
STOCHASTIC MULTISCALE MODELING OF
POLYCRYSTALLINE MATERIALS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Bin Wen

January 2013



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JAN 2013 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2013 to 00-00-2013  

4. TITLE AND SUBTITLE 
Stochastic Multiscale Modeling of Polycrystalline Materials 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Cornell University,Sibley School of Mechanical and Aerospace
Engineering,169 Frank H. T. Rhodes Hall,Ithaca,NY,14853-3801 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

225 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



c⃝ 2013 Bin Wen

ALL RIGHTS RESERVED



STOCHASTIC MULTISCALE MODELING OF POLYCRYSTALLINE

MATERIALS

Bin Wen, Ph.D.

Cornell University 2013

Mechanical properties of engineering materials are sensitive to the underly-

ing random microstructure. Quantification of mechanical property variabil-

ity induced by microstructure variation is essential for the prediction of ex-

treme properties and microstructure-sensitive design of materials. Recent ad-

vances in high throughput characterization of polycrystalline microstructures

have resulted in huge data sets of microstructural descriptors and image snap-

shots. To utilize these large scale experimental data for computing the resulting

variability of macroscopic properties, appropriate mathematical representation

of microstructures is needed. By exploring the space containing all admissi-

ble microstructures that are statistically similar to the available data, one can

estimate the distribution/envelope of possible properties by employing effi-

cient stochastic simulation methodologies along with robust physics-based de-

terministic simulators. The focus of this thesis is on the construction of low-

dimensional representations of random microstructures and the development

of efficient physics-based simulators for polycrystalline materials. By adopt-

ing appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse

Grid Collocation methods, the variability of microstructure-sensitive properties

of polycrystalline materials is investigated.

The primary outcomes of this thesis include:

• Development of data-driven reduced-order representations of microstruc-



ture variations to construct the admissible space of random polycrystalline

microstructures.

• Development of accurate and efficient physics-based simulators for the

estimation of material properties based on mesoscale microstructures.

• Investigating property variability of polycrystalline materials using effi-

cient stochastic simulation methods in combination with the above two

developments.

The uncertainty quantification framework developed in this work integrates

information science and materials science, and provides a new outlook to multi-

scale materials modeling accounting for microstructure and process uncertain-

ties. Predictive materials modeling will accelerate the development of new ma-

terials and processes for critical applications in industry.
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CHAPTER 1

INTRODUCTION

In most materials processes (e.g. forging) of polycrystalline materials, the evo-

lution of the material properties is defined through multiple coupled physical

phenomena at various length scales. In addition to the multiscale/multiphysics

nature of such processes, predictive modeling provides various other challenges

as understanding the variability of properties and material structure at the var-

ious scales is a complicated high-dimensional data-driven problem. In practice,

the only information that is available to quantify these variations is a limited

number of experimental samples and/or statistical correlations. This leads to

an analysis of the problem assuming that the microstructure and property vari-

ations are random fields satisfying certain constraints. To perform any such

analysis, one must first construct models of these variations to be used as in-

puts in the subsequent uncertainty analysis. In addition, a robust physics-based

deterministic simulator is needed to estimate the properties/responses of given

microstructure realizations. The analysis of the effect of microstructure uncer-

tainties on the material system can be broken down into two major steps: (i) con-

struction of a stochastic microstructure model (preferably a low-dimensional,

continuous mapping) that encodes and quantifies the variation of material fea-

tures in a mathematically rigorous way, and (ii) using this model as an input to

the corresponding stochastic partial differential equations (SPDEs) that describe

the relevant physical phenomena and solve for the probabilistic evolution of

the desired dependant variables (error bars on material properties, probabilistic

models for the microstructure evolution, etc.). The goal of this thesis is to de-

velop an efficient computational framework that investigates the effect of poly-

crystalline microstructure variability on the (homogenized) material properties
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during deformation processing.

In the past few years, several investigations were undertaken to study the

variation in stress-strain response and elastic properties of single phase met-

als caused by microstructure uncertainties using a variety of computational

methodologies. In [106], the principle of maximum entropy (MaxEnt) was used

to describe the grain size distribution of polycrystals given a set of grain distri-

bution moments as constraints. Microstructure realizations were then generated

and interrogated using crystal plasticity finite element method (CPFEM) [6].

Orientations were randomly assigned to all constituent grains. The Monte Carlo

(MC) method was adopted to compute the error-bars of the effective stress-

strain response of FCC aluminum. In [50], the orientation distribution function

(ODF) was adopted to describe the polycrystalline microstructure. A number

of ODF samples were given as the input data. The Karhunen-Loève expan-

sion (KLE) [77, 30] was utilized to reduce the input complexity and facilitate the

high-dimensional stochastic simulation. An adaptive version of the sparse grid

collocation strategy [28, 78] was used to obtain the variability of the stress-strain

curve and the convex hull of elastic moduli of FCC aluminum after deforma-

tion. Recently, an uncertainty quantification of multiscale deformation process

was conducted [52]. Each point of the macroscale workpiece was attached with

a mesoscale random microstructure, which determines the mechanical property

at that point. Since the microstructure is location-specific, the stochastic input

is extremely high-dimensional. A bi-orthogonal decomposition approach was

introduced to build the reduced-order surrogate space of the stochastic input.

The variability of elastic moduli induced by microstructure variation over the

workpiece was studied. In this thesis, we are going to extend the previous work

on the uncertainty quantification of material properties induced by random mi-
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crostructures. Emphasis is given to the development of robust physics-based

deterministic solvers and construction of data-driven low-dimensional stochas-

tic input models.

The deterministic physics-based material property estimator is a key factor

in uncertainty quantification. The accuracy and efficiency of the deterministic

solver have direct impact on the results and performance of the stochastic sim-

ulation. Starting with the pioneering works by Sachs [105] and Taylor [122], nu-

merical prediction of effective and local mechanical behavior of polycrystalline

materials based on underlying microstructures has received great attention. The

Sachs model (also known as the lower bound model) assumes a homogeneous

stress field in the microstructure [5]. In contrast, the Taylor model (also known

as the upper bound model) assumes uniform strain in the polycrystal [74, 35, 7].

Although it does not account for interactions inside the microstructure, the Tay-

lor model has been widely used for its simplicity and high computational ef-

ficiency [39, 40, 17, 51]. To account for intergranular interaction during de-

formation, self-consistent methods have been developed. The formulation of

these models is based on the solution of the problem of an ellipsoidal inclusion

(individual grain) embedded in an infinite homogeneous equivalent medium

(polycrystalline aggregate). Each inclusion (or grain) is taken as an averaged

medium, the heterogeneity within which is not considered. The first attempt

to model the overall elasto-plastic behavior of polycrystals was proposed by

Kröner [53] based on the use of Eshelby’s solution [21]. An improvement was in-

troduced by Hill [33] to account for the plastic interaction between the inclusion

and the surrounding matrix using an incremental formulation based on the lin-

earization of the local constitutive equations. Several extensions of this method

have been proposed [34, 37, 92, 63, 64, 129, 81, 137]. Improvements taking con-
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sideration of the second-order moment of the field fluctuation in grains were

also developed in [15, 76, 65] to account for intragrain heterogeneities. Various

numerical schemes for the solution of crystal plasticity problems have also been

considered that represent the microstructure using probabilistic descriptors. A

microstructural descriptor is evolved during processing rather than the actual

microstructure itself. The simplest of these descriptors is the one-point proba-

bility distribution, namely the orientation distribution function (ODF). Under

applied deformation, texturing is simulated by numerically evolving the ODF

using conservation laws [16]. Solution schemes are based upon representation

of the ODF using a series of harmonics [4, 41] or finite elements (FE) [56, 57], and

the Taylor assumption is typically applied. Adopting the spectral representation

(Fourier expansion) of the ODF [43], Kalidindi and co-workers [41, 42, 47, 46]

efficiently predicted mechanical properties/response as functions of crystallo-

graphic orientation and processing parameters. Coefficients of the expansions

were calibrated against the results obtained from other simulations such as the

finite element method. This spectral approach has been applied to the compu-

tation of property closures and design problems [48, 23, 108]. The finite element

representation of the ODF, has also been well studied and applied to design

problems [117, 118]. This approach was extended in [116] to consider interac-

tions between constituent grains by employing the two-point correlation func-

tion.

To accurately estimate the local micromechanical fields, full-field simula-

tions that interrogate polycrystalline microstructures with intracrystalline res-

olution are receiving increasing attention. The crystal plasticity finite element

method is one of the most popular full-field models [96]. A comprehensive

review is given in [103]. Several disadvantages are associated with the finite
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element approach. The difficulty in finite element meshing coupled with the

large number of degrees of freedom limits the size of the microstructure that

can be treated. Furthermore, the high computation cost of finite element anal-

ysis is a great obstacle in formulating and solving multiscale and/or stochastic

problems. Consequently, current research efforts have been devoted in find-

ing viable full-field alternatives. A recent development is the materials knowl-

edge systems (MKS) [61, 24, 22]. This framework is built on the statistical con-

tinuum theories developed by Kröner [54] that express the localization of the

response field at the microscale using a set of kernels and their convolution

with statistical descriptions of local microstructure. The microstructure rep-

resentative volume element (RVE) is tessellated into a uniform grid of spatial

cells (or voxels). Each spatial cell is quantified using a discrete statistical rep-

resentation. The kernels (or influence coefficients) are estimated by calibrat-

ing against a database containing results obtained from other simulations, e.g.

FEM. The calibration is simplified by working in Fourier space through dis-

crete Fourier transform (DFT). Another efficient full-field approach based on

Green’s functions and fast Fourier transform (FFT) has been proposed for solv-

ing the governing equations for periodic heterogeneous media [66, 68]. This

method was originally developed as a fast algorithm to compute the elastic

and elasto-plastic effective and local response of composites with isotropic com-

ponents [93, 94, 84, 85], and further adapted to deal with polycrystalline mi-

crostructures using a visco-plastic constitutive model [66]. Local and homoge-

nized mechanical responses, as well as texture evolution, of 2D and 3D realistic

polycrystals were studied in [67, 69, 71]. Comparison with the self-consistent

method [62] and finite element simulations [97, 75] were conducted and showed

the accuracy and efficiency of the fast Fourier transform scheme. Recent at-
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tempts to couple the fast Fourier transform-based model with finite elements is

presented in [45]. Two formulations based on infinitesimal-strain theory were

recently reported to predict micromechanical fields in polycrystals deforming

in the elasto-viscoplastic regime [121, 70, 32]. In contrast to the MKS, the crystal

plasticity fast Fourier transform approach directly solves the underlying bound-

ary value problem in the microstructure using the Green’s function method.

The equilibrium and compatibility conditions are satisfied. The crystal plastic-

ity fast Fourier transform-based method provides several advantages: taking

pixelized microstructure images as the input without requiring sophisticated

discretization, accurately investigating the global and local mechanical behav-

ior of microstructures by accounting for both intergrain and intragrain inter-

actions, and the high computation efficiency. One of the major tasks of this

thesis is to develop robust physics-based solvers for polycrystalline microstruc-

tures. A Taylor model is firstly implemented as the deterministic and point

simulator in the stochastic and multiscale frameworks, respectively. A more so-

phisticated FFT-based full-field approach is further developed to study both the

macroscopic and local elasto-viscoplastic responses of realistic microstructures

subjected to deformation. Both methods are compared with the crystal plas-

ticity finite element method also developed in the current work. Integrating

the microstructure estimator in the macroscale processing simulation through

appropriate homogenization scheme [86], a multiscale framework that predicts

spatial distribution of mechanical responses of the workpiece accounting for un-

derlying microstructure heterogeneities can be established. Since the multiscale

simulation requires multiple calls of the local point simulator, the computation

of such a multiscale problem can be very time consuming if the point simulator

is expensive. In the current work, we embed the Taylor model in the multiscale
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solver in order to achieve acceptable efficiency.

Dimensionality reduction techniques have been introduced to the computa-

tional materials science to construct efficient low-dimensional surrogate mod-

els of the high-dimensional stochastic heterogeneous media. In [27], a linear

embedding methodology using principle component analysis (PCA) was de-

veloped to model the topological variations of composite microstructures satis-

fying some experimentally determined statistical correlations. This model was

successful in reducing the representation of two-phase microstructures. How-

ever, as most of the data sets contain essential nonlinear structures that are in-

visible to PCA, it cannot be easily extended to the case of polycrystals. In [29],

a nonlinear dimensionality reduction (NLDR) strategy was proposed to embed

data variations into a low-dimensional manifold that could serve as the input

model for subsequent analysis. This methodology was applied to construct a

reduced-order model of thermal property variation of two-phase composites.

The reduced model was subsequently utilized as a stochastic input model to

study the effect of material uncertainty on thermal diffusion. However, this

nonlinear strategy does not provide a robust mathematical parametric input

model which reveals the inherent patterns. In addition, the mapping between

the original and the surrogate space is based on the IsoMap [123] algorithm re-

quiring computation of the geodesic distance matrix among data. In general,

this matrix may not be well defined and the computation of the matrix could

be expensive. Kernel principal component analysis (KPCA), which first nonlin-

early maps the input to a “feature” space and then performs PCA, was therefore

introduced to resolve the issues affiliated with linear PCA and Isomap model re-

duction. Successful application of KPCA to modeling of random permeability

field of complex geological channelized structures was provided in [80].
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A bi-orthogonal decomposition model reduction approach [8, 128] was em-

ployed in [52] to build the reduced-order model of location-specific microstruc-

tures in a stochastic multiscale forging simulation. In that work, microstructures

were assumed to have different distributions at different spatial points over the

workpiece. As a result, the stochastic input was extremely high dimensional,

which is known as the “curse of dimensionality”. Conventional model reduc-

tion schemes that only locally decompose microstructure complexity at a given

material point and cannot explore the correlation between the microstructures

in the continuum are not sufficient. To this end, the bi-orthogonal KLE was in-

troduced to decompose the multiscale random microstructure into a few modes

in both the macro- and meso-scales, so that the dimension of the multiscale

random field can be effectively reduced. However, this earlier work limited

its stochastic input to two prescribed random variables. In this thesis, we are

going to employ the model reduction techniques to construct low dimensional

surrogate model of random input polycrystalline microstructure features. For

random microstructures associated with a single material point, conventional

linear and nonlinear methods such as KLE, Isomap, and PCA/KPCA will be

adopted. The bi-orthogonal decomposition will be combined with a second-

level KLE to construct the reduced-order surrogate space of the location-specific

microstructure in the stochastic multiscale simulation.

Having constructed the reduced-order model of the stochastic input, the

stochastic partial differential equations (SPDEs) that define the physics of defor-

mation can be solved subsequently with the repeated calling of the deterministic

simulation. The most traditional and popular SPDE solver is the Monte Carlo

(MC) method. Its convergence rate does not depend on the number of inde-

pendent input random variables, and its implementation is very easy if a work-
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ing deterministic code is given. However, the MC method becomes quickly in-

tractable for complex problems in multiple random dimensions. This is because

the number of realizations required to acquire good statistics is usually quite

large. Furthermore, the number of realizations changes with the variance of

the input parameters and the truncation errors are hard to estimate. A stochas-

tic collocation method that represents the stochastic solution as a polynomial

approximation is later introduced. Its interpolant is constructed via indepen-

dent function calls to the deterministic problem at different interpolation points

which are selected based on the Smolyak algorithm [112]. An adaptive version

of this approach, the adaptive sparse grid collocation (ASGC), has been devel-

oped [78]. This method utilizes local linear interpolation and uses the magni-

tude of the hierarchical surpluses as an error indicator to detect the non-smooth

region in the stochastic space and thus place automatically more points around

this region. This approach results in further computational gains and guaran-

tees that a user-defined error threshold is met. In this thesis, we will use both

the MC and ASGC methods to solve the stochastic problem and quantify the

variability of material properties.

The following part of the thesis will be divided into three major chapters.

The next chapter presents studies of mechanical properties/responses variabil-

ity of microstructures corresponding to a single material point. In Section 2.1,

macroscopic stress-strain response of single-phase FCC nickel microstructures

under deformation is studied. Fatigue properties of nickel-based superalloy

microstructures are examined in Section 2.2. The uncertainty quantification of

multiscale deformation processes is studied in Chapter 3, where the random mi-

crostructure is assumed to be location specific, i.e. microstructure distribution

varies with spatial location. A bi-orthogonal decomposition scheme is devel-
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oped to reduce the dimension of multiscale microstructure input. The variabil-

ity of strain, stress and strength fields over the workpiece after forging is inves-

tigated. The microstructures in the above mentioned two chapters are repre-

sented using crystallographic and/or topological features such as grain orienta-

tions and sizes. Taylor model is used to approximately estimate the mechanical

response of microstructures. For more accurate prediction, we develop a full-

field crystal elasto-viscoplasticity fast Fourier transform (CEPFFT) approach in

Chapter 4. The high computation efficiency of this model shows great poten-

tial in integrating it with stochastic/multiscale materials simulations. In the last

section, conclusions of the thesis work and suggestions for future research are

summarized.
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CHAPTER 2

UNCERTAINTY QUANTIFICATION AT A SINGLE MATERIAL POINT

Our uncertainty quantification work starts with the random microstructure

associated with a single material point. Mechanical response variability of

single-phase FCC nickel microstructures due to both orientation and grain size

uncertainties is studied in Section 2.1. A nonlinear model reduction technique

based on Isomap manifold learning [29] is introduced to find the surrogate

space of the grain size feature while crystallographic orientations are reduced

by KLE. Homogenized stress-strain curve with error bars during deformation

and critical stress distribution after deformation are computed. The notation

follows the work in [73]. In Section 2.2, a homogenized constitutive model for

IN100 nickel-based superalloys [98] is implemented in the Taylor model and

FE framework. Variability of fatigue resistance, measured by strain-based fa-

tigue indicator parameters (FIPs) [109] of the two-phase superalloy is studied

with the assistance of principal component analysis (PCA) and kernel principal

component analysis (KPCA). Distributions of FIPs, as well as their convex hulls

showing the extreme values, of microstructures sharing identical statistical fea-

tures with given samples under cyclic loading are extracted. Most content and

notation are from the work in [130].
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2.1 Investigating mechanical response variability of single-

phase polycrystalline microstructures

2.1.1 Model reduction theory

Features of polycrystals are composed of two aspects: topology and crystal-

lographic texture. The first aspect regards geometry characters, such as grain

shape and grain size, while the second is the crystallographic orientation distri-

bution of grains. For a polycrystalline microstructure, its properties are mostly

determined by the grain size and orientation distribution. In order to model

the uncertainty of microstructures, the two features are considered as random

fields. Model reduction techniques are applied to grain size and texture sep-

arately, and then their low-dimensional representations are combined to fully

represent a microstructure. In this section, focus is given on a nonlinear model

reduction scheme performing to the grain size space. The model reduction on

texture will be introduced in Section 2.1.3.

Fig. 2.1 shows multiple microstructures that satisfy some specific experimen-

tally determined statistics of grain size distribution. Each microstructure that

satisfies the given statistics of the grain size distribution is a point lying on a

curve (manifold) embedded in a high-dimensional space. The problem of ‘man-

ifold learning’ as applied to this situation is as follows: Given a set of N unordered

points belonging to a manifold M embedded in a high-dimensional space Rn, find a

low-dimensional regionA ⊂ Rd1 that parameterizesM, where d1 ≪ n.

The process of learning the nonlinear low-dimensional structure hidden in a

set of unorganized high-dimensional data points is known as the manifold learn-
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(a)

(b)

(c)

Figure 2.1: Slices of 3D microstructures satisfying different constraints
of the grain size (given here in terms of grain volume, the
domain of microstructure is 1mm3) distribution: (a) constant
mean grain volume (0.0185 mm3), (b) constant mean grain size
(0.0185 mm3) and second-order moment (3.704× 10−4 mm6), and
(c) constant grain size (0.0185 mm3), second-order moment
(3.704 × 10−4 mm6) and third-order moment (8.637 × 10−6 mm9).

ing problem. Principle Component Analysis (PCA), Karhunun-Loève expansion

(KLE) and multidimensional scaling (MDS) [44] are classical methods in man-

ifold learning. These methods extract optimal mappings when the manifold is

embedded linearly or almost linearly in the input space. However, in most cases

of interest, the manifold is nonlinearly embedded in the input space, making the

classical methods of dimension reduction highly approximate.
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Recently, two new approaches have been developed that combine the com-

putational advantages of PCA with the ability to extract the geometric structure

of nonlinear manifolds. One set of methods takes a bottom-up approach, i.e they

try to preserve the local geometry of the data. They aim to map nearby points

on the manifold to nearby points in the low-dimensional representation. Such

methods, Locally Linear Embedding (LLE) [104], Laplacian Eigen Maps, Hes-

sian Eigen Maps, essentially construct a homeomorphic mapping between local

sets in the manifold to an open ball in a low-dimensional space. The complete

mapping is a union of these local maps. On the other hand, the alternate set of

approaches towards nonlinear model reduction take a top-down approach [18].

Such global approaches, like the Isomap and its numerous variants, attempt to

preserve the geometry at all scales. They ensure that nearby points on the man-

ifold (with distance defined via a suitable metric) map to nearby points in the

low-dimensional space and faraway points map to faraway points in the low-

dimensional space. The distance between original points is identical to that be-

tween their low-dimensional counterparts. Though both approaches are viable,

we focus our attention to global methods of non-linear dimension reduction.

The basic premise of the Isomap [123, 1] algorithm is that ‘only geodesic dis-

tances reflect the true low-dimensional geometry of the manifold’. The geodesic

distance (between two points) on a manifold can be intuitively understood to be

the shortest distance between the two points along the manifold (see Fig. 2.2 for

an illustration).

Subsequent to the construction of the geodesic distance between the sample

points {xi} in the high-dimensional space, the Isomap [123] algorithm constructs

the low-dimensional parametrization simply as a set of points {yi} lying in a low-
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Figure 2.2: A schematic showing the manifold in the high- and low-
dimensional spaces. The data points shown here are in 3D but
the intrinsic dimensionality of the manifold is 2.

dimensional space that most accurately preserve the geodesic distance. That

is, the distance between two points yi and y j in low-dimensional space should

be the same with the geodesic distance between their corresponding points xi

and x j in the high-dimensional space. This property is called isometry. With

the Isomap algorithm, given a set of N-unordered points belonging to a manifold

M embedded in a high-dimensional space Rn, a low-dimensional region A ∈ Rd1 is

computed which is isometric toM, with d1 ≪ n.

Since we have no notion of the geometry of the manifold to start with (hence

cannot construct the true geodesic distances), we approximate the geodesic dis-

tance using the concept of graph distance DG(i, j), thus the distance of points

far away is computed as a sequence of small hops. This approximation,DG(i, j),

asymptotically matches the actual geodesic distanceDM(i, j) in the limit of large

number of samples [29]. As discussed before, the key to a good model reduction

and reconstructions is a viable measurement of microstructure. Since the impor-

tant feature we are looking to embed and recreate is the grain size distribution,
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we choose this feature as the measurement (see Section 2.1.2).

Having computed the pairwise distance matrix between the given mi-

crostructures, one can compute the location of N points in a reduced-order sur-

rogate space, yi ∈ Rd1 such that the distance between these points is arbitrarily

close to the given distance matrix. Multi Dimensional Scaling (MDS) methods

allow this mapping [29]. The intrinsic dimension d1 of an embedded manifold is

linked to the rate of convergence of the length-functional of the minimal span-

ning tree of the geodesic distance matrix of the unordered data points in the

high-dimensional space [29]. The rate of change of the length functional as more

number of points are chosen is related to the dimensionality of the manifold via

a simple relation log(L) = alog(N) + ϵ, where a = (d1 − 1)/d1. The intrinsic di-

mensionality, d1, can be estimated by finding the length functional for different

number of samples N and subsequently finding the best fit for a.

The procedure above results in N points in a low-dimensional space Rd1 . The

geodesic distance and the MDS step result in a low-dimensional convex region

A ⊂ Rd1 . Using the N samples, the reduced space is given as a convex hull

A = convex hull(yi) that parameterizes the grain size space. Since microstruc-

tures inM satisfy all the required grain size properties, they are here taken to be

equally probable to occur. That is, every point in the high-dimensional stochas-

tic spaceM is equiprobable. The convex hull can be mapped to a unit hypercube

with the same dimensionality d1. Since the microstructures are equiprobable,

we consider each of the dimensions of the hypercube as defining an indepen-

dent uniform random variable. These random variables define our stochastic

support space. Since A serves as the surrogate space of M, we can access the

variability in M by sampling over A, or equivalently the hypercube, which is
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the sampling space in the sparse grid collocation method. Unfortunately, this

requires not only the mapping M −→ A just described but also the inverse

mapping (microstructure reconstruction) A −→ M. This microstructure recon-

struction will be discussed in Section 2.1.2. The overall steps of the procedure

are summarized in Fig. 2.3. Note that here the surrogate space A is mapped

to a unit d1−dimensional hypercube to allow interfacing this procedure with

sparse grid collocation techniques [78]. In such collocation methods, the sam-

pling points are defined on a hypercube. These collocation methods have been

shown to be efficient in interfacing with deterministic solvers of e.g. deforma-

tion, diffusion, flow, etc. in random media, thus allowing modeling the effect of

microstructural uncertainty on material properties.

Figure 2.3: The various steps in a data-driven model reduction of poly-
crystal microstructures. The high-dimensional microstructures
are mapped to a low-dimensional regionA. This convex region
defined by the data points inA is mapped to a unit hypercube.
Each sample point on this hypercube corresponds to a viable
microstructure that needs to be reconstructed using the given
data.
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2.1.2 Microstructure representation and reconstruction method-

ology

Topology representation: Grain size vector of a microstructure

The high-dimensional representation of a microstructure topology feature in

this work is chosen to be the grain size distribution, namely the volume of

grains, for its great effect on mechanical properties. A polycrystalline mi-

crostructure contains a finite number of grains and each grain has its own size.

