

Four Pillars for Improving the
Quality of Safety-Critical Software-
Reliant Systems

 Studies of safety-critical software-reliant systems developed using the current
practices of build-then-test show that requirements and architecture design de-
fects make up approximately 70% of all defects, many system level related to
operational quality attributes, and 80% of these defects are discovered late in the
development life cycle [Redman 2010]. Exponential growth in software size and
complexity has pushed the cost for the current generation of aircraft to the limit
of affordability.

We present four pillars of an improvement strategy for an integrate-then-build
practice that result in early defect discovery and increased confidence through
incremental end-to-end system validation and verification throughout the life
cycle (Figure 1).

• Capture of mission and safety-criticality requirements in analyzable form;
• Virtual integration of the physical system, hardware platform, and software

architectures through consistent analyzable architecture models;
• Static analysis techniques applied to the models and actual system imple-

mentation to complement testing; and
• Incremental assurance of justified confidence through consistent end-to-end

evidence throughout the development life cycle.

Figure 1: Four Pillars of Reliability Improvement

Peter Feiler

John Goodenough

Arie Gurfinkel

Charles Weinstock

Lutz Wrage

April 2013

Current build-then-test
practice for software-reliant
systems has become
increasingly unaffordable. An
improvement strategy has four
pillars of an integrate-then-
build practice that lead to
improved quality through early
defect discovery and
incremental end-to-end
validation and verification.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Four Pillars for Improving the Quality of Safety-Critical
Software-Reliant Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SHORTCOMINGS IN AND PROCESS-RELIANT TESTING-BASED
QUALIFICATION
Engineers have developed safety-critical systems by relying on conservative best
practices and a a culture where safety considerations are integral to all aspects of
an organization. These practices reflect the use of ISO 9001/CMMI®,1 the suite
of ISO-IEC SC 7 process standards, and standards and practices specific to the
certification of safety-critical software systems such as DO-178B and C, SAE
ARP 4754, and SAE ARP 4761 [RTCA 1992/2011; SAE 2010, 1996].2 The on-
board software of aircraft has experienced exponential growth in size and
complexity (Figure 2). Under current build-then-test practices, the industry cost
for the software of current-generation aircraft has reached an unaffordable $8
billion [Redman 2010]. Similarly, the U.S. Army has recognized that qualifying
the airworthiness of rotorcraft has increasingly become infeasible with current
software test practices trying to achieve full code coverage due to increased
software size and interaction complexity [Boydston 2009].

Figure 2: Exponential Growth in Software Size and Complexity Makes Systems Unaffordable

1 ®CMMI, the Software Engineering Institute Capability Maturity Model Integration framework, is
registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

2 ISO, International Organization for Standardization; ISO-IEC SC 7, ISO-International Electro
technical Commission Software and Systems Engineering Subcommittee; SAE ARP, SAE In-
ternational Aerospace Recommended Practices.

Current build-then-test
practice uses reliability metrics
and qualification test criteria to
assess the quality of safety-
critical software. Despite best
practices the aircraft industry
struggles with exponential
growth in complexity and cost.

2 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

In current build-then-test practice, two approaches determine system quality. The
first approach focuses on defining qualification criteria that if satisfied are suffi-
cient to demonstrate the safe operation of a system with acceptable risk. The
second approach focuses on process metrics, using statistical techniques to pre-
dict residual faults in software.

The DO-178B standard provides a set of qualification criteria that if satisfied are
considered to be sufficient evidence that the system is safe to operate with ac-
ceptable risk [RTCA 1992]. System engineers assign criticality levels to differ-
ent subsystems in a system during safety assessment early in the life cycle. Criti-
Criticality levels reflect the severity of impact of a subsystem failure on the safe
operation of the system. While many criteria are process oriented, such as trace-
ability to requirements, some criteria focus on coverage of application logic to
ensure that the system handles nominal and anomalous operational scenarios.
For example, DO-178B Level B requires decision coverage, while Level A re-
quires modified condition/decision coverage [FAA 2002].

