
 

 

Four Pillars for Improving the 
Quality of Safety-Critical Software-
Reliant Systems 

 Studies of safety-critical software-reliant systems developed using the current 
practices of build-then-test show that requirements and architecture design de-
fects make up approximately 70% of all defects, many system level related to 
operational quality attributes, and 80% of these defects are discovered late in the 
development life cycle [Redman 2010]. Exponential growth in software size and 
complexity has pushed the cost for the current generation of aircraft to the limit 
of affordability.  

We present four pillars of an improvement strategy for an integrate-then-build 
practice that result in early defect discovery and increased confidence through 
incremental end-to-end system validation and verification throughout the life 
cycle (Figure 1).  

• Capture of mission and safety-criticality requirements in analyzable form;  
• Virtual integration of the physical system, hardware platform, and software 

architectures through consistent analyzable architecture models;  
• Static analysis techniques applied to the models and actual system imple-

mentation to complement testing; and  
• Incremental assurance of justified confidence through consistent end-to-end 

evidence throughout the development life cycle. 

 

Figure 1: Four Pillars of Reliability Improvement 
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Current build-then-test 
practice for software-reliant 
systems has become 
increasingly unaffordable. An 
improvement strategy has four 
pillars of an integrate-then-
build practice that lead to 
improved quality through early 
defect discovery and 
incremental end-to-end 
validation and verification. 
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SHORTCOMINGS IN AND PROCESS-RELIANT TESTING-BASED 
QUALIFICATION 
Engineers have developed safety-critical systems by relying on conservative best 
practices and a a culture where safety considerations are integral to all aspects of 
an organization. These practices reflect the use of ISO 9001/CMMI®,1 the suite 
of ISO-IEC SC 7 process standards, and standards and practices specific to the 
certification of safety-critical software systems such as DO-178B and C, SAE 
ARP 4754, and SAE ARP 4761 [RTCA 1992/2011; SAE 2010, 1996].2 The on-
board software of aircraft has experienced exponential growth in size and 
complexity (Figure 2). Under current build-then-test practices, the industry cost 
for the software of current-generation aircraft has reached an unaffordable $8 
billion [Redman 2010]. Similarly, the U.S. Army has recognized that qualifying 
the airworthiness of rotorcraft has increasingly become infeasible with current 
software test practices trying to achieve full code coverage due to increased 
software size and interaction complexity [Boydston 2009]. 

 

Figure 2: Exponential Growth in Software Size and Complexity Makes Systems Unaffordable 

1 ®CMMI, the Software Engineering Institute Capability Maturity Model Integration framework, is 
registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 

2 ISO, International Organization for Standardization; ISO-IEC SC 7, ISO-International Electro 
technical Commission Software and Systems Engineering Subcommittee; SAE ARP, SAE In-
ternational Aerospace Recommended Practices. 

Current build-then-test 
practice uses reliability metrics 
and qualification test criteria to 
assess the quality of safety-
critical software. Despite best 
practices the aircraft industry 
struggles with exponential 
growth in complexity and cost. 
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In current build-then-test practice, two approaches determine system quality. The 
first approach focuses on defining qualification criteria that if satisfied are suffi-
cient to demonstrate the safe operation of a system with acceptable risk. The 
second approach focuses on process metrics, using statistical techniques to pre-
dict residual faults in software. 

The DO-178B standard provides a set of qualification criteria that if satisfied are 
considered to be sufficient evidence that the system is safe to operate with ac-
ceptable risk [RTCA 1992]. System engineers assign criticality levels to differ-
ent subsystems in a system during safety assessment early in the life cycle. Criti-
Criticality levels reflect the severity of impact of a subsystem failure on the safe 
operation of the system. While many criteria are process oriented, such as trace-
ability to requirements, some criteria focus on coverage of application logic to 
ensure that the system handles nominal and anomalous operational scenarios. 
For example, DO-178B Level B requires decision coverage, while Level A re-
quires modified condition/decision coverage [FAA 2002]. 

Reliability engineering, as practiced, has its roots in the use of statistical tech-
niques to assess the hardware reliability of a slowly evolving system design and 
an operational system affected by wear and aging over time. Engineers often use 
two common metrics, fault density and reliability growth, as predictive measures 
for residual faults to decide when the hardware has reached sufficient quality.  

The failure distribution curve for hardware does not hold for software because 
continuous changes in software designs and the operational environment intro-
duce new faults and activate latent faults, and the independent failure assumption 
of hardware fault tolerance has been shown to be invalid for software [Butler 
1993]. This has led to the common practice of engineers making reliability pre-
dictions for a system, often assuming that software is perfectible and determinis-
tic. The methods are shown to lead to exorbitant amounts of testing. 