If the size of each grain is given, the microstructure can be non-uniquely de-

termined. The only differences in geometry of these microstructures are the

shapes and arrangement of the grains, which do not have significant effect on

microstructure mechanical properties and can be neglected especially when the

Taylor homogenization hypothesis is adopted. Here, we treat microstructures

having the same grain size distribution to be in the same class. A measurement

that uniquely represents this kind of microstructures is needed. Here, the mea-

surement is chosen as the grain size (in terms of volume) vector sorted by as-

cending order (we refer it as ‘sorted grain size vector’) and the term ‘microstruc-

ture’ in the following refers to the grain size feature instead of a microstruc-

ture realization. For example, consider a cubic microstructure containing n = 4

grains whose volumes are given as S = {0.3mm3, 0.2mm3, 0.4mm3, 0.1mm3}. Rear-

ranging the grain size in ascending order, the new representation of this mi-

crostructure is S = {0.1mm3, 0.2mm3, 0.2mm3, 0.4mm3}. This resulting vector is

chosen as the representation of this kind of microstructure. After being sorted,

microstructures belonging to the same class result in the same grain size vec-

tor, while different classes give different vectors. This choice is selected as it
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is easy to express and satisfy the given constraints on grain size (mean, stan-

dard deviation, higher-order moments, etc.) and in addition, the (non-unique)

reconstruction of a microstructure with given grain sizes is straightforward. In

the meantime, adopting Euclidean distance as the metric, we can measure the

difference between microstructres represented by sorted grain size vector. To

estimate the difference between two microstructures, A ∈ M and B ∈ M, we

first sort the grain sizes (effectively, grain volume) by ascending order. The Eu-

clidean distance,DG( A, B), between them is defined as follows:

D( A, B) = (
n∑
i

(S A
i − S B

i )2)1/2 (2.1)

Fig. 2.4 shows an example of using sorted grain size vector to measure the differ-

ence between two 54-grain microstructures. Fig. 2.4(a) depicts the sorted grain

volume distribution of two microstructures having the same mean grain size.

Fig. 2.4(b) measures the difference in each grain between the microstructures,

which also tells how much microstructure A is different from microstructure

B. The dimensionality of this grain size vector is determined by the number of

grains of a microstructure. For a microstructure containing 54 grains, its repre-

sentation is 54-dimensional. As the mean grain size is fixed, there are only 53

independent dimensions. If more constraints are added, the dimensionality will

be further reduced.

Microstructure reconstruction

Given a set of samples {xi}, i = 1, . . . ,N in manifoldM, the non-linear dimension-

ality reduction strategy (Section 2.1.1) converts these points into a set of points

{yi}, i = 1, . . . ,N belonging to a convex setA. This convex regionA ⊂ Rd1 , defines

the reduced representation of the space of microstructures. As A is the surro-
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Figure 2.4: (a) Two microstructures represented by sorted grain size vec-
tors. (b) The difference between the two sorted grain size vec-
tors.

gate space of M, one can access the complete variability in the topology and

property distribution of grain size in M by simply sampling over the region

A. But we have no knowledge of the image of a point in the microstructural

spaceM corresponding to an arbitrary point y ∈ A . For a usable reduced-order

model of the microstructure space, an explicit mapping F −1 fromA toM has to

be constructed.

As shown in Fig. 2.3, the reduced-dimensionality space A is used as the

surrogate space from which acceptable microstructures need to be sampled (at

arbitrary points). The procedure of reconstructing a microstructure x ∈ M from

the low-dimensional space A ⊂ Rd1 is as follows: (1) Generate a point in the

low-dimensional space y ∈ A. (2) Find the m nearest neighbors of y and denote

them as yi, i = 1, . . . ,m. (3) Find the microstructures xi, i = 1, . . . ,m in the high-

dimensional space M ⊂ Rn that are corresponding to yi, i = 1, . . . ,m. Based on

isometry, x could be computed following a linear interpolation algorithm:
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x =
n∑

i=1

Wixi, Wi =

1
D(yi,y)∑n

j=1
1

D(y j,y)

(2.2)

Note that the metric in the reduced spaceA ⊂ Rd1 is the Euclidean distance and

the points xi ∈ M are the sorted grain size vectors defined earlier. The equation

above demonstrates that the new generated microstructure can be interpolated

by its nearest neighbors weighed by the reciprocal distances between their cor-

responding low-dimensional points. The mean grain size of the interpolated

microstructure automatically equals the required value because of the linearity

of Eq. (2.2). However, when the microstructures on the manifold are constrained

by higher-order moments, the resulted microstructure by interpolation cannot

satisfy all the constraints, which means it does not lie on the manifold, but has

slight deviation. To obtain the microstructure satisfying all the given moments,

we need to modify the grain sizes. This procedure is referred to as projecting

the image onto the manifold in [29]. An algorithm implemented in the current

work that can adjust the grain size distribution to satisfy the second- and third-

moments of grain size is briefly described below.

Controlling the grain size distribution to satisfy a given second-order mo-

ment of the grain size distribution is straightforward. Given a grain size vector

whose mean size is M1, we would like to adjust the grain sizes so that its second-

order moment is M2. To do this, we first centerize the original grain size vector

to one that has zero mean by subtracting M1 from each component. We next

weight each component with the ratio of the expected standard deviation to the

current standard deviation. The algorithm is as follows:

Step 1: E1 =
1
n

∑n
i=1 S i = M1;
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Step 2: S i = S i − M1;

Step 3: E2 =
∑n

i=1 S 2
i

n ;

Step 4: a =
√

M2−M2
1

E2
;

Step 5: S i = aS i.

Having the zero-mean grain size vector satisfying the expected standard de-

viation, the final grain size vector that satisfies both the mean size and second-

order moment can be obtained by adding M1 to its components, i.e. S i = M1+aS i,

for i = 1, . . . , n.

The control of the third-order moment is more complicated. Two iterative

processes are needed to accomplish this task. The basic idea is to find an in-

tersection vector of two surfaces. One surface is composed of microstructures

satisfying the first two moments and the other one is defined by the third-order

moment M3. Still, the mean size M1 is subtracted from the grain size vector. The

first three target moments of the zero mean grain size vectors are then equal to

M̂1 = 0, M̂2 = M2 − M2
1 and M̂3 = M3 − 3M1M2 + 2M3

1 , respectively. The complete

algorithm is as follows:

Step 1: Ŝ i = S i − M1;

Step 2: Ŝ ′i = Ŝ i, and E1 =
1
n

∑n
i=1 S i;

Step 3: Ŝ i = Ŝ i − E1;

Step 4: E2 =
1
n

∑n
i=1 S 2

i ;

Step 5: Ŝ i = Ŝ i

√
M̂2
E2

;
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Step 6: loop

δi =
3Ŝ 2

i

n
;

d =
∑
i=1

nδ2
i , E3 =

1
n

Ŝ 3
i ;

m = M̂3 − E3;

Ŝ i = Ŝ i +
m
d
δi;

if|m| < cutoff, break;

Step 7: error = norm(Ŝ ′i − Ŝ i);

Step 8: if error < cutoff, go to step 9, else go to step 1;

Step 9: S i = M1 + Ŝ i.

The grain size vector {S i, i = 1, . . . , n} now satisfies all the three given moment

constraints.

With a grain size vector, a realistic 3D microstructure can be generated using

a grain growth simulation method such as the phase-field method [36], although

in the current work the realization of the 3D microstructure is not necessary. An

example of a 3D microstructure that satisfies given moment constraints is shown

in Fig. 2.5.

Given the methodology discussed in Sections 2.1.1 and 2.1.2, the mapping

between high- and low-dimensional stochastic space of grain size feature is con-

structed based on an isometric nonlinear model reduction methodology. In the

next section, the representation and model reduction on texture space will be

introduced.
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Figure 2.5: A 3D microstructure with 64 grains with prescribed mean grain
size value (0.0185mm3). The reconstruction is based on a grain-
growth model implemented using a phase-field method.

2.1.3 Texture modeling

Other than grain size, the properties of a polycrystalline microstructure are

highly dependent on its crystallographic texture. For the case of a discrete mi-

crostructure containing moderate number of grains, the texture effect is usually

much more significant than the grain size effect. To examine the effect of vari-

ability in initial texture on the final property of the microstructure, the texture

is defined as a random field, whose variables are orientation components of in-

dividual grains. In this paper, the orientation of a grain is defined by a rotation

around an axis and is known as Rodrigues parametrization, an axis-angle rep-

resentation consisted of three components:

r = w tan
ϕ

2
(2.3)

where r = {r1, r2, r3} are the three Rodrigues components; w = {w1,w2,w3} gives

the direction cosines of the rotation axis with respect to microstructure coordi-

nates; and ϕ is the rotation angle.
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In nature, the orientation of a grain should be totally random if no con-

straint is taken into account. Through certain deformation, the orientation is

changed due to grain rotation and distortion, and therefore forms preferred

texture throughout the entire microstructure. For a set of independently ran-

domly distributed orientations, it is difficult to perform dimensionality reduc-

tion because of lack of intrinsic correlations. However, processed microstruc-

tures through certain deformation mode gain preferred texture that are im-

plicitly correlated among orientations. Several linear dimensionality reduction

techniques have already been successfully implemented in reducing the Orien-

tation Distribution Function (ODF) to lower-dimensional representations [50, 3].

In those works, the material deformation simulation was conducted using an

ODF based scheme, where the microstructure was assumed to be continuous

and its macroscopic properties were computed by integrating over the entire

fundamental zone of Rodrigues space. The ODF was updated following the

ODF conservation equation [55].

In the current work, however, the microstructure is discretely represented

by an ensemble of grains, each of which possesses an orientation consisted of

three axis-angle parameters (Eq. (2.3)). The update of the texture is obtained by

estimating the elastic distortion inside grains [6]

mα
t = Fe(t)mα

0

nαt = Fe−T (t)nα0 (2.4)

where mα, nα are the direction and normal of the slip system α and Fe is the elas-

tic deformation gradient. In this case, the texture is described by a finite number

of orientations (the same with grain number), leading only certain points in Ro-

drigues space having a non-zero ODF value. Thus, the appropriate method to

25



reduce the texture dimension should be directly performed on grain orienta-

tions, instead of assuming a continuous field in Rodrigues space.

Here, we define the orientation vector representing the microstructure tex-

ture as

τ(r) =
{
r1

1, r
1
2, r

1
3, r

2
1, r

2
2, r

2
3, . . . , r

n
1, r

n
2, r

n
3

}T
(2.5)

where n is the total number of grains. Texture τ ∈ T , in which T ⊂ R3n is the

stochastic space of texture. The Rodrigues representation is defined in Eq. (2.3).

{ri
1, r

i
2, r

i
3} are the three orientation components of the i-th grain. The initial ori-

entations of grains are provided in the form of Eq. (2.5) through input files. The

initial orientation matrix of grain i (i = 1, . . . , n) can be calculated by

Ri
0 =

1
1 + ri

0 · ri
0

(
I(1 − ri

0 · ri
0) + 2(ri

0 ⊗ ri
0 + I × ri

0)
)

(2.6)

where ri
0 is the initial orientation for the i-th grain. Thus the initial slip system α

of grain i, represented in the sample coordinate system, can be determined by

mi,α
0 = Ri

0mα
local

ni,α
0 = Ri

0nαlocal (2.7)

where α = 1, . . . , 12 for FCC materials and mα
local and nαlocal are the slip direction

and plane normal, respectively, in the local (crystal) coordinate system. mi,α
0

and ni,α
0 define the initial orientation of grain i and are needed for computing

the resolved shear stresses and update the plastic deformation in the crystal

plasticity simulation.

Although orientations are usually defined within the fundamental zone of

Rodrigues space due to the crystal symmetry, the range of Rodrigues compo-

nents are in essence from negative infinity to positive infinity. Thus, the vector
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τ has no constraint. Our goal is to find a lower-dimensional space Γ ⊂ Rd2 as the

surrogate space of T .

For a microstructure that underwent through a sequence of deformation pro-

cesses controlled by random variables ω = {ω1, ω2, . . .}, its texture will also de-

pends on ω. While the explicit relationship between τ and ω is not easy, neither

necessary, to find, we adopt the Karhunen-Loève Expansion (KLE) to represent

the random texture using a series of intermediate uncorrelated parameters η,

which are implicitly dependent on ω. Given a set of N texture samples, the

unbiased estimate of the covariance matrix of these texture vectors is

C̃ =
1

N − 1

N∑
i=1

(τi − τ̄)T (τi − τ̄), τ̄ =
1
N

N∑
i=1

τi (2.8)

τi is the ith realization of τ ∈ T and N is the total number of known realizations,

namely the sample number. The truncated Karhunen-Loève Expansion of the

random vector τ is then written as

τ(r,ω) = τ̄(r,ω) +
d2∑
i=1

√
λiϕi(r)ηi(ω) (2.9)

where ϕi, λi are the ith eigenvector and eigenvalue of C̃, respectively; {ηi(ω)} is a

set of uncorrelated random variables having the following two properties

E(ηi(ω)) = 0,

E(ηi(ω)η j(ω)) = δi j, i, j = 1, . . . , d2 (2.10)

and their realizations are obtained by

η
( j)
i =

1
√
λi

⟨
τ j − τ̄,ϕi

⟩
l2
, j = 1, . . . ,N, i = 1, . . . , d2. (2.11)

where ⟨·, ·⟩l2 denotes the scalar product in RN . Since the covariance function is

symmetric and positive definite, all the eigenvalues are positive real numbers
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and the eigenvectors are mutually orthogonal and they span the space in which

τ(r,ω) belongs to. The summation in Eq. (2.9) is mean square convergent and

usually truncated after few dominant terms, which preserve most information

of the vector τ.

The truncated realizations of {η( j)} ∈ Γ ⊂ Rd2 are treated as reduced texture

representations, which is analogous to the reduced grain size samples {yi} ∈ A.

The only constraint that we know about the random variables {η( j)} is from

Eq. (2.10). This distribution can be easily derived using Maximum Entropy

Principle (MaxEnt) [50] to be a Gaussian distribution. Only in a very few special

cases, the uncorrelated Gaussian random variables are not independent [83] and

our example is not in that category. Therefore, here we treat η as a set of inde-

pendent random variables that are normally distributed around 0. A convenient

method to transform η to random variables ζ that are uniformly distributed

within the hypercube [0, 1]d2 is based on the Rosenblatt transformation [102].

The distribution of ζ is in fact the cumulative distribution functions (CDF) of η.

ζ1 = Φη1(η1)

ζ2 = Φη2 |η1(η2|η1) = Φη2(η2)

...

ζd2 = Φηd2 |η1...ηd2−1(ηd2 |η1 . . . ηd2 − 1) = Φηd2
(ηd2) (2.12)

where Φ(·) is the standard normal CDF and in the current case is

Φηi(ηi) =
1
2

[
1 + er f

(
ηi√

2

)]
(2.13)

For a given point in the hypercube ζ ∈ [0, 1]d2 , its corresponding point η from

the original distribution is naturally found to be

ηi = Φ
−1(ζi), i = 1, . . . , d2 (2.14)
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which can immediately give us a texture vector using Eq. (2.9).

Based on the analysis above, each microstructure h (with both grain size

and texture features) that belongs to the high-dimensional stochastic spaceH =

M× T , can be presented by l(y, η) in the low-dimensional surrogate space L =

(A× Γ) ⊂ Rd (d = d1 + d2).

A mapping from L to H can be constructed for sampling allowable mi-

crostructure features. Define the stochastic model for the feature variation as

F −1(ξ) : L −→ H , where ξ = {ξ1, . . . , ξd} is a random vector chosen from L.

This low-dimensional stochastic model F −1 for the microstructure is the input

to the SPDEs defining the crystal plasticity problem. For the grain size feature,

this mapping is described in Section 2.1.2; for texture, the mapping is directly

performed by Eq. (2.9), where F −1(η) : η −→ τ.

Mapping the low-dimensional space to a hypercube having the same dimen-

sionality [29], the uncertainty of the mechanical property of the microstructure

can be efficiently investigated using the adaptive sparse grid collocation (ASGC)

method. It is a stochastic collocation procedure that solves stochastic partial dif-

ferential equations (SPDEs) by computing the solution at various sample points,

ξ, from this space, L. Each of the sample points corresponds to a microstructure

that can be interrogated to evaluate its mechanical response. The sparse grid

collocation approach will then create an interpolant of the mechanical response

in the d-dimensional stochastic space of the random microstructures.
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2.1.4 Sparse grid collocation

In the previous subsections, the grain size and texture of a polycrystalline mi-

crostructure have been reduced to a set of lower-dimensional representations

as the input to stochastic simulation. A highly efficient, stochastic colloca-

tion based solution strategy is used to solve for the evolution of mechanical

response. This subsection briefly reviews the adaptive sparse grid collocation

method for solving SPDEs. For details, the interested reader is referred to [78].

The basic idea of sparse grid collocation is to approximate the multi-

dimensional stochastic space L using interpolating functions on a set of colloca-

tion points {ξi}Mi=1 ∈ L. The collocation method collapses the multi-dimensional

problem (based on the Smolyak algorithm) to solving M (M is the number of

collocation points) deterministic problems. One computes the deterministic so-

lution at various points in the stochastic space and then builds an interpolated

function that best approximates the required solution. Notice, during the pro-

cess, the mapping F −1 from low-dimensional surrogate L to high-dimensional

microstructural space H needs to be implemented, so that the deterministic

solver can work.

In the context of incorporating adaptivity, Newton-Cotes grid is utilized

with equidistant support nodes. Hierarchical basis is used in constructing the

interpolant. The interested function u(t, ξ) can be approximated by

ûd,q(t, ξ) =
∑
∥i∥≤d+q

∑
j∈Bi

ωi
j(t) · ai

j(ξ) (2.15)

The mean of the random solution is evaluated as:

E(ûd,q(t)) =
∑
∥i∥≤d+q

∑
j∈Bi

ωi
j(t) ·

∫
L

ai
j(ξ)dξ (2.16)
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where q is the depth (level) of sparse grid interpolation and d is the dimen-

sionality of stochastic space. Bi is a multi-index set. ωi
j is the hierarchical sur-

plus, which is the difference between the function value u at the current point

and interpolation value û from the coarser grid in the previous level. ai
j is the

d-dimensional multilinear basis functions defined by tensor product. For the

estimation of higher-order moments (k-th order) of the function of interest, we

only need to change u to uk. The function of interest u and its interpolation û in

the current work are the volume average equivalent stress of a polycrystalline

microstructure at an equivalent strain of 0.2.

With increasing level of interpolation, new support nodes are added to the

hypercube if the error indicator

γi
j =
∥ωi

j ·
∫
L ai

j(ξ)dξ∥L2

∥E∥i∥−d−1∥L2

(2.17)

is larger than a threshold ϵ. The error indicator γi
j measures the contribution of

each term in Eq. (2.16) to the integration value (mean of the interpolated func-

tion) relative to the overall integration value computed from the previous inter-

polation level.

After the ASGC has been performed, the solutions of the SPDEs, namely the

mechanical response of the random microstructures has been computed as an

interpolant in the stochastic support space that defines the microstructure vari-

ability. Using this multi-dimensional interpolant of the mechanical response,

one can compute statistical quantities of interest such as realizations, moments

and the probability density function (PDF) using kernel density estimation [13].
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2.1.5 Deterministic solver

We are interested to compute the variability of the macroscopic mechanical re-

sponse of polycrystalline microstructures subjected to compression in the pres-

ence of uncertainty in grain size and texture. The deterministic solver is based

on a rate-independent crystal plasticity constitutive model developed in [6]. A

multiplicative decomposition of the deformation gradient into an elastic and

plastic part, F = FeFp, is used. By comparing the resolved shear stress with the

slip resistance on specific slip system, active slip systems can be determined,

which control the hardening of the crystals. The grain size effect is incorpo-

rated by explicitly introducing a grain size parameter into the Taylor hardening

law [10]:

τ̂ − τ̂0 = αµ b
√
ρ (2.18)

where

ρ̇ =
∑
κ

{
1

Lgb
+ k1
√
ρ − k2ρ

}
|γ̇κ| (2.19)

The first term in Eq. (2.19) represents a geometric storage due to lattice incom-

patibility, describing the grain boundary hardening. Lg is the grain size param-

eter, which is effectively the equivalent diameter of the grain [49]. τ̂ is the single

crystal flow strength, τ̂0 is the initial yield strength, α is a constant usually cho-

sen to be 1/3, b is the Burgers vector, µ is the shear modulus, ρ is the density of

dislocations, γ̇κ is the strain rate of slip system κ. k1 and k2 are constants that can

be determined from observations. The second term describes storage through

a statistical measure of forest dislocation, describing the dislocation interaction

hardening inside grains. The last term represents a dynamic recovery rate that

renders dislocation segments inactive as they rearrange themselves [10].
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The elastic and plastic deformation gradients can also be updated after calcu-

lating the incremental shear strain, which is determined by setting the resolved

shear strain equal to the slip resistance. The Cauchy stress for each grain is

calculated by

T = Fe{[detFe]−1T∗}FeT with T∗ = CeEe (2.20)

where Ee = 1
2

(
FeT Fe − I

)
is the strain tensor and Ce is the fourth-order elasticity

tensor expressed in the microstructure coordinate system.

The deformation of the microstructure follows the Taylor hypothesis, in

which all grains are assumed to be subject to the same deformation gradient.

Under Taylor hypothesis, a realization of the microstructure is not necessary

and the interactions between grains are neglected. This is a commonly used

method for computing the homogenized macroscopic properties of materials in

a stochastic simulation due to its high computational efficiency. Macroscopic

properties, such as stress and strain, are computed as the volume-average of the

microscopic values for different grains. For example, the macroscopic Cauchy

stress T̄ and average plastic rate of deformation D̄p are calculated in the follow-

ing form:

T̄ = ⟨T⟩ = 1
V(B)

∫
V(B)

TdV (2.21)

D̄p = ⟨Dp⟩ = 1
V(B)

∫
V(B)

DpdV (2.22)

Accordingly, the macroscopic Von-Mises equivalent stress and equivalent

strain are calculated in the form of

σ̄e f f =

√
3
2

T̄′ · T̄′ (2.23)
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where T̄′ is the deviatoric part of T̄, and

ε̄e f f =

t∫
0

√
2
3

D̄ · D̄dt (2.24)

where D̄ is the averaged deformation rate that can be directly computed as the

symmetric part of the velocity gradient L in the Taylor hypothesis.

Utilizing this deterministic solver, several cases were considered and com-

pared with available experimental data. The microstructure of interest con-

sists of 64 grains each of which is assigned a random orientation. Nickel is

selected as the material with parameters in Eq. (2.19) being b = 2.49 × 10−7mm,

k1 = 1.15 × 105mm, k2 = 3.14mm2, and the three independent elastic constants

are C11 = 247GPa, C12 = 147GPa, C44 = 125GPa [10, 72]. By varying the do-

main size of the microstructure, the effective stress of different mean grain size

microstructures subjected to compression are computed and plotted at a series

of strains (from 5% to 20%). Comparing with the experimental data [10, 95],

we found our results to be consistent with experiments (Fig. 2.6). Although the

restricted assumption in the Taylor model raises the material strength to some

extent, the superior computation efficiency makes this method highly preferable

in stochastic simulations. The variability of the macroscopic equivalent stress at

specific strain under the same deformation history is of interest in following

subsection.

2.1.6 Numerical examples

In this subsection, several examples are presented to study the statistics of me-

chanical response of polycrystalline microstructures based on the model reduc-
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Figure 2.6: A comparison of the simulated and experimental results.

tion techniques and sparse grid collocation method introduced above. The

deterministic solver adopts the aforementioned crystal plasticity constitutive

model. The macroscopic equivalent stress is averaged over the microstructure

domain following the Taylor hypothesis. In the following numerical examples,

the mechanical response of FCC nickel microstructures subjected to compres-

sion is examined given various grain size and texture information.

The methodologies that are used in solving this stochastic problem are intro-

duced in the previous subsections. Here, we summarize the main procedure of

addressing the examples of interest.

1. Generate a number of grain size samples {xi} ∈ M, i = 1, . . . ,N according to

certain information (prescribed mean size, 2nd- and 3rd-order moments,

etc.). The given input microstructures satisfy the same constraints.

2. Utilize NLDR to reduce the dimensionality of the grain size samples. Their

low-dimensional representations are {yi} ∈ A, i = 1, . . . ,N. The optimal
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dimensionality of the lower spaceA is linked to the rate of convergence of

the length functional of the minimal spanning tree of the geodesic distance

matrix of the unordered data points in the high-dimensional space [29]. A

convex hull is constructed as the envelope of the reduced points.

3. Assign a given texture to the given set of microstructures. Put them

through a sequence of deformation processes that are controlled by sev-

eral random processing variables ω. The resultant textures are utilized

to construct initial random texture space T for the stochastic polycrystal

plasticity problem.

4. Perform KLE on texture samples, {τi(ω)}, i = 1, . . . ,N. The low-

dimensional representations {η(i)} ∈ Γ can be obtained by truncating the

eigen-spectrum to a desired level.

5. Combine the reduced grain size and texture to form the low-dimensional

surrogate of feature space of microstructures, which is the stochastic input

to the sparse grid collocation SPDE solver.

6. Use the ASGC method to construct the stochastic solution. This method

solves the deterministic problem at various collocation points ξ on the

stochastic space and constructs an interpolation based approximation to

the stochastic solution. For a given set of stochastic collocation points, the

corresponding microstructures of these points can be reconstructed (by

the mapping F −1 : L −→ H) and used as inputs in the solution of the cor-

responding crystal plasticity boundary value problem (compression test).

For each of these deterministic problems, the elasto-plastic mechanical re-

sponse is computed by the Taylor homogenization. The ASGC method

constructs the stochastic interpolant of the mechanical response using the

deterministic responses for the appropriately selected sparse grid colloca-
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tion points.

7. After the corresponding stochastic plasticity problem has been solved,

the final equivalent stress for any other microstructure realization in the

stochastic support space can be calculated using the hierarchical interpo-

lating functions. The probability distribution of the final equivalent stress

at strain 0.2 is constructed using kernel smoothing density estimation on

the histogram of realizations.

Example 1

In the first example, 1000 microstructure samples are first generated. Each sam-

ple contains 54 grains whose volume is uniformly distributed in the interval

between 0.0037mm3 and 0.0333mm3. The mean grain volume of each microstruc-

ture is controlled to be 0.0185mm3, while higher-order moments are free to vary.

