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ABSTRACT 

In February 2004, a significant cold surge from eastern Europe extended 

southward over the Aegean Sea and as far south as the northern coasts of Egypt 

and Libya. The system examined in this study caused over 45 cm of snowfall in 

Souda Bay, Crete, which significantly impacted operations at Naval Support 

Activity Souda Bay. The extratropical wave associated with the cold surge could 

be classified as a classic life-cycle 1 wave break. The wave-breaking event is 

linked to successive cyclogenesis over the western North Atlantic and a 

significant ridge-building event over the eastern North Atlantic. This case study 

will examine the role of dynamic processes that include the warm conveyor belts 

of the midlatitude cyclones and the warm-air advection that led the ridge over the 

North Atlantic. The significance of the ridge-trough couplet with respect to 

climatology is examined. Ensemble forecasts are used to examine the 

predictability of the cold surge event and its dependence on the upstream 

synoptic scale events. 
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I. INTRODUCTION 

A. MOTIVATION 

1. Cold Surge and Snowfall Event over Crete 

On 13 February 2004, an extremely cold air mass from Romania, 

Bulgaria, and Ukraine, extended southward over the Aegean Sea reaching as far 

south as the northern coasts of Egypt and Libya. Similar synoptic environments 

over western Europe have been related to the formation of extratropical cyclones 

known as Genoa Lows, which occasionally result in significant flooding over 

regions surrounding the Mediterranean Sea (Trigo, Bigg, & Davies 2002). The 

cold air mass and associated cyclogenesis event examined in this study resulted 

in over 45 cm of snowfall in Souda Bay, Crete (Figure 1). Typically, a synoptic-

scale event of such a large deviation from normal conditions is associated with 

several precursor events that lead to an extreme development. These events are 

often difficult to forecast as was the case for this particular event. Naval Support 

Activity (NSA) Souda Bay effectively ceased operations due to the snowfall. As 

the base did not have dedicated snow clearing equipment, Navy personnel were 

forced to clear the airfield and roads with shovels and bulldozers. The goal of this 

case study is to examine the dynamical processes that led to the extreme 

weather event and identify factors that could aid in forecasting similar events in 

the future. 

  
Figure 1.  Navy personnel clearing snow from a gate at Naval Support Activity 

Souda Bay and airfield, 13 February 2004 (From U.S. Navy archives). 
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The low pressure system that caused the snowfall event in Crete was 

related to a pre-existing low-level baroclinic zone over the Ionian Sea that 

connected to a Bora wind event in the Adriatic Sea on 12 February 2004. At 

upper levels, a highly amplified long-wave trough existed over eastern Europe. It 

is possible that the low-level baroclinicity further enhanced the long-wave trough 

as in a Petterson-Smebye (1971) type B scenario.  

Although the case examined in this thesis was extreme, synoptic patterns 

that induce these outbreaks of cold air are common in the western and central 

Mediterranean. The Genoa Lows that form downstream of these cold surges 

cause significant wind and rain events and occasional flooding. As Department of 

Defense (DoD) and North Atlantic Treaty Organization (NATO) have several 

installations in areas affected by these storms, it is critical that forecasters 

understand and recognize scenarios favorable for development of storms to 

increase readiness and decrease response times for any associated hazardous 

weather.  

2. Timeline 

The sequence of events (Figure 2) that led to the cold surge over eastern 

Europe began nearly 10 days prior to the snow event on Crete. The first of three 

successive cyclones (L1) in the Atlantic formed on 6 February over the Labrador 

Sea. This system remained in the southern Labrador Sea for approximately 24 

hours before moving north and filling the morning of 8 February. The second 

cyclone (L2) moved off the northeast coast of the United States the morning of 7 

February. It rapidly deepened as it moved northeastward towards Greenland, 

eventually filling over southern Greenland on 9 February. The third cyclone 

formed in the central Atlantic on the trailing edge of the second cyclone early on 

9 February. The third cyclone (L3) quickly moved northward until it started to fill 

at 1800 UTC 10 February. Downstream of the three cyclones a ridge amplified 

poleward. The maximum amplitude of this ridge also occurred at approximately 

1800 UTC 10 February. The extreme amplitude of the ridge resulted in significant 
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downstream cold-air advection into central and eastern Europe, thereby 

contributing to the outbreak of anomalously cold air that affected Crete on 13 

February (Figure 2). 

 
Figure 2.  Timeline of synoptic weather events between 5–13 February 2004. 

3. Ingredients for Development of the Extreme Cold Surge 

As defined in Figure 2, several precursor events combined to contribute to 

the extreme cold surge. In particular, the sequence of cyclone events over the 

western Atlantic is examined with respect to forcing a high-amplitude ridge-

trough system that developed over the north Atlantic and northern Europe. 

a. Cyclone Development 

An important aspect of the cyclone development is that each 

successive cyclone that formed between 6–10 February followed a more 

merdional-oriented track over the western north Atlantic. The southwesterly flow 

around the eastern flanks of the cyclones advected warm, moist air from the sub-

tropical Atlantic to higher latitudes. The warm-air advection and related diabatic 

process from the three cyclones contributed to an extreme amplification of the 

sub-tropical Atlantic anticyclone. 
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b. Ridge Amplification 

The building anticyclone defined a pattern similar to that of an 

atmospheric block over the northeast Atlantic and northwest Europe. However, 

the amplified ridge did not persist long enough, nor was the ridge stationary for 

classification as a blocking pattern (Altenhoff, Martius, Croci-Maspoli, Schwierz, 

& Davies 2008). As the ridge moved eastward, the northern extent amplified and 

resulted in significant cold-air advection along the eastern flank of the ridge over 

central Europe. Cold temperatures typically occur on the eastern flanks of large 

blocking patterns (Pfahl & Wernli 2012), and much of central and eastern Europe 

experienced anomalously low temperatures while under the influence of the 

northerly flow. The trough downstream of the northerly flow began to extend 

meridionally and thinned zonally, while also being oriented northeast to 

southwest. This is consistent with anticyclonic wave breaking.  

4. Predictability 

The weather over Crete on 13 February 2004 was highly anomalous due 

to both the total snowfall amount and the extreme cold. The high amplitude 

pattern and extreme conditions were not well forecast. The NSA Souda Bay 

Command Duty Officer log from 13 February 2004 has record of thunderstorm 

conditions and a freeze advisory, but nothing regarding snowfall. Because there 

were several synoptic-scale factors that led to the extreme cold outbreak, the 

source of forecast difficulty could be quite varied. Determination of the causes of 

synoptic factors that led to the ridge building, wave break, and cold surge will 

help forecasters identify features that might lead to similar events in the future. 

