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ABSTRACT 

Independent Component Analysis (ICA) has largely been applied to the biomedical field 

over the past two decades and only recently extended to the processing of complex non-

circular sources.  The feasibility and performance of complex ICA to extract a weak co-

channel interfering communications signal from a television broadcast signal is 

investigated in this thesis. The performance of three algorithms, complex maximization 

of non-Gaussianity (CMN) by Novey et al., RobustICA by Zarzoso et al., and complex 

fixed-point algorithm (CFPA) by Douglas, over varied interference-to-noise ratios (INR) 

for a fixed signal-to-interference ratio (SIR) is obtained by simulation. 

The communication signals examined for the weak interferer are binary phase-

shift keying (BPSK), four-level rectangular quadrature amplitude modulation (4-QAM), 

and 16-level rectangular quadrature amplitude modulation (16-QAM), and the television 

broadcast signals are North American standard, Advanced Television Systems 

Committee (ATSC) and European standard, Digital Video Broadcasting - Terrestrial 

(DVB-T). Improved performance and sensitivity to the prewhitening step present in the 

ICA implementations are shown as the number of sensors increases. 
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EXECUTIVE SUMMARY 

In this work, we investigate the co-channel interference problem where a weak 

communication signal is imbedded in the same channel as a much stronger broadcast 

signal in the presence of noise, and we desire to recover the weak signal. This problem 

has relevance both in commercial communication and defense-related applications such 

as unintentional or intentional jamming and passive surveillance. Independent component 

analysis (ICA) has been shown to be well suited for co-channel signal separation 

applications and is the approach selected to investigate this problem. 

Independent component analysis refers to the separation of signals from a set of 

mixtures when the mixture process is unknown and the sources are independent. Most 

early ICA-based approaches were derived for real source environments. Until the last few 

years, extensions to the complex source cases did not take into consideration potential 

complex non-circular source properties. However, recently developed algorithms taking 

into account complex non-circular source properties have been shown to lead to increased 

performance when the sources under investigation fit such criteria. Most complex 

communication signals exhibit non-circular properties, and three ICA algorithms are 

considered to extract a weak co-channel interfering communication signal from a 

television broadcast signal with the assumption of no multipath: complex maximization 

of non-Gaussianity (CMN) by Novey et al. [1], RobustICA by Zarzoso et al. [2], and 

complex fixed-point algorithm (CFPA) by Douglas [3]. Each ICA algorithm separates the 

signals by maximizing the non-Gaussianity of the source signals. The CMN algorithm 

uses an information theory based, quasi-Newton optimization approach through 

maximization of negentropy, which is estimated through nonlinear functions. The 

remaining algorithms are both kurtosis based approaches. RobustICA employs an exact 

line search optimization to maximize/minimize kurtosis, while CFPA uses a quasi-

Newton optimization technique. 

The dominant signal considered in the study is a television broadcast signal. Two 

standards were considered: North American ATSC (Advanced Television Systems 

Committee) standard and European DVB-T (Digital Video Broadcasting – Terrestrial) 
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standard. The ATSC broadcast is an eight-level amplitude-shift keying (8-ASK) signal, 

while the DVB-T broadcast is an orthogonal frequency-division multiplexed (OFDM) 

four-level rectangular quadrature amplitude modulation (4-QAM), 16-level rectangular 

quadrature amplitude modulation (16-QAM), or 64-level rectangular quadrature 

amplitude modulation (64-QAM) signal. The 4-QAM OFDM option was chosen for the 

simulations. The types of weak communication signals imbedded in the TV signal were 

binary phase shift keying (BPSK), 4-QAM, and 16-QAM. 

With no noise, extraction of the weak signal occurred without errors at signal-to-

interference (SIR) ratios ranging from –50 to 60 dB for the two-sensor case. When the 

mixtures are proper, i.e., the same number of signals as channels, the ICA algorithms lead 

to exact recovery of the weak signal. To further illustrate this point, the number of 

sensors was increased to three and same noise added to each channel for a total of three 

mixtures and three signals. Again, the ICA algorithms extracted the weak signal without 

errors. With different noise sequences added to each channel instead, the problem can be 

viewed as under-determined with a ratio of K:(K+2), where K is the number of sensors. 

When the number of sensors increases without any noise present, the problem can be 

viewed as over-determined with a ratio of K:2. In this case, all three algorithms become 

numerically unstable and fail to extract the weak signal in the no-noise case when more 

than two sensors are used and a prewhitening step is applied in the ICA process. 

However, when no prewhitening step is applied, extraction occurs with only minor errors 

using RobustICA.  

We investigated what impact the level of separation between signals mixtures has 

on the weak signal extraction performance in the two-sensor case. To that end, all 

channel coefficients, except for one of the channel coefficients associated with the weak 

signal, were fixed to 1.0, and the phase of the last coefficient was selected to be either 

π/8, π/2, or π for various interference-to-noise ratios (INR) and SIR = 30 dB. Results 

show the extraction performance increases as the channel coefficient phase angle 

increases as a result of the increase in mixture separation. 

We also examined the effects of using multiple sensors. Note that it is desirable to 

stop the extraction process as quickly as possible when more than two sensors are used 



 xvii

since only the weak communication signal is of interest here. In order to do so, we show 

that the weak signal is always successfully extracted as one of the first two components 

except in cases where the recovery quality is too poor to be considered successful. As a 

result, all implementations were stopped after the extraction of the first two signals when 

considering more-than-two-sensor cases.  

For all algorithms considered, results show the overall extraction performance 

increases as the number of sensors increases. However, at higher number of sensors and 

low levels of noise, the underdetermined K:(K+2) scenario tends to behave as the over-

determined K:2 case, leading to ill-conditioned behavior when prewhitening is applied. 

Although there is a slight reduction in performance, this instability is not present when 

the mixtures are not prewhitened. 

Overall results show ICA as a viable option to extract a weak co-channel 

interfering communication signal with no multipath. Findings show a dependency on the 

level of signal mixtures separation. All algorithms also show improved extraction 

performance as the number of sensors increases but also show sensitivity to prewhitening 

in low noise levels for cases with high number of sensors. 
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I. INTRODUCTION 

In this work, we investigate the co-channel interference problem where a weak 

communication signal is imbedded in the same channel as a much stronger broadcast 

signal in the presence of noise. Classical filtering schemes that typically separate signals 

based on frequencies are not considered since the two signals of interest share the same 

frequency range. Instead, we choose to explore the use of independent component 

analysis (ICA) to extract the weak signal. This problem has relevance both in commercial 

communication and defense-related applications such as unintentional or intentional 

jamming and passive surveillance. 

Initial applications of ICA began in the early 1980s as a model for mapping 

muscle contractions to neurological signals.  Earlier approaches were algebraic methods 

based on second and fourth order cumulants, with very limited applications outside of the 

neural network field. It was not until the mid-1990s, when approaches involving 

statistical optimization were proposed, that ICA started to become an established field of 

research [1]. Algorithms by Bell et al. [2] and Comon [3] were some of the first 

approaches which subsequently were extended to the FastICA algorithm by Hyvärinen et 

al. [4]. Independent component analysis has proved remarkably successful in the 

biomedical field to extract signals collected with multi-electrode devices. Examples 

include fetal electrocardiogram extraction, electromyography, electroencephalography, 

and functional magnetic resonance imaging [5]. These signals benefit from being 

mathematically real-valued, which allows for simplifications to be made in the 

implementations.  