These samples are used as the input database of grain size feature. By apply-

ing the NLDR method (Section 2.1.1), we first construct the geodesic distance

matrix between points and then map them to a low-dimensional space through

Multi-Dimensional Scaling (MDS) and Isomap. The number of nearest neigh-

bors is set to be 10. The intrinsic dimensionality d1 of the low-dimensional space

is estimated by linking to the convergence of the length functional of the min-

imal spanning tree (MST) of the neighborhood graph defined by geodesic dis-

tance matrix [29]. To be specific, for various sizes of samples (varying from

20 to 1000), points are randomly picked from the set of samples. The minimal

spanning tree of these sample sets was computed. The length functional of the

MST was computed for each of these sample sets. The optimal dimensionality

of the low-dimensional set is related to the slope of the line representing the re-
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lationship between the length functional and the sample number (in logarithm

form). The slope is computed using a least squares fit and rounded to be d1 = 3

(Fig. 2.7). In this way, the original 54 dimensional grain size representation is

reduced to 3.
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Figure 2.7: Plot of the length functional of the MST with respect to various
sample sizes.

The prescribed texture samples are obtained through a series of random pro-

cessing on an initially arbitrarily generated sample. To be specific, an arbitrary

texture consisted of 54 random orientations was first generated and assigned to

1000 microstructure samples. Then, these microstructures were input into a se-

quence of deformation modes controlled by two independent random variables

ω1 and ω2.

L = ω1


0 0 0

0 1 0

0 0 −1

 + ω2


0 −1 0

1 0 0

0 0 0

 (2.25)

where random variables ω1 and ω2 determine the deformation rate L of dif-

ferent modes and vary from −0.002sec−1 to 0.002sec−1. At each time step, the
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deformation of the microstructure is controlled by the combination of these two

modes, but for different samples, the combination is different in terms of the de-

formation rates ω1 and ω2. At the end of 500sec, the 1000 resultant textures were

collected as the input texture database to the stochastic problem. With these tex-

ture samples, the unbiased estimate of the covariance matrix C̃ is constructed.

We then apply KLE (Section 2.1.3) on the covariance matrix and set the energy

cutoff to be 90% – truncate the eigenvalue and eigenvector number d2 when the

energy captured by the first d2 eigenvalues is larger than 90%. Fig. 2.8 shows

that the first 2 eigenvalues of the covariance matrix captured 93.1% of the to-

tal energy (summation of all eigenvalues). Therefore, the dimensionality of the

reduced initial texture is chosen to be 2.
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Figure 2.8: The energy captured by the most significant eigenvalues.

A three-dimensional convex hull corresponding to low-dimensional grain

size representation is constructed with 88 faces and mapped to unit hyper-

cube [0, 1]3 [29], and the low-dimensional texture representation is also mapped

to a two-dimensional hypercube [0, 1]2. Assuming grain size and texture fea-
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tures are independent, the complete low-dimensional surrogate of microstruc-

ture is five-dimensional. Therefore, a five-dimensional hypercube can be con-

structed whose first three dimensions correspond to grain size and the last two

dimensions correspond to texture. The adaptive sparse grid collocation (ASGC)

method is used with a sparse grid defined on this hypercube [0, 1]5 to investi-

gate the mechanical response uncertainty due to the variation of grain size and

texture. The cutoff of error indicator Eq. (2.17) controlling the interpolation error

is set to be 0.001. Each realization within the hypercube can be transformed to

the low-dimensional space and therefore mapped to a microstructure feature set

(Sections 2.1.2 and 2.1.3). The mechanical response of the new microstructure

was then computed using the Taylor model deterministic solver (Section 2.1.5).

In this example, a deformation consisting of compression in the z-direction and

stretch in the other two directions is applied to the microstructure. The velocity

gradient is

L = 0.002sec−1


0.5 0 0

0 0.5 0

0 0 −1

 (2.26)

The final equivalent strain is ε = 0.2. The homogenized macroscopic equiv-

alent stresses corresponding to this strain is the primary variable that is inter-

polated in the stochastic space using a level 8 of interpolation. 1192 collocation

points are adaptively generated. The mean final equivalent stress is found to be

539.159MPa and the standard deviation is 10.471Mpa. As mentioned, the ASGC

method decomposes the multi-dimensional stochastic problem into solving a

number of deterministic problems. Thus, the deterministic solver is called at

each collocation point. The deterministic solver (here, the Taylor model crystal

plasticity solver) estimates the relation between the equivalent stress and equiv-
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alent strain and records the history of deformation process in a stress-strain

curve. The variation in the stress-strain response is shown in Fig. 2.9 (a), where

the bars represent the standard deviation of the equivalent stress for the corre-

sponding equivalent strain. Constructing the interpolant of the final equivalent

stress (at strain equal to 0.2), we can obtain the distribution of the final stress by

sampling uniformly from the hypercube. According to Eq. (2.15), given a point

located in the hypercube, we can find a stress corresponding to it. Generate suf-

ficient samples (in this case, 10000 points are generated from the interpolant),

a histogram of the final stress is obtained. Utilizing kernel smoothing density

estimation [13], the PDF of the final equivalent stress is plotted in Fig. 2.9(b).
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Figure 2.9: (a) Variation in stress-strain response due to uncertainty in
grain size and initial texture. The random texture was gen-
erated from the deformation process defined in Eq. (2.25). The
bars represent the standard deviation of the effective stress for
the corresponding effective strain. (b) PDF of the final equiva-
lent stress of the microstructures having the same mean size.
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Example 2

In the second example, the initial texture samples are generated through a three-

random-variable process, in which a homogeneous compression component is

added to the previous two modes (Eq. (2.27)). After KLE, the lower-dimensional

representation is cut off at d2 = 4, where 91.8% energy is captured. The grain

size samples are the same with Example 1, so that the final low-dimensional

space is 7. We aim at investigating the initial texture uncertainty dependence of

the mechanical response.

L = ω1


0.5 0 0

0 0.5 0

0 0 −1

 + ω2


0 0 0

0 1 0

0 0 −1

 + ω3


0 −1 0

1 0 0

0 0 0

 (2.27)

Following the similar procedure as in Example 1, 7146 nodes are adaptively

generated for a level 8 sparse grid collocation. The mean stress was computed

to be 540.148MPa and the standard deviation 13.304MPa. It comes to our notice

that although the mean stress is almost the same as in the previous example,

the standard deviation is increased, which means the variance of the equivalent

stress is enlarged. The stress-strain curve variation and final stress distribution

are collected and constructed in Fig. 2.10. From this figure, a wider distribu-

tion of the mechanical response is observed, which implies that the randomness

of the mechanical response increased because of the additional randomness in

texture.
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Figure 2.10: (a) Variation in stress-strain response due to the effect of un-
certainty in grain size and initial texture. The random tex-
ture was generated from the deformation process defined in
Eq. (2.27). The bars represent the standard deviation of effec-
tive stress for the corresponding effective strain. (b) PDF of
the final equivalent stress of the microstructures having the
same mean size.

Example 3

The first two examples demonstrated the mechanical response variability due

to texture uncertainty. This example considers the grain size effect on mechani-

cal properties. The mean grain volume is preserved at 0.0185mm3, whereas the

second-order moment is set to be 3.704 × 10−4mm6. Compared with Example 1,

where the second-order moment is various and mostly around 4.10 × 10−4mm6,

the microstructures in this example have a narrow grain size distribution. Per-

forming NLDR, the best fit dimensionality d1 of the low-dimensional space is

still 3.

We select the initial texture the same as in the first example that was gener-

ated from Eq. (2.25). Similar estimation process is conducted and the mechani-

cal response is analyzed up to level 8 with 936 adaptively generated collocation
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points. The mean final equivalent stress and standard deviation are 537.918MPa

and 8.957MPa, respectively. In the stress-strain response variation (Fig. 2.11 (a))

and final stress distribution (Fig. 2.11 (b)), a sharper distribution is observed.

The final stresses corresponding to narrow grain size distribution are more con-

centrated around the mean value.

Equivalent strain

E
q
u
iv
a
le
n
t
s
tr
e
s
s
(M
P
a
)

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

500 520 540 560 580 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Equivalent stress (MPa)

P
D
F

Mean stress

Equivalent strain Equivalent stress (MPa)

(a) (b)

Figure 2.11: (a) Variation in stress-strain response due to the effect of un-
certainty in grain size and initial texture. The input mi-
crostructures have fixed mean grain size and 2nd order grain
size moment, whereas their texture is defined from the pro-
cess in Eq. (2.25). The bars represent the standard deviation of
effective stress for the corresponding effective strain. (b) PDF
of the final equivalent stress of the microstructures.

Example 4

In this part, we constrain the grain size distribution of microstructure sam-

ples through 3 moments. Keeping the first two moments identical with those

in Example 3, the third-order moment constraint is added with the value

8.637 × 10−6mm9. This value is larger than the average third-order moment

(7.86×10−6mm9) when only the first two moments are constrained. This variance
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results that most grain sizes in a microstructure are close but smaller than the

mean size, while a few grain sizes are much larger than the others. If the third-

order moment is set to a higher value, the variation of the grain size will be

quite small or even cannot be captured among the microstructure samples. The

resulting microstructures tend to have the same grain size distribution. A com-

parison of sorted grain size vectors among three microstructure samples whose

grain size distributions are constrained by different number of moments are

demonstrated in Fig. 2.12. We can observe that the microstructure constrained

by only the mean size tends to have almost evenly distributed grain sizes. Grain

sizes of the one constrained by two moments are more concentrated around the

mean size. In the case that three moments are constrained, most grain sizes are

a little smaller than the mean size, while a couple of grains have unusual large

values.

As more constraints are applied to the grain size distribution, the underly-

ing correlation is increased. Performing NLDR on this set of sorted grain size

vectors, we obtain the optimal dimensionality of the grain size feature to be 2.

Combining the reduced grain size vectors with texture (the same as Example 1),

the low dimensional space has only 4 dimensions. The governing stochastic

equations for compression are solved through ASGC up to level 8 with 798 col-

location points. The mean final equivalent stress is found to be 539.543MPa and

the standard deviation is 8.974MPa. The stress-strain curve variance and final

stress distribution are plotted in Fig. 2.13. Although the variance is almost the

same as in Example 3, the distribution of the final stress is more concentrated. A

comparison between the final stress distribution of these three cases are shown

in Fig. 2.14.
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Figure 2.12: Three microstructure samples whose grain size distributions
are constrained by different number of moments. The first
case is constrained by mean volume 0.0185mm3; the second is
constrained by the same mean volume and the second-order
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Example 5

In the last example, the volume of the microstructure is reduced to 0.001mm3

(compared to previously 1mm3 domain). In this way, the mean effective diame-

ter of grains is decreased to 1/10 of the first example. The volume of individual

grains now distributed within 3.7×10−6mm3 to 3.33×10−5mm3 interval. Only the

mean grain size is constrained. This example meant to study the microstructure

mean grain size effect on the mechanical response distribution. The smaller the

grain size, the higher the equivalent stress should be induced at the same strain.

Fig. 2.15 (a) shows the stress-strain curve variation. The mean value of the

final stress is 580.996Mpa (raised by about 40MPa) and the standard deviation is

46



500 520 540 560 580 600
0

0.02

0.04

0.06

0.08

0.1

0.12

Equivalent stress (MPa)

P
D
F

Equivalent strain

E
q
u
iv
a
le
n
t
s
tr
e
s
s
(M
P
a
)

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

Mean stress

Equivalent stress (MPa)Equivalent strain

(a) (b)

Figure 2.13: Case of microstructures having the same mean size, 2nd-order
and 3rd-order moments. Variation in stress-strain response
due to the effect of uncertainty in grain size and initial tex-
ture. The bars represent the standard deviation of effective
stress for the corresponding effective strain. (b) PDF of the
final equivalent stress.

10.634MPa (close to the standard deviation 10.471Mpa in Example 1). Fig. 2.15

(b) compares the final stress distributions of different mean grain size. Both

cases have similar shape while the one with smaller grain size has higher mean

value.

2.1.7 Conclusions

The effect of multiple sources of uncertainty on macroscopic mechanical re-

sponse is studied. A microstructure was considered as a combination of random

fields consisted of grain size and texture. Given a set of microstructure sam-

ples as the realization of this random field, dimensionality reduction techniques

were applied to find their underlining correlations. A nonlinear model reduc-

tion based on Isomap was performed on grain size variables and Karhunen-
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Figure 2.14: Final stress distribution of microstructures whose grain size
distributions are constrained by different number of mo-
ments: mean grain volume 0.0185mm3 (dashed); mean grain
volume 0.0185mm3 and second order moment 3.704× 10−4mm6

(dash-dot); mean grain volume 0.0185mm3, second order
moment 3.704 × 10−4mm6, and third order moment 8.637 ×
10−6mm9(solid)

Loève Expansion was adopted to reduce the texture dimensionality. The di-

mensionality of the random field was successfully reduced from 216 to less than

7. Adaptive sparse grid collocation was then introduced to sample new mi-

crostructures from the low-dimensional space. The elasto-viscoplastic mechani-

cal response of the microstructures satisfying given information was computed

and its distribution is constructed. The effect of texture and grain size random-

ness is studied. It shows that the model reduction techniques greatly simpli-

fied the representation of random microstructure features, while the significant

characters can be preserved. The propagation of uncertainty in microstructure

evolution enables one to provide the prediction on macroscopic mechanical re-

sponse. The distribution of final stress and stress-strain curve provide impor-
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Figure 2.15: (a) Variation in stress-strain response due to the effect of un-
certainty in grain size and initial texture. The mean grain size
is 1.85 × 10−5mm3. The bars represent the standard deviation
of the effective stress for the corresponding effective strain.
(b) Final stress distribution of microstructures having differ-
ent mean grain size.

tant guidance in material design and process, when certain grain size and tex-

ture information is known.

The sparse grid approach constructed an interpolant of the mechanical re-

sponse in the stochastic space of grain size distribution and texture. This in-

terpolant allows the user to compute with controllable interpolation error the

response of any other microstructure in the class of the given microstructures.

This cannot be possible with alternative approaches as for example when us-

ing the Maximum Entropy (MaxEnt) approach with the given data. In addi-

tion, modeling the texture uncertainty using MaxEnt is computationally an in-

tractable task.

In this work, the mechanical response is analyzed using Taylor approach

which provides fast but less accurate results. In Taylor model, the deformation

of the microstructure is constrained to be identical. It leads to an overestimation
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on the mechanical response. Development of more accurate full-field crystal

plasticity solvers will be introduced later in the thesis.

2.2 Investigating variability of fatigue indicator parameters of

two-phase nickel-based superalloy microstructures

2.2.1 Construction of microstructure stochastic input model

Microstructure representation

Features of two-phase polycrystals include topology, crystallographic texture,

and volume fraction of each phase. The microstructure topology is defined in

terms of grain shape and grain size [119]. For a polycrystalline alloy microstruc-

ture, its material properties are mostly determined by these three features. Fol-

lowing the same idea as in Section 2.1, these features are considered as random

variables in order to model microstructure uncertainty. Appropriate mathemat-

ical descriptions of them are needed. A low-dimensional representation of the

microstructure will be used as the stochastic surrogate input model to allow an

efficient computation of the variability of the microstructure properties.

The two-phase grain structure is modeled in a homogenized sense in this

work. As a result, no γ′ particles are explicitly modeled. Each constituent

grain of the microstructure is considered as a homogenized single crystal which

takes the effective properties of both phases. A schematic of an explicit (γ + γ′)

structure of a grain and its equivalent homogenized model is demonstrated in
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Fig. 2.16. The effect of the second phase on material properties can be taken into

account by introducing particular parameters in the constitutive model, which

will be discussed in Section 2.2.4.

Secondary γ’

Tertiary γ’

Explicit structure Homogenized model

Figure 2.16: Explicit structure of a (γ+γ′) grain and its equivalent homog-
enized model. The gray background on the left grain repre-
sents γ matrix, while secondary and tertiary γ′ precipitates
are depicted as dark particles.

Statistical volume elements (SVEs) of polycrystalline alloy microstructures

are represented as aggregates of discrete grains associated with specific orienta-

tions and phases (see Fig. 2.17(a)). As we implicitly model the two-phase mate-

rial in a homogenized sense, each grain in the microstructure is effectively the

combination of γ matrix and γ′ precipitates aligning in the same orientation. An

array containing both sizes and orientations of finite number of grains can be

adopted as the descriptor of the microstructure (Fig. 2.17(b)). For a microstruc-

ture composed of M grains, the first M components of the feature array are sizes

of homogenized grains sorted in ascending order and the rest 3M components

are the corresponding orientations described by Rodrigues parameters [25], as

defined in Eq.(2.3). We will study the effects of each feature separately and de-

termine the one that dominates fatigue properties of superalloy microstructures.

We are given a set of correlated microstructure realizations. In superalloy mi-

crostructures resulting from certain (e.g. deformation) process, the grain sizes,
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grain orientations (texture) and volume fraction of the γ phase satisfy certain

(statistical) constraints. For grain size, the constraints are usually in the form of

low-order statistical moments (Section 2.1). The lognormal distribution is often

used for describing polycrystalline Ni-based superalloy grain sizes [109]. The γ′

phase disperses in the γ phase matrix as precipitates described by their size and

volume fraction. Three types of γ′, primary, secondary, and tertiary, are usually

observed according to their size and other attributes. In the homogenized two-

phase superalloy constitutive model, one needs in general to account for the

γ′-phase uncertainty in addition to the grain size and orientation variation. The

effect of microstructure features on fatigue properties can be studied using the

deterministic material point simulator for different microstructure realizations.
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Figure 2.17: (a) A 3D polycrystalline microstructure with 54 grains. (b) The
descriptor of the microstructure. The first 54 components are
the sizes of grains, and the last 162 components are Rodrigues
parameters representing grain orientations.

Principal component analysis based model reduction

Following the idea in Section 2.1, model reduction techniques are introduced

exploring the correlation among the data to construct a low-dimensional sur-

rogate representation of the original microstructure space in order to facilitate

the stochastic simulation. The samples from this surrogate space need to be
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mapped to the original space for this technique to be practical. Uncertainty

quantification of the microstructure properties driven by the given microstruc-

ture realizations then becomes feasible.

In this work, we introduce PCA/KPCA for model reduction of the homog-

enized superalloy polycrystalline microstructure. The microstructures are de-

scribed by the size and orientation attributes of all constituent grains. A set

of grain size and orientation samples generated by simulation are given as the

initial input. It is assumed that they are obtained through certain random de-

formation processes and therefore satisfy some statistical constraints. We fix

the number of grains to be 54 and the total volume of the microstructure to be

10−3mm3. Therefore, the mean grain size is fixed. The initial grain size sam-

ples are generated according to a lognormal distribution and the orientations

are generated from a sequence of random deformation processes that will be

introduced in Section 2.2.5. After that, we will perform model reduction solely

on the sample data assuming that no other information is known (no informa-

tion about what distribution the grain size follows and what are the random

variables controlling the process to generate random textures). The algorithm

of PCA/KPCA is summarized below. More details of the mathematical formu-

lation can be found in [107, 80, 59]. The notation follows the paper [130].

Define a complete probability space (Ω,F ,P) with sample space Ω, which

corresponds to all microstructures resulted from certain random process, F ⊂ 2Ω

is the σ-algebra of subsets in Ω and P : F → [0, 1] is the probability measure.

Each sample ω ∈ Ω is a continuum field representing a microstructure that can

be described by a discretized representation, y = (y1, . . . , yM)T : Ω → RM. M can

be regarded as the number of features in a microstructure. So each yi, i = 1, . . . , M
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Figure 2.18: Basic idea of KPCA. Left: In this non-Gaussian case, the lin-
ear PCA cannot effectively capture the nonlinear relationship
among the realizations in the original space. Right: After the
nonlinear mapping Φ, realizations become linearly related in
the feature space F. Linear PCA can now be performed in F.

is a random variable. The dimensionality of the stochastic input is then the

length of the vector y. Any microstructure-sensitive property A is a function

of the microstructure features: A = A(y). Therefore, A is also random. To

investigate the variability of A for microstructures in Ω, we need to be able

to compute properties of any sample in Ω. However, only a finite number of

realizations {y1, . . . , yN} of Ω are available. How to explore the space Ω based

on a finite number of given microstructure realizations (input data) becomes

essential.

The dimensionality of the input, M, is often large. We need to find a reduced

order representation of the random field that is consistent with the given data in

some statistical sense. To be specific, we want to find a form y = f (ξ), where ξ, of

dimension much smaller than the original input stochastic dimension M, are a

set of independent random variables with a specific distribution. Therefore, by

drawing samples ξ, we can obtain realizations of the underlying random field,

namely, full feature descriptions of microstructures. KPCA/PCA is used for this

purpose.
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Given N realizations {y1, . . . , yN} of a random field Y(ω), where each realiza-

tion is represented as a M-dimensional vector yi ∈ RM (e.g. yi is a feature real-

ization representing a microstructure by grain size and/or texture), we can map

them into a “feature” space Yi = Φ(yi), i = 1, . . . ,N. Notice that this “feature”

space is in the context of KPCA terminology and different from the microstruc-

ture feature input. We will refer the initial microstructure feature input space as

the physical space. If Φ(y) = y, KPCA is identical to linear PCA. The centered

map Φ̃ is:

Φ̃ = Φ(y) − Φ̄, (2.28)

where Φ̄ = 1
N

∑N
i=1Φ(yi) is the mean of theΦ-mapped data. The covariance matrix

C in the F space is then

C =
1
N

N∑
i=1

Φ̃(yi)Φ̃T (yi). (2.29)

The dimension of this matrix is NF × NF , where NF is the dimension of the “fea-

ture” space.

A kernel eigenvalue problem is formulated which uses only dot products of

vectors in the “feature” space. We first substitute the covariance matrix into the

l.h.s. of the eigenvalue problem

CV = λV, (2.30)

to obtain

CV =
1
N

N∑
i=1

(
Φ̃(yi) · V

)
Φ̃(yi), (2.31)

which implies that all solutions V with λ , 0 lie in the span of Φ̃(y1), . . . , Φ̃(yN).

Projecting V onto sample realizations

V =
N∑

j=1

α jΦ̃(y j), (2.32)
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and multiplying Eq. (2.30) with Φ̃(yi) from the left, we obtain

1
N

N∑
j=1

α j

N∑
k=1

(
Φ̃(yi) · Φ̃(yk)

) (
Φ̃(yk) · Φ̃(y j)

)
= λ

N∑
j=1

α j

(
Φ̃(yi) · Φ̃(y j)

)
, (2.33)

for i = 1, . . . ,N. Note here that the vector α is not normalized. Defining the N×N

kernel matrix K as the dot product of vectors in the “feature” space F:

K : Ki j =
(
Φ(yi) · Φ(y j)

)
, (2.34)

the corresponding centered kernel matrix is then:

K̃ =
(
Φ̃(yi) · Φ̃(y j)

)
= HKH. (2.35)

In the centering matrix H = I − 1
N 11T , I is the N × N identity matrix and 1 =

[11 . . . 1]T is a N × 1 vector. Substituting Eqs. (2.34) and (2.35) into Eq. (2.33), we

arrive at the following kernel eigenvalue problem:

Nλα = K̃α, (2.36)

where α = [α1, . . . , αN]T . In the following, for simplicity, we will denote λi as the

eigenvalues of K̃, i.e. the solutions Nλi in Eq. (2.36). We rewrite Eq. (2.36) in the

following matrix form:

K̃U = ΛU, (2.37)

where, Λ = diag(λ1, . . . , λN) and U = [α1, . . . ,αN] is the matrix containing the

eigenvectors of the kernel matrix K̃, where column i is the ith eigenvector αi =

[αi1, . . . , αiN]T .

Therefore, through Eq. (2.32), the ith eigenvector of the covariance matrix C

in the feature space can be shown to be [107, 59]

Vi =

N∑
j=1

αi jΦ̃(y j). (2.38)

56



Furthermore, the eigenvector Vi can be normalized. Since the eigenvectors αi

from the eigenvalue problem Eq. (2.37) are already normalized, the ith orthonor-

mal eigenvector of the covariance matrix C can be shown to be [107, 59]

Ṽi =

N∑
j=1

α̃i jΦ̃(y j), where α̃i j =
αi j√
λi
. (2.39)

Let y be a realization of the random field, with a mapping Φ(y) in F. Ac-

cording to the theory of linear PCA, Φ(y) can be decomposed in the following

way:

Φ(y) =
N∑

i=1

ziṼi + Φ̄, (2.40)

where zi is the projection coefficient onto the ith eigenvector Ṽi:

zi = Ṽi · Φ̃(y) =
N∑

j=1

α̃i j

(
Φ̃(y) · Φ̃(y j)

)
. (2.41)

From Eq. (2.34), it is seen that in order to compute the kernel matrix, only

the dot products of vectors in the feature space F are required, while the explicit

calculation of the map Φ(y) does not need to be known. As shown in [107], the

dot product can be computed through the use of the kernel function. This is the

so called “kernel trick”. The kernel function k(yi, y j) calculates the dot product

in space F directly from the vectors of the input space RM:

k(yi, y j) =
(
Φ(yi) · Φ(y j)

)
. (2.42)

The commonly used kernel functions are polynomial kernel and Gaussian ker-

nel.

We can write all the zi in a vector form Z := [z1, . . . , zN]T :

Z = AT ky + b, (2.43)
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where A = HŨ, b = − 1
N ŨT HK1 and Ũ = [α̃1, . . . , α̃N] with α̃i := [α̃i1, . . . , α̃iN]T and

ky = [k(y, y1), . . . , k(y, yN)]T . (2.44)

Suppose the eigenvectors are ordered by decreasing eigenvalues and we

only work in the low-dimensional subspace which is spanned by the first r

eigenvectors. Then the decomposition in Eq. (2.40) can be truncated after the

first r terms:

Φ(y) ≈
r∑

i=1

ziVi + Φ̄ =

N∑
i=1

βiΦ(yi), (2.45)

where β = ArZr +
1
N 1 and βi is its ith component. Since only the first r eigen-

vectors are used, Ũr = [α̃1, . . . , α̃r]. Ar = HŨr is a matrix of size N × r and

Zr = [z1, . . . , zr]T is a r-dimensional column vector. Details on the derivations

of these equations can be found in [80].

