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Abstract

The present research effort developed a real-space formulation for orbital-free density func-
tional theory and Kohn-Sham density functional theory in order to conduct large-scale elec-
tronic structure calculations that take an important step towards addressing the prevailing
domain-size and geometry limitations of existing electronic-structure codes. In particu-
lar, by combining the real-space formulation with a finite-element discretization, which has
the desirable attributes of a local basis that is amenable to coarse-graining and a scalable
discretization on parallel-computing platforms, it has been demonstrated that large-scale
electronic structure calculations at macroscopic scales become accessible to conduct an ac-
curate electronic structure study of the energetics of defects in materials. Careful verification
and validation studies of the developed techniques and codes for both orbital-free DFT and
Kohn-Sham DFT have been conducted. Using orbital-free DF'T the energetics of vacancies
in Aluminum as well as the properties of Al-Mg alloys have been investigated. Using Kohn-
Sham DFT the studies on the energetics of Ni-Al bi-layers are ongoing. The present research
study was conducted in close collaboration with scientists at Army Research Labs. In this
report we provide a summary of our research accomplishments and comment on our ongoing
and future work.

1 Orbital-free Density Functional Theory:

Orbital-free density functional theory is an approximation to Kohn-Sham density func-
tional theory—which is widely accepted as a reliable and computationally tractable mate-
rials theory—where the kinetic energy of non-interacting electrons is explicitly modeled as
a functional of the electron density. The development of model kinetic energy functionals
for orbital-free DFT is an active area of research, and the model kinetic energy function-
als developed over the past decade seek to capture the known properties of uniform elec-
tron gas (Wang & Teter, 1992; Wang et al., 1998, 1999), and numerical investigations have
demonstrated the accuracy of these kinetic energy functionals for materials systems whose
electronic structure is close to a free-electron gas. For these materials systems, orbital-free
DFT provides a computationally efficient approach of computing material properties owing



to the linear-scaling of its computational complexity with systems size (as opposed to a cu-
bic scaling for conventional Kohn-Sham DFT implementations). The main aspects of the
proposed algorithmic developments in orbital-free DFT include:

(i) Real-space formulation: The ground-state energy of a materials system described
by DFT is given by:

E(p, R) = Ti(p) + Eve(p) + En(p) + Eeat(p, R) + E..(R) (1)

where p denotes the electron-density, R denotes the positions of nuclei, T} is the ki-
netic energy of non-interacting electrons, E,. denotes the exchange-correlation energy,
Ey denotes the Hartee energy involving the Coulomb interaction between electrons,
E..; denotes the electrostatic interaction between electrons and ions, and FE., is the
nuclear-nuclear repulsion energy. In the present effort, we restricted ourselves to LDA
exchange-correlation functionals, and developed the formulation for the Thomas-Fermi-
Weizsacker family of orbital-free kinetic energy functionals as well as the Wang-Govind-
Carter (WGC) kinetic energy functionals which involves a non-local kernel energy.
The various terms in the energy functional are local, excepting the electrostatic in-
teraction and the kernel energies that are extended in the real-space. In seeking a
local real-space formulation, which is an important aspect of the subsequently devel-
oped coarse-graining schemes, we developed a local variational reformulation of the
extended interaction. In particular, the extended electrostatic interactions have been
reformulated by taking recourse to the solution of a Poisson’s equations. Further,
the non-local kernel energies have been reformulated into a local variational formula-
tion by solving a coupled system of Helmholtz equations. The details and the associ-
ated mathematical properties of our local reformulation are discussed in our published
manuscripts Radhakrishnan & Gavini (2010); Motamarri et al. (2012).

(ii) Finite-element discretization: A general finite-element (FE) framework has been
developed for the discretization of orbital-free DF'T as well as the subsequently dis-
cussed Kohn-Sham DFT. In particular, the developed framework supports higher-order
finite-elements up to 8th order, including spectral finite-elements which are better con-
ditioned for higher-order discertizations, ability to generate coarse-grained discretiza-
tions with robust meshing scripts for CUBIT, domain decomposition in parallel using
PARMETIS. As part of this research effort, we investigated the computational efficiency
afforded by higher-order finite-element discretizations. In particular, we investigated
the convergence rates for the various order of finite-element approximations and the
computational efficiency afforded by using higher-order discretization. We found close
to optimal rates of convergence for the discretization errors despite the non-linear na-
ture of the energy functional (cf. Figure 1). Further, for accuracies commensurate with
chemical accuracy, we found significant computational advantage by using higher-order
basis over linear FE basis. In particular, the computational advantage was over 100-
fold for the fourth-order FE basis over linear FE basis (cf. Figure 2), with diminishing
returns beyond fourth-sixth order.