More recently ICA has been applied to the communications field. However, many 

communication signals are inherently complex-valued and non-circular in nature which 

adds an additional level of complexity. Initial ICA algorithms derived for real-valued 

signals were first extended to the complex domain without taking into account the 

potential non-circular nature of the complex signals investigated.   As a result, recently 

developed ICA algorithms taking into consideration potential non-circular properties of 

the complex signals investigated were introduced and have shown improved 

performances [6, 7, 8]. 
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In this work we consider the following three ICA algorithm derived for complex, 

non-circular signals: complex maximization of non-Gaussianity (CMN) by Adali et al. 

[6], the complex fixed-point algorithm (CFPA) by Douglas [7], and the RobustICA by 

Zarzoso et al. [8]. We applied these algorithms to extract a weak co-channel 

communication signal imbedded in a strong television (TV) broadcast signal with no 

multipath present. 

This thesis is organized in the following manner. We begin by introducing ICA 

concepts in Chapter II. The concept of prewhitening, different types of ICA approaches 

proposed over the years and their limitations, and issues involving complex signals are 

also discussed. An overview of the three complex ICA algorithms evaluated in this work 

is presented in Chapter III. The experimental setup and model description are detailed in 

Chapter IV, while a discussion of the results is presented in Chapter V. Finally, summary 

and possibilities for follow-on work is provided in Chapter. 
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II. STATISTICAL CRITERIA AT THE BASIS OF BLIND 
SOURCE SEPARATION 

A. BLIND SOURCE SEPARATION 

In general terms, Blind Source Separation (BSS) refers to the separation of signals 

from a set of mixtures when little is known about the sources or the mixture process. It is 

accomplished by applying a transform to the set of signal mixtures which decomposes the 

mixtures into a vector space, which in turn maximizes some user-defined separation 

criteria.  Some popular methods included in this class of separation techniques are 

adaptive filtering, low-complexity coding and decoding, principal component analysis 

(PCA), and independent component analysis. Both PCA and ICA are techniques 

applicable to the co-channel interference problem. 

B. PCA 

Principle component analysis can be used to remove information redundancy 

between observed mixtures contained in the correlation between the mixtures. The 

answer to the PCA problem is given by a transform consisting of the eigenvector solution 

to the covariance matrix xC of the zero-mean mixtures x of length N [9] 

   
1

,H H

N
  xC xx Q Q   (1) 

where (.)H is the complex conjugate transpose operator, Qcontains the eigenvectors, and 

  is a diagonal matrix with the eigenvalues on its main diagonal. The result of the 

applied transform is the decomposition of the mixtures into orthogonal 

components z given by  

  .Hz Q x   (2) 

The significance of each component is related to the eigenvalue of the associated 

eigenvector [9]. The component with the largest eigenvalue has the largest variance and, 

therefore, contains the most information.  One application of PCA is data compression. 

When PCA is applied to a large data set with high redundancy, the data set can be 

reduced in size with minimal information loss by keeping the contributions due to the 
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eigenvectors associated with larger eigenvalues and neglecting others. The neglected 

components in this situation provide little to no information. 

For the co-channel interference problem, under the assumption that the signals of 

interest are non-Gaussian in distribution and independent, PCA cannot be used alone to 

extract independent signals since it only decorrelates the signal mixtures. More is needed 

to extract signals which are independent. However, PCA is beneficial in ICA as a 

preprocessing technique, termed whitening, to remove the effects of first and second-

order statistics which simplifies the resulting ICA process [9]. A zero-mean random 

vector is said to be whitened when its components are uncorrelated and have unit 

variance. Therefore, PCA is used to decorrelate the signal mixtures which are then scaled 

to unit variance. The whitened signal mixtures z are given by  

 
1

2 .H z Q x   (3) 

Prewhitening can also be performed using the singular value decomposition 

(SVD), 

  .Hx UDV   (4) 

Here U is the unitary left singular vector matrix which can be shown to be identical to the 

eigenvectors matrix obtained for Hxx , V is the unitary right singular vector matrix which 

can be shown to be identical to the eigenvectors matrix obtained for Hx x , and D  is the 

diagonal singular value matrix containing the square root of the eigenvalues for both 

Hxx and Hx x .  Recall   is the diagonal matrix containing the eigenvalues of .H Nxx  

Therefore,   is equal to 2 ,ND  and since Qand Uare identical, by substituting (4) into 

(3) the whitened signal mixtures using SVD can be shown to be 

  .HNz V   (5) 

Note that prewhitening using  the eigenvalue decomposition (EVD) involves an 

inverse operation where using SVD does not. For this reason algorithms utilizing the 

EVD in the prewhitening step were altered to use the SVD method instead to avoid 

numerical instability for cases leading to very small eigenvalues. 
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C. ICA 

In addition to PCA, ICA assumes the source signals of the mixture are not only 

uncorrelated but also statistically independent.  For the real case, the linear ICA model is 

described by 

  ,x A s    (6) 

where 1( , , )T
Ns sx  contains the N source signals, A  is a N × P mixing matrix, and 

1( , , )T
Px xx  contains the P observed channel mixtures. The objective of ICA is to find 

an un-mixing matrix W which recovers an estimate of the N source signals 

1( , , )T
Ny yy  as defined by 

  .y W x   (7) 

The matrix W consists of N un-mixing vectors with P elements, 

1 2( , , , ) .T
N N NPw w ww   One un-mixing vector is used to extract one source signal: 

  .Tyw x   (8) 

The mixing and un-mixing of a simple two-source and two-sensor case is illustrated in 

Figure 1.  

The underlying assumption behind ICA algorithms is independence between the 

source signals. Since the mixing operation is a linear transformation, the mixtures of the 

independent source signals are correlated. Although the mixtures from one channel to the 

next are correlated, the components of each channel mixture are still independent, which 

leads to the optimal un-mixing vector being orthogonal to the span of all other 

transformed components. One source signal is extracted by taking the inner product 

between this optimal un-mixing vector and the observed mixtures. The source signals can 

be extracted individually with one un-mixing vector or simultaneously with the matrix of 

un-mixing vectors .W Searching for the un-mixing vectors is where different approaches 

arise.  That search can be achieved through the maximization or minimization of specific 

signal attributes, which in turn maximizes the independence between the estimated source 

signals. 
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Figure 1.  Example of the mixing and un-mixing of a two-source and two-sensor case 
using ICA.  

D. MAXIMIZING INDEPENDENCE 

Two common approaches to maximize the independence of the estimated source 

signals are through information theory based methods or by maximizing a measure of 

non-Gaussianity of the density of the estimated source signals.  The following sections 

describe three approaches to maximize the independence of the estimated source signals. 

1. Information-maximization 

Information-maximization, also known as Infomax, is an ICA technique 

suggested in 1995 by Bell, et al. for neural networks applications [2].  Its overall 

objective is to extract independent signals by minimizing the mutual information between 

those signals, which is accomplished through the maximization of the joint signal 

entropy. The entropy of the source signal is defined as 

  ( ) ( )log ( ) ,H y p y p y dy



    (9) 
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where ( )p y  is the probability density function (pdf) of the signal. The relationship 

between the joint entropy 1 2( , )H y y  of two signals 1y and 2y and the mutual information 

shared between the two signals 1 2( , )I y y  is described by 

  1 2 1 2 1 2( , ) ( ) ( ) ( , ).H y y H y H y I y y  
  (10) 

Infomax uses the fact that when a random variable [0,1]y  is transformed by its 

cumulative distribution function (cdf) ( )G y , the resulting random variable is uniformly 

distributed between zero and one. Note that a random variable with a uniform distribution 

has the maximum entropy among all variables in the same range [2]. Furthermore, since 

the cdf is monotonic in nature, ( )G y  is an invertible function, and the independence of 

the estimated source signals is maximized when the entropy of their transform is at a 

maximum. Estimated source signals obtained via ICA can be written in terms of the un-

mixing vectors and signal mixtures. Therefore, the basis of Infomax is to find the un-

mixing vector which maximizes the individual entropy of the transformed estimated 

source signal ( ),TG w x which in turn minimizes the mutual information between the 

estimated source signal and the remaining signals. Note that the cdf of the source signals 

in practice is not known but needs to be estimated using nonlinear functions which 

closely resemble the cdf. 