Thus, given N samples from the original stochastic feature space F, we can

find an approximate r-dimensional subspace F̃ of F which is spanned by the or-

thonormal basis Ṽi, i = 1, . . . , r. Similar to K-L expansion, the expansion coeffi-

cients Zr are a r-dimensional random vector that defines this subspace. By draw-

ing samples of Zr from it, we can obtain different realizations of Φ(y) through

Eq. (2.45). The stochastic reduced-order input model in the “feature” space can

be defined as: for any realization Y ∈ F̃, we have

Yr =

N∑
i=1

βiΦ(yi) = Φβ, with β = Aξ +
1
N

1. (2.46)

Here, Φ = [Φ(y1), . . . ,Φ(yN)] is a matrix of size NF × N. The subscript r empha-

sizes that the realization Yr is reconstructed using only the first r eigenvectors.

ξ := [ξi, . . . , ξr]T is a r-dimensional random vector. If the probability distribution
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of ξ is known, we can then sample ξ and obtain samples of the random filed in

F̃.

However, the probability distribution of ξi is not known to us. What we

know is only the realizations of these random coefficients ξi, which can be ob-

tained through Eq. (2.43) by using the available samples:

ξ(i) = AT kyi + b, i = 1, . . . ,N. (2.47)

Our problem then reduces to identify the probability distribution of the ran-

dom vector ξ := [ξi, . . . , ξr]T , given its N samples ξ(i) = [ξ(i)
1 , . . . , ξ

(i)
r ], i = 1, . . . ,N.

A polynomial chaos representation is introduced in the next subsection for rep-

resenting each component of the random vector ξ in terms of another random

vector with known distribution.

Finally, according to the properties of the K-L expansion [77, 30, 113] used in

the “feature” space, the random vector ξ satisfies the following two conditions:

E[ξi] = 0, E[ξiξ j] = δi j
λi

N
, i, j = 1, . . . , r. (2.48)

Therefore, the random coefficients ξi are uncorrelated but not independent.

By sampling ξ, we can reconstruct high-dimensionalΦ-mapped features in F

space. By applying an appropriate “pre-image” scheme [59], realizations in the

original physical space (namely, microstructures) can be obtained. A weighted

K-nearest neighbor (KNN) pre-imaging algorithm has been designed in [29, 80]

and will be adopted in this work (Section 2.2.3) for KPCA microstructure re-

construction, while for PCA, the pre-imaging is directly performed through

Eq. (2.46) as Φ(y) = y.

In practice, the form of map Φ(y) is not known nor required. Only the kernel
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function (dot product in the F space) k(yi, y j) is needed. For linear PCA, the ker-

nel function is simply the dot product in the input space (1st order polynomial)

k(yi, y j) = (yi · y j), (2.49)

implying that Φ(y) = y; and for KPCA, various kernels may be chosen. A com-

monly selected one is the Gaussian kernel (or radial basis function (RBF)):

k(yi, y j) = exp
(
−
∥yi − y j∥2)

2σ2

)
, (2.50)

where ∥yi − y j∥2 is the squared L2-distance between two realizations. The kernel

width parameter σ is computed using the average minimum distance between

two realizations in the input space [101]:

σ2 = c
1
N

N∑
i=1

min j,i∥yi − y j∥2, j = 1, . . . ,N, (2.51)

where c is a user-controlled parameter.

2.2.2 Polynomial chaos expansion of stochastic reduced-order

model

As explained in the last subsection, we need to draw samples ξ from the reduced

space and reconstruct microstructure realizations in order to investigate mate-

rial property variability of microstructures. To this end, the reduced surrogate

space needs to be constructed and mapped to an appropriate distribution in

which sampling is convenient. In Section 2.1, Maximum Entropy estimation is

used. In this section, we adopt polynomial chaos expansion (PCE) [30, 132, 133]

to represent ξ as a function of Gaussian or uniform random variables η. The
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components of ξ are uncorrelated but not necessarily independent. Although

Rosenblatt transformation [102] can be used to decompose the problem to a set

of independent random variables, this is computationally expensive for high-

dimensional problems. Currently, we assume the independence between the

components of ξ. It has been shown in various applications [113, 31] that this

assumption gives rather accurate results.

Following the independence assumption of ξi, each of them can be expanded

on to an one-dimensional polynomial chaos (PC) basis of degree p:

ξi =

p∑
j=0

γi jΨ j(ηi), i = 1, . . . , r, (2.52)

where the ηi are i.i.d. random variables. The random basis functions {Ψ j} are

chosen according to the type of random variable {ηi} that has been used to de-

scribe the random input. For example, if Gaussian random variables are chosen

then the Askey based orthogonal polynomials {Ψ j} are chosen to be Hermite

polynomials; if ηi are chosen to be uniform random variables, then {Ψ j}must be

Legendre polynomials [132].

Gaussian-Hermite and uniform-Legendre formats will be considered for the

reconstruction of reduced-order random variables (see Section 2.2.5). The PC

coefficients are computed as

γi j =
E

[
ξiΨ j(ηi)

]
E

[
Ψ2

j(ηi)
] . (2.53)

If Gaussian-Hermite chaos is chosen, Eq. (2.53) can be expressed as

γi j =
1
√

2π j!

∫ +∞

−∞
ξiΨ j(ηi)e−

η2
i
2 dηi, i = 1, . . . , r, j = 0, . . . , p. (2.54)

If Uniform-Legendre is chosen, Eq. (2.53) becomes

γi j =
2 j + 1

2

∫ 1

−1
ξiΨ j(ηi)dηi, i = 1, . . . , r, j = 0, . . . , p. (2.55)
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A proper method is needed to evaluate these integrals. However, it is noted

that the random variable ξ does not belong to the same stochastic space as η,

and we only have a number of N realizations of ξ. The distribution of ξ is in-

visible. A non-linear mapping Γ : η → ξ is thus needed which preserves the

probabilities such that Γ(η) and ξ have the same distributions. A non-intrusive

projection based on empirical cumulative distribution functions (CDFs) of sam-

ples developed in [113] is utilized to build the map. The integral in Eq. (2.53) is

then computed using Gauss quadrature.

The non-linear mapping Γ : η → ξ can be defined as shown below for each

ξi:

ξi
d
= Γi(ηi), Γi ≡ F−1

ξi
◦ Fηi , (2.56)

where Fξi and Fηi denote the CDFs of ξi and ηi, respectively. Here, the equalities,

“ d
=” is interpreted in the sense of distribution such that the probability density

functions (PDFs) of random variables on both sides are equal. The marginal

CDF of the samples ξi can be evaluated numerically from the available data.

Kernel density estimation is used to construct the empirical CDF of ξi. Let

{ξ(s)
i }Ns=1 be N samples of ξi obtained from Eq. (2.41). The marginal PDF of ξi

is then:

pξi(ξi) ≈
1
N

N∑
s=1

1
√

2πτ
exp

−ξi − ξ(s)
i

2τ2

 . (2.57)

The marginal CDF of ξi is obtained by integrating Eq. (2.57) and the inverse

CDF can be computed. Having the map Γi, the coefficients γi j are subsequently

computed via Gauss quadrature.

After mapping the reduced space to Gaussian or uniform distribution,

Monte Carlo or adaptive sparse grid collocation (ASGC) can be used to sam-

ple new realizations. Since the sampling space of ASGC is a unit hypercube
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[0, 1]h, we need to further map the independent Gaussian (N(0, 1)) or uniform

(U(−1, 1)) variables to the hypercube based on CDF.

ηi = Υi(νi),Υi = F−1
ηi
, i = 1, . . . , r, (2.58)

where νi ∼ U(0, 1) is the sample space of the i-th component of ASGC, Fηi is the

CDF of ηi.

2.2.3 The pre-image problem in KPCA

The sampled random variables after reconstruction (Eq. (2.52)) are reduced-

order representations. For linear PCA, the recovery of a microstructure is

straightforward using Eq. (2.46), since Y = Φ(y) = y. For KPCA, the recon-

structed reduced-order representations are in the “feature” space F. Through

Eq. (2.46), we can find the high-dimensional representations, but still, in the

“feature” space (Φ(y) , y). However, what we need are the realizations in the

physical input space RM, which requires the inverse mapping y = Φ−1(X). Re-

call that in order to construct the eigenvalue problem in the feature space, the

mapping Y = Φ(y) is not necessary as long as the kernel function is provided.

Therefore, the inverse mapping needs to be constructed approximately. This

inverse mapping problem is known as the “pre-imaging” problem. For each

realization Y in the “feature space’, it provides an approximation of the corre-

sponding realization in the physical input space, i.e. ŷ ≈ Φ−1(Y).

A weighted K-nearest neighbor scheme is adopted for finding the pre-

images. The basic idea is that for an arbitrary realization Y in F, we can first

compute its distances d̃i, i = 1, . . . ,K to the K-nearest neighbors Yi, i = 1, . . . ,K
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in F. Then the distances di, i = 1, . . . ,K between its counterpart ŷ and K-nearest

neighbors, yi, i = 1, . . . ,K, in the physical space are recovered. The pre-image ŷ

is then computed by

ŷ =
∑K

i=1
1
di

yi∑K
i=1

1
di

. (2.59)

The distance between Y and Φ(yi) in the feature space is defined as

d̃2
i (Y,Φ(yi)) := ∥Y − Φ(yi)∥2

= ∥Y∥2 + ∥Φ(yi)∥2 − 2YT
r Φ(yi), (2.60)

for i = 1, . . . ,N. Recall that for Gaussian kernel, k(yi, yi) = 1 and Y =
∑N

i=1 βiΦ(yi).

N is the total number of the given data (microstructure realizations). Then each

feature distance d̃2
i (Y,Φ(yi)) , i = 1, . . . ,N can be computed in the following ma-

trix form [80] :

d̃2
i = 1 + βT Kβ − 2βT kyi , (2.61)

for i = 1, . . . ,N.

Denote the vector d̃2 = [d̃2
1, . . . , d̃

2
N]T and we can sort this vector in ascending

order to identify the K-nearest neighbors of Y from Φ(ỹi), i = 1, . . . , n.

On the other hand, the squared feature distance between the Φ-map of the

pre-image ŷ and Φ(yi) is given as:

d̂2
i (Φ(ŷ),Φ(yi)) = ∥Φ(ŷ) − Φ(yi)∥2

= k(ŷ, ŷ) + k(yi, yi) − 2k(ŷ, y j)

= 2 (1 − k(ŷ, yi)) , (2.62)

for i = 1, . . . ,N. Note that in the derivation above, we used that k(ŷ, ŷ) =
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k(yi, yi) = 1 for a Gaussian kernel. Furthermore, the squared input-space dis-

tance can be computed from the following equation:

k(ŷ, yi) = exp
(
−∥ŷ − yi∥2

2σ2

)
, (2.63)

from which we obtain

d2
i = ∥ŷ − yi∥2 = −2σ2log(k(ŷ, yi)), (2.64)

for i = 1, . . . ,N. Substituting the expression of k(ŷ, y j) from Eq. (2.62) into

Eq. (2.64), one arrives at

d2
i = ∥ŷ − yi∥2 = −2σ2log(1 − 0.5d̂2

i ), (2.65)

for i = 1, . . . ,N. Because we try to find an approximate pre-image such that

Φ(ŷ) ≈ Y, it is straightforward to identify the relationship d̃2
i ≈ d̂2

i . Therefore, the

squared input-distance between the approximate pre-image ŷ and the ith input

data realization can be computed by:

d2
i = ∥ŷ − yi∥2 = −2σ2log(1 − 0.5d̃2

i ), (2.66)

for i = 1, . . . ,N and where d̃2
i is given by Eq. (2.61).

Finally, the pre-image ŷ for a feature space realization Y is given by Eq. (2.59).

It is noted that here we use the K-nearest neighbors in the “feature” space. How-

ever, they are the same as the K-nearest neighbors in the input space, since

Eq. (2.66) is monotonically increasing. Therefore, the pre-image ŷ of an arbi-

trary realization in the “feature” space is the weighted sum of the pre-images

of the K-nearest neighbors of Y in the “feature” space, where the nearest neigh-

bors are taken from the samples yi, i = 1, . . . ,N. A unique pre-image can now

be obtained using simple algebraic calculations in a single step (no iteration is

required) that is suitable for stochastic simulation.
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2.2.4 Two-phase crystal plasticity constitutive model

The crystal plasticity constitutive model is critical for predicting the mechan-

ical properties of polycrystalline materials. The previously developed single-

phase constitutive model for FCC crystals (Section 2.1) is here extended to two-

phase superalloy, IN100. In this material, the second phase, γ′, disperses in the

γ phase in three forms: primary (large particles that may not exist due to in-

sufficient heat treatment), secondary (medium size particles) and tertiary (par-

ticles of small size and low volume fraction) precipitates. The strength of the

superalloy is significantly reinforced due to the existence of these particles. The

two-phase structure is approximately described by a homogenized model. The

second phase configuration is not explicitly modeled. Effects from the second

phase are taken into account through particular parameters in the constitutive

model. In the homogenized model, we take the effective property of both phases

in a single phase medium representation.

Cube slip ⟨110⟩{100} systems are introduced to take cross slip mechanism at

high temperatures into consideration. The rate dependent flow rule which es-

timates the shearing rate on each slip system includes a back force term for the

modeling of the Baushinger effect arising principally from matrix dislocation

interaction with γ′ phase. The effect of volume and size of γ′ precipitates on

material strength is taken into account by constitutive parameters. The consti-

tutive equations are summarized below and detailed in [98, 109, 110].

The flow rule of slip system α is

γ̇(α) =

γ̇(α)
0

⟨ |τ(α) − χ(α)
λ | − κ

(α)
λ

D(α)
λ

⟩n1

+ γ̇(α)
1

⟨ |τ(α) − χ(α)
λ |

D(α)
λ

⟩n2 sgn(τ(α) − χ(α)
λ ), (2.67)

where γ̇(α)
0 is the initial shearing rate, D(α)

λ is the drag stress assumed to be con-
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stant. λ ={oct, cub} refers to the octahedral and cube slip systems, respectively.

The function ⟨x⟩ returns x if x > 0 and returns 0, otherwise. The resolved shear

stress on the α slip system τ(α) is computed by

τ(α) = T̄ :
(
m(α)

0 ⊗ n(α)
0

)
, (2.68)

where T̄ is the PK-II stress and m(α)
0 and n(α)

0 are vectors in the slip direction

and normal to the slip plane, respectively, in the original configuration, since a

total Lagrangian algorithm is adopted. T̄ is related to local elastic deformation

gradient Fe via the fourth-order stiffness tensor Ce:

T̄ = Ce · Ē = 1
2

Ce · (FeT Fe − I). (2.69)

The evolution of the slip resistance κ(α)
λ (λ=cub, oct) follows the Taylor strain

hardening law determined by dislocation density ρ(α)
λ :

κ(α)
λ = κ

(α)
0,λ + αtµmixb

√
ρ(α)
λ , (2.70)

where αt = ⟨0.1−0.68 f ′p1+1.1 f ′2p1⟩, µmix = ( fp1+ fp2+ fp3)µγ′+ fmµγ. µγ′ and µγ are shear

moduli for γ′ precipitates and γ matrix, respectively. The magnitude of Burgers

vector is b = ( fp1 + fp2 + fp3)bγ′ + fmbγ. fp1, fp2, fp3 are volume fractions of primary,

secondary, and tertiary γ′ precipitates, respectively, and fm = 1 − fp1 − fp2 − fp3

is the volume fraction of γ matrix phase. f ′p1 =
fp1

fp1+ fm
, fp2 =

fp2

fp2+ fm
and fp3 =

fp3

fp3+ fm
.

For different slip systems, the initial slip resistance can be evaluated by

κ(α)
0,oct =

[
(τ(α)

0,oct)
nk + ψnk

oct

]1/nk
+ ( fp1 + fp2)τ(α)

ns ,

κ(α)
0,cub =

[
(τ(α)

0,cub)nk + ψnk
cub

]1/nk
, (2.71)

where

ψλ = cp1

√
w

f ′p1

d1
+ cp2

√
w

f ′p2

d2
+ cp3

√
w f ′p3d3 + cgrd−0.5

gr , w =
ΓAPB

ΓAPB−re f
, (2.72)
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and

τ(α)
ns = hpeτ

(α)
pe + hcb|τ(α)

cb | + hseτ
(α)
se , (2.73)

in which ΓAPB is the anti-phase boundary energy density here taken be equal to

ΓAPB−re f , di, i = 1, 2, 3 are the sizes of precipitates, and dgr is the grain size.

The dislocation density evolution has the following form:

ρ̇(α)
λ = h0

{
Z0 + k1,λ

√
ρ(α)
λ − k2,λρ

(α)
λ

}
|γ̇(α)|,

Z0 =
kδ

bdδe f f
, dδe f f ≈

(
2

d2δ

)−1

. (2.74)

The evolution of the back stress χ(α)
λ is also based on dislocation density and

shear rate:

χ̇(α)
λ = Cχ

{
ηµmixb

√
ρ(α)
λ sgn(τ(α) − χ(α)

λ ) − χ(α)
λ

}
|γ̇(α)|, (2.75)

η =
η0,λZ0

Z0 + k1,λ

√
ρ(α)
λ

,

where Cχ = 123.93 − 433.98 f ′p2 + 384.06 f ′2p2.

An implicit iterative algorithm is used for the solution of the non-linear con-

stitutive equations. In initial slip resistance κ0,λ, the grain size effect is intro-

duced in the form of the Hall-Petch law κ ∝ d−0.5
gr .

The parameters in the constitutive model can be calibrated by experimen-

tal results for specific superalloys (e.g. IN100). In the current work, the same

parameters for superalloys at 650◦C listed in [98] are adopted. For additional

information about the constitutive model refer to [109, 134].
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Strain based fatigue indicator parameters (FIPs) related to small crack for-

mation and early growth are extracted as the measure of fatigue resistance, or

more precisely as a measure of driving forces for fatigue crack formation [82].

The four FIPs of interest are the cumulative plastic strain per cycle (Pcyc), which

correlates to the crack incubation life; the cumulative net plastic shear strain

measure (Pr), which correlates with dislocations pile-up on grain boundaries;

the Fatemi-Socie parameter (PFS ), which relates to the small crack growth; and

the maximum range of cyclic plastic shear strain parameter (Pmps) [109]. The

definitions of these FIPs are as follows.

The cumulative plastic strain per cycle (Pcyc):

Pcyc =

∫
cyc

√
2
3

ṗdt =
∫

cyc

√
2
3

Dp : Dpdt, (2.76)

where Dp is the plastic rate of deformation tensor. The crack incubation life (Ninc)

is related to a critical value, pcrit, i.e.,

PcycNinc = pcrit. (2.77)

The cumulative net plastic shear strain measure (Pr):

Pr = max
(∫

cycle
ϵ̇

p
i jnim jdt

)
, (2.78)

where m is the direction along any given plane with normal n. The maximum

value of this parameter is obtained along all possible slip directions over all

possible planes for one cycle.

The Fatemi-Socie parameter (PFS ):

PFS =
∆γ

p
max

2

[
1 + k⋆

σmax
n

σy

]
, (2.79)
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where ∆γp
max is the maximum range of cyclic plastic shear strain, σmax

n is the peak

tensile stress normal to the plane associated with this maximum shear range

and σy is the cyclic yield strength estimated by the Von-Mises stress at the yield

strain ϵy. Here, we choose ϵy = 0.77%. The parameter k⋆ could be a function

of several material properties in addition to the multiaxial strain state. In the

current work, a constant value k⋆ = 0.5 is used as suggested in [109].

The maximum range of cyclic plastic shear strain parameter (Pmps):

Pmps =
∆γ

p
max

2
. (2.80)

This parameter is used when the incubation life is completely controlled by the

irreversible motion of the dislocations with no assist of normal stress, namely,

k⋆ = 0 in Eq. (2.79).

An example of nickel-based superalloy microstructure consisting of 54

grains having random orientations in a 10−3mm3 volume subjected to cyclic load-

ing (tension and compression along z-direction) is demonstrated below. The

volume fractions and sizes of γ′ precipitates are given by fp1 = 0, fp2 = 0.42,

d2 = 108nm, fp3 = 0.11, d3 = 7nm. Mechanical behavior of the microstructure is

controlled by the constitutive model introduced above. All the FIPs are com-

puted throughout the third deformation loop. The last non-Schmid term τ(α)
ns in

κ(α)
0,oct is assumed to be 0. This is an approximation as its contribution to thresh-

old stress is not insignificant. The stress-strain response of cyclic loading con-

dition with 3 loops and the normalized distributions of the FIPs are plotted in

Fig. 2.19. Note that the x-axis in both Figs. 2.19(a) is true strain, not plastic strain.

The maximum FIPs over the entire microstructure are maxPcyc = 1.51 × 10−2,

maxPr = 1.12 × 10−4, maxPFS = 6.50 × 10−3, and maxPmps = 5.98 × 10−3.
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Figure 2.19: (a) Stress-strain response during 3 loops of cyclic loading. The
strain rate is 0.001s−1. (b) Distribution of normalized FIPs at a
strain amplitude of ϵ = 0.007.

It is worth mentioning that the Taylor model is used to control the deforma-

tion of the microstructure to allow efficient stochastic simulation to be discussed

next. As a result, the distributions of FIPs in the microstructure predicted in this

model may not be very accurate but they serve as reasonable fatigue indicators

for one grain. We also conducted a 3D finite element (FE) analysis on a cubic

polycrystalline microstructure with 54 grains (Fig. 2.20(a)). The microstructure

is discretized using 7 × 7 × 7 brick elements. The maximum and average values

of FIPs over all the Gauss points of all elements within an individual grain are

evaluated as the representatives of the fatigue driving force of the correspond-

ing grain. The maximum of the grain level FIPs over the entire microstructure

are maxPcyc,max = 1.99 × 10−2, maxPr,max = 8.16 × 10−4, maxPFS ,max = 7.90 × 10−3,

maxPmps,max = 6.76 × 10−3, maxPcyc,ave = 1.49 × 10−2, maxPr,ave = 4.46 × 10−4,

maxPFS ,ave = 6.21 × 10−3, and maxPmps,ave = 5.44 × 10−4. Here, Px,max/Px,ave de-

notes the maximum/average Px over all Gauss points within one grain, and

maxPx,max/maxPx,ave is the maximum of Px,max/Px,ave over all grains in the mi-

crostructure. The contour plot of the maximum range of cyclic plastic shear

strain parameter, Pmps, is plotted in Fig. 2.20(b).
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Figure 2.20: (a) A 3D finite element realization of polycrystalline mi-
crostructure. Each color represents an individual grain. (b)
The field of the maximum range of cyclic plastic shear strain
parameter at the end of the 3rd loop.

The true stress-strain curve and normalized distributions of FIPs are demon-

strated in Fig. 2.21. We see that the Taylor simulation gives similar stress-strain

response and distributions of FIPs as the FE model. Most of the FIPs obtained

from the Taylor model are close to the grain level average FIPs obtained in the

FE model. Considering the computational cost that the Taylor model takes only

3 minutes for one simulation while the FE model takes about 9 hours (the ef-

ficiency is evaluated here for one processor), we will adopt the Taylor model

as the deterministic solver in the further investigation of the variability of FIPs.

The fatigue property of a microstructure under cyclic loading can be measured

by the maximum FIPs over all grains.

2.2.5 Numerical examples

Numerical examples are presented to study the probabilistic distribution of

the FIPs of nickel-based superalloy polycrystalline microstructures using PCA-

based model reduction techniques, PC representation, and sparse grid colloca-

tion and MC methods. The deterministic solver adopts the two-phase polycrys-
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Figure 2.21: Finite element simulation results: (a) Stress-strain response
during 3 loops of cyclic loading. (b) Distributions of normal-
ized FIPs at a strain amplitude of ϵ = 0.007.

tal plasticity constitutive model introduced earlier. The maximum FIPs over

all grains are used to measure fatigue properties of microstructures. In the fol-

lowing subsections, variability of FIPs due to topological and orientational mi-

crostructure uncertainties are examined.

The available information of microstructure features is often given as a lim-

ited number of samples that are obtained through a sequence of preprocessing.

Similar as in Section 2.1, we randomly generate 1000 microstructures through

simulation. This operation mimics the industrial random preprocessing and is

only for the generation of inherently correlated samples, based on which model

reduction would work. After that, the sample data will serve directly as the

initial input to the stochastic simulation. The knowledge about how the data

was generated will not be known or used in this part of the analysis. Each mi-

crostructure is composed of 54 grains in a V = 1 × 10−3mm3 domain. The mean

grain volume is therefore 1.85× 10−5mm3. By assuming cubic shape of all grains,

the mean size is ⟨dgr⟩ = 0.0265mm. As indicated in many works, the grain size

can be well described by a lognormal distribution. Therefore, we generate grain
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sizes of a microstructure according to a lognormal distribution defined as

p(dgr) =
1

dgr

√
2πσ2

exp(−
ln (dgr) − µ

2σ2 ), (2.81)

where dgr is the grain size, and µ, σ refer to the mean and standard devia-

tion of ln (dgr). The mean grain size is ⟨dgr⟩ = exp (µ + σ2/2), which takes the

value 0.0265 mm as mentioned above. The procedure of generating grain size

samples is as follows. For a single microstructure sample, we first generate

54 approximate grain sizes {d̂gr,i, i = 1, . . . , 54} from the lognormal distribution

with µ = ln ⟨dgr⟩ − σ2/2, where ⟨dgr⟩ = 0.0265mm and σ = 0.025. To avoid

extreme large or small grains, all grain sizes are constrained within the range

0.4⟨dgr⟩ < d̂gr,i < 2.5⟨dgr⟩. If a grain size falls beyond that range, a new one will be

generated until it satisfies the inequality. After obtaining all the 54 grain sizes,

we will compute the corresponding volumes (cube root) V̂gr,i = d̂3
gr,i, i = 1, . . . , 54,

by assuming spherical grains. Then, the volume fraction fgr,i of each grain i

will be obtained after normalization: fgr,i = V̂gr,i/
∑54

j V̂gr, j. The grain volume Vgr,i

will be updated by multiplying the volume fraction by the total volume of the

microstructure V = 0.001 (namely, Vgr,i = V × fgr,i, for i = 1, . . . , 54). The grain

sizes can be therefore determined by the resultant grain volumes. Repeating

this procedure 1000 times, we can obtain 1000 microstructure grain size sam-

ples. Assigning an arbitrary texture to all grain size samples and putting them

into a sequence of random deformation process, we can derive 1000 random tex-

ture using the same manner as in Section 2.1. To be specific, an arbitrary texture

consisted of 54 orientations is firstly assigned to 1000 microstructure samples.

