in similar p-values and thus similar acceptance rates. These experimental results imply
that, if we adaptively choose the plain and reciprocal approaches, the performance of
homogeneity test may be improved.

Figure 4 showed that, when P = P ′ (i.e., (μ, σ) = (0, 1)), the p-values are large enough
to reject the null hypothesis for both the plain and reciprocal approaches. Thus, the type-
I error (the probability of rejecting correct null-hypotheses, i.e., two distributions are
judged to be different when they are actually the same) would be sufficiently small for
both approaches, as illustrated in Figure 5. Based on this observation, we propose to
choose a smaller p-value between the plain and reciprocal approaches. This allows us to
reduce the type-II error (the probability of accepting incorrect null-hypotheses, i.e., two
distributions are judged to be the same when they are actually different), and thus the
power of the test can be enhanced.

The experimental results of this adaptive method are also included in Figure 4 and
Figure 5 as ‘adaptive’. The results show that p-values obtained by the adaptive method are
smaller than those obtained by the plain and reciprocal approaches, providing significant
performance improvement when P �= P ′. On the other hand, smaller p-values can be
problematic when P = P ′ since the acceptance rate can be lowered. However, as the
experimental results show, the p-values are still large enough to accept the null hypothesis
and thus there is no critical performance degradation in this illustrative example.

A pseudo-code of the ‘adaptive’ LSTT method is summarized in Figure 6 and Fig-
ure 7. Although the permutation test process is computationally intensive, it can be easily
parallelized using multi-processors/cores.

A MATLAB R© implementation of LSTT is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LSTT/
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Input: Two sets of samples X = {xi}ni=1 and X ′ = {x′
j}n′

j=1

Output: p-value p̂

p0 ←− P̂E(X ,X ′);
p′0 ←− P̂E(X ′,X );
For t = 1, . . . , T

Randomly split X ∪ X ′ into X̃ of size |X | and X̃ ′ of size |X ′|;
pt ←− P̂E(X̃ , X̃ ′);
p′t ←− P̂E(X̃ ′, X̃ );

End

p ←− 1

T

T∑
t=1

I(pt > p0);

p′ ←− 1

T

T∑
t=1

I(p′t > p′0);

p̂ ←− min(p, p′);

Figure 6: Pseudo code of LSTT. Pseudo code of P̂E(X ,X ′) is given in Figure 7. I(c)
denotes the indicator function, i.e., I(c) = 1 if the condition c is true; otherwise I(c) = 0.

When |X̃ | = |X̃ ′| (i.e., n = n′), p′t ←− P̂E(X̃ ′, X̃ ) may be replaced by p′t ←− pt since
switching X and X ′ does not essentially affect the estimation of the Pearson divergence.

5 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD; Borgwardt et al., 2006; Gretton et al., 2007) is a
state-of-the-art method of homogeneity test. In this section, we review the definition
of MMD and explain its basic properties. In the next section, the proposed LSTT is
experimentally compared with MMD.

MMD is an integral probability metric (Müller, 1997) defined as

MMD(H, P, P ′) := sup
f∈H

[∫
f(x)p(x)dx−

∫
f(x)p′(x)dx

]
, (11)

whereH : Rd → R is some function class. WhenH is a unit ball in a universal reproducing
kernel Hilbert space (universal RKHS; Steinwart, 2001 defined on a compact metric space,
then MMD(H, P, P ′) vanishes if and only if P = P ′. Gaussian RKHSs are examples of
the universal RKHS.

Let K(x,x′) be a reproducing kernel function. Then the reproducing property (Aron-
szajn, 1950) allows one to extract the value of a function f ∈ H at a point x as

f(x) = 〈f(·), K(x, ·)〉H , (12)

where 〈·, ·〉H denotes the inner product in the RKHS H. Let ‖·‖H be the norm in the
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Input: Two sets of samples X = {xi}ni=1 and X ′ = {x′
j}n′

j=1

Output: Pearson divergence estimate P̂E(X ,X ′)

Randomly split X into {Xm}Mm=1 and X ′ into {X ′
m}Mm=1;

For each candidate of Gaussian width σ
For m = 1, . . . ,M

% kσ(x) = (1, Kσ(x,x1), . . . , Kσ(x,xn))
�

% Kσ(x,x
′) = exp

(
−‖x−x′‖2

2σ2

)
Ĝm ←−

∑
x′∈X ′

m

kσ(x
′)kσ(x

′)�;

ĝm ←−
∑
x∈Xm

kσ(x);

End
For each candidate of regularization parameter λ

For m = 1, . . . ,M

α̂m ←−
(

1

|X ′\X ′
m|

∑
m′ �=m

Ĝm′ + λIn+1

)−1(
1

|X\Xm|
∑
m′ �=m

ĝm′

)
;

ĴCV
m (σ, λ) ←− 1

2|X ′
m|

α̂�
mĜmα̂m − 1

|Xm|α̂
�
mĝm;

End

ĴCV(σ, λ) ←− 1

M

M∑
m=1

ĴCV
m (σ, λ);

End
End

(σ̂, λ̂) ←− argmin
(σ,λ)

ĴCV(σ, λ);

ĥ ←− 1

|X |
∑
x∈X

kσ̂(x);

α̂ ←−
(

1

|X ′|
∑
x′∈X ′

kσ̂(x
′)kσ̂(x

′)� + λ̂In+1

)−1

ĥ;

P̂E(X ,X ′) ←− 1

2
α̂�ĥ− α̂�

(
1

|X ′|
∑
x′∈X ′

kσ̂(x
′)

)
+

1

2
;

Figure 7: Pseudo code of uLSIF-based Pearson divergence estimator.
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RKHS H. Then, one can explicitly express MMD in terms of the kernel function as

MMD(H, P, P ′) = sup
‖f‖H≤1

[∫
〈f(·), K(x, ·)〉H p(x)dx−

∫
〈f(·), K(x, ·)〉H p′(x)dx

]
= sup

‖f‖H≤1

〈
f(·),

∫
K(x, ·)p(x)dx−

∫
K(x, ·)p′(x)dx

〉
H

=

∥∥∥∥∫ K(x, ·)p(x)dx−
∫

K(x, ·)p′(x)dx
∥∥∥∥
H
,

where the Cauchy-Schwarz inequality (Bachman & Narici, 2000) was used in the last
equality. Furthermore, by using

K(x,x′) = 〈K(x, ·), K(x′, ·)〉H ,

the squared MMD can be expressed as

MMD2(H, P, P ′) =

∥∥∥∥∫ K(x, ·)p(x)dx−
∫

K(x, ·)p′(x)dx
∥∥∥∥2
H

=

∫∫
K(x,x′)p(x)p(x′)dxdx′ +

∫∫
K(x,x′)p′(x)p′(x′)dxdx′

− 2

∫∫
K(x,x′)p(x)p′(x)dxdx′.

The above expression allows one to immediately obtain an empirical estimator—with
the i.i.d. samples X = {xi}ni=1 following p(x) and X ′ = {x′

j}n′
j=1 following p′(x), a consis-

tent estimator of MMD2(H, P, P ′) is given as

M̂MD2(H,X ,X ′) :=
1

n2

n∑
i,i′=1

K(xi,xi′) +
1

n′2

n′∑
j,j′=1

K(x′
j,x

′
j′)

− 2

nn′

n∑
i=1

n′∑
j=1

K(xi,x
′
j).

By the same permutation test procedure as the one described in Section 4.1, one

can compute p-values for M̂MD2(H,X ,X ′). Furthermore, an asymptotic distribution

of M̂MD2(H,X ,X ′) under P = P ′ can be explicitly obtained (Borgwardt et al., 2006;
Gretton et al., 2007). This allows one to compute the p-values without resorting to the
computationally-intensive permutation procedure, which is an advantage of MMD over
LSTT.

M̂MD2(H,X ,X ′) depends on the choice of the universal RKHS H. In the original
MMD papers (Borgwardt et al., 2006; Gretton et al., 2007), the Gaussian RKHS with
width set to the median distance between samples was used, which is a popular heuristic in
the kernel method community (Schölkopf & Smola, 2002). Recently, an idea of using the
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universal RKHS yielding the maximum MMD value has been introduced (Sriperumbudur
et al., 2009). In the experiments in the next section, we use this maximum-MMD technique
for choosing the universal RKHS, which we confirmed to work better than the ‘median’
heuristic.

6 Experiments

In this section, we report experimental results comparing the performance of the proposed
LSTT (Section 4) with that of the state-of-the-art MMD (Section 5).

6.1 IDA Benchmark Datasets

In the first set of experiments, we used binary classification datasets taken from the IDA
repository (Rätsch et al., 2001). For each dataset, we randomly split all the positive
training samples into two disjoint sets, X and X ′ with |X | = |X ′|.

We first investigated whether the tests can correctly accept the null hypotheses (i.e.,
X and X ′ follow the same distribution). We used the Gaussian kernel both for LSTT and
MMD. The Gaussian width and the regularization parameter in LSTT were determined
by 5-fold cross-validation (see Section 2.4). The Gaussian width in MMD was chosen so
that the MMD value is maximized (see Section 5). Since the permutation test procedures
in LSTT and MMD are exactly the same, we are purely comparing the performance of
the MMD and LSTT criteria in this experiment.

We investigated the rate of accepting the null hypothesis as functions of the relative
sample size η for the significance level 0.05. The relative sample size η means that we used
samples of size η|X | and η|X ′| for homogeneity test. The experimental results are plotted
in Figure 8 by lines with ‘◦’-symbols. The results show that both methods almost always
accepted the null hypothesis correctly, meaning that the type-I error is small enough for
both MMD and LSTT. However, MMD seems to perform slightly better than LSTT in
terms of the type-I error.

Next, we replaced a fraction of samples in the set X ′ by randomly chosen negative
training samples. Thus, while X contains only positive training samples, X ′ includes
both positive and negative training samples. The experimental results are also plotted
in Figure 8 by lines with ‘×’-symbols. The results show that LSTT tended to correctly
reject the null hypothesis more frequently than MMD for the ‘banana’, ‘ringnorm’, ‘splice’,
‘twonorm’, and ‘waveform’ datasets. MMD worked better than LSTT for the ‘thyroid’
dataset, and the two methods were comparable to each other for the other datasets.
Overall, LSTT compares favorably with MMD in terms of the type-II error.

6.2 USPS Hand-Written Digit Dataset

In the second sets of experiments, we used the USPS hand-written digit dataset provided
by U.S. Postal Service (Hastie et al., 2001). Each digit image (representing an integer in
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Figure 8: The rate of accepting the null hypothesis (i.e., P = P ′) for IDA datasets under
the significance level 0.05. η indicates the relative sample size we used in the experiments.
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{0, 1, 2, . . . , 9}) consists of 256 (= 16×16) pixels, each of which takes a value between −1
to +1 representing its intensity level in gray-scale.

We formed two sets of samples as follows: one consists of 500 samples randomly chosen
from class c (∈ {0, 1, 2, . . . , 9}), while the other consists of 500(1 − δ) samples randomly
chosen from class c and 500δ samples randomly chosen from another class c′ ( �= c), where
δ is the contamination rate. The goal is to test whether the two sets of samples are drawn
from the same distribution or not for various contamination rates.

Table 1 shows the number of times LSTT or MMD incorrectly rejected the null hy-
pothesis over 10 runs when the null hypothesis is correct (i.e., δ = 0, meaning that the two
distributions are the same). Thus, the smaller the number is, the better the performance
is. The significance level was set to 0.05. The format ‘l/m’ in the table means that LSTT
and MMD rejected the null hypothesis l and m times, respectively. The results show that
both LSTT and MMD almost always accepted the correct null hypothesis successfully.

Next, we compared the performance of LSTT and MMD when the contamination rate
was increased as δ = 0.02, 0.04, 0.06, . . . , 0.2. Table 2 shows the number of times LSTT or
MMD rejected the null hypothesis with a lower contamination rate δ. The format ‘l/t/m’
in the table means that LSTT rejected the null hypothesis with a lower contamination
rate δ than MMD l times, and vice versa for m times. t denotes the number of times
the smallest δ that LSTT and MMD rejected the null hypothesis was the same. The
significance level was set to 0.05. The results show that LSTT tended to reject the null
hypothesis with low contamination rate δ.

6.3 Brown Corpus Dataset with Tree Kernels

In the last set of experiments, we compared the performance of LSTT and MMD using
natural language datasets.

We used the Brown corpus dataset4, which is a carefully compiled selection of current
American English. The Brown corpus consists of a million words sampled from 15 genres
such as news and religion, and it is accompanied with part-of-speech tags, which represent
relationship with adjacent and related words in a phrase, sentence, or paragraph. We
converted the Brown corpus data to dependency tree representation by the MaltParser 5.

We prepared two sets of dependency trees as follows: one consists of 1000 samples
taken from the ‘news’ category, and the other consists of 1000(1− δ) samples taken from
the ‘news’ category and 1000δ samples taken from the ‘romance’ category, where δ is the
contamination rate. The goal is to test whether the two sets of samples were drawn from
the same distribution or not for various contamination rates.

We computed the labeled ordered tree kernel (Kashima & Koyanagi, 2002) between
two dependency trees, which counts the number of sub-trees common to both trees. Then

4The Brown corpus dataset can be downloaded by using the Natural Language Toolkit, which con-
tains open source Python modules, linguistic data, and documentation for research and development
in natural language processing and text analysis. The Natural Language Toolkit is available from
http://www.nltk.org/.

5The MaltParser is available from http://maltparser.org/.
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Table 1: The experimental results for the USPS datasets. The number of times LSTT
or MMD incorrectly rejected the null hypothesis over 10 runs when the null hypothesis
was correct (i.e., the two distributions are the same). c in the table denotes the target
class. The format ‘l/m’ means that LSTT and MMD rejected the null hypothesis l and
m times, respectively. The significance level was set to 0.05.

c 0 1 2 3 4 5 6 7 8 9
0/1 1/0 1/0 0/0 0/1 1/0 1/0 0/1 0/0 1/0

Table 2: The experimental results for the USPS datasets. The number of times LSTT or
MMD rejected the null hypothesis with a smaller contamination rate. c denotes the target
class and c′ denotes the contamination class. The format ‘l/t/m’ means that LSTT/MMD
rejected the null hypothesis with a smaller contamination rate than MMD/LSTT l/m
times, while the smallest contamination rate that LSTT and MMD rejected the null
hypothesis was the same t times. The significance level was set to 0.05. The numbers are
boldfaced if they are larger than or equal to 5.

c\c′ 0 1 2 3 4 5 6 7 8 9
0 – 6/2/2 6/3/1 5/1/4 6/2/2 5/2/3 7/2/1 6/1/3 7/0/3 6/3/1
1 5/4/1 – 4/3/3 3/2/5 3/1/6 3/2/5 3/4/3 3/1/6 2/3/5 3/1/6
2 2/6/2 2/2/6 – 2/1/7 3/4/3 2/1/7 4/0/6 2/0/8 3/1/6 5/2/3
3 7/3/0 4/4/2 9/1/0 – 6/4/0 1/3/6 10/0/0 1/5/4 9/1/0 4/5/1
4 8/1/1 3/2/5 7/2/1 8/0/2 – 7/1/2 7/2/1 2/3/5 8/1/1 4/2/4
5 6/3/1 7/2/1 9/1/0 4/2/4 5/4/1 – 6/3/1 4/3/3 8/1/1 7/3/0
6 6/2/2 8/2/0 9/1/0 8/1/1 8/1/1 6/2/2 – 8/2/0 8/2/0 9/1/0
7 7/2/1 6/2/2 7/1/2 7/1/2 7/0/3 6/2/2 7/1/2 – 7/1/2 7/0/3
8 5/3/2 3/1/6 7/1/2 5/2/3 3/4/3 4/3/3 7/1/2 3/2/5 – 5/1/4
9 8/1/1 6/3/1 8/0/2 9/0/1 4/2/4 8/0/2 8/1/1 1/1/8 9/0/1 –

the kernel values were directly fed into the LSTT and MMD algorithms. The labeled
ordered tree kernel contains the decay factor parameter γ (0 < γ ≤ 1), which controls
the weights for large sub-trees (Collins & Duffy, 2002). We computed kernel values for
γ = 0.1, 0.4, 0.7, and chose the one that minimized the cross-validation score in the case
of LSTT and the one that maximized the MMD value in the case of MMD.

We first investigated the number of times LSTT or MMD incorrectly rejected the
null hypothesis when the null hypothesis was correct (i.e., δ = 0, meaning that the two
distributions are the same). Thus, the smaller the number is, the better the performance
is. The significance level was set to 0.05. The results were that LSTT rejected the correct
null hypothesis 30 times out of 100 runs, while MMD rejected the correct null hypothesis
only 8 times. Thus MMD gave smaller type-I error.

Next, we compared the performance of LSTT and MMD when the contamination rate
was increased as δ = 0.05, 0.1, 0.15, . . . , 0.35. The significance level was set to 0.05. The
results were that LSTT rejected the null hypothesis with a lower contamination rate δ
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than MMD 60 times out of 100 runs, while MMD rejected the null hypothesis with a lower
contamination rate δ than MMD only 18 times; The smallest δ that LSTT and MMD
rejected the null hypothesis was the same 22 times. This means that LSTT tended to
reject the null hypothesis with low contamination rate δ.

7 Conclusions

We proposed a novel method of testing homogeneity called the least-squares two-sample
test (LSTT). Through various experiments, we overall confirmed that LSTT tends to
produce smaller type-II error than the state-of-the-art MMD method, with slightly larger
type-I error.

The performance of LSTT relies on the accuracy of density ratio estimation. We
adopted unconstrained least-squares importance fitting (uLSIF; Kanamori et al., 2009a)
since it possesses the optimal non-parametric convergence rate and optimal numerical
stability (Kanamori et al., 2009b). uLSIF is computationally highly efficient thanks to the
analytic-form solution, which is an attractive feature in the computationally-demanding
permutation test procedure. Nevertheless, the permutation test procedure is still time
consuming, so speedup is an important future research topic.

We have elucidated the convergence rate of our uLSIF-based Pearson divergence es-
timator. We further showed that our uLSIF-based Pearson divergence estimator even
achieves a faster convergence rate when the two distributions are the same. An important
future study along this line of research is to elucidate the asymptotic distribution of the
LSTT estimator so that homogeneity testing can be carried out analytically.

Based on the uLSIF estimator r̂(x), we constructed a consistent Pearson divergence
estimator given by

P̂E(X ,X ′) :=
1

2n

n∑
i=1

r̂(xi)− 1

n′

n′∑
j=1

r̂(x′
j) +

1

2
.

On the other hand, it is possible to construct different consistent estimators, e.g.,

P̂E
′
(X ,X ′) :=

1

2n

n∑
i=1

r̂(xi)− 1

2
,

P̂E
′′
(X ,X ′) := − 1

2n′

n′∑
j=1

r̂(x′
j)

2 +
1

n

n∑
i=1

r̂(xi)− 1

2
.

P̂E
′
(X ,X ′) would be the simplest estimator, while P̂E

′′
(X ,X ′) can be obtained as the

Legendre-Fenchel dual of the Pearson divergence (Nguyen et al., 2010). Investigating
theoretical and experimental performance of these variants in terms of accuracy and
computational efficiency is left open as a future work.

Recently, novel approaches to density ratio estimation for high-dimensional problems
have been explored (Sugiyama et al., 2010; Yamada et al., 2010; Sugiyama et al., 2011).
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In our future work, we would like to incorporate these new ideas into the framework of
LSTT and see how the test performance can be improved.
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A Proof of Theorem 1

In this section, we prove Theorem 1. For simplicity we consider a situation where n = n′.
Even if n �= n′, the following proof is valid for n := min(n, n′).

For arbitrary function f , let

Pnf :=
1

n

n∑
i=1

f(xi), P ′
nf :=

1

n

n∑
j=1

f(x′
j),

Pf := Ex∼p′ [f(x)], P ′f := Ex′∼p[f(x
′)].

Let G be a reproducing kernel Hilbert space (RKHS) corresponding to a kernel K :
Rd × Rd → R, and the estimated density ratio g̃ is defined as the minimizer of the
following minimization problem:

g̃ := argmin
g∈G

1

2n

n∑
j=1

g(x′
j)

2 − 1

n

n∑
i=1

g(xi) +
λn

2
‖g‖2G.

The estimated Pearson divergence P̂E is computed as

P̂E(X ,X ′) =
1

2
Png̃ − P ′

ng̃ +
1

2
.

By Mercer’s theorem, the kernel K(x,x′) has the following spectrum decomposition
with respect to p′:

K(x,x′) =
∞∑
k=1

ek(x)μkek(x
′),

where {ek}∞k=1 is an orthogonal system in L2(p
′), i.e., Pe2k = 1 and P (ekek′) = 0 for k �= k′.

Define N (λ) as

N (λ) :=
∞∑
k=1

μk

μk + λ
.

We assume the following conditions:
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• supx∈Rd K(x,x) ≤ 1,

• The constant function 1 is contained in G: 1 ∈ G,
• The true density ratio p/p′ is contained in G: p/p′ = g∗ ∈ G,
• There exists a constant 0 < γ < 1 such that the spectrum μk of the kernel decays

as μk ≤ ck− 2
γ , where c is a positive constant.

Then we obtain the following theorem and lemma (these are more precise versions of
Theorem 1).

Theorem 1’. Under the assumption described above, for λn =
(
logn
n

)2/(2+γ)
, we have

|P̂E(X ,X ′)− PE(P, P ′)| = Op

((
log n

n

) 2
2+γ

+
√

P ′(g∗ − 1)2
(
log n

n

) 1
2+γ

)
.

Lemma 1. Suppose that the assumption described above hold and

n ≥ 64 log2(12/η)N (λn)

λn

. (13)

Then we have

|P̂E(X ,X ′)− PE(P, P ′)|

≤ 8 log(12/η)2

⎛⎝ 16

n2λn

+
(‖g∗‖G +

√‖g∗‖G + ‖g∗‖
3
2
G )N (λn)

n

⎞⎠
+ log(12/η)

(
4‖g∗‖G

n
+ (‖g∗‖G + ‖g∗‖

3
2
G )

√
λnN (λn)

n

)
+

3

2
λnCn,η

+ log(12/η)

(
4‖g∗ − 1‖∞

n
+

√
P ′(g∗ − 1)2

n
+

√
P (g∗ − 1)2

n

)

+
1

2

√
P ′(g∗ − 1)2

√
128 log2(12/η)

(
8

n2λn

+
(‖g∗‖G + ‖g∗‖2G)N (λn)

n

)
+ 2λn‖g∗‖2G, (14)

with probability at least 1− η, where

Cn,η =
‖1‖2G

1 + λn‖1‖2G

{
8

(
‖g∗‖2G + 8 log2(12/η)

(
4

λ2
nn

2
+

N (λn)‖g∗‖G
λnn

))
+ 1

}
.

Before proving the lemma, we introduce the following proposition that is a part of
Proposition 2 in Caponnetto and de Vito (2007).
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Proposition 1. Let ξ be a random variable taking values in a real separable Hilbert space
K on a probability space (Ω,F , P ). Assume that there are two positive constants L and σ
such that

‖ξ‖K ≤ L

2
a.s., (15)

E[‖ξ‖2K] ≤ σ2. (16)

Then, for all n ≥ 1 and 0 < η < 1, it holds that

Prob(ω1,...,ωn)∼Pn

[∥∥∥∥∥ 1n
n∑

i=1

ξ(ωi)− E[ξ]

∥∥∥∥∥
K
≤ 2

(
L

n
+

σ√
n

)
log

2

η

]
≥ 1− η. (17)

Proof of Lemma 1. First we define some notation. Let Kx be an element of G such that

〈Kx, f〉 = f(x)

for f ∈ G and x ∈ Rd, i.e., Kx(·) = K(x, ·) as an element of G. We define Tp′ : G → G as

〈g, Tp′f〉 = Ex′∼p′ [g(x
′)f(x′)],

for f, g ∈ G. Similarly we define T̂p′ : G → G as

〈g, T̂p′f〉 = 1

n

n∑
j=1

g(x′
j)f(x

′
j).

Note that Tp′ = Ex′∼p′ [Kx′K◦
x′ ] where K◦

x is the adjoint of Kx. Let φk :=
√
μkek. Then

{φk}∞k=1 is a complete orthonormal system in the RKHS G, and Tp′ can be represented as

Tp′ =
∞∑
k=1

φkμkφ
◦
k.

Let h1, ĥ1, h2, ĥ2 ∈ G be

h1 := Ex′∼p′ [Kx′ ], ĥ1 =
1

n

n∑
j=1

Kx′
j
,

h2 := Ex∼p[Kx] = Ex′∼p′ [Kx′g∗(x′)] = Ex′∼p′ [Kx′〈Kx′ , g∗〉G] = Tp′g
∗, ĥ2 =

1

n

n∑
i=1

Kxi
.

Note that E[ĥ1] = h1 and E[ĥ2] = h2, and

〈h1, f〉 = P ′f, 〈ĥ1, f〉 = P ′
nf, 〈h2, f〉 = Pf, 〈ĥ2, f〉 = Pnf. (18)

It can be easily checked that
g̃ = (T̂p′ + λn)

−1ĥ2.
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Here we define
gλn = (Tp′ + λn)

−1h2.

The difference between P̂E(X ,X ′) and PE(P, P ′) is expanded as

P̂E(X ,X ′)− PE(P, P ′)

=
1

2
(Png̃ − Pg∗)− (P ′

ng̃ − P ′g∗)

=
1

2
[(Pn − P )(g̃ − g∗) + P (g̃ − g∗) + (Pn − P )g∗]− (P ′

ng̃ − 1). (19)

Since P (g̃ − g∗) is bounded as

|P (g̃ − g∗)| = |P ′(g̃ − g∗)|+ |P ′((g∗ − 1)(g̃ − g∗))|
≤ |P ′(g̃ − g∗)|+

√
P ′(g∗ − 1)2

√
P ′(g̃ − g∗)2

= |(P ′ − P ′
n)(g̃ − g∗) + P ′

ng̃ − P ′g∗ + (P ′ − P ′
n)g

∗|
+
√

P ′(g∗ − 1)2
√

P ′(g̃ − g∗)2

≤ |(P ′ − P ′
n)(g̃ − g∗)|+ |P ′

ng̃ − 1|+ |(P ′ − P ′
n)g

∗|
+
√

P ′(g∗ − 1)2
√

P ′(g̃ − g∗)2, (20)

Eq.(19) indicates

|P̂E(X ,X ′)− PE(P, P ′)| ≤1

2
|(P ′

n − P ′)(g̃ − g∗)|+ 1

2
|(Pn − P )(g̃ − g∗)|

+
3

2
|P ′

ng̃ − 1|

+
1

2
|(P ′

n − P ′)g∗|+ 1

2
|(Pn − P )g∗|

+
1

2

√
P ′(g∗ − 1)2

√
P ′(g̃ − g∗)2. (21)

Step 1. Bounding (P ′
n − P ′)(g̃ − g∗)

(P ′
n − P ′)(g̃ − g∗)

= 〈ĥ1 − h1, (T̂p′ + λn)
−1ĥ2 − g∗〉

= 〈ĥ1 − h1, (T̂p′ + λn)
−1(ĥ2 − h2) + (T̂p′ + λn)

−1h2 − (Tp′ + λn)
−1h2 + (Tp′ + λn)

−1h2 − g∗〉
= 〈ĥ1 − h1, (T̂p′ + λn)

−1(ĥ2 − h2)〉+ 〈ĥ1 − h1, (T̂p′ + λ)−1(Tp′ − T̂p′)(Tp′ + λn)
−1h2〉

+ 〈ĥ1 − h1, (Tp′ + λn)
−1h2 − g∗〉

= 〈ĥ1 − h1, (T̂p′ + λn)
−1(ĥ2 − h2)〉︸ ︷︷ ︸

(1-a)

+ 〈ĥ1 − h1, (T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2〉︸ ︷︷ ︸
(1-b)

− 〈ĥ1 − h1, (Tp′ + λ)−1λng
∗〉︸ ︷︷ ︸

(1-c)

, (22)
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where in the last inequality we used the relation Tp′g
∗ = h2.

Let ‖ · ‖L(G) be the operator norm of the bounded linear operator from G to G. Then

‖(Tp′ + λ)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖L(G)

=
∥∥∥[(Tp′ + λn)

− 1
2 (T̂p′ + λn − Tp′ − λn + Tp′ + λn)(Tp′ + λn)

− 1
2 ]−1

∥∥∥
L(G)

=
∥∥∥[(Tp′ + λn)

− 1
2 (T̂p′ − Tp′)(Tp′ + λn)

− 1
2 + I]−1

∥∥∥
L(G)

. (23)

We define A1 as follows:

A1 =

{∥∥∥(Tp′ − T̂p′)(Tp′ + λn)
−1
∥∥∥
L(G)

≤ 1

2

}
.

Caponnetto and de Vito (2007) showed that under the event A1,∥∥∥(Tp′ + λn)
− 1

2 (T̂p′ − Tp′)(Tp′ + λn)
− 1

2

∥∥∥
L(G)

≤ 1

2
,

and the probability of A1 is at least 1 − η/6 under the condition Eq.(13). Therefore we
obtain

‖(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖L(G)

=
∥∥∥[(Tp′ + λn)

− 1
2 (T̂p′ − Tp′)(Tp′ + λn)

− 1
2 + I]−1

∥∥∥
L(G)

≤ 2 (24)

on the event A1.

Bounding (1-a):

〈ĥ1 − h1, (T̂p′ + λn)
−1(ĥ2 − h2)〉

≤ 〈ĥ1 − h1, (Tp′ + λn)
− 1

2 [(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2 ](Tp′ + λn)

− 1
2 (ĥ2 − h2)〉

≤
∥∥∥(Tp′ + λn)

− 1
2 (ĥ1 − h1)

∥∥∥
G

∥∥∥(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2

∥∥∥
L(G)

×
∥∥∥(Tp′ + λn)

− 1
2 (ĥ2 − h2)

∥∥∥
G
.

According to Eq.(24), we have∥∥∥(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2

∥∥∥
L(G)

≤ 2

on the event A1.
Let ξ : Rd → G be the random variable

ξ(x′) = (Tp′ + λn)
− 1

2Kx′ .
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Then

(Tp′ + λn)
− 1

2 (ĥ1 − h1) = (P ′
n − P ′)ξ

‖ξ‖G =
√

K◦
x′(Tp′ + λn)−1Kx′ ≤

√
λ−1
n ,

Ex′∼p′ [‖ξ‖2G] = Ex′∼p′ [K
◦
x(Tp′ + λn)

−1Kx′ ]

= Ex′∼p′

[ ∞∑
k=1

μk

μk + λn

ek(x
′)2
]

=
∞∑
k=1

μk

μk + λn

= N (λn).

Therefore, by Proposition 1, we have

‖(Tp′ + λn)
− 1

2 (ĥ1 − h1)‖G = ‖(P ′
n − P ′)ξ‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
N (λn)

n

)
, (25)

with probability 1− η/6. We define A2 as the event where the above inequality holds:

A2 :=

{
‖(Tp′ + λn)

− 1
2 (ĥ1 − h1)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
N (λn)

n

)}
. (26)

One can obtain a similar bound for ‖(Tp′ + λn)
− 1

2 (ĥ2 − h2)‖G. In fact, using

Ex′∼p

[ ∞∑
k=1

μk

μk + λn

ek(x
′)2
]
≤ Ex′∼p′

[
g∗(x′)

∞∑
k=1

μk

μk + λn

ek(x
′)2
]

≤ ‖g∗‖GEx′∼p′

[ ∞∑
k=1

μk

μk + λn

ek(x
′)2
]
= ‖g∗‖GN (λn), (27)

instead of Eq.(25), one can show that, by Proposition 1,

‖(Tp′ + λn)
− 1

2 (ĥ2 − h2)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖N (λn)

n

)
, (28)

with probability 1− η/6. We define A3 as the event where the above inequality holds:

A3 :=

{
‖(Tp′ + λn)

− 1
2 (ĥ2 − h2)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖N (λn)

n

)}
. (29)

Combining Eqs.(24), (25), and (28), we can show that the term (a) is bounded as

|〈ĥ1 − h1, (T̂p′ + λn)
−1(ĥ2 − h2)〉| ≤ 16 log(12/η)2

(
4

n2λn

+

√‖g∗‖N (λn)

n

)
, (30)

on the event A1 ∩ A2 ∩ A3.
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Bounding (1-b):

〈ĥ1 − h1, (T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2〉
≤ ‖(Tp′ + λn)

− 1
2 (ĥ1 − h1)‖G‖(Tp′ + λn)

1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖L(G)

× ‖(Tp′ + λn)
− 1

2 (Tp′ − T̂p′)(Tp′ + λn)
−1h2‖G.