To evaluate the predictability of the high-impact event, ensemble reforecast data 

from the Global Forecast System (GFS) model and Climate Forecast System 

Reanalysis (CFSR) are used to examine model performance of the scenario, 

uncertainty in the forecasts, and the processes that led to the uncertainty. 
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B. OBJECTIVE 

It is hypothesized that the primary predictability issue associated with the 

extreme cold surge over eastern Europe case was due to the development of the 

upstream ridge in the northern Atlantic. Furthermore, the ridge-building event 

was directly related to the development of cyclonic disturbances over the western 

North Atlantic and eastern North America. 

This hypothesis is examined by examining the evolution of the building 

ridge in the Atlantic, and the impact of the deepening trough over central and 

eastern Europe. The cyclone development is examined in the context of the 

paradigm of baroclinic wave life cycles (Thorncroft, Hoskins, & McIntyre 1993) 

associated with cyclonic and anticyclonic wave breaking. The role of cyclone 

development upstream of the building ridge is examined as one of the elements 

required to build the ridge and the eventual deepening of the trough and snowfall 

event. 

In this case, predictability is depicted by the spread in 10 ensemble 

members and one control member. The spread is examined with regard to the 

three cyclones in the northern Atlantic, the building ridge, and subsequent trough 

over Europe. 
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II. BACKGROUND 

In this thesis, the combination of successive cyclonic events and 

downstream ridge amplification are examined with respect to general synoptic-

scale characteristics of large-scale flow patterns. The component of cyclone 

development that is relevant to downstream ridge building is the warm conveyor 

belt (WCB). The primary large-scale flow patterns associated with this case are 

examined with respect to typical baroclinic life cycles. 

A. BAROCLINIC LIFE CYCLE CHARACTERISTICS 

Thorncroft et al. (1993) investigated two characteristic baroclinic life 

cycles. In general, the life-cycle (LC) paradigm of Thorncroft, Hoskins, and 

McIntyre (1993) is a higher resolution version of the Simmons-Hoskins (1980) 

"basic" and "anomalous" cases, that depicts the decaying stages of eddy kinetic 

energy (EKE) as part of the baroclinic life cycle. The EKE is defined as the kinetic 

energy associated with turbulent flow. A baroclinic wave “breaks” when the 

material contours defining the wave are irreversibly deformed (McIntyre and 

Palmer, 1983). In the case of LC1, there is a rapid decay of EKE after reaching 

an EKE maximum (Figure 3). In the case of LC2, there is a slow decay of EKE. 

The two evolutions of EKE decay are evident at upper levels based on anaylsis 

of potential temperature on the nominal tropopause, which was defined as a 

constant potential vorticity (PVU) surface. Thorncroft et al. (1993) used the two 

potential vorticity unit (PVU, 1 PVU = 10-6 K m2 kg-1 s-1) surface in their analysis. 

Due to the advective properties of PV and potential temperature, the PV-potential 

temperature field is useful in describing atmospheric characteristics that provide 

dynamical insight into complicated non-linear processes.  

The initial perturbation for the Simmons-Hoskins cases refers to a mean 

zonal flow and a one hPa surface-pressure perturbation on day 0 (Thorncroft et 

al, 1993). An LC1 wave break (Figure 4b), also referred to as an anticyclonic 

wave break, is characterized when the ensuing midlatitude trough (Figure 4a) 
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thins with the mean anticyclonic horizontal shear that is present in the westerly 

flow. A thinning trough has a positive tilt downstream as it extends toward the 

subtropics to develop a northeast-southwest orientation. The zonal extent of the 

trough extent is reduced (i.e., thinned), and the meridional extent increases. The 

thinned trough is then advected anticyclonically and equatorward (Thorncroft et 

al., 1993). Baroclinic instability accounts for most of the wave and EKE growth 

through day 4 or 5 (Figure 2). The EKE in an LC1 wave typically reaches a 

maximum value on day 7, and the EKE maximum is predominantly on the 

southern, anticyclonic flank of the jet. After day 7, an LC1 wave decays in 

association with strong barotropic momentum fluxes from the trough into the jet 

that accompany a reduction in EKE by day 10 (Figure 3). 

An LC2 wave (Figure 4c), also referred to as cyclonic wave breaking, is 

characterized by a wave that tilts against the mean flow and broadens with the 

cyclonic horizontal shear of the mean flow. An LC2 event develops a northwest 

to southeast orientation. The subtropical extension of the wave wraps 

cyclonically to often produce a major cut-off cyclone that moves poleward. The 

EKE maximum for an LC2 often occurs on the northern, cyclonic, flank of the 

mean flow, and it reaches a maximum on day 9 (Figure 3). The gradual decrease 

in EKE associated with an LC2 event suggests barotropic influences that act to 

decay the wave affects a LC2 wave less than LC1 waves. 

The baroclinic life cycle paradigm as defined above is used to place the 

cold surge over eastern Europe into context of the overall synoptic-scale 

evolution. The life cycle paradigm will also be used to examine the predictability 

defined by individual ensemble member depictions of the wavebreaking event. 
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Figure 3.  Eddy kinetic energy evolution for LC1 (dashed) and LC2 (solid). Day 0 

is defined as the introduction of the small pressure perturbation into 
the mean zonal flow (From Thorncroft et al., 1993). 

 
Figure 4.  Schematic depicting (a) an initial perturbation before meridional wind 

shear has tilted the flow. The dashed line represents the flow after 
deformation from (b) anticyclonic tilting associated with an LC1 and (c) 
cyclonic tilting associated with an LC2 (From Thorncroft et al., 1993). 
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B. WARM CONVEYOR BELT AND RIDGE BUILDING 

Using a Lagrangian analysis, Carlson (1980) identified the structure of a 

mature cyclone as consisting of three primary airstreams (Figure 5); the warm 

conveyor belt (WCB), the cold conveyor belt (CCB), and the dry airstream (DAS). 

Carlson identified the coherent air streams, as having similar dynamic and 

thermodynamic evolutions. Each airstream contributed to the overall structure 

and characteristic comma-cloud pattern of a mature cyclone. In this analysis the 

primary focus is on the WCB as a key factor in ridge building. 

Warm conveyor belts originate in the boundary layer of the equatorward 

portion of the cyclone warm sector. The WCB ascends ahead of the surface cold 

front (Joos & Wernli, 2012). The ascending air stream transports water vapor and 

heat poleward and to higher levels in the atmosphere. The WCB is responsible 

for most of the cyclone-related meridional energy transport. Furthermore, strong 

latent-heat release associated with clouds in the ascending portion of the WCB 

contributes to the meridional transport of heat in the mature cyclone. 