Then, these microstructures are input into a sequence of deformation modes

controlled by three independent random variables ω1, ω2 and ω3 (Eq.(2.27)). The

random variables ω1, ω2 and ω3 determine the deformation rate L of different

modes and vary uniformly from −0.002sec−1 to 0.002sec−1. At each time step,
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the deformation of the microstructure is controlled by the combination of these

three modes, but for different samples, the combination is different in terms of

the deformation rates ω1, ω2 and ω3. At the end of 500 secs, the 1000 resultant

textures were collected as the input texture database to the stochastic problem.

Since our model only updates orientations of grains but leaves their sizes un-

touched, the resultant microstructures would have the same grain sizes as the

input while the texture becomes random. Moreover, the texture evolution is

not significantly affected by the grain size according to the constitutive model.

Therefore, the correlation of texture and grain size features is quite weak.

After generating the 1000 grain size and texture samples, we take them as the

given input data to the following stochastic simulation investigating material

properties due to initial microstructure uncertainties. They are the only accessi-

ble information, while the knowledge of how they are generated is blind to the

uncertainty quantification process. The correlation within the feature samples

will be exploited by the construction of correlation matrix through PCA/KPCA

model reduction. Inserting random grain size or orientation features to the

model reduction, the surrogate microstructure representation is derived. Then,

polynomial chaos expansion (PCE) is used to map the reduced-order space to a

known distribution, form which samples can be easily drawn and ASGC or/and

MC can be conveniently introduced to solve for the variability of FIPs. Distri-

butions and convex hulls and FIPs will be constructed according to the solu-

tion. Simulations using different models (i.e. linear/non-linear PCA, Uniform-

Legendre/Gaussian-Hermite PCE, ASGC/MC) are conducted and compared.

The effect of the selected dimensionality of the reduced space is also studied.

Here, we need to point out that grain sizes have to be greater than zero after
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reconstruction from reduced order realizations. To guarantee this, we perform

model reduction on the logarithm of grain volume fractions, ln ( fgr,i) rather than

on ( fgr,i). To generate a new grain size feature, we draw a sample ξ in the sur-

rogate space, and find its original representation y in the physical space, which

is an array of logarithms of grain volume fractions y = ln (fgr). The real grain

volume of the microstructure is then Vgr = V exp (y), where V is the total volume

of the microstructure.

Monte Carlo validation

Monte Carlo simulation is conducted to validate various models on comput-

ing the variability of FIPs. The purpose of MC is to validate the performance

of the PCA/KPCA model reduction and reconstruction, as well as of the PC

expansion. We will see from this subsection that sampling from the reduced-

order space is approximately equivalent to sampling in the physical input

space, while the obtained efficiency is significant. We will first project the

given microstructure snapshots (input data) to a reduced-order space through

PCA/KPCA and then map this reduced-order space through PCE to a set of

standard Gaussian (N(0, I)) or independent uniform (U(−1, 1)) random vari-

ables. To generate new microstructure samples, we thus sample from Gaussian

or uniform distributions. These samples are mapped back to the reduced space

derived by PCA/KPCA. Microstructures in the physical input space are then

recovered via pre-imaging. The FIPs are evaluated for many randomly gener-

ated microstructures and the distributions of these properties will then be con-

structed through kernel density method and compared with the distributions

constructed based on the 1000 initially given samples. The MC results will also
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be used to verify the ASGC simulations performed later on in this section.

First, we would like to examine which microstructure feature is more sub-

stantially affecting the variability of FIPs. To this end, we compute the statistics

of FIPs of the 1000 initial samples in three ways.

• Case A: a constant grain size vector is assigned to all the 1000 samples,

and the texture varies from sample to sample. Without loosing generality,

we assume all grains have the same size (dgr = 0.0265mm, cube root), while

the texture is randomly generated as described above.

• Case B: the grain sizes of different microstructure samples are randomly

generated with mean size being 0.0265mm as mentioned before. A deter-

ministic texture is randomly selected from the 1000 initial samples and

assigned to all the microstructures. Therefore, the grain size is the sole

source of uncertainty.

• Case C: the 1000 texture samples are one to one linked to the 1000 grain

size vectors to define microstructure samples, so that the uncertainty of

the two features can be considered simultaneously.

For each of the above cases, we call the deterministic solver 1000 times and

extract the values of the FIPs. The volume fraction of primary γ′ is 0 and that of

secondary and tertiary γ′ is set to be 0.42 and 0.11, respectively. The range of the

cyclic strain is from −0.007 to 0.007. The strain rate is selected to be 0.001s−1. By

comparing the distributions of the FIPs of these three cases, we find that most

of the distributions from Case A are very close to the corresponding distribu-

tions from Case C. Also, the variance of FIPs caused by grain size uncertainty

(Case B) is much smaller than that caused by orientational uncertainty (Case A).
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Fig. 2.22 shows the PDFs of maximum FIPs over microstructure domain con-

structed based on 1000 initial samples for Case A and Case C, respectively. It is

seen that most of the PDFs for the two cases are very close except that maxPcyc

shows certain difference.
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Figure 2.22: Distributions of maximum FIPs extracted from the 1000 ini-
tial sample microstructures. The solid curves are obtained by
considering both grain size and texture features as random
sources. The dashed curves are for the case with random
texture but with fixed sizes assigned to all grains in the mi-
crostructure. (a) MaxPcyc; (b) MaxPr; (c) MaxPFS ; (d) MaxPmps.

Comparing the statistics of the three cases (Table 2.1), we can see that the

mean and standard deviation (std) of Cases A and C are very close to each

other, while the variance of Case B is much smaller than the other two cases.

Therefore, we ignore the grain size uncertainty while putting our focus on the

texture uncertainty. This treatment further reduces the dimensionality of the

input space without significantly influencing the evaluation of the distribution

of the FIPs. As we will see shortly, the reduced dimensionality of the grain size

feature is larger than that of texture. However, the variation induced in FIPs is

insignificant.
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Table 2.1: Statistics of the maximum FIPs computed from three cases of
initial samples: “Texture” means only texture uncertainty is con-
sidered; “Grain size” means only that only grain size uncer-
tainty is considered; and “Combined” means that both grain size
and texture uncertainties are considered.

Texture Grain size Combined

MaxPcyc mean 1.49 × 10−2 1.50 × 10−2 1.49 × 10−2

MaxPcyc std 5.02 × 10−4 2.92 × 10−5 5.21 × 10−4

MaxPr mean 1.18 × 10−4 1.17 × 10−4 1.17 × 10−4

MaxPr std 7.53 × 10−6 6.50 × 10−7 7.34 × 10−6

MaxPFS mean 6.13 × 10−3 6.33 × 10−3 6.15 × 10−3

MaxPFS std 3.41 × 10−4 1.41 × 10−5 3.60 × 10−4

MaxPmps mean 5.67 × 10−3 5.88 × 10−3 5.70 × 10−3

MaxPmps std 3.03 × 10−4 6.67 × 10−6 3.28 × 10−4

We next examine the model reduction of the input texture space. The ran-

domness will only be assigned to grain orientations, while the volume of all

grains is fixed at Vgr,i = 1.85 × 10−5mm3, i = 1, . . . , 54. The total dimensionality

of the input microstructure feature is 54 × 4 = 216, in which 54 dimensions are

fixed grain sizes and the rest 162 dimensions are random orientations. We first

construct the reduced model for the 1000 initial microstructure samples. Then,

we arbitrarily choose the reduced coordinates for one of the 1000 samples. Af-

ter that, we reconstruct the microstructure feature (texture) using the chosen

reduced coordinates. The reconstructed and the original features are plotted

and compared in Fig. 2.23. We first apply the PCA method to reduce the input

space to 4 dimensions driven by the given samples. The total energy proportion,

defined by Eq. (2.82) captured by the largest 4 eigenvalues is 0.918 > 90%.
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Energy(r) =
∑r

i=1 λi∑N
j=1 λ j

, (2.82)

where r is the number of preserved largest eigenvalues λi and N is the num-

ber of given samples. A reconstructed realization compared with the original

texture is depicted in Fig. 2.23(a). We next repeat the above calculations using

KPCA to perform the nonlinear model reduction of the input texture samples.

The parameter c in the kernel width σ estimation Eq. (2.51) is chosen to be 10.

The total energy captured by the largest 4 eigenvalues is 0.815, which is lower

than that captured in linear PCA. A reconstructed realization compared with

the original microstructure feature is depicted in Fig. 2.23(b). Both of the two

model reduction techniques demonstrate good capability of reducing and re-

constructing microstructure features.
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Figure 2.23: (a) A PCA reconstructed texture feature compared with the
original test sample. The dimensionality of the reduced-
order representation is 4, which captures 91.8% of the total
“energy”. (b) A KPCA reconstructed texture feature com-
pared with the original test sample. The dimensionality of
the reduced-order representation is 4, which captures 81.5%
of the total “energy”.

The energy spectrum of both linear PCA and kernel PCA are plotted. It is

observed that the first few eigenvalues capture the majority of the total energy
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and PCA eigenvalues capture more energy than KPCA at the same dimension

(Fig. 2.24).
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Figure 2.24: Plots of the energy spectrum for PCA and KPCA on texture
feature. The value of y-axis is the total energy proportion cap-
tured by the first x principal components.

We next conduct a 10-fold cross validation on the 1000 initial samples to test

the performance of the two model reduction schemes on the texture microstruc-

ture feature. For the first fold, 100 out of 1000 samples are used as the testing

set to test the reconstructed features from the PCA/KPCA model trained by the

remaining 900 samples. Then, we select another (different) 100 samples as the

testing set, and the rest 900 to be the training set. The process is repeated 10

times until we have used all the 1000 samples as testing sample once. The aver-

age of the relative errors between testing and reconstructed features is defined

as

Errtest =
1
N′

N′∑
i=1

ϵi,

ϵi =
∥yi − ŷi∥L2

∥yi∥L2

, (2.83)

where yi and ŷi are the testing samples and predicted features, respectively, and

N′ is the size of the testing set. The averaged relative errors for texture are
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plotted in Fig. 2.25. The mean error is 0.1201 for PCA and 0.1462 for KPCA.

It is observed that the error of PCA is smaller than that of KPCA, while both of

them are below 15% when 4 principal components are preserved.
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Figure 2.25: Averaged relative errors of testing texture samples in 10-fold
cross validation for PCA and KPCA.

We next need to establish the mapping between the low-dimensional surro-

gate space and a well-defined probabilistic distribution. By the independence

assumption between the random variables in the reduced-order representation,

each component can be approximated using one-dimensional PC basis of degree

p. If Gaussian random variables are to be mapped then Hermite polynomials

are chosen to be the PC basis. On the other hand, if the reduced space is mapped

to a uniform distribution, Legendre polynomials must be selected for Eq. (2.52).

We here use the Gaussian-Hermite and uniform-Legendre PCs, respectively, for

different model reduction schemes and compare the reconstructed features. The

order of PC basis is set to be 12, which gives accurate estimation to the reduced-

order representation distributions (Figs. 2.26 and 2.27). The distributions of

the initial reduced variables of microstructure features are computed from the

given 1000 initial samples based on the histogram of the reduced samples de-

rived by PCA/KPCA (Eq. (2.41)). Alternatively, 10000 random variables are
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randomly sampled from the uniform or Gaussian distribution and mapped to

the surrogate space via PCE (Eq. (2.52)). It is noticed that Uniform-Legendre PCs

give accurate representation to all four reduced-order random variables, while

Gaussian-Hermite cannot fit the random variable ξ2 corresponding to the sec-

ond principal component very well. Thus, we will next perform further stochas-

tic simulations using only Uniform-Legendre PCs.
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Figure 2.26: Marginal PDFs of the initial random variables (the reduced
representations obtained after performing PCA on the 1000
given texture samples) and identified random variables ob-
tained using PCE (reconstructed through PCE (Eq. (2.52)) on
10000 randomly generated samples from Gaussian or Uni-
form distribution). The distributions are constructed through
kernel density based on data.

The marginal PDFs of the maximum FIPs of microstructures satisfying given

texture constraints computed by Monte Carlo using 10000 samples from the

reduced space are plotted in Fig. 2.28, as well as the distributions of the FIPs

computed directly from the 1000 initial samples with various texture and fixed

grain size (the same distribution obtained in Case A). Uniform-Legendre PCs

are used to represent the reduced random variables. The agreement of MC sim-

ulated PDFs using 10000 samples and the PDFs obtained using the given initial

83



5

6

7  

Initial samples

KPCA-Legendre

KPCA-Gaussian2.5

3  

Initial samples

KPCA-Legendre

KPCA-Gaussian

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

ξ2

P
D
F

 

 

Initial samples

KPCA-Legendre

KPCA-Gaussian

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ1

P
D
F

 

 

Initial samples

KPCA-Legendre

KPCA-Gaussian

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

ξ4

P
D
F

 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

ξ3

P
D
F

 

Figure 2.27: Marginal PDFs of the initial random variables (the reduced
representations obtained after performing KPCA on the 1000
given texture samples) and identified random variables ob-
tained using Hermite or Legendre PCE. The distributions are
constructed through kernel density based on data.

1000 samples is achieved, which validates the performance of model reduction.

Both PCA and KPCA capture the main features of the PDFs of the FIPs. The

PCA results seem to be more consistent with the initial samples.

The sampled mean and standard deviation of the maximum FIPs obtained

from different methods (some to be discussed later on) are listed in Table 2.2.

Most of the MC simulated statistics, especially the means, agree quite well with

the ones computed directly from the 1000 initial data considering that only 4

random variables are used to generate new samples. The PCA simulation gives

closer prediction to the sampled mean and variance obtained using only the

initial samples.

Following the same idea as for the texture, model reduction of the grain size
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Figure 2.28: Distributions of the maximum FIPs computed by different
methods. The PDFs marked as ‘Init’ are computed using the
initial given data. For MC, 10000 samples are drawn in the
reduced space and mapped back to the texture input space.
A fixed grain volume Vgr = 1.85 × 10−5mm3 is assigned to all
grains. FIPs are computed using the deterministic solver on
these reconstructed microstructures and kernel density func-
tion is constructed based on data. The dimensionality of
the low-dimensional space is 4. (a) MaxPcyc; (b) MaxPr; (c)
MaxPFS ; (d) MaxPmps.

feature is also studied. Again, we assume only secondary and tertiary γ′ pre-

cipitates dispersed in the γ matrix with fixed volume fractions (setting fp1 = 0,

fp2 = 0.42 and fp3 = 0.11), so that the grain size effect can be captured. An ar-

bitrary but deterministic texture is assigned to all 1000 initial samples, whose

grain sizes are generated using the procedure described earlier with mean size

0.0265mm. The dimensionality of the random input is now 54. To guarantee that

the grain sizes are positive, we first transform all grain volume fractions to log-

arithms. PCA/KPCA is then used to compute the low-dimensional surrogate

space of the transformed grain sizes. New grain size samples are generated by

sampling in the reduced space and mapped back to the physical space. The
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Table 2.2: Statistics of the maximum FIPs computed by different model
reduction techniques with different dimensions. Uniform-
Legendre PCs are adopted to map the reduced surrogate space
of texture to a uniform distribution U(0, I). In the table, “Init”
refers to the initial 1000 samples, “PCA-4dim” refers to 10000
MC samples generated in the 4-dimensional reduced space con-
structed by linear PCA, and “KPCA-4dim” refers to 10000 MC
samples generated in the 4-dimensional reduced space con-
structed by KPCA. Similar notation is used for the rest of the
acronyms.

Init PCA-4dim PCA-5dim PCA-6dim KPCA-4dim KPCA-5dim KPCA-6dim

MaxPcyc mean 1.49 × 10−2 1.49 × 10−2 1.49 × 10−2 1.49 × 10−2 1.51 × 10−2 1.51 × 10−2 1.50 × 10−2

MaxPcyc std 5.02 × 10−4 4.38 × 10−4 4.23 × 10−4 4.35 × 10−4 2.74 × 10−4 2.71 × 10−4 3.29 × 10−4

MaxPr mean 1.18 × 10−4 1.17 × 10−4 1.17 × 10−4 1.17 × 10−4 1.18 × 10−4 1.19 × 10−4 1.19 × 10−4

MaxPr std 7.53 × 10−6 7.97 × 10−6 7.97 × 10−6 8.24 × 10−6 6.49 × 10−6 6.68 × 10−6 6.73 × 10−6

MaxPFS mean 6.13 × 10−3 6.16 × 10−3 6.16 × 10−3 6.16 × 10−3 6.22 × 10−3 6.22 × 10−3 6.21 × 10−3

MaxPFS std 3.41 × 10−4 2.34 × 10−4 2.27 × 10−4 2.26 × 10−4 1.55 × 10−4 1.54 × 10−4 1.77 × 10−4

MaxPmps mean 5.67 × 10−3 5.69 × 10−3 5.70 × 10−3 5.70 × 10−3 5.76 × 10−3 5.76 × 10−3 5.75 × 10−3

MaxPmps std 3.03 × 10−4 2.12 × 10−4 2.03 × 10−4 2.08 × 10−4 1.33 × 10−4 1.32 × 10−4 1.59 × 10−4

grain volume vector Vgr corresponding to a low-dimensional representation ξ is

computed as

Vgr = V exp(Γ−1(ξ)), (2.84)

where Γ is the PCA/KPCA model reduction map of the logarithmic volume

fraction to the low-dimensional space as defined in Eq. (2.41), and V = 0.001mm3

is the total volume of the microstructure. We first apply the PCA method to re-

duce the dimensionality of the stochastic input space. The correlation between

grain size samples is weak since they are generated in a very random way. This

correlation is still captured by PCA even though the grain size generation proce-

dure is not known during model reduction. We must keep the first 10 principal
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components to capture more than 90% of the “energy”. The total energy propor-

tion captured by the largest 10 eigenvalues is 0.912. Using KPCA, the nonlinear

model reduction captures 0.892 of the total energy by the largest 10 eigenval-

ues. The energy captured by the same number of eigenvalues in PCA is close to

that in KPCA for the grain size feature. Reconstructed realizations by PCA and

KPCA compared with the original grain size feature are depicted in Fig. 2.29(a).

The newly sampled grain size features are smoother than the initial samples.

Both model reduction techniques demonstrate good capability of reducing and

reconstructing the grain size feature. The energy spectrums of both PCA and

KPCA are shown in Fig. 2.29(b). It is observed that the first few eigenvalues

capture the majority of the total energy and PCA eigenvalues capture a little

more energy than KPCA at the same dimensionality.
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Figure 2.29: (a) PCA and KPCA reconstructed grain size feature com-
pared with an original test sample. The dimensionality of the
reduced-order representation for both cases is 10, which cap-
tures 91.2% and 89.2% of the total “energy”, respectively. (b)
Plots of the energy spectrum for PCA and KPCA. The value of
the y-axis is the total energy proportion captured by the first x
principal components.

The 10-fold cross validation for grain size feature is shown in Fig. 2.30. The

relative error for both cases is smaller than 1.6% with PCA performing better

than KPCA.
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Figure 2.30: Averaged relative errors of testing grain size samples in 10-
fold cross validation for PCA and KPCA.

Polynomial chaos representation on reduced random variables is also tested

with 10000 random samples in the reduced space. The order p = 12 can ac-

curately capture the distributions of all the reduced random variables derived

from the initial samples. In Fig. 2.31, we show PC expansion of the first 2 ran-

dom variables who have the largest variance for both PCA and KPCA. The

agreement between identified and initial random variables distributions is ob-

served. Both Unform-Legendre and Gaussian-Hermite PCs give accurate esti-

mation on the distributions. To be consistent with the texture computation, we

adopt Uniform-Legendre PCE to map the reduced space to a uniform distribu-

tion where new samples will be generated.

The reconstructed distributions of the FIPs and those directly extracted from

the initial samples (Case B: fixed texture, random grain sizes) are plotted in

Fig. 2.32. We notice that the variance of FIPs induced by the grain size effect

is very small just as we discussed earlier (one order of magnitude smaller than

texture induced standard deviation as shown in Table 2.1). The PCA gives very

accurate prediction to the initial data, while KPCA captures well the main char-

acters but provides slightly different estimation to the variance.
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Figure 2.31: (a,b) Marginal PDFs of the first 2 PCA reduced initial random
variables (the reduced representations obtained after per-
forming PCA on the 1000 given grain size samples) and iden-
tified random variables using PCE (reconstructed through
PCE (Eq. (2.52)) on 10000 randomly generated samples from
Gaussian or Uniform distribution). (c,d) Marginal PDFs of the
first 2 KPCA reduced random variables and identified ran-
dom variables using PCE on 10000 randomly generated sam-
ples from Gaussian or Uniform distribution. The distributions
are constructed through kernel density based on data.

We also discover that the reduced dimensionality of the grain size feature is

10, which is much larger than the texture feature (4 dimensions were enough

for texture reduction in capturing 90% energy). It is inefficient to explore high-

dimensional stochastic input space to capture very small variability in the prop-

erties. Therefore, we will focus on texture uncertainty in the following exam-

ples.

Convergence tests as the dimension of the reduced order space increases are

performed for PCA and KPCA on the texture feature. The Uniform-Legendre

PCs are used. We plot the marginal PDFs of maximum and volume averaged

FIPs extracted from 10000 MC samples when 4, 5 and 6 principal components

are preserved in Figs. 2.33 and 2.34, respectively, for PCA and KPCA. Placed in
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Figure 2.32: Distributions of the maximum FIPs due to grain size un-
certainty computed by different methods. For MC, 10000
samples are drawn in the 10-dimensional reduced space and
mapped back to the grain size input space. (a) MaxPcyc; (b)
MaxPr; (c) MaxPFS ; (d) MaxPmps.

the figures are also the distributions of FIPs obtained using only the initial sam-

ples (Case A: random texture and fixed grain sizes). We observe great consis-

tence of the simulations with increasing dimensionality of both PCA and KPCA.

The sampled mean and standard deviation of the maximum FIPs computed

using different methods and different reduced dimensions are listed in Table 2.2.

It is observed that all the examples (from r = 4 to r = 6) give consistent predic-

tion, while the PCA predictions are closer to the FIPs obtained using only the

initial samples. Improvement on the predicted FIPs is observed as the dimen-

sionality of the reduced space increases, especially for maxPr.

The convergence test of MC simulations as we increase the number of sam-

ples is conducted at r = 6 (Figs. 2.35 and 2.36). Good convergence is achieved

using 10000 random samples.
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Figure 2.33: Distributions of maximum FIPs of 10000 MC samples com-
puted based on PCA and Uniform-Legendre PCE. The dimen-
sionality of the reduced space varies from 4 to 6. The distri-
butions of FIPs of 1000 initial samples are also plotted as a
reference. (a) MaxPcyc; (b) MaxPr; (c) MaxPFS ; (d) MaxPmps.

It was shown that both PCA and KPCA provide good prediction on FIPs

distributions and low-order statistics. In most cases, PCA gives closer predic-

tion on mean and standard deviation of FIPs than KPCA at the same reduced

dimensionality for the current microstructure data set. This is a bit surprising

result considering that KPCA is a non linear dimensionality reduction method.

The reasons for this outcome may include: (1) the variation of the initial samples

is too small to show the nonlinear nature of the microstructure data; (2) the ac-

curacy of the K nearest neighborhood pre-imaging strategy adopted is not good

enough to provide precise microstructure reconstruction; (3) the kernel selected

here could not effectively reduce the nonlinearity of the data. Moreover, the

MC prediction of the mean FIPs is consistent with the initial samples, while the

standard deviation prediction contains small deviation.
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Figure 2.34: Distributions of maximum FIPs of 10000 MC samples com-
puted based on KPCA and Uniform-Legendre PCE. The di-
mensionality of the reduced space varies from 4 to 6. The dis-
tributions of FIPs of 1000 initial samples are also plotted as a
reference. (a) MaxPcyc; (b) MaxPr; (c) MaxPFS ; (d) MaxPmps.

Adaptive sparse grid collocation

The variability of FIPs is also examined through the adaptive sparse grid col-

location (ASGC) method (Section 2.1.4), which has been proved to be more ef-

ficient then Monte Carlo method for stochastic problems of moderately high

dimensionality and at the same time provides control of the interpolation er-

ror in the stochastic support space [78]. As before, Uniform-Legendre PCs are

adopted to expand the reduced-order texture features as they produce better

reconstruction of the reduced random variable distributions. Both PCA and

KPCA are employed. The uncertainty source is assumed to be texture whose

reduced dimensionality varies from 4 to 6. The function of interest u and its in-

terpolation û in the current work are the maximum and volume averaged FIPs

of the microstructure. The threshold of the error indicator, defined in Eq. (2.17),
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Figure 2.35: Convergence test of the distributions of maximum FIPs com-
puted by PCA. 5000, 10000, and 15000 samples are generated
in the 6-dimensional reduced space. Comparison with 1000
initial samples is shown. (a) MaxPcyc; (b) MaxPr; (c) MaxPFS ;
(d) MaxPmps.

for adaptivity is set to be 10−4 for all computations.

We first focus only on texture uncertainty induced variability of the FIPs.

When PCA is adopted, the ASGC error converges below 10−4 at level 8, namely,

no new collocation nodes will be needed after level 8. Total number of 1399,

3059, and 6220 collocation nodes are generated, respectively, for reduced space

of dimensionality 4, 5, and 6. Note that each collocation point requires the so-

lution of the material point simulator for given realizations of the random vari-

ables.