Reliability engineering, as practiced, has its roots in the use of statistical tech-
niques to assess the hardware reliability of a slowly evolving system design and
an operational system affected by wear and aging over time. Engineers often use
two common metrics, fault density and reliability growth, as predictive measures
for residual faults to decide when the hardware has reached sufficient quality.

The failure distribution curve for hardware does not hold for software because
continuous changes in software designs and the operational environment intro-
duce new faults and activate latent faults, and the independent failure assumption
of hardware fault tolerance has been shown to be invalid for software [Butler
1993]. This has led to the common practice of engineers making reliability pre-
dictions for a system, often assuming that software is perfectible and determinis-
tic. The methods are shown to lead to exorbitant amounts of testing.

While the U.S. Army Materiel Systems Analysis Activity (AMSAA) provides
funding for hardware reliability-improvement programs that use modeling, anal-
ysis, and simulation to identify and reduce design defects before the system is
built. No such reliability improvement programs exist for software. Instead
AMSAA funding for software focuses on finding and removing code faults
through code inspection and testing [Goodenough 2010].

Reliability metrics are rooted
in hardware and focus on
assessing sufficient quality in
terms of residual fault density.
Engineers rely on testing to
eliminate faults with little
investment in software
reliability improvement
programs.

Certification of safety-critical
systems is driven by
qualification criteria with
increasing stringency
according to criticality levels
that primarily address process
compliance and code
coverage.

3 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

SOFTWARE INDUCED FAULTS IN SAFETY-CRITICAL SYSTEMS
Despite best build-then-test practices, system-level faults due to software have
increasingly dominated the rework effort for faults discovered during system
integration and acceptance testing. Several studies of safety-critical systems
show that 70% of errors in embedded safety-critical software are introduced in
the requirements (35%) and architecture design phases (35%) (Figure 3) [Boehm
1981, NIST 2002, Dabney 2003, Galin 2004]. At the same time, 80% of all er-
rors are not discovered until system integration or later. The rework effort to cor-
rect a problem in later phases can be as high as 300-1000 times the cost of in-
phase correction. Therefore, it is desirable to discover such problems earlier in
the life cycle and increase the chance of tests passing the first time around.

Figure 3: Late Discovery of System-Level Problems

Testing validates the system implementation against requirements. A NASA
study showed that this is due to missing requirements (33% of all requirements
errors), incorrect requirements (24%), incomplete requirements (21%), and
ambiguous (6%), inconsistent (5%), or overspecified requirements (6%) [Hayes
2003]. Boehm observed that current system engineering practice focuses on
architecting the physical system to address functional and nonfunctional
requirements such as safety before developing requirement specifications for
software. As a result software requirement specifications focus primarily on
functionality [Boehm 2006].

Many nonfunctional system
requirements do not translate
into derived requirements on
software systems.

Software testing is often
performed software testing
against incomplete and
inconsistent requirements.

Despite best build-then-test
practice, 70% of faults are
introduced during requirement
and architecture design and
80% are discovered at system
integration or later, with very
high rework cost.

4 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

System-level functional and failures are often triggered by unexpected and com-
plex interactions among the physical system, the embedded software, and the
operational environment whose results can be catastrophic, such as the near loss
of aircraft [ATSB 2008]. Figure 4 shows while system engineering addresses
interactions between a system under control and a control system and its envi-
ronment including the operator, the realization of the system capability in soft-
ware introduces new fault hazards due to additional interaction complexity and
mismatched assumption that are typically not addressed during safety analysis.
System functions implemented in software may be faulty because a 16 bit varia-
ble cannot handle the range of values in the physical domain. The application
software operates as concurrently executing interacting tasks with operational
modes resulting in unexpected race conditions and mode interactions, especially
under fault conditions. Deployment of the task architecture on the computer plat-
form utilizes virtualization concepts. Relocation of logical channels and virtual
machines to balance workload may result in loss of physical redundancy, invali-
dating reliability predictions early in the system engineering process. Use of par-
titions virtualizes sampling time, resulting in frame-level sampling jitter and
potential loss of data leading to potential control-system instability and incon-
sistent system states [Feiler 2009].