We have already obtained bounds for ‖(Tp′+λ)−
1
2 (ĥ1−h1)‖ and ‖(Tp′+λ)

1
2 (T̂p′+λ)−1(Tp′+

λ)
1
2‖ in Eq.(25) and Eq.(24):

‖(Tp′ + λn)
− 1

2 (ĥ1 − h1)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
N (λn)

n

)
, (31)

‖(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖L(G) ≤ 2, (32)

on the event A1 ∩ A2.
Let ξ : Rd → G be the random variable such as

ξ(x) = (Tp′ + λn)
− 1

2KxK
◦
x(Tp′ + λn)

−1h2.

Then we have

‖ξ(x)‖G = ‖(Tp′ + λn)
− 1

2KxK
◦
x(Tp′ + λn)

−1Tp′g
∗‖G

≤ ‖(Tp′ + λn)
− 1

2‖L(G)‖KxK
◦
x‖L(G)‖(Tp′ + λn)

−1Tp′‖L(G)‖g∗‖G
≤ λ

− 1
2

n ‖g∗‖G,
where we used the relation

‖(KxK
◦
x)h‖G = ‖Kx〈Kx, h〉G‖G = 〈Kx, h〉G‖Kx‖G

≤ ‖h‖G‖Kx‖2G = ‖h‖GK(x,x) ≤ ‖h‖G
for all h ∈ G. Then,
Ex′∼p′ [‖ξ(x′)‖2G] = Ex′∼p′ [‖(Tp′ + λn)

− 1
2Kx′K◦

x′(Tp′ + λn)
−1Tp′g

∗‖2G]
≤ Ex′∼p′

[‖(Tp′ + λn)
−1Kx′K◦

x′‖L(G)
] ‖K◦

x′Kx′‖L(G)‖(Tp′ + λn)
−1Tp′g

∗‖2G
≤ Ex′∼p′

[
tr
(
(Tp′ + λn)

−1Kx′K◦
x′
)] ‖g∗‖2G

= tr
(
(Tp′ + λn)

−1Tp′
) ‖g∗‖2G

= N (λn)‖g∗‖2G.
Therefore, by Proposition 1, we obtain

‖(Tp′ + λn)
− 1

2 (Tp′ − T̂p′)(Tp′ + λn)
−1h2‖G

≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖2N (λn)

n

)
, (33)
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with probability 1− η/6. We define A4 as the event where the above inequality holds

A4 :=

{
‖(Tp′ + λn)

− 1
2 (Tp′ − T̂p′)(Tp′ + λn)

−1h2‖G

≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖2N (λn)

n

)}
.

Combining Eqs.(25), (24), and (33), the term (1-b) is bounded as

|〈ĥ1 − h1, (T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2〉|
≤ 16 log(12/η)2

(
4

n2λn

+
‖g∗‖N (λn)

n

)
,

on the event A1 ∩ A2 ∩ A4.

Bounding (1-c): We have

〈ĥ1 − h1, (Tp′ + λn)
−1λng

∗〉 = 〈(Tp′ + λn)
− 1

2 (ĥ1 − h1), (Tp′ + λn)
− 1

2λng
∗〉

≤ ‖(Tp′ + λn)
− 1

2 (ĥ1 − h1)‖G‖(Tp′ + λn)
− 1

2

√
λng

∗‖G
√

λn.
(34)

Notice that Eq.(25) gives

‖(Tp′ + λn)
− 1

2 (ĥ1 − h1)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
N (λn)

n

)
, (35)

on the event A2. This and ‖(Tp′ + λn)
− 1

2

√
λng

∗‖G ≤ ‖g∗‖G give

|〈ĥ1 − h1, (Tp′ + λn)
−1λng

∗〉| ≤ 2 log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖G

√
N (λn)λn

n

)
, (36)

on the event A2.
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Combining the bounds of (1-a), (1-b), and (1-c):

|(P ′
n − P ′)(g̃ − g∗)|

≤ 16 log(12/η)2

(
4

n2λn

+

√‖g∗‖GN (λn)

n

)
+ 16 log(12/η)2

(
4

n2λn

+
‖g∗‖GN (λn)

n

)

+ 2 log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖G

√
N (λn)λn

n

)

= 16 log(12/η)2

(
8

n2λn

+
(‖g∗‖G +

√‖g∗‖G)N (λn)

n

)

+ 2 log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖G

√
N (λn)λn

n

)
,

on the event A1 ∩ A2 ∩ A3 ∩ A4.

Step 2. Bounding |(Pn − P )(g̃ − g∗)|
As in Eq.(22), we have

(Pn − P )(g̃ − g∗)

= 〈ĥ2 − h2, (T̂p′ + λn)
−1(ĥ2 − h2)〉+ 〈ĥ2 − h2, (T̂p′ + λn)

−1(Tp′ − T̂p′)(Tp′ + λn)
−1h2〉

+ 〈ĥ2 − h2, (Tp′ + λn)
−1λng

∗〉.

Using Eq.(28) instead of Eq.(25), on the event A1 ∩ A3 ∩ A4, each term is bounded as

|〈ĥ2 − h2, (T̂p′ + λn)
−1(ĥ2 − h2)〉|

≤ 16 log(12/η)2
(

4

n2λn

+
‖g∗‖GN (λn)

n

)
,

|〈ĥ2 − h2, (T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2〉|

≤ 16 log(12/η)2

⎛⎝ 4

n2λn

+
‖g∗‖

3
2
GN (λn)

n

⎞⎠ ,

|〈ĥ2 − h2, (Tp′ + λn)
−1λg∗〉|

≤ 2 log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖

3
2
G

√
N (λn)λn

n

)
.
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Then we obtain the following bound:

|(Pn − P )(g̃ − g∗)|

≤ 16 log(12/η)2

⎛⎝ 8

n2λn

+
(‖g∗‖

3
2
G + ‖g∗‖G)N (λn)

n

⎞⎠
+ 2 log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖

3
2
G

√
N (λn)

n

)
,

on the event A1 ∩ A3 ∩ A4.

Step 3. Bounding |P ′
ng̃ − 1|

We decompose g̃ as

g̃ = û+ β̂, (37)

where û ⊥ 1 in G and β̂ is a constant function. Then one can easily show that

β̂ =
1− P ′

nû

1 + λn‖1‖G .

Therefore

P ′
ng̃ = P ′

nû+
1− P ′

nû

1 + λn‖1‖G = 1 + λn

‖1‖2G
1 + λn‖1‖2G

(P ′
nû− 1). (38)

If we can show that û is bounded (i.e., Op(1)), then P ′
ng̃− 1 = Op(λm). To show that, we

bound ‖g̃‖ because

‖û‖∞ ≤ ‖û‖G ≤
√

‖û‖2G + ‖β̂‖2G = ‖g̃‖G.
We have

‖g̃‖2G = 〈ĥ2, (T̂p′ + λn)
−2ĥ2〉

= 〈(Tp′ + λn)
−1ĥ2, [(Tp′ + λn)(T̂p′ + λn)

−2(Tp′ + λn)](Tp′ + λn)
−1ĥ2〉

Here

(Tp′ + λn)(T̂p′ + λn)
−1 = (I − (Tp′ − T̂p′)(Tp′ + λn)

−1)−1 (39)

and on the event A1 with the condition Eq.(13), we have

‖(Tp′ − T̂p′)(Tp′ + λn)
−1‖L(G) ≤ 1

2
.
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Hence

‖(Tp′ + λn)(T̂p′ + λn)
−1‖L(G) ≤ 2 (40)

on the event A1 with the condition Eq.(13).
We have that

‖(Tp′ + λn)
−1(ĥ2 − h2)‖G ≤ λ

− 1
2

n ‖(Tp′ + λn)
− 1

2 (ĥ2 − h2)‖G

≤ 2 log(12/η)

⎛⎝ 2

λnn
+

√
N (λn)‖g∗‖G

λnn

⎞⎠ , (41)

on the event A3. Hence Eqs.(40) and (41) and

‖(Tp′ + λn)
−1h2‖ = ‖(Tp′ + λn)

−1Tp′g
∗‖ ≤ ‖g∗‖G

give

‖g̃‖2 ≤ 8

(
‖g∗‖2G + 8 log2(12/η)

(
4

λ2
nn

2
+

N (λn)‖g∗‖G
λnn

))
, (42)

on the event A3.
Therefore, Eqs.(38) and (42) give

|P ′
ng̃ − 1| = λn

‖1‖2G
1 + λn‖1‖2G

|P ′
nû− 1|

≤ λn

‖1‖2G
1 + λn‖1‖2G

{
8

(
‖g∗‖2G + 8 log2(12/η)

(
4

λ2
nn

2
+

N (λn)‖g∗‖G
λnn

))
+ 1

}
=: λnCn,η, (43)

on the event A3.

Step 4. Bounding P ′(g̃ − g∗)2

Decompose g̃ − g∗ as
g̃ − g∗ = (g̃ − gλn) + (gλn − g∗).

The first term is evaluated as follows:

g̃ − gλn = (T̂p′ + λn)
−1ĥ2 − (Tp′ + λn)

−1h2

= (T̂p′ + λn)
−1
{
(ĥ2 − h2) + (Tp′ − T̂p′)(Tp′ + λn)

−1h2

}
. (44)
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Thus

P ′(g̃ − gλn)
2 =

∥∥∥√Tp′(T̂p′ + λn)
−1
{
(ĥ2 − h2) + (Tp′ − T̂p′)(Tp′ + λn)

−1h2

}∥∥∥2
G

≤ 2

{
‖√Tp′(T̂p′ + λn)

−1(ĥ2 − h2)‖2G︸ ︷︷ ︸
(4-a)

+ ‖√Tp′(T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2‖2G︸ ︷︷ ︸
(4-b)

}
. (45)

Bounding (4-a): We have

‖√Tp′(T̂p′ + λn)
−1(ĥ2 − h2)‖G

≤ ‖√Tp′(Tp′ + λn)
− 1

2‖L(G)‖(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖G

× ‖(Tp′ + λn)
− 1

2 (ĥ2 − h2)‖G.
It is obvious that

‖√Tp′(Tp′ + λn)
− 1

2‖G ≤ 1. (46)

By Eq.(24),

‖(Tp′ + λn)
1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖G ≤ 2 (47)

on the event A1. By Eq.(28),

‖(Tp′ + λn)
− 1

2 (ĥ2 − h2)‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖GN (λn)

n

)
, (48)

on the event A3.
Combining Eqs.(46), (24), and (28), we have

‖√Tp′(T̂p′ + λn)
−1(ĥ2 − h2)‖G ≤ 4 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖GN (λn)

n

)
, (49)

on the event A1 ∩ A3.

Bounding (4-b): We have

‖√Tp′(T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2‖G
≤ ‖√Tp′(Tp′ + λn)

− 1
2‖L(G)‖(Tp′ + λn)

1
2 (T̂p′ + λn)

−1(Tp′ + λn)
1
2‖L(G)

× ‖(Tp′ + λn)
− 1

2 (Tp′ − T̂p′)(Tp′ + λn)
−1h2‖G.
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By Eq.(33), we have

‖(Tp′ + λn)
− 1

2 (Tp′ − T̂p′)(Tp′ + λn)
−1h2‖G ≤ 2 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖2GN (λn)

n

)
,

on the event A4. Thus Eqs.(46), (24), and (33) indicate

‖√Tp′(T̂p′ + λn)
−1(Tp′ − T̂p′)(Tp′ + λn)

−1h2‖G

≤ 4 log(12/η)

(
2

n
√
λn

+

√
‖g∗‖2GN (λn)

n

)
, (50)

on the event A1 ∩ A4.

Combining the bounds of (4-a) and (4-b): Substituting Eqs.(50) and (49) to
Eq.(45), we have

P ′(g̃ − gλn)
2 ≤64

{
log2(12/η)

(
4

n2λn

+
‖g∗‖2GN (λn)

n

)

+ log2(12/η)

(
4

n2λn

+
‖g∗‖GN (λn)

n

)}
, (51)

on the event A1 ∩ A4.
On the other hand, P ′(gλn − g∗)2 is bounded as

P ′(gλn − g∗)2 = ‖√Tp′((Tp′ + λn)
−1h2 − g∗)‖2G = ‖√Tp′(Tp′ + λn)

−1(h2 − (Tp′ + λn)g
∗)‖2G

= ‖√Tp′(Tp′ + λn)
−1λng

∗)‖2G ≤ ‖(Tp′ + λn)
− 1

2λng
∗)‖2G ≤ λn‖g∗‖2G. (52)

By Eqs.(51) and (52), P ′(g̃ − g∗)2 is bounded as

P ′(g̃ − g∗)2

≤ 2(P ′(g̃ − gλn)
2 + P ′(gλn − g∗)2)

≤ 128 log2(12/η)

(
8

n2λn

+
(‖g∗‖G + ‖g∗‖2G)N (λn)

n

)
+ 2λn‖g∗‖2G,

on the event A1 ∩ A4.

Step 5. Bounding |(P ′
n − P ′)(g∗ − 1)| and |(Pn − P )(g∗ − 1)|

By Proposition 1, we have the following bound

|(P ′
n − P ′)(g∗ − 1)| ≤ 2 log(12/η)

(
2‖g∗ − 1‖∞

n
+

√
P ′(g∗ − 1)2

n

)
, (53)
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with probability 1− η/6. Similarly we have

|(Pn − P )(g∗ − 1)| ≤ 2 log(12/η)

(
2‖g∗ − 1‖∞

n
+

√
P (g∗ − 1)2

n

)
, (54)

with probability 1− η/6.
We define A5 and A6 as the events where the above inequalities hols:

A5 :=

{
|(P ′

n − P ′)(g∗ − 1)| ≤ 2 log(12/η)

(
2‖g∗ − 1‖∞

n
+

√
P ′(g∗ − 1)2

n

)}
, (55)

A6 :=

{
|(Pn − P )(g∗ − 1)| ≤ 2 log(12/η)

(
2‖g∗ − 1‖∞

n
+

√
P (g∗ − 1)2

n

)}
. (56)

Step 6. Combining the bounds of Step 1 to 5.

Finally we obtain

|P̂E(X ,X ′)− PE(P, P ′)|

≤ 8 log(12/η)2

(
8

n2λn

+
(‖g∗‖G +

√‖g∗‖G)N (λn)

n

)

+ log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖G

√
λnN (λn)

n

)

+ 8 log(12/η)2

⎛⎝ 8

n2λn

+
(‖g∗‖

3
2
G + ‖g∗‖G)N (λn)

n

⎞⎠
+ log(12/η)

(
2‖g∗‖G

n
+ ‖g∗‖

3
2
G

√
λnN (λn)

n

)
+

3

2
λnCn,η

+ log(12/η)

(
4‖g∗ − 1‖∞

n
+

√
P ′(g∗ − 1)2

n
+

√
P (g∗ − 1)2

n

)

+
1

2

√
P ′(g∗ − 1)2

√
128 log2(12/η)

(
8

n2λn

+
(‖g∗‖G + ‖g∗‖2G)N (λn)

n

)
+ 2λn‖g∗‖2G,

on the event
⋂6

�=1 A� the probability of which is at least 1− η.

Proof of Theorem 1’. By Proposition 3 in Caponnetto and de Vito (2007), we obtain

N (λ) ≤ 2c

2− γ
λ− γ

2 ,
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where c is the constant appears in the assumption. Then substituting the above inequality

and λn =
(
logn
n

) 2
2+γ to Eq.(14), we can see that there is a constant K depending on

c, γ, ‖g‖G such that

|P̂E(X ,X ′)− PE(P, P ′)|

≤ K

{(
log(12/η)2 + log(12/η) + 1

)( log n

n

) 2
2+γ

+ log(12/η)

(√
P ′(g∗ − 1)2

n
+

‖g∗ − 1‖∞
n

)

+
√
P ′(g∗ − 1)2

√
(log(12/η)2 + 1)

(
log n

n

) 1
2+γ

}
, (57)

with probability at least 1 − η under the condition Eq.(13). The condition Eq.(13) is
satisfied for sufficiently large n. Therefore Eq.(57) implies that

|P̂E(X ,X ′)− PE(P, P ′)| = Op

((
log n

n

) 2
2+γ

+
√

P ′(g∗ − 1)2
(
log n

n

) 1
2+γ

)
.

B Proof of Theorem 2

In this section, we prove Theorem 2. Here, for being more precise, we rewrite Theorem 2
as follow.

Theorem 2’. Let F̃n(·|X ∪ X ′) be the distribution function of P̂E(X̃ , X̃ ′) given X ∪ X ′.
Let

q̃(X ∪ X ′) = sup{x ∈ R | F̃n(x|X ∪ X ′) ≤ 1− α}
be the upper 100α-percentile point. Then, if the null hypothesis is true (i.e., P = P ′),

Prob
(
P̂E(X ,X ′) > q̃(X ∪ X ′)

)
≤ α.

Proof. Since the samples {xi}ni=1 and {x′
i}ni=1 are distributed i.i.d. and P = P ′, they

are exchangeable, i.e., the distribution of (y1, . . . ,y2n) = (x1, . . . ,xn,x
′
1, . . . ,x

′
n) is same

as that of (yτ(1), . . . ,yτ(2n)) for any permutation τ on {1, . . . , 2n}. This means that the

distribution function F̃n(· | S) is the same as that of PE(X ,X ′) conditioned on S = X∪X ′.
Then, we have

Prob
(
P̂E(X ,X ′) > q̃(X ∪ X ′)

)
= EX∪X ′

[
Prob

(
P̂E(X ,X ′) > q̃(X ∪ X ′) | X ∪ X ′

)]
= EX∪X ′

[
1− F̃n (q̃(X ∪ X ′) | X ∪ X ′)

]
≤ α,
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which concludes the proof.
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Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explorations, 5,
S268–S275.
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Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input
spaces. Proceedings of the Nineteenth International Conference on Machine Learning
(pp. 315–322).

Kullback, S. (1959). Information theory and statistics. New York: Wiley.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathe-
matical Statistics, 22, 79–86.

Li, Q. (1996). Nonparametric testing of closeness between two unknown distribution
functions. Econometric Reviews, 15, 261–274.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2002). Text
classification using string kernels. Journal of Machine Learning Research, 2, 419–444.

Müller, A. (1997). Integral probability metrics and their generating classes of functions.
Advances in Applied Probability, 29, 429–443.

Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information
Theory. to appear.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50, 157–175.
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Abstract

Estimation of the ratio of probability densities has attracted a great deal of attention
since it can be used for addressing various statistical paradigms. A naive approach to
density-ratio approximation is to first estimate numerator and denominator densities
separately and then take their ratio. However, this two-step approach does not
perform well in practice, and methods for directly estimating density ratios without
density estimation have been explored. In this paper, we first give a comprehensive
review of existing density-ratio estimation methods and discuss their pros and cons.
Then we propose a new framework of density-ratio estimation in which a density-
ratio model is fitted to the true density-ratio under the Bregman divergence. Our
new framework includes existing approaches as special cases, and is substantially
more general. Finally, we develop a robust density-ratio estimation method under
the power divergence, which is a novel instance in our framework.
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1 Introduction

The ratio of probability densities can be used for various statistical data processing pur-
poses (Sugiyama et al., 2009, 2012) such as discriminant analysis (Silverman, 1978), non-
stationarity adaptation (Shimodaira, 2000; Sugiyama and Müller, 2005; Sugiyama et al.,
2007; Quiñonero-Candela et al., 2009; Sugiyama and Kawanabe, 2011), multi-task learn-
ing (Bickel et al., 2008), outlier detection (Hido et al., 2008; Smola et al., 2009; Hido et al.,
2011), two-sample test (Keziou and Leoni-Aubin, 2005; Sugiyama et al., 2011a) change
detection in time series (Kawahara and Sugiyama, 2009), conditional density estimation
(Sugiyama et al., 2010), and probabilistic classification (Sugiyama, 2010).

Furthermore, mutual information—which plays a central role in information theory
(Cover and Thomas, 2006)—can be estimated via density-ratio estimation (Suzuki et al.,
2008, 2009b). Since mutual information is a measure of statistical independence between
random variables, density-ratio estimation can be used also for variable selection (Suzuki
et al., 2009a), dimensionality reduction (Suzuki and Sugiyama, 2010), independent com-
ponent analysis (Suzuki and Sugiyama, 2009), causal inference (Yamada and Sugiyama,
2010), clustering (Kimura and Sugiyama, 2011), and cross-domain object matching (Ya-
mada and Sugiyama, 2011) Thus, density-ratio estimation is a versatile tool for statistical
data processing.

A naive approach to approximating a density-ratio is to separately estimate the two
densities corresponding to the numerator and denominator of the ratio, and then take
the ratio of the estimated densities. However, this naive approach is not reliable in high-
dimensional problems since division by an estimated quantity can magnify the estimation
error of the dividend. To overcome this drawback, various approaches to directly estimat-
ing density-ratios without going through density estimation have been explored recently,
including the moment matching approach (Gretton et al., 2009), the probabilistic clas-
sification approach (Qin, 1998; Cheng and Chu, 2004), the density matching approach
(Sugiyama et al., 2008; Tsuboi et al., 2009; Yamada and Sugiyama, 2009; Nguyen et al.,
2010; Yamada et al., 2010), and the density-ratio fitting approach (Kanamori et al., 2009).

The purpose of this paper is to provide a general framework of density-ratio estimation
that accommodates the above methods. More specifically, we propose a new density-
ratio estimation approach called density-ratio matching—a density-ratio model is fitted
to the true density-ratio function under the Bregman divergence (Bregman, 1967). We
further develop a robust density-ratio estimation method under the power divergence
(Basu et al., 1998), which is a novel instance in our general framework. Note that the
Bregman divergence has been widely used in machine learning literature so far (Collins
et al., 2002; Murata et al., 2004; Tsuda et al., 2005; Dhillon and Sra, 2006; Cayton,
2008; Wu et al., 2009), and the current paper explores a new application of the Bregman
divergence in the framework of density-ratio estimation.

The rest of this paper is organized as follows. After the problem formulation below, we
give a comprehensive review of density-ratio estimation methods in Section 2. In Section 3,
we describe our new framework for density-ratio estimation. Finally, we conclude in
Section 4.
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Problem Formulation: The problem of density-ratio estimation addressed in this pa-
per is formulated as follows. Let X (⊂ Rd) be the data domain, and suppose we are given
independent and identically distributed (i.i.d.) samples {xnu

i }nnu
i=1 from a distribution with

density p∗nu(x) defined on X and i.i.d. samples {xde
j }nde

j=1 from another distribution with
density p∗de(x) defined on X .

{xnu
i }nnu

i=1
i.i.d.∼ p∗nu(x) and {xde

j }nde
j=1

i.i.d.∼ p∗de(x).

We assume that p∗de(x) is strictly positive over the domain X . The goal is to estimate the
density-ratio,

r∗(x) :=
p∗nu(x)
p∗de(x)

,

from samples {xnu
i }nnu

i=1 and {xde
j }nde

j=1. ‘nu’ and ‘de’ indicate ‘numerator’ and ‘denominator’,
respectively.

2 Existing Density-Ratio Estimation Methods

In this section, we give a comprehensive review of existing density-ratio estimation meth-
ods.

2.1 Moment Matching

Here, we describe a framework of density-ratio estimation based on moment matching.

2.1.1 Finite-Order Approach

First, we describe methods of finite-oder moment-matching for density-ratio estimation.
The simplest implementation of moment matching would be to match the first-order

moment (i.e., the mean):

argmin
r

∥∥∥∥∫ xr(x)p∗de(x)dx−
∫

xp∗nu(x)dx

∥∥∥∥2 ,
where ‖·‖ denotes the Euclidean norm. Its non-linear variant can be obtained using some
non-linear function φ(x) : Rd → Rt as

argmin
r

MM′(r),

where

MM′(r) :=

∥∥∥∥∫ φ(x)r(x)p∗de(x)dx−
∫

φ(x)p∗nu(x)dx

∥∥∥∥2 .
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‘MM’ stands for ‘moment matching’. Let us ignore the irrelevant constant in MM′(r) and
define the rest as MM(r):

MM(r) :=

∥∥∥∥∫ φ(x)r(x)p∗de(x)dx

∥∥∥∥2
− 2

〈∫
φ(x)r(x)p∗de(x)dx,

∫
φ(x)p∗nu(x)dx

〉
, (1)

where 〈·, ·〉 denotes the inner product.
In practice, the expectations over p∗nu(x) and p∗de(x) in MM(r) are replaced by sample

averages. That is, for an nde-dimensional vector

r∗
de := (r∗(xde

1 ), . . . , r∗(xde
nde

))�,

where � denotes the transpose, an estimator r̂de of r∗
de can be obtained by solving the

following optimization problem.

r̂de := argmin
r∈Rnde

M̂M(r), (2)

where

M̂M(r) :=
1

n2
de

r�Φ�
deΦder − 2

ndennu

r�Φ�
deΦnu1nnu . (3)

1n denotes the n-dimensional vector with all ones. Φnu and Φde are the t×nnu and t×nde

design matrices defined by

Φnu := (φ(xnu
1 ), . . . ,φ(xnu

nnu
)) and Φde := (φ(xde

1 ), . . . ,φ(xde
nde

)),

respectively. Taking the derivative of the objective function (3) with respect to r and
setting it to zero, we have

2

n2
de

Φ�
deΦder − 2

ndennu

Φ�
deΦnu1nnu = 0t,

where 0t denotes the t-dimensional vector with all zeros. Solving this equation with
respect to r, one can obtain the solution analytically as

r̂de =
nde

nnu

(Φ�
deΦde)

−1Φ�
deΦnu1nnu .

One may add a normalization constraint

1

nde

1�
nde

r = 1

to the optimization problem (2). Then the optimization problem becomes a convex
linearly-constrained quadratic program. Since there is no known method for obtaining the
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analytic-form solution for convex linearly-constrained quadratic programs, a numerical
solver may be needed to compute the solution. Furthermore, a non-negativity constraint

r ≥ 0nde

and/or an upper bound for a positive constant B, i.e.,

r ≤ B1nde

may also be incorporated in the optimization problem (2), where inequalities for vectors
are applied in the element-wise manner. Even with these modifications, the optimization
problem is still a convex linearly-constrained quadratic program, so its solution can be
numerically computed by standard optimization software.

The above fixed-design method gives estimates of the density-ratio values only at the
denominator sample points {xde

j }nde
j=1. Below, we consider the induction setup, where the

entire density-ratio function r∗(x) is estimated (Qin, 1998; Kanamori et al., 2012).
We use the following linear density-ratio model for density-ratio function learning:

r(x) =
b∑

�=1

θ�ψ�(x) = ψ(x)�θ, (4)

where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. We
assume that the basis functions are non-negative.

ψ(x) ≥ 0b.

Then model outputs at {xde
j }nde

j=1 are expressed in terms of the parameter vector θ as

(r(xde
1 ), . . . , r(xde

nde
))� = Ψ�

deθ,

where Ψde is the b× nde design matrix defined by

Ψde := (ψ(xde
1 ), . . . ,ψ(xde

nde
)). (5)

Then, following Eq.(2), the parameter θ is learned as follows.

θ̂ := argmin
θ∈Rb

[
1

n2
de

θ�ΨdeΦ
�
deΦdeΨ

�
deθ − 2

ndennu

θ�ΨdeΦ
�
deΦnu1nnu

]
. (6)

Taking the derivative of the above objective function with respect to θ and setting it to
zero, we have the solution θ̂ analytically as

θ̂ =
nde

nnu

(ΨdeΦ
�
deΦdeΨ

�
de)

−1ΨdeΦ
�
deΦnu1nnu .



Density-Ratio Matching under the Bregman Divergence 6

One may include a normalization constraint, a non-negativity constraint (given that the
basis functions are non-negative), and a regularization constraint to the optimization
problem (6):

1

nde

1�
nde

Ψ�
deθ = 1, θ ≥ 0b, and θ ≤ B1b.

Then the optimization problem becomes a convex linearly-constrained quadratic program,
whose solution can be obtained by a standard numerical solver.

The upper-bound parameter B, which works as a regularizer, may be optimized by
cross-validation (CV) with respect to the moment-matching error MM defined by Eq.(1).
Availability of CV would be one of the advantages of the inductive method (i.e., learning
the entire density-ratio function).

2.1.2 Infinite-Order Approach: KMM

Matching a finite number of moments does not necessarily lead to the true density-ratio
function r∗(x), even if infinitely many samples are available. In order to guarantee that the
true density-ratio function can always be obtained in the large-sample limit, all moments
up to the infinite order need to be matched. Here we describe a method of infinite-oder
moment-matching called kernel mean matching (KMM), which allows one to efficiently
match all the moments using kernel functions (Huang et al., 2007; Gretton et al., 2009).

The basic idea of KMM is essentially the same as the finite-order approach, but a
universal reproducing kernel K(x,x′) (Steinwart, 2001) is used as a non-linear transfor-
mation. The Gaussian kernel

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(7)

is an example of universal reproducing kernels. It has been shown that the solution of
the following optimization problem agrees with the true density-ratio (Huang et al., 2007;
Gretton et al., 2009):

min
r∈H

∥∥∥∥∫ K(x, ·)p∗nu(x)dx−
∫

K(x, ·)r(x)p∗de(x)dx
∥∥∥∥2
H
,

where H denotes a universal reproducing kernel Hilbert space and ‖ ·‖H denotes its norm.
An empirical version of the above problem is expressed as

min
r∈Rnde

[
1

n2
de

r�Kde,der − 2

ndennu

r�Kde,nu1nnu

]
,

where Kde,de and Kde,nu denote the kernel Gram matrices defined by

[Kde,de]j,j′ = K(xde
j ,xde

j′ ) and [Kde,nu]j,i = K(xde
j ,xnu

i ), (8)
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respectively. In the same way as the finite-order case, the solution can be obtained
analytically as

r̂de =
nde

nnu

K−1
de,deKde,nu1nnu . (9)

If necessary, one may include a non-negativity constraint, a normalization constraint,
and an upper bound in the same way as the finite-order case. Then the solution can
be numerically obtained by solving a convex linearly-constrained quadratic programming
problem.

For a linear density-ratio model (4), an inductive variant of KMM is formulated as

min
θ∈Rb

[
1

n2
de

θ�ΨdeKde,deΨ
�
deθ − 2

ndennu

θ�ΨdeKde,nu1nnu

]
,

and the solution θ̂ is given by

θ̂ =
nde

nnu

(ΨdeKde,deΨde)
−1ΨdeKde,nu1nnu .

2.1.3 Remarks

The infinite-order moment matching method, kernel mean matching (KMM), can effi-
ciently match all the moments by making use of universal reproducing kernels. Indeed,
KMM has an excellent theoretical property that it is consistent (Huang et al., 2007; Gret-
ton et al., 2009). However, KMM has a limitation in model selection—there is no known
method for determining the kernel parameter (i.e., the Gaussian kernel width). A popular
heuristic of setting the Gaussian width to the median distance between samples (Schölkopf
and Smola, 2002) would be useful in some cases, but this may not always be reasonable.

In the above, moment matching was performed in terms of the squared norm, which
led to an analytic-form solution (if no constraint is imposed). As shown in Kanamori
et al. (2012), moment matching can be systematically generalized to various divergences.

2.2 Probabilistic Classification

Here, we describe a framework of density-ratio estimation through probabilistic classifica-
tion.

2.2.1 Basic Framework

The basic idea of the probabilistic classification approach is to obtain a probabilistic
classifier that separates numerator samples {xnu

i }nnu
i=1 and denominator samples {xde

j }nde
j=1.