The marginal PDFs of maximum FIPs when different number of principal

components are preserved are plotted in Fig. 2.37. The construction of the dis-

tributions of the FIPs is a post processing operation in the ASGC method. After

performing the ASGC simulation, we uniformly sample 10000 random points in
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Figure 2.36: Convergence test of the distributions of the maximum FIPs
computed by KPCA. 5000, 10000, and 15000 samples are gen-
erated in the 6-dimensional reduced space. Comparison with
1000 initial samples is shown. (a) MaxPcyc; (b) MaxPr; (c)
MaxPFS ; (d) MaxPmps.

the hypercube where the sparse grid is defined. The FIPs corresponding to each

point are computed by interpolation using the basis obtained from ASGC. Ker-

nel density functions based on histograms of the samples of the FIPs are there-

fore constructed. Comparison with MC simulation when the reduced-order

space is 6-dimensional is demonstrated. We would like to point out that the

data of MC used here are identical with those in the earlier examples. They are

re-plotted here just for comparison purposes. ASGC distributions show similar

shapes with the results of MC simulations. However, distributions of the FIPs

predicted by ASGC are broadened (larger variance) as we increase the dimen-

sionality of the reduced space.

Using KPCA, the marginal PDFs of maximum FIPs with different number

of retained principal components are also extracted and presented in Fig. 2.38.
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Figure 2.37: Distributions of maximum FIPs obtained with ASGC based
on linear PCA and Uniform-Legendre PCE. Comparison with
10000 MC samples at r = 6 is demonstrated. (a) MaxPcyc; (b)
MaxPr; (c) MaxPFS ; (d) MaxPmps.

The number of collocation points for r = 4 and r = 5 after convergence at level 9

is 1647, 3633, respectively. For r = 6, 7921 collocation points are generated up to

level 10.

The statistics of the maximum FIPs evaluated by ASGC combined with

Uniform-Legendre PCE are tabulated in Table 2.3. Again, the ASGC simulations

provide close estimation of mean values with MC, while the standard deviation

demonstrates some small difference.

The distributions of the FIPs (Figs. 2.37 and 2.38) become slightly broader

as the dimensionality of the reduced space increases. However, the predicted

standard deviation (Table 2.3) does not show this trend. Moreover, most MC
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Figure 2.38: Distributions of the maximum FIPs obtained with ASGC
based on KPCA and Uniform-Legendre PCE. Comparison
with 10000 MC samples at r = 6 is demonstrated. (a) MaxPcyc;
(b) MaxPr; (c) MaxPFS ; (d) MaxPmps.

predicted PDFs of FIPs are narrower than the ASGC constructed FIPs. How-

ever, the MC computed standard deviation of certain FIPs is larger than that

evaluated through ASGC. This possible inconsistency may arise from insuffi-

cient samples at the tails of the distributions and a need for a higher depth of

interpolation in ASGC. For this problem, the ASGC estimation balances compu-

tational accuracy and efficiency.

All the above examples assume constant volume fractions of secondary and

tertiary γ′ precipitates, and the primary precipitates are not considered. Next,

we take volume fractions of secondary and tertiary γ′ precipitates as sources of

uncertainty. The formulation of the current constitutive model adopts volume

fractions of different types of γ′ precipitates as explicit parameters. Therefore,

the randomness of γ′ can be easily dealt without the assistance of model re-

duction. We assume that the volume fractions of the secondary and tertiary γ′
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Table 2.3: Mean and standard deviation of the maximum FIPs evaluated
by ASGC. Uniform-Legendre PCE is employed.

PCA-4dim PCA-5dim PCA-6dim KPCA-4dim KPCA-5dim KPCA-6dim

MaxPcyc mean 1.49 × 10−2 1.49 × 10−2 1.49 × 10−2 1.51 × 10−2 1.50 × 10−2 1.50 × 10−2

MaxPcyc std 4.13 × 10−4 3.92 × 10−4 4.29 × 10−4 2.61 × 10−4 2.48 × 10−4 3.09 × 10−4

MaxPr mean 1.18 × 10−4 1.19 × 10−4 1.17 × 10−4 1.17 × 10−4 1.17 × 10−4 1.17 × 10−4

MaxPr std 9.29 × 10−6 1.09 × 10−5 1.17 × 10−5 5.57 × 10−6 1.01 × 10−5 1.09 × 10−5

MaxPFS mean 6.17 × 10−3 6.19 × 10−3 6.20 × 10−3 6.22 × 10−3 6.21 × 10−3 6.18 × 10−3

MaxPFS std 2.33 × 10−4 2.31 × 10−4 2.07 × 10−4 1.26 × 10−4 1.31 × 10−4 9.17 × 10−5

MaxPmps mean 5.70 × 10−3 5.70 × 10−3 5.70 × 10−3 5.76 × 10−3 5.74 × 10−3 5.74 × 10−3

MaxPmps std 1.86 × 10−4 1.69 × 10−4 1.30 × 10−4 1.11 × 10−4 6.75 × 10−5 9.77 × 10−5

particles follow uniform distributionsU(0.3, 0.5) andU(0.11, 0.14), respectively.

The volume fractions are assumed independent from each other as well as from

other features (e.g. texture). The reduced space of texture is chosen to be 4.

Therefore, the total dimensionality of the sampling space will be 4 + 2 = 6. The

PDFs of FIPs computed by both ASGC and MC based on PCA and Uniform-

Legendre PCE are plotted in Fig. 2.39. For a level of interpolation 8, 2939 deter-

ministic problems are solved up in ASGC and 10000 simulations are conducted

in MC. It is seen that the mean and standard deviation of FIPs are different from

previous examples because of the varying volume fraction of γ′ phase.

Convex hull of FIPs

To better understand the extreme values of FIPs and learn the correlation be-

tween them, convex hulls that serve as envelopes of the values of the FIPs in

the presence of uncertainties are constructed. From Eqs. (2.79) and (2.80), we

see that PFS and Pmps are closely correlated, since the latter is a special situation
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Figure 2.39: Distributions of the maximum FIPs obtained by ASGC and
10000 MC samples when the volume fractions of secondary
and tertiary γ′ precipitates are random. (a) MaxPcyc; (b)
MaxPr; (c) MaxPFS ; (d) MaxPmps.

of the former (when σmax
n = 0, PFS = Pmps). Therefore, only the 3D visualization

of the convex hulls consisting of Pcyc, Pr and PFS are shown in Fig. 2.40. For

all the figures, Uniform-Legendre PCs are used to represent the 4-dimensional

reduced-order random variables. The points in the FIP coordinate system are

the ones that have been used for the construction of the PDFs. The Q-Hull [9]

MatLab package is used to construct the convex hull.

It is observed that the volume of the convex hulls predicted by ASGC is

greater than the corresponding volume constructed by MC, while the shapes of

the convex hulls are similar (Fig. 2.40). We also recall from the marginal PDFs of

FIPs (e.g. Figs. 2.37 and 2.38) that the ASGC provides some predictions that are

away from the MC predictions but with very low probability (the tails of those

PDFs). These less-probable values are the cause of the wide range of the ob-

tained convex hulls. To better demonstrate and understand this phenomenon,
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Figure 2.40: Convex hulls of maximum FIPs constructed by 10000 sam-
ples. The random source is texture and the reduced dimen-
sionality is 4. (a) MC-PCA; (b) MC-KPCA; (c) ASGC-PCA; (d)
ASGC-KPCA.

we further plot planar convex hulls of two FIPs along with the sample points

and PDFs of each dimension (Fig. 2.41). The correspondence of the low proba-

bility and the extreme values predicted by ASGC are clearly captured.

It is seen that most of the data fall within the range where both ASGC

and MC give high probability. Finally, 3D and 2D convex hulls when vol-

ume fractions of secondary and tertiary γ′ precipitates are taken as uncertainty

sources are presented in Figs.2.42 and 2.43. PCA in combination with Uniform-

Legendre PCE is employed. The range and shapes of the convex hulls are much

different from the cases where γ′ volume fractions are taken as constant.
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Figure 2.41: 2D convex hull with enclosed sample points obtained by
ASGC. Both ASGC and MC distributions corresponding to
the chosen FIPs are also plotted to show the probability of
occurrence of specific values. The random source is texture
and the reduced dimensionality is 4. (a) MaxPcyc vs. MaxPFS

when PCA is adopted; (b) MaxPcyc vs. MaxPFS , when KPCA
is adopted.
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Figure 2.42: Convex hulls of maximum FIPs constructed by 10000 samples
from ASGC. The random sources are texture and volume frac-
tions of secondary and tertiary γ′ precipitates. The reduced
dimensionality of texture is 4, and the volume fractions are
sampled from U(0.3, 0.5) and U(0.11, 0.14), respectively, for
secondary and tertiary precipitates. (a) 3D convex hull of MC
results; (b) 3D convex hull of ASGC results.
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Figure 2.43: 2D convex hull with enclosed sample points obtained by
ASGC. The random sources are texture and volume fractions
of secondary and tertiary γ′ precipitates. The reduced dimen-
sionality of texture is 4, and the volume fractions are sampled
from U(0.3, 0.5) and U(0.11, 0.14), respectively, for secondary
and tertiary precipitates.

2.2.6 Conclusions

In this work, the effect of multiple sources of uncertainty on two-phase superal-

loy microstructure fatigue properties is studied. A two-phase microstructure is

considered as a combination of random features consisting of grain size, texture,

and volume fraction of the γ′ phase. Given a set of microstructure samples, PCA

based dimensionality reduction techniques are applied to find their underlining

correlations. Both linear and nonlinear (kernel) PCA methods are examined.

The reduced-order representations are mapped to uniform distributions by PC

expansion. Adaptive sparse grid collocation is then introduced to sample new

microstructures from the low-dimensional space. The strain-based fatigue in-

dicator parameters of superalloy microstructures satisfying given information

are computed and their distributions are constructed. The significance of dif-

ferent feature effect on FIPs is examined. It is shown that texture and volume
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fraction of γ′ precipitates are the primary factors determining FIPs in the prob-

lems and data considered. The model reduction techniques greatly simplified

the representation of random microstructure features, while important charac-

teristics of microstructures are preserved. Convergence with the dimensionality

of the reduced-order variables is shown. Comparisons with MC results are also

provided. The propagation of uncertainty in microstructure evolution enables

one to provide the prediction on FIPs. The correlation between distributions of

FIPs and their convex hulls are demonstrated. Distributions and convex hulls

of FIPs provide important guidance in materials design, when certain grain size

and texture information is known.

From the numerical examples we found that both PCA and KPCA provide

reasonable predication to distributions of FIPs as well as their convex hulls. In

the current work, however, PCA is more accurate than KPCA. As discussed ear-

lier, two main reasons may apply: (1) the variation of initial samples is too small

to show the nonlinear nature of the microstructure input data; (2) the accuracy

of the K nearest neighbor pre-imaging strategy adopted is not good enough to

provide precise microstructure reconstruction; (3) the kernel selected here could

not effectively reduce the nonlinearity of the data. ASGC produces consistent

predictions with MC but is computationally more efficient. Furthermore, the

independence assumption of low-dimensional random variables may also be a

source of inaccuracy for all stochastic simulations.

In the current stochastic simulation, the modeling of the Ni-based superalloy

microstructure does not take into account the interaction between grains as the

crystal plasticity constitutive model is implemented using the Taylor approach

for the purpose of efficiency. The predictions can be improved by adopting finite
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element (FE) model. However, this approach will be computationally very ex-

pensive. In a later chapter (Chapter 4), we will introduce an efficient FFT-based

full field model as the alternative to the FEM to accurately study the fatigue

properties of IN100. Model reduction on realistic microstructures represented

in the form of images is also interested.
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CHAPTER 3

UNCERTAINTY QUANTIFICATION OF MULTISCALE DEFORMATION

PROCESS

In general, microstructures are location-specific (meaning that microstruc-

tures associated with different spatial points may have different distributions,

see Fig.3.1) [38]. As a result, the stochastic input to a multiscale deforma-

tion process simulator will be extremely high dimensional, which prevents one

from quantifying uncertainties of properties of interest in the final product.

This problem is usually referred to as the “curse of dimensionality”. Conven-

tional model reduction schemes only locally decompose microstructure com-

plexity at a given material point and cannot explore the correlation between the

microstructures in the continuum. To resolve this problem, we present a bi-

orthogonal KLE strategy [8, 128] to the multiscale random microstructure into

a few modes in the macro- and meso-scales [52]. A second-level KLE is then

conducted to further reduce the dimensionality of the stochastic space after bi-

orthogonal decomposition. The optimal dimensionality of the final reduced-

order space will be determined based on the energy proportion captured by the

principal components in the two-step decomposition. A non-intrusive strategy

is used to project the reduced random variables to the space of random variables

with known probability distribution. Low order statistics of equivalent stress,

strain, and strength fields of disks after forging are studied by repeatedly call-

ing the multiscale forging solver using microstructures sampled in the reduced

space. We use Monte Carlo (MC) sampling to construct the stochastic solution.

In the following, we will first formulate the bi-orthogonal KL decomposition

within the context of polycrystals. Its application to multiscale forging problems
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Figure 3.1: Microstructure dependence on spatial location. At different lo-
cations x in the workpiece, the microstructure may have differ-
ent features due to pre-processing. The random microstructure
field, A(x, s,ω), denotes features of the microstructure indexed
by s at the location x of the workpiece. In this paper, a fixed
number of grains Ngr is taken for all microstructures and the
orientational features (three Rodrigues parameters per grain)
are indexed by s = 1, . . . , 3 × Ngr. ω signifies the random nature
of the field A.

will be introduced afterwards. This chapter closely follows the work in [131].

3.1 Microstructure representation

Before introducing the model reduction theory, it is important to define the

input data. The goal of the current work is to quantify the variability of me-

chanical responses of forging disks induced by microstructure uncertainty. The

stochastic input are a set of random microstructures associated with work-

pieces. In the general continuum representation, the location specific random

microstructure is defined as a random field A(x, s,ω). The value of A can be the

orientation of point s in the microstructure located at x. In numerical simulation,

a discrete form of representation is needed. Currently, we mesh the macroscale

workpiece using finite elements, and employ an array of topological and ori-

entational features of constituent grains to represent the microstructure at each

Gauss point of the finite element discretization (the same representation as used
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in Section 2.2.1). For a microstructure (e.g. FCC nickel) composed of M grains,

the first M components of the feature array are sizes of individual grains sorted

in ascending order and the rest 3M components are the corresponding orienta-

tions described by Rodrigues parameters. As a result, the location dependent

random microstructure becomes A(xi, s j,ω), which is the s j-th feature of the mi-

crostructure located at the point xi.

The polycrystalline microstructure representation is high-dimensional,

which makes the stochastic simulation intractable. For example, a 20-

dimensional vector is needed to store the grain size feature of a microstruc-

ture containing 20 grains. The vector will end up to be 80-dimensional when

Rodrigues parametrization orientations are considered as well. The dimen-

sionality of the random microstructure increases significantly when microstruc-

ture dependence on spatial location x is introduced. If the correlation between

microstructures at different points on the macroscale is not explored, the di-

mensionality of the random microstructure field explodes. For a random 2D

workpiece discretized by nel quadrilateral elements each of which has nint Gauss

points, the total dimensionality of the microstructure descriptor ends up to be

4 × M × nel × nint, where M is the number of grains in the microstructure. This

is referred to as the “curse of dimensionality”. In practice, not all of the mi-

crostructure features have to be treated as random. For example, the source of

microstructure uncertainty in the current work is assumed to be only the grain

orientations, while the grain sizes are kept fixed. The total dimensionality of the

microstructure stochastic space is therefore 3 × M × nel × nint, which is still very

large. A reduced-order surrogate microstructure model of the location depen-

dent random microstructure is needed. By sampling from the low-dimensional

surrogate space, uncertainty quantification of the product properties driven
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by random microstructures becomes computationally feasible. The surrogate

model of the location specific microstructure is built using a bi-orthogonal de-

composition (BOD) strategy.

3.2 Bi-orthogonal Karhunen-Loève decomposition

We model the location specific random microstructure as a random field

A(x, s,ω), which is defined as:

A(x, s,ω) : D×M×Ω→ R, (3.1)

where D is the macroscale spatial domain and M the microstructure space.

We introduce here a complete probability space (Ω,F ,P) with sample space

Ω which corresponds to the outcomes of some experiments, F ⊂ 2Ω is the σ-

algebra of subsets in Ω and P : F → [0, 1] is the probability measure. The defi-

nition of the spaceM depends on the adopted representation of the microstruc-

tures. If a microstructure is represented by a general continuous representative

volume element (RVE), M could be the microstructure domain represented in

terms of local spatial coordinates. In the current work, a microstructure is de-

scribed by discrete orientation features of the constituent grains as introduced

in the last subsection. Therefore, M is taken as the space of grain feature in-

dices. For example, if a microstructure is represented by M feature components

(M orientation parameters for all grains), M will be represented by a vector of

dimension M. One can use the idea of Karhunen-Loève expansion to project the

field A to a set of bi-orthogonal bases in the form of:

A(x, s,ω) = Ā(x, s) + Ã(x, s,ω)
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= Ā(x, s) +
∞∑

i=1

√
ρiΨi(s)Φi(x,ω), (3.2)

in which ρi are the eigenvalues of the underlying eigenvalue problem to be de-

rived shortly (see Eq. (3.9)), Ψi are mesoscale modes strongly orthogonal in the

microstructure space M, and Φi are spatial modes weakly orthogonal in the

macroscale space D with respect to the macroscale inner product. Note that

the term “mesoscale” refers to the grain-level scale, where heterogeneous grain

structure is considered. And the “macroscale” is the scale of the workpiece on

which the grain structure is not considered. A single point in the macroscale

corresponds to a microstructure defined in the mesoscale.

We denote by (, ) the inner product in the microstructure space and by {, } the

inner product in the macroscale spatial domain [128]. These inner products are

defined as:

(Ψi,Ψ j) :=
∫
M
Ψi(s)Ψ j(s)ds, (3.3)

and

{Φi,Φ j} :=
∫
D
⟨Φi ·Φ j⟩dx, (3.4)

where ⟨·⟩ here denotes expectation. The integral in Eq. (3.3) is for general con-

tinuous representation of microstructures. In this work, a microstructure is

described by a vector with components corresponding to grain orientations.

Therefore, the inner product (Ψi,Ψ j) in the mesoscale is effectively computed

by the dot product of the two corresponding vectors.

The strong orthogonality of Ψi can be written as:

(Ψi,Ψ j) = δi j, (3.5)
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and the weak orthogonality of Φi as

{Φi,Φ j} = δi j. (3.6)

Notice that the macroscale modes Φi are referred to be weakly orthogonal, be-

cause the macroscale inner product defined in Eq. (3.4) requires the computation

of expectations of the macromodes. The orthogonality is satisfied in an average

sense.

By minimizing the distance (based on the norm defined in Eq. (3.4)) between

the Karhunen-Loève expansion and the original random field, one ends up with

[128]

Ψi(s) =
1
√
ρi
{Ã,Φi}, (3.7)

and from the orthogonality conditions (Eqs. (3.5) and (3.6)) as well as the expan-

sion Eq.(3.2), we obtain

Φi(x,ω) =
1
√
ρi

∫
M

Ã(x, s,ω)Ψi(s)ds. (3.8)

These last two Eqs. (3.7) and (3.8) lead to the following eigenvalue problem

ρiΨi(s) =
∫
M

C(s, ś)Ψi(ś)dś, (3.9)

from which, the eigenvalues ρi and eigenvectors (mesoscale modes) Ψi(s) can be

computed. The covariance matrix C is

C(s, ś) = {Ã(x, s,ω), Ã(x, ś,ω)}. (3.10)

In discrete form, the covariance can be written as

C(s, ś) =
1
N

N∑
j=1

nel∑
in=1

nint∑
im=1

Ã j(xin
im
, s)ÃT

j (xin
im
, ś)W̃im |Jin | (3.11)
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We here assume that microstructure data are available for N different realiza-

tions of the workpiece. For simplicity of the presentation, we assume that com-

plete microstructure data are available at all integration points in a finite ele-

ment discretization of the workpiece. In the above equations, N is the number

of realizations, nel is the number of the finite elements in the macroscale, nint is

the number of integration points in each element, |Jin | is the Jacobian determi-

nant of the element in, W̃im is the integration weight associated with the inte-

gration point im and Ã is a matrix containing centered microstructural features

associated with integration points, and xin
im

represents global coordinates of the

integration point im of element in in the macroscale.

The mean field Ā in Eq. (3.2) is defined by

Ā(x, s) = ⟨A⟩ :=
∫
Ω

A(x, s,ω)p(ω)dω, (3.12)

where p(ω) is the multivariate joint probability density ofω. In practice, the ran-

dom field A(x, s,ω) is given by N realizations {Ai(x, s,ωi)}Ni=1. As a consequence,

the mean field is here computed as the average of all given samples. The initial

samples (we also refer to them as the training data for the reduced-order model)

can be acquired by a variety of ways, such as experiments and numerical simu-

lation. The generation of the training data set for our particular example will be

introduced in Section 3.3.

For model reduction, the sum in Eq. (3.2) is usually approximated by the first

finite number of, say d, principal components (modes) that capture most of the

“energy”:

A(x, s,ω) ≈ Ā(x, s) +
d∑

i=1

√
ρiΨi(s)Φi(x,ω). (3.13)
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The random energy of the k-th macro-random coupled mode is defined

by [128]

Ek(ω) :=
∫
D
ρkΦk(x,ω) ·Φk(x,ω)dx, (3.14)

The energy captured by the k−th mode is determined by the expectation of the

random energy:

Ēk = ⟨Ek⟩. (3.15)

Computing the expectation of the energy of all spatial modes, the energy

proportion captured by the first d modes is defined as

PEnergy(d) =
∑d

i=1 Ēi∑M
j=1 Ē j

, (3.16)

where the energy expectations are sorted in descending order.

The macroscale modes Φk(x,ω) resulted by the bi-orthogonal decomposi-

tion are functions of both the random ω and spatial x variables, leading to the

fact that they are still high-dimensional random vectors. We hereby, propose

two reasonable assumptions to simplify the problem and employ a second-level

KLE to separate the random variables from the spatial coordinates, so that the

dimensionality of the input can be further reduced. The assumptions are:

• The inherent controlling random variables ω can be separated from the

mesoscale and macroscale coordinates (s, x), meaning that the randomness

is independent of the microstructure feature and its spatial location.

• The macroscale modes, {Φi}, are independent from each other.

The first assumption is natural and rather fundamental to the bi-orthogonal

KLE decomposition. The second assumption is strong for arbitrary stochastic
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processes, since only the weak orthogonality condition between the macroscale

modes holds (Eq. (3.6)). However, it is important for the further decomposition

of the spatial modes Φi(x,ω) and we will see later on in this paper that this

assumption leads to rather accurate results.

Having the above two assumptions, we can next perform a second-level KLE

independently on each macro-random coupled mode Φi (refer to Eq.(2.9) for

KLE). The ri largest eigenvalues {λ j
i }

ri
j=1 that capture most of the “energy” of the

ith macro-mode are retained. In this way, the macro-random coupled modes

{Φi} are decomposed into basis functions denoted by {ψ j
i (x)} depending only on

the macroscale coordinates x and uncorrelated random variables {ϕ j
i }. Note that

the dimensionality of the stochastic input space is reduced for the second time.

The dimensionality, r, of the final reduced random space of microstructures over

the workpiece is the sum of the principal dimensions that are preserved for

representing macro-random modes:

r =
d∑

i=1

ri, (3.17)

where d is the truncated number terms in the bi-orthogonal KLE (Eq. (3.13)). The

reduced stochastic space can now be constructed and mapped to well-known

probability distributions through a polynomial chaos expansion as introduced

next.

After the second-level KLE, we denote {ϕ j
i }

ri
j=1, with i = 1, . . . , d, to be

the uncorrelated reduced representations of the original multiscale microstruc-

tures [30]. We need to construct the reduced-order stochastic space of these sam-

ples. The Uniform-Legendre PCE with non-intrusive projection as introduced in

Section 2.2.2 is adopted to map the reduced representations to the uniform dis-

tributionU(−1, 1), from which additional microstructure realizations (samples)

112



can be easily generated. Since KLE and PCE have been introduced in previous

chapters, we do not repeat them here. For details, readers are referred to [131].

3.3 The multiscale deterministic solver and input data set

The problem of interest in this chapter is the variability of mechanical proper-

ties of forged disks due to (initial) microstructure uncertainties. In this section,

we will first briefly introduce the multiscale determinisic solver that is used to

simulate the forging process and evaluate mechanical properties of the forg-

ing disk based on the features of the underlying initial microstructure. The

procedure for generating correlated microstructure data over the preform will

then be described. These training data will be used in Section 3.4 to produce a

reduced-order model for the initial microstructure over the preform using the

biorthogonal-KLE approach. This reduced model will be used as the input to

the stochastic multiscale simulation. The propagation of uncertainty from the

initial microstructures (sampled from the reduced-order model) to the proper-

ties of the final disk will be performed with the Monte Carlo method using the

deterministic multiscale simulator in Section 3.4. Given the microstructures in

the initial workpiece, the multiscale forging analysis returns the disk properties

(such as the equivalent stress and strain fields, microstructure features of the

deformed disk, etc.). It is important to emphasize that in this work we assume

that no model error comes in the picture and that the only source of property

variabilities is induced by the uncertainty in the initial microstructure.
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3.3.1 The multiscale deterministic solver

A multiscale framework which couples a crystal plasticity constitutive model [6]

to a finite element (FE) large deformation simulator is employed. Each integra-

tion point on the macroscale workpiece is linked to a mesoscale polycrystalline

microstructure described by its grain size and orientation features (Section 3.1).

The mechanical properties of a material point are computed by homogenization

of the corresponding microstructure properties. In this subsection, the linking

between the two scale simulations are summarized to show the dependence of

macroscale properties on microstructures. For modeling details, readers are re-

ferred to [52, 136, 72].