(iii) Solution strategies: In order to solve the non-linear coupled system of equations de-
scribing the electron-density, electrostatic potential and the kernel potentials (c.f Motamarri et al.
(2012) for the formulation), two strategies have been explored: (i) A staggered solve
where for any change in electron-density the electrostatic potential are recomputed;
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(ii) A simultaneous solve where all the coupled systems of equations are solved si-
multaneously. Our mathematical analysis shows that the staggered solve is the most
robust (Motamarri et al., 2012), though it is computationally also expensive. Our
numerical studies suggest that the robustness of the simultaneous solution of electron-
density and electrostatic potential can be significantly improved by using improved
preconditioners like block-Jacobi. The various aspects of the developed solution strate-
gies are discussed in our published manuscript Motamarri et al. (2012).

Coarse-graining using quasi-continuum reduction: Building on the ideas pro-
posed in Gavini et al. (2007) the quasi-continuum (QC) reduction for orbital-free DFT
with WGC kinetic energy functionals was developed. The main ideas constituting the
development of this coarse-graining technique, which made possible orbital-free DFT
based electronic structure calculations on multi-million atom system, constitute: (i) the
aforementioned local variational reformulation of the orbital-free DF'T ground-state en-
ergy; (ii) an effective use of the coarse-graining ability of finite-element basis by provid-
ing higher-resolution where necessary—e.g. near the defect-cores—and coarse-graining
elsewhere. Details of the method are discussed in Gavini et al. (2007) for TFW kinetic
energy functionals and its extension to account for WGC kinetic energy functionals,
developed in part during this research effort, is discussed in Radhakrishnan & Gavini
(2010). The developed QC reduction was used to study the cell-size effects in the
formation energies of vacancies and di-vacancies. It was found that, even for simple
defects like vacancies, the cell-size effects can be significant up to 1000 atoms. Our
studies suggest that the elastic fields, as well as, the perturbations in electronic fields
produced by defects are long-ranged, and that cell-sizes larger than those used conven-
tionally may be necessary to accurately compute the energetics of defects. Figure 3
shows the cell-size dependence of the mono-vacancy formation energy.

Transferability studies on orbital-free kinetic energy functionals for Al-Mg
alloys: As part of the present effort, a study was also conducted to validate the trans-
ferability of the orbital-free WGC kinetic energy functional to predicting properties of
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Al-Mg alloys—a material system of significant interest in developing light-weight ma-
terials for transportation. In particular, we studied the phase stability of these alloys,
and the results are presented in the table below. The " alloy has 879 sites in the unit
cell with a disorder in 20 of these sites. In our studies we considered the two extreme
cases of all the 20 sites to be either occupied by Al (denoted as §'(Al)) or by Mg (de-
noted as [5'(Mg)). These studies show that the orbital-free kinetic energy functionals
can predict the relative stability of the various phases accurately, which is a stringent
validation test. Further, these studies also demonstrate the efficiency of the developed
algorithms which allow the consideration of large cell-sizes—for instance the g’ alloy
containing 879 sites.

Table 1: Formation energies of the various Al-Mg alloys computed using WGC orbital-free
kinetic energy functionals using bulk local pseudopotentials (Zhou et al., 2004). Kohn-Sham
DFT calculations using ABINIT with Troullier-Martins pseudopotential are used as the
validation benchmark. All the energies reported are in eV/atom, and negative formation
energy denotes an energetically favorable alloy formation. Kohn-Sham DFT calculations for
the " alloy could not be conducted due to the large system size.