Let us assign a label y = +1 to {xnu
i }nnu

i=1 and y = −1 to {xde
j }nde

j=1, respectively. Then
the two densities p∗nu(x) and p∗de(x) are written as

p∗nu(x) = p∗(x|y = +1) and p∗de(x) = p∗(x|y = −1),



Density-Ratio Matching under the Bregman Divergence 8

respectively. Note that y is regarded as a random variable here. An application of Bayes’
theorem,

p∗(x|y) = p∗(y|x)p∗(x)
p∗(y)

,

yields that the density-ratio r∗(x) can be expressed in terms of y as follows:

r∗(x) =
p∗nu(x)
p∗de(x)

=

(
p∗(y = +1|x)p∗(x)

p∗(y = +1)

)(
p∗(y = −1|x)p∗(x)

p∗(y = −1)

)−1

=
p∗(y = −1)

p∗(y = +1)

p∗(y = +1|x)
p∗(y = −1|x) .

The ratio p∗(y = −1)/p∗(y = +1) may be simply approximated by the ratio of the sample
size:

p∗(y = −1)

p∗(y = +1)
≈ nde/(nde + nnu)

nnu/(nde + nnu)
=

nde

nnu

.

The ‘class’-posterior probability p∗(y|x) may be approximated by separating {xnu
i }nnu

i=1 and
{xde

j }nde
j=1 using a probabilistic classifier. Thus, given an estimator of the class-posterior

probability, p̂(y|x), a density-ratio estimator r̂(x) can be constructed as

r̂(x) =
nde

nnu

p̂(y = +1|x)
p̂(y = −1|x) . (10)

A practical advantage of the probabilistic classification approach would be its easy
implementability. Indeed, one can directly use standard probabilistic classification algo-
rithms for density-ratio estimation. Another, more important advantage of the proba-
bilistic classification approach is that model selection (i.e., tuning the basis functions and
the regularization parameter) is possible by standard cross-validation since the estimation
problem involved in this framework is a standard supervised classification problem.

Below, two probabilistic classification algorithms are described. For making the expla-
nation simple, we consider a set of paired samples {(xk, yk)}nk=1, where, for n = nnu+nde,

(x1, . . . ,xn) := (xnu
1 , . . . ,xnu

nnu
,xde

1 , . . . ,xde
nde

),

(y1, . . . , yn) := (+1, . . . ,+1︸ ︷︷ ︸
nnu

,−1, . . . ,−1︸ ︷︷ ︸
nde

).

2.2.2 Logistic Regression

Here, a popular probabilistic classification algorithm called logistic regression (Hastie
et al., 2001) is explained.

A logistic regression classifier employs a parametric model of the following form for
expressing the class-posterior probability p∗(y|x),

p(y|x;θ) = 1

1 + exp (−yψ(x)�θ)
,
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where ψ(x) : Rd → Rb is a basis function vector and θ (∈ Rb) is a parameter vector. The
parameter vector θ is determined so that the penalized log-likelihood is maximized, which
can be expressed as the following minimization problem:

θ̂ := argmin
θ∈Rb

[
n∑

k=1

log
(
1 + exp

(−ykψ(xk)
�θ

))
+ λθ�θ

]
, (11)

where λθ�θ is a penalty term included for regularization purposes.
Since the objective function in Eq.(11) is convex, the global optimal solution can be

obtained by a standard non-linear optimization technique such as the gradient descent
method or (quasi-)Newton methods (Hastie et al., 2001; Minka, 2007). Finally, a density-
ratio estimator r̂LR(x) is given by

r̂LR(x) =
nde

nnu

1 + exp
(
ψ(x)�θ̂

)
1 + exp

(
−ψ(x)�θ̂

) =
nde

nnu

exp
(
ψ(x)�θ̂

)
,

where ‘LR’ stands for ‘logistic regression’.
Suppose that the logistic regression model p(y|x;θ) satisfies the following two condi-

tions:

• The constant function is included in the basis functions, i.e., there exists θ◦ such
that

ψ(x)�θ◦ = 1.

• The model is correctly specified, i.e., there exists θ∗ such that

p(y|x;θ∗) = p∗(y|x).

Then it was proved that the logistic regression approach is optimal among a class of
semi-parametric estimators in the sense that the asymptotic variance is minimized (Qin,
1998). However, when the model is misspecified (which would be the case in practice), the
density matching approach explained in Section 2.3 would be more preferable (Kanamori
et al., 2010).

When multi-class logistic regression classifiers are used, density-ratios among multiple
densities can be estimated simultaneously (Bickel et al., 2008). This is useful, e.g., for
solving multi-task learning problems (Caruana et al., 1997).

2.2.3 Least-Squares Probabilistic Classifier

Although the performance of these general-purpose non-linear optimization techniques
has been improved together with the evolution of computer environment in the last
decade, training logistic regression classifiers is still computationally expensive. Here,
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an alternative probabilistic classification algorithm called least-squares probabilistic clas-
sifier (LSPC; Sugiyama, 2010) is described. LSPC is computationally more efficient than
logistic regression, with comparable accuracy in practice.

In LSPC, the class-posterior probability p∗(y|x) is modeled as

p(y|x;θ) :=
b∑

�=1

θ�ψ(x, y) = ψ(x, y)�θ,

where ψ(x, y) (∈ Rb) is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. The class label y takes a value in {1, . . . , c}, where c is the number of classes.

The basic idea of LSPC is to express the class-posterior probability p∗(y|x) in terms of
the equivalent density-ratio expression: p∗(x, y)/p∗(x). Then the density-ratio estimation
method called unconstrained least-squares importance fitting (uLSIF; Kanamori et al.,
2009) is used for estimating this density-ratio. Since uLSIF will be reviewed in detail in
Section 2.4.3, we only describe the final solution here.

Let

Ĥ :=
1

n

n∑
k=1

c∑
y=1

ψ(xk, y)ψ(xk, y)
� and ĥ :=

1

n

n∑
k=1

ψ(xk, yk).

Then the uLSIF solution is given analytically as θ̂ = (Ĥ + λIb)
−1ĥ, where λ (≥ 0) is the

regularization parameter and Ib is the b-dimensional identity matrix. In order to assure
that the output of LSPC is a probability, the outputs are normalized and negative outputs
are rounded up to zero (Yamada et al., 2011):

p̂(y|x) = max(0,ψ(x, y)�θ̂)∑c
y′=1 max(0,ψ(x, y′)�θ̂)

.

A standard choice of basis functions ψ(x, y) would be a kernel model:

p(y|x;θ) =
n∑

�=1

θ
(y)
� K(x,x�), (12)

where K(x,x′) is some kernel function such as the Gaussian kernel (7). Then the matrix

Ĥ becomes block-diagonal. Thus, we only need to train a model with n parameters
separately c times for each class y = 1, . . . , c. Since all the diagonal block matrices are
the same, the computational complexity for computing the solution is O(n3 + cn2).

Let us further reduce the number of kernels in model (12). To this end, we focus on
a kernel function K(x,x′) that is “localized”. Examples of such localized kernels include
the popular Gaussian kernel. The idea is to reduce the number of kernels by locating the
kernels only at samples belonging to the target class:

p(y|x;θ) =
ny∑
�=1

θ
(y)
� K(x,x

(y)
� ), (13)
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where ny is the number of training samples in class y and {x(y)
k }ny

k=1 is the training input
samples in class y. The rationale behind this model simplification is as follows. By
definition, the class-posterior probability p∗(y|x) takes large values in the regions where
samples in class y are dense; conversely, p∗(y|x) takes smaller values (i.e., close to zero)
in the regions where samples in class y are sparse. When a non-negative function is
approximated by a localized kernel model, many kernels may be needed in the region
where the output of the target function is large; on the other hand, only a small number
of kernels would be enough in the region where the output of the target function is close
to zero. Following this heuristic, many kernels are allocated in the region where p∗(y|x)
takes large values, which can be achieved by Eq.(13).

This model simplification allows one to further reduce the computational cost since
the size of the target blocks in matrix Ĥ is further reduced. In order to determine the
ny-dimensional parameter vector θ(y) = (θ

(y)
1 , . . . , θ

(y)
ny )

� for each class y, we only need to
solve the following system of ny linear equations:

(Ĥ
(y)

+ λIny)θ
(y) = ĥ

(y)
, (14)

where Ĥ
(y)

is the ny × ny matrix, and ĥ
(y)

is the ny-dimensional vector defined as

Ĥ
(y)
�,�′ :=

1

ny

ny∑
k=1

K(x
(y)
k ,x

(y)
� )K(x

(y)
k ,x

(y)
�′ ) and ĥ

(y)
� :=

1

ny

ny∑
k=1

K(x
(y)
k ,x

(y)
� ).

Let θ̂
(y)

be the solution of Eq.(14). Then the final solution is given by

p̂(y|x) =
max

(
0,

ny∑
�=1

θ̂
(y)
� K(x,x

(y)
� )

)
c∑

y′=1

max

(
0,

ny′∑
�=1

θ̃
(y′)
� K(x,x

(y′)
� )

) . (15)

For the simplified model (13), the computational complexity for computing the solution
is O(cn3

y)—when ny = n/c for all y, this is equal to O(c−2n3). Thus, this approach is
computationally highly efficient for multi-class problems with large c.

A MATLAB R© implementation of LSPC is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LSPC/

2.2.4 Remarks

Density-ratio estimation by probabilistic classification can successfully avoid density es-
timation by casting the problem of density-ratio estimation as the problem of estimating
the ‘class’-posterior probability. An advantage of the probabilistic classification approach
over the moment matching approach explained in Section 2.1 is that cross-validation can
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be used for model selection. Furthermore, existing software packages of probabilistic
classification algorithms can be directly used for density-ratio estimation.

The probabilistic classification approach with logistic regression was shown to have
a suitable theoretical property (Qin, 1998): if the logistic regression model is correctly
specified, the probabilistic classification approach is optimal among a broad class of semi-
parametric estimators. However, this strong theoretical property is not true when the
correct model assumption is not fulfilled.

An advantage of the probabilistic classification approach is that it can be used for
estimating density-ratios among multiple densities by multi-class probabilistic classifiers.
In this context, the least-squares probabilistic classifier (LSPC) would be practically useful
due to its computational efficiency.

2.3 Density Matching

Here, we describe a framework of density-ratio estimation by density matching under the
KL divergence.

2.3.1 Basic Framework

Let r(x) be a model of the true density-ratio r∗(x) = p∗nu(x)/p
∗
de(x). Then the numerator

density p∗nu(x) may be modeled by pnu(x) = r(x)p∗de(x). Now let us consider the KL
divergence from p∗nu(x) to pnu(x):

KL′(p∗nu‖pnu) :=
∫

p∗nu(x) log
p∗nu(x)
pnu(x)

dx = C −KL(r),

where C :=
∫
p∗nu(x) log

p∗nu(x)
p∗de(x)

dx is a constant irrelevant to r, and KL(r) is the relevant
part:

KL(r) :=

∫
p∗nu(x) log r(x)dx ≈ 1

nnu

nnu∑
i=1

log r(xnu
i ).

Since pnu(x) is a probability density function, its integral should be one:

1 =

∫
pnu(x)dx =

∫
r(x)p∗de(x)dx ≈ 1

nde

nde∑
j=1

r(xde
j ).

Furthermore, the density pnu(x) should be non-negative, which can be achieved by
r(x) ≥ 0 for all x. Combining these equations together, we have the following optimiza-
tion problem.

max
r

1

nnu

nnu∑
i=1

log r(xnu
i )

s.t.
1

nde

nde∑
j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.
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This formulation is called the KL importance estimation procedure (KLIEP; Sugiyama
et al., 2008).

Possible hyper-parameters in KLIEP (such as basis parameters and regularization
parameters) can be optimized using cross-validation with respect to the KL divergence,
where the numerator samples {xnu

i }nnu
i=1 appearing in the objective function may only be

cross-validated (Sugiyama et al., 2008).
Below, practical implementations of KLIEP for various density-ratio models are de-

scribed.

2.3.2 Linear and Kernel Models

Let us employ a linear model for density-ratio estimation.

r(x) =
b∑

�=1

θ�ψ�(x) = ψ(x)�θ, (16)

where ψ(x) : Rd → Rb is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. Then the KLIEP optimization problem for the linear model is expressed as follows
(Sugiyama et al., 2008).

max
θ∈Rb

1

nnu

nnu∑
i=1

log(ψ(xnu
i )�θ) s.t. ψ

�
deθ = 1 and θ ≥ 0b,

where ψde :=
1

nde

∑nde

j=1 ψ(xde
j ).

Since the above optimization problem is convex, there exists the unique global optimum
solution. Furthermore, the KLIEP solution tends to be sparse, i.e., many parameters take
exactly zero, because of the non-negativity constraint. Such sparsity would contribute to
reducing the computation time when computing estimated density-ratio values. As can
be confirmed from the above optimization problem, the denominator samples {xde

j }nde
j=1

appear only in terms of the basis-transformed mean ψde. Thus, KLIEP for linear models
is computationally efficient even when the number nde of denominator samples is very
large.

The performance of KLIEP depends on the choice of the basis functions ψ(x). As
explained below, the use of the following Gaussian kernel model would be reasonable:

r(x) =
nnu∑
�=1

θ�K(x,xnu
� ), (17)

where K(x,x′) is the Gaussian kernel (7). The reason why the numerator samples
{xnu

i }nnu
i=1, not the denominator samples {xde

j }nde
j=1, are chosen as the Gaussian centers

is as follows. By definition, the density-ratio r∗(x) tends to take large values if p∗de(x)
is small and p∗nu(x) is large. Conversely, r∗(x) tends to be small (i.e., close to zero) if
p∗de(x) is large and p∗nu(x) is small. When a non-negative function is approximated by a
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Gaussian kernel model, many kernels may be needed in the region where the output of
the target function is large. On the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following
this heuristic, many kernels are allocated in the region where p∗nu(x) takes large values,
which can be achieved by setting the Gaussian centers at {xnu

i }nnu
i=1.

The KLIEP methods for linear/kernel models are referred to as linear KLIEP (L-
KLIEP) and kernel KLIEP (K-KLIEP), respectively. A MATLABR© implementation of
the K-KLIEP algorithm is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/KLIEP/

2.3.3 Log-Linear Models

Another popular model choice would be the log-linear model (Tsuboi et al., 2009;
Kanamori et al., 2010):

r(x;θ, θ0) = exp
(
ψ(x)�θ + θ0

)
, (18)

where θ0 is a normalization parameter. From the normalization constraint

1

nde

nde∑
j=1

r(xde
j ;θ, θ0) = 1,

θ0 is determined as

θ̂0 = − log

(
1

nde

nde∑
j=1

exp
(
ψ(xde

j )�θ
))

.

Then the density-ratio model is expressed as

r(x;θ) =
exp

(
ψ(x)�θ

)
1

nde

∑nde

j=1 exp
(
ψ(xde

j )�θ
) .

By definition, outputs of the log-linear model r(x;θ) are non-negative for all x. Thus,
we do not need the non-negativity constraint on the parameter. Then the KLIEP opti-
mization criterion is expressed as

max
θ∈Rb

[
ψ

�
nuθ − log

(
1

nde

nde∑
j=1

exp(ψ(xde
j )�θ)

)]
,

where ψnu := 1
nnu

∑nnu

i=1 ψ(xnu
i ). This is an unconstrained convex optimization problem,

so the global optimal solution can be obtained by, e.g., the gradient method and (quasi-
)Newton methods. Since the numerator samples {xnu

i }nnu
i=1 appear only in terms of the

basis-transformed mean ψnu, KLIEP for log-linear models is computationally efficient
even when the number nnu of numerator samples is very large (cf. KLIEP for linear/kernel
models is computationally efficient when nde is very large; see Section 2.3.2).

The KLIEP method for log-linear models is called log-linear KLIEP (LL-KLIEP).
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2.3.4 Gaussian Mixture Models

In the Gaussian kernel model (17), the Gaussian shape is spherical and its width is con-
trolled by a single width parameter σ. It is possible to use correlated Gaussian kernels, but
choosing the covariance matrix via cross-validation would be computationally intractable.

Another option is to also estimate the covariance matrix directly from data. For this
purpose, the Gaussian mixture model comes in handy (Yamada and Sugiyama, 2009):

r(x; {θk,μk,Σk}ck=1) =
c∑

k=1

θkK(x;μk,Σk), (19)

where c is the number of mixing components, {θk}ck=1 are mixing coefficients, {μk}ck=1

are means of Gaussian functions, {Σk}ck=1 are covariance matrices of Gaussian functions,
and K(x;μ,Σ) is the Gaussian kernel with mean μ and covariance matrix Σ:

K(x;μ,Σ) := exp

(
−1

2
(x− μ)�Σ−1(x− μ)

)
. (20)

Note that Σ should be positive definite, i.e., all the eigenvectors of Σ should be strictly
positive.

For the Gaussian mixture model (19), the KLIEP optimization problem is expressed
as

max
{θk,μk,Σk}ck=1

1

nnu

nnu∑
i=1

log

(
c∑

k=1

θkK(xnu
i ;μk,Σk)

)

s.t.
1

nde

nde∑
j=1

c∑
k=1

θkK(xde
j ;μk,Σk) = 1,

θk ≥ 0 and Σk � O for k = 1, . . . , c,

where Σk � O means that Σk is positive definite.
The above optimization problem is non-convex, and there is no known method for

obtaining the global optimal solution. In practice, a local optimal solution may be nu-
merically obtained by, e.g., a fixed-point method.

The KLIEP method for Gaussian mixture models is called Gaussian-mixture KLIEP
(GM-KLIEP).

2.3.5 Probabilistic PCA Mixture Models

The Gaussian mixture model explained above would be more flexible than
linear/kernel/log-linear models and suitable for approximating correlated density-ratio
functions. However, when the target density-ratio function is (locally) rank-deficient, its
behavior could be unstable since inverse covariance matrices are included in the Gaussian
function (see Eq.(20)). To cope with this problem, the use of a mixture of probabilis-
tic principal component analyzers (PPCA; Tipping and Bishop, 1999) was proposed for
density-ratio estimation (Yamada et al., 2010).
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The PPCA mixture model is defined as

r(x; {θk,μk, σ
2
k,W k}ck=1) =

c∑
k=1

θkK(x;μk, σ
2
k,W k),

where c is the number of mixing components and {θk}ck=1 are mixing coefficients.
K(x;μ, σ2,W ) is a PPCA model defined by

K(x;μ, σ2,W ) = (2πσ2)−
d
2det(C)−

1
2 exp

(
−1

2
(x− μ)�C−1(x− μ)

)
,

where ‘det’ denotes the determinant, μ is the mean of the Gaussian function, σ2 is the
variance of the Gaussian function, W is a d×m ‘projection’ matrix onto a m-dimensional
latent space (where m ≤ d), and C = WW� + σ2Id.

Then the KLIEP optimization criterion is expressed as

max
{θk,μk,σ

2
k,W k}ck=1

1

nnu

nnu∑
i=1

log

(
c∑

k=1

θkK(xnu
i ;μk, σ

2
k,W k)

)

s.t.
1

nde

nde∑
j=1

c∑
k=1

θkK(xde
j ;μk, σ

2
k,W k) = 1,

θk ≥ 0 for k = 1, . . . , c.

The above optimization is non-convex, so a local optimal solution may be found by
some algorithm in practice. When the dimensionality of the latent space, m, is equal
to the entire dimensionality d, PPCA models are reduced to ordinary Gaussian models.
Thus, PPCA models can be regarded as an extension of Gaussian models to (locally)
rank-deficient data.

The KLIEP method for PPCA mixture models is called PPCA-mixture KLIEP (PM-
KLIEP).

2.3.6 Remarks

Density-ratio estimation by density matching under the KL divergence allows one to
avoid density estimation when estimating density-ratios (Section 2.3.1). Furthermore,
cross-validation with respect to the KL divergence is available for model selection.

The method, called the KL importance estimation procedure (KLIEP), is applicable
to a variety of models such as linear models, kernel models, log-linear models, Gaussian
mixture models, and probabilistic principal-component-analyzer mixture models.

2.4 Density-Ratio Fitting

Here, we describe a framework of density-ratio estimation by least-squares density-ratio
fitting (Kanamori et al., 2009).
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2.4.1 Basic Framework

The model r(x) of the true density-ratio function r∗(x) = p∗nu(x)/p
∗
de(x) is learned so

that the following squared error SQ′ is minimized:

SQ′(r) :=
1

2

∫
(r(x)− r∗(x))2 p∗de(x)dx.

=
1

2

∫
r(x)2p∗de(x)dx−

∫
r(x)p∗nu(x)dx+

1

2

∫
r∗(x)p∗nu(x)dx,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by SQ:

SQ(r) :=
1

2

∫
r(x)2p∗de(x)dx−

∫
r(x)p∗nu(x)dx.

Approximating the expectations in SQ by empirical averages, we obtain the following
optimization problem:

min
r

[
nde∑
j=1

r(xde
j )2 − 1

nnu

nnu∑
i=1

r(xnu
i )

]
. (21)

We refer to this formulation as least-squares importance fitting (LSIF). Possible hyper-
parameters (such as basis parameters and regularization parameters) can be optimized
by cross-validation with respect to the SQ criterion (Kanamori et al., 2009).

Below, two implementations of LSIF for the following linear/kernel models are de-
scribed:

r(x) =
b∑

�=1

θ�ψ�(x) = ψ(x)�θ,

where ψ(x) : Rd → Rb is a non-negative basis function vector, and θ (∈ Rb) is a parameter
vector. Since this model is the same form as that used in KLIEP for linear/kernel models
(Section 2.3.2), we may use the same basis design idea described there.

For the above linear/kernel models, Eq.(21) is expressed as

min
θ∈Rb

[
1

2
θ�Ĥθ − ĥ

�
θ

]
,

where

Ĥ :=
1

nde

nde∑
j=1

ψ(xde
j )ψ(xde

j )� and ĥ :=
1

nnu

nnu∑
i=1

ψ(xnu
i ). (22)
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2.4.2 Implementation with Non-Negativity Constraint

Here, we describe an implementation of LSIF with non-negativity constraint.
Let us impose non-negativity constraint θ ≥ 0b since the density-ratio function is

non-negative by definition. Let us further add the following regularization term to the
objective function:

1�
b θ = ‖θ‖1 :=

b∑
�=1

|θ�|.

The term 1�
b θ works as the �1-regularizer if it is combined with the non-negativity con-

straint. Then the optimization problem is expressed as follows.

min
θ∈Rb

[
1

2
θ�Ĥθ − ĥ

�
θ + λ1�

b θ

]
s.t. θ ≥ 0b,

where λ (≥ 0) is the regularization parameter. We refer to this method as constrained
LSIF (cLSIF; Kanamori et al., 2009). The cLSIF optimization problem is a convex
quadratic program, so the unique global optimal solution may be computed by a standard
optimization software.

We can also use the �2-regularizer θ�θ, instead of the �1-regularizer 1�
b θ, without

changing the computational property (i.e., the optimization problem is still a convex
quadratic program). However, using the �1-regularizer would be more advantageous since
the solution tends to be sparse, i.e., many parameters take exactly zero (Williams, 1995;
Tibshirani, 1996; Chen et al., 1998). Furthermore, as shown in Kanamori et al. (2009),
the use of the �1-regularizer allows one to compute the entire regularization path effi-
ciently (Best, 1982; Efron et al., 2004; Hastie et al., 2004), which highly improves the
computational cost in the model selection phase.

An R implementation of cLSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/

2.4.3 Implementation without Non-Negativity Constraint

Here, we describe another implementation of LSIF without the non-negativity constraint
called unconstrained LSIF (uLSIF).

Without the non-negativity constraint, the linear regularizer 1�
b θ used in cLSIF does

not work as a regularizer. For this reason, a quadratic regularizer θ�θ is adopted here.
Then we have the following optimization problem.

min
θ∈Rb

[
1

2
θ�Ĥθ − ĥ

�
θ +

λ

2
θ�θ

]
. (23)

Eq.(23) is an unconstrained convex quadratic program, and the solution can be computed
analytically by solving the following system of linear equations:

(Ĥ + λIb)θ = ĥ,



Density-Ratio Matching under the Bregman Divergence 19

where Ib is the b-dimensional identity matrix. The solution θ̂ of the above equation is
given by

θ̂ = (Ĥ + λIb)
−1ĥ.

Since the non-negativity constraint θ ≥ 0b was dropped, some of the obtained param-
eters could be negative. To compensate for this approximation error, the solution may be
modified as follows (Kanamori et al., 2012):

max(0,ψ(x)�θ̂).

This is the solution of the approximation method called unconstrained LSIF (uLSIF;
Kanamori et al., 2009). An advantage of uLSIF is that the solution can be analytically
computed just by solving a system of linear equations. Therefore, its computation is
stable when λ is not too small.

A practically important advantage of uLSIF over cLSIF is that the score of leave-one-
out cross-validation (LOOCV) can be computed analytically (Kanamori et al., 2009)—
thanks to this property, the computational complexity for performing LOOCV is the same
order as just computing a single solution.

A MATLAB R© implementation of uLSIF is available from

http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/uLSIF/

and an R implementation of uLSIF is available from

http://www.math.cm.is.nagoya-u.ac.jp/˜kanamori/software/LSIF/

2.4.4 Remarks

One can successfully avoid density estimation by least-squared density-ratio fitting. The
least-squares methods for linear/kernel models are computationally more advantageous
than alternative approaches such as moment matching (Section 2.1), probabilistic classifi-
cation (Section 2.2), and density matching (Section 2.3). Indeed, the constrained method
(cLSIF) for the �1-regularizer is equipped with a regularization path tracking algorithm.
Furthermore, the unconstrained method (uLSIF) allows one to compute the density-ratio
estimator analytically; the leave-one-out cross-validation score can also be computed in a
closed form. Thus, the overall computation of uLSIF including model selection is highly
efficient.

The fact that uLSIF has an analytic-form solution is actually very useful beyond
its computational efficiency. When one wants to optimize some criterion defined us-
ing a density-ratio estimate (e.g., mutual information, see Cover and Thomas, 2006),
the analytic-form solution of uLSIF allows one to compute the derivative of the target
criterion analytically. Then one can develop, e.g., gradient-based and (quasi-)Newton al-
gorithms for optimization. This property can be successfully utilized, e.g., in identifying
the central subspace in sufficient dimension reduction (Suzuki and Sugiyama, 2010), find-
ing independent components in independent component analysis (Suzuki and Sugiyama,
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2011), performing dependence-minimizing regression in causality learning (Yamada and
Sugiyama, 2010), and identifying the hetero-distributional subspace in direct density-ratio
estimation with dimensionality reduction (Sugiyama et al., 2011b).

3 Unified Framework by Density-Ratio Matching

As reviewed in the previous section, various density-ratio estimation methods have been
developed so far. In this section, we propose a new framework of density-ratio estimation
by density-ratio matching under the Bregman divergence (Bregman, 1967), which includes
various useful divergences (Banerjee et al., 2005; Stummer, 2007). This framework is a
natural extension of the least-squares approach described in Section 2.4, and includes the
existing approaches reviewed in the previous section as special cases (Section 3.2). Then
we provide interpretation of density-ratio matching from two different views in Section 3.3.
Finally, we give a new instance of density-ratio matching based on the power divergence
in Section 3.4.

3.1 Basic Framework

A basic idea of density-ratio matching is to directly fit a density-ratio model r(x) to the
true density-ratio function r∗(x) under some divergence. At a glance, this density-ratio
matching problem is equivalent to the regression problem, which is aimed at estimating a
real-valued function. However, density-ratio matching is essentially different from regres-
sion since samples of the true density-ratio function are not available. Here, we employ the
Bregman (BR) divergence for measuring the discrepancy between the true density-ratio
function and the density-ratio model.

The BR divergence is an extension of the Euclidean distance to a class of divergences
that share similar properties. Let f be a differentiable and strictly convex function. Then
the BR divergence associated with f from t∗ to t is defined as

BR′
f (t

∗‖t) := f(t∗)− f(t)− ∂f(t)(t∗ − t),

where ∂f is the derivative of f . Note that

f(t) + ∂f(t)(t∗ − t)

is the value of the first-order Taylor expansion of f around t evaluated at t∗. Thus, the
BR divergence evaluates the difference between the value of f at point t∗ and its linear
extrapolation from t (see Figure 1). BR′

f (t
∗‖t) is a convex function with respect to t∗,

but not necessarily convex with respect to t.
Here the discrepancy from the true density-ratio function r∗ to a density-ratio model

r is measured using the BR divergence as

BR′
f (r

∗‖r) :=
∫

p∗de(x)
(
f(r∗(x))− f(r(x))

− ∂f(r(x))(r∗(x)− r(x))
)
dx. (24)
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t

f

f(t)

f(t∗)

t
∗

BR′

f (t
∗‖t)

∂f (t)(t∗ − t)

Figure 1: Bregman divergence BR′
f (t

∗‖t).

A motivation for this choice is that the BR divergence allows one to directly obtain an
empirical approximation for any f . Indeed, let us first extract a relevant part of BR′

f (r
∗‖r)

as

BR′
f (r

∗‖r) = BRf (r) + C,

where C :=
∫
p∗de(x)f(r

∗(x))dx is a constant independent of r, and

BRf (r) :=

∫
p∗de(x)

(
∂f(r(x))r(x)− f(r(x))

)
dx−

∫
p∗nu(x)∂f(r(x))dx. (25)

Then an empirical approximation B̂Rf (r) of BRf (r) is given by

B̂Rf (r) :=
1

nde

nde∑
j=1

(
∂f(r(xde

j ))r(xde
j )− f(r(xde

j ))
)
− 1

nnu

nnu∑
i=1

∂f(r(xnu
i )). (26)

This immediately gives the following optimization criterion.

min
r

B̂Rf (r) ,

where r is searched within some class of functions.

3.2 Existing Methods as Density-Ratio Matching

Here, we show that various density-ratio estimation methods reviewed in the previous
section can be accommodated in the density-ratio matching framework (see Table 1).

3.2.1 Least-Squares Importance Fitting

Here, we show that the least-squares importance fitting (LSIF) approach introduced in
Section 2.4.1 is an instance of density-ratio matching. More specifically, there exists a
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Table 1: Summary of density-ratio estimation methods. In the table, ‘LSIF’, ’KMM’, ‘LR’,
and ’KLIEP’ stand for ‘least-squares importance fitting’, ‘kernel mean matching’, ‘logistic
regression’, and ‘Kullback-Leibler Importance Estimation Procedure’, respectively.
Method (Section) f(t) Model selection Optimization

LSIF (3.2.1) (t− 1)2/2 Available Analytic

KMM (3.2.2) (t− 1)2/2
Partially

unavailable
Analytic

LR (3.2.3) t log t− (1 + t) log(1 + t) Available Convex
KLIEP (3.2.4) t log t− t Available Convex

Robust (3.4) (t1+α − t)/α, α > 0 Available
Convex (0 < α ≤ 1)
Non-convex (α > 1)

BR divergence such that the optimization problem of density-ratio matching is reduced
to that of LSIF.

When

f(t) =
1

2
(t− 1)2,

BR (24) is reduced to the squared (SQ) distance:

SQ′(t∗‖t) := 1

2
(t∗ − t)2.

Following Eqs.(25) and (26), let us denote SQ without an irrelevant constant term by

SQ (r) and its empirical approximation by ŜQ (r), respectively:

SQ (r) :=
1

2

∫
p∗de(x)r(x)

2dx−
∫

p∗nu(x)r(x)dx,

ŜQ (r) :=
1

2nde

nde∑
j=1

r(xde
j )2 − 1

nnu

nnu∑
i=1

r(xnu
i ).

This agrees with the LSIF formulation given in Section 2.4.1.

3.2.2 Kernel Mean Matching

Here, we show that the solution of the moment matching method, kernel mean match-
ing (KMM) introduced in Section 2.1, actually agrees with that of unconstrained LSIF
(uLSIF; see Section 2.4.3) for specific kernel models. Since uLSIF was shown to be an in-
stance of density-ratio matching in Section 3.2.1, the KMM solution can also be obtained
in the density-ratio matching framework.