Figure 4: New Levels of System Interaction Complexity and Mismatched Assumptions

A recent study by the National Research Council, Software for Dependable
Systems: Sufficient Evidence?, stated that testing and good development
processes, while indispensible, cannot by themselves ensure high levels of
dependability [Jackson 2007]. Experts consider formal analysis of mission and
safety-criticality requirements and architecture design to provide key assurance
evidence for improving dependability of software-reliant systems, which leads us
to the four pillars of reliability improvement.

Engineers often do not fully
understand the impact of
design decisions in the
runtime architecture of
embedded software on
functional and nonfunctional
properties of the system.

5 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

ARCHITECTURE-CENTRIC MODEL-BASED VIRTUAL
INTEGRATION
The aircraft industry has recognized that software-reliant system development
must take an architecture-centric, model-based analytical approach to overcome
the limitations of current recommended practice.

The System Architecture Virtual Integration (SAVI) initiative is a program
being executed within the Aerospace Vehicle System Institute (AVSI) that
aims to address issues stemming from the lack of an integrated systems
modeling environment. The SAVI approach of “Integrate, then Build”
acknowledges the modern distributed development environment while seek-
ing to arrest the propagation of requirements errors through the develop-
ment life cycle, primarily by capturing design assumptions and shared
properties of the system design in an authoritative, annotated architectural
model. Such a reference model provides a common, analyzable model to
confirm that the definition of the system (requirements through design) re-
mains complete, consistent, and correct at all levels of system decomposi-
tion. [Redman 2010, p. 1]

Industry experience has shown that the value of model-based engineering greatly
diminishes if engineers do not address the “multiple-truth” problem (Figure 5)
[Redman 2010].

Figure 5: Multiple-Truth Issues in Model-Based Development

The virtual integration concept has been demonstrated to address this multiple
truth issue through annotations to the architecture model for multiple quality at-
tribute dimensions and automatic generation of analyzable models as well as
executable code (Figure 6). A key technology is the SAE International Architec-
ture Analysis & Design Language (AADL) industry standard, a notation with
well-defined semantics for representing embedded software system architectures
through concepts that capture the semantics of software runtime architectures
deployed on computer platforms and interacting with physical systems [SAE
2012].

The aircraft industry views an
architecture-centric, analytical
virtual-integration approach as
a necessary change in
practice to address the
exponential growth in system
interaction complexity and in
development and qualification
costs.

Model-based engineering has
some pitfalls, but a single-
source virtual-integration
approach addresses them.
Using architectural analysis to
discover problems early leads
to reduced fault leakage and
fewer failed tests.

6 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

Figure 6: Multiple Analysis Dimensions Based on Architecture Reference Model

This has led to a multi-notation model repository approach based on standard-
ized model interchange formats supporting SAE AADL, OMG SysML, and oth-
er modeling notation while maintaining cross-model consistency [Redman
2010].

A SAVI proof-of-concept demonstration illustrates the incremental end-to-end
validation and verification of a multi-tier system architecture that includes an
Integrated Modular Avionics (IMA) system and mechanical system models and
demonstrates the value of architecture models in subcontracting (Figure 7). A
companion Return-On-Investment study showed major cost savings due to re-
work cost avoidance [Feiler 2010].

Figure 7: Early Problem Discovery through Multi-tier Virtual System Integration

7 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

ANALYZABLE MISSION AND SAFETY-CRITICALITY
REQUIREMENTS
The challenge in requirements engineering is to offer a systematic way of
capturing analyzable requriements without overbrudening the engineer with
formalisms. A recent study of industrial requirments engineering practice has
shown that textual shall statements, tables and diagrams still dominate the
practice with some behavioral specification expressed in state machine notations
[FAA 2009b]. A Requirement Engineering Management Handbook recent
developed for NASA provides a practical 11 steps process to more formally
capture requirements in a contextual system architecture description to facilitate
valdiation by analysis and verification of design specification against
requriemetns [FAA 2009a]. A Requirements Definition and Analysis Annex to
the AADL standard is currently in preparation for ballot, which supports goal-
oriented requirement capture and verification and has been demonstrated to sup-
port the process outlined in the Requirement Engineering Management Hand-
book.