AHOy AlgMg Al14Mg13 Al12M917 AngMggg ﬁl(Al) ﬁl(Mg)
Orbital-free DFT | -0.013 0.069 -0.007 -0.001 -0.026 | -0.084
Kohn-Sham DFT | -0.009 0.062 -0.02 -0.016 NA NA

2 Kohn-Sham Density Functional Theory:

While orbital-free DF'T is attractive due to the linear-scaling complexity in system size, the
accuracy of the kinetic energy functionals limits the consideration of materials systems to
those whose electronic structure is close to free-electron gas. Thus, as part of this research

4
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effort, we also developed computational techniques that enable large-scale Kohn-Sham DF'T
calculations. The ground-state properties in Kohn-Sham DFT are given by the solution of
Kohn-Sham equations:

Hi; = €, (2)

where 1
H= (=574 V. ) ®)
is a Hermitian operator with eigenvalues ¢;, and the corresponding orthonormal eigenfunc-
tions v¢; for ¢ = 1,2,--- N denote the canonical wavefunctions. The electron density in

terms of the canonical wavefunctions is given by

plr) = > fus) e

and the effective single-electron potential (Vog(p, R)) with nuclear positions denoted by R
in (3) is given by
Ver(p, R) = Vear(R) + Vi (p) + Vae(p).- (5)

In the above, V.., Viu(p), and V,.(p) denote the potentials associated with F.,;, Ey and
E,.. Fourier space calculations have been popular for Kohn-Sham DFT calculations as the
computation of the electrostatic potentials, which are extended in real-space, can be conve-
niently computed using Fourier transforms. However, a Fourier-space formulation introduces
periodicity restrictions which severely limits the study of defects in materials.

In the present work, building on the real-space formulation developed for orbital-free
DFT, we implemented a real-space formulation for the Kohn-Sham equations. Furthermore,
we used the finite-element discretization of the formulation which enables the consideration
of complex boundary conditions, also provides the flexibility to use an adaptive basis set.
Building on the numerical analysis conducted in orbital-free DFT, we computed the rates of
convergence for higher-order finite-elements for both pseudopotential as well as all-electron
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calculations. Further, we also estimated the computational efficiency afforded by higher-
order finite-elements. As shown in figures 4 and 5, for chemical accuracies commensurate
with chemical accuracy, higher-order finite-elements provide significant computational sav-
ings in comparison to linear finite-element discertizations. Using higher-order finite-element
discretizations and Chebyshev acceleration techniques to efficiently compute the occupied
eigenspace, we have demonstrated large-scale electronic structure calculations for both pseu-
dopotentials and all-electrons—for instance a 7 x 7 x 7 FCC cluster containing 1688 atoms
(pseudopotential calculation) and a graphene sheet containing 100 atoms (all-electron).

Computations on reactive nanofilms: Building on our developments in Kohn-Sham
DFT, we incorporated non-local Troullier-Martins pseudopotential in the Kleinman Bylander
form and conducted studies on Ni-Al bi-layers. In particular, we computed the excess energy
in the bi-layer system as a function of the bi-layer thickness. This excess energy is computed
as the difference in the energy of the Ni-Al bilayer system and the energy of bulk Al and
Ni atoms with similar composition. Figure 8 shows the excess energies of a Ni-Al bilayers
along (100) as a function of the bi-layer thickness. For small bi-layer thickness this excess
energy is negative suggesting that the decrease in the energy due to bonding at the interface
is greater than the increase in the energy due to lattice mismatch. However, with increasing
bilayer thickness this excess energy increases proportionally with the bi-layer thickness, which
is a result of the elastic energy from the lattice mismatch. Beyond a particular bilayer
thickness it becomes energetically favorable to nucleate threading dislocations. In our future
investigations we seek to compute the critical bilayer thickness at which the dislocations
nucleate.

3 Development of Software:

In collaboration with a team of scientists at Army Research Labs, which includes Mr. Ken-
neth Leiter, Mr. Joshua Crone, Dr. Michael Scott, Dr. Jaroslaw Knap and Dr. Peter
Chung, we have committed significant time and effort towards developing a software out
of the computational techniques developed over the course of this project. This software
is being jointly developed by the group members of the PI and the team from ARL, and
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is maintained in a repository. There is an active ongoing collaboration with ARL in the
development of this software with weekly conference calls and annual visits by PI and his
students to ARL.
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