2. Negentropy 

The negentropy technique derived in [10] uses information theory to maximize 

the non-Gaussianity of the estimated source signals under the assumption that the source 

signals are non-Gaussian and independent to start with. The approach relies on the fact 

that the pdf of a mixture of non-Gaussian random variables can only be closer to that of a 

Gaussian random variable than the mixture components can be as a result of the Central 

Limit Theorem. Negentropy is defined as the difference between the entropy of a random 

variable and the entropy of a variable with Gaussian distribution of the same variance, 

leading to  

 
( ) ( ) ( ).neg gaussJ y H y H y 

  (11) 
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Unlike Infomax, where we evaluate the entropy of the transformed signal which is 

bounded in range, negentropy evaluates the entropy of the signal and, as a result, is 

constrained only by its mean and variance. In this case, the Gaussian distribution has 

maximum entropy [11]. Note that maximizing the non-Gaussianity of the source signals 

is achieved by maximizing the negentropy, as ( )gaussH y  is constant for a fixed variance.  

Both information-theoretical approaches described require knowledge of the pdf 

of the source signals. Since such information may not be available or may be too 

computationally expensive, nonlinear functions are usually used to approximate signal 

statistics implicitly [10].  

3. Kurtosis Approach  

Kurtosis-based methods are similar in objective to the negentropy approach by 

seeking to maximize the non-Gaussianity density of the estimated source signals but 

follow a different approach. In these methods, maximizing the non-Gaussianity property 

is achieved by searching for an un-mixing vector which maximizes the absolute value of 

the fourth-order marginal cumulant, commonly known as the kurtosis, directly for each 

source signal [12]. The kurtosis of a zero-mean random variable y is defined as 

 
4 2 2 2 2( ) { | | } 2( {| | }) | { }| ,y E y E y E y   

  (12) 

where { .}E  represents the mathematical expectation. Note that when y is real the 

kurtosis simplifies to  

 
4 2 2( ) { } 3( { }) .y E y E y     (13) 

E. ICA LIMITATIONS 

The first limitation of ICA is that variances of the source signals cannot be 

determined a priori. Since all we have available are the signal mixtures, any scaling factor 

in the source signals can become part of the mixing vectors thus causing uncertainty. 

Likewise, the phase and order of the extracted signals cannot be determined, as any 

permutation of the source signals can be offset by a permutation of the mixing matrix. 

Lastly, the source signals cannot all be Gaussian [11]. 
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F. COMPLEX SIGNALS 

In communications, signals are often modulated by one or more orthogonal basis 

functions in an effort to more efficiently use a given bandwidth. When doing so, the 

signal information can be encoded within the phase, frequency and amplitude of the 

baseband signal. The most common types of modulation use cosine and sine functions as 

the basis functions. For these types of modulation, also known as in-phase and quadrature 

phase or I-Q, it is easier to represent the phase and amplitude of those modulated signals 

with complex expressions. Therefore, plots of communication signals are often displayed 

in the complex plane through scatterplots of the real versus imaginary portions of the 

signal, known as signal constellation diagrams.  A typical constellation diagram of a 16-

level rectangular quadrature amplitude modulated (16-QAM) signal is shown in Figure 2. 

 

Figure 2.  Constellation diagram of a 16-QAM signal. 

Circularity is a property of a complex random variable describing the symmetry 

properties of its distribution [13]. A circular complex random variable has circular 

symmetry about the origin which is invariant for any phase rotation. Therefore, the pdf of 

a circular complex random variable z has the property 

  ( ) ( ), .jf z f e z      (14) 
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An example of a non-circular complex Gaussian random variable with different 

real and imaginary variances is shown in Figure 3. 

 

Figure 3.  Example of a complex non-circular Gaussian random variable. 

This circularity property is important in the extensions of the complex ICA 

algorithms to non-circular sources. This is due to the assumptions of circular sources, 

which simplified previous derivations of algorithms for complex sources. Take for 

instance the value of kurtosis shown in (12). If the random variable y is circular and has 

unit variance, the kurtosis reduces to 

 
4( ) { | | } 2.y E y  

  (15) 

The particular expression in (15) is the cost function used in the kurtosis-based 

complex FastICA (cFastICA) algorithm designed to separate circular source signals [13]. 

To measure the circularity of a zero-mean complex random variable the 

circularity coefficient   is used, where 

 

2

2

{ }
.

{ }

E y

E y
 

  (16) 
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Likewise, the pseudo-covariance matrix can be used to measure the circularity for 

a set of signals. For a vector of zero-mean complex random variables y, the pseudo-

covariance matrix P  can be estimated by 

  1

1
( ) ( ),

N
T

n

n n
N 

 yyP y y
  (17) 

as opposed to the covariance matrix  

 
1

1
( ) ( ).

N
H

n

n n
N 

 yyC y y   (18) 

A signal with a circularity coefficient of zero is called second order circular. Take 

for instance the 16-QAM signal shown in Figure 4. If this signal is phase shifted by some 

amount, the circularity coefficient is still zero, but the equal symmetry about the real and 

imaginary axis is no longer true. Therefore, the 16-QAM signal is considered to be only 

second order circular. An example is shown in Figure 4. 

In the next chapter we will present source separation algorithms based on the 

criteria presented. 

 

Figure 4.  An example of a phase shifted 16-QAM signal showing second order 
circularity. 
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III. ICA ALGORITHMS  

In this chapter, we provide an overview of the three ICA algorithms used to 

extract the weak communication signal.  

A. COMPLEX MAXIMIZATION OF NON-GAUSSIANITY (CMN) 

The CMN algorithm is a modification of the cFastICA algorithm [10] and is 

based on the maximization of negentropy. For the complex case, the negentropy ( )negJ y  

is the same as defined in Equation (11), but now y is a complex random variable: 

 
( ) ( ) ( ).neg gaussJ y H y H y 

 (19) 

The entropy ( )gaussH y  of a complex Gaussian random variable gaussy  is constant 

for a fixed covariance; therefore, minimizing the differential entropy ( )H y  leads to the 

maximum non-Gaussian source signal [10]. Instead of computing the pdf needed to 

calculate the entropy, cFastICA uses a nonlinear contrast function ( )G y  to estimate the 

negentropy, which eliminates the need to perform an online estimate of ( ).negJ y  The 

estimated source signal y can also be written in terms of the un-mixing vector w  and the 

whitened signal mixtures z  ( )Hy w z . This leads to the algorithm cost function defined 

as 

 
2( ) { (| | )},H

FastICAJ E Gw w z
  (20) 

where z contains the whitened signal mixtures. The CMN algorithm modifies this cost 

function by removing the modulus operation in the expression within the contrast 

function (.).G  This step preserves the signal phase information for source separation and 

allows for the use of asymmetric nonlinear contrast functions which match more closely 

the distributions of noncircular sources [6]. The adjusted cost function becomes 

 
2( ) { | ( ) | }.H

CMNJ E Gw w z
  (21) 
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This new cost function is used to derive the quasi-Newton or approximate Newton 

update of the algorithm to find the optimal un-mixing vector .w  The minimization step is 

done iteratively. Derivations for such implementation can be found in [6] and lead to 

 
* * * *

1 { ( ) ( ) } { ( ) ( )} { } { ( ) ( )} .T
k k kE G y g y E g y g y E E G y g y   w z w zz w

  (22) 

The terms ( )g y and ( )g y  are the first and second order derivative of the contrast function 

( )G y , respectively, and 
*(.)  represents the complex conjugate operation. Note this 

update is similar to that included in the cFastICA iteration but also includes the pseudo-

covariance matrix of the whitened mixture { }TE zz  in the third term, which contains the 

source signal circularity information [6]. 