An updated Lagrangian implicit FE model is employed for the analysis of

forging processes [136]. Due to the nonlinear nature of large deformation, a

Newton-Raphson scheme is adopted to solve the problem, which requires the

constitutive model to compute the PK-I stress PM and its increment dPM given

the local deformation gradient FM [136]. The subscript “M” indicates macroscale

variables computed via homogenization of the corresponding properties at the

mesoscale [52, 86]. The macroscale PK-I stress is linked to the mesoscale Cauchy

stress Tm by

PM = ⟨Pm⟩h = ⟨det Fr
mTmFr−T

m ⟩h = det Fr
M⟨Tm⟩hFr−T

M , (3.18)

where Fr
m = FmFn−1

m is the mesoscale relative deformation gradient measuring the

relative deformation from the previous time step t = tn to the current (t = tn+1)

deformation Fm. The subscript “m” indicates mesoscale variables. Under Tay-

lor hypothesis, all points in the microstructure associated with a spatial point x

are subjected to the same deformation gradient Fm, which is equal to the macro-
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scopic deformation gradient FM at x. In the following, we will omit the subscript

and use F for both scales. ⟨Tm⟩h is the homogenized Cauchy stress at the macro

point x, which can be computed as the volume average of the mesocale stresses,

Tm, over the microstructure attached to x:

⟨Tm⟩h = T̄m =
1
V

∫
V(x)

Tmds, (3.19)

where V is the volume of the microstructure. The increment of the macroscale

PK-I stress can be computed as:

dPM = d⟨Pm⟩h = det Fr
(
tr(dFrFr−1)⟨Tm⟩h

− ⟨Tm⟩h(dFrFr−1)T + ⟨dTm⟩h
)

Fr−T . (3.20)

The crystal plasticity model as introduced in Section 2.1.5 is used to compute

the mechanical responses (including ⟨Tm⟩h, PM, dPM, etc.) based on microstruc-

ture features (grain size and crystallographic orientation) for a given deforma-

tion gradient F.

Macroscopic quantities, such as stress and strain, are computed as the

volume-average of the mesoscale values over all grains (e.g. Eq. (3.19)). The

macroscopic von-Mises equivalent stress and equivalent strain can then be cal-

culated. The equivalent strength κ̄eff is evaluated as the average slip resistance

κ(α) of all slip systems of all grains in the microstructure:

κ̄eff =

⟨
1

nslip

nslip∑
α

κ(α)
⟩

h

. (3.21)

The homogenized properties and response are returned to the macroscale for

updating the deformation and response fields of the workpiece. The material of

interest in the current work is FCC nickel. Parameters that are being used, as
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well as the verification of this particular crystal plasticity constitutive model,

are given in Section 2.1.

3.3.2 Initial sample generation

The initial workpiece samples are a set of cylindrical ingots, each point of which

is linked to a distinct microstructure (Fig. 3.2).

Figure 3.2: Input to the multiscale deformation simulator in Section 3.4.
The simulations are done using a 2D axisymmetric Lagrangian
finite element framework. The ingots are discretized by 10 × 6
quadrilateral elements, each of which contains 4 Gauss points
for the integration in the element domain. Each Gauss point is
linked to a microstructure consisting of 20 grains.

To generate the training data set of microstructures, we are using a pre-

processing that deforms a set of raw ingots with random upper surfaces into

regular cylinders. One thousand raw ingots whose upper surfaces (Fig. 3.3) are

represented by degree 6 Bezier curves (Eq. (3.22)) are firstly created as follows:

zβ(a,ω) = 0.5 ×
1 + 6∑

i=1

βi(ω)φi(a)

 , (3.22)

where φi(a) are Bernstein polynomials that can be found in [52], a = x/L is the
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normalized x-coordinate, βi(ω) are Bezier coefficients, which are i.i.d. randomly

sampled from the uniform distribution U(−0.1, 0.1). For a single initial mi-

crostructure at one material point, the volume of its constituent grains is taken

as Vgr = 1mm3/Ngr, where Ngr is the number of grains and a random texture is

assigned. Microstructures at different locations for all preform samples are du-

plicates of this microstructure. The only difference between the ingot samples is

the random shape of the upper surface. All raw ingots are then used as an input

to a deterministic flat-die forging process, during which, their wavy surfaces are

flattened under strain rate v = 0.01s−1 (Fig. 3.3). Since all workpieces go through

distinct deformation processes due to their unique surface shapes, the resul-

tant microstructures will vary from point to point and from sample to sample.

These microstructures after this pre-processing are collected to form the data-

base for the stochastic multiscale simulation of Section 3.4. They will be used

as the stochastic input (training data) for building the reduced-order surrogate

microstructure model and at that stage the information about the pre-process

discussed above of generating these microstructure samples will be assumed

not known. The flattened ingots in the pre-process of Fig. 3.3 will have slightly

distorted shape (or grid) due to their originally wavy upper surfaces. To avoid

introducing additional uncertainties to those induced by the initial microstruc-

ture, we extract the random microstructures computed in the the forging pre-

process of Fig. 3.3 and assign them to the corresponding material points of a set

of cylindrical ingots similar to the preform in Fig. 3.3 but with a regular shape

(Fig. 3.2). This operation is to make sure that the only random input source in

the analysis of Section 3.4 is the initial microstructure.

Since the crystal plasticity constitutive model adopted here only updates

grain orientations while keeping the grain sizes constant, the uncertainty source
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Figure 3.3: Left: Initial ingot with random upper surface and identical ini-
tial microstructures. Right: Flattened ingot having various re-
sultant microstructures.

of the stochastic simulation is the texture of microstructures, which has been

proven to have great effect on the mechanical response and properties of poly-

crystals [73]. The dimensionality of the stochastic input is nel × nint × n f eature =

60 × 4 × 60 = 14400, where nel is the number of elements in the macroscale dis-

cretization, nint is the number of Gauss points of an element, and n f eature is the

dimensionality of the random feature that describes each microstructure (in this

example, 20 sets of 3-dimensional Rodrigues parameters). We will adopt the

aforementioned two-step KLE to reduce the dimensionality of the stochastic in-

put space driven by the 1000 sets of microstructure samples. The information

of how these samples are generated is not known to the model reduction pro-

cess. The reduced random variables will be mapped to standard multivariate

uniform distribution (U(−1, 1)) following the PC expansion through the non-

intrusive projection. New samples will be drawn from the reduced space and

reconstructed to be taken as the microstructure input to the multiscale deforma-

tion simulator. In this work, Monte Carlo simulation is employed to solve the

underlying stochastic equations in conjunction with the multiscale determinis-

tic forging solver.

118



x

Φ
1

0 50 100 150 200
-8

-6

-4

-2

0

2

4

6

8

6.5

x 10
-3

Bi-orthogonal KLE

Second-level KLE

1

( , , ) ( , ) ( ) ( , )
d

i i i

i

ω ρ ω
=

≈ + Ψ∑A x s A x s s Φ x

Forging

(a) Multiscale microstructure sample (b) Macro-random coupled modes

1

( , ) ( )

( ) ( )
i

i i

r
j j j

i i i

j

λ ψ
=

≈

+∑

Φ x ω Φ x

x φ ω

PCE
0

ˆ ˆ bτ τ αµ ρ− =

n r rh
∇ ⋅ + =P f 0

Stochastic Multiscale

Simulation

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

0.013

0.014

0.015

0.016

1.1

1.2

1.3

1.4

x 10
-4

4.5

5

5.5

6

max P

F
S( )

( ) ( )

j j

i i

jk k j

i i i

k

ω

ζ= ϒ∑

φ

γ x

(c) Reduced surrogate space(d) Uniform distribution(e) Properties distribution

Figure 3.4: Procedure of the stochastic multiscale simulation for quantify-
ing variability of properties of forging disks due to initial mi-
crostructure uncertainty.

The complete uncertainty quantification procedure is illustrated in Fig. 3.4.

Fig. 3.4(a) refers to the initial preform with the random (high-dimensional) mi-

crostructure data. Fig. 3.4(b) denotes the macro-random coupled modes ob-

tained after applying the bi-orthogonal KLE to the training data. The x-axis

gives indices of spatial points (numbered points in the spatial domain) and the

y-axis is the value of the macromodes Φi(x) (note that here we present these

functions as 1D plots, i.e. the values of Φi(x j) at the finite element integration

points j = 1, . . . , nel × nint = 240). Only a few macromodes that resulted from

the initial samples are depicted in the figure. Fig. 3.4(c) refers to the surrogate

stochastic microstructure space obtained with a KL expansion of each of the

macroscale random modes. Fig. 3.4(d) maps the stochastic support space to a

hypercube through PCE allowing sampling of microstructures from the multi-

dimensional uniform distribution. Finally, Fig. 3.4(e) refers to the computation

of the properties of the forged product for each microstructure sample. The flow
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steps in the algorithm shown in Fig. 3.4 are as follows: (a) to (b): Given a num-

ber of initial ingot samples, compute the mesoscale and macro-random coupled

modes using the bi-orthogonal KLE. (b) to (c): Project the macro-random cou-

pled modes to low-dimensional space through a second-level KLE. (c) to (d)

Map the reduced stochastic space to a known (e.g. uniform) distribution us-

ing PCE. (d) to (c): Generate new samples in the known low-dimensional dis-

tribution, and find their counterparts in the reduced surrogate space through

PCE. (c) to (b) Recover macroscale modes via KLE. (b) to (a): Reconstruct the

physical representation of new microstructure samples using the bi-orthogonal

KLE after obtaining the macroscale modes. (a) to (e): Perform multiscale forg-

ing simulations to obtain the properties of the reconstructed samples. Repeating

(d)-(c)-(b)-(a)-(e) multiple times, the statistics of the properties of the final forged

product can be evaluated.

3.4 Numerical examples

We will next validate the bi-orthogonal decomposition strategy for reducing the

complexity of the random microstructure input. Examples showing the eval-

uation of the reconstruction error of test microstructure features will be con-

sidered. By sampling in the reduced microstructure space and using the de-

terministic multiscale forging simulator we will next compute the variability

of the mechanical properties of the forged product induced by microstructure

randomness.

120



3.4.1 Construction and validation of the reduced-order model

The purpose of this subsection is to build the reduced-order model and vali-

date the model reduction scheme on high-dimensional multiscale random mi-

crostructures. The input to stochastic forging simulation are 1000 sets of pre-

forms with correlated microstructures (textures) that resulted from the same

pre-process. Since each integration point in the workpiece is associated with a

20-grain microstructure, the total dimensionality of the input is 14400 according

to the calculation in the previous section. The bi-orthogonal decomposition, fol-

lowed by a second-level KLE, is applied to the one thousand 14400-dimensional

microstructure samples. The model reduction procedure follows the illustration

given in Fig.3.4.

The training microstructure samples are used to compute the mesoscale and

macroscale modes. The spectrum of the energy expectation for macroscale

modes defined by Eq. (3.16) is plotted in Fig. 3.5, along with the eigenvalue

spectrum defined by

PEigenvalue(d) =
∑d

i=1 ρi∑M
j=1 ρ j

, (3.23)

where ρi are the eigenvalues of the covariance matrix Eq. (3.10). It is observed

that the first few energy components capture most of the total energy and the

energy spectrum overlaps with the eigenvalue spectrum.

To effectively reduce the complexity while preserving most of the features of

the initial samples, we truncate the bi-orthogonal KLE expansion keeping only

the first 3 modes, which captures about 95% of the total energy.

Each of the three reduced spatial modes {Φ1,Φ2,Φ3} is represented by 1000

realizations of 240-dimensional vectors (recall that we present the mesoscale
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Figure 3.5: The energy and eigenvalue spectrums resulting from the ini-
tial microstructure data. The value of y-axis is the total energy
proportion captured by the first x principal components.

modes with an one-dimensional vector form). The next task is to separate the

random variables from spatial coordinates using a second-level KLE, which re-

sults in further reduction of the random space. For each Φi (i = 1, 2, 3), we

perform an independent KLE and keep the largest ri components that capture

more than 95% of the total energy of Φi. The energy spectrum for each of the

three modes is plotted in Fig. 3.6. The number of preserved components are

r1 = 2, r2 = 3, r3 = 3, respectively. The dimensionality of the final reduced space

is therefore r = r1 + r2 + r3 = 8.

Remark: It is interesting to note the difference in the asymptotic behavior of

Φi as i increases. To capture 95% of the total energy, only the largest 2 eigen-

values are needed for Φ1, while for Φ2 and Φ3 three eigenvalues are needed.

We also examined the macro-modes that correspond to lower energy in the bi-

orthogonal KLE and discovered that 7, 9, 35, and 108 principal components are

needed to capture 95% of the energy of macro modes from Φ4 to Φ7, respec-

tively. The increase of the dimensions (e.g. number of principal components)

that are necessary to capture the same proportion of the total energy is dramatic,
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Figure 3.6: The eigenvalue spectrum of three macro-random coupled
modes. The value of the y-axis is the total energy proportion
captured by the first x principal components. Only the first 50
dimensions are shown.

when the energy captured by the macro-modes Φi decreases. For this reason,

keeping a small number of Φi is of great importance in reducing the dimen-

sionality of the stochastic space. In the current example, d = 3 is the optimal

choice.

For the convenience of drawing samples in the subsequent stochastic sim-

ulation, the reduced-order variables are projected to the uniform distribution

U(−1, 1) using PCE. The order of the PC basis is set to be 12, which gives ac-

curate estimation to the distributions of the reduced representations. We plot

and compare the PDFs of the reduced representations of the training samples

and new samples in Figs. 3.7-3.9. The distributions of reduced representations

of the training data ϕ j
i , i = 1, . . . , d, j = 1, . . . , ri are computed from the histogram

of the given 1000 initial samples derived by the two-step KLE. On the other

hand, 10000 new samples are randomly sampled from the uniform distribution

and mapped to the surrogate ϕ j
i space via PCE. A great consistence of the two

distributions is observed.
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Figure 3.7: Marginal PDFs of the low-dimensional representations ϕ j
1, j =

1, 2, corresponding to the first spatial mode Φ1 (the reduced
representations obtained after two-step KLE on the 1000 given
texture samples) and identified random variables obtained us-
ing PCE (reconstructed through PCE on 10000 randomly gener-
ated samples from the uniform distribution). The distributions
are constructed through kernel density based on data.
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Figure 3.8: Marginal PDFs of the low-dimensional representations ϕ j
2, j =

1, 2, 3, corresponding to the second spatial mode Φ2 (the re-
duced representations obtained after two-step KLE on the 1000
given texture samples) and identified random variables ob-
tained using PCE (reconstructed through PCE on 10000 ran-
domly generated samples from the uniform distribution). The
distributions are constructed through kernel density based on
data.

To check the performance of the multiscale model reduction, we generate

a random test sample (containing all microstructures at all integration points

within the workpiece) and compare it with its reconstruction from its reduced-

order representation. The 14400-dimensional array, A, containing the texture

information of all initial microstructures is projected to the 8-dimensional uni-
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Figure 3.9: Marginal PDFs of the low-dimensional representations ϕ j
3, j =

1, 2, 3, corresponding to the third spatial mode Φ3 (the reduced
representations obtained after two-step KLE on the 1000 given
texture samples) and identified random variables obtained us-
ing PCE (reconstructed through PCE on 10000 randomly gener-
ated samples from the uniform distribution). The distributions
are constructed through kernel density based on data.

form distribution through the two-step KLE-PCE process (we first compute the

macroscale modes through the bi-orthogonal KLE Eq. (3.8); then we compute

the reduced-order representations through the second-level KLE; and finally we

map the reduced-order representations to the uniform distribution through the

non-linear mapping as introduced in Eq. (2.56)). The realizations of the 8 ran-

dom variables within (−1, 1) are then mapped back to the 14400-dimensional

texture array through the inverse PCE and KLE. We first compare the restored

spatial modes from the reduced variables with the modes obtained through the

bi-orthogonal KLE on the test sample. The 3 modes capturing most of the en-

ergy are shown. It is observed in Fig. 3.10 that the restored {Φi}3i=1 are close to

the ones derived from the test sample.

We further reconstruct the texture realization in the physical space based on

the restored spatial modes through Eq. (3.13). The restored texture is compared

with the test sample. Figure 3.11 shows the pole figures of microstructures asso-

ciated with two different points of the workpiece. The test microstructure sam-

ple and its reconstruction are compared. It is observed that the reconstruction
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Figure 3.10: Comparison of spatial modes of a given texture sample and its
reconstruction. The modes of the given sample are the macro-
modes Φ obtained after performing the bi-orthogonal KLE
on the texture sample. The reconstructed modes are recov-
ered from the low-dimensional representations via PCE and
second-level KLE. The dimensionality of the reduced repre-
sentations of Φ1, Φ2, and Φ3 are 2, 3, and 3, respectively. In
the figure, the x-axis gives indices of spatial points (numbered
points in the spatial domain) and the y-axis is the value of
the macromodes Φi(x). The macromodes are given again as
one-dimensional plots, i.e. the corresponding values at the
indexed finite element integration points.

error for the test microstructure is small.

The reconstruction error for the test microstructure textures throughout the

entire workpiece can be quantified by

ε =
1

S × M

S×M∑
i=1

∣∣∣∣∣∣Ai − Âi

Ai

∣∣∣∣∣∣ , (3.24)

where S × M is the dimension of the microstructure feature array of the work-

piece with S being the number of integration points and M being the number

of microstructure parameters (here, S × M = 240 × 60 = 14400). Ai and Âi are

the microstructure parameters of the test sample and its reconstruction, respec-

tively. The relative error for this comparison is ∼ 4.26%. This example verifies

that the multiscale model reduction scheme has very good performance in the

application to high-dimensional multiscale random microstructures.
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Figure 3.11: (a) Pole figures of the reconstructed and test textures of a
microstructure at a single point located at the bottom of the
workpiece. (b) Pole figures of the reconstructed and test tex-
tures of a microstructure at a single point located at the top of
the workpiece. The reconstructed textures are obtained from
an eight-dimensional representation.

3.4.2 Stochastic multiscale forging simulation

After establishing the connection between the microstructure space and the

reduced surrogate microstructure space, we are ready to draw random mi-

crostructure samples and compute the variability of the mechanical properties

of workpieces whose microstructures are statistically similar to the given data.

The mean and standard deviation of the equivalent strain, stress, and strength

fields of the forged workpiece are of interest. The simulation results are taken to

be exact. No model error is considered. The mean and standard deviation fields

computed based on 4032 MC samples randomly generated from the reduced-

space are plotted in Figs. 3.12 and 3.13. The fields computed directly from the

1000 initial samples are also plotted (in the same figures) in comparison with

the reconstructed results. The mean fields of properties computed from recon-

structed samples are close to the ones computed from the initial samples. This

is consistent with the bi-orthogonal decomposition setup. The standard devia-
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tion of the properties of reconstructed samples, however, shows deviation from

that computed using the initial samples. This is because the limited given sam-

ples are not enough to represent the entire random microstructure space (espe-

cially the higher order statistics). On the other hand, the reconstructed samples

are generated from the surrogate space which is built to efficiently represent

the complete microstructure space. Random samples from the reduced-order

model reveal features that cannot be captured by the given initial samples. The

gained efficiency in sampling in the low-dimensional surrogate microstructure

space is prominent.
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Figure 3.12: Mean field of the properties of the forged product. Upper: re-
sults extracted from 1000 initial samples; lower: results evalu-
ated through 4032 MC samples randomly generated from the
8-dimensional reduced space: (a) effective strain, (b) effective
stress, (c) effective strength.

A convergence test is also conducted using 8064 random MC samples. The

comparison of the mean and standard deviation between 4032 and 8064 samples

is given in Figs. 3.14 and 3.15, respectively. The relative difference of quantities

between the two sets of simulations defined as (P8064 − P4032)/P8064, where PN
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Figure 3.13: Standard deviation field of the properties of the forged prod-
uct. Upper: results extracted from 1000 initial samples; lower:
results evaluated through 4032 MC samples randomly gen-
erated from the 8-dimensional reduced space: (a) effective
strain, (b) effective stress, (c) effective strength.

is the quantity evaluated using N MC samples, is plotted in Fig. 3.16. From

the difference we see that the mean fields of the two simulations are almost the

same. The relative error of standard deviation fields is larger than that of the

mean field. The largest error is around 0.05.

In order to test the convergence of the bi-orthogonal decomposition model

reduction scheme, we next keep more components in the second-level KLE

so that they capture 99% energy of the macro-modes. The dimension of the

reduced-order space becomes r = r1 + r2 + r3 = 3+ 7+ 8 = 18. Using the same test

microstructure for verification as in the previous subsection, we observe that the

reconstructed macro-modes are as expected closer to the ones extracted from the

test sample as shown in Fig. 3.17. Similarly, the test microstructure texture and

its reconstruction at two points in the workpiece are shown in Fig. 3.18 to be
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Figure 3.14: Convergence test of the mean field of the properties of the
forged product. Upper: results extracted from 4032 MC sam-
ples randomly generated from the 8-dimensional reduced
space; lower: results evaluated through 8064 MC samples ran-
domly generated from the 8-dimensional reduced space. (a)
effective strain, (b) effective stress, (c) effective strength.

in great agreement. The error of reconstruction of the texture over the entire

workpiece for this case is reduced to ε = 0.0398.

The mean and standard deviation of effective strain, stress and strength

fields are plotted in Fig. 3.19. The relative difference of fields defined as

(P18 − P8)/P18, where Pd is the quantity evaluated from d-dimensional reduced

space, is shown in Fig. 3.20. It is observed that keeping 18 reduced variables

gives very similar results as keeping 8 low-dimensional representations, since

the total energy captured by the two cases is close. The number of samples used

here is 8064.

The distributions of properties of any point on the workpiece can also be

computed. In Fig. 3.21, we plot the equivalent strain, stress, and strength dis-

130



1

1.2

1

1.2

equiv_stress 1

1.2

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

state_variable

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

equiv_stress

40

36

32

28

24

20

16

12

8

4

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

equiv_strain

0.013

0.011

0.009

0.007

0.005

0.003

0.001

8064 samples

4032 samples

(a) (b) (c)
x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

equiv_strain

0.013

0.011

0.009

0.007

0.005

0.003

0.001

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1 equiv_stress

40

36

32

28

24

20

16

12

8

4

x

y

0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

state_variable

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Figure 3.15: Convergence test of the standard deviation field of the proper-
ties of the forged product. Upper: results extracted from 4032
MC samples randomly generated from the 8-dimensional re-
duced space; lower: results evaluated through 8064 MC sam-
ples randomly generated from the 8-dimensional reduced
space. (a) effective strain, (b) effective stress, (c) effective
strength.

tributions, as well as the convex hull of these three quantities, at a single point

in the workpiece, where the equivalent strain is large. All distributions and the

convex hull [9] are evaluated according to the results of 4032 randomly gener-

ated samples from the 8-dimensional reduced space in the MC simulation just

discussed.

3.5 Conclusions

A multiscale model reduction scheme based on the bi-orthogonal KLE was pre-

sented. The basic idea is to decompose the location-specific random microstruc-

ture field into a few orthogonal modes in different (macro and meso) scales.
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Figure 3.16: Relative difference of the mean and standard deviation field
of the properties of the forged product computed by 8064
and 4032 MC samples drawn from the 8-dimensional reduced
space. Upper: difference of mean fields; lower: difference
of standard deviation fields. (a) effective strain, (b) effective
stress, (c) effective strength.

The dimension of the input data is reduced by two-step KLE. A non-intrusive

projection strategy along with PCE was employed to map the reduced repre-

sentations after the two-step KLE to a multivariate uniform distribution. The

reconstructed microstructure realizations show agreement with the initial mi-

crostructure samples that are given as the known information.

Properties of a continuum workpiece subjected to forging are evaluated by

a multiscale solver which couples a finite element large deformation simulator

with a crystal plasticity constitutive model. The mean and standard deviation of

the equivalent strain, stress, and strength of the final product are computed us-

ing Monte Carlo. It is seen that the reduced model captures most of the features

of the full model making it feasible to perform large scale stochastic multiscale

simulations. Future studies will focus on the model reduction of realistic mi-

132



x

Φ
1

0 50 100 150 200

-1

0

1

2

3

x

Φ
2

0 50 100 150 200

-3

-2

-1

0

1

x

Φ
3

0 50 100 150 200

-2

-1

0

1

2

3

4

(a) (b) (c)

Reconstructed
Test

Figure 3.17: Comparison of the reconstructed and spatial modes of a test
microstructure. The spatial modes are obtained by projecting
the test texture to the eigenbasis through the bi-orthogonal
KLE. The reconstructed modes are recovered from the low-
dimensional representations using via PCE and second-level
KLE. The dimensionality of the reduced representations ofΦ1,
Φ2, and Φ3 are 3, 7, and 8, respectively. The macromodes are
presented as before with 1D plots.
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Figure 3.18: (a) Pole figures of the reconstructed and test textures of a
microstructure at a single point located at the bottom of the
workpiece. (b) Pole figures of the reconstructed and test tex-
tures of a microstructure at a single point located at the top of
the workpiece. The reconstructed textures are obtained from
an 18-dimensional representation.

crostructures described by pixels rather than statistical features as in the present

work.
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Figure 3.19: The mean and standard deviation fields of effective strain,
stress, and strength computed based on random microstruc-
tures reconstructed from 18-dimensional reduced-order rep-
resentations.
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Figure 3.20: The relative error of mean and standard deviation fields of
effective strain, stress, and strength computed based on ran-
dom microstructures reconstructed from 8-dimensional and
18-dimensional reduced-order representations.
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CHAPTER 4

AN EFFICIENT IMAGE-BASED METHOD FOR MODELING THE

ELASTO-VISCOPLASTIC BEHAVIOR OF REALISTIC

POLYCRYSTALLINE MICROSTRUCTURES

The above studies use topological and crystallographic features to approx-

imately represent polycrystalline microstructures. The crystal plasticity con-

stitutive model is implemented with the Taylor assumption. The main rea-

sons are (1) the realistic representation of microstructures can be extremely

high dimensional; (2) the full-field deterministic solver, such as finite element

methods, interrogating realistic microstructure is usually very time consuming.