While the U.S. Army Materiel Systems Analysis Activity (AMSAA) provides 
funding for hardware reliability-improvement programs that use modeling, anal-
ysis, and simulation to identify and reduce design defects before the system is 
built. No such reliability improvement programs exist for software. Instead 
AMSAA funding for software focuses on finding and removing code faults 
through code inspection and testing [Goodenough 2010].  

 

Reliability metrics are rooted 
in hardware and focus on 
assessing sufficient quality in 
terms of residual fault density. 
Engineers rely on testing to 
eliminate faults with little 
investment in software 
reliability improvement 
programs. 

 

Certification of safety-critical 
systems is driven by 
qualification criteria with 
increasing stringency 
according to criticality levels 
that primarily address process 
compliance and code 
coverage. 
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SOFTWARE INDUCED FAULTS IN SAFETY-CRITICAL SYSTEMS 
Despite best build-then-test practices, system-level faults due to software have 
increasingly dominated the rework effort for faults discovered during system 
integration and acceptance testing. Several studies of safety-critical systems 
show that 70% of errors in embedded safety-critical software are introduced in 
the requirements (35%) and architecture design phases (35%) (Figure 3) [Boehm 
1981, NIST 2002, Dabney 2003, Galin 2004]. At the same time, 80% of all er-
rors are not discovered until system integration or later. The rework effort to cor-
rect a problem in later phases can be as high as 300-1000 times the cost of in-
phase correction. Therefore, it is desirable to discover such problems earlier in 
the life cycle and increase the chance of tests passing the first time around.  

 

Figure 3: Late Discovery of System-Level Problems  

Testing validates the system implementation against requirements. A NASA 
study showed that this is due to missing requirements (33% of all requirements 
errors), incorrect requirements (24%), incomplete requirements (21%), and 
ambiguous (6%), inconsistent (5%), or overspecified requirements (6%) [Hayes 
2003]. Boehm observed that current system engineering practice focuses on 
architecting the physical system to address functional and nonfunctional 
requirements such as safety before developing requirement specifications for 
software. As a result software requirement specifications focus primarily on 
functionality [Boehm 2006].  

Many nonfunctional system 
requirements do not translate 
into derived requirements on 
software systems.  

Software testing is often 
performed software testing 
against incomplete and 
inconsistent requirements.  

 

Despite best build-then-test 
practice, 70% of faults are 
introduced during requirement 
and architecture design and 
80% are discovered at system 
integration or later, with very 
high rework cost. 
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System-level functional and failures are often triggered by unexpected and com-
plex interactions among the physical system, the embedded software, and the 
operational environment whose results can be catastrophic, such as the near loss 
of aircraft [ATSB 2008]. Figure 4 shows while system engineering addresses 
interactions between a system under control and a control system and its envi-
ronment including the operator, the realization of the system capability in soft-
ware introduces new fault hazards due to additional interaction complexity and 
mismatched assumption that are typically not addressed during safety analysis. 
System functions implemented in software may be faulty because a 16 bit varia-
ble cannot handle the range of values in the physical domain. The application 
software operates as concurrently executing interacting tasks with operational 
modes resulting in unexpected race conditions and mode interactions, especially 
under fault conditions. Deployment of the task architecture on the computer plat-
form utilizes virtualization concepts. Relocation of logical channels and virtual 
machines to balance workload may result in loss of physical redundancy, invali-
dating reliability predictions early in the system engineering process. Use of par-
titions virtualizes sampling time, resulting in frame-level sampling jitter and 
potential loss of data leading to potential control-system instability and incon-
sistent system states [Feiler 2009].  

 

Figure 4: New Levels of System Interaction Complexity and Mismatched Assumptions 

A recent study by the National Research Council, Software for Dependable 
Systems: Sufficient Evidence?, stated that testing and good development 
processes, while indispensible, cannot by themselves ensure high levels of 
dependability [Jackson 2007]. Experts consider formal analysis of mission and 
safety-criticality requirements and architecture design to provide key assurance 
evidence for improving dependability of software-reliant systems, which leads us 
to the four pillars of reliability improvement. 

Engineers often do not fully 
understand the impact of 
design decisions in the 
runtime architecture of 
embedded software on 
functional and nonfunctional 
properties of the system. 
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ARCHITECTURE-CENTRIC MODEL-BASED VIRTUAL 
INTEGRATION 
The aircraft industry has recognized that software-reliant system development 
must take an architecture-centric, model-based analytical approach to overcome 
the limitations of current recommended practice.  