When applying CMN, the signal mixtures are first prewhitened using singular 

value decomposition (SVD). The estimated source signals are then extracted sequentially 

after applying the algorithm to optimize the un-mixing vector. Finally, before each 

extraction, the un-mixing vector is made orthogonal to all previously found vectors to 

avoid extracting the same signal twice. 

B. CFPA 

The CFPA algorithm also extends from an alternate version of cFastICA [13] and 

uses the normalized fourth-order marginal cumulant as the cost function:  

 

4 2 2 2 2

2 2

{ | | } 2( { | | }) | { }|
( ) .

( { | | })

E y E y E y

E y
  

w
  (23) 

The cFastICA approach is best suited for second order circular signals, while the CFPA 

algorithm takes into account potential non-circular source properties with the assumption 

of prewhitened mixtures. The algorithm’s iteration update is based on an approximate 

Newton optimization and is shown in [7] to be given by 

 

2 * * *

1

1 ˆ ˆ| ( ) | ( ) ( ) 2 ,
N

T
k k k k k

n

y n y n n
N 

         
w z w P w w Pw

  (24) 

where P̂ is defined as the pseudo-covariance matrix of the whitened mixtures. This is 

followed by a normalization step 
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1 .k
k H

k k

 
w

w
w w


 

  (25) 

Again, the update is similar to that found in cFastICA, except for the third term 

which takes into account potential non-circular source properties [7]. The algorithm is 

applied in the same manner as in CMN and follows the same steps by prewhitening using 

SVD, sequential extraction, and sequentially orthogonalizing the  resulting un-mixing 

vectors. 

C. ROBUSTICA 

The RobustICA algorithm is similar to the CFPA approach in that it uses the 

normalized kurtosis as the cost function; however, it differs in the optimization 

procedure. RobustICA employs an exact line search to determine the optimal step-size 

for a gradient descent procedure on the cost function. The optimal step-size has been 

shown to provide some robustness to local extrema and saddle points in the cost function 

[8]. The exact line search of the optimal step-size opt is described by 

  arg max | ( ) |,opt 
   w g   (26) 

where and (.) is the updated kurtosis cost function and g  is the gradient of the cost 

function. By the derivations shown in [8], it follows that 

  ( ),
w

g w   (27) 

and 

 4 2 2 *

2 * *2
2 2 2

{ | | } | { }| { }4
( ) { | | } { } { } .

( { | | }) { | | }

E y E y E y
E y y E y E y

E y E y


 
    
  

w

x
w x x   (28) 

The optimal step size is calculated by choosing the root of an optimal step size 

polynomial which provides the absolute maximum of the cost function in the search 

direction. The polynomial is derived from the signal mixtures along with the current 

iteration values of w  and g  [8]. Once the optimal step size is found, the un-mixing 

vector is updated by 

  n n  w w g   (29) 
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and then normalized by 

  1 .n
n

n
 

w
w

w


   (30) 

Although more computationally intensive per iteration, RobustICA benefits from 

overall faster convergence and, more importantly, does not require prewhitening of the 

data [8]. Again, the algorithm is applied procedurally in the same fashion as CMN and 

CFPA are when prewhitening is performed. However, when prewhitening is not 

performed, the estimated source signal is deflated from the signal mixtures before the 

extraction of the next signal in place of the orthogonalization step when prewhitening is 

implemented. Extraction still occurs sequentially.  
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IV. EXPERIMENTAL SETUP 

The signal types considered and the procedures implemented to investigate the 

performances of the three ICA approaches in extracting the weak communication signal 

imbedded in White Gaussian noise from a high power broadcast signal are described in 

this section.  

A. SOURCE SIGNALS 

The co-channel interference scenario investigated in this work includes a weak 

communication signal imbedded in a high power TV broadcast signal in the presence of 

additive white Gaussian noise. The weak interfering communication signal of interest is 

assumed to be a BPSK, 4-QAM, or 16-QAM modulated signal generated from vectors of 

uniformly distributed random integers. Two TV broadcast standards are considered: 

North American standard, Advanced Television Systems Committee (ATSC), and 

European standard, Digital Video Broadcasting - Terrestrial (DVB-T). 

1. ATSC Signal 

The ATSC broadcast is an eight-level amplitude shift key (8-ASK) signal 

composed of data blocks with 259,584 message symbols and 706 data field 

synchronization symbols [14]. The 8-ASK signal is sub-Gaussian and non-circular, which 

can be seen in the signal constellation diagram of an ATSC signal shown in Figure 5. 

2. DVB-T Signal 

The DVB-T broadcast is an orthogonal frequency-division multiplexed (OFDM) 

signal. The standard allows for the operation of single or multiple frequency subcarriers 

modulated with 4-QAM, 16-QAM, or 64-QAM [15]. The input, whether a single signal 

broken into multiple data blocks or multiple signals, is assigned to multiple sub carrier 

frequencies and then undergoes an inverse discrete Fourier transform (IDFT). On the 

receiving end, the broadcasted signal is converted back to the source signals at the 

subcarrier frequencies with a fast Fourier transform (FFT). 
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Figure 5.  Signal constellation diagram of an ATSC signal of unit power and no noise. 

In this work, we analyze the received signal before the FFT step is applied at the 

receiver end. At this point the received signal is approximately Gaussian in distribution 

and is nearly circular. The single signal 4-QAM, OFDM option was arbitrarily chosen for 

the simulations. Its constellation diagram is shown in Figure 6. 

 

Figure 6.  Signal constellation diagram of a DVB-T signal of unit power and no noise. 



 19

B. MIXTURE GENERATION MODEL 

A description of the co-channel interference scenario used for the two-sensor 

case, as depicted in Figure 7, is provided in this section. The same process was followed 

when using larger numbers of sensors.  

Three assumptions were made in the model. First we assumed the transmitters 

were not co-located and, therefore, traveled through separate channels for each sensor. 

Second, the set of sensors were relatively close in distance, which results in no signal 

attenuation. Lastly, we assumed a one-coefficient instantaneous channel scenario only, 

where all  the channel complex coefficients have magnitude equal to 1.0 with a constant 

phase offset uniformly distributed between  and . 

 

 

Figure 7.  Co-channel interference model for two sensors. 



 20

Simulations were written and run in the MATLAB technical computing 

environment and signals and noise generated as follows. 

 Data sets for the TV signals were generated from Simulink models in 
accordance with the associated ATSC and DVB-T standards described in 
[14] and [15], respectively. For each trial, a uniform random window of 
fixed length was applied to select a data set from a pre-generated ATSC or 
DVB-T signal consisting of roughly 1.75×106 points [19]. 

 The weak communication signal was generated from an array of uniform 
random integers using the appropriate modulation function within 
MATLAB for the signal type. 

 The TV signal power-to-weak interfering signal power ratio (SIR) 
quantity was computed by first normalizing the power of the TV signal to 
1.0 and then scaling the weak signal accordingly. Next, each signal was 
sent through the one-coefficient complex channel filters resulting in two 
filtered signals per sensor. 

 The channel noise added to each sensor was generated with normally 
distributed complex random sequences, normalized, centered and then 
scaled to provide the desired weak interfering signal power-to-noise power 
ratio (INR) for each sensor. 