Safety engineering of software-reliant systems continues to be a challenge
[Leveson 2004, Dvorak 2009]. Traditionally, safety analysis consists of func-
tional hazard assessment (FHA), Common Cause Analysis (CCA), and Safety
Assessment (SSA). System hazard-assessment methods, such as the hazard and
operability study with roots in the chemical industry, provide a predefined vo-
cabulary for use with identification and coverage of potential faults. This vocab-
ulary has been adapted for software hazard assessment, has led to a fault
classification and a formalization of failure-assumption coverage [Powell 1992],
and has been associated with architecture patterns such as feedback loops
[Leveson 2009]. Such a fault classification is currently getting incorporated into
the revision of the Error Model Annex standard of the SAE AADL [SAE 2006].

Safety analysis involves failure mode and effects analysis (FMEA) and Fault
Tree Analysis (FTA). These analytical models are often created manually and
due to their labor-intensive nature are usually performed once in the life cycle.
System architecture models expressed in AADL and annotated with fault behav-
ior specifications have been used to automatically generate FMEA and FTA
models for analysis and also predict system reliability and availability [Hecht
2010].

Capture of analyzable mission
and safety-criticality
requirements can become a
reality. Ambiguity and
inconsistency is reduced
through tool-based validation
resulting in high payoff. An
industry standard architecture
modeling notation provides
the linkage between
requirements and architecture
design.

8 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

VALIDATION AND VERIFICATION THROUGH STATIC ANALYSIS
Static analysis, simulation, and rapid prototyping through generation provide a
means to discover inconsistencies in requirements, architecture, and design spec-
ifications early in the process.

Scheduling analysis techniques such as Rate Monotonic Analysis [Klein 1993]
have facilitated the migration from legacy systems implemented by cyclic execu-
tive to preemptively scheduled systems in a partitioned architecture. Such sched-
uling and resource allocation techniques are currently being extended to support
predicable use of multi-level caches and multi-core processors predictably for
mixed criticality applications [DeNiz 2011].

Model checking technology has matured to become a practical technology for
industrial scale systems interfacing formal validation and verification frame-
works to established modeling tools such as Mathworks Simulink [Miller 2010]
and applied to code to formally verify the implementation [Gurfinkel 2008].

Partitions are a fault containment concept supporting space partitioning through
runtime enforced protected address spaces and time partitioning through runtime
enforcement of resource budgets [Rushby 1999]. Partitions are the key concept
in the ARINC 653 standard [Prisaznuk 2008] in support of DO-178B/C Level
A/B certification. This concept is explicitly supported by the SAE AADL stand-
ard allowing for architecture fault analysis and for end-to-end latency analysis to
take into account the impact of partition scheduling on latency and latency jitter
[Feiler 2008].

The verification of safety requirements that were derived from safety analysis
through model checking has been demosntrated on Avionics systems [Miller
2005]. A system-software co-engineering approach focusing on a coherent set of
specification and analysis techniques for evaluation of system-level correctness,
safety, dependability and performability of on-board computer-based aerospace
systems has been demonstrated in the space domain with SAE AADL and the
Error Model Annex [Katoen 2011].

This analytical virtual-integration approach is not intended to replace testing, but
complement it by earlier discovery of testable and difficult to test for system lev-
el defects.

Formal analysis frameworks
ranging from timing analysis
to model checking have
become scalable solutions for
incremental validation and
verification throughout the life
cycle.

9 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

JUSTIFIED CONFIDENCE IN ASSURANCE EVIDENCE
The goal-structured assurance case [Kelly 2004] has been used extensively out-
side of the United States for a number of years to assure the safety3 of nuclear
reactors, railroad signaling systems, avionics systems, and so forth. Assurance
cases are now being developed for other attributes (e.g., security of a software
supply chain [Ellison 2008]). International Standards Organization (ISO) stand-
ard (15026-2) for assurance cases is now under development. The U.S. Food and
Drug Administration (FDA) recently began to suggest their inclusion in regulato-
ry submissions [FDA 2010].