Let us consider the following kernel density-ratio model:

r(x) =

nde∑
�=1

θ�K(x,xde
� ), (27)
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where K(x,x′) is a universal reproducing kernel (Steinwart, 2001) such as the Gaussian
kernel (7). Note that uLSIF and KLIEP use the numerator samples {xnu

i }nnu
i=1 as Gaussian

centers, while the model (27) adopts the denominator samples {xde
j }nde

j=1 as Gaussian cen-

ters. For the density-ratio model (27), the matrix Ĥ and the vector ĥ defined by Eq.(22)
are expressed as

Ĥ =
1

nde

K2
de,de and ĥ =

1

nnu

Kde,nu1nnu ,

where Kde,de and Kde,nu are defined in Eq.(8). Then the (unregularized) uLSIF solution
(see Section 2.4.3 for details) is expressed as

θ̂uLSIF = Ĥ
−1
ĥ =

nde

nnu

K−2
de,deKde,nu1nnu . (28)

On the other hand, let us consider an inductive variant of KMM for the kernel model
(27) (see Section 2.1.2). For the density-ratio model (27), the design matrixΨde defined by
Eq.(5) agrees with Kde,de. Then the KMM solution is given as follows (see Section 2.1.2):

θ̂KMM =
nde

nnu

(ΨdeKde,deΨde)
−1ΨdeKde,nu1nnu = θ̂uLSIF.

3.2.3 Logistic Regression

Here, we show that the logistic regression approach introduced in Section 2.2.2 is an
instance of density-ratio matching. More specifically, there exists a BR divergence such
that the optimization problem of density-ratio matching is reduced to that of the logistic
regression approach.

When

f(t) = t log t− (1 + t) log(1 + t),

BR (24) is reduced to the binary Kullback-Leibler (BKL) divergence:

BKL′(t∗‖t) := (1 + t∗) log
1 + t

1 + t∗
+ t∗ log

t

t∗
.

The name ‘BKL’ comes from the fact that BKL′(t∗‖t) is expressed as

BKL′(t∗‖t) = (1 + t∗)KLbin

(
1

1 + t∗

∥∥∥∥ 1

1 + t

)
,

where KLbin is the KL divergence for binary random variables defined as

KLbin(p, q) := p log
p

q
+ (1− p) log

1− p

1− q

for 0 < p, q < 1. Thus, BKL′ agrees with KLbin up to the constant factor (1 + t∗).
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Following Eqs.(25) and (26), let us denote BKL without an irrelevant constant term

by BKL (r) and its empirical approximation by B̂KL (r), respectively:

BKL (r) := −
∫

p∗de(x) log
1

1 + r(x)
dx−

∫
p∗nu(x) log

r(x)

1 + r(x)
dx,

B̂KL (r) := − 1

nde

nde∑
j=1

log
1

1 + r(xde
j )

− 1

nnu

nnu∑
i=1

log
r(xnu

i )

1 + r(xnu
i )

. (29)

Eq.(29) is a generalized expression of logistic regression (Qin, 1998). Indeed, when nde =
nnu, the ordinary logistic regression formulation (11) can be obtained from Eq.(29) (up
to a regularizer) if the log-linear density-ratio model (18) without the constant term θ0 is
used.

3.2.4 Kullback-Leibler Importance Estimation Procedure

Here, we show that the KL importance estimation procedure (KLIEP) introduced in Sec-
tion 2.3.1 is an instance of density-ratio matching. More specifically, there exists a BR
divergence such that the optimization problem of density-ratio matching is reduced to
that of the KLIEP approach.

When

f(t) = t log t− t,

BR (24) is reduced to the unnormalized Kullback-Leibler (UKL) divergence:

UKL′(t∗‖t) := t∗ log
t∗

t
− t∗ + t.

Following Eqs.(25) and (26), let us denote UKL without an irrelevant constant term by

UKL (r) and its empirical approximation by ÛKL (r), respectively:

UKL (r) :=

∫
p∗de(x)r(x)dx−

∫
p∗nu(x) log r(x)dx, (30)

ÛKL (r) :=
1

nde

nde∑
j=1

r(xde
j )− 1

nnu

nnu∑
i=1

log r(xnu
i ). (31)

Let us further impose that the ratio model r(x) is non-negative for all x and is normalized
with respect to {xde

j }nde
j=1:

1

nde

nde∑
j=1

r(xde
j ) = 1.
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Then the optimization criterion is reduced to as follows.

max
r

1

nnu

nnu∑
i=1

log r(xnu
i )

s.t.
1

nde

nde∑
j=1

r(xde
j ) = 1 and r(x) ≥ 0 for all x.

This agrees with the KLIEP formulation reviewed in Section 2.3.1.

3.3 Interpretation of Density-Ratio Matching

Here, we show the correspondence between the density-ratio matching approach and a di-
vergence estimation method, and the correspondence between the density-ratio matching
approach and a moment-matching approach.

3.3.1 Divergence Estimation View

We first show that our density-ratio matching formulation can be interpreted as diver-
gence estimation based on the Ali-Silvey-Csiszár (ASC) divergence (Ali and Silvey, 1966;
Csiszár, 1967), which is also known as the f -divergence.

Let us consider the ASC divergence for measuring the discrepancy between two prob-
ability density functions. An ASC divergence is defined using a convex function f such
that f(1) = 0 as follows:

ASCf (p
∗
nu‖p∗de) :=

∫
p∗de(x)f

(
p∗nu(x)
p∗de(x)

)
dx. (32)

The ASC divergence is reduced to the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) if f(t) = t log t, and the Pearson (PE) divergence (Pearson, 1900) if f(t) =
1
2
(t− 1)2.
Let ∂f(t) be the sub-differential of f at a point t (∈ R), which is a set defined as

follows (Rockafellar, 1970):

∂f(t) := {z ∈ R | f(s) ≥ f(t) + z(s− t), ∀s ∈ R}.

If f is differentiable at t, then the sub-differential is reduced to the ordinary derivative.
Although the sub-differential is a set in general, for simplicity, we treat ∂f(r) as a single
element if there is no confusion. Below, we assume that f is closed, i.e., its epigraph is a
closed set (Rockafellar, 1970).

Let f ∗ be the conjugate dual function associated with f defined as

f ∗(u) := sup
t
[tu− f(t)] = − inf

t
[f(t)− tu].
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Since f is a closed convex function, we also have

f(t) = − inf
u
[f ∗(u)− tu]. (33)

For the KL divergence where f(t) = t log t, the conjugate dual function is given by
f ∗(u) = exp(u − 1). For the PE divergence where f(t) = (t − 1)2/2, the conjugate dual
function is given by f ∗(u) = u2/2 + u.

Substituting Eq.(33) into Eq.(32), we have the following lower bound (Keziou, 2003):

ASCf (p
∗
nu‖p∗de) = − inf

g
ASC′

f (g),

where

ASC′
f (g) :=

∫
f ∗(g(x))p∗de(x)dx−

∫
g(x)p∗nu(x)dx. (34)

By taking the derivative of the integrand for each x and equating it to zero, we can show
that the infimum of ASC′

f is attained at g such that

∂f ∗(g(x)) =
p∗nu(x)
p∗de(x)

= r∗(x).

Thus, minimizing ASC′
f (g) yields the true density-ratio function r∗(x).

For some g, there exists r such that

g = ∂f(r).

Then f ∗(g) is expressed as

f ∗(g) = sup
s

[
s∂f(r)− f(s)

]
.

According to the variational principle (Jordan et al., 1999), the supremum in the right-
hand side of the above equation is attained at s = r. Thus, we have

f ∗(g) = r∂f(r)− f(r).

Then the lower bound ASC′
f (g) defined by Eq.(34) can be expressed as

ASC′
f (g) =

∫
p∗de(x)

(
r(x)∂f(r(x))− f(r(x))

)
dx−

∫
∂f(r(x))p∗nu(x)dx.

This is equivalent to the criterion BRf defined by Eq.(25). Thus, density-ratio matching
under the BR divergence can be interpreted as divergence estimation under the ASC
divergence.
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3.3.2 Moment Matching View

Next, we investigate the correspondence between the density-ratio matching approach
and a moment-matching approach. To this end, we focus on the ideal situation where the
true density-ratio function r∗ is included in the density-ratio model r.

The non-linear version of finite-order moment matching (see Section 2.1.1) learns the
density-ratio model r so that the following criterion is minimized:∥∥∥∥∫ φ(x)r(x)p∗de(x)dx−

∫
φ(x)p∗nu(x)dx

∥∥∥∥2 ,
where φ(x) : Rd → Rm is some vector-valued function. Under the assumption that
the density-ratio model r can represent the true density-ratio r∗, we have the following
estimation equation:∫

φ(x)r(x)p∗de(x)dx−
∫

φ(x)p∗nu(x)dx = 0m, (35)

where 0m denotes the m-dimensional vector with all zeros.
On the other hand, the density-ratio matching approach described in Section 3.1 learns

the density-ratio model r so that the following criterion is minimized:∫
p∗de(x)∂f(r(x))r(x)dx−

∫
p∗de(x)f(r(x))dx−

∫
p∗nu(x)∂f(r(x))dx.

Taking the derivative of the above criterion with respect to parameters in the density-ratio
model r and equate it to zero, we have the following estimation equation:∫

p∗de(x)r(x)∇r(x)∂2f(r(x))dx−
∫

p∗nu(x)∇r(x)∂2f(r(x))dx = 0b,

where ∇ denotes the differential operator with respect to parameters in the density-ratio
model r, and b is the number of parameters. This implies that putting

φ(x) = ∇r(x)∂2f(r(x))

in Eq.(35) gives the same estimation equation as density-ratio matching, resulting in the
same optimal solution.

3.4 Basu’s Power Divergence for Robust Density-Ratio Estima-
tion

Finally, we introduce a new instance of density-ratio matching based on Basu’s power
divergence (BA divergence; Basu et al., 1998).
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3.4.1 Derivation

For α > 0, let

f(t) =
t1+α − t

α
.

Then BR (24) is reduced to the BA divergence:

BA′
α(t

∗‖t) := tα(t− t∗)− t∗(tα − (t∗)α)
α

.

Following Eqs.(25) and (26), let us denote BA′
α without an irrelevant constant term by

BAα (r) and its empirical approximation by B̂Aα (r), respectively:

BAα (r) :=

∫
p∗de(x)r(x)

α+1dx−
(
1 +

1

α

) ∫
p∗nu(x)r(x)

αdx+
1

α
,

B̂Aα (r) :=
1

nde

nde∑
j=1

r(xde
j )α+1 −

(
1 +

1

α

)
1

nnu

nnu∑
i=1

r(xnu
i )α +

1

α
.

The density-ratio model r is determined so that B̂Aα(r) is minimized.
When α = 1, the BA divergence is reduced to the twice SQ divergence (see Section 2.4):

B̂A1 = 2ŜQ.

Similarly, the fact

lim
α→0

tα − 1

α
= log t

implies that the BA divergence tends to the UKL divergence as α → 0 (see Section 3.2.4):

lim
α→0

B̂Aα (r) =
1

nde

nde∑
j=1

r(xde
j )− 1

nnu

nnu∑
i=1

log r(xnu
i ) = ÛKL (r) .

Thus, the BA divergence essentially includes the SQ and UKL divergences as special cases,
and is substantially more general.

3.4.2 Robustness

Let us take the derivative of B̂Aα (r) with respect to parameters included in the density-
ratio model r, and equate it to zero. Then we have the following estimation equation:

1

nde

nde∑
j=1

r(xde
j )α∇r(xde

j )− 1

nnu

nnu∑
i=1

r(xnu
i )α−1∇r(xnu

i ) = 0b, (36)
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where ∇ is the differential operator with respect to parameters in the density-ratio model
r, b denotes the number of parameters, and 0b denotes the b-dimensional vector with all
zeros.

As explained in Section 3.4.1, the BA method with α → 0 corresponds to KLIEP
(using the UKL divergence). According to Eq.(31), the estimation equation of KLIEP is
given as follows (this also agrees with Eq.(36) with α = 0):

1

nde

nde∑
j=1

∇r(xde
j )− 1

nnu

nnu∑
i=1

r(xnu
i )−1∇r(xnu

i ) = 0b.

Comparing this with Eq.(36), we see that the BA method can be regarded as a weighted
version of KLIEP according to r(xde

j )α and r(xnu
i )α. When r(xde

j ) and r(xnu
i ) are less than

1, the BA method down-weights the effect of those samples. Thus, ‘outlying’ samples
relative to the density-ratio model r tend to have less influence on parameter estimation,
which will lead to robust estimators (Basu et al., 1998).

Since LSIF corresponds to α = 1, LSIF is more robust against outliers than KLIEP
(which corresponds to α → 0) in the above sense, and BA with α > 1 would be even more
robust.

3.4.3 Numerical Examples

Here we illustrate the behavior of the robust density-ratio estimation method based on
the BA divergence using artificial data sets.

Let the numerator and denominator densities be defined as follows (Figure 2(a)):

p∗nu(x) = 0.7N
(
x; 0, 0.252

)
+ 0.3N

(
x; 1, 0.52

)
and p∗de(x) = N(x; 0, 12),

where N(x;μ, σ2) denotes the Gaussian density with mean μ and variance σ2,. We draw
nnu = nde = 300 samples from each density, which are illustrated in Figure 2(b).

Here, we employ the Gaussian-kernel density-ratio model (17), and determine the

model parameters so that B̂Aα (r) with a quadratic regularizer is minimized under the
non-negativity constraint:

min
θ∈Rb

[
1

nde

nde∑
j=1

(
nnu∑
�=1

θ�K(xnu
j ,xnu

� )

)α+1

−
(
1 +

1

α

)
1

nnu

nnu∑
i=1

(
nnu∑
�=1

θ�K(xde
i ,xnu

� )

)α

+ λθ�θ

]
s.t. θ ≥ 0b. (37)

Note that this optimization problem is convex for 0 < α ≤ 1. In our implementation,
we solve the above optimization problem by gradient-projection, i.e., the parameters are
iteratively updated by gradient descent with respect to the objective function, and the
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Figure 2: Numerical examples.

solution is projected back to the feasible region by rounding-up negative parameters to
zero. Before solving the optimization problem (37), we run uLSIF (see Section 2.4.3)
and obtain cross-validation estimates of the Gaussian width σ and the regularization
parameter λ. We then fix the Gaussian width and the regularization parameter in the BA
method to these values, and solve the optimization problem (37) by gradient-projection
with θ = 1b/b as the initial solution.

Figure 2(c) shows the true and estimated density-ratio functions by the BA methods
for α = 0, 1, 2, 3. The true density-ratio function has two peaks—higher one at x = 0 and
lower one at around x = 1.2. The graph shows that, as α increases, estimated density-
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ratio functions tend to focus on approximating the higher peak and ignore the lower peak.
Thus, if numerator samples drawn from the right-hand Gaussian (i.e., N (x; 1, 0.52)) are
regarded as outliers, the BA methods with larger α are more robust against these outliers.

We further investigate the issue of robustness against outliers more systematically. Let

p∗nu(x) = (1− ρ)N
(
x; 0, 0.252

)
+ ρN

(
x; 1, 0.52

)
,

p∗de(x) = (1− η)N(x; 0, 12) + ηN(x; 0, 0.52),

where ρ and η are the numerator and denominator outlier ratio, respectively; samples
drawn from the second densities N (x; 1, 0.52) and N(x; 0, 0.52) are regarded as outliers.
Let nnu = nde = 300, and we evaluate how the accuracy of density-ratio estimation is in-
fluenced by outliers. In the first set of experiments, we fix the denominator outlier ratio to
η = 0 (i.e., no outlier) and change the numerator outlier ratio as ρ = 0, 0.05, 0.1, . . . , 0.3.
In the second set of experiments, we fix the numerator outlier ratio to ρ = 0 (i.e., no
outlier) and change the denominator outlier ratio as η = 0, 0.05, 0.1, . . . , 0.3. The approx-
imation error of a density-ratio estimator r̂ is evaluated by UKL (r̂) defined by Eq.(30),
which correspond to the BA divergence with α → 0 as explained in Section 3.4.1. Here,
UKL (r̂) is numerically approximated using 1000 samples independently taken following
p∗nu(x) with ρ = 0 (i.e., no outliers) and 1000 samples independently taken following
p∗de(x) with η = 0 (i.e., no outliers). Note that these samples are not used for obtaining
a density-ratio estimator r̂. For obtaining density-ratio estimators, we use off-the-shelf
MATLAB implementation of KLIEP (which corresponds to the BA method with α → 0)
and uLSIF (which corresponds to the BA method with α = 1) available from the web
(see Section 2.3 and Section 2.4). This renders a more practical setup of density-ratio
estimation.

The median and standard deviation of UKL values for KLIEP and uLSIF over 100
runs are plotted in Figure 3. Note that the standard deviation is divided by 5 in the
plots for clear visibility. The graphs show that KLIEP works better than uLSIF when the
outlier ratio is small. This is natural consequences since KLIEP tries to minimizes UKL
(see Section 3.2.4). However, as the outlier ratio increases, the approximation error of
KLIEP grows rapidly. On the other hand, the approximation error of uLSIF grows rather
mildly, showing the robustness of uLSIF against outliers. This phenomenon well agrees
with the argument in Section 3.4.2.

However, the error bars of uLSIF are much larger than KLIEP. This would be caused
by the fact that the ‘effective’ number of samples used in uLSIF is smaller than that of
KLIEP due to the down-weighting effect explained in Section 3.4.2. Thus, the statistical
efficiency of uLSIF would be lower than KLIEP, which is a common trade-off in robust
statistical methods (Huber, 1981).

Another observation from these experimental results is that numerator outliers more
strongly degrade the accuracy of KLIEP than denominator outliers.
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Figure 3: The median and standard deviation of UKL values for KLIEP and uLSIF over
100 runs when the number of outlier samples is changed. For clear visibility, the standard
deviation is divided by 5 in the plots.

4 Conclusions

In this paper, we addressed the problem of density-ratio estimation. We first provided a
comprehensive review of density-ratio estimation methods, including the moment match-
ing approach (Section 2.1), the probabilistic classification approach (Section 2.2), the den-
sity matching approach (Section 2.3), and the density-ratio fitting approach (Section 2.4).
Then we proposed a novel framework of density-ratio estimation by density-ratio fitting
under the Bregman divergence (Section 3.1). We showed that our novel framework ac-
commodates the existing approaches reviewed above, and is substantially more general.
Within this novel framework, we developed a robust density-ratio estimation method
based on Basu’s power divergence.

The power divergence method allows us to systematically compare the robustness of
the density matching approach based on the KL divergence (KLIEP) and the density-ratio
fitting approach based on the Pearson divergence (uLSIF). However, the robustness of the
probabilistic classification approach is still unknown, which needs to be investigated in
our future work.

Experimentally, we observed that numerator outliers tend to more significantly de-
grade the accuracy of KLIEP than denominator samples, while uLSIF is reasonably stable
for both cases. It is interesting to investigate this experimental tendency theoretically,
together with convergence properties of the robust method.

In the power divergence method, the choice of robustness parameter α is an open issue.
Although there seems to be no universal way for this (Basu et al., 1998; Jones et al., 2001;
Fujisawa and Eguchi, 2008), a practical approach would be to use cross-validation over a
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fixed divergence such as the squared distance.
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Abstract: Mutual information (MI) is useful for detecting statistical independence between

random variables, and it has been successfully applied to solving various machine learning

problems. Recently, an alternative to MI called squared-loss MI (SMI) was introduced.

While ordinary MI is the Kullback–Leibler divergence from the joint distribution to the

product of the marginal distributions, SMI is its Pearson divergence variant. Because

both the divergences belong to the f -divergence family, they share similar theoretical

properties. However, a notable advantage of SMI is that it can be approximated from

data in a computationally more efficient and numerically more stable way than ordinary

MI. In this article, we review recent development in SMI approximation based on direct

density-ratio estimation and SMI-based machine learning techniques such as independence

testing, dimensionality reduction, canonical dependency analysis, independent component

analysis, object matching, clustering, and causal inference.

Keywords: squared-loss mutual information; Pearson divergence; density-ratio estimation;
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1. Introduction

Mutual information (MI) [1,2] for random variables X and Y is defined as:

MI(X,Y ) :=

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy

where p(x,y) is the joint probability density of X and Y , and p(x) and p(y) are the marginal probability

densities of X and Y , respectively (Precisely, p(x,y), p(x), and p(y) are different functions and
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thus should be denoted, e.g., by pX,Y(x,y), pX(x), and pY(y), respectively. However, we use the

simplified notations for the sake of brevity). Statistically, MI can be regarded as the Kullback–Leibler

divergence [3] from the joint density p(x,y) to the product of the marginals p(x)p(y), and thus can be

regarded as a measure of statistical dependency between X and Y . Estimation of MI from data samples

has been one of the major challenges in information science and various approaches have been developed

thus far.

The most naive approach to approximating MI from data would be to use a non-parametric density

estimator such as kernel density estimation (KDE) [4], i.e., the densities p(x,y), p(x), and p(y) included

in MI are separately estimated from samples, and the estimated densities are used for approximating MI.

However, density estimation is known to be a hard problem [5] and division by estimated densities

tends to magnify the estimation error. Therefore, the KDE-based MI approximator may not be reliable

in practice.

Another approach uses histogram-based density estimators with data-dependent partitioning. In the

context of estimating the Kullback–Leibler divergence [3], histogram-based methods have been studied

thoroughly and their consistency has been established [6–8]. However, the rate of convergence has

not been elucidated yet, and such histogram-based methods are strongly influenced by the curse of

dimensionality. Thus, these methods may not be reliable in high-dimensional problems.

MI can be expressed in terms of the entropies as:

MI(X,Y ) = H(X) +H(Y )−H(X,Y )

where H(X) denotes the entropy of X:

H(X) := −
∫

p(x) log p(x)dx

Based on this expression, the nearest neighbor distance has been used for approximating MI [9]. Such a

nearest neighbor approach was shown to perform better than the naive KDE-based approach [10], given

that the number k of nearest neighbors is chosen appropriately—a small (large) k yields an estimator with

small (large) bias and large (small) variance. However, appropriately determining the value of k so that

the bias-variance trade-off is optimally controlled is not straightforward in the context of MI estimation.

A similar nearest-neighbor idea has been applied to Kullback–Leibler divergence estimation [11], whose

consistency has been proved for finite k—this is an interesting result since Kullback–Leibler divergence

estimation is consistent even when density estimation is not consistent. However, the rate of convergence

seems to be still an open research issue.

Approximation of the entropies based on the Edgeworth expansion has also been explored in

the context of MI estimation [12]. Such a method works well when the target density is close to

Gaussian. However, if the target density is far from Gaussian, the Edgeworth expansion method is

no longer reliable.

More recently, an MI approximator via direct estimation of the density ratio
p(x,y)

p(x)p(y)
has been

developed [13], which is based on a Kullback–Leibler divergence approximator via direct density-ratio

estimation [14–16]. The MI approximator is given as the solution of a convex optimization problem,

which tends to be sparse [14]. A notable advantage of this density-ratio method is that it does not

involve separate estimation of densities p(x,y), p(x), and p(y), and it was proved to achieve the
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optimal non-parametric convergence rate. However, due to the “log” operation included in MI, this

MI approximator is computationally rather expensive and susceptible to outliers [17,18].

To cope with these problems, a variant of MI called the squared-loss mutual information (SMI) [19]

has been explored recently. SMI for X and Y is defined as:

SMI(X,Y ) :=
1

2

∫∫
p(x)p(y)

(
p(x,y)

p(x)p(y)
− 1

)2

dxdy

SMI is the Pearson divergence [20] from the joint density p(x,y) to the product of the marginals

p(x)p(y). It is always non-negative and it vanishes if and only if X and Y are statistically independent.

Note that both the Pearson divergence and the Kullback–Leibler divergence belong to the class of

Ali–Silvey–Csiszár divergences (which is also known as f -divergences) [21,22], meaning that they share

similar properties.

In a similar way to ordinary MI, SMI can be approximated accurately via direct estimation of the

density ratio
p(x,y)

p(x)p(y)
[19], which is based on a Pearson divergence approximator via direct density-ratio

estimation [16,23]. This SMI approximator has various desirable properties: For example, it was proved

to achieve the optimal non-parametric convergence rate [24], its solution can be obtained analytically
just by solving a system of linear equations, it has superior numerical properties [25], and it is robust

against outliers [17,18].

In particular, the property of the SMI approximator that an analytic solution is available is highly

useful in machine learning, because this allows explicit computation of the derivative of the SMI

approximator with respect to another parameter. For example, in supervised dimensionality reduction,

linear transformation U for input x is optimized so that the transformed input Ux has the highest

dependency on output y. In this context, the derivative of the SMI estimator between Ux and y with

respect to transformation U can be exploited for optimizing transformation U . On the other hand,

such derivative computation is not straightforward for the MI estimator whose solution is obtained via

numerical optimization.

The purpose of this article is to review recent development in SMI approximation based on direct

density-ratio estimation and SMI-based machine learning techniques. The remainder of this paper is

structured as follows. After reviewing the SMI approximator based on direct density-ratio estimation

in Section 2, we illustrate in Section 3 how the SMI approximator can be utilized for solving

various machine learning tasks such as: independence testing [26], feature selection [19,27], feature

extraction [28,29], canonical dependency analysis [30], independent component analysis [31], object

matching [32], clustering [33,34], and causality learning [35].

2. Definition and Estimation of SMI

In this section, we review the definition of SMI and its approximator based on direct

density-ratio estimation.
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2.1. Definition of SMI

Let us consider two random variables X ∈ X and Y ∈ Y , where X and Y are domains of X and Y ,

respectively. Let p(x,y) be the joint probability density of X and Y , and p(x) and p(y) be the marginal

probability densities of X and Y , respectively. The squared-loss mutual information (SMI) [19] for X

and Y is defined as:

SMI(X,Y ) :=
1

2

∫∫
p(x)p(y)

(
p(x,y)

p(x)p(y)
− 1

)2

dxdy (1)

SMI is always non-negative and it takes zero if and only if X and Y are statistically independent. Hence,

SMI can be used for detecting statistical independence between X and Y .

Below, we consider the problem of estimating SMI from paired samples {(xi,yi)}ni=1 drawn

independently from the joint distribution with density p(x,y).

2.2. Least-Squares Estimation of SMI

Here, we review the basic idea and theoretical properties of the SMI approximator called least-squares
mutual information (LSMI) [19].

2.2.1. SMI Approximation via Direct Density-Ratio Estimation

The basic idea of LSMI is to directly estimate the following density-ratio function without going

through density estimation of p(x,y), p(x), and p(y):

r(x,y) :=
p(x,y)

p(x)p(y)
(2)

Let g(x,y) be a model of the density ratio r(x,y). In LSMI, the model is learned so that the following

squared-error J is minimized:

J(g) :=
1

2

∫∫ (
g(x,y)− r(x,y)

)2
p(x)p(y)dxdy

=
1

2

∫∫
g(x,y)2p(x)p(y)dxdy −

∫∫
g(x,y)p(x,y)dxdy + C (3)

where C is a constant defined by:

C :=
1

2

∫∫
r(x,y)p(x,y)dxdy

Since J contains the expectations over unknown densities p(x)p(y) and p(x,y), the expectations are

approximated by empirical averages. Then the LSMI optimization problem is given as follows:

ĝ := argmin
g∈G

[
1

2n2

n∑
i,j=1

g(xi,yj)
2 − 1

n

n∑
i=1

g(xi,yi)

]
(4)

where G is a function space from which g is searched.
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Finally, the SMI approximator called LSMI is given as:

LSMI({(xi,yi)}ni=1) :=
1

2n

n∑
i=1

ĝ(xi,yi)− 1

2
(5)

or

LSMI′({(xi,yi)}ni=1) := − 1

2n2

n∑
i,j=1

ĝ(xi,yj)
2 +

1

n

n∑
i=1

ĝ(xi,yi)− 1

2
(6)

Equation (5) would be the simplest SMI approximator, while Equation (6) is suitable for theoretical

analysis because this corresponds to the negative of the objective function (4) up to the constant 1/2.

These estimators are derived based on the following equivalent expressions of SMI:

SMI(X,Y ) =
1

2

∫∫
r(x,y)p(x,y)dxdy − 1

2
(7)

= −1

2

∫∫
r(x,y)2p(x)p(y)dxdy +

∫∫
r(x,y)p(x,y)dxdy − 1

2
(8)

Equation (7) is obtained by expanding the squared term in Equation (1), applying Equation (2) to

the squared density-ratio term once, and showing that the cross-term and the remaining terms are

−1 and 1/2, respectively. Equivalence between Equations (7) and (8) can be confirmed by applying

Equation (2) to the first term in Equation (8) once. Note that Equation (8) can also be obtained via the

Legendre–Fenchel duality of Equation (1), implying that the optimization problem (4) corresponds to

approximately maximizing the Legendre–Fenchel lower-bound [15].

2.2.2. Convergence Analysis

Here we briefly review theoretical convergence properties of LSMI.

First, let us consider the case where the function class G from which the function g is searched is a

parametric model:

G = {gθ(x,y) | θ ∈ Θ ⊂ Rb}
Suppose that the true density-ratio r is contained in the model G, i.e., there exists θ∗ (∈ Θ) such that:

r = gθ∗ . Then, it was shown [28] that, under the standard regularity conditions for consistency [for

example, see Section 3.2.1 of 36], it holds that:

LSMI′({(xi,yi)}ni=1)− SMI(X,Y ) = Op(n
−1/2)

where Op denotes the asymptotic order in probability. This shows that LSMI′ retains the optimality

in terms of the order of convergence in n, because Op(n
−1/2) is the optimal convergence rate in the

parametric setup [37].

Next, we consider non-parametric cases where the function class G is a reproducing kernel Hilbert

space [38] on X × Y . Let us consider a non-parametric version of the LSMI optimization problem:

ĝ := argmin
g∈G

[
1

2n2

n∑
i,j=1

g(xi,yj)
2 − 1

n

n∑
i=1

g(xi,yi) +
λn

2
‖g‖2G

]
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where ‖ · ‖2G denotes the norm in the reproducing kernel Hilbert space G. In the above optimization

problem, a regularizer ‖g‖2G is included to avoid overfitting and λn ≥ 0 is the regularization parameter.

Suppose that the true density-ratio function r is contained in the function space G and is bounded

from above. Then, it was shown [28] that, if λn → 0 and λ−1n = o(n2/(2+γ)) where γ (0 < γ < 2)

denotes a complexity measure of the function space G based on the bracketing entropy (The larger the

value of γ is, the more complex the function space G is) [see p.83 of 36], it holds that:

LSMI′({(xi,yi)}ni=1)− SMI(X,Y ) = Op

(
max(λn, n

−1/2)
)

(9)

The conditions λn → 0 and λ−1n = o(n2/(2+γ)) roughly mean that the regularization parameter λn

should be sufficiently small but not too small. Equation (9) means that the convergence rate of the non-

parametric version can also be Op(n
−1/2) for an appropriate choice of λn, but the non-parametric method

requires a milder model assumption. According to [15], the above convergence rate is the minimax

optimal rate under some setup. Thus, the convergence property of the above non-parametric method

would also be optimal in the same sense.

2.3. Practical Implementation of LSMI

We have seen that LSMI has desirable convergence properties. Here we review practical

implementation of LSMI. A MATLAB R© implementation of LSMI is publicly available [39].

2.3.1. LSMI for Linear-in-Parameter Models

Let us approximate the density ratio Equation (2) using the following linear-in-parameter model:

gθ(x,y) =
b∑

�=1

θ�φ�(x,y) = θ�φ(x,y) (10)

where θ = (θ1, . . . , θb)
� are parameters, φ(x,y) = (φ1(x,y), . . . , φb(x,y))

� are fixed basis functions,

and � denotes the transpose. Practical choices of the basis functions will be explained in Section 2.3.2. .