 The pairs of filtered signals were then summed together with the noise 
resulting in a signal mixture for every sensor. 

 

The kth signal mixture
kx is a linear combination which fits the ICA model in (6) 

and is described by 

  1 21 2 ,k k k kx a s a s n     (31) 

where kja  is the mixing coefficient associated with source j  and sensor ,k  js  is a source 

signal, and 
kn is the noise. An example of a mixture from an ATSC and 16-QAM with 

noise is shown in Figure 8, which shows a phase shift due to the wireless channel. 
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Figure 8.  Mixture of an ATSC and 16-QAM signal with noise: 30 dB SIR, 10 dB INR, 
and 1000 samples. 

After signal mixtures were generated, we applied the three ICA algorithms to 

extract the weak communication signal. As noted before in the limitations of ICA, the 

phase and order of the extracted signals cannot be determined. Therefore, in order to 

compute the symbol error rate of the recovered weak communication signal, the phase 

ambiguity had to be corrected. This was accomplished using the covariance between 

source signals and the extracted signals using a modified portion of the compute_smse.m 

function from the RobustICA software package found in [18] and available in the 

Appendix. This covariance matrix is used to search for extraction position of the 

estimated weak signal and then construct and apply a permutation and phase correction 

matrix in order to compare the extracted weak signal to the transmitted source signal.  

The weak interfering signal was then demodulated using the corresponding 

demodulate.m function within MATLAB, and the symbol error rate (SER) was calculated 

with the default MATLAB symbol error rate function symerr.m [16]. An example of an 

extracted signal is shown in Figure 9. 
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Figure 9.  Extracted 16-QAM weak interfering signal using RobustICA: 30 dB SIR, 10 
db INR, six sensors, 1000 samples, 3×10-3 symbol error rate, prewhitening 

step applied. 

Most simulation runs, except when specified otherwise, are based on 104  trials 

run for a fixed SIR of 30 dB and INR values which range from –2 dB to 20 dB to ensure 

an adequate sample size. Recall, S is the broadcast and I refers to the weak signal. The 

ATSC standard requires a signal-to-noise ratio threshold of 28.3 dB, which led to the 

choice of the fixed SIR value of 30 dB. Different signal lengths were examined; however, 

data sets of 1000 samples were used in the majority of scenarios to improve the 

timeliness of the simulations and also provide performance insight if the algorithms were 

implemented in an adaptive model. The results will be discussed in Chapter V. 

Performances obtained for each ICA implementation to extract the weak 

communication signal were investigated by computing the SER of the weak signal versus 

different INR levels. A 95% confidence interval (CI) for the SER was included in the 

results rather than a standard deviation as the symbol error rate does not exhibit Gaussian 

properties. 
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V. EXPERIMENTAL RESULTS 

Performance results obtained to extract a weak communication signal imbedded 

in a TV broadcast signal in the presence of various levels of white noise distortion, where 

extraction performances were represented in terms of the SER level obtained for the 

estimated weak signal, are presented in this chapter. The simulations address a number of 

factors that impact the ability of the examined algorithms to extract the weak signal. 

These factors include the level of separation between instantaneous mixtures, the data 

length selected for processing, white noise level, and the number of sensors. Results show 

all three ICA algorithms performed identically for the two-signal, two-sensor case with 

noise, referred to as the basic case. However, this may not be the case in more complex 

implementations involving a larger number of antennas. 

A. LEVEL OF SEPARATION BETWEEN MIXTURES IMPACTS 

How the level of separation between the mixed signals and the noise level affects 

the quality of the recovered weak communication signal in the two-sensor case is 

investigated in this section. 

In this scenario, the level of separation between the mixtures is varied by 

changing the phase value of one of the transmission channel complex coefficients. 

Specifically, all channel coefficients except one are fixed to 1.0, and the phase of the last 

coefficient (associated to one of the channels of the weak communication signal) was 

selected to be /8 , / 2 , and   for various INR levels and a fixed SIR = 30 dB. Symbol 

error rates mean values obtained over 1500 trials at each INR level with associated 95% 

confidence intervals (CI) obtained for the RobustICA scheme with prewhitening are 

shown in Figure 10. Results show that the quality of the recovered weak signal improves 

as the channel coefficient phase angle increases, which is to be expected as the difference 

between mixtures increases with increasing phase angles. Note that same extraction 

performances were obtained for all three algorithms, and the RobustICA was arbitrarily 

chosen for presentation. 
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Figure 10.  Impact of the channel phase angle difference for a 4-QAM signal extracted 
with RobustICA from an ATSC signal: two-sensor case, 1,000 data points, 

SIR = 30 dB, prewhitening step applied. 

B. MEAN AND MEDIAN SER VALUES ISSUES 

Note that both CI upper bound and lower bounds remain similarly close to the 

mean value in this scenario when the coefficient phase value difference is held fixed, as 

shown in Figure 10. However, such behavior disappears when all channel coefficient 

phase terms become randomized between   and ,  as illustrated in Figure 11. Note in 

this case all the algorithms perform the same, and the results for the CMN algorithm may 

not be visible due to overlapping plots. 

This change occurs as randomizing all channel phase coefficient values also 

introduces the possibility for these phase values to be close to each other for a given trial 

which leads to an ill-conditioned scenario, resulting in poor weak signal extraction and a 

high SER level at these specific trials. As a consequence, the CI upper bound obtained for 

the mean SER can be highly skewed due to few outliers. 

 



 25

 

Figure 11.  Mean SER for a 4-QAM signal extracted from an ATSC signal with all 
algorithms: two-sensor case, 1,000 data points, SIR = 30 dB, prewhitening 

step applied. 

Let us consider a simulation experiment which includes 104 trials consisting of 

1,000 data points per trial to further illustrate the impact outliers may have on resulting 

mean SER results. Note that at that data length, one symbol error results in a SER equal 

to 10-3. Assume one trial leads to a SER equal to 0.10 and all other trails have SER levels 

equal to 0. In such a case, the mean SER of the overall simulation is equal to 10-5, 

providing a distorted view for the overall performance. Note the median value is better 

suited to de-emphasize the impacts a few outliers have on a sequence overall behavior. 

As a result, median SER values and associated 95% CI levels were selected to evaluate 

the extraction performance in all other scenarios considered in this work instead of mean 

SER values. 

Finally, note that our results present only symbol errors rates obtained for the 

recovered weak communication signals. However, the corresponding bit error rate (BER) 

is not computed, as we made no assumption regarding a particular error correction coding 

scheme. It is worth mentioning that most modern modulation schemes employ Gray 

coding when mapping symbols to the signals space, which results in the closest 
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neighboring symbols differing by only one bit. Also, the closest neighboring symbols 

errors are the likeliest to occur when dealing with AWGN distortions. Therefore, the 

BER is expected to be lower than the SER. For example, the BER obtained for 16-QAM 

modulation which has four bits per symbol, is expected to be roughly one-fourth of the 

SER value in reasonable noise environments. Employing error correction coding would 

further reduce the BER for a given SER. 

C. CMN CONTRAST FUNCTIONS 

The impact of different nonlinear contrast functions ( )G y  were investigated in 

the CMN algorithm implementation. Results show choosing 
2( )G y y  as the contrast 

function provided the best overall extraction performance of the weak signal, followed by 

cosh ( )y  and 
0.25.y  Results for these three contrast functions to extract a 16-QAM signal 

are shown in Figure 12 for the six-sensor case. It is worth noting that we specifically used  

 

Figure 12.  16-QAM weak communication signal extracted using the CMN in the 
presence of a DVB-T signal using different contrast functions: six-sensor 

case, 1,000 data points, SIR = 30dB. 
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the 2y contrast function for the remaining simulations as it led to better extraction 

performances over other contrast functions. 