 
Figure 5.  Schematic of atmospheric conveyor belts. The WCB is depicted in 

orange (From University Corporation for Atmospheric Research). 
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To define WCB characteristics, Eckhardt, Stohl, Wernli, James, Forster, & 

Spichtinger (2004) defined several characteristic criteria. Approximately 60 

percent of all WCBs are associated with extratropical cyclones (Eckhardt, Stohl, 

Wernli, James, Forster, & Spichtinger 2004), and WCBs are especially prominent 

in winter months. There are two predominant WCB starting regions in the 

Northern Hemisphere, east of North America and east of Asia, which correspond 

to the primary storm tracks of the western oceans (Figure 6). The WCB outflow 

regions in the upper troposphere are then located downstream off the west 

coasts of North America and Europe (Eckhardt et al., 2004). 

 
Figure 6.  Seasonal mean spatial distribution of (a), WCB starting points and (e) 

WCB trajectory positions after (b) and (f) 24-h, (c) and (g) 48-h, (d) 
and (h) 72-h for (a)–(d) June-July-August and (e)–(g) December-

January-February. Depicted is the fraction (in percent) of all 
trajectories that fulfill the WCB criteria, averaged over 15 years. 

Different color scales were used for different days for clarity. The red 
boxes in (a) used for additional analysis not shown here (From 

Eckhardt et al., 2004). 
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Under the influence of diabatic processes, PV is no longer conserved. The 

time tendency in PV is dependent on the vertical gradient in diabatic heating. 

Below the region of maximum heating, the PV tendency is positive (Figure 7). 

Above the region of maximum heating, the tendency of PV is negative (Figure 

7).The upper-level negative PV anomaly results in upper-level ridging and may 

significantly modify the downstream flow (Figure 7). Therefore LC1 wavebreaking 

events frequently occur to the southeast of an enhanced ridge (Altenhoff et al., 

2008). This is the scenario that will be investigated with respect to the cold surge 

event over eastern Europe in February 2004. 

Due to the redistribution of PV associated with latent heat release, WCBs 

may affect the upper-tropospheric PV pattern (Pomeroy & Thorpe, 2000). The 

low-level positive PV anomalies produced by latent-heat release from 

condensation contribute up to 40 percent of the cyclonic circulation in a mature 

storm (Davis & Emanuel, 1991). Latent-heat release at upper-levels also 

increases static stability, creating a positive vorticity anomaly. Stoelinga (1996) 

argued that latent-heat release and the associated low-level PV maximum was 

responsible for up to 70 percent of the surface intensity of an extratropical 

cyclone. 

 
Figure 7.  Depiction of the evolution of the dynamic tropopause (a) under the 

influence of an upper-level trough and positive potential vorticity 
anomaly and (b) subsequent downstream effects of mid-level diabatic 

heating on the PV tendency. 
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C. ENSEMBLE FORECASTING 

Ensemble forecasting is a numerical prediction method that employs 

multiple model integrations each initiated with slightly different initial conditions 

(Kalnay 2006). It is assumed that the model is designed so that each forecast 

member is equally likely to occur. The differences in initial conditions are small 

and consistent with observation uncertainty. After several days, the initially small 

differences can yield substantially different forecasts. The variability among 

ensemble members is often taken as a measure of forecast uncertainty. By 

comparing different ensemble members, the forecast probability of a given 

weather event can be assessed (Kalnay 2006). 

Ensemble forecasting can also be used to statistically post-process 

model-generated fields. Forecasters can identify errors with model output due to 

model bias, but systematic errors are more difficult to detect (Hamill & co-authors 

2013). Using ensemble forecasting in case studies of past weather events, it may 

be possible to distinguish between random and model errors. Reforecasts have 

proven useful in model calibration for relatively rare, high-impact weather events 

(Hamill et al., 2008), and longer-lead weather-climate phenomena. Using 

associated observational data, estimates of a conditional distribution of possible 

outcomes are possible with current numerical guidance (Hamill et al., 2013). 
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III. METHODOLOGY 

A. DATA 

All data were collected from various open sources and research 

communities. The time period of 1–17 February 2004 is analyzed for the North 

Atlantic Ocean, the Mediterranean Sea, and Europe. 

1. Analysis Data 

Analyzed data were obtained from the Global Forecast System (GFS) 

model utilizing Climate Forecast System Reanalysis (CFSR) (Saha and co-

authors 2010). The global CFSR fields are produced at six-hour intervals and at 

a 0.5° latitude and longitude resolution and 64 vertical levels. To examine the 

climatological character of the extreme cold surge, temperature anomalies were 

retrieved using the Earth System Research Laboratory (ESRL) website 

(www.esrl.noaa.gov/psd/data/composities/day/). Temperature anomalies are 

defined relative to a 30 year (1981–2010) mean. 

2. Satellite Imagery 

Infrared and water vapor satellite imagery from GOES 12, Meteosat 5, and 

Meteosat 7, were collected from NOAA's National Environmental Satellite, Data, 

and Information (NESDID) archive. Satellite imagery was used to examine the 

evolution of the cyclonic systems, the WCB, and the downstream wavebreaking 

event. 

B. PREDICTABILITY 

The National Oceanographic and Atmospheric (NOAA) Global Ensemble 

Forecast System (GEFS) was used for this case study. The GEFS model 

forecasts are produced once daily for a 27-year period from 1985–2012. Each 

forecast consists of 10 ensemble members and all forecasts were constructed 

with the same model version, the same uncertainty parameterizations, and a 

similar method of ensemble initialization as currently used for the National 
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Centers for Environmental Prediction (NCEP) GEFS (Hamill et al., 2013). For the 

first week of time integration, each reforecast set is integrated at 0.5 degree grid 

spacing with 42 vertical levels. Beyond one week, forecasts were generated at 

0.75 degree grid spacing and 42 vertical levels. Reforecasts were initialized 

using CFSR initial conditions. Perturbations were generated using the ensemble 

transform method and a rescaling technique (Hamill et al., 2013). The reforecasts 

were generated once per day at 0000 UTC. 

C. DYNAMIC TROPOPAUSE 

Potential vorticity is a conserved property in frictionless flow and under 

adiabatic conditions (Morgan & Nielsen-Gammon, 1997). Because of the 

conservation principle, PV is a useful parameter to characterize synoptic-scale 

flow. This enables characterizing synoptic-scale flows in terms of the PV 

distribution. Potential vorticity is particularly useful in diagnosing the 

characteristics of the tropopause as the gradient in static stability increases 

greatly at the tropopause (Hoskins et al., 1985). Due to high static stability, the 

stratosphere is a reservoir of high PV air. Because stretching and compression in 

the troposphere can lead to discontinuous changes in the location of a lapse-

rate-defined tropopause, studies examining troposphere-stratosphere exchange 

frequently define the tropopause as a particular value of PV. A PV-defined 

tropopause, or “dynamic tropopause” (Danielsen & Hipskind, 1980), is more 

spatially continuous than a lapse-rate-defined tropopause. 