In the best practice, an engineering organization will develop an assurance case
in parallel with the system it assures. The case’s structure will be used to influ-
ence assurance-centered actions throughout the life cycle. The assurance case
guides what evidence is most needed to support claims, and serves as documen-
tation for design decisions and their assumption, and estimating the impact of
design and requirements changes by showing which portions of the case may be
affected. The SEI is currently developing a measure of confidence for different
forms of evidence against certain types of claims based on elimination of defeat-
er [Weinstock 2013].

Figure 8: Eliminative Induction of Defeaters as Basis for Confidence

3 When used to show safety, an assurance case is called a safety case.

10 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

CONCLUSION
Current build-then-test practice has limitations that lead to exponential cost
explosion for large-scale software-reliant systems. Statistics show that there is a
high percentage of fault leakage from requirements and architecture design into
system integration and acceptance testing. Several root cause areas of software
induced faults have been identified and can be investigated through architecture-
centric analysis. A strategy to improve the quality of software-reliant systems
through early discovery of system-level errors consists of four pillars:

• Capture of mission and safety-criticality requirements in analyzable form;
• Virtual integration of the physical system, hardware platform, and software

architectures through consistent analyzable architecture models;
• Static analysis techniques applied to the models and actual system imple-

mentation to complement testing; and
• Incremental assurance of justified confidence through consistent end-to-end

evidence throughout the development life cycle.

This will reduce the amount of rework at high cost late in the life cycle and
increase the number of tests that pass without rework and retest. These methods
are an integral part of a comprehensive architecture-focused model-based
engineering practice based on incremental end-to-end validation conducted
throughout the life cycle in parallel with system construction (Figure 8) [Feiler
2012].

Figure 9: Incremental, End-to-End System Validation & Verification

11 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

REFERENCES
[AMSAA 2000]
Army Materiel Systems Analysis Activity. AMSAA Reliability Growth Guide (Technical Report No.
TR-652). Department of Defense, 2000.

[ATSB 2008]
Australian Transport Safety Bureau. "Qantas Airbus A330 Accident Media Conference" (press
release). ATSB, Oct. 2008. http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx

[Boehm 1981]
Boehm, B.W. Software Engineering Economics. Prentice Hall, 1981.

[Boehm 2006]
Boehm, B. “Some Future Trends and Implications for Systems and Software Engineering Processes.”
Systems Engineering 9, 1 (January 2006): 1−19.

[Boydston 2009]
Boydston, A. & Lewis, W. “Qualification and Reliability of Complex Electronic Rotorcraft Systems.”
American Helicopter Society (AHS) Technical Specialists Meeting on Systems Engineering 2009.
Hartford, CT, Oct. 2009.

[Butler 1993]
Butler R., Finelli, G., The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time
Software. IEEE Transacitons on Software Engineering, Vol. 19, No.1, Jan 1993.

[Dabney 2003]
Dabney, J. B. Return on Investment of Independent Verification and Validation Study Preliminary
Phase 2B Report. NASA, 2003.

[DeNiz 2011]
Dionisio de Niz, Raj Rajkumar, and Gabriel Moreno. "Overload Provisioning in Mixed-Criticality
Cyber-Physical Systems" To Appear on: ACM Transactions on Embedded Computing Systems. 2011.

[Dvorak 2009]
Dvorak, Daniel L., ed. NASA Study on Flight Software Complexity (NASA/CR-2005-213912). Office
of Chief Engineer Technical Excellence Program, NASA, 2009.