D. IMPACTS OF THE DATA LENGTH 

Various data lengths from 100 to 105 were selected with no significant extraction 

performance differences for the two-sensor case.  However, simulations showed the data 

length had a significant impact on resulting extraction performances for the CMN 

algorithm as the number of sensors increased, as illustrated in Figure 13 for the eight-

sensor case and the ATSC broadcast signal type. Note higher CI upper bound levels 

indicate that the number of poorly recovered communication signal sequences increases 

when the data length is shortened from 105 to 1,000 in the eight-sensor case. This 

behavior was not observed for the other algorithms for the eight-sensor case with the 

ATSC broadcast type.  

 

Figure 13.  4-QAM signal extracted with CMN from an ATSC signal: eight-sensor case, 
different length data with SIR = 30dB. 

Novey, et al. noted that the CMN algorithm can become unstable for non-circular 

sub-Gaussian sources when using the 
2y contrast function, leading to poor extraction 
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performance, as illustrated from the upper bound for CMN in Figure 14 [6]. Also, recall 

that the ATSC signal is non-circular. Such behavior is not as noticeable (a lower CI upper 

bound) when the CMN is applied to the more circular DVB-T signal, as shown in Figure 

15. 

 

Figure 14.  16-QAM signal extracted from an ATSC signal using all algorithms: eight 
sensor case of 1,000 data points with SIR = 30 dB. Prewhitening step present 

in RobustICA implementation. 

 

However, when the DVB-T broadcast type is used, the data length also affects the 

overall performance of the CFPA and RobustICA algorithms when a prewhitening step is 

applied. For simulations of 1500 trials and eight-sensors, the difference in extraction 

performance of a 16-QAM weak signal can be seen for RobustICA in Figure 16 and 

CFPA in Figure 17. Testing higher number of sensors for larger number of data lengths 

was prohibitive due to simulations run times. 
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Figure 15.  16-QAM signal extracted from a DVB-T signal using all algorithms: eight 
sensor case of 1,000 data points with SIR = 30 dB. Prewhitening step present 

in RobustICA implementation. 

 

Figure 16.  16-QAM signal extracted with CFPA from a DVB-T signal: eight-sensor case, 
different length data with SIR = 30 dB. 
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Figure 17.  16-QAM signal extracted with RobustICA from a DVB-T signal: eight-sensor 
case, different length data, SIR = 30 dB, prewhitening step applied. 

E. ESTIMATED SIGNAL EXTRACTION ORDER 

Recall that the ICA schemes considered in this work are iterative in nature, i.e., 

they successively extract signal components present in the mixtures one after the other. 

Also, recall that ultimately only the weak communication signal is of interest here, and it 

is desirable to stop the extraction process as quickly as possible, as there is no benefit in 

extracting noise components. Thus, the order in which the communication signal and the 

TV broadcast signal are extracted as the number of sensors increases is investigated in 

this section. A simulation of 3×106 trials was run to extract the weak signal for the 

scenario of four sensors, SIR = 30 dB, and INR = 7 dB for all algorithms and both 

broadcast types. Results show that the two signals of interest are extracted before the 

noise components, as illustrated in Tables 1 and 2. Specifically, results indicate that the 

weak communication signal is always successfully extracted as one of the first two 

components except in cases where the recovery quality is too poor to be considered 

successful. Findings for the ATSC TV broadcast case, which is non-Gaussian in nature, is 

summarized in Table 1. Note that in this case, the ATSC signal is the highest power non-

Gaussian signal and is extracted first with the weak communication signal extracted 
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second. Findings for the DVB-T TV broadcast case, which behaves closely to a Gaussian 

signal, is summarized in Table 2. In this case, the weak communication signal is the most 

non-Gaussian and is extracted first. However, smaller data sets of the DVB-T are slightly 

sub-Gaussian and will occasionally be extracted first due to their higher power. The 

distributions of the DVB-T signal are shown in Figure 18 for the full data set and in 

Figure 19 for a window of 1,000 samples. 

 

Figure 18.  Distribution for full data set of the DVB-T signal. 

 

Figure 19.  Distribution for 1000 samples of the DVB-T signal. 
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Again all three ICA algorithms behaved the same when a prewhitening step was 

applied in each, and the RobustICA was arbitrarily chosen for presentation. Thus, ICA 

algorithms were stopped after the extraction of the first two signals in cases where more 

than two sensors were used. 

Table 1.   The weak communication signal extraction order for a 4-QAM signal from 
an ATSC signal using RobustICA at SIR = 30 dB, INR = 7 dB, four 

sensors, and a prewhitening step applied. 

 

 

 

Table 2.   The weak communication signal extraction order for a 4-QAM signal from 
a DVB-T signal using RobustICA at SIR = 30 dB, INR = 7 dB, four 

sensors, and a prewhitening step applied. 

 
 

Mean Min. Max

Position 1 0.0 0.0 0.0 0.0 0.0
Position 2 2.999E+06 99.95 0.005 0.000 0.741
Position 3 789 0.026 0.559 0.316 0.734
Position 4 660 0.022 0.586 0.405 0.740
Total 3.00E+06

Times 
extracted in 

position

% of Total 
Trials

Symbol Error Rate

Mean Min. Max

Position 1 2.96E+06 98.648 0.0047 0 0.734
Position 2 39,259 1.309 0.0690 0 0.729
Position 3 686 0.023 0.5792 0.378 0.739
Position 4 601 0.020 0.5965 0.413 0.741
Total 3.00E+06

Symbol Error Rate
Times 

extracted in 
position

% of Total 
Trials
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F. WHITE GAUSSIAN NOISE IMPACTS 

We also investigated the impact of Gaussian white noise distortion added to the 

mixtures on the performance of the ICA algorithms in extracting the weak signal. 

Results show that the extraction of the weak signal occurs without errors at 

signal-to-interference ratios ranging from –50 to 60 dB for a two-channel case and no 

noise for all three ICA algorithms. Note this scenario corresponds to the proper mixture 

scenario, i.e., the same number of signals and channels. The same behavior is seen when 

the number of sensors increases to three and the same noise is present in each channel, 

giving a total of three mixtures and three source signals. 

When different white Gaussian noise distortion sequences are present in each 

channel, the problem can be viewed as underdetermined by a ratio of K:(K+2), where K 

is the number of sensors. On the other hand, when the number of sensors increases 

without the presence of noise, the problem becomes overdetermined to a ratio of K:2. In 

the latter case, when the mixtures are prewhitened, all three algorithms become 

numerically unstable and fail to extract the weak inferring signal even in a scenario of 

three sensors and two signals of 1000 data points. When the mixtures do not undergo a 

prewhitening step, extraction using RobustICA occurs with only minor errors for cases of 

high number of sensors and no noise. 

G. NUMBER OF SENSORS IMPACTS 

Up to eight sensors were considered for the various types of communication and 

broadcast signal to examine the impact of increasing the amount of sensors has on the 

weak signal extraction performance. 

A simulation of 104 trials was run to extract the weak signal for the scenario of 

two, four, and eight sensors, SIR = 30 dB, and INR from –2 to 20 dB for all algorithms 

and both broadcast types.  As the number of sensors increases, results show that the 

quality of the extracted weak communication signal increases for the three ICA 

algorithms investigated. The outcome for CFPA is shown in Figures 20 and 21, which 

was the same for all algorithms when a prewhitening step is applied. 
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Figure 20.  16-QAM signal extracted with CFPA from an ATSC signal. Different sensor 
cases of 1,000 data points with SIR = 30 dB. 