Multiple values of PV have been used to define the tropopause. Typically, 

these values are between 1 and 3.5 PVU, as these tend to lie within the transition 

zone of the upper troposphere and lower stratosphere (Morgan & Nielsen-

Gammon, 1997). In this thesis, the 2.0 PVU surface is used to define the 

dynamic tropopause. 

Potential temperature is the temperature a parcel of air would have if 

adiabatically compressed or expanded from its original pressure to a reference 

pressure, usually 1000 hPa. Isentropic surfaces slope upward in cold air. The 
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opposing slopes of PV and potential temperature surfaces result in PV gradients 

along isentropic surfaces being sharper than along isobaric surfaces (Morgan & 

Nielsen-Gammon, 1997).  Furthermore, the PV gradient is strongest near the 

tropopause due to rapid changes in static stability. Rossby waves in the upper 

troposphere interact with the instantaneous PV distribution, which makes it 

possible to analyze forcing of wave evolution and potential significant weather 

events by examining the instantaneous PV distribution (Morgan & Nielsen-

Gammon, 1997). 

D. STANDARDIZED ANOMALIES 

To determine the magnitude of the anomalies in the North Atlantic ridge 

and central European trough discussed in this study, standardized anomaly plots 

were created. The anomalies in the 300 hPa, 500 hPa, and 925 hPa height fields 

were computed by substracting the long-term, 21 day mean of 1979-2010 from 

the instantaneous value and then dividing by the long-term 21 day standard 

deviation (Hart & Grumm, 2001). The long-term mean and standard deviation 

values were obtained from the 2.5° latitude and longitude NCEP reanalysis. 

Anomaly plots were constructed at six-hour intervals from 0000 UTC 1 February 

through 1800 UTC 16 February. 

Hart and Grumm (2001) defined an anomaly of four or more standard 

deviations as a rare event. Over the course of the annual cycle, a maximum of 

rare events exists during winter and a minimum in summer, but major departures 

from climatology are still possible in summer. Large departures are limited in 

summer because several nonlinear processes (frontogenesis, cyclogenesis, 

advection, and shear) that cause large anomalies are limited in summer. Large 

height anomalies are also maximized at lower latitudes (Hart & Grumm, 2001). 
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IV. ANALYSIS AND RESULTS 

A. PRECURSOR EVOLUTION: FEBRUARY 6-11 2004 

The cold surge over the Aegean Sea and eastern Mediterranean can be 

traced back to an extreme amplification of a synoptic-scale transient ridge over 

the central Atlantic from 8–10 February 2004. Key factors to be discussed are the 

persistent warm-air advection over the central North Atlantic that contributed to 

the ridge building and extension, and anomalously cold air that moved into 

central and eastern Europe. The maximum cold-air advection occurred between 

11–12 February on the eastern flank of the building ridge. Cold air moved over 

Scandinavia on 11 February then extended southward on 12 February (Figure 8) 

The anomalously cold air began flowing into the Aegean and eastern 

Mediterranean on 13 February. The maximum cold anomaly of -12°C occurred 

over the Aegean Sea on 13 February. Warm air moved eastward over high 

latitudes, replacing the cold anomalies over Scandinavia and western Europe on 

13 and 14 February. The maximum warm anomaly occurs over northern Sweden 

and Finland on 13 and 14 February. 
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Figure 8.  Surface temperature anomalies over 24 hours in degrees Kelvin over 

Europe for (a) 11 February, (b) 12 February, (c) 13 February, and (d) 
14 February. Image created using the Earth System Research 

Laboratory Physical Sciences Division website 
(http://www.esrl.noaa.gov/psd/data/composites/day/). 

The timeline of Figure 2 is augmented in Figure 9 to denote the ridge 

building events in the North Atlantic. The evolution of ridge amplification is 

discussed in relation to successive cyclone events as depicted by the distribution 

of winds and potential temperature on the dynamic tropopause (DT). The first 

cyclone (L1) that contributed to the ridge amplification entered the Labrador Sea 

on 6 February (Figure 10a) with a central sea-level pressure (SLP) minimum of 

992 hPa (Figure 11). This system remained in the Labrador Sea until it 

weakened on 8 February (Figure 10c). The cyclone, L1, allowed for an initial 

advection of warm air northward. The southwesterly winds along the eastern 

flank of the low in the Labrador Sea advected warm air to higher latitudes, which 
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contributed to the first ridge as represented by the increase of potential 

temperature on the DT analyzed along 42°W (Figures 10a, 10b) and extended 

southeastward to 44°N 23°W. 

 
Figure 9.  Timeline of synoptic weather events 5–13 February 2004 with 

emphasis on ridge amplification in the north Atlantic 6–10 February. 

The trough associated with the cyclone in the Labrador Sea quickly 

thinned as a second cyclone (L2) formed off the New England coast on 7 

February (Figure 10b) and rapidly deepened. The cyclone, L2, entered the 

western Atlantic with a SLP of 996 hPa at 1200 UTC 7 February (Figure 11). As 

L2 deepened and moved northeastward, the WCB associated with this cyclone 

contributed to the thinning of the trough that extended southward from L1 over 

the Labrador Sea. Between 0600 UTC and 1200 UTC 8 February, the minimum 

central pressure of L2 decreased from 976 hPa to 964 hPa (Figure 11). In 

association with the deepening of L2, the WCB increased and warm-air 

advection contributed to significant ridge building that extended to the northeast.  

The distribution of potential temperature and winds on the DT accounts for 

the influence of warm-air advection on the building ridge. However, isolated 

regions of high potential temperature (i.e., elevated tropopause) are suggestive 

of diabatic contributions to the ridge-building event. While advective changes in 

the elevation of the DT dominate at 0000 UTC 8 February (Figure 10c), isolated 

regions of high potential temperature exist at 44°N 35°W on 0000 UTC 9 
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February (Figure 10d). This 24-h period encompassed the maximum deepening 

of L2 and increased WCB. The satellite image (Figure 12) confirms the presence 

of significant cloud cover that would be consistent with diabatic contributions to 

the elevated tropopause. 