The System Architecture Virtual Integration (SAVI) initiative is a program 
being executed within the Aerospace Vehicle System Institute (AVSI) that 
aims to address issues stemming from the lack of an integrated systems 
modeling environment. The SAVI approach of “Integrate, then Build” 
acknowledges the modern distributed development environment while seek-
ing to arrest the propagation of requirements errors through the develop-
ment life cycle, primarily by capturing design assumptions and shared 
properties of the system design in an authoritative, annotated architectural 
model. Such a reference model provides a common, analyzable model to 
confirm that the definition of the system (requirements through design) re-
mains complete, consistent, and correct at all levels of system decomposi-
tion. [Redman 2010, p. 1] 

Industry experience has shown that the value of model-based engineering greatly 
diminishes if engineers do not address the “multiple-truth” problem (Figure 5) 
[Redman 2010].  

 

Figure 5: Multiple-Truth Issues in Model-Based Development 

The virtual integration concept has been demonstrated to address this multiple 
truth issue through annotations to the architecture model for multiple quality at-
tribute dimensions and automatic generation of analyzable models as well as 
executable code (Figure 6). A key technology is the SAE International Architec-
ture Analysis & Design Language (AADL) industry standard, a notation with 
well-defined semantics for representing embedded software system architectures 
through concepts that capture the semantics of software runtime architectures 
deployed on computer platforms and interacting with physical systems [SAE 
2012].  

The aircraft industry views an 
architecture-centric, analytical 
virtual-integration approach as 
a necessary change in 
practice to address the 
exponential growth in system 
interaction complexity and in 
development and qualification 
costs. 

Model-based engineering has 
some pitfalls, but a single-
source virtual-integration 
approach addresses them. 
Using architectural analysis to 
discover problems early leads 
to reduced fault leakage and 
fewer failed tests. 
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Figure 6: Multiple Analysis Dimensions Based on Architecture Reference Model 

This has led to a multi-notation model repository approach based on standard-
ized model interchange formats supporting SAE AADL, OMG SysML, and oth-
er modeling notation while maintaining cross-model consistency [Redman 
2010]. 

A SAVI proof-of-concept demonstration illustrates the incremental end-to-end 
validation and verification of a multi-tier system architecture that includes an 
Integrated Modular Avionics (IMA) system and mechanical system models and 
demonstrates the value of architecture models in subcontracting (Figure 7). A 
companion Return-On-Investment study showed major cost savings due to re-
work cost avoidance [Feiler 2010]. 

 

Figure 7: Early Problem Discovery through Multi-tier Virtual System Integration 
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ANALYZABLE MISSION AND SAFETY-CRITICALITY 
REQUIREMENTS 
The challenge in requirements engineering is to offer a systematic way of 
capturing analyzable requriements without overbrudening the engineer with 
formalisms. A recent study of industrial requirments engineering practice has 
shown that textual shall statements, tables and diagrams still dominate the 
practice with some behavioral specification expressed in state machine notations 
[FAA 2009b]. A Requirement Engineering Management Handbook recent 
developed for NASA provides a practical 11 steps process to more formally 
capture requirements in a contextual system architecture description to facilitate 
valdiation by analysis and verification of design specification against 
requriemetns [FAA 2009a]. A Requirements Definition and Analysis Annex to 
the AADL standard is currently in preparation for ballot, which supports goal-
oriented requirement capture and verification and has been demonstrated to sup-
port the process outlined in the Requirement Engineering Management Hand-
book. 

Safety engineering of software-reliant systems continues to be a challenge 
[Leveson 2004, Dvorak 2009]. Traditionally, safety analysis consists of func-
tional hazard assessment (FHA), Common Cause Analysis (CCA), and Safety 
Assessment (SSA). System hazard-assessment methods, such as the hazard and 
operability study with roots in the chemical industry, provide a predefined vo-
cabulary for use with identification and coverage of potential faults. This vocab-
ulary has been adapted for software hazard assessment, has led to a fault 
classification and a formalization of failure-assumption coverage [Powell 1992], 
and has been associated with architecture patterns such as feedback loops 
[Leveson 2009]. Such a fault classification is currently getting incorporated into 
the revision of the Error Model Annex standard of the SAE AADL [SAE 2006]. 

Safety analysis involves failure mode and effects analysis (FMEA) and Fault 
Tree Analysis (FTA). These analytical models are often created manually and 
due to their labor-intensive nature are usually performed once in the life cycle. 
System architecture models expressed in AADL and annotated with fault behav-
ior specifications have been used to automatically generate FMEA and FTA 
models for analysis and also predict system reliability and availability [Hecht 
2010]. 