 

Figure 21.  16-QAM signal extracted with CFPA from a DVB-T signal. Different sensor 
cases of 1,000 data points with SIR = 30 dB. 
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H. IMPACT OF PREWHITENING 

The results pertaining to the upper bounds in Figure 15 also highlight another 

issue concerning the performances of the examined ICA algorithms. Recall this was the 

scenario of the 16-QAM extracted from a DVB-T signal with eight sensors where the 

upper bound did not improve as the noise level decreased. The effects of noise stated 

earlier become a factor in the scenarios with large numbers of K sensors.  At lower noise 

levels, i.e., higher INR values, the underdetermined K:(K+2) problem tends to behave as 

the over-determined K:(2) problem which may lead to ill-conditioned behavior when a 

prewhitening step is first applied. Therefore, a cross-over point exists for the gain in 

extraction performance when increasing the amount of sensors for a given INR. In the 

cases where large number of sensors is used and low noise is present, a small amount of 

noise could be added to improve ICA extraction stability or the number of available 

mixtures reduced after the prewhitening step. Although there is a slight reduction in 

extraction performance, this instability is not seen when the mixtures are not 

prewhitened, as shown in Figure 22. This can only be accomplished with the RobustICA 

algorithm since it was derived without the assumption prewhitened mixtures unlike CMN 

and CFPA. 

I. WEAK SIGNAL TYPES 

When the levels of modulation of the weak interfering signal are lowered, i.e. 16-

QAM to 4-QAM, the energy per symbol increases relative to the noise, and the symbol 

error rate decreases as expected. The performance of RobustICA to extract the three 

analyzed types of weak signals with four sensors is shown in Figures 23 and 24. The 

other examined ICA algorithms provide nearly identical results. 
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Figure 22.  16-QAM signal extracted from a DVB-T signal using RobustICA with and 
without a prewhitening step. Eight sensor case of 1,000 data points with SIR 

= 30 dB. 

 

Figure 23.  Different signal types extracted with RobustICA from an ATSC signal. Four 
sensor case of 1,000 data points, SIR = 30dB, and a prewhitening step 

applied. 
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Figure 24.  Different signal types extracted with RobustICA from a DVB-T signal. Four 
sensor case of 1,000 data points, SIR = 30dB, and a prewhitening step 

applied. 
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VI. CONCLUSIONS 

The ability for complex ICA algorithms to extract a weak communication signal 

embedded in the same channel of a TV broadcast was investigated in this thesis. Three 

ICA algorithms were selected, and their performances in extracting the weak signal in the 

presence of high power TV broadcast signal and additive white Gaussian noise were 

investigated. Specific ICA implementations considered were complex maximization of 

non-Gaussianity (CMN) by Adali et al. [6], the complex fixed-point algorithm (CFPA) by 

Douglas [7], and the RobustICA by Zarzoso et al. [8]. 

A. SUMMARY OF RESULTS 

Overall results show ICA as a viable option to extract a weak co-channel 

interfering communication signal imbedded in a high power TV broadcast signal and 

white Gaussian noise with no multipath. Findings show extraction performance is 

influenced by the amount of signal mixture separation, the level of noise present, the 

number of sensors used, and the application of a prewhitening step. 

Weak signal extraction occurs best with maximum separation between observed 

signal mixtures. Results show better extraction is obtained as the number of sensors 

increases. However, results also show the prewhitening step may also lead to degraded 

extraction performance when more than two sensors are used or there is little to no noise. 

In these cases an ICA algorithm which does not necessarily require a prewhitening step, 

such as RobustICA, may be the best suited for weak signal extraction. 

Findings also show the performance of all three algorithms improves as the level 

of modulation for the weak signal type decreases.  

B. RECOMMENDATIONS FOR FUTURE WORK 

Recommendation for improvements and further study include the following: 

expansion of the model to incorporate multipath fading, translating the current algorithms 

and model into Simulink for real-time continuous simulations, and sensor array 

optimization to maximize the separation of the observed signal mixtures for varying 

transmitter locations. 
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APPENDIX 

The MATLAB code used evaluate the extraction performance is provided in this 

appendix. The complete code, including functions and modified algorithms, are available 

upon request from the author (mehagste@nps.edu) or thesis advisor (fargues@nps.edu). 

The original MATLAB code for the three algorithms evaluated are available in [7], [17], 

and [18]. 

A. MATLAB CODE FOR SIMULATION 

 
%%% EXTRACTION OF A WEAK CO-CHANNEL INTERFERING COMMUNICATION SIGNAL 
%%% USING COMPLEX ICA 
% 
% Author: Matthew Hagstette 
  
clear; clc; close all; 
  
%% User input 
INR_db=10;          % Weak signal to noise power ratio 
SIR_db=30;          % TV to Weak signal power ratio     
Ndata=1000;         % Length/Number of samples for ATSC signal 
n_chan=4;           % Number of Sensors/Number Channels for each signal 
Nsources_only=2;    % Number of signals to extract  
  % Weak channel attenuation, max percent difference: 0.2 = +/-10%  
weak_atten=0; 
  % TV channel attenuation, max percent difference: 0.2 = +/-10% 
TV_atten=0;          
phase_restrict=0;   % Restrict random phase of all channels 
  % Duration of one weak signal symbol, in terms of number of samples 
L=1;                 
s_type='16QAM';     % Weak signal type ('4QAM','16QAM','QPSK','BPSK') 
multipath=0; 
iopt=10;            %% ICA options : 10 - All 
                         %         :  1 - CMN 
                         %         :  2 - Robust ICA 
                         %         :  3 - CFPA        
tol_CMN = 1e-6;          % termination threshold parameter: CMN 
  % maximum number of iterations per independent component: CMN 
max_it_CMN = 1e3;         
tol_Rob = 1e-6;          % termination threshold parameter: RobustICA 
  % maximum number of iterations per independent component: RobustICA 
max_it_Rob = 1e3;         
tol_CFPA = 1e-6;         % termination threshold parameter: CFPA 
  % maximum number of iterations per independent component: CFPA 
max_it_CFPA = 1e3;        
  
%% Generate Channel Mixtures 
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[ATSC_data]=load('atscdata');  % Load Pregenerated ATSC signal  
  
  % Randomly select Ndata samples of TV signal 
window_start = ceil(rand*(length(ATSC_data.transmitted_data)-
(Ndata+1))); 
TVtrans_data = ATSC_data.transmitted_data(1, ...  
                                    window_start:window_start+Ndata-1); 
  
  % Send transmitted TV signal through "n_channel" number of channels 
[TVrec_data] = ATSC_data_multi_chan_atten( TVtrans_data, multipath,... 
                                    n_chan, phase_restrict, TV_atten ); 
                       
  % Generate and Send weak signal through "n_channel" channels                       
[Wtrans_data, Wrec_data] = Weak_data_multi_chan_atten_ATSC( s_type, ...  
     multipath, Ndata, L, n_chan, SIR_db, phase_restrict, weak_atten ); 
                     
  % Transmitted signals 
S.data=[TVtrans_data;Wtrans_data;zeros((n_chan-2),Ndata)]; 
   
  % Plot 
figure; 
Sp=S;Sp.data=S.data.';            % Rows to columns for plotting   
[coldim,rowdim]=plotdata(Sp,'s'); % Scaterplots of transmitted signals                
subplot(rowdim,coldim,1),title('Source Signals'); 
  