By 0000 UTC 10 February, a third cyclone (L3) (Figure 10e) formed in the 

central North Atlantic as a secondary cyclone on the trailing edge of L2. A closed 

circulation formed with a SLP of 992 hPa at approximately 0600 UTC 9 February 

near 42°N 35°W (Figure 12). The cyclone, L3, moved northward but did not 

significantly deepen until approximately 10 February, which was when L2 moved 

over Greenland and significantly weakened. The building ridge due to L2 forced 

L3 to move in a meridional direction (Figure 11). The position and track of L3 

contributed to additional warm-air advection and amplification of the ridge over 

the central Atlantic. As defined in the sequence of DT charts (Figures 10a–10e), 

the primary North Atlantic ridge built with each successive cyclone; L1, L2, and 

L3. The evolution of the ridge amplification is depicted in Figure 13. The greatest 

amplification of the ridge on the DT occurred between 9 and 10 February under 

the influence of the WCB and meridional track of L3. The cyclone, L3 reached 

peak intensity of 972 hPa SLP at 1200 UTC 10 February, and the amplitude of 

the ridge reached its most northerly extent of 70.5°N at approximately 1800 UTC 

10 February (Figure 13). 
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Figure 10.  Potential temperature and winds on the dynamic tropopause (DT) at 

(a) 0000 UTC 6 February, (b) 0000 UTC 7 February, (c) 0000 8 
February, (d) 0000 UTC 9 February, and (e) 0000 UTC 10 February. 

10e also defines the WCB at 0000 UTC 10 February. The DT is 
defined as the 2.0 PVU surface. Potential temperature (K) on the DT 
is defined by the shading. Winds on the DT are defined by the barbs, 

and one large barb is defined as 5 m s-1. Layer-averaged relative 
vorticity between 925 and 850 hPa is defined by the solid black 

contours. The L’s define the circulation center of the three cyclones at 
the surface. 
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Figure 10b. As in figure 10a, except for 0000 UTC 7 February. 

 
Figure 10c. As in figure 10a, except for 0000 UTC 8 February. 
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Figure 10d. As in figure 10a, except for 0000 UTC 9 February. 

 

 
Figure 10e. As in figure 10a, except for 0000 UTC 10 February. 
Additionally, the black arrow defines the WCB associated with L3. The 
schematic is of an anticyclonic wavebreak as depicted in the inset. 
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Figure 11.  Tracks of three midlatitude cyclones defined in Figures 10a–10e. The 

circle size represents minimum sea-level pressure for the date time. 
Color coding defines the date. 

 
Figure 12.  Water vapor satellite image from GOES 12 for 1800 UTC 7 February. 

The red line defines the WCB associated with L2. 
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Figure 13.  Depiction of ridge amplification over central North Atlantic as defined 

by the 5340 m and 5460 m 1000–500 hPa thickness. Tracks of 
cyclones identified in Figures 10a–10e are defined by the solid black 

lines. Color coding defines the dates. 

To determine the significance of the Atlantic ridge at 1800 UTC 10 

February, standard anomaly plots of geopotential heights at 925 hPa, 500 hPa, 

and 300 hPa were contructed. The standardization of the height anomalies and 

assumption of a normal distribution allows the anomalies to be defined as 

standard deviations from the mean, which is a measure of statistical significance 

with respect to climatology (Hart & Grumm 2001). 

At the time of the maximum ridge amplitude, the anomaly in the Atlantic 

ridge at 300 hPa was two standard deviations above the mean, this value was 

only observed over a small region southeast of Iceland (Figure 14). Based on the 

assumption of a normal distribution associated with the standardized anomalies, 

(Hart & Grumm 2001), phenomena that are two standard deviations greater than 

the mean account for 2.5% of such events. The 500 hPa anomaly was less than 

two standard deviations (Figure 15), and the 925 anomaly was less than one 

standard deviation (Figure 16). The relatively low significance is likely due to the 

extreme variability of heights at such high latitudes. 
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Figure 14.  The 1800 UTC 10 February 300 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard. 

 
Figure 15.  The 1800 UTC 10 February 500 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard deviations. 
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Figure 16.  The 1800 UTC 10 February 925 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard deviations. 

B. WAVEBREAK AND COLD SURGE 

As depicted in the timeline (Figure 17), the anticyclonic wavebreaking and 

cold surge events occurred immediately following the ridge amplification over the 

north Atlantic. Therefore, the linkage between the two events is examined in the 

context of the LC1 wave lifecyle. 

 
Figure 17.  Timeline of synoptic weather events 5–13 February 2004 with 

emphasis on the anticyclonic wavebreak over Europe 11–12 
February. 

Between 11–13 February (Figures 18a–18c), the potential temperature 

gradient on the DT significantly increased on the eastern flank of the Atlantic 
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ridge. The steeply sloped DT was indicative of a strong northerly jet that 

extended from the northeast to the southwest into central Europe (Figure 18a). 

Also during this period, the ridge-trough couplet began to exhibit the 

characteristic northeast to southwest orientation associated with an anticyclonic 

wavebreak (Figures 18a). As the eastern flank of the ridge extended 

southeastward, the trough deepened. The characteristic “hook” of potential 

temperature on the DT (Figure 18a) became modified as the trough thinned over 

the next 24 h (Figure (18b). Eventually, a pocket of low potential temperature 

formed at the base of the trough over southeast Europe (Figure 18b). The 

extension and thinning of the trough resulted in the region of very low potential 

temperature separating from the main trough that was passing to the northeast 

(Figure 18c). 

The trough in the DT and its associated positive PV anomaly spread over 

a low-level baroclinic zone that existed over central Europe on 11 February 

(Figure 18a, 18b). The vertical linkage between an upper-level positive PV 

anomaly and a low-level baroclinic zone are typical synoptic-scale factors that 

lead to Pettersen-Smebye type B cyclogenesis (Petterson & Smebye 1971). The 

surface trough extended southwest from a low-pressure center in Russia and 

developed a closed cyclonic circulation at 1200 UTC 12 February (Figure 18b) 

over western Turkey that persisted for approximately 18 hours. It was during this 

period that a cold front passed over Crete in the early morning hours of 13 

February. The trough in the DT reached its most southern extent at 1200 UTC 13 

February (Figure 18c). Surface temperatures at this time were -1°C. Based on 

information from the Hellenic National Meteorological Service, this corresponds 

with surface temperatures in Crete that were 8°C to 9°C below the February 

average minimum temperature for Souda Bay (Figure 8). 
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Figure 18.  As in Figure 10a, except for (a) 1200 UTC 11 February, (b) 1200 UTC 

12 February, and (c) 1200 UTC 13 February 

 
 Figure 18b. As in Figure 10 a, except for 1200 UTC 12 February. 
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Figure 18c. As in Figure 10a, except for 1200 UTC 13 February. 
 