[Ellison 2008]
Ellison, R., Goodenough, J., Weinstock, C., & Woody, C. Survivability Assurance for System of
Systems (CMU/SEI-2008-TR-008). Software Engineering Institute, Carnegie Mellon University, May
2008. http://www.sei.cmu.edu/reports/08tr008.pdf

12 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

[FAA 2002]
FAA Certification Authorities Software Team (CAST).What Is a “Decision” in Application of
Modified Condition/Decision Coverage (MC/DC) and Decision Coverage (DC)? (Position Paper
CAST-10). CAST, 2002.
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf

[FAA 2009a]
Federal Aviation Administration. Requirements Engineering Management Handbook DOT/FAA/AR-
08/32. 2008. http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-32.pdf

[FAA 2009b]
Federal Aviation Administration. Requirements Engineering Management Findings Report
DOT/FAA/AR-08/34. 2008.
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-34.pdf.

[FDA 2010]
U.S. Food and Drug Administration. Guidance for Industry and FDA Staff – Total Life Cycle: Infusion
Pump – Premarket Notification [510(k)] Submissions.
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm206153.
htm

[Feiler 2008]
Feiler, Peter H. & Hansson, Jörgen. “Impact of Runtime Architectures on Control System Stability,”
R-2008-01-4C02. Proceedings of the 4th International Congress on Embedded Real-Time Systems.
Toulouse, France, Jan. 2008. Societe des Ingenieurs de l’Automobile, 2008.

[Feiler 2009]
Feiler, Peter H. “Challenges in Validating Safety-Critical Embedded Systems,” 09ATC-0271.
Proceedings of SAE International AeroTech Congress. Seattle, WA, Nov. 2009. SAE International,
2009. https://www.sae.org/technical/papers/2009-01-3284

[Feiler 2010]
Feiler, P., Wrage, L., and Hansson, J. “System Architecture Virtual Integration: A Case Study.”
Embedded Real-time Software and Systems Conference (ERTS 2010). May 2010.

[Feiler 2012]
Feiler, P. H., Goodenough, J. B., Gurfinkel, A., Weinstock, C. B., & Wrage, L. Reliability Validation
and Improvement Framework. Technical Report CMU/SEI-2012-SR-013, Software Engineering
Institute, Carnegie Mellon University, 2012.

[Galin 2004]
Galin, D. Software Quality Assurance: From Theory to Implementation. Pearson/Addison-Wesley,
2004.

13 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

[Goodenough 2010]
Goodenough, J. B. Evaluating Software’s Impact on System and System of Systems Reliability (white
paper). Software Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/whitepapers/swandreliability.cfm

[Gurfinkel 2008]
Gurfinkel A. & Chaki, S. “Combining Predicate and Numeric Abstraction for Software Model
Checking.” In Proceedings of the Formal Methods in Computer-Aided Design International
Conference (FMCAD 2008). Portland, Oregon, November 2008. Curran Associates, 2008.

[Hayes 2003]
Hayes, J. H. “Building a Requirement Fault Taxonomy: Experiences from a NASA Verification and
Validation Research Project,” 49–59. IEEE International Symposium on Software Reliability
Engineering (ISSRE). Denver, CO, Nov. 2003. IEEE Computer Society Press, 2003.

[Hecht 2010]
Hecht, M., Lam, A., Howes, R., & Vogl, C. “Automated Generation of Failure Modes and Effects
Analyses from AADL Architectural and Error Models,” Presented at the 22nd Annual Systems and
Software Technology Conference, Salt Lake City, UT, Apr. 2010.

[Jackson 2007]
Jackson, Daniel, Thomas, Martyn, & Millett, Lynette I., eds. Software for Dependable Systems:
Sufficient Evidence? National Research Council of the National Sciences, 2007.

[Katoen 2011]
Joost-Pieter Katoen. Towards Trustworthy Aerospace Systems: An Experience Report. In 16th
International Workshop on Formal Methods for Industrial Critical Systems (FMICS). pages 1–4.
Volume 6959 of LNCS. Springer-Verlag, 2011.

[Kelly 2004]
Kelly, T. & Weaver, R. “The Goal Structuring Notation: A Safety Argument Notation.” Proceedings
of International Workshop on Models and Processes for the Evaluation of COTS Components (MPEC
2004). Edinburgh, Scotland, May 2004. IEEE Computer Society, 2004.

[Klein 1993]
Klein, M., Ralya, T., Pollak, B., Obenza, R., Gonzales Harbour, M., "A Practitioner's Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems", Kluwer Academic,
1993.