%% Generate Noise 
[N,M]=size(Wrec_data); 
S_p=diag(cov(Wrec_data.')); 
k_noise=sqrt(S_p).*10^(-(INR_db/20)); 
K_noise=repmat(k_noise,1,M); 
W0=randn(N,M)+1i*randn(N,M); 
W0=W0-repmat(mean(W0,2),1,M); 
W0=W0./(repmat(std(W0,0,2),1,M)); 
Noise=K_noise.*W0; 
  
%% Observed Channel mixtures  
X.data = TVrec_data+Wrec_data+Noise; 
 
  % Plot 
figure; 
Xp=X;Xp.data=X.data.';            % Rows to columns for plotting 
[coldim,rowdim]=plotdata(Xp,'x'); % Display Scatterplots: mixed signals 
subplot(rowdim,coldim,1),title('Mixed Channels'); 
  
  
%%%% Alogrithm Calls %%%% 
  
%% CMN Algorithm 
if iopt==1 || iopt==10 ,  %(Option: Run CMN Algorithm ) 
     
    [Y1.data_r] = doCMNseq_reduced_modprewhite(X.data,'x^2',0, ... 
                                   tol_CMN, max_it_CMN, Nsources_only); 
     
      % Correct phase ambiguity and permutation 
    [Y1.data,comm_pos] = reorder_norm(Y1.data_r, S.data);  
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      % Plot 
    figure; 
    Y1p=Y1;Y1p.data=Y1.data.';           % Rows to columns for plotting 
      % Scatterplots of extracted signals  
    [coldim,rowdim]=plotdata(Y1p,'y_1');   
    subplot(rowdim,coldim,1),title('CMN') 
     
      % Calculate errors     
    [~,~, nsymerr, rsymerr] = error_calc_weak(Y1.data,S.data,s_type); 
    nSym_Err(1,1)=nsymerr; 
    rSym_Err(1,1)=rsymerr; 
    Comm_Pos(1,1)=comm_pos; 
 
end         %(End: CMN Algorithm Option) 
 
  
%% RobustICA Algorithm 
 
if iopt==2 || iopt==10 ,   %(Option: Run RobustICA Algorithm) 
     
    [Y2.data_r] = robustica_reduced(X.data,[-ones(1,6),zeros(1,M-6)]... 
              ,tol_Rob, max_it_Rob, 1, 'o', 0, [], 1,Nsources_only); 
           
      % Correct phase ambiguity and permutation           
    [Y2.data,comm_pos] = reorder_norm (Y2.data_r, S.data); 
      % Plot 
    figure; 
    Y2p=Y2; Y2p.data=Y2.data.';          % Rows to columns for plotting 
      % Scatterplots of extracted signals 
    [coldim,rowdim]=plotdata(Y2p,'y_2');  
    subplot(rowdim,coldim,1),title('RobustICA') 
     
      % Calculate errors 
    [~,~, nsymerr, rsymerr] = error_calc_weak( Y2.data,S.data,s_type); 
    nSym_Err(2,1)=nsymerr;  
    rSym_Err(2,1)=rsymerr;  
    Comm_Pos(2,1)=comm_pos; 
 
end         %(End: Robust ICA Algorithm Option) 
 
  
%% CFPA Algorithm 
 
if iopt==3 || iopt==10 ,  %(Option: Run CFPA Algorithm) 
    [Y3.data] = CFPA_reduced_modprewhite(X.data.', tol_CFPA,... 
                                           max_it_CFPA, Nsources_only); 
    Y3.data_r=Y3.data.'; 
      % Correct phase ambiguity and permutation     
    [Y3.data,comm_pos] = reorder_norm (Y3.data_r, S.data); 
      % Plot 
    figure; 
    Y3p=Y3; Y3p.data=Y3.data.';          % Rows to columns for plotting 
      % Scatterplots extracted signals 
    [coldim,rowdim]=plotdata(Y3p,'y_3');  
    subplot(rowdim,coldim,1),title('CFPA'); 
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      % Calculate errors     
    [~,~, nsymerr, rsymerr] = error_calc_weak( Y3.data,S.data,s_type); 
    nSym_Err(3,1)=nsymerr; 
    rSym_Err(3,1)=rsymerr; 
    Comm_Pos(3,1)=comm_pos; 
end         %(End: CFPA Algorithm Option) 

B. MATLAB CODE FOR PERMUTATION AND PHASE CORRECTION OF 
THE EXTRACTED WEAK SIGNAL 

function [Se,Comm_Pos] = reorder_norm (Se, S) 
% OUPTPUT: 
%               
%    Se  : re-ordered, phase corrected and scaled estimate 
% 
%    Comm_Pos: Determines if comm signal is pulled first, 1 = yes 
% 
% INPUTS: 
% 
%    S  : actual sources (one source per row) 
% 
%    Se : estimated source signals (one source per row) 
% 
% reorder_norm.m is a modification of the "greedy" algorithm described  
% in Section IV.A of  V. Zarzoso and P. Comon,  
% <a href = "http://www.i3s.unice.fr/~zarzoso/biblio/tnn10.pdf"> 
% "Robust independent component analysis by iterative maximization</a> 
% <a href = "http://www.i3s.unice.fr/~zarzoso/biblio/tnn10.pdf">  
% of the kurtosis contrast with algebraic optimal step size"</a>,  
% IEEE Transactions on Neural Networks, vol. 21, no. 2, 
% pp. 248-261, Feb. 2010. 
% 
% Sept 2012 - modified to handle over-determined case,  
% and weak extraction position  
  
[n, T] = size(S); 
  
  %% Perform optimal ordering (via "greedy algorithm"), 
  %% as well as scaling and phase correction 
 
S_std=std(S,0,2); 
 
Se_std=std(Se,0,2); 
 
C_std=S_std*Se_std.'; 
 
C_std( find(C_std==0) )= eps;  
 
   % estimated signal amplitudes for scaling 
ampe_dist = sqrt( diag( Se*Se') / T);  
 
C = 1/T*S*Se';                  % spatial cross-correlation matrix 
Cabs = abs(C); 
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Cnorm = Cabs./C_std; 
D = zeros(n, n);                % scale matrix 
Ph = D;                         % phase correction matrix 
P = D;                          % permutation matrix        
  
for k = 1:n; 
    if norm(Cnorm) ~= 0           
        % poslin = row #s of max value in each column 
    [maxlin, poslin] = max(Cnorm);   
        % poscol = column # of max value in Matrix Cabs    
    [~, poscol] = max(maxlin);         
        % original source   = row # of max value in Matrix Cabs 
    orgsrc = poslin(poscol);  
        % estimated source  = column # of max value in Matrix Cabs 
    estsrc = poscol;           
        % optimal scaling in the MMSE sense 
    D(orgsrc, orgsrc) = Cabs(orgsrc, estsrc)/ampe_dist(estsrc)^2;  
        % phase: related to 'sign' of correlation 
    Ph(orgsrc, orgsrc) = sign(C(orgsrc, estsrc));                   
    P(orgsrc, estsrc) = 1;      % permutation 
        % do not refer to that estimated source anymore 
    Cnorm(:, estsrc) = zeros(n, 1);     
        % do not refer to that original source either 
    Cnorm(orgsrc, :) = zeros(1, n);     
     
    else    % Permutation fill for signals with XCorr = 0 
        [~, prow] = min(sum(P,2)); 
        [~, pcol] = min(sum(P,1)); 
        P(prow, pcol) = 1; 
        Ph(prow,prow)=1; 
        D(prow,prow)=1;     
    end % end if        
end % for k 
  
% get estimated sources ready for comparison 
  
Se = Ph*D*P*Se; 
[~,Comm_Pos]=max(P(2,:));  % Determines order weak signal pulled 
  
end   % end function 
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