The significance of the trough over eastern Europe is also analyzed using 

standardized height anomalies. Based on the standardized height anomalies 

(Figures 19–21), the trough over eastern Europe was more significant with 

respect to climatology than the ridge. The 300 hPa (Figure 19) and 500 hPa 

(Figure 20) geopotential height anomalies depict regions that are three standard 

deviations below the long term mean over the Aegean Sea. Anomalies of that 

magnitude occur one to two times per month (Hart & Grumm 2001). Despite the 

cold anomalies of 8–9°C below the February mean temperature at Chania and 

Souda Bay, the 925 hPa height anomaly was only one standard deviation below 

the long term mean (Figure 21). However, the large-scale trough was three 

standard deviations below the mean which is highly significant with respect to 

climatology. 
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Figure 19.  The 1200 UTC 13 February 300 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard deviations. 

 
Figure 20.  The 1200 UTC 13 February 500 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard deviations. 
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Figure 21.  The 1200 UTC 13 February 925 hPa heights (dam, black lines) and 

standardized anomalies (shading) defined as standard deviations 

Vertical cross sections (Figures 22 and 23) through the base of the deep 

trough that extended southward to Crete are used to depict the vertical 

distribution of PV, temperature advection, and the DT. At 0000 UTC 13 February 

(Figure 22), which is near the time of maximum trough amplitude, a narrow strip 

of high PV air descended to nearly 750 hPa over Crete. The backing winds to the 

west of the stratospheric intrusion define cold-air advection. Cold-air advection 

suggests the surface cyclone will deepen in the presence of extremely high PV 

air that is contained in the tropopause fold above Crete. Similarly, the veering 

winds to the east of the intrustion define warm-air advection and ascent. The 

warm-air advection to the east of the trough contributed to a steep gradient in the 

orientation of the tropopause. 

The vertical cross section at 1200 UTC 13 February (Figure 23) indicates 

that the low-level cold air has moved eastward and deepened in the vertical. 

Significant cold-air advection exists to the level of 650 hPa. The fold in the 

tropopause that existed at 0000 UTC 13 February (Figure 22) has become a 

broad depression that is typical of a cold, upper-level cyclone. 
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.  

Figure 22.  Vertical cross section for 0000 UTC 13 February with end points A and 
B defined by the inset map. The solid black line defines the 

tropopause, the long wind barbs define 5 m s-1, flags define 25 m s-1, 
shading defines potential vorticity in PVU, and the dashed black define 

ascent in 10-4 hPa s-1. Souda Bay is located at 24°E longitude. 
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Figure 23.  Vertical cross section for 1200 UTC 13 February with end points A and 

B defined by the inset map. The solid black line defines the 
tropopause, the wind barbs define 5 m s-1, flags define 25 m s-1, 

shading defines potential vorticity in PVU, and the dashed black define 
ascent in 10-4 hPa s-1. Souda Bay is located at 24°E longitude. 

C. PREDICTABILITY 

The predictability of the cold surge will be examined using ensemble 

forecasts that verify during the period 11–13 February. This period encompasses 

the maximum amplitude of the ridge and the subsequent anticyclonic wavebreak. 

Examination of the spread among ensemble members begins at the 72-h 

forecast. For all forecasts verifying at 0000 UTC 11 February (Figure 24), the 

spread among ensemble members is concentrated over two regions of the ridge-

trough system. At the apex of the ridge, spread increases over the northwest side 

between Iceland and Greenland. The magnitude of the spread increases as the 

forecast interval increases (Figures 24b–24d). 
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The second area of large spread is located on the eastern flank of the 

North Atlantic ridge and extends into the base of the deepening trough. While the 

magnitude of spread over the region increases with forecast range, it is not as 

large as the spread at the apex of the ridge. 

 
Figure 24.  The 0000 UTC 11 February analyzed 500 hPa ensemble-mean 

heights, and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean 
forecasts of 500 hPa heights (black contours in dam). Shading 

represents standard deviation (m) about the ensemble. 

Ensemble forecasts verifying at 12 February also contain significant 

uncertainty associated with the ridge-trough couplet (Figure 25) between Iceland 

and Greenland. While the ensemble spread increases with forecast interval, the 

magnitude of the spread in the trough is larger than the spread in the ridge. 

Therefore, uncertainty in forecasts has moved downstream over time. 
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Figure 25.  The 0000 UTC 12 February analyzed 500 hPa ensemble-mean 

heights, and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean 
forecasts of 500 hPa heights (black contours in dam). Shading 

represents standard deviation (m) about the ensemble. 

Overall, uncertainty in forecasts verifying on 13 February (Figure 26) has 

decreased. In general, the uncertainty is concentrated over the eastern flank of 

the ridge that defines the cold-air advection into the base of the deepening 

trough. The 72-h (Figure 26b) and 96-h (Figure 26c) forecasts place the 

uncertainty west of the base of the trough, but the 120-h forecast (Figure 26d) 

places the uncertainty farther north. The 120-h forecast, initialized 8 February, 

also depicts less of an anticyclonic wavebreak orientation in the trough. 

Forecasts from the 8 February initialization were the first to exhibit significant 

uncertainty in forecasting the ridge on 11 February. The difficulty of the 8 

February initialization in forecasting the subsequent ridge further supports the 
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hypothesis that accurate forecasting of the trough relies on an accurate forecast 

of the ridge. 

 
Figure 26.  The 0000 UTC 13 February analyzed 500 hPa ensemble-mean 

heights, and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean 
forecasts of 500 hPa heights (black contours in dam). Shading 

represents standard deviation (m) about the ensemble. 

The forecasts of SLP depict two regions of increased spread associated 

with the ridge-trough couplet. One region exists at the apex of the ridge, between 

Iceland and Greenland. The second region is over eastern Europe. Through the 

96-h forecast (Figure 27c) the magnitudes of the spread in the ridge and trough 

east of the ridge increased at the same rate. Beyond 96-h, spread increased 

drastically over the entire region of northern Europe (Figures 27d, 28d, and 29d). 

Similar to the 500 hPa forecasts, the regions of greatest spread progresses 

downstream as the ridge develops (Figure 27). 
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Figure 27.  The 0000 UTC 11 February analyzed SLP ensemble-mean heights, 

and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean forecasts of 
SLP (black contours in hPa). Shading represents standard deviation 

(hPa) about the ensemble. 

Ensemble forecasts of SLP that verify at 0000 UTC 12 February (Figure 

28) define a slight shift in the pattern of uncertainty. Maximum spread among 

ensemble members is concentrated at high latitudes. Spread over the North 

Atlantic between Iceland and Greenland is reduced (Figure 28b–28d). However, 

spread over southeastern Europe remains large. At 120 h (Figure 28d), a 

separate maximum in spread occurs over the Aegean Sea. The pattern is similar 

to that of forecasts of 500 hPa that verify at 0000 UTC 12 February as the spread 

associated with troughing over southeastern Europe become larger than the 

spread over the upstream ridge (Figure 25). 
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Figure 28.  The 0000 UTC 12 February analyzed SLP ensemble-mean heights, 

and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean forecasts of 
SLP (black contours in hPa). Shading represents standard deviation 

(hPa) about the ensemble. 