[Leveson 2004]
Leveson, Nancy. “A New Accident Model for Engineering Safer Systems.” Safety Science 42, 4 (April
2004): 237–270.

14 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

[Leveson 2009]
Leveson, Nancy G. Engineering a Safer World: System Thinking Applied to Safety. MIT Press, 2011.
http://sunnyday.mit.edu/safer-world/safer-world.pdf

[Miller 2005]
Miller, S., Whalen, M., O’Brien, D., Heimdahl, M. P., & Joshi, A. A Methodology for the Design and
Verification of Globally Asynchronous/Locally Synchronous Architectures (NASA/CR-2005-213912).
NASA, 2005.

[Miller 2010]
Miller, S., Whalen, M., & Cofer, D. “Software Model Checking Takes Off.” Communications of the
ACM 53, 2 (February 2010): 58–64.

[NIST 2002]
National Institute of Standards and Technology. The Economic Impacts of Inadequate Infrastructure
for Software Testing (Planning Report 02-3). NIST, 2002.

[Powell 1992]
Powell, D. “Failure Mode Assumptions and Assumption Coverage,” 386–395. Twenty-Second
International Symposium on Fault-Tolerant Computing. Boston, MA, July 1992. IEEE Computer
Society Press, 1992.

[Prisaznuk 2008]
Prisaznuk, Paul J. “ARINC 653 Role in Integrated Modular Avionics (IMA),” 1.E.5-1–1.E.5-10.
Proceedings of the Digital Avionics Systems Conference. St. Paul, MN, Oct. 2008. IEEE Computer
Society Press, 2008.

[Redman 2010]
Redman, David, Ward, Donald, Chilenski, John, & Pollari, Greg. “Virtual Integration for Improved
System Design,” 57–64. Proceedings of the First Analytic Virtual Integration of Cyber-Physical
Systems Workshop. San Diego, CA, Nov. 2010.

[RTCA 1992/2011]
RTCA, Inc. Software Considerations in Airborne Systems and Equipment Certification (Document No.
RCTA/DO-178B). RTCA, 1992. (Document No. RCTA/DO-178C). RTCA, 2011.

[Rushby 1999]
Rushby, John. Partitioning for Safety and Security: Requirements, Mechanisms, and Assurance
(DOT/FAA/AR-99/58, CR-1999-209347). NASA, 1999.

[SAE 1996]
SAE International. Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment (Standard ARP 4761). SAE International, 1996.

15 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

[SAE 2006]
SAE International. Architecture Analysis & Design Language (AADL) Annex Volume 1: AADL Meta
Model & XML Interchange Format Annex, Error Model Annex, Programming Language Annex
(Standards Document AS5506/1).

[SAE 2010]

SAE International. Guidelines for Development of Civil Aircraft and Systems (Standard ARP 4754A).
SAE International, 2010.

[SAE 2012]
SAE International. Architecture Analysis & Design Language v2.1(Standard AS5506B). SAE
International, 2004−2012. http://www.sae.org/technical/standards/AS5506b

[Weinstock 2013]
Weinstock C., Goodenough J., Klein A., Measuring Assurance Case Confidence using Baconian
Probabilities, 1st International Workshop on Assurance Cases for Software-intensive Systems
(ASSURE 2013), at ICSE 2013.

16 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
United States Department of Defense.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.
This material has been approved for public release and unlimited distribution except
as restricted below.
Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No
Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other external and/or commercial use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.
* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CMMI® are registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

DM-0000288

17 | FOUR PILLARS FOR IMPROVING THE QUALITY OF SAFETY-
CRITICAL SOFTWARE-RELIANT SYSTEMS

	Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems
	Shortcomings in and PRocess-reliant Testing-based QUalification
	Software Induced Faults in Safety-critical Systems
	Architecture-Centric Model-based Virtual Integration
	Analyzable Mission and Safety-Criticality Requirements
	Validation and Verification through Static Analysis
	Justified COnfidence in Assurance Evidence
	Conclusion
	References