 

Capture of analyzable mission 
and safety-criticality 
requirements can become a 
reality. Ambiguity and 
inconsistency is reduced 
through tool-based validation 
resulting in high payoff.  An 
industry standard architecture 
modeling notation provides 
the linkage between 
requirements and architecture 
design.  
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VALIDATION AND VERIFICATION THROUGH STATIC ANALYSIS 
Static analysis, simulation, and rapid prototyping through generation provide a 
means to discover inconsistencies in requirements, architecture, and design spec-
ifications early in the process.  

Scheduling analysis techniques such as Rate Monotonic Analysis [Klein 1993] 
have facilitated the migration from legacy systems implemented by cyclic execu-
tive to preemptively scheduled systems in a partitioned architecture. Such sched-
uling and resource allocation techniques are currently being extended to support 
predicable use of multi-level caches and multi-core processors predictably for 
mixed criticality applications [DeNiz 2011]. 

Model checking technology has matured to become a practical technology for 
industrial scale systems interfacing formal validation and verification frame-
works to established modeling tools such as Mathworks Simulink [Miller 2010] 
and applied to code to formally verify the implementation [Gurfinkel 2008]. 

Partitions are a fault containment concept supporting space partitioning through 
runtime enforced protected address spaces and time partitioning through runtime 
enforcement of resource budgets [Rushby 1999].  Partitions are the key concept 
in the ARINC 653 standard [Prisaznuk 2008] in support of DO-178B/C Level 
A/B certification. This concept is explicitly supported by the SAE AADL stand-
ard allowing for architecture fault analysis and for end-to-end latency analysis to 
take into account the impact of partition scheduling on latency and latency jitter 
[Feiler 2008]. 

The verification of safety requirements that were derived from safety analysis 
through model checking has been demosntrated on Avionics systems [Miller 
2005]. A system-software co-engineering approach focusing on a coherent set of 
specification and analysis techniques for evaluation of system-level correctness, 
safety, dependability and performability of on-board computer-based aerospace 
systems has been demonstrated in the space domain with SAE AADL and the 
Error Model Annex [Katoen 2011]. 

This analytical virtual-integration approach is not intended to replace testing, but 
complement it by earlier discovery of testable and difficult to test for system lev-
el defects. 

 

Formal analysis frameworks 
ranging from timing analysis 
to model checking have 
become scalable solutions for 
incremental validation and 
verification throughout the life 
cycle. 
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JUSTIFIED CONFIDENCE IN ASSURANCE EVIDENCE 
The goal-structured assurance case [Kelly 2004] has been used extensively out-
side of the United States for a number of years to assure the safety3 of nuclear 
reactors, railroad signaling systems, avionics systems, and so forth. Assurance 
cases are now being developed for other attributes (e.g., security of a software 
supply chain [Ellison 2008]). International Standards Organization (ISO) stand-
ard (15026-2) for assurance cases is now under development. The U.S. Food and 
Drug Administration (FDA) recently began to suggest their inclusion in regulato-
ry submissions [FDA 2010].  

In the best practice, an engineering organization will develop an assurance case 
in parallel with the system it assures. The case’s structure will be used to influ-
ence assurance-centered actions throughout the life cycle. The assurance case 
guides what evidence is most needed to support claims, and serves as documen-
tation for design decisions and their assumption, and estimating the impact of 
design and requirements changes by showing which portions of the case may be 
affected. The SEI is currently developing a measure of confidence for different 
forms of evidence against certain types of claims based on elimination of defeat-
er [Weinstock 2013]. 

 

Figure 8: Eliminative Induction of Defeaters as Basis for Confidence 

 

 

3  When used to show safety, an assurance case is called a safety case. 
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CONCLUSION 
Current build-then-test practice has limitations that lead to exponential cost 
explosion for large-scale software-reliant systems. Statistics show that there is a 
high percentage of fault leakage from requirements and architecture design into 
system integration and acceptance testing. Several root cause areas of software 
induced faults have been identified and can be investigated through architecture-
centric analysis. A strategy to improve the quality of software-reliant systems 
through early discovery of system-level errors consists of four pillars:  

• Capture of mission and safety-criticality requirements in analyzable form;  
• Virtual integration of the physical system, hardware platform, and software 

architectures through consistent analyzable architecture models;  
• Static analysis techniques applied to the models and actual system imple-

mentation to complement testing; and  
• Incremental assurance of justified confidence through consistent end-to-end 

evidence throughout the development life cycle. 

This will reduce the amount of rework at high cost late in the life cycle and 
increase the number of tests that pass without rework and retest. These methods 
are an integral part of a comprehensive architecture-focused model-based 
engineering practice based on incremental end-to-end validation conducted 
throughout the life cycle in parallel with system construction (Figure 8) [Feiler 
2012]. 

 

Figure 9: Incremental, End-to-End System Validation & Verification  
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