At the time of maximum thinning and equatorward extension of the trough 

(Figure 26), the uncertainty contained in ensemble forecasts of SLP has been 

reduced with respect to the ridge-trough couplet (Figure 29). Uncertainty in 

forecasts of SLP remains large at high latitudes and only a small region of 

moderate spread exists over southeastern Europe near 38°N 27°E. The region of 

uncertainty that is associated with the cyclone event over the eastern 

Mediterranean appears in the 72-h forecast (Figure 29b) that verifies at 0000 

UTC 13 February. However, it does not increase in magnitude with increasing 

forecast interval. 
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Figure 29.  The 0000 UTC 13 February analyzed SLP ensemble-mean heights, 

and the (b) 72-h, (c) 96-h, and (d) 120-h ensemble-mean forecasts of 
SLP (black contours in hPa). Shading represents standard deviation 

(hPa) about the ensemble. 

To summarize forecast uncertainty, as represented by ensemble forecasts 

of 500 hPa height and SLP, it is clear that the height forecast uncertainty appears 

initially to be associated with the ridge-building over the north Atlantic. Forecast 

uncertainty then increases downstream as the uncertainty in the ridge building 

decreases. Forecast uncertainty increases with increased forecast range until the 

time of the maximum cold surge. At this time, the forecast uncertainty becomes 

small and does not increase with increased forecast range. 

To examine the predictability in greater detail, individual ensemble 

members were also examined. The forecasts of SLP and 500 hPa are examined 

using the 996 hPa contour and 540 dam height contour, respectively. The 
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forecasts of SLP are used to evaluate member performance for cyclones L1, L2, 

and L3, and the forecasts of 500 hPa are used to evaluate member performance 

for the North Atlantic ridge and eastern European trough. Examination of the 

individual members provides insight into the differences among the members that 

led to the spread depicted in the ensemble mean plots. Because forecast spread 

seems to propagate downstream, the series of three successive cyclones in the 

western Atlantic were examined first, the North Atlantic ridge was examined 

second, and the eastern European trough was examined last. It is hypothesized 

that ensembles members that accurately forecast the cyclones should 

subsequently accurately forecast the ridge and trough. 

Although the determination of which ensemble member performed best is 

done by visual inspection, several criteria were used to rank the members. The 

location of the forecast features is examined, then the intensity of each forecast 

is examined. The member with the best position and intensity forecast was 

chosen as the best member of each forecast of L1, L2, L3, ridge, and trough. The 

best members for each forecast initialization time at verification times associated 

with L1, L2, L3, the trough, and ridge are listed in Table 1. Not all entrees in 

Table 1 are discussed here. Rather, selected forecasts initiated at 0000 UTC 4 

and 5 February are discussed to provide detail in the process by which the best 

forecast member was determined. These forecasts correspond to the second 

and third rows in Table 1. 

Forecasts that verify at 0000 UTC 7 February, which was the time of 

cyclone, L1, were examined first. Because the spread among members is small 

in short-interval forecasts, the individual members are examined for 72-h 

forecasts and beyond. It is clear that forecasts of L1 that verify at 0000 UTC 7 

February (Figures 30b, 30c) over forecast the intensity of L1. Based on the 

forecast intensity, member 6 performed best (Table 1) for the 72-h forecast 

initialized on 4 February (Figure 30b). Similar intensity and position forecast 

characteristics were evident in forecasts initiated at other times (Figures 30c).  
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For example, member 9 in the 96-h forecast initialized at 0000 UTC 3 February 

was determined to be best as the 996 hPa contour is most similar to the verifying 

contour. 

 
Figure 30.  The 996 hPa contour for the ensemble members for the (a) analysis at 

0000 UTC 7 February, the (b) 72-h forecast, and (c) 96-h forecast that 
verify at 0000 UTC 7 February. The black box defines the area of L1 

over which the members are evaluated. 

The time of 0000 UTC 9 February (Figure 31a) was used as the 

verification time for forecasts of cyclone L2. As with L1, forecast positions were 

generally accurate, but the forecast intensities of L2 were greater than the 

analysis. In the 120-h forecast initialized on 4 February (Figure 31b) member 5 is 

chosen to be the best as the 996 hPa contour encompasses less area then 

defined by other members, which indicates that the cyclone is weakest in 

member 5. 
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Figure 31.  The 996 hPa contour for the ensemble members for the (a) analysis at 

0000 UTC 9 February and the (b) 72-h forecast that verifies at 0000 
UTC 9 February. The black box defines the area of L2 over which the 

members are evaluated 

The time of 0000 UTC 10 February was used as the verification time for 

forecasts of cyclone L3 (Figure 32a). In the 144-h forecast initialized at 0000 

UTC 4 February, member 5 performed best with respect to L3 (Figure 32b). This 

member also was the best 120-h forecast of L2 (Figure 31b). Therefore, the 

member that best forecast L2 also was the best forecast of L3 24-h later. 

 
Figure 32.  A comparison of the (a) 0000 UTC 10 February SLP analysis to the (b) 

144-h forecast. The black box defines the area of L3 over which the 
members are evaluated. 
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The North Atlantic ridge is examined at the analysis time of 0000 UTC 11 

February (Figure 33a). In the 168-h forecast initialized on 4 February, it is clear 

that member 6 contains the most accurate representation of the ridge (Figure 

33b). Member 6 is the only ensemble member in which the 540 dam contour 

extended to Iceland (Figure 33b) as it does in the verifying analysis (Figure 33a). 

For the 144-h forecast that was initiated 0000 UTC 5 February, member 6 also 

performed best (Figure 33c). Again, member 6 was the only forecast member in 

which the 540 dam contour extended into Iceland as verified (Figure 33a). 

 
Figure 33.  The 540 dam contour for the ensemble members for the (a) analysis at 

0000 UTC 11 February, the (b) 168-h forecast initialized 0000 UTC 4 
February, and the (c) 144-h forecast initialized 5 February that verify 

at 0000 UTC 11 February. 

The time used to examine the eastern European trough was defined to be 

0000 UTC 13 February (Figure 34a). From the 192-h forecast initialized 0000 
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UTC 5 February, it is clear that the best member was again member 6 (Figure 

34b). Member 6 forecasted a strong anticyclonic wavebreak with a thinning 

trough over eastern Europe. 

 
Figure 34.  The 540 dam contour for the ensemble members for the (a) analysis at 

0000 UTC 13 February and the (b) 192-h forecast initialized 0000 
UTC 5 February that verify at 0000 UTC 13 February. 

Although it is not possible to address every entry in Table 1, it is clear that 

identification of best-performing ensemble members tends to confirm the 

hypothesis that accurate forecasts of the ridge favored accurate forecasts of the 

downstream trough. 