For this model, the LSMI optimization problem with an �2-regularizer is expressed as:

θ̂ := argmin
θ∈Rb

[
1

2
θ�Ĥθ − θ�ĥ+

λ

2
θ�θ

]
where λ ≥ 0 is the regularization parameter that controls the strength of regularization, Ĥ is the b × b

matrix defined by:

Ĥ :=
1

n2

n∑
i,j=1

φ(xi,yj)φ(xi,yj)
�

and ĥ is the b-dimensional vector defined by:

ĥ :=
1

n

n∑
i=1

φ(xi,yi)
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The solution θ̂ can be analytically obtained as:

θ̂ = (Ĥ + λIb)
−1ĥ (11)

where Ib is the b-dimensional identity matrix. Finally, LSMI is also given analytically as:

LSMI({(xi,yi)}ni=1) =
1

2
ĥ�θ̂ − 1

2
(12)

or

LSMI′({(xi,yi)}ni=1) = −1

2
θ̂�Ĥθ̂ + ĥ�θ̂ − 1

2
(13)

Some elements of θ̂ may take negative values in the above formulation, which can lead to negative

density-ratio values and negative LSMI values. Such negative values may be rounded up to zero if

necessary, although this does not happen for sufficiently large n. Another option is to explicitly impose

the non-negativity constraint θ1, . . . , θb ≥ 0 on the optimization problem. However, by this modification,

the solution can no longer be obtained analytically, but only numerically using a quadratic program

solver. (In this case, if the �2-regularizer is replaced with the �1-regularizer, the regularization path

[40,41]—i.e., solutions for all different regularization parameter values—can be computed efficiently

without a quadratic program solver just by solving systems of linear equation [23].)

2.3.2. Design of Basis Functions

The practical accuracy of LSMI depends on the choice of basis functions in the model Equation (10).

A typical choice is a non-parametric kernel model, i.e., setting the number of basis function to b = n and

the �-th basis function to φ�(x,y) = K(x,x�)L(y,y�):

gθ(x,y) =
n∑

�=1

θ�K(x,x�)L(y,y�) (14)

where K(x,x′) and L(y,y′) are kernel functions for x and y, respectively. If n is too large, b may be

set to be smaller than n and choose a subset of data points {(xi,yi)}ni=1 as kernel centers.

For real vector x ∈ Rd, we may practically use the Gaussian kernel for K(x,x′) after element-wise

variance normalization:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2
x

)
where σx > 0 is the Gaussian width. When x is a non-vectorial structured object such as a string, a tree,

and a graph, we may employ a kernel function defined for such structured data [42].

In the (multi-output) regression scenario where y is a real vector, the Gaussian kernel may also be

used for L(y,y′) after element-wise variance normalization:

L(y,y′) = exp

(
−‖y − y′‖2

2σ2
y

)



Entropy 2013, 15 87

where σy > 0 is the Gaussian width. In the multi-class classification scenario where y ∈ {1, . . . , c} and

c denotes the number of classes, we may use the delta kernel for L(y, y′):

L(y, y′) =

⎧⎨⎩1 if y = y′

0 if y �= y′

Note that, in the classification case with the delta kernel, the LSMI solution can be computed efficiently

in a class-wise manner [33]. In the multi-label classification scenario where y ∈ {0, 1}c and c denotes

the number of labels, we may use the normalized linear kernel function [43] for y:

L(y,y′) =
(y − y)�(y′ − y)

‖y − y‖‖y′ − y′‖
where y = 1

n

∑n
i=1 yi is the sample mean.

2.3.3. Model Selection by Cross-Validation

Most of the above kernels include tuning parameters such as the Gaussian width, and the practical

performance of LSMI depends on the choice of such kernel parameters and the regularization parameter

λ. Model selection of LSMI is possible based on cross-validation with respect to the criterion J defined

by Equation (3).

More specifically, the sample set D = {(xi,yi)}ni=1 is divided into M disjoint subsets {Dm}Mm=1.

Then the LSMI solution ĝm(x) is obtained using D\Dm (i.e., all samples without Dm), and its J-score

for the hold-out samples Dm is computed as:

ĴCV
m :=

1

2|Dm|2
∑

x,y∈Dm

ĝm(x,y)
2 − 1

|Dm|
∑

(x,y)∈Dm

ĝm(x,y)

where |Dm| denotes the number of elements in the set Dm.
∑

x,y∈Dm
denotes the summation over all

combinations of x and y in Dm (and thus |Dm|2 terms), while
∑

(x,y)∈Dm
denotes the summation over

all pairs (x,y) in Dm (and thus |Dm| terms). This procedure is repeated for m = 1, . . . ,M , and the

average score,

ĴCV :=
1

M

M∑
m=1

ĴCV
m

is computed. Finally, the model (the kernel parameter and the regularization parameter in the current

setup) that minimizes ĴCV is chosen as the most suitable one.

3. SMI-Based Machine Learning

In this section, we show how the SMI estimator, LSMI, can be used for solving various machine

learning tasks.



Entropy 2013, 15 88

3.1. Independence Testing

First, we show how the SMI estimator can be used for independence testing.

3.1.1. Introduction

Identifying the statistical independence between random variables is one of the fundamental

challenges in statistical data analysis. A traditional independence measure between random variables

is the Pearson correlation coefficient, which can be used for detecting linear dependency. Recently,

kernel-based independence measures have been studied to detect non-linear dependency. The

Hilbert–Schmidt independence criterion (HSIC) [44] utilizes cross-covariance operators on universal

reproducing kernel Hilbert spaces (RKHSs) [45], which is an infinite-dimensional generalization of

covariance matrices. HSIC allows efficient detection of non-linear dependency by making use of the

reproducing property of RKHSs [38]. However, HSIC has a weakness that its performance depends on

the choice of RKHSs and there is no theoretically justified way to determine the RKHS properly thus

far. In practice, using the Gaussian RKHS with width set to the median distance between samples is a

popular heuristic [46], but this does not always work well.

To overcome the above limitations, an SMI-based independence test called least-squares indepen-
dence test (LSIT) was proposed [26]. Below, we review LSIT.

3.1.2. Independence Testing with SMI

Let x ∈ X be an input feature and y ∈ Y be an output feature, which follow a joint probability

distribution with density p(x,y). Suppose that we are given a set of independent and identically

distributed (i.i.d.) paired samples {(xi,yi)}ni=1. The objective of independence testing is to conclude

whether x and y are statistically independent or not, based on the samples {(xi,yi)}ni=1.

The SMI-based independence test, where the null hypothesis is that x and y are statistically

independent, is based on the permutation test procedure [47]. More specifically, LSMI is first run

using the original dataset D = {(xi,yi)}ni=1, and an SMI estimate, LSMI(D), is obtained. Next,

{yi}ni=1 are randomly permuted and a shuffled dataset D̃ = {(xi, ỹi)}ni=1 is formed, where {ỹi}ni=1

denote permuted samples. Then LSMI is run again using the shuffled dataset D̃, and an SMI estimate

LSMI(D̃) is obtained. Note that the random permutation eliminates the dependency between x and y (if

it exists), and therefore LSMI(D̃) would take a value close to zero. This random permutation procedure

is repeated many times, and the distribution of LSMI(D̃) under the null-hypothesis that x and y are

statistically independent is constructed. Finally, the p-value is approximated by evaluating the relative

ranking of LSMI(D) in the distribution of LSMI(D̃).

This procedure is called the least-squares independence test (LSIT) [26]. A MATLAB R©

implementation of LSIT is publicly available [48].

3.2. Supervised Feature Selection

Next, we show how the SMI estimator can be used for supervised feature selection.
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3.2.1. Introduction

The objective of supervised learning is to learn an input-output relation from input-output paired

samples. However, when the dimensionality of input vectors is large, using all input elements could lead

to a model interpretability problem. Feature selection is aimed at finding a subset of input elements that

is useful for predicting output values [49].

Feature ranking is a simple implementation of feature selection that ranks each feature according to

its relevance. In this feature ranking scenario, SMI between a single input variable and an output was

shown to be useful [19]. However, feature ranking does not take feature interaction into account, and

thus it is not useful when each single feature is not capable of predicting outputs, but multiple features

are necessary for a valid prediction of outputs (e.g., an XOR problem). Two criteria, relevancy and

redundancy, are often used to select multiple features simultaneously: A feature is said to be relevant if

it can explain outputs, and features are said to be redundant if they are similar. Ideally, we want to find a

subset of features that has high relevance and low redundancy.

Another important issue in feature selection is the computational cost: Naively selecting multiple

features causes computational infeasibility because the number of possible feature combinations is

exponential with respect to the number of input features. To cope with this problem, a computationally

efficient method to handle multiple features called the least absolute shrinkage and selection operator

(LASSO) [50] was proposed. In LASSO, a predictor consisting of a weighted sum of each feature is

fitted to output values using the least-squares method, while the weight vector is confined in an �1-ball.

The �1-ball restriction actually provides a notable property that the solution is sparsified, meaning that

some of the weight parameters become exactly zero. Thus, LASSO automatically removes irrelevant

features from its predictor, which can be achieved through convex optimization in a computationally

efficient way [51,52].

However, LASSO can only handle linear predictors and its feature selection characteristic explicitly

depends on the squared-loss function used in the least-squares method. To go beyond these limitations,

an SMI-based feature selection method called �1-LSMI was proposed [27]. Below, we review �1-LSMI.

3.2.2. Feature Selection with SMI

The objective of feature selection is, from input feature vector x = (x(1), . . . , x(d))� ∈ Rd, to choose

a subset of its elements that are useful for the prediction of output y ∈ Y . Suppose that we are given n

i.i.d. paired samples {(xi,yi)}ni=1 drawn from a joint distribution with density p(x,y). Let w1, . . . , wd

be feature weights for x(1), . . . , x(d), and we learn the weights as:

max
w1,...,wd

LSMI
({(

(w1x
(1)
i , . . . , wdx

(d)
i )�,yi

)}n

i=1

)
subject to

d∑
i=1

wi ≤ η and w1, . . . , wd ≥ 0

where η ≥ 0 is the regularization parameter that controls the number of features. Because the sign

of feature weights is not relevant in feature selection, they are restricted to be non-negative. For

non-negative weights,
∑d

i=1 wi is reduced to the �1-norm of the feature weight vector (w1, . . . , wd)
�.

The features having zero weights are regarded as irrelevant in this formulation.
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To compute the solution, a simple gradient ascent may be used, where the weight vector is projected

onto the positive orthant of the �1-ball in each iteration to guarantee the feasibility. This can be performed

by first projecting the weight vector onto the positive orthant by rounding up negative elements to zero,

and then projecting it onto the �1-ball [54].

This SMI-based feature selection algorithm is called the �1-LSMI [27]. A MATLAB R© implementation

of �1-LSMI is publicly available [53].

3.3. Supervised Feature Extraction

While feature selection chooses a subset of features for enhancing model interpretability, feature

extraction finds a low-dimensional representation of features that can depend on all features (e.g., through

linear combination) for improving the prediction accuracy. Here, we show how the SMI estimator can

be used for supervised feature extraction.

3.3.1. Introduction

The goal of sufficient dimension reduction (SDR) is to map input features to low-dimensional

expressions while “sufficient” information for predicting output values is maintained [55]. Earlier

SDR methods developed in the statistics community, such as sliced inverse regression [56], principal

Hessian direction [57], and sliced average variance estimation [58], rely on the ellipticity of the data

(e.g., Gaussian), but such an assumption may not be fulfilled in practice. To overcome the limitations of

these approaches, kernel dimension reduction (KDR) was proposed [59]. KDR employs a kernel-based

dependence measure that is distribution-free, and thus KDR is flexible. However, it lacks systematic

model selection strategies for kernel and regularization parameters. Furthermore, KDR scales poorly to

massive datasets and there is no good way to set an initial solution for its gradient-based optimization. In

practice, many restarts from different initial solutions may be needed for finding a good local optimum,

which makes the entire procedure even slower and the performance of dimension reduction unreliable.

To overcome the above limitations, an SMI-based SDR method called least-squares dimension
reduction (LSDR) was proposed [28]. An advantage of LSDR is that its tuning parameters can

be systematically optimized based on cross-validation. To further address the computational and

initialization issues, a heuristic search strategy for LSDR called sufficient component analysis (SCA)

was proposed [29]. Below, we review LSDR and SCA.

3.3.2. Sufficient Dimension Reduction with SMI

First, we formulate the problem of SDR [55]. Let x ∈ Rdx be an input vector and y ∈ Y be an output.

The goal of SDR is to find a subspace of input domain Rdx that contains “sufficient” information about

output y. We assume that there exists an orthogonal matrix U ∗ ∈ Rdu×dx for du ≤ dx such that

y⊥⊥x | U ∗x (15)

That is, given the projected feature U ∗x, the (remaining) feature x is conditionally independent of output

y and thus can be discarded without sacrificing the predictability of y. The objective of SDR is to find
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such U ∗ from n i.i.d. paired samples, {(xi,yi)}ni=1, drawn from a joint distribution with density p(x,y).

We assume that the projection dimensionality du is known.

SMI can be used for characterizing the optimal projection matrix U ∗ [28]. Indeed, it was shown

that inequality,

SMI(X,Y ) ≥ SMI(UX,Y )

holds, and the equality holds if and only if Equation (15) holds. Thus, maximizing SMI(UX,Y ) with

respect to U leads to U ∗. In practice, the following optimization problem is solved:

max
U∈Rdu×dx

LSMI({(Uxi,yi)}ni=1)

subject to UU� = Idu

This formulation is called least-squares dimension reduction (LSDR) [28].

3.3.3. Gradient-Based Subspace Search

A simple approach to solving the above LSDR optimization problem is the following

iterative procedure:

• U is updated to ascend the gradient of LSMI({(Uxi,yi)}ni=1) with respect to U .

• U is projected onto the feasible region specified by UU� = Idu .

The gradient of LSMI({(Uxi,yi)}ni=1) with respect to U is given by:

∂LSMI

∂U
=

b∑
�=1

θ̂�
∂ĥ�

∂U
− 1

2

b∑
�,�′=1

θ̂�θ̂�′
∂Ĥ�,�′

∂U

If the kernel model Equation (14) with the Gaussian kernel,

K(Ux,Ux′) = exp

(
−‖Ux−Ux′‖2

2σ2

)
is used, ∂̂h�

∂U
and

∂ ̂H�,�′
∂U

(for �, �′ = 1, . . . , n) are given by:

∂ĥ�

∂U
= − 1

nσ2

n∑
i=1

(Uxi −Ux�)(xi − x�)
� exp

(
−‖Uxi −Ux�‖2

2σ2

)
L(yi,y�),

∂Ĥ�,�′

∂U
=

[
− 1

nσ2

n∑
i=1

(
(Uxi −Ux�)(xi − x�)

� + (Uxi −Ux�′)(xi − x�′)
�
)

× exp

(
−‖Uxi −Ux�‖2 + ‖Uxi −Ux�′‖2

2σ2

)]
×

[
1

n

n∑
i=1

L(yi,y�)L(yi,y�′)

]

The projection of U onto the feasible region specified by UU� = Idu may be carried out by the

Gram–Schmidt process [60], although this is time-consuming.

An alternative way to solve the LSDR optimization problem is to perform gradient ascent on the

Grassmann manifold [61]. In the Euclidean space, the ordinary gradient gives the steepest direction.
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However, on a manifold, the natural gradient [62] gives the steepest direction. The natural gradient

∇LSMI(U ) at U is given as follows [63]:

∇LSMI(U ) =
∂LSMI

∂U
− ∂LSMI

∂U
U�U =

∂LSMI

∂U
U�
⊥U⊥

where U⊥ is any (d − m) × d matrix such that [U� U�
⊥ ] is orthogonal. Then the geodesic from U to

the direction of the natural gradient ∇LSMI(U ) over the Grassmann manifold can be expressed using

t ∈ R as:

Ut :=
[
Idx Odx−du

]
exp

(
t

[
Odu

∂LSMI
∂U

U�
⊥

−U⊥ ∂LSMI
∂U

�
Odx−du

])[
U

U⊥

]
where “exp” for a matrix denotes the matrix exponential, and Odx is the dx × dx zero matrix. Thus, line

search along the geodesic in the natural gradient direction is equivalent to finding the maximizer from

{Ut | t ≥ 0}. For choosing the step size of each gradient update, some approximate line search method

such as Armijo’s rule [64] or backtracking line search [51] may be used.

A MATLAB R© implementation of LSDR is publicly available [65].

3.3.4. Heuristic Subspace Search

Although the natural gradient method is computationally more efficient than the plain gradient

method, it is still time consuming. Moreover, many restarts from different initial solutions may be

needed for finding a good local optimum. Here, we introduce a heuristic method that can address

these issues [29].

A key idea is to use a truncated negative quadratic function called the Epanechnikov kernel [66] as a

kernel function for Ux:

K(Ux,Ux′) = max

(
0, 1− ‖Ux−Ux′‖2

2σ2
z

)
Let I(c) be the indicator function, i.e., I(c) = 1 if c is true and zero otherwise. Then, for the above

kernel function, LSMI can be expressed as:

LSMI =
1

2
tr(UDUU

�)− 1

2

where tr(·) denotes the trace of a matrix and DU is the dx × dx matrix defined by:

DU =
1

n

n∑
i=1

n∑
�=1

θ̂�(U )I

(‖Uxi −Ux�‖2
2σ2

z

< 1

)
L(yi,y�)

[
1

du
Idx −

1

2σ2
z

(xi − x�)(xi − x�)
�
]

Here, the fact that θ̂� depends on U is explicitly indicated by θ̂�(U ).

If U in DU is replaced by U ′, where U ′ is a transformation matrix obtained in the previous iteration,

the SMI estimator is simplified as:

1

2
tr

(
UDU ′U�)− 1

2
(16)

Because DU ′ is independent of U , a maximizer of Equation (16) with respect to U can be analytically

obtained by (u1| · · · |udu)
�, where {ui}dui=1 are the du principal components of D′. The same technique
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can also be utilized for determining an initial transformation matrix, by computing the above solution

for U ′ = Idx (i.e., no dimensionality reduction).

The above heuristic search method for LSDR is called sufficient component analysis (SCA) [29]. A

MATLAB R© implementation of SCA is publicly available [67].

3.4. Canonical Dependency Analysis

Next, we show how the SMI estimator can be used for feature extraction from two sets of data.

3.4.1. Introduction

Canonical correlation analysis (CCA) [68] is a classical dimensionality reduction technique for two

data sources, and it iteratively finds projection directions with maximum correlation. However, because

CCA only captures correlations under linear projections, it is often insufficient to analyze complex

real-world data that contain higher-order correlations. To be more flexible, non-linear CCA methods have

been explored. A simple approach uses neural networks to handle non-linear projections [69,70], but

neural networks are prone to local optima. Another approach first non-linearly transforms data samples

into feature spaces and then apply linear CCA [71,72]. Given that the non-linear transformation is fixed,

this two-step approach allows analytic computation of the global optimal solution via a generalized

eigenvalue problem in the same way as linear CCA. This non-linear approach is called kernel CCA

(KCCA) because reproducing kernels [38] are used as non-linear transforms. Alternating regression such

as the alternating conditional expectation [73] is another possible way to find dependency in a flexible

manner, which estimates transformations for two variables alternately by minimizing the squared error

between transformed variables. These non-linear variants of CCA are highly flexible, although obtained

results are often difficult to interpret due to the non-linearity.

The above non-linear CCA approaches can be regarded as capturing correlations along non-linear

projection directions. Another extension of CCA called canonical dependency analysis (CDA) [30]

captures higher-order correlations under linear projections. It was shown that KCCA with a universal

kernel [45] such as the Gaussian kernel allows efficient detection of higher-order correlations [74].

However, the choice of universal kernels affects the practical performance, and there is no systematic

method to choose a suitable kernel function. Another approach to higher-order CCA called informational

CCA (ICCA) [75] uses mutual information (MI) as a dependency measure, where MI is estimated

via kernel density estimation (KDE). Because systematic model selection strategies are available for

KDE [76], ICCA could be more practical than the KCCA-based CDA method. In the ICCA method,

one-dimensional projection directions are found in an iterative manner. Thus, it would be more powerful

if multi-dimensional projection directions (i.e., a subspace) could be directly found in CDA [30].

However, ICCA may not be reliable in such a subspace search scenario because it involves the ratio

of estimated densities, which tends to produce large estimation error if the dimensionality is not small.

To overcome the above limitation, an SMI-based CDA method called least-squares CDA (LSCDA)

was proposed [30]. Below, we review LSCDA.
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3.4.2. Canonical Dependency Analysis with SMI

Suppose that we are given n i.i.d. paired samples {(xi,yi) | xi ∈ Rdx , yi ∈ Rdy}ni=1 drawn from a

joint distribution with density p(x,y). CDA is aimed at finding the low-dimensional expressions of x

and y that are maximally dependent on each other. Here, we focus on linear dimension reduction, i.e.,

x and y are transformed as Ux and V y, where U ∈ Rdu×dx and V ∈ Rdv×dy are orthogonal matrices

with known dimensionalities du and dv. The objective of CDA is to find the transformation matrices

U and V such that the statistical dependency between Ux and V y is maximized. Let us use the SMI

estimator, LSMI({(Uxi,V yi)}ni=1), as the dependency measure, i.e., we solve,

argmax
U∈Rdu×dx ,V ∈Rdv×dy

LSMI({(Uxi,V yi)}ni=1)

subject to UU� = Idu and V V � = Idv

This formulation is called least-squares CDA (LSCDA) [30].

The above optimization problem can be solved in the same way as LSDR presented in Section 3.3.3.

A MATLAB R© implementation of LSCDA is publicly available [77].

3.5. Independent Component Analysis

Here, we show how the SMI estimator can be used for independent component analysis.

3.5.1. Introduction

Suppose that there exist statistically independent sources of signals, and we observe their mixtures.

The purpose of independent component analysis (ICA) [78] is to separate the mixed signals into the

original source signals. An approach to ICA is to separate the mixed signals such that statistical

independence among separated signals is maximized under some independence measure.

Various methods for evaluating the statistical independence among random variables from samples

have been explored so far. A naive approach is to estimate probability densities based on parametric or

non-parametric density estimation methods. However, finding an appropriate parametric model is not

straightforward without strong prior knowledge and non-parametric estimation is not generally accurate

in high-dimensional problems. Thus, this naive approach is not reliable in practice. Another approach is

to approximate the entropy based on the Gram–Charlier expansion [79] or the Edgeworth expansion [80].

An advantage of this entropy-based approach is that a hard task of density estimation is not directly

involved. However, these expansion techniques are based on the assumption that the target density is

close to Gaussian, and violation of this assumption can cause large approximation error.

The above approaches are based on the probability densities of signals. Another line of research that

does not explicitly involve probability densities employs non-linear correlation—signals are statistically

independent if and only if all non-linear correlations among signals vanish. Following this line,

computationally efficient algorithms have been developed based on a contrast function [81,82], which is

an approximation of the entropy or mutual information. However, non-linearities in the contrast function

need to be pre-specified in these methods, and thus they could be inaccurate if the predetermined

non-linearities do not match the target distribution. To cope with this problem, the kernel trick has
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been applied in ICA, which allows computationally efficient evaluation of all non-linear correlations

citeJMLR:Bach+Jordan:2002. However, its practical performance depends on the choice of kernels

(more specifically, the Gaussian kernel width) and there seems no theoretically justified method to

determine the kernel width. This is a critical problem in unsupervised learning tasks such as ICA.

To cope with this problem, an SMI-based ICA algorithm called least-squares independent component
analysis (LICA) has been developed [31]. Below, we review LICA.

3.5.2. Independent Component Analysis with SMI

Suppose there are d signal sources and let: {xi | xi = (x
(1)
i , . . . , x

(d)
i )� ∈ Rd}ni=1 be i.i.d. samples

drawn from a distribution with density p(x). We assume that elements x(1), . . . , x(d) are statistically

independent of each other, i.e., p(x) is factorized as:

p(x) = p(x(1)) · · · p(x(d))

We cannot directly observe {xi}ni=1, but only their linearly mixed samples {yi}ni=1:

yi := Uxi

where U is a d× d invertible matrix called the mixing matrix.

The goal of ICA is, from the mixed samples {yi}ni=1, to obtain a demixing matrix V that recovers the

original source samples {xi}ni=1. We denote the demixed samples by {zi}ni=1:

zi = V yi

The ideal solution is V = U−1, but we can only recover the source signals up to permutation and

scaling of components of x due to non-identifiability of the ICA setup [78]. Let us denote the demixed

samples by:

zi = (z
(1)
i , . . . , z

(d)
i )� := V yi

for i = 1, . . . , n.

A direct approach to ICA is to determine V so that elements of z are as statistically independent as

possible. Here, we adopt SMI as the independence measure:

SMI(Z(1), . . . , Z(d)) :=
1

2

∫
· · ·

∫
p(z(1)) · · · p(z(d))

(
p(z(1), . . . , z(d))

p(z(1)) · · · p(z(d)) − 1

)2

dz(1) · · · dz(d)

We try to find the demixing matrix V that minimizes SMI. In practice, the following optimization

problem is solved:

min
V ∈Rd×d

LSMI({V yi}ni=1)

where LSMI({V yi}ni=1) is given by the same form as Equation (12) (or Equation (13)), but the matrix

Ĥ and the vector ĥ are defined in a slightly different way. For the Gaussian kernel,

K(V y,V y′) = exp

(
−‖V y − V y′‖2

2σ2

)



Entropy 2013, 15 96

Ĥ and ĥ are given by:

Ĥ�,�′ =
1

nd

d∏
m=1

[
n∑

i=1

exp

(
−(z

(m)
� − z

(m)
i )2 + (z

(m)
�′ − z

(m)
i )2

2σ2

)]

ĥ� =
1

n

n∑
i=1

exp

(
−‖zi − z�‖2

2σ2

)
This formulation is called least-squares independent component analysis (LICA) [31].

3.5.3. Gradient-Based Demixing Matrix Search

Based on the plain gradient technique, an update rule of V is given by:

V ←− V − t
∂LSMI

∂V
(17)

where t (> 0) is the step size. The gradient ∂LSMI
∂V

is given by:

∂LSMI

∂V
=

n∑
�=1

θ̂�
∂ĥ�

∂V
− 1

2

n∑
�,�′=1

θ̂�θ̂�′
∂Ĥ�,�′

∂V

where

∂ĥ�

∂Vk,k′
= − 1

nσ2

n∑
i=1

(z
(k)
i − z

(k)
� )(y

(k′)
i − y

(k′)
� )� exp

(
−‖zi − zk‖2

2σ2

)
∂Ĥ�,�′

∂Vk,k′
=

1

nd−1
∏
m �=k

[
n∑

i=1

exp

(
−(z

(m)
i − z

(m)
� )2 + (z

(m)
i − z

(m)
�′ )2

2σ2

)]

×
[
− 1

nσ2

n∑
i=1

(
(z

(k)
i − z

(k)
� )(y

(k′)
i − y

(k′)
� ) + (z

(k)
i − z

(k)
�′ )(y

(k′)
i − y

(k′)
�′ )

)
× exp

(
−(z

(k)
i − v

(k)
� )2 + (z

(k)
i − z

(k)
�′ )2

2σ2

)]
In ICA, scaling of components of z can be arbitrary. This implies that the above gradient updating

rule can lead to a solution with poor scaling, which is not preferable from a numerical viewpoint. To

avoid possible numerical instability, V is normalized at each gradient iteration as:

Vk,k′ ←− Vk,k′√∑d
m=1 V

2
k,m

3.5.4. Natural Gradient Demixing Matrix Search

Suppose that data samples are whitened, i.e., samples {yi}ni=1 are pre-transformed as:

yi ←− Σ̂−
1
2yi

where Σ̂ is the sample covariance matrix:

Σ̂ :=
1

n

n∑
i=1

(
yi − 1

n

n∑
j=1

yj

)(
yi − 1

n

n∑
j=1

yj

)�
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Then it can be shown that any demixing matrix that eliminates the second order correlation is an

orthogonal matrix [78]. Thus, for whitened data, the search space of V can be restricted to the orthogonal

group without loss of generality. The natural gradient [62] update rule on the orthogonal group is

given by:

V ←− V exp

(
−t

(
V �∂LSMI

∂V
− ∂LSMI

∂V

�
V

))
where “exp” for a matrix denotes the matrix exponential and t (> 0) is the step size.

A MATLAB R© implementation of LICA is publicly available [83].

3.6. Cross-Domain Object Matching

Next, we show how the SMI estimator can be used for cross-domain object matching.

3.6.1. Introduction

The objective of cross-domain object matching is to match two sets of unpaired objects in different

domains. For example, in photo album summarization, we are given a set of photos and a designed photo

frame expressed as a set of photo slots in the Cartesian coordinate system, and we want to automatically

assign the photos into the designed photo frame. A typical approach of cross-domain object matching

is to find a mapping from objects in one domain (photos) to objects in the other domain (frame) so that

the pairwise dependency is maximized. In this scenario, accurately evaluating the dependence between

objects is a key issue.

Kernelized sorting [84] tries to find the mapping between two domains that maximizes mutual

information under the Gaussian assumption. However, because the Gaussian assumption may not

be fulfilled in practice, this method tends to perform poorly. To overcome the above limitation, the

kernel-based dependence measure called the Hilbert–Schmidt independence criterion (HSIC) [85] was

proposed to use in kernelized sorting [86]. Because HSIC is distribution-free, HSIC-based kernelized

sorting is more flexible than the original method based on the Gaussian assumption. However, HSIC

includes a tuning parameter (more specifically, the Gaussian kernel width), and its choice is crucial to

obtain better performance [87].

To cope with this problem, an SMI-based cross-domain object matching method called least-squares
object matching (LSOM) was developed [32]. Below, we review LSOM.

3.6.2. Cross-Domain Object Matching with SMI

The goal of cross-domain object matching is, given two sets of unpaired samples of the same size,

{xi | xi ∈ X}ni=1 and {yi | yi ∈ Y}ni=1, to find a mapping that well “matches” them. Let π be

a permutation function over {1, . . . , n}. The optimal permutation, denoted by π∗, can be obtained as

the maximizer of the dependency between the two sets {xi}ni=1 and {yπ(i)}ni=1. Here, we use the SMI

approximator, LSMI({(xi,yπ(i))}ni=1), as the dependency measure, i.e., we solve,

max
π

LSMI({(xi,yπ(i))}ni=1)
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Let K and L be the n × n kernel matrices defined by Ki,j = K(xi,xj) and Li,j = L(yi,yj). Then

LSMI for {(xi,yπ(i))}ni=1 can be expressed as:

LSMI({(xi,yπ(i))}ni=1) =
1

2n
tr

(
Π�LΠΘ̂ΠK

)
− 1

2
(18)

where Π is the permutation matrix corresponding to π, i.e., Π is the n × n zero-one matrix such that

Πi,j = 1 if i = π(j) for j = 1, . . . , n and Πi,j = 0 otherwise. Θ̂Π is the diagonal matrix with diagonal

elements given by the LSMI solution θ̂π obtained by paired data {(xi,yπ(i))}ni=1 (see Equation (11)).

Because maximizing Equation (18) with respect to Π is computationally infeasible, greedy update

from previous solution Π′ is used in practice:

Πnew = (1− t)Π′ + t · argmax
Π

tr
(
Π�LΠ′Θ̂Π′K

)
where 0 < t ≤ 1 is the step size. Maximization of the second term is called a linear assignment problem,

which can be solved efficiently by the Hungarian method [88].

The above method is called least-squares object matching (LSOM) [32]. A MATLAB R©

implementation of LSOM is publicly available [89].

3.7. Clustering

Here, we show how SMI can be effectively used for clustering.

3.7.1. Introduction

The objective of clustering is to classify data samples into disjoint groups in an unsupervised manner.

K-means [90] is a classic but still popular clustering algorithm. However, k-means only produces linearly

separated clusters, and thus its usefulness is rather limited in practice. To cope with this problem,

various non-linear clustering methods have been developed. Kernel k-means [91] performs k-means

in a feature space induced by a reproducing kernel function [46]. Spectral clustering [92,93] first unfolds

non-linear data manifolds by a spectral embedding method, and then performs k-means in the embedded

space. Blurring mean-shift [94,95] uses a non-parametric kernel density estimator for modeling the

data-generating probability density, and finds clusters based on the modes of the estimated density.

Discriminative clustering learns a discriminative classifier for separating clusters, where class labels

are also treated as parameters to be optimized [96,97]. Dependence-maximization clustering determines

cluster assignments so that their dependence on input data is maximized [34,98,99].

Information-maximization clustering exhibited the state-of-the-art performance [100,101], where

probabilistic classifiers such as a kernelized Gaussian classifier [100] and a kernel logistic regression

classifier [101] are learned so that mutual information between feature vectors and cluster assignments

is maximized in an unsupervised manner. A notable advantage of information-maximization clustering

is that classifier training is formulated as continuous optimization, which is substantially simpler

than discrete optimization of cluster assignments. Indeed, classifier training can be carried out in

computationally efficient manners by a gradient method [100] or a quasi-Newton method [101].

Furthermore, a model selection strategy based on the information-maximization principle is also
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provided [100]. Thus, kernel parameters can be systematically optimized in an unsupervised way.

However, the optimization problems of these clustering methods are non-convex and finding a good

local optimal solution is not straightforward in practice.

To overcome the above limitation, an SMI-based clustering method called SMI clustering (SMIC)

was proposed [33]. Below, we review SMIC.

3.7.2. Clustering with SMI

Suppose that we are given d-dimensional i.i.d. feature vectors of size n, {xi | xi ∈ Rd}ni=1,

which are drawn independently from a distribution with density p(x). The goal of clustering is

to give cluster assignments, {yi | yi ∈ {1, . . . , c}}ni=1, to the feature vectors {xi}ni=1, where

c denotes the number of clusters. c is assumed to be pre-fixed below. To solve the clustering

problem, the information-maximization approach is taken [100,101]. That is, clustering is regarded

as an unsupervised classification problem, and the class-posterior probability p(y|x) is learned so that

“information” between feature vector x and cluster label y is maximized.

As an information measure, SMI Equation (1) is adopted, which can expressed as:

SMI =
1

2

∫ c∑
y=1

p(y|x)p(x)p(y|x)
p(y)

dx− 1

2
(19)

Suppose that the class-prior probability p(y) is set to a user-specified value πy for y = 1, . . . , c, where

πy > 0 and
∑c

y=1 πy = 1. Without loss of generality, {πy}cy=1 are assumed to be sorted in the

ascending order:

π1 ≤ · · · ≤ πc

If {πy}cy=1 is unknown, the uniform class-prior distribution may be adopted:

p(y) =
1

c
for y = 1, . . . , c

Substituting πy into p(y), we can express Equation (19) as:

1

2

∫ c∑
y=1

1

πy

p(y|x)p(x)p(y|x)dx− 1

2
(20)

Let us approximate the class-posterior probability p(y|x) by the following kernel model:

qα(y|x) :=
n∑

i=1

αy,iK(x,xi), (21)

where α = (α1,1, . . . , αc,n)
� is the parameter vector and K(x,x′) denotes a kernel function. A useful

example of kernel functions is the local-scaling kernel [102] defined as:

K(xi,xj) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−‖xi − xj‖2

2σiσj

)
if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise
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where Nk(x) denotes the set of k nearest neighbors for x (k is the kernel parameter), σi is a local scaling

factor defined as σi = ‖xi − x
(k)
i ‖, and x

(k)
i is the k-th nearest neighbor of xi. Note that we did not

include the normalization term in Equation (21) because model outputs will be normalized later (see

Equation (22)).

Further approximating the expectation with respect to p(x) included in Equation (20) by the empirical

average of samples {xi}ni=1, we arrive at the following SMI approximator:

ŜMI :=
1

2n

c∑
y=1

1

πy

α�y K
2αy − 1

2

where αy := (αy,1, . . . , αy,n)
� and Ki,j := K(xi,xj).

For each cluster y, α�y K
2αy is maximized under ‖αy‖ = 1. Since this is the Rayleigh quotient,

the maximizer is given by the normalized principal eigenvector of K [104]. To avoid all the solutions

{αy}cy=1 to be reduced to the same principal eigenvector, their mutual orthogonality is imposed:

α�y αy′ = 0 for y �= y′

Then the solutions are given by the normalized eigenvectors ψ1, . . . ,ψc associated with the eigenvalues

λ1 ≥ · · · ≥ λn ≥ 0 of K. Since the sign of ψy is arbitrary, the sign is set as:

ψ̃y = ψy × sign(ψ�y 1n)

where sign(·) denotes the sign of a scalar and 1n denotes the n-dimensional vector with all ones.

On the other hand, because

p(y) =

∫
p(y|x)p(x)dx ≈ 1

n

n∑
i=1

qα(y|xi) = α�y K1n

and the class-prior probability p(y) was set to πy for y = 1, . . . , c, the following normalization condition

is obtained:

α�y K1n = πy (22)

Furthermore, probability estimates should be non-negative, which can be achieved by rounding up

negative outputs to zero.

By taking these normalization and non-negativity issues into account, cluster assignment yi for xi is

determined as the maximizer of the approximation of p(y|xi):

yi = argmax
y

[max(0n,Kψ̃y)]i

π−1y max(0n,Kψ̃y)�1n

= argmax
y

πy[max(0n, ψ̃y)]i

max(0n, ψ̃y)�1n

where the “max” operation for vectors is applied in the element-wise manner and [·]i denotes the i-th

element of a vector. Note that Kψ̃y = λyψ̃y was used in the above derivation. For out-of-sample

prediction, cluster assignment y′ for new sample x′ may be obtained as:

y′ := argmax
y

πy max
(
0,

∑n
i=1 K(x′,xi)[ψ̃y]i

)
λy max(0n, ψ̃y)�1n
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The above method is called SMI-based clustering (SMIC) [33]. LSMI can be used for model selection

of SMIC, i.e., LSMI is computed as a function of the kernel parameter included in K(x,x′) and the

maximizer of LSMI is chosen as the most promising one. A MATLAB R© implementation of SMIC is

publicly available [103].

3.8. Causal Direction Estimation

Finally, we show how the SMI estimator can be used for causal direction estimation.

3.8.1. Introduction

Learning causality from data is one of the important challenges in the artificial intelligence, statistics,

and machine learning communities [105]. A traditional method of learning causal relationship from

observational data is based on the linear-dependence Gaussian-noise model [106]. However, the linear-

Gaussian assumption is too restrictive and may not be fulfilled in practice. Recently, non-Gaussianity

and non-linearity have been shown to be beneficial in causal inference, because it can break symmetry

between observed variables [107,108]. Since then, much attention has been paid to the discovery of

non-linear causal relationship through non-Gaussian noise models [109].

In the framework of non-linear non-Gaussian causal inference, the relation between a cause X and

an effect Y is assumed to be described by Y = f(X) + E, where f is a non-linear function and E is

non-Gaussian additive noise that is independent of the cause X . Under this additive noise assumption,

it was shown [108] that the causal direction between X and Y can be identified based on a hypothesis

test of whether the causal model Y = f(X) + E or the alternative model X = f ′(Y ) + E ′ fits the data

well—here, the goodness of fit is measured by independence between inputs and residuals (i.e., estimated

noise). In [108], the functions f and f ′ were learned by the Gaussian process (GP) regression [110], and

the independence between inputs and residuals was evaluated by the Hilbert–Schmidt independence

criterion (HSIC) [85].

However, standard regression methods such as GP are designed to handle Gaussian noise, and thus

they may not be suited for discovering causality in the non-Gaussian additive noise formulation. To cope

with this problem, an alternative regression method called HSIC regression was proposed [109], which

learns a function so that the dependence between inputs and residuals is directly minimized based on

HSIC. Through experiments, HSIC regression was shown to outperform the GP-based method [109].

However, the choice of the kernel width in HSIC regression heavily affects the sensitivity of the

independence measure, and systematic model selection strategies are not available. Another weakness

of HSIC regression is that the kernel width of the regression model is fixed to the same value as HSIC.

This crucially limits the flexibility of function approximation in HSIC regression.

To overcome the above weaknesses, an SMI-based regression method for causal inference called

least-squares independence regression (LSIR) was developed [35]. Below, we review LSIR.
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3.8.2. Dependence Minimizing Regression with SMI

Suppose random variables X ∈ R and Y ∈ R are connected by the following additive

noise model [108]:

Y = f(X) + E

where f : R → R is some non-linear function and E ∈ R is a zero-mean random variable that

is independent of X . The goal of dependence minimizing regression is, from i.i.d. paired samples

{(xi, yi)}ni=1, to obtain a function f̂ such that input X and estimated additive noise Ê = Y − f̂(X)

are independent.

Let us employ a linear model for dependence minimizing regression:

fβ(x) =
m∑
l=1

βlψl(x) = β�ψ(x)

where m is the number of basis functions, β = (β1, . . . , βm)
� are regression parameters, and

ψ(x) = (ψ1(x), . . . , ψm(x))
� are basis functions. In LSMI-based dependence minimization regression,

the regression parameters β are learned as:

min
β

[
LSMI

({(xi, ei)}ni=1

)
+

γ

2
β�β

]
where ei = yi − fβ(xi) is the residual and γ > 0 is the regularization parameter to avoid overfitting.

For regression parameter learning, a gradient descent method may be used:

β ←− β − t

(
∂LSMI

∂β
+ γβ

)
where t is the step size. The gradient ∂LSMI

∂β
can be approximately expressed as:

∂LSMI

∂β
=

n∑
�=1

θ̂�
∂ĥ�

∂β
− 1

2

n∑
�,�′=1

θ̂�θ̂�′
∂Ĥ�,�′

∂β

where

∂ĥ�

∂β
≈ − 1

2nσ2

n∑
j=1

exp

(
−(xi − x�)

2 + (ei − e�)
2

2σ2

)
(ei − e�)ψ(xi),

∂Ĥ�,�′

∂β
≈ − 1

2n2σ2

n∑
i,j=1

exp

(
−(xi − x�)

2 + (ej − e�)
2 + (xi − x�′)

2 + (ej − e�′)
2

2σ2

)

×
(
(ej − e�)ψ(xi) + (ei − e�)ψ(xj)

)

Note that, in the above derivation, the dependence of β on ei is ignored for simplicity. Although it is

possible to exactly compute the derivative in principle, this approximated expression is computationally

more efficient with good performance in practice.
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By taking into account the assumption that the mean of noise E is zero, the final regressor is

obtained as:

f̂(x) = f
̂β(x) +

1

n

n∑
i=1

(
yi − f

̂β(xi)
)

This method is called least-squares independence regression (LSIR) [35]. A MATLAB R©

implementation of LSIR is publicly available [111].

3.8.3. Causal Direction Inference by LSIR

Our final goal is, given i.i.d. paired samples {(xi, yi)}ni=1, to determine whether X causes Y or vice

versa under the additive noise assumption. To this end, we test whether the causal model Y = fY (X) +

EY or the alternative model X = fX(Y )+EX fits the data well, where the goodness of fit is measured by

independence between inputs and residuals (i.e., estimated noise). Independence of inputs and residuals

may be decided in practice based on the permutation test procedure [47].

More specifically, LSIR is first run for {(xi, yi)}ni=1 as usual, and obtain a regression function f̂ . This

procedure also provides an SMI estimate, LSMI({(xi, êi)}ni=1), where êi = yi − f̂(xi). Next, pairs

of input and residual {(xi, êi)}ni=1 are randomly permuted as {(xi, êπ(i))}ni=1, where π(·) is a randomly

generated permutation function. Note that the permuted pairs of samples are independent of each other

because the random permutation breaks the dependency between X and Ê (if it exists). Then, an SMI

estimate for the permuted data, LSMI({(xi, êπ(i))}ni=1), is computed. This random permutation process

is repeated many times, and the distribution of LSMI values under the null-hypothesis that X and Ê

are independent is constructed. Finally, the p-value is approximated by evaluating the relative ranking

of LSMI computed from the original input-residual data, LSMI({(xi, êi)}ni=1), over the distribution of

LSMI values for randomly permuted data.

In order to decide the causal direction, the p-values pX→Y and pX←Y for both directions X → Y (i.e.,

X causes Y ) and X ← Y (i.e., Y causes X) are computed. Then, for a given significance level δ, the

causal direction is determined as follows:

• If pX→Y > δ and pX←Y ≤ δ, the causal model X → Y is chosen.

• If pX←Y > δ and pX→Y ≤ δ, the causal model X ← Y is selected.

• If pX→Y , pX←Y ≤ δ, perhaps there is no causal relation between X and Y or our modeling

assumption is not correct (e.g., an unobserved confounding variable exists).

• If pX→Y , pX←Y > δ, perhaps our modeling assumption is not correct or it is not possible to identify

a causal direction (i.e., X , Y , and E are Gaussian random variables).

When we have prior knowledge that there exists a causal relation between X and Y but the causal

direction is unknown, the values of pX→Y and pX←Y may be simply compared for determining the causal

direction as follows:

• If pX→Y > pX←Y , we conclude that X causes Y .

• Otherwise, we conclude that Y causes X .

This simplified procedure does not include the computational expensive permutation process and thus it

is computationally very efficient.
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4. Conclusions

In this article, we reviewed recent development in the estimation of squared-loss mutual information
(SMI) and its application to machine learning. The key idea for accurately estimating SMI is to

directly estimate the ratio of probability densities without separately estimating each density. A notable

advantage of the SMI estimator called least-squares mutual information (LSMI) [19] is that it can

be computed analytically in a computationally more efficient and numerically more stable way than

ordinary MI.

We have introduced SMI as a measure of statistical independence between random variables. On the

other hand, ordinary MI has a rich information-theoretic interpretation via entropies. Thus, it is important

to investigate an information-theoretic meaning of SMI, which remains to be an open question currently.

Various methods of direct density-ratio estimation have been explored so far [16,18], and such

density ratio estimators were shown to be applicable to an even wider class of machine learning

tasks beyond SMI estimation, such as non-stationarity adaptation [112], outlier detection [113],

change detection [114,115], class-balance estimation [116], two-sample homogeneity testing [117,118],

probabilistic classification [119,120], and conditional density estimation [121].

Improving the accuracy of density ratio estimation contributes to enhancing the performance of the

above machine learning solutions. Recent advances in this line of research include dimensionality

reduction for density ratio estimation [122–124], a unified statistical framework of density ratio

estimation [18], and extensions to relative density ratios [125] and density differences [126]. Further

improving the accuracy and computational efficiency and exploring new application areas are important

future directions to pursue.

More program codes are publicly available [127].
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Abstract

Divergence estimators based on direct approximation of density-ratios without go-
ing through separate approximation of numerator and denominator densities have
been successfully applied to machine learning tasks that involve distribution com-
parison such as outlier detection, transfer learning, and two-sample homogeneity
test. However, since density-ratio functions often possess high fluctuation, diver-
gence estimation is still a challenging task in practice. In this paper, we propose to
use relative divergences for distribution comparison, which involves approximation
of relative density-ratios. Since relative density-ratios are always smoother than
corresponding ordinary density-ratios, our proposed method is favorable in terms
of the non-parametric convergence speed. Furthermore, we show that the proposed
divergence estimator has asymptotic variance independent of the model complexity
under a parametric setup, implying that the proposed estimator hardly overfits even
with complex models. Through experiments, we demonstrate the usefulness of the
proposed approach.
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1 Introduction

Comparing probability distributions is a fundamental task in statistical data processing. It
can be used for, e.g., outlier detection (Smola et al., 2009; Hido et al., 2011), two-sample
homogeneity test (Gretton et al., 2007; Sugiyama et al., 2011), and transfer learning
(Shimodaira, 2000; Sugiyama et al., 2007).

A standard approach to comparing probability densities p(x) and p′(x) would be to
estimate a divergence from p(x) to p′(x), such as the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951):

KL[p(x), p′(x)] :=
∫

log

(
p(x)

p′(x)

)
p(x)dx.

A naive way to estimate the KL divergence is to separately approximate the densities p(x)
and p′(x) from data and plug the estimated densities in the above definition. However,
since density estimation is known to be a hard task (Vapnik, 1998), this approach does not
work well unless a good parametric model is available. Recently, a divergence estimation
approach which directly approximates the density ratio,

r(x) :=
p(x)

p′(x)
,

without going through separate approximation of densities p(x) and p′(x) has been pro-
posed (Sugiyama et al., 2008; Nguyen et al., 2010). Such density-ratio approximation
methods were proved to achieve the optimal non-parametric convergence rate in the mini-
max sense.

However, the KL divergence estimation via density-ratio approximation is computa-
tionally rather expensive due to the non-linearity introduced by the ‘log’ term. To cope
with this problem, another divergence called the Pearson (PE) divergence (Pearson, 1900)
is useful. The PE divergence from p(x) to p′(x) is defined as

PE[p(x), p′(x)] :=
1

2

∫ (
p(x)

p′(x)
− 1

)2

p′(x)dx.

The PE divergence is a squared-loss variant of the KL divergence, and they both belong to
the class of the Ali-Silvey-Csiszár divergences (which is also known as the f -divergences,
see Ali and Silvey, 1966; Csiszár, 1967). Thus, the PE and KL divergences share similar
properties, e.g., they are non-negative and vanish if and only if p(x) = p′(x).

Similarly to the KL divergence estimation, the PE divergence can also be accurately
estimated based on density-ratio approximation (Kanamori et al., 2009): the density-ratio
approximator called unconstrained least-squares importance fitting (uLSIF) gives the PE
divergence estimator analytically, which can be computed just by solving a system of
linear equations. The practical usefulness of the uLSIF-based PE divergence estimator
was demonstrated in various applications such as outlier detection (Hido et al., 2011), two-
sample homogeneity test (Sugiyama et al., 2011), and dimensionality reduction (Suzuki
and Sugiyama, 2010).
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In this paper, we first establish the non-parametric convergence rate of the uLSIF-
based PE divergence estimator, which elucidates its superior theoretical properties. How-
ever, it also reveals that its convergence rate is actually governed by the ‘sup’-norm of
the true density-ratio function: maxx r(x). This implies that, in the region where the
denominator density p′(x) takes small values, the density ratio r(x) = p(x)/p′(x) tends
to take large values and therefore the overall convergence speed becomes slow. More crit-
ically, density ratios can even diverge to infinity under a rather simple setting, e.g., when
the ratio of two Gaussian functions is considered (Cortes et al., 2010). This makes the
paradigm of divergence estimation based on density-ratio approximation unreliable.

In order to overcome this fundamental problem, we propose an alternative approach to
distribution comparison called α-relative divergence estimation. In the proposed approach,
we estimate the quantity called the α-relative divergence, which is the divergence from
p(x) to the α-mixture density αp(x) + (1 − α)p′(x) for 0 ≤ α < 1. For example, the
α-relative PE divergence is given by

PEα[p(x), p
′(x)] := PE[p(x), αp(x) + (1− α)p′(x)]

=
1

2

∫ (
p(x)

αp(x) + (1− α)p′(x)
− 1

)2

(αp(x) + (1− α)p′(x)) dx.

We estimate the α-relative divergence by direct approximation of the α-relative density-
ratio:

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
.

A notable advantage of this approach is that the α-relative density-ratio is always
bounded above by 1/α when α > 0, even when the ordinary density-ratio is unbounded.
Based on this feature, we theoretically show that the α-relative PE divergence estima-
tor based on α-relative density-ratio approximation is more favorable than the ordinary
density-ratio approach in terms of the non-parametric convergence speed.

We further prove that, under a correctly-specified parametric setup, the asymptotic
variance of our α-relative PE divergence estimator does not depend on the model com-
plexity. This means that the proposed α-relative PE divergence estimator hardly overfits
even with complex models.

Through extensive experiments on outlier detection, two-sample homogeneity test, and
transfer learning, we demonstrate that our proposed α-relative PE divergence estimator
compares favorably with alternative approaches.

The rest of this paper is structured as follows. In Section 2, our proposed relative PE
divergence estimator is described. In Section 3, we provide non-parametric analysis of the
convergence rate and parametric analysis of the variance of the proposed PE divergence
estimator. In Section 4, we experimentally evaluate the performance of the proposed
method on various tasks. Finally, in Section 5, we conclude the paper by summarizing
our contributions and describing future prospects.
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2 Estimation of Relative Pearson Divergence via

Least-Squares Relative Density-Ratio Approxima-

tion

In this section, we propose an estimator of the relative Pearson (PE) divergence based on
least-squares relative density-ratio approximation.

2.1 Problem Formulation

Suppose we are given independent and identically distributed (i.i.d.) samples {xi}ni=1

from a d-dimensional distribution P with density p(x) and i.i.d. samples {x′j}n′
j=1 from

another d-dimensional distribution P ′ with density p′(x):

{xi}ni=1
i.i.d.∼ P,

{x′j}n
′

j=1
i.i.d.∼ P ′.

The goal of this paper is to compare the two underlying distributions P and P ′ only using
the two sets of samples {xi}ni=1 and {x′j}n′

j=1.
For 0 ≤ α < 1, let qα(x) be the α-mixture density of p(x) and p′(x):

qα(x) := αp(x) + (1− α)p′(x).

Let rα(x) be the α-relative density-ratio of p(x) and p′(x):

rα(x) :=
p(x)

αp(x) + (1− α)p′(x)
=

p(x)

qα(x)
. (1)

We define the α-relative PE divergence from p(x) to p′(x) as

PEα :=
1

2
Eqα(x)

[
(rα(x)− 1)2

]
, (2)

where Ep(x)[f(x)] denotes the expectation of f(x) under p(x):

Ep(x)[f(x)] =

∫
f(x)p(x)dx.

When α = 0, PEα is reduced to the ordinary PE divergence. Thus, the α-relative PE
divergence can be regarded as a ‘smoothed’ extension of the ordinary PE divergence.

Below, we give a method for estimating the α-relative PE divergence based on the
approximation of the α-relative density-ratio.
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2.2 Direct Approximation of α-Relative Density-Ratios

Here, we describe a method for approximating the α-relative density-ratio (1).
Let us model the α-relative density-ratio rα(x) by the following kernel model:

g(x;θ) :=
n∑

�=1

θ�K(x,x�),

where θ := (θ1, . . . , θn)
� are parameters to be learned from data samples, � denotes

the transpose of a matrix or a vector, and K(x,x′) is a kernel basis function. In the
experiments, we use the Gaussian kernel:

K(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
, (3)

where σ (> 0) is the kernel width.
The parameters θ in the model g(x;θ) are determined so that the following expected

squared-error J is minimized:

J(θ) :=
1

2
Eqα(x)

[
(g(x;θ)− rα(x))

2]
=

α

2
Ep(x)

[
g(x;θ)2

]
+

(1− α)

2
Ep′(x)

[
g(x;θ)2

]− Ep(x) [g(x;θ)] + Const.,

where we used rα(x)qα(x) = p(x) in the third term. Approximating the expectations by
empirical averages, we obtain the following optimization problem:

θ̂ := argmin
θ∈Rn

[
1

2
θ�Ĥθ − ĥ

�
θ +

λ

2
θ�θ

]
, (4)

where a penalty term λθ�θ/2 is included for regularization purposes, and λ (≥ 0) denotes

the regularization parameter. Ĥ is the n× n matrix with the (�, �′)-th element

Ĥ�,�′ :=
α

n

n∑
i=1

K(xi,x�)K(xi,x�′) +
(1− α)

n′

n′∑
j=1

K(x′j,x�)K(x′j,x�′). (5)

ĥ is the n-dimensional vector with the �-th element

ĥ� :=
1

n

n∑
i=1

K(xi,x�).

It is easy to confirm that the solution of Eq.(4) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ,
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where In denotes the n-dimensional identity matrix. Finally, a density-ratio estimator is
given as

r̂α(x) := g(x; θ̂) =
n∑

�=1

θ̂�K(x,x�). (6)

When α = 0, the above method is reduced to a direct density-ratio estimator called
unconstrained least-squares importance fitting (uLSIF; Kanamori et al., 2009). Thus, the
above method can be regarded as an extension of uLSIF to the α-relative density-ratio.
For this reason, we refer to our method as relative uLSIF (RuLSIF).

The performance of RuLSIF depends on the choice of the kernel function (the kernel
width σ in the case of the Gaussian kernel) and the regularization parameter λ. Model
selection of RuLSIF is possible based on cross-validation with respect to the squared-error
criterion J , in the same way as the original uLSIF (Kanamori et al., 2009).

2.3 α-Relative PE Divergence Estimation Based on RuLSIF

Using an estimator of the α-relative density-ratio rα(x), we can construct estimators of
the α-relative PE divergence (2). After a few lines of calculation, we can show that the
α-relative PE divergence (2) is equivalently expressed as

PEα = −α

2
Ep(x)

[
rα(x)

2
]− (1− α)

2
Ep′(x)

[
rα(x)

2
]
+ Ep(x) [rα(x)]− 1

2

=
1

2
Ep(x) [rα(x)]− 1

2
.

Note that the first line can also be obtained via Legendre-Fenchel convex duality of the
divergence functional (Rockafellar, 1970).

Based on these expressions, we consider the following two estimators:

P̂Eα := − α

2n

n∑
i=1

r̂(xi)
2 − (1− α)

2n′

n′∑
j=1

r̂(x′j)
2 +

1

n

n∑
i=1

r̂(xi)− 1

2
, (7)

P̃Eα :=
1

2n

n∑
i=1

r̂(xi)− 1

2
. (8)

We note that the α-relative PE divergence (2) can have further different expressions than
the above ones, and corresponding estimators can also be constructed similarly. However,
the above two expressions will be particularly useful: the first estimator P̂Eα has superior
theoretical properties (see Section 3) and the second one P̃Eα is simple to compute.

2.4 Illustrative Examples

Here, we numerically illustrate the behavior of RuLSIF (6) using toy datasets. Let the
numerator distribution be P = N(0, 1), where N(μ, σ2) denotes the normal distribution
with mean μ and variance σ2. The denominator distribution P ′ is set as follows:
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(a) P ′ = N(0, 1): P and P ′ are the same.

(b) P ′ = N(0, 0.6): P ′ has smaller standard deviation than P .

(c) P ′ = N(0, 2): P ′ has larger standard deviation than P .

(d) P ′ = N(0.5, 1): P and P ′ have different means.

(e) P ′ = 0.95N(0, 1) + 0.05N(3, 1): P ′ contains an additional component to P .

We draw n = n′ = 300 samples from the above densities, and compute RuLSIF for α = 0,
0.5, and 0.95.

Figure 1 shows the true densities, true density-ratios, and their estimates by RuLSIF.
As can be seen from the graphs, the profiles of the true α-relative density-ratios get
smoother as α increases. In particular, in the datasets (b) and (d), the true density-ratios
for α = 0 diverge to infinity, while those for α = 0.5 and 0.95 are bounded (by 1/α).
Overall, as α gets large, the estimation quality of RuLSIF tends to be improved since the
complexity of true density-ratio functions is reduced.

Note that, in the dataset (a) where p(x) = p′(x), the true density-ratio rα(x) does
not depend on α since rα(x) = 1 for any α. However, the estimated density-ratios still

depend on α through the matrix Ĥ (see Eq.(5)).

3 Theoretical Analysis

In this section, we analyze theoretical properties of the proposed PE divergence estima-
tors. More specifically, we provide non-parametric analysis of the convergence rate in
Section 3.1, and parametric analysis of the estimation variance in Section 3.2. Since our
theoretical analysis is highly technical, we focus on explaining practical insights we can
gain from the theoretical results here; we describe all the mathematical details of the non-
parametric convergence-rate analysis in Appendix A and the parametric variance analysis
in Appendix B.

For theoretical analysis, let us consider a rather abstract form of our relative density-
ratio estimator described as

argmin
g∈G

[
α

2n

n∑
i=1

g(xi)
2 +

(1− α)

2n′

n′∑
j=1

g(x′j)
2 − 1

n

n∑
i=1

g(xi) +
λ

2
R(g)2

]
, (9)

where G is some function space (i.e., a statistical model) and R(·) is some regularization
functional.

3.1 Non-Parametric Convergence Analysis

First, we elucidate the non-parametric convergence rate of the proposed PE estimators.
Here, we practically regard the function space G as an infinite-dimensional reproducing
kernel Hilbert space (RKHS; Aronszajn, 1950) such as the Gaussian kernel space, and
R(·) as the associated RKHS norm.
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Figure 1: Illustrative examples of density-ratio approximation by RuLSIF. From left to
right: true densities (P = N(0, 1)), true density-ratios, and their estimates for α = 0, 0.5,
and 0.95.
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3.1.1 Theoretical Results

Let us represent the complexity of the function space G by γ (0 < γ < 2); the larger γ is,
the more complex the function class G is (see Appendix A for its precise definition). We
analyze the convergence rate of our PE divergence estimators as n̄ := min(n, n′) tends to
infinity for λ = λn̄ under

λn̄ → o(1) and λ−1n̄ = o(n̄2/(2+γ)).

The first condition means that λn̄ tends to zero, but the second condition means that its
shrinking speed should not be too fast.

Under several technical assumptions detailed in Appendix A, we have the following
asymptotic convergence results for the two PE divergence estimators P̂Eα (7) and P̃Eα

(8):

P̂Eα − PEα = Op(n̄
−1/2c‖rα‖∞ + λn̄ max(1, R(rα)

2)), (10)

and

P̃Eα − PEα = Op

(
λ
1/2
n̄ ‖rα‖1/2∞ max{1, R(rα)}
+ λn̄ max{1, ‖rα‖(1−γ/2)/2∞ , R(rα)‖rα‖(1−γ/2)/2∞ , R(rα)}

)
, (11)

where Op denotes the asymptotic order in probability,

c := (1 + α)
√
Vp(x)[rα(x)] + (1− α)

√
Vp′(x)[rα(x)], (12)

and Vp(x)[f(x)] denotes the variance of f(x) under p(x):

Vp(x)[f(x)] =

∫ (
f(x)−

∫
f(x)p(x)dx

)2

p(x)dx.

3.1.2 Interpretation

In both Eq.(10) and Eq.(11), the coefficients of the leading terms (i.e., the first terms) of
the asymptotic convergence rates become smaller as ‖rα‖∞ gets smaller. Since

‖rα‖∞ =
∥∥∥(α + (1− α)/r(x)

)−1∥∥∥
∞

< 1
α

for α > 0,

larger α would be more preferable in terms of the asymptotic approximation error. Note
that when α = 0, ‖rα‖∞ can tend to infinity even under a simple setting that the ratio of
two Gaussian functions is considered (Cortes et al., 2010, see also the numerical examples
in Section 2.4 of this paper). Thus, our proposed approach of estimating the α-relative
PE divergence (with α > 0) would be more advantageous than the naive approach of
estimating the plain PE divergence (which corresponds to α = 0) in terms of the non-
parametric convergence rate.
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The above results also show that P̂Eα and P̃Eα have different asymptotic convergence
rates. The leading term in Eq.(10) is of order n̄−1/2, while the leading term in Eq.(11)

is of order λ
1/2
n̄ , which is slightly slower (depending on the complexity γ) than n̄−1/2.

Thus, P̂Eα would be more accurate than P̃Eα in large sample cases. Furthermore, when
p(x) = p′(x), Vp(x)[rα(x)] = 0 holds and thus c = 0 holds (see Eq.(12)). Then the leading

term in Eq.(10) vanishes and therefore P̂Eα has the even faster convergence rate of order
λn̄, which is slightly slower (depending on the complexity γ) than n̄−1. Similarly, if α is
close to 1, rα(x) ≈ 1 and thus c ≈ 0 holds.

When n̄ is not large enough to be able to neglect the terms of o(n̄−1/2), the terms of
O(λn̄) matter. If ‖rα‖∞ and R(rα) are large (this can happen, e.g., when α is close to
0), the coefficient of the O(λn̄)-term in Eq.(10) can be larger than that in Eq.(11). Then

P̃Eα would be more favorable than P̂Eα in terms of the approximation accuracy.

3.1.3 Numerical Illustration

Let us numerically investigate the above interpretation using the same artificial dataset
as Section 2.4.

Figure 2 shows the mean and standard deviation of P̂Eα and P̃Eα over 100 runs for
α = 0, 0.5, and 0.95, as functions of n (= n′ in this experiment). The true PEα (which
was numerically computed) is also plotted in the graphs. The graphs show that both the

estimators P̂Eα and P̃Eα approach the true PEα as the number of samples increases, and
the approximation error tends to be smaller if α is larger.

When α is large, P̂Eα tends to perform slightly better than P̃Eα. On the other hand,
when α is small and the number of samples is small, P̃Eα slightly compares favorably
with P̂Eα. Overall, these numerical results well agree with our theory.

3.2 Parametric Variance Analysis

Next, we analyze the asymptotic variance of the PE divergence estimator P̂Eα (7) under
a parametric setup.