In four of six cases in which there are verifying forecasts of the ridge-

trough couplet (i.e., initial times of 5–10 February in Table 1), the ensemble 

member that forecast the North Atlantic ridge best also forecast the eastern 

European trough best. Additionally, this consistency among ensemble members 

occurred for both extended-range forecasts (i.e., initial time of 5 February) and 

short-range forecasts (i.e., initial time of 10 February). 

A measure of chance likelihood for the same member to be the most 

accurate for two verifying times is considered. Each of the 11 members is 

considered to be best at any verifying time with equal probability. It is also 

assumed that a member that is best at one verifying time is independent of the 
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member that is best at an adjacent verifying time. The conditional probability of 

the same member being best for two verifying times is then (1/11)2. For the 

forecasts of the ridge-trough couple listed in Table 1, the frequency at which the 

best forecast member for the trough is much higher than the probability of having 

the same member being the best forecast due to chance. 

There are no member forecasts that are best for all three precursor 

cyclones, L1, L2, and L3 (Table 1). There are two instances in which the same 

member provides the best forecasts for L2 and L3. These occur for the five-day 

and six-day forecasts initiated at 0000 UTC 4 February and the two-day and 

three-day forecasts initiated at 0000 UTC 7 February. However, these members 

do not exhibit the best forecasts for the North Atlantic ridge. 

Only the two-day and three-day forecasts initiated at 0000 UTC 8 

February have a member that provided the best forecast of L3 and a best 

forecast for the ensuing North Atlantic ridge. However, there are two sets of 

forecasts, initiated on 0000 UTC 4 and 5 February, in which the member that had 

the most accurate forecast of L1 also had the most accurate forecast for the 

North Atlantic ridge. For the case of the forecast initiated on 5 February, the 

same member also had the best representation of the eastern European trough. 

In summary, the members listed in Table 1 indicate that accurate forecast 

of the North Atlantic ridge did lead to an increased likelihood of an accurate 

forecast of the ensuing eastern European trough. However, there is less of a 

connection to forecasts of the precursor cyclones L1, L2, and L3. Although it is 

clear from the analysis in Section 3.1 that the WCBs associated with the 

successive cyclone contributed to the building of the North Atlantic ridge, this 

process was not consistently related to the downstream evolution as defined by 

members of the ensemble forecast system. 
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Table 1.   A list of which ensemble members best forecast the synoptic 

features for forecasts initialized 3–10 February. Shading in a row 
defines a member providing the best forecast for a given feature. 

In summary, examination of individual ensemble members supported the 

hypothesis that accurate forecasts of the North Atlantic ridge lead to accurate 

forecasts of the downstream trough over eastern Europe. However, there was no 

statistical linkage identified between forecast accuracy of the precursor cyclones 

and that of the North Atlantic ridge. Although the WCBs of each successive 

cyclone clearly contributed to the ridge-building event, this process was not 

consistently represented in ensemble forecasts. Therefore predictability for the 

cold surge event only extended back to the wavebreaking process and not the 

forcing of the high-amplitude ridge, which may be highly dependent on diabatic 

processes. A cavet to the interpretation of Table 1 is that a rather small ensemble 

is used to perform a limited statistical evaluation of the sequence of events that 

lead to the cold surge over Crete. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

On 13 February 2004, an extreme cold surge resulted in significant snow 

fall over Naval Support Activity Souda Bay. The extreme nature of the cold surge 

led to severe difficulty in forecasting the event. As a result of that forecast 

difficulty, NSA Souda Bay was not prepared for the ensuing snowfall and base 

operations were delayed, and the airfield was closed until Navy personnel could 

clear the flight line of snow.  

A. SYNOPTIC DEVELOPMENT 

In this thesis, the development of the cold surge event is examined 

relative to a sequence of precursor synoptic-scale events. These events include 

a sequence of cyclones that occurred over the western Atlantic beginning seven 

days prior to the cold surge. The WCB from the series of three extratropical 

cyclones worked to build a highly-amplified ridge. The cold surge was then the 

result of an anticyclonic wavebreak that developed in response to the extreme 

ridge-building event over the North Atlantic southeast of an amplified transient 

synoptic-scale ridge. 

The physical linkage between the three cyclones and the highly amplified 

North Atlantic ridge was determined to be repeated forcing by the WCBs 

associated with each cyclone. Diabatic processes associated with the WCBs 

contributed to negative PV tendencies at upper-levels as the mid-tropospheric 

ridge amplified. 

Following the time of maximum amplitude of the North Atlantic ridge, a 

downstream trough developed as a LC1 anticyclonic wavebreak. In response to 

horizontal anticyclonic shear, the North Atlantic ridge acquired a large northeast 

to southwest orientation. A deepening downstream trough extended to the 

southwest over eastern Europe. Throughout the two days of the wavebreaking 

event, the trough thinned and extended to the Mediterranean and Aegean Seas. 
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The deep trough was associated with a high-amplitude tropopause fold in which 

stratospheric air extended downward to 700 hPa. 

At the time of maximum intensity of the trough, the 300 hPa heights 

associated with the deep eastern European trough were four standard deviations 

below the climatological long-term mean height. Likewise, at the time of peak 

intensity of the ridge, the 300 hPa were two standard deviations above the mean. 

B. PREDICTABILITY 

The predictability of the cold surge over Crete was examined using an 

ensemble forecast system that contained 10 members and one control. In this 

case, predictability was defined by the spread among ensemble members and by 

consistency with forecast accuracy among individual ensemble members. 

Spread among ensemble members was consistently located at the apex 

of the North Atlantic ridge and near the base of the eastern European trough. For 

daily forecasts that were of extended ranges, the spread associated with the 

ridge was larger than that in the trough. However, the ridge amplified and valid 

forecast ranges shortened. The amplitude of spread on the ridge decreased 

while amplitude on the trough increased. Therefore, forecast uncertainty moved 

downstream as the ridge-trough couplet developed. 

C. RECOMMENDATIONS 

It is recommended that forecasters, especially in winter months and at 

high latitudes, examine precursor events several days before a forecast valid 

time and well upstream of features of interest. Examining highly amplified, 

synoptic-scale, patterns provides significant insight into expected downstream 

conditions. Additionally, when using ensemble products, forecasters should 

understand that the ensemble mean for highly anomalous cases will likely not 

provide an accurate portrayal of future conditions. Finally, diabatic forcing of the  
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high-amplitude ridge may forecast skill of high-impact weather events. 

Accordingly, forecasters should note that regions of strong diabatic forcing may 

be sources of high forecast uncertainty and error. 
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