3.2.1 Theoretical Results

As the function space G in Eq.(9), we consider the following parametric model:

G = {g(x;θ) | θ ∈ Θ ⊂ Rb},

where b is a finite number. Here we assume that the above parametric model is correctly
specified, i.e., it includes the true relative density-ratio function rα(x): there exists θ∗

such that

g(x;θ∗) = rα(x).

Here, we use RuLSIF without regularization, i.e., λ = 0 in Eq.(9).
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Figure 2: Illustrative examples of divergence estimation by RuLSIF. From left to right:
true density-ratios for α = 0, 0.5, and 0.95 (P = N(0, 1)), and estimation error of PE
divergence for α = 0, 0.5, and 0.95.
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Let us denote the variance of P̂Eα (7) by V[P̂Eα], where randomness comes from the
draw of samples {xi}ni=1 and {x′j}n′

j=1. Then, under a standard regularity condition for

the asymptotic normality (see Section 3 of van der Vaart, 2000), V[P̂Eα] can be expressed
and upper-bounded as

V[P̂Eα] =
1

n
Vp(x)

[
rα − αrα(x)

2

2

]
+

1

n′
Vp′(x)

[
(1− α)rα(x)

2

2

]
+ o

(
1

n
,
1

n′

)
(13)

≤ ‖rα‖2∞
n

+
α2‖rα‖4∞

4n
+

(1− α)2‖rα‖4∞
4n′

+ o

(
1

n
,
1

n′

)
. (14)

Let us denote the variance of P̃Eα by V[P̃Eα]. Then, under a standard regularity
condition for the asymptotic normality (see Section 3 of van der Vaart, 2000), the variance

of P̃Eα is asymptotically expressed as

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]�U−1

α ∇g

2

]
+

1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]�U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
, (15)

where ∇g is the gradient vector of g with respect to θ at θ = θ∗, i.e.,

(∇g(x;θ∗))j =
∂g(x;θ∗)

∂θj
.

The matrix Uα is defined by

Uα = αEp(x)[∇g∇g�] + (1− α)Ep′(x)[∇g∇g�].

3.2.2 Interpretation

Eq.(13) shows that, up to O
(
1
n
, 1
n′
)
, the variance of P̂Eα depends only on the true relative

density-ratio rα(x), not on the estimator of rα(x). This means that the model complexity
does not affect the asymptotic variance. Therefore, overfitting would hardly occur in the
estimation of the relative PE divergence even when complex models are used. We note
that the above superior property is applicable only to relative PE divergence estimation,
not to relative density-ratio estimation. This implies that overfitting occurs in relative
density-ratio estimation, but the approximation error cancels out in relative PE divergence
estimation.

On the other hand, Eq.(15) shows that the variance of P̃Eα is affected by the model
G, since the factor Ep(x)[∇g]�U−1

α ∇g depends on the model complexity in general. When
the equality

Ep(x)[∇g]�U−1
α ∇g(x;θ∗) = rα(x)
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holds, the variances of P̃Eα and P̂Eα are asymptotically the same. However, in general,
the use of P̂Eα would be more recommended.

Eq.(14) shows that the variance V[P̂Eα] can be upper-bounded by the quantity de-
pending on ‖rα‖∞, which is monotonically lowered if ‖rα‖∞ is reduced. Since ‖rα‖∞
monotonically decreases as α increases, our proposed approach of estimating the α-relative
PE divergence (with α > 0) would be more advantageous than the naive approach of esti-
mating the plain PE divergence (which corresponds to α = 0) in terms of the parametric
asymptotic variance.

3.2.3 Numerical Illustration

Here, we show some numerical results for illustrating the above theoretical results using
the one-dimensional datasets (b) and (c) in Section 2.4. Let us define the parametric
model as

Gk =

{
g(x;θ) =

r(x;θ)

αr(x;θ) + 1− α

∣∣∣∣ r(x;θ) = exp

(
k∑

�=0

θ�x
�

)
, θ ∈ Rk+1

}
. (16)

The dimension of the model Gk is equal to k + 1. The α-relative density-ratio rα(x) can
be expressed using the ordinary density-ratio r(x) = p(x)/p′(x) as

rα(x) =
r(x)

αr(x) + 1− α
.

Thus, when k > 1, the above model Gk includes the true relative density-ratio rα(x) of the
datasets (b) and (c). We test RuLSIF with α = 0.2 and 0.8 for the model (16) with degree
k = 1, 2, . . . , 8. The parameter θ is learned so that Eq.(9) is minimized by a quasi-Newton
method.

The standard deviations of P̂Eα and P̃Eα for the datasets (b) and (c) are depicted
in Figure 3 and Figure 4, respectively. The graphs show that the degree of models does
not significantly affect the standard deviation of P̂Eα (i.e., no overfitting), as long as the
model includes the true relative density-ratio (i.e., k > 1). On the other hand, bigger

models tend to produce larger standard deviations in P̃Eα. Thus, the standard deviation
of P̃Eα more strongly depends on the model complexity.

4 Experiments

In this section, we experimentally evaluate the performance of the proposed method in
two-sample homogeneity test, outlier detection, and transfer learning tasks.

4.1 Two-Sample Homogeneity Test

First, we apply the proposed divergence estimator to two-sample homogeneity test.
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Figure 3: Standard deviations of PE estimators for dataset (b) (i.e., P = N(0, 1) and
P ′ = N(0, 0.6)) as functions of the sample size n = n′.
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Figure 4: Standard deviations of PE estimators for dataset (c) (i.e., P = N(0, 1) and
P ′ = N(0, 2)) as functions of the sample size n = n′.
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4.1.1 Divergence-Based Two-Sample Homogeneity Test

Given two sets of samples X = {xi}ni=1
i.i.d.∼ P and X ′ = {x′j}n′

j=1
i.i.d.∼ P ′, the goal of the

two-sample homogeneity test is to test the null hypothesis that the probability distribu-
tions P and P ′ are the same against its complementary alternative (i.e., the distributions
are different).

By using an estimator D̂iv of some divergence between the two distributions P and P ′,
homogeneity of two distributions can be tested based on the permutation test procedure
(Efron and Tibshirani, 1993) as follows:

• Obtain a divergence estimate D̂iv using the original datasets X and X ′.

• Randomly permute the |X ∪ X ′| samples, and assign the first |X | samples to a set

X̃ and the remaining |X ′| samples to another set X̃ ′.

• Obtain a divergence estimate D̃iv using the randomly shuffled datasets X̃ and X̃ ′

(note that, since X̃ and X̃ ′ can be regarded as being drawn from the same distribu-

tion, D̃iv tends to be close to zero).

• Repeat this random shuffling procedure many times, and construct the empirical
distribution of D̃iv under the null hypothesis that the two distributions are the
same.

• Approximate the p-value by evaluating the relative ranking of the original D̂iv in
the distribution of D̃iv.

When an asymmetric divergence such as the KL divergence (Kullback and Leibler,
1951) or the PE divergence (Pearson, 1900) is adopted for two-sample homogeneity test,
the test results depend on the choice of directions : a divergence from P to P ′ or from P ′

to P . (Sugiyama et al., 2011) proposed to choose the direction that gives a smaller p-
value—it was experimentally shown that, when the uLSIF-based PE divergence estimator
is used for the two-sample homogeneity test (which is called the least-squares two-sample
homogeneity test ; LSTT), the heuristic of choosing the direction with a smaller p-value
contributes to reducing the type-II error (the probability of accepting incorrect null-
hypotheses, i.e., two distributions are judged to be the same when they are actually
different), while the increase of the type-I error (the probability of rejecting correct null-
hypotheses, i.e., two distributions are judged to be different when they are actually the
same) is kept moderate.

Below, we refer to LSTT with p(x)/p′(x) as the plain LSTT, LSTT with p′(x)/p(x)
as the reciprocal LSTT, and LSTT with heuristically choosing the one with a smaller
p-value as the adaptive LSTT.

4.1.2 Artificial Datasets

We illustrate how the proposed method behaves in two-sample homogeneity test scenarios
using the artificial datasets (a)–(d) described in Section 2.4. We test the plain LSTT,
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reciprocal LSTT, and adaptive LSTT for α = 0, 0.5, and 0.95, with significance level 5%.
The experimental results are shown in Figure 5. For the dataset (a) where P = P ′

(i.e., the null hypothesis is correct), the plain LSTT and reciprocal LSTT correctly accept
the null hypothesis with probability approximately 95%. This means that the type-I error
is properly controlled in these methods. On the other hand, the adaptive LSTT tends to
give slightly lower acceptance rates than 95% for this toy dataset, but the adaptive LSTT
with α = 0.5 still works reasonably well. This implies that the heuristic of choosing the
method with a smaller p-value does not have critical influence on the type-I error.

In the datasets (b), (c), and (d), P is different from P ′ (i.e., the null hypothesis is not
correct), and thus we want to reduce the acceptance rate of the incorrect null-hypothesis
as much as possible. In the plain setup for the dataset (b) and the reciprocal setup for the
dataset (c), the true density-ratio functions with α = 0 diverge to infinity, and thus larger
α makes the density-ratio approximation more reliable. However, α = 0.95 does not work
well because it produces an overly-smoothed density-ratio function and thus it is hard to
be distinguished from the completely constant density-ratio function (which corresponds
to P = P ′). On the other hand, in the reciprocal setup for the dataset (b) and the plain
setup for the dataset (c), small α performs poorly since density-ratio functions with large
α can be more accurately approximated than those with small α (see Figure 1). In the
adaptive setup, large α tends to perform slightly better than small α for the datasets (b)
and (c).

In the dataset (d), the true density-ratio function with α = 0 diverges to infinity for
both the plain and reciprocal setups. In this case, middle α performs the best, which
well balances the trade-off between high distinguishability from the completely constant
density-ratio function (which corresponds to P = P ′) and easy approximability. The same
tendency that middle α works well can also be mildly observed in the adaptive LSTT for
the dataset (d).

Overall, if the plain LSTT (or the reciprocal LSTT) is used, small α (or large α)
sometimes works excellently. However, it performs poorly in other cases and thus the
performance is unstable depending on the true distributions. The plain LSTT (or the
reciprocal LSTT) with middle α tends to perform reasonably well for all datasets. On
the other hand, the adaptive LSTT was shown to nicely overcome the above instability
problem when α is small or large. However, when α is set to be a middle value, the plain
LSTT and the reciprocal LSTT both give similar results and thus the adaptive LSTT
provides only a small amount of improvement.

Our empirical finding is that, if we have prior knowledge that one distribution has a
wider support than the other distribution, assigning the distribution with a wider support
to P ′ and setting α to be a large value seem to work well. If there is no knowledge on
the true distributions or two distributions have less overlapped supports, using middle α
in the adaptive setup seems to be a reasonable choice.

We will systematically investigate this issue using more complex datasets below.
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′ = N(0, 1): P and P

′ are the same.
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′ has larger standard deviation than P .
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Figure 5: Illustrative examples of two-sample homogeneity test based on relative diver-
gence estimation. From left to right: true densities (P = N(0, 1)), the acceptance rate of
the null hypothesis under the significance level 5% by plain LSTT, reciprocal LSTT, and
adaptive LSTT.
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4.1.3 Benchmark Datasets

Here, we apply the proposed two-sample homogeneity test to the binary classification
datasets taken from the IDA repository (Rätsch et al., 2001).

We test the adaptive LSTT with the RuLSIF-based PE divergence estimator for α = 0,
0.5, and 0.95; we also test themaximum mean discrepancy (MMD; Borgwardt et al., 2006),
which is a kernel-based two-sample homogeneity test method. The performance of MMD
depends on the choice of the Gaussian kernel width. Here, we adopt a version proposed by
(Sriperumbudur et al., 2009), which automatically optimizes the Gaussian kernel width.
The p-values of MMD are computed in the same way as LSTT based on the permutation
test procedure.

First, we investigate the rate of accepting the null hypothesis when the null hypothesis
is correct (i.e., the two distributions are the same). We split all the positive training
samples into two sets and perform two-sample homogeneity test for the two sets of samples.
The experimental results are summarized in Table 1, showing that the adaptive LSTT
with α = 0.5 compares favorably with those with α = 0 and 1 and MMD in terms of the
type-I error.

Next, we consider the situation where the null hypothesis is not correct (i.e., the two
distributions are different). The numerator samples are generated in the same way as
above, but a half of denominator samples are replaced with negative training samples.
Thus, while the numerator sample set contains only positive training samples, the denom-
inator sample set includes both positive and negative training samples. The experimental
results are summarized in Table 2, showing that the adaptive LSTT with α = 0.5 again
compares favorably with those with α = 0 and 1. Furthermore, LSTT with α = 0.5 tends
to outperform MMD in terms of the type-II error.

Overall, LSTT with α = 0.5 is shown to be a useful method for two-sample homo-
geneity test.

4.2 Inlier-Based Outlier Detection

Next, we apply the proposed method to outlier detection.

4.2.1 Density-Ratio Approach to Inlier-Based Outlier Detection

Let us consider an outlier detection problem of finding irregular samples in a dataset
(called an “evaluation dataset”) based on another dataset (called a “model dataset”) that
only contains regular samples. Defining the density ratio over the two sets of samples, we
can see that the density-ratio values for regular samples are close to one, while those for
outliers tend to be significantly deviated from one. Thus, density-ratio values could be
used as an index of the degree of outlyingness (Smola et al., 2009; Hido et al., 2011).

Since the evaluation dataset usually has a wider support than the model dataset,
we regard the evaluation dataset as samples corresponding to the denominator density
p′(x), and the model dataset as samples corresponding to the numerator density p(x).
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Table 1: Experimental results of two-sample homogeneity test for the IDA datasets. The
mean (and standard deviation in the bracket) rate of accepting the null hypothesis (i.e.,
P = P ′) under the significance level 5% is reported. The two sets of samples are both
taken from the positive training set (i.e., the null hypothesis is correct). Methods having
the mean acceptance rate 0.95 according to the one-sample t-test at the significance level
5% are specified by bold face.

Datasets d n = n′ MMD
LSTT LSTT LSTT

(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.96(0.20) 0.93(0.26) 0.92(0.27) 0.92(0.27)
thyroid 5 19 0.96(0.20) 0.95(0.22) 0.95(0.22) 0.88 (0.33)
titanic 5 21 0.94(0.24) 0.86 (0.35) 0.92(0.27) 0.89(0.31)
diabetes 8 85 0.96(0.20) 0.87 (0.34) 0.91(0.29) 0.82 (0.39)
breast-cancer 9 29 0.98 (0.14) 0.91(0.29) 0.94(0.24) 0.92(0.27)
flare-solar 9 100 0.93(0.26) 0.91(0.29) 0.95(0.22) 0.93(0.26)
heart 13 38 1.00 (0.00) 0.85 (0.36) 0.91(0.29) 0.93(0.26)
german 20 100 0.99 (0.10) 0.91(0.29) 0.92(0.27) 0.89(0.31)
ringnorm 20 100 0.97(0.17) 0.93(0.26) 0.91(0.29) 0.85 (0.36)
waveform 21 66 0.98 (0.14) 0.92(0.27) 0.93(0.26) 0.88 (0.33)

Table 2: Experimental results of two-sample homogeneity test for the IDA datasets. The
mean (and standard deviation in the bracket) rate of accepting the null hypothesis (i.e.,
P = P ′) under the significance level 5% is reported. The set of samples corresponding to
the numerator of the density ratio is taken from the positive training set and the set of
samples corresponding to the denominator of the density ratio is taken from the positive
training set and the negative training set (i.e., the null hypothesis is not correct). The
best method having the lowest mean acceptance rate and comparable methods according
to the two-sample t-test at the significance level 5% are specified by bold face.

Datasets d n = n′ MMD
LSTT LSTT LSTT

(α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 0.52 (0.50) 0.10(0.30) 0.02(0.14) 0.17(0.38)
thyroid 5 19 0.52(0.50) 0.81 (0.39) 0.65(0.48) 0.80 (0.40)
titanic 5 21 0.87(0.34) 0.86(0.35) 0.87(0.34) 0.88(0.33)
diabetes 8 85 0.31(0.46) 0.42(0.50) 0.47 (0.50) 0.57 (0.50)
breast-cancer 9 29 0.87 (0.34) 0.75(0.44) 0.80 (0.40) 0.79 (0.41)
flare-solar 9 100 0.51(0.50) 0.81 (0.39) 0.55(0.50) 0.66(0.48)
heart 13 38 0.53 (0.50) 0.28(0.45) 0.40(0.49) 0.62 (0.49)
german 20 100 0.56 (0.50) 0.55 (0.50) 0.44(0.50) 0.68 (0.47)
ringnorm 20 100 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.14)
waveform 21 66 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.00(0.00)
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Table 3: Mean AUC score (and the standard deviation in the bracket) over 1000 trials for
the artificial outlier-detection dataset. The best method in terms of the mean AUC score
and comparable methods according to the two-sample t-test at the significance level 5%
are specified by bold face.

Input
dimensionality d

RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

1 .933(.089) .926(.100) .896 (.124)
5 .882(.099) .891(.091) .894(.086)
10 .842 (.107) .850(.103) .859(.092)

Then, outliers tend to have smaller density-ratio values (i.e., close to zero). As such,
density-ratio approximators can be used for outlier detection.

When evaluating the performance of outlier detection methods, it is important to take
into account both the detection rate (i.e., the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (i.e., the amount of true inliers an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric (Bradley, 1997).

4.2.2 Artificial Datasets

First, we illustrate how the proposed method behaves in outlier detection scenarios using
artificial datasets.

Let

P = N(0, Id),

P ′ = 0.95N(0, Id) + 0.05N(3d−1/21d, Id),

where d is the dimensionality of x and 1d is the d-dimensional vector with all one. Note
that this setup is the same as the dataset (e) described in Section 2.4 when d = 1. Here,
the samples drawn from N(0, Id) are regarded as inliers, while the samples drawn from
N(d−1/21d, Id) are regarded as outliers. We use n = n′ = 100 samples.

Table 3 describes the AUC values for input dimensionality d = 1, 5, and 10 for RuLSIF
with α = 0, 0.5, and 0.95. This shows that, as the input dimensionality d increases, the
AUC values overall get smaller. Thus, outlier detection becomes more challenging in
high-dimensional cases.

The result also shows that RuLSIF with small α tends to work well when the input
dimensionality is low, and RuLSIF with large α works better as the input dimensionality
increases. This tendency can be interpreted as follows: If α is small, the density-ratio
function tends to have sharp ‘hollow’ for outlier points (see the leftmost graph in Fig-
ure 2(e)). Thus, as long as the true density-ratio function can be accurately estimated,
small α would be preferable in outlier detection. When the data dimensionality is low,
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density-ratio approximation is rather easy and thus small α tends to perform well. How-
ever, as the data dimensionality increases, density-ratio approximation gets harder, and
thus large α which produces a smoother density-ratio function is more favorable since
such a smoother function can be more easily approximated than a ‘bumpy’ one produced
by small α.

4.2.3 Real-World Datasets

Next, we evaluate the proposed outlier detectionmethod using various real-world datasets:

IDA repository: The IDA repository (Rätsch et al., 2001) contains various binary classi-
fication tasks. Each dataset consists of positive/negative and training/test samples.
We use positive training samples as inliers in the “model” set. In the “evaluation”
set, we use at most 100 positive test samples as inliers and the first 5% of negative
test samples as outliers. Thus, the positive samples are treated as inliers and the
negative samples are treated as outliers.

Speech dataset: An in-house speech dataset, which contains short utterance samples
recorded from 2 male subjects speaking in French with sampling rate 44.1kHz. From
each utterance sample, we extracted a 50-dimensional line spectral frequencies vector
(Kain and Macon, 1998). We randomly take 200 samples from one class and assign
them to the model dataset. Then we randomly take 200 samples from the same
class and 10 samples from the other class.

20 Newsgroup dataset: The 20-Newsgroups dataset1 contains 20000 newsgroup docu-
ments, which contains the following 4 top-level categories: ‘comp’, ‘rec’, ‘sci’, and
‘talk’. Each document is expressed by a 100-dimensional bag-of-words vector of
term-frequencies. We randomly take 200 samples from the ‘comp’ class and assign
them to the model dataset. Then we randomly take 200 samples from the same
class and 10 samples from one of the other classes for the evaluation dataset.

The USPS hand-written digit dataset: The USPS hand-written digit dataset2 con-
tains 9298 digit images. Each image consists of 256 (= 16×16) pixels and each pixel
takes an integer value between 0 and 255 as the intensity level. We regard samples
in one class as inliers and samples in other classes as outliers. We randomly take
200 samples from the inlier class and assign them to the model dataset. Then we
randomly take 200 samples from the same inlier class and 10 samples from one of
the other classes for the evaluation dataset.

We compare the AUC scores of RuLSIF with α = 0, 0.5, and 0.95, and one-class
support vector machine (OSVM) with the Gaussian kernel (Schölkopf et al., 2001). We
used the LIBSVM implementation of OSVM (Chang and Lin, 2001). The Gaussian
width is set to the median distance between samples, which has been shown to be a useful

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.gaussianprocess.org/gpml/data/
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Table 4: Experimental results of outlier detection for various for real-world datasets.
Mean AUC score (and standard deviation in the bracket) over 100 trials is reported. The
best method having the highest mean AUC score and comparable methods according to
the two-sample t-test at the significance level 5% are specified by bold face. The datasets
are sorted in the ascending order of the input dimensionality d.

Datasets d
OSVM

(ν = 0.05)
OSVM
(ν = 0.1)

RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

IDA:banana 2 .668(.105) .676(.120) .597 (.097) .619 (.101) .623 (.115)
IDA:thyroid 5 .760 (.148) .782(.165) .804(.148) .796(.178) .722 (.153)
IDA:titanic 5 .757(.205) .752(.191) .750(.182) .701 (.184) .712 (.185)
IDA:diabetes 8 .636(.099) .610 (.090) .594 (.105) .575 (.105) .663(.112)
IDA:b-cancer 9 .741(.160) .691 (.147) .707(.148) .737(.159) .733(.160)
IDA:f-solar 9 .594 (.087) .590 (.083) .626(.102) .612(.100) .584 (.114)
IDA:heart 13 .714 (.140) .694 (.148) .748(.149) .769(.134) .726 (.127)
IDA:german 20 .612(.069) .604(.084) .605(.092) .597(.101) .605(.095)
IDA:ringnorm 20 .991(.012) .993(.007) .944 (.091) .971 (.062) .992(.010)
IDA:waveform 21 .812 (.107) .843 (.123) .879(.122) .875(.117) .885(.102)
Speech 50 .788 (.068) .830(.060) .804 (.101) .821(.076) .836(.083)
20News (‘rec’) 100 .598 (.063) .593 (.061) .628 (.105) .614 (.093) .767(.100)
20News (‘sci’) 100 .592 (.069) .589 (.071) .620 (.094) .609 (.087) .704(.093)
20News (‘talk’) 100 .661 (.084) .658 (.084) .672 (.117) .670 (.102) .823(.078)
USPS (1 vs. 2) 256 .889 (.052) .926(.037) .848 (.081) .878 (.088) .898 (.051)
USPS (2 vs. 3) 256 .823 (.053) .835 (.050) .803 (.093) .818 (.085) .879(.074)
USPS (3 vs. 4) 256 .901 (.044) .939 (.031) .950 (.056) .961 (.041) .984(.016)
USPS (4 vs. 5) 256 .871 (.041) .890 (.036) .857 (.099) .874 (.082) .941(.031)
USPS (5 vs. 6) 256 .825 (.058) .859 (.052) .863 (.078) .867 (.068) .901(.049)
USPS (6 vs. 7) 256 .910 (.034) .950 (.025) .972 (.038) .984 (.018) .994(.010)
USPS (7 vs. 8) 256 .938 (.030) .967 (.021) .941 (.053) .951 (.039) .980(.015)
USPS (8 vs. 9) 256 .721 (.072) .728 (.073) .721 (.084) .728 (.083) .761(.096)
USPS (9 vs. 0) 256 .920 (.037) .966 (.023) .982 (.048) .989 (.022) .994(.011)

heuristic (Schölkopf et al., 2001). Since there is no systematic method to determine the
tuning parameter ν in OSVM, we report the results for ν = 0.05 and 0.1.

Themean and standard deviation of the AUC scores over 100 runs with random sample
choice are summarized in Table 4, showing that RuLSIF overall compares favorably with
OSVM. Among the RuLSIF methods, small α tends to perform well for low-dimensional
datasets, and large α tends to work well for high-dimensional datasets. This tendency
well agrees with that for the artificial datasets (see Section 4.2.2).
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4.3 Transfer Learning

Finally, we apply the proposed method to transfer learning.

4.3.1 Transductive Transfer Learning by Importance Sampling

Let us consider a problem of semi-supervised learning (Chapelle et al., 2006) from labeled
training samples {(xtr

j , y
tr
j )}ntr

j=1 and unlabeled test samples {xte
i }nte

i=1. The goal is to predict
a test output value yte for a test input point xte. Here, we consider the setup where
the labeled training samples {(xtr

j , y
tr
j )}ntr

j=1 are drawn i.i.d. from p(y|x)ptr(x), while the
unlabeled test samples {xte

i }nte
i=1 are drawn i.i.d. from pte(x), which is generally different

from ptr(x); the (unknown) test sample (xte, yte) follows p(y|x)pte(x). This setup means
that the conditional probability p(y|x) is common to training and test samples, but the
marginal densities ptr(x) and pte(x) are generally different for training and test input
points. Such a problem is called transductive transfer learning (Pan and Yang, 2010),
domain adaptation (Jiang and Zhai, 2007), or covariate shift (Shimodaira, 2000; Sugiyama
and Kawanabe, 2012).

Let loss(y, ŷ) be a point-wise loss function that measures a discrepancy between y and
ŷ (at input x). Then the generalization error which we would like to ultimately minimize
is defined as

Ep(y|x)pte(x) [loss(y, f(x))] ,

where f(x) is a function model. Since the generalization error is inaccessible because the
true probability p(y|x)pte(x) is unknown, empirical-error minimization is often used in
practice (Vapnik, 1998):

min
f∈F

[
1

ntr

ntr∑
j=1

loss(ytrj , f(x
tr
j ))

]
.

However, under the covariate shift setup, plain empirical-error minimization is not con-
sistent (i.e., it does not converge to the optimal function) if the model F is misspecified
(i.e., the true function is not included in the model; see Shimodaira, 2000). Instead, the
following importance-weighted empirical-error minimization is consistent under covariate
shift:

min
f∈F

[
1

ntr

ntr∑
j=1

r(xtr
j )loss(y

tr
j , f(x

tr
j ))

]
,

where r(x) is called the importance (Fishman, 1996) in the context of covariate shift
adaptation:

r(x) :=
pte(x)

ptr(x)
.



Relative Density-Ratio Estimation 24

However, since importance-weighted learning is not statistically efficient (i.e., it tends
to have larger variance), slightly flattening the importance weights is practically useful for
stabilizing the estimator. (Shimodaira, 2000) proposed to use the exponentially-flattened
importance weights as

min
f∈F

[
1

ntr

ntr∑
j=1

r(xtr
j )

τ loss(ytrj , f(x
tr
j ))

]
,

where 0 ≤ τ ≤ 1 is called the exponential flattening parameter. τ = 0 corresponds to plain
empirical-error minimization, while τ = 1 corresponds to importance-weighted empirical-
error minimization; 0 < τ < 1 will give an intermediate estimator that balances the trade-
off between statistical efficiency and consistency. The exponential flattening parameter τ
can be optimized bymodel selection criteria such as the importance-weighted Akaike infor-
mation criterion for regular models (Shimodaira, 2000), the importance-weighted subspace
information criterion for linear models (Sugiyama and Müller, 2005), and importance-
weighted cross-validation for arbitrary models (Sugiyama et al., 2007).

One of the potential drawbacks of the above exponential flattering approach is that
estimation of r(x) (i.e., τ = 1) is rather hard, as shown in this paper. Thus, when r(x) is
estimated poorly, all flattened weights r(x)τ are also unreliable and then covariate shift
adaptation does not work well in practice. To cope with this problem, we propose to use
relative importance weights alternatively:

min
f∈F

[
1

ntr

ntr∑
j=1

rα(x
tr
j )loss(y

tr
j , f(x

tr
j ))

]
,

where rα(x) (0 ≤ α ≤ 1) is the α-relative importance weight defined by

rα(x) :=
pte(x)

(1− α)pte(x) + αptr(x)
.

Note that, compared with the definition of the α-relative density-ratio (1), α and (1−α)
are swapped in order to be consistent with exponential flattening. Indeed, the relative
importance weights play a similar role to exponentially-flattened importance weights;
α = 0 corresponds to plain empirical-error minimization, while α = 1 corresponds to
importance-weighted empirical-error minimization; 0 < α < 1 will give an intermediate
estimator that balances the trade-off between efficiency and consistency. We note that
the relative importance weights and exponentially flattened importance weights agree only
when α = τ = 0 and α = τ = 1; for 0 < α = τ < 1, they are generally different.

A possible advantage of the above relative importance weights is that its estimation for
0 < α < 1 does not depend on that for α = 1, unlike exponentially-flattened importance
weights. Since α-relative importance weights for 0 < α < 1 can be reliably estimated by
RuLSIF proposed in this paper, the performance of covariate shift adaptation is expected
to be improved. Below, we experimentally investigate this effect.
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4.3.2 Artificial Datasets

First, we illustrate how the proposed method behaves in covariate shift adaptation using
one-dimensional artificial datasets.

In this experiment, we employ the following kernel regression model:

f(x;β) =
nte∑
i=1

βi exp

(
−(x− xte

i )
2

2ρ2

)
,

where β = (β1, . . . , βnte)
� is the parameter to be learned and ρ is the Gaussian width.

The parameter β is learned by relative importance-weighted least-squares (RIW-LS):

β̂RIW−LS = argmin
β

[
1

ntr

ntr∑
j=1

r̂α(x
tr
j )

(
f(xtr

j ;β)− ytrj
)2]

,

or exponentially-flattened importance-weighted least-squares (EIW-LS):

β̂EIW−LS = argmin
β

[
1

ntr

ntr∑
j=1

r̂(xtr
j )

τ
(
f(xtr

j ;β)− ytrj
)2]

.

The relative importance weight r̂α(x
tr
j ) is estimated by RuLSIF, and the exponentially-

flattened importance weight r̂(xtr
j )

τ is estimated by uLSIF (i.e., RuLSIF with α = 1).
The Gaussian width ρ is chosen by 5-fold importance-weighted cross-validation (Sugiyama
et al., 2007).

First, we consider the case where input distributions do not change:

Ptr = Pte = N(1, 0.25).

The densities and their ratios are plotted in Figure 6(a). The training output samples
{ytrj }ntr

j=1 are generated as

ytrj = sinc(xtr
j ) + εtrj ,

where {εtrj }ntr
j=1 is additive noise following N(0, 0.01). We set ntr = 100 and nte = 200.

Figure 6(b) shows a realization of training and test samples as well as learned functions
obtained by RIW-LS with α = 0.5 and EIW-LS with τ = 0.5. This shows that RIW-
LS with α = 0.5 and EIW-LS with τ = 0.5 give almost the same functions, and both
functions fit the true function well in the test region. Figure 6(c) shows the mean and
standard deviation of the test error under the squared loss over 200 runs, as functions of
the relative flattening parameter α in RIW-LS and the exponential flattening parameter
τ in EIW-LS. The method having a lower mean test error and another method that is
comparable according to the two-sample t-test at the significance level 5% are specified
by ‘◦’. As can be observed, the proposed RIW-LS compares favorably with EIW-LS.
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Figure 6: Illustrative example of transfer learning under no distribution change.
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Figure 7: Illustrative example of transfer learning under covariate shift.

Next, we consider the situation where input distribution changes (Figure 7(a)):

Ptr = N(1, 0.25),

Pte = N(2, 0.1).

The output values are created in the same way as the previous case. Figure 7(b) shows a
realization of training and test samples as well as learned functions obtained by RIW-LS
with α = 0.5 and EIW-LS with τ = 0.5. This shows that RIW-LS with α = 0.5 fits the
true function slightly better than EIW-LS with τ = 0.5 in the test region. Figure 7(c)
shows that the proposed RIW-LS tends to outperform EIW-LS, and the standard devia-
tion of the test error for RIW-LS is much smaller than EIW-LS. This is because EIW-LS
with 0 < τ < 1 is based on an importance estimate with τ = 1, which tends to have high
fluctuation. Overall, the stabilization effect of relative importance estimation was shown
to improve the test accuracy.

4.3.3 Real-World Datasets

Finally, we evaluate the proposed transfer learning method on a real-world transfer learn-
ing task.
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Figure 8: An example of three-axis accelerometer data for “walking” collected by iPod
touch.

We consider the problem of human activity recognition from accelerometer data col-
lected by iPod touch3. In the data collection procedure, subjects were asked to perform a
specific action such as walking, running, and bicycle riding. The duration of each task was
arbitrary and the sampling rate was 20Hz with small variations. An example of three-axis
accelerometer data for “walking” is plotted in Figure 8.

To extract features from the accelerometer data, each data stream was segmented in
a sliding window manner with window width 5 seconds and sliding step 1 second. De-
pending on subjects, the position and orientation of iPod touch was arbitrary—held by
hand or kept in a pocket or a bag. For this reason, we decided to take the �2-norm of
the 3-dimensional acceleration vector at each time step, and computed the following 5
orientation-invariant features from each window: mean, standard deviation, fluctuation of
amplitude, average energy, and frequency-domain entropy (Bao and Intille, 2004; Bharat-
ula et al., 2005).

Let us consider a situation where a new user wants to use the activity recognition
system. However, since the new user is not willing to label his/her accelerometer data
due to troublesomeness, no labeled sample is available for the new user. On the other
hand, unlabeled samples for the new user and labeled data obtained from existing users
are available. Let labeled training data {(xtr

j , y
tr
j )}ntr

j=1 be the set of labeled accelerometer
data for 20 existing users. Each user has at most 100 labeled samples for each action.
Let unlabeled test data {xte

i }nte
i=1 be unlabeled accelerometer data obtained from the new

user.
We use kernel logistic regression (KLR) for activity recognition. We compare the

following four methods:

3http://alkan.mns.kyutech.ac.jp
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Table 5: Experimental results of transfer learning in real-world human activity recogni-
tion. Mean classification accuracy (and the standard deviation in the bracket) over 100
runs for activity recognition of a new user is reported. The method having the lowest
mean classification accuracy and comparable methods according to the two-sample t-test
at the significance level 5% are specified by bold face.

Task KLR RIW-KLR EIW-KLR IW-KLR
(α = 0, τ = 0) (α = 0.5) (τ = 0.5) (α = 1, τ = 1)

Walks vs. run 0.803 (0.082) 0.889(0.035) 0.882(0.039) 0.882(0.035)
Walks vs. bicycle 0.880 (0.025) 0.892(0.035) 0.867 (0.054) 0.854 (0.070)
Walks vs. train 0.985 (0.017) 0.992(0.008) 0.989 (0.011) 0.983 (0.021)

• Plain KLR without importance weights (i.e., α = 0 or τ = 0).

• KLR with relative importance weights for α = 0.5.

• KLR with exponentially-flattened importance weights for τ = 0.5.

• KLR with plain importance weights (i.e., α = 1 or τ = 1).

The experiments are repeated 100 times with different sample choice for ntr = 500 and
nte = 200. Table 5 depicts the classification accuracy for three binary-classification tasks:
walk vs. run, walk vs. riding a bicycle, and walk vs. taking a train. The classification
accuracy is evaluated for 800 samples from the new user that are not used for classifier
training (i.e., the 800 test samples are different from 200 unlabeled samples). The table
shows that KLR with relative importance weights for α = 0.5 compares favorably with
other methods in terms of the classification accuracy. KLR with plain importance weights
and KLR with exponentially-flattened importance weights for τ = 0.5 are outperformed
by KLR without importance weights in the walk vs. riding a bicycle task due to the
instability of importance weight estimation for α = 1 or τ = 1.

Overall, the proposed relative density-ratio estimation method was shown to be useful
also in transfer learning under covariate shift.

5 Conclusion

In this paper, we proposed to use a relative divergence for robust distribution comparison.
We gave a computationally efficient method for estimating the relative Pearson divergence
based on direct relative density-ratio approximation. We theoretically elucidated the con-
vergence rate of the proposed divergence estimator under non-parametric setup, which
showed that the proposed approach of estimating the relative Pearson divergence is more
preferable than the existing approach of estimating the plain Pearson divergence. Fur-
thermore, we proved that the asymptotic variance of the proposed divergence estimator is
independent of the model complexity under a correctly-specified parametric setup. Thus,
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the proposed divergence estimator hardly overfits even with complex models. Experi-
mentally, we demonstrated the practical usefulness of the proposed divergence estimator
in two-sample homogeneity test, inlier-based outlier detection, and transductive transfer
learning under covariate shift.

In addition to two-sample homogeneity test, outlier detection, and transfer learning,
density ratios were shown to be useful for tackling various machine learning problems,
including multi-task learning (Bickel et al., 2008; Simm et al., 2011), independence test
(Sugiyama and Suzuki, 2011), feature selection (Suzuki et al., 2009), causal inference
(Yamada and Sugiyama, 2010), independent component analysis (Suzuki and Sugiyama,
2011), dimensionality reduction (Suzuki and Sugiyama, 2010), unpaired data matching
(Yamada and Sugiyama, 2011), clustering (Kimura and Sugiyama, 2011), conditional
density estimation (Sugiyama et al., 2010), and probabilistic classification (Sugiyama,
2010). Thus, it would be promising to explore more applications of the proposed relative
density-ratio approximator beyond two-sample homogeneity test, outlier detection, and
transfer learning tasks.
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A Technical Details of Non-Parametric Convergence

Analysis

Here, we give the technical details of the non-parametric convergence analysis described
in Section 3.1.

A.1 Results

For notational simplicity, we define linear operators P, Pn, P
′, P ′n′ as

Pf := Epf, Pnf :=

∑n
j=1 f(xj)

n
,

P ′f := Eqf, P ′n′f :=

∑n′
i=1 f(x

′
i)

n′
.

For α ∈ [0, 1], we define Sn,n′ and S as

Sn,n′ = αPn + (1− α)P ′n′ , S = αP + (1− α)P ′.
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We estimate the Pearson divergence between p and αp+ (1−α)q through estimating the
density ratio

g∗ :=
p

αp+ (1− α)p′
.

Let us consider the following density ratio estimator:

ĝ := argmin
g∈G

[
1

2
(αPn + (1− α)P ′n′) g2 − Png +

λn̄

2
R(g)2

]
=argmin

g∈G

(
1

2
Sn,n′g2 − Png +

λn̄

2
R(g)2

)
.

where n̄ = min(n, n′) and R(g) is a non-negative regularization functional such that

sup
x
[|g(x)|] ≤ R(g). (17)

A possible estimator of the Pearson (PE) divergence P̂Eα is

P̂Eα := Pnĝ − 1

2
Sn,n′ ĝ2 − 1

2
.

Another possibility is

P̃Eα :=
1

2
Pnĝ − 1

2
.

A useful example is to use a reproducing kernel Hilbert space (RKHS; Aronszajn, 1950)
as G and the RKHS norm as R(g). Suppose G is an RKHS associated with bounded kernel
k(·, ·):

sup
x
[k(x,x)] ≤ C.

Let ‖ · ‖G denote the norm in the RKHS G. Then R(g) =
√
C‖g‖G satisfies Eq.(17):

g(x) = 〈k(x, ·), g(·)〉 ≤
√
k(x,x)‖g‖G ≤

√
C‖g‖G,

where we used the reproducing property of the kernel and Schwartz’s inequality. Note
that the Gaussian kernel satisfies this with C = 1. It is known that the Gaussian kernel
RKHS spans a dense subset in the set of continuous functions. Another example of
RKHSs is Sobolev space. The canonical norm for this space is the integral of the squared
derivatives of functions. Thus the regularization term R(g) = ‖g‖G imposes the solution
to be smooth. The RKHS technique in Sobolev space has been well exploited in the
context of spline models (Wahba, 1990). We intend that the regularization term R(g)
is a generalization of the RKHS norm. Roughly speaking, R(g) is like a “norm” of the
function space G.
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We assume that the true density-ratio function g∗(x) is contained in the model G and
is bounded from above:

g∗(x) ≤ M0 for all x ∈ DX.

Let GM be a ball of G with radius M > 0:

GM := {g ∈ G | R(g) ≤ M}.
To derive the convergence rate of our estimator, we utilize the bracketing entropy that is
a complexity measure of a function class (see p. 83 of van der Vaart and Wellner, 1996).

Definition 1 Given two functions l and u, the bracket [l, u] is the set of all functions
f with l(x) ≤ f(x) ≤ u(x) for all x. An ε-bracket with respect to L2(p̃) is a bracket
[l, u] with ‖l− u‖L2(p̃) < ε. The bracketing entropy H[](F , ε, L2(p̃)) is the logarithm of the
minimum number of ε-brackets with respect to L2(p̃) needed to cover a function set F .

We assume that there exists γ (0 < γ < 2) such that, for all M > 0,

H[](GM , ε, L2(p)) = O

((
M

ε

)γ)
, H[](GM , ε, L2(p

′)) = O

((
M

ε

)γ)
. (18)

This quantity represents a complexity of function class G—the larger γ is, the more
complex the function class G is because, for larger γ, more brackets are needed to cover
the function class. The Gaussian RKHS satisfies this condition for arbitrarily small γ
(Steinwart and Scovel, 2007). Note that when R(g) is the RKHS norm, the condition
(18) holds for all M > 0 if that holds for M = 1.

Then we have the following theorem.

Theorem 1 Let n̄ = min(n, n′), M0 = ‖g∗‖∞, and c = (1 + α)
√

P (g∗ − Pg∗)2 + (1 −
α)

√
P ′(g∗ − P ′g∗)2. Under the above setting, if λn̄ → 0 and λ−1n̄ = o(n̄2/(2+γ)), then we

have

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n̄−1/2cM0),

and

P̃Eα − PEα =Op(λn̄ max{1,M
1
2
(1− γ

2
)

0 , R(g∗)M
1
2
(1− γ

2
)

0 , R(g∗)}+ λ
1
2
n̄ max{M

1
2
0 ,M

1
2
0 R(g∗)}),

where Op denotes the asymptotic order in probability.

In the proof of Theorem 1, we use the following auxiliary lemma.

Lemma 1 Under the setting of Theorem 1, if λn̄ → 0 and λ−1n̄ = o(n̄2/(2+γ)), then we
have

‖ĝ − g∗‖L2(S) = Op(λ
1/2
n̄ max{1, R(g∗)}), R(ĝ) = Op(max{1, R(g∗)}),

where ‖ · ‖L2(S) denotes the L2(αp+ (1− α)q)-norm.
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A.2 Proof of Lemma 1

First, we prove Lemma 1.
From the definition, we obtain

1

2
Sn,n′ ĝ2 − Pnĝ + λn̄R(ĝ)2 ≤ 1

2
Sn,n′g∗2 − Png

∗ + λn̄R(g∗)2

⇒ 1

2
Sn,n′(ĝ − g∗)2 − Sn,n′(g∗(g∗ − ĝ))− Pn(ĝ − g∗) + λn̄(R(ĝ)2 −R(g∗)2) ≤ 0.

On the other hand, S(g∗(g∗ − ĝ)) = P (g∗ − ĝ) indicates

1

2
(S − Sn,n′)(ĝ − g∗)2 − (S − Sn,n′)(g∗(g∗ − ĝ))− (P − Pn)(ĝ − g∗)− λn̄(R(ĝ)2 −R(g∗)2)

≥ 1

2
S(ĝ − g∗)2.

Therefore, to bound ‖ĝ − g∗‖L2(S), it suffices to bound the left-hand side of the above
inequality.

Define FM and F2
M as

FM := {g − g∗ | g ∈ GM} and F2
M := {f 2 | f ∈ FM}.

To bound |(S − Sn,n′)(ĝ − g∗)2|, we need to bound the bracketing entropies of F2
M . We

show that

H[](F2
M , δ, L2(p)) = O

((
(M +M0)

2

δ

)γ)
,

H[](F2
M , δ, L2(q)) = O

((
(M +M0)

2

δ

)γ)
.

This can be shown as follows. Let fL and fU be a δ-bracket for GM with respect to L2(p);
fL(x) ≤ fU(x) and ‖fL − fU‖L2(p) ≤ δ. Without loss of generality, we can assume that
‖fL‖L∞ , ‖fU‖L∞ ≤ M +M0 . Then f ′U and f ′L defined as

f ′U(x) := max{f 2
L(x), f

2
U(x)},

f ′L(x) :=

{
min{f 2

L(x), f
2
U(x)} (sign(fL(x)) = sign(fU(x))),

0 (otherwise)
,

are also a bracket such that f ′L ≤ g2 ≤ f ′U for all g ∈ GM s.t. fL ≤ g ≤ fU and
‖f ′L − f ′U‖L2(p) ≤ 2δ(M + M0) because ‖fL − fU‖L2(p) ≤ δ and the following relation is
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met:

(f ′L(x)− f ′U(x))
2 ≤

{
(f 2

L(x)− f 2
U(x))

2 (sign(fL(x)) = sign(fU(x))),

max{f 4
L(x), f

4
U(x)} (otherwise)

≤
{
(fL(x)− fU(x))

2(fL(x) + fU(x))
2 (sign(fL(x)) = sign(fU(x))),

max{f 4
L(x), f

4
U(x)} (otherwise)

≤
{
(fL(x)− fU(x))

2(fL(x) + fU(x))
2 (sign(fL(x)) = sign(fU(x))),

(fL(x)− fU(x))
2(|fL(x)|+ |fU(x)|)2 (otherwise)

≤ 4(fL(x)− fU(x))
2(M +M0)

2.

Therefore the condition for the bracketing entropies (18) gives H[](F2
M , δ, L2(p)) =

O
((

(M+M0)2

δ

)γ)
. We can also show that H[](F2

M , δ, L2(q)) = O
((

(M+M0)2

δ

)γ)
in the

same fashion.
Let f := ĝ − g∗. Then, as in Lemma 5.14 and Theorem 10.6 in (van de Geer, 2000),

we obtain

|(Sn,n′ − S)(f 2)| ≤ α|(Pn − P )(f 2)|+ (1− α)|(P ′n′ − P ′)(f 2)|
=αOp

(
1√
n̄
‖f 2‖1−

γ
2

L2(P )(1 + R(ĝ)2 +M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)2 +M2

0 )

)
+ (1− α)Op

(
1√
n̄
‖f 2‖1−

γ
2

L2(P ′)(1 + R(ĝ)2 +M2
0 )

γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)2 +M2

0 )

)
≤Op

(
1√
n̄
‖f 2‖1−

γ
2

L2(S)
(1 + R(ĝ)2 +M2

0 )
γ
2 ∨ n̄−

2
2+γ (1 +R(ĝ)2 +M2

0 )

)
, (19)

where a ∨ b = max(a, b) and we used

α‖f 2‖1−
γ
2

L2(P ) + (1− α)‖f 2‖1−
γ
2

L2(P ′) ≤
(∫

f 4d(αP + (1− α)P ′)
) 1

2
(1− γ

2
)

= ‖f 2‖1−
γ
2

L2(S)

by Jensen’s inequality for a concave function. Since

‖f 2‖L2(S) ≤ ‖f‖L2(S)

√
2(1 +R(ĝ)2 +M2

0 ),

the right-hand side of Eq.(19) is further bounded by

|(Sn,n′ − S)(f 2)|
=Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(ĝ)2 +M2

0 )
1
2
+ γ

4 ∨ n̄−
2

2+γ (1 + R(ĝ)2 +M2
0 )

)
. (20)

Similarly, we can show that

|(Sn,n′ − S)(g∗(g∗ − ĝ))|
=Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(ĝ)M0 +M2

0 )
γ
2 ∨ n̄−

2
2+γ (1 +R(ĝ)M0 +M2

0 )

)
, (21)
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and

|(Pn − P )(g∗ − ĝ)| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(P )(1 + R(ĝ) +M0)
γ
2 ∨ n̄−

2
2+γ (1 +R(ĝ) +M0)

)
≤ Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 +R(ĝ) +M0)

γ
2M

1
2
(1− γ

2
)

0 ∨ n̄−
2

2+γ (1 + R(ĝ) +M0)

)
, (22)

where we used

‖f‖L2(P ) =

√∫
f 2dP =

√∫
f 2g∗dS ≤ M

1
2
0

√∫
f 2dS

in the last inequality. Combining Eqs.(20), (21), and (22), we can bound the L2(S)-norm
of f as

1

2
‖f‖2L2(S)

+ λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(ĝ)2 +M2

0 )
1
2
+ γ

4 ∨ n̄−
2

2+γ (1 + R(ĝ)2 +M2
0 )

)
. (23)

The following is similar to the argument in Theorem 10.6 in (van de Geer, 2000), but
we give a simpler proof.

By Young’s inequality, we have a
1
2
− γ

4 b
1
2
+ γ

4 ≤ (1
2
− γ

4
)a+(1

2
+ γ

4
)b ≤ a+b for all a, b > 0.

Applying this relation to Eq.(23), we obtain

1

2
‖f‖2L2(S)

+ λn̄R(ĝ)2

≤ λn̄R(g∗)2 +Op

(
‖f‖2(

1
2
− γ

4
)

L2(S)

{
n̄−

2
2+γ (1 +R(ĝ)2 +M2

0 )
} 1

2
+ γ

4 ∨ n̄−
2

2+γ (1 +R(ĝ)2 +M2
0 )

)
Young

≤ λn̄R(g∗)2 +
1

4
‖f‖2L2(S)

+Op

(
n̄−

2
2+γ (1 + R(ĝ)2 +M2

0 ) + n̄−
2

2+γ (1 + R(ĝ)2 +M2
0 )

)
= λn̄R(g∗)2 +

1

4
‖f‖2L2(S)

+Op

(
n̄−

2
2+γ (1 +R(ĝ)2 +M2

0 )
)
,

which indicates

1

4
‖f‖2L2(S)

+ λn̄R(ĝ)2 ≤ λn̄R(g∗)2 + op
(
λn̄(1 +R(ĝ)2 +M2

0 )
)
.

Therefore, by moving op(λn̄R(ĝ)2) to the left hind side, we obtain

1

4
‖f‖2L2(S)

+ λn̄(1− op(1))R(ĝ)2 ≤ Op

(
λn̄(1 +R(g∗)2 +M2

0 )
)

≤ Op

(
λn̄(1 +R(g∗)2)

)
.

This gives

‖f‖L2(S) = Op(λ
1
2
n̄ max{1, R(g∗)}),

R(ĝ) = Op(
√
1 + R(g∗)2) = Op(max{1, R(g∗)}).

Consequently, the proof of Lemma 1 was completed.
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A.3 Proof of Theorem 1

Based on Lemma 1, we prove Theorem 1.
As in the proof of Lemma 1, let f := ĝ− g∗. Since (αP +(1−α)P ′)(fg∗) = S(fg∗) =

Pf , we have

P̂Eα − PEα =
1

2
Sn,n′ ĝ2 − Pnĝ − (

1

2
Sg∗2 − Pg∗)

=
1

2
Sn,n′(f + g∗)2 − Pn(f + g∗)−

(
1

2
Sg∗2 − Pg∗

)
=

1

2
Sf 2 +

1

2
(Sn,n′ − S)f 2 + (Sn,n′ − S)(g∗f)− (Pn − P )f

+
1

2
(Sn,n′ − S)g∗2 − (Png

∗ − Pg∗). (24)

Below, we show that each term of the right-hand side of the above equation is Op(λn̄).
By the central limit theorem, we have

1

2
(Sn,n′ − S)g∗2 − (Png

∗ − Pg∗)

= Op

(
n̄−1/2M0

(
(1 + α)

√
P (g∗ − Pg∗)2 + (1− α)

√
P ′(g∗ − P ′g∗)2

))
.

Since Lemma 1 gives ‖f‖2 = Op(λ
1
2
n̄ max(1, R(g∗))) and R(ĝ) = Op(max(1, R(g∗))),

Eqs.(20), (21), and (22) in the proof of Lemma 1 imply

|(Sn,n′ − S)f 2| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(g∗))1+

γ
2 ∨ n̄−

2
2+γR(g∗)2

)
≤ Op(λn̄ max(1, R(g∗)2)),

|(Sn,n′ − S)(g∗f)| = Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(ĝ)M0 +M2

0 )
γ
2 ∨ n̄−

2
2+γ (1 + R(ĝ)M0 +M2

0 )

)
≤ Op(λn̄ max(1, R(g∗)M

γ
2
0 ,M

γ
0R(g∗)1−

γ
2 ,M0R(g∗),M2

0 ))

≤ Op(λn̄ max(1, R(g∗)M
γ
2
0 ,M0R(g∗))),

≤ Op(λn̄ max(1, R(g∗)2)),

|(Pn − P )f | ≤ Op

(
1√
n̄
‖f‖1−

γ
2

L2(S)
(1 + R(ĝ) +M0)

γ
2M

1
2
(1− γ

2
)

0 ∨ n̄−
2

2+γ (1 + R(ĝ) +M0)

)
= Op(λn̄ max(1,M

1
2
(1− γ

2
)

0 , R(g∗)M
1
2
(1− γ

2
)

0 , R(g∗))) (25)

≤ Op(λn̄ max(1, R(g∗)2)),

where we used λ−1n̄ = o(n̄2/(2+γ)) and M0 ≤ R(g∗). Lemma 1 also implies

Sf 2 = ‖f‖22 = Op(λn̄max(1, R(g∗)2)).
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Combining these inequalities with Eq.(24) implies

P̂Eα − PEα = Op(λn̄ max(1, R(g∗)2) + n−1/2cM0),

where we again used M0 ≤ R(g∗).
On the other hand, we have

P̃Eα − PEα =
1

2
Pnĝ − 1

2
Pg∗

=
1

2
[(Pn − P )(ĝ − g∗) + P (ĝ − g∗) + (Pn − P )g∗] . (26)

Eq.(25) gives

(Pn − P )(ĝ − g∗) = Op(λn̄ max(1,M
1
2
(1− γ

2
)

0 , R(g∗)M
1
2
(1− γ

2
)

0 , R(g∗))).

We also have

P (ĝ − g∗) ≤ ‖ĝ − g∗‖L2(P ) ≤ ‖ĝ − g∗‖L2(S)M
1
2
0 = Op(λ

1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗))),

and

(Pn − P )g∗ = Op(n̄
− 1

2

√
P (g∗ − Pg∗)2) ≤ Op(n̄

− 1
2M0) ≤ Op(λ

1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗))),

Therefore by substituting these bounds into the relation (26), one observes that

P̃Eα − PEα

=Op(λ
1
2
n̄ max(M

1
2
0 ,M

1
2
0 R(g∗)) + λn̄ max(1,M

1
2
(1− γ

2
)

0 , R(g∗)M
1
2
(1− γ

2
)

0 , R(g∗))). (27)

This completes the proof.

B Technical Details of Parametric Variance Analysis

Here, we give the technical details of the parametric variance analysis described in Sec-
tion 3.2.

B.1 Results

For the estimation of the α-relative density-ratio (1), the statistical model

G = {g(x;θ) | θ ∈ Θ ⊂ Rb}
is used where b is a finite number. Let us consider the following estimator of α-relative
density-ratio,

ĝ = argmin
g∈G

1

2

{
α

n

n∑
i=1

(g(xi))
2 +

1− α

n′

n′∑
j=1

(g(x′j))
2

}
− 1

n

n∑
i=1

g(xi).
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Suppose that the model is correctly specified, i.e., there exists θ∗ such that

g(x;θ∗) = rα(x).

Then, under a mild assumption (see Theorem 5.23 of van der Vaart, 2000), the estimator

ĝ is consistent and the estimated parameter θ̂ satisfies the asymptotic normality in the
large sample limit. Then, a possible estimator of the α-relative Pearson divergence PEα

is

P̂Eα =
1

n

n∑
i=1

ĝ(xi)− 1

2

{
α

n

n∑
i=1

(ĝ(xi))
2 +

1− α

n′

n′∑
j=1

(ĝ(x′j))
2

}
− 1

2
.

Note that there are other possible estimators for PEα such as

P̃Eα =
1

2n

n∑
i=1

ĝ(xi)− 1

2
.

We study the asymptotic properties of P̂Eα. The expectation under the probability p
(p′) is denoted as Ep(x)[·] (Ep′(x)[·]). Likewise, the variance is denoted as Vp(x)[·] (Vp′(x)[·]).
Then, we have the following theorem.

Theorem 2 Let ‖r‖∞ be the sup-norm of the standard density ratio r(x), and ‖rα‖∞ be
the sup-norm of the α-relative density ratio, i.e.,

‖rα‖∞ =
‖r‖∞

α‖r‖∞ + 1− α
.

The variance of P̂Eα is denoted as V[P̂Eα]. Then, under the regularity condition for the

asymptotic normality, we have the following upper bound of V[P̂Eα]:

V[P̂Eα] =
1

n
Vp(x)

[
rα − αr2α

2

]
+

1

n′
Vp′(x)

[
(1− α)r2α

2

]
+ o

(
1

n
,
1

n′

)
≤ ‖rα‖2∞

n
+

α2‖rα‖4∞
4n

+
(1− α)2‖rα‖4∞

4n′
+ o

(
1

n
,
1

n′

)
.

Theorem 3 The variance of P̃Eα is denoted as V[P̃Eα]. Let ∇g be the gradient vector

of g with respect to θ at θ = θ∗, i.e., (∇g(x;θ∗))j =
∂g(x;θ∗

)
∂θj

. The matrix Uα is defined

by

Uα = αEp(x)[∇g∇g�] + (1− α)Ep′(x)[∇g∇g�].

Then, under the regularity condition, the variance of P̃Eα is asymptotically given as

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]�U−1

α ∇g

2

]
+

1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]�U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
.
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B.2 Proof of Theorem 2

Let θ̂ be the estimated parameter, i.e., ĝ(x) = g(x; θ̂). Suppose that rα(x) = g(x;θ∗) ∈ G
holds. Let δθ = θ̂ − θ∗, then the asymptotic expansion of P̂Eα is given as

P̂Eα =
1

n

n∑
i=1

g(xi; θ̂)− 1

2

{
α

n

n∑
i=1

g(xi; θ̂)
2 +

1− α

n′

n′∑
j=1

g(x′j; θ̂)
2

}
− 1

2

= PEα +
1

n

n∑
i=1

(rα(xi)− Ep(x)[rα]) +
1

n

n∑
i=1

∇g(xi;θ
∗)�δθ

− 1

2

{
α

n

n∑
i=1

(rα(xi)
2 − Ep(x)[r

2
α]) +

1− α

n′

n′∑
j=1

(rα(x
′
j)

2 − Ep′(x)[r
2
α])

}

−
{
α

n

n∑
i=1

rα(xi)∇g(xi;θ
∗) +

1− α

n′

n′∑
j=1

rα(x
′
j)∇g(x′j;θ

∗)
}�

δθ + op

(
1√
n
,

1√
n′

)
.

Let us define the linear operator G as

Gf =
1√
n

n∑
i=1

(f(xi)− Ep(x)[f ]).

Likewise, the operator G′ is defined for the samples from p′. Then, we have

P̂Eα − PEα

=
1√
n
G
(
rα − α

2
r2α

)− 1√
n′
G′

(1− α

2
r2α

)
+

{
Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g]

}�
δθ + op

(
1√
n
,

1√
n′

)
=

1√
n
G
(
rα − α

2
r2α

)− 1√
n′
G′

(1− α

2
r2α

)
+ op

(
1√
n
,

1√
n′

)
.

The second equality follows from

Ep(x)[∇g]− αEp(x)[rα∇g]− (1− α)Ep′(x)[rα∇g] = 0.

Then, the asymptotic variance is given as

V[P̂Eα] =
1

n
Vp(x)

[
rα − α

2
r2α

]
+

1

n′
Vp′(x)

[
1− α

2
r2α

]
+ o

(
1

n
,
1

n′

)
. (28)

We confirm that both rα− α
2
r2α and 1−α

2
r2α are non-negative and increasing functions with

respect to r for any α ∈ [0, 1]. Since the result is trivial for α = 1, we suppose 0 ≤ α < 1.
The function rα − α

2
r2α is represented as

rα − α

2
r2α =

r(αr + 2− 2α)

2(αr + 1− α)2
,
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and thus, we have rα − α
2
r2α = 0 for r = 0. In addition, the derivative is equal to

∂

∂r

r(αr + 2− 2α)

2(αr + 1− α)2
=

(1− α)2

(αr + 1− α)3
,

which is positive for r ≥ 0 and α ∈ [0, 1). Hence, the function rα− α
2
r2α is non-negative and

increasing with respect to r. Following the same line, we see that 1−α
2
r2α is non-negative

and increasing with respect to r. Thus, we have the following inequalities,

0 ≤ rα(x)− α

2
rα(x)

2 ≤ ‖rα‖∞ − α

2
‖rα‖2∞,

0 ≤ 1− α

2
rα(x)

2 ≤ 1− α

2
‖rα‖2∞.

As a result, upper bounds of the variances in Eq.(28) are given as

Vp(x)

[
rα − α

2
r2α

]
≤

(
‖rα‖∞ − α

2
‖rα‖2∞

)2

,

Vp′(x)

[
1− α

2
r2α

]
≤ (1− α)2

4
‖rα‖4∞.

Therefore, the following inequality holds,

V[P̂Eα] ≤ 1

n

(
‖rα‖∞ − α‖rα‖2∞

2

)2

+
1

n′
· (1− α)2‖rα‖4∞

4
+ o

(
1

n
,
1

n′

)
≤ ‖rα‖2∞

n
+

α2‖rα‖4∞
4n

+
(1− α)2‖rα‖4∞

4n′
+ o

(
1

n
,
1

n′

)
,

which completes the proof.

B.3 Proof of Theorem 3

The estimator θ̂ is the optimal solution of the following problem:

min
θ∈Θ

[
1

2n

n∑
i=1

αg(xi;θ)
2 +

1

2n′

n′∑
j=1

(1− α)g(x′j;θ)
2 − 1

n

n∑
i=1

g(xi;θ)

]
.

Then, the extremal condition yields the equation,

α

n

n∑
i=1

g(xi; θ̂)∇g(xi; θ̂) +
1− α

n′

n′∑
j=1

g(x′j; θ̂)∇g(x′j; θ̂)−
1

n

n∑
i=1

∇g(xi; θ̂) = 0.

Let δθ = θ̂ − θ∗. The asymptotic expansion of the above equation around θ = θ∗ leads
to

1

n

n∑
i=1

(αrα(xi)− 1)∇g(xi;θ
∗) +

1− α

n′

n′∑
j=1

rα(x
′
j)∇g(x′j;θ

∗) +Uαδθ + op

(
1√
n
,

1√
n′

)
= 0.
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Therefore, we obtain

δθ =
1√
n
G((1− αrα)U

−1
α ∇g)− 1√

n′
G′((1− α)rαU

−1
α ∇g) + op

(
1√
n
,

1√
n′

)
.

Next, we compute the asymptotic expansion of P̃Eα:

P̃Eα =
1

2
Ep(x)[rα] +

1

2n

n∑
i=1

(rα(xi)− Ep(x)[rα])

+
1

2n

n∑
i=1

∇g(xi;θ
∗)�δθ − 1

2
+ op

(
1√
n
,

1√
n′

)
= PEα +

1

2
√
n
G(rα) +

1

2
Ep(x)[∇g]�δθ + op

(
1√
n
,

1√
n′

)
.

Substituting δθ into the above expansion, we have

P̃Eα − PEα =
1

2
√
n
G(rα + (1− αrα)Ep(x)[∇g]�U−1

α ∇g)

− 1

2
√
n′
G′((1− α)rαEp(x)[∇g]�U−1

α ∇g) + op

(
1√
n
,

1√
n′

)
.

As a result, we have

V[P̃Eα] =
1

n
Vp(x)

[
rα + (1− αrα)Ep(x)[∇g]�U−1

α ∇g

2

]
+

1

n′
Vp′(x)

[
(1− α)rαEp(x)[∇g]�U−1

α ∇g

2

]
+ o

(
1

n
,
1

n′

)
,

which completes the proof.
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