However, realistic microstructure is important for the accurate estimation of

microstructure-sensitive properties. In this chapter, we introduce an efficient

full-field crystal plasticity simulator based on Green’s function method and fast

Fourier transform (FFT). This approach takes pixelized microstructure image

as the input without requiring sophisticated discretization, and has better nu-

merical performance than the crystal plasticity finite element method for the

same spatial resolution without sacrificing accuracy. The high efficiency of this

FFT-based method shows significant potential in integrating it with stochastic

and/or multiscale materials simulations. This work is an extension to the crys-

tal visco-plasticity FFT approach as described in [68]. We introduce a novel

fast Fourier transform-based crystal plasticity model with the incorporation of

elasto-viscoplastic constitutive relations (CEPFFT). The elastic and viscoplas-

tic responses are computed separately using the fast Fourier transform-based

method and combined to update the stress field. This allows us to take advan-

tage of the pure elastic and rigid viscoplastic formulations, and avoid the dif-

ficulty in constructing the stiffness tensor of the reference medium. Through a
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series of benchmark examples, we demonstrate that the homogenized and local

elasto-viscoplastic responses can be predicted by the CEPFFT model. The con-

stitutive model of IN100 (Ni-based superalloy) [98] is also employed to study

the microstructure-sensitive fatigue indicator parameters. Comparison with fi-

nite element and rigid viscoplasticity FFT solutions shows great consistence of

these methods. Furthermore, we analyzed the performance of the fast Fourier

transform based simulator with a rigid visco-plastic model implemented in

two different ways (basic formulation [94] and augmented Lagrangian [69]).

A multi-grid strategy separating the computation and material grids based on

the particle-in-cell method [60] is also employed and the obtained results are

compared with those using a single grid strategy [97]. The notation follows the

work in [2].

4.1 Crystal elasto-viscoplastic fast Fourier transform simulator

In this section, we address the solution of the boundary value problem defin-

ing the deformation of elasto-viscoplastic polycrystalline microstructures using

the Green’s function method, in which any point in the domain can be con-

sidered as an inclusion embedded in a homogeneous reference medium. The

local mechanical response of the heterogeneous polycrystal can be calculated as

a convolution integral between the Green’s function associated with the linear

reference homogeneous medium (the homogeneous equivalent microstructure

in which grains are embedded) and the actual heterogeneous field [68]. All the

local quantities can be written as the summation of a mean value and a fluctu-

ation indicated by a “˜” symbol. Usually, the representative volume element of

bulk microstructures (not on the surface) is modeled to be periodic and periodic
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boundary conditions are applied to control its deformation. In this case, the

Fourier transform can be employed to efficiently solve the problem in Fourier

space, where the convolution in real space is reduced to a simple product. An

iterative scheme is needed to ensure that the solution converges to the microme-

chanical responses satisfying equilibrium and compatibility conditions.

For clarity, we will start with brief presentation of the solutions of pure

elastic and rigid visco-plastic problems. Then, the solution strategy of elasto-

viscoplastic problems will be introduced as the extension of the above two cases.

For elasto-viscoplastic problems, the strain rate is coupled with stress and stress

rate leading to challenges in using the Green’s function method. To address this,

we will introduce a solution strategy in which the elastic and plastic responses

are computed simultaneously but separately.

4.1.1 Solution of crystal elastic boundary value problems

In pure crystal elastic problems, the total strain rate ε̇ is equal to the elastic

strain rate ε̇e, and the stress rate is linearly related to the strain rate through the

generalized Hooke’s law:

σ̇(x) = Ce(x) : ε̇e(x), (4.1)

where Ce
i jkl(x) = Rim(x)R jn(x)Rko(x)Rlp(x)Če

mnop is the local elastic stiffness tensor

represented in the sample coordinate system that relates the crystal lattice frame

via a rotation matrix R(x) = R(r(x)) determined by the orientation r(x) of the

crystal at position x. Če is the elastic stiffness modulus in the lattice coordinate

system.
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For a microstructure subjected to periodic boundary conditions with an im-

posed average velocity gradient L = ∇V, the local equilibrium equation, rep-

resented in terms of stress rate, needs to be satisfied at any point x within the

microstructure domain B. The complete boundary value problem is defined as:

∇ · σ̇(x) = ∇ · ˜̇σ(x) = 0 ∀x ∈ B,

ṽe+ = ṽe−, τ̇+ = −τ̇− on ∂B, (4.2)

where ṽe(x) = ve(x)−L·x is the velocity fluctuation (deviation of the local velocity

ve(x) from the mean velocity V) at x induced by the microstructure heterogene-

ity. The superscript e indicates that the response stems from elastic deformation.

τ̇ is the traction rate on the microstructure boundary. Here, we have decom-

posed the boundary ∂B of the microstructure into two parts ∂B = ∂B− ∪ ∂B+

with outward normals n+ = −n− at two associated points x− ∈ ∂B− and x+ ∈ ∂B+.

Quantities on B− are indicated by the superscript − and those on B+ are indi-

cated by superscript +. In periodic boundary conditions, the velocity fluctuation

ṽe is periodic, and the traction rate τ̇ is anti-periodic in order to meet the equi-

librium equations on the boundary between two neighboring cells. Our goal

is to compute the velocity and its gradient for all material points that satisfy

the above governing equations and use them to evaluate the strain and stress

responses over the microstructure domain. To this end, we can write the local

stress rate σ̇(x) as the sum of two terms:

σ̇(x) = C0 : ε̇e(ve(x)) + ϕe(x). (4.3)

In Eq. (4.3), C0 is the stiffness modulus of the microstructure, if it were homoge-

neous, in which point x is embedded. In this elastic problem, C0 is selected as
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the averaged elastic modulus Ce over the microstructure domain:

C0 = Ce0 = ⟨Ce⟩h =
1

VB

∫
B

Ce(x)dx, (4.4)

where subscript h means homogenization and VB is the volume of the mi-

crostructure domain B.

The second term, ϕe(x), in Eq. (4.3) is the periodic polarization field defined

as

ϕe(x) = σ̇(x) − Ce0 : ε̇e(ve(x)) = ˜̇σ(x) − Ce0 : ˜̇εe(ṽe(x)). (4.5)

Substituting Eq. (4.3) into the equilibrium equation (Eq. (4.2)), we obtain

Ce0
i jklε̇

e
kl, j + ϕ

e
i j, j = 0 or Ce0

i jkl
˜̇εe

kl, j + ϕ
e
i j, j = 0. (4.6)

Assuming that the elastic strain is small, the elastic strain rate can be ap-

proximately taken as the symmetric part of the velocity gradient ε̇e
i j ≈ De

i j =

1
2

(
ve

i, j + ve
j,i

)
. Therefore, we obtain:

Ce0
i jklv

e
k,l j + ϕ

e
i j, j = 0 or Ce0

i jklṽ
e
k,l j + ϕ

e
i j, j = 0. (4.7)

The differential Eq. (4.7) can be solved by means of the Green’s function

method. Introducing the Green’s function Ge(x, x′), the solution ṽe
k(x) takes the

form of

ṽe
k(x) = −

∫
B

Ge
km(x − x′)ϕe

mn,n(x′)dx′. (4.8)

Substituting Eq. (4.8) into Eq. (4.7), leads to:

−Ce0
i jkl

∫
B

Ge
km,l j(x − x′)ϕe

mn,n(x′)dx′ +
∫
B
δimϕ

e
m j, j(x

′)δ(x − x′)dx′ = 0, (4.9)
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which can be rearranged as∫
B

[
−Ce0

i jklG
e
km,l j(x − x′) + δimδ(x − x′)

]
ϕe

mn,n(x′)dx′ = 0. (4.10)

Taking ϕe
mn,n to be arbitrary, we arrive at the local equilibrium equation in the

Green’s function form:

−Ce0
i jklG

e
km,l j(x − x′) + δimδ(x − x′) = 0. (4.11)

We transform this equation to Fourier space where the convolutional solution

in real space (Eq. (4.8)) is represented by a simple product. The equilibrium

equation in Fourier space is then:

ξlξ jCe0
i jklĜ

e
km(ξ) = −δim, (4.12)

where ξ is a point (frequency) in Fourier space. Solving the linear system

Eq. (4.12), we obtain the Green’s function in Fourier space Ĝe
km to be

Ĝe = Ae−1, with Ae
ik = −ξlξ jCe0

i jkl. (4.13)

Defining

Γ̂e
i jkl = −ξlξ jĜe

ik, (4.14)

and integrating Eq. (4.8) by parts while assuming that the boundary terms van-

ish [66], we can compute the velocity fluctuation as:

ṽe
k(x) =

∫
B

Ge
km,n(x − x′)ϕe

mn(x′)dx′. (4.15)

The velocity and its gradient fluctuations in Fourier space are

ˆ̃ve
i (ξ) = iξ jĜe

im(ξ)ϕ̂e
m j(ξ),

ˆ̃ve
i,k(ξ) = Γ̂

e
ikm j(ξ)ϕ̂

e
m j(ξ). (4.16)
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After transforming them back to real space (e.g. ṽe(x) = FFT−1( ˆ̃ve
(ξ))), the strain

(stretch) rate and spin fluctuations can be evaluated, respectively, by

˜̇εe
i j(x) =

1
2

(ṽe
i, j + ṽe

j,i),

˜̇ωe
i j(x) =

1
2

(ṽe
i, j − ṽe

j,i). (4.17)

The stress rate can be updated according to the Hooke’s Law (Eq. (4.1)). With

the updated stress rate and strain rate, we can perform the next iteration (recom-

pute the polarization and then the velocity gradient) until converged results are

reached.

4.1.2 Solution of crystal visco-plastic boundary value problems

If the deformation is assumed to be rigid visco-plastic (i.e. the elastic response

is completely neglected), ε̇ = ε̇p. A nonlinear constitutive model is employed to

link stress to strain rate in the form of

ε̇p(x) =Mp(σ(x)) : σ(x), (4.18)

where ε̇p(x) = 1
2

(
vp

i, j + vp
j,i

)
is the plastic stretch rate Dp (we are using the notation

ε̇p(x) for consistency with other FFT-based developments [70]) and Mp(σ(x)) is

a plastic compliance tensor that is nonlinearly dependent on stress σ(x).

The solution procedure for the visco-plastic problem is similar to the pure

elastic problem, except that this time the equilibrium equation is written in

terms of stress rather than stress rate:

∇ · σ(x) = ∇ · σ̃(x) = 0 ∀x ∈ B,

ṽp+ = ṽp−, τ+ = −τ− on ∂B, (4.19)
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where the superscript p indicates plastic deformation induced response and τ

is the traction on the boundary. Incompressibility of plastic deformation also

needs to be satisfied. In an earlier developed Fourier transform-based algo-

rithm [66], the incompressibility condition was satisfied by introducing explic-

itly the constraint vp
k,k = 0. In the current work, we account for the incompress-

ibility condition by computing the polarization ϕp(x) using a strain rate updated

iteratively as ε̇p ← ε̇p − 1
3 tr(ε̇p) as follows:

ϕp(x) = σ(x) − Cp0 : ε̇p(vp(x)) = σ̃(x) − Cp0 : ˜̇εp(ṽp(x)), (4.20)

where the stiffness modulus of the linear homogeneous reference medium is

taken to be the averaged plastic modulus Cp = Mp−1 over the microstructure

domain:

Cp0 = ⟨Cp⟩h =
1

VB

∫
B

Cp(σ(x))dx. (4.21)

The plastic modulus Cp or equivalently the plastic compliance Mp is determined

by the specific plastic constitutive model that is adopted (see Section 4.3). The

plastic problem can be solved following the steps from Eq. (4.6) to Eq. (4.17)

simply by replacing the superscript e to p and using stress instead of stress rate.

4.1.3 Solution of crystal elasto-viscoplastic boundary value

problems

For elasto-viscoplastic problems, the total strain rate ε̇ is additively decomposed

into elastic ε̇e and plastic ε̇p terms with tr(ε̇p) = 0:

ε̇(x) = ε̇e(x) + ε̇p(x). (4.22)
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Following the constitutive relations given above, we observe both stress σ and

stress rate σ̇ are entangled with strain rate:

ε̇(x) =Me(x) : σ̇(x) +Mp(σ(x)) : σ(x), (4.23)

where Me = Ce−1 is the elastic compliance tensor. The local mechanical response

at time t depends on the entire loading history of the specimen. The current

stress σ can be updated by σ = σn + ∆tσ̇, where σn is the stress at the previous

time step.

To follow a Green’s function approach to the elasto-viscoplastic boundary

value problem, a proper modulus C0 needs to be designed for the homogeneous

reference medium that can directly link either stress or stress rate to strain rate.

However, to design such an effective modulus is not trivial [121], and the con-

stitutive formulation is not unique. Therefore, we here propose a scheme that

solves separately for the elastic and plastic velocity fluctuations using the fast

Fourier transform-based algorithm, and thus avoid the construction of the ho-

mogeneous moduls. The total velocity gradient at a single point is then com-

puted by adding the two fluctuations to the mean value ∇V. After that, a non-

linear constitutive model is designed to update the stress and stress rate given

the total strain rate. We will refer to this approach that separates the elastic and

plastic velocity fluctuations as the main CEPFFT formulation.

The key of this CEPFFT approach is that we solve simultaneously the two

forms of the equilibrium equations defined in Eqs. (4.2) and (4.19) for elastic

and plastic velocity (and their gradient) fluctuations. The total velocity gradient

can then be obtained by

∇v(x) = ∇V + ∇ṽe(x) + ∇ṽp(x), (4.24)
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from which, the total strain rate ε̇ can be calculated as the symmetric part of

∇v. However, the portion of elastic strain rate ε̇e and plastic strain rate ε̇p in ε̇ is

not known. As a result, one can not directly compute the stress and stress rate

corresponding to a given total strain rate.

An iterative scheme is designed to linearize the nonlinear relations among

stress, stress rate, and strain rates, in order to find the elastic and plastic strain

rates given the total strain rate. We first rewrite Eq. (4.22) as

f = ε̇e(x) + ε̇p(x) − ε̇(x) = 0. (4.25)

We aim at solving this equation for the elastic strain rate ε̇e with known ε̇ us-

ing the Newton-Raphson scheme. To this end, Eq. (4.25) can be linearized as

follows:

f(i+1)(ε̇e(i+1)) = f(i)(ε̇e(i)) +
df
dε̇e

(
ε̇e(i+1) − ε̇e(i)

)
. (4.26)

According to the elastic and plastic constitutive models, as well as the stress

incremental equation σ = σn + ∆tσ̇, we can write the following relations:

dε̇p

dσ
= Mp

t ,

dσ
dσ̇

=
d (σn + ∆tσ̇)

dσ̇
= ∆tII,

dσ̇
dε̇e = Ce, (4.27)

where II is the fourth-order identity tensor and the tangent plastic compliance

Mp
t is specified by the particular plastic constitutive model used (see Section 4.3).

Using these relations, we can expand Eq. (4.27) as:

f(i+1)(ε̇e(i+1)) = f(i)(ε̇e(i)) +
(
dε̇e

dε̇e +
dε̇p

dε̇e

)
:
(
ε̇e(i+1) − ε̇e(i)

)
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= f(i)(ε̇e(i)) +
(
dε̇e

dε̇e +
dε̇p

dσ
dσ
dσ̇

dσ̇
dε̇e

)
:
(
ε̇e(i+1) − ε̇e(i)

)
= f(i)(ε̇e(i)) +

(
II + ∆tMp

t : Ce) :
(
ε̇e(i+1) − ε̇e(i)

)
. (4.28)

Setting f(i+1) = 0, the elastic strain rate at iteration i + 1 is computed by

ε̇e(i+1) = ε̇e(i) − (
II + ∆tMp

t : Ce)−1 : f(i). (4.29)

With the elastic strain rate ε̇e(i+1) at the (i + 1)th iteration computed from the

equation above, the stress rate σ̇(i+1) can be obtained using Eq. (4.1). Therefore,

the stress is updated as σ(i+1) = σn + ∆tσ̇(i+1), with which the plastic strain rate

ε̇p(i+1) can be computed using the plastic constitutive relation Eq. (4.18). The

impressibility is enforced by setting ε̇p(i+1) ← ε̇p(i+1) − 1
3 tr(ε̇p(i+1)). Iteratively up-

dating the above equations, the final elastic as well as the plastic strain rates

can be computed until convergence is achieved (i.e. when f i+1 in Eq. (4.28) ap-

proaches 0). The result is not sensitive to the magnitude of ∆t. After that, we

can construct the elastic and plastic polarization fields, respectively, following

Eqs. (4.5) and (4.20), respectively. By transforming them to Fourier space, the

fluctuations of velocity gradients induced by elastic and plastic deformation

can be updated using Green’s functions. Inversely transforming these fluctua-

tions to real space, a new strain rate field as well as stress and stress rate can

be obtained. The algorithm can then proceed to the next iteration. The overall

CEPFFT algorithm is summarized next.

4.1.4 CEPFFT algorithm

We adopt a basic fast Fourier transform-based algorithm to implement the

CEPFFT simulator [66, 93, 94]. This method is based on the exact expression
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of Green’s function for linear elastic, homogeneous reference material.

Algorithm:

1. At the first iteration, start with an initial guess of the total velocity gra-

dient field at time step n + 1: 0∇vn+1(x) = ∇vn(x),∀x ∈ B, from which the

local strain rate can be computed ε̇(x) = sym(∇v(x)). Then evaluate the

elastic portion ε̇e(x) and plastic portion ε̇p(x) of the strain rate using the

Newton-Raphson algorithm (Eqs. (4.25)-(4.29)). At the same time, com-

pute the initial stress 0σ(x) and stress rate 0σ̇(x).

2. Compute the elastic and plastic polarization fields, iϕe(x) and iϕp(x), re-

spectively, for the i iteration given the stress, stress rate and strain rate

fields:

iϕe(x) =i σ̇(x) − Ce0 :i ε̇e(x),

iϕp(x) =i σ(x) − Cp0 :i ε̇p(x). (4.30)

3. Transform the polarizations to Fourier space via fast Fourier transform:

iϕ̂
e
(ξ) = FFT

(
iϕe(x)

)
and iϕ̂

p
(ξ) = FFT

(
iϕp(x)

)
.

4. Compute the velocity gradient fluctuation fields induced by elastic and

plastic deformation, respectively, in the Fourier space for the (i+ 1)-th iter-

ation.

i+1∇ ˆ̃ve
(ξ) = Γ̂

e
(ξ) :i ϕ̂

e
(ξ),∀ξ , 0; and i+1∇ ˆ̃ve

(0) = 0,

i+1∇ ˆ̃vp
(ξ) = Γ̂

p
(ξ) :i ϕ̂

p
(ξ),∀ξ , 0; and i+1∇ ˆ̃vp

(0) = 0. (4.31)

5. Transform the current velocity gradient fluctuation fields back to

real space through inverse fast Fourier transform, i.e. i+1∇ṽe(x) =

FFT−1
(

i+1∇ ˆ̃ve
(ξ)

)
and i+1∇ṽp(x) = FFT−1

(
i+1∇ ˆ̃vp

(ξ)
)
.
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6. Compute the total strain rate i+1ε̇ = Ė +i+1 ˜̇εe
+i+1 ˜̇εp and then the stress

i+1σ(x) and stress rate i+1σ̇(x) fields according to the constitutive model.

7. Check the error (equilibrium condition) [94]:

e =

⟨
∥∇ · i+1σ∥2

⟩1/2

h

∥i+1σ∥ =

⟨
∥ξ · i+1σ̂∥2

⟩1/2

h

∥i+1σ̂(0)∥ . (4.32)

If e is smaller than a prescribed error tolerance, the iteration process stops.

Otherwise, return to step (2) and proceed to the next iteration.

Upon convergence, the grain orientations and the positions of the mi-

crostructure pixel points are updated according to the spin and velocity gradient

fields, respectively (see Section 4.2.2 for details).

Remark 1: The error of the equilibrium condition (Step 7) is mostly determined

by the resolution of the image (as it will be shown later in the examples). For

images with coarse resolution, the error may converge to a value larger than 0.

This error is inherently associated with the FFT-based methodology. Therefore,

a practical way to check the convergence is to examine the relevant difference

between the error at the current and last iterations:

η =
|i+1e −i e|

i+1e
. (4.33)

4.1.5 An integrated formulation

It is clear that the computational cost of one iteration step of the algorithm dis-

cussed above is approximately doubled that corresponding to either the pure

elastic or rigid visco-viscoplastic scenario. A more straightforward thinking of
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solving the elasto-viscoplastic problem may be constructing the connection be-

tween stress (or stress rate) and total strain (or strain rate) directly, and com-

pute the mechanical responses using only one set of governing equations. This

requires one to design a proper modulus C0 of the reference medium, which

determines the convergence rate and the accuracy of the algorithm.

In [121, 70], an integrated formulation based on stress and total strain was

proposed:

σ(x) = C0 : ε(x) + ϕ(x). (4.34)

The same basic scheme as introduced in the current work was adopted by [121]

to solve the problem, while an augmented Lagrangian scheme was used in [70].

A semi-empirical C0 was chosen for the reference medium [121].

In the current work, we also propose a similar integrated strategy for solving

the elasto-viscoplasticity problem. An incremental form is chosen to represent

the local stress σ(x) in terms of the total strain rate ε̇(v(x)):

σ(x) = C0 : ε̇(v(x)) + ϕ(x), (4.35)

where the strain rate ε̇(v(x)) can be additively decomposed into the elastic strain

rate ε̇e(v(x)) and the plastic strain rate ε̇p(v(x)) as given in Eq. (4.22). The refer-

ence modulus C0 = ⟨Cep⟩h is taken as the volume average of the local elasto-

viscoplastic modulus Cep approximately derived as follows:

Cep =

(
dε̇
dσ

)−1

=

(
dε̇
dε̇e

dε̇e

dσ
+

dε̇
dε̇p

dε̇p

dσ

)−1

≈
(
Me

∆t
+Mp

)−1

. (4.36)

The plastic compliance Mp is chosen to be the secant compliance that depends

on the specifics of the constitutive model adopted. With the construction of
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the elasto-viscoplastic modulus, the problem is solved following the same pro-

cedure as for the visco-plastic problem. Following the steps from Eq. (4.6) to

Eq. (4.17) by removing the superscript e and using stress instead of stress rate,

we can solve for the total velocity fluctuation ṽ and its gradient ∇ṽ. The con-

vergence rate of this particular algorithm is slower than the main algorithm

presented earlier, especially at the transient elasto-viscoplastic regime. A more

sophisticated design of C0 is of great interest. In the following, we will refer to

this model as the modified CEPFFT.

It is worth mentioning that the averaged elastic modulus Ce0 (Eq.(4.4)) and

plastic modulus Cp0 (Eq.(4.21)) adopted by the main separate form are also not

proven to be optimal for their reference media. However, these moduli have

been widely used in pure elastic and visco-plastic problems, respectively, and

shown to provide very good convergence rates. It is thus favorable that the

separate form directly takes advantage of the existing elastic and visco-plastic

formulations. Furthermore, using the main (separate) formulation, we avoid

the issue of the non-unique constitutive formulation as seen in the modified

(integrated) form.

4.2 Microstructure model

The solution strategy of computing the deformation of polycrystalline mi-

crostructures under periodic boundary conditions was discussed in Section 4.1.

The main procedure is: (1) compute polarization field; (2) transform the polar-

ization field to Fourier space using fast Fourier transform; (3) update velocity

gradient in Fourier space and transform it back to real space; (4) update real-
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space fields (e.g. strain rate, spin tensor, stress rate, etc.) accordingly. An it-

erative scheme is adopted to obtain convergence. In this section, we introduce

the digital microstructure model that is used as the input to FFT-based simula-

tions. The update strategy of the microstructure and crystal orientation during

deformation is also described.

4.2.1 Discretization

The input to the FFT-based (including pure elastic, rigid visco-plastic, and

elasto-viscoplastic) simulators is a pixelized image with orientation parameters

associated with each pixel (or voxel for 3D). The pixels or voxels are the dis-

cretization of the input image, which essentially requires no effort.

To apply the FFT-based algorithm and solve the underlying boundary value

problem, the microstructure is discretized by a regular grid consisting of N1×N2

pixels (2D problem) or N1 × N2 × N3 voxels (3D problem). Denote Li to be the

period (edge length) of the microstructure in the ith direction (i = 1, 2 for 2D and

i = 1, 2, 3 for 3D). The coordinates of the points in the i-th direction are therefore:

xi = 0,
Li

Ni
, 2

Li

Ni
, . . . , (Ni − 1)

Li

Ni
. (4.37)

In Fig. 4.1, examples of 2D and 3D grids of polycrystalline microstructures are

shown in comparison with their image views. Different colors in the microstruc-

ture represent grains with distinct orientations. We use a Voronoi tessellation

scheme to generate grain structures. The positions of centroids are adjusted to

minimize the interaction forces [106].

The regular discretization grid of the microstructure determines a regular
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Figure 4.1: (a) The image representation of a 2D polycrystalline mi-
crostructure containing 10 grains. (b) The pixel grid of the 10-
grain 2D microstructure. The microstructure is discretized by
16 × 16 pixels. (c) The image representation of a 3D polycrys-
talline microstructure containing 64 grains. (b) The voxel grid
of the 64-grain 3D microstructure. The microstructure is dis-
cretized by 16 × 16 × 16 voxels.

reciprocal grid in Fourier space, which makes the fast Fourier transform conve-

nient. The i-th direction coordinates of the points in the reciprocal grid, namely

frequencies, are

ξi =

(
−Ni

2
+ 1

) 1
Li
,
(
−Ni

2
+ 2

) 1
Li
, . . . ,

− 1
Li
, 0,

1
Li
, . . . ,

(Ni

2
− 1

) 1
Li
,
(Ni

2

) 1
Li
, (4.38)

where i = 1, 2 for 2D and i = 1, 2, 3 for 3D. In the current work, the number of

points in each dimension is selected to be a power of 2 in order to facilitate the
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fast Fourier transform that is conducted using the FFTW libraries [26].

4.2.2 Grid and texture update

The grid after deformation may become irregular as material points move ac-

cording to local velocities. The new position of material point X is

x(X) = X + (LX + ṽ(X))∆t, (4.39)

where L = ∇V is the homogeneous (average) velocity gradient of the microstruc-

ture and ∇ṽ(X) is the velocity gradient fluctuation at point X.

To model the deformation of the microstructure, an irregular material grid is

expected. However, this irregular grid in the real space results in difficulties on

conducting Fourier transform in the next time step in a time-dependent simula-

tion, because that fast Fourier transform requires a regular grid. To resolve this

complexity, we introduce a strategy of using two grids, a regular computation

grid and an irregular material configuration grid, proposed in [60] based on the

Particle-In-Cell (PIC) method [114, 115]. On one hand, the computation grid is

used for applying the fast Fourier transform method to evaluate the strain re-

lated fields. It is a regular grid but not necessarily rectangular. The material

grid, on the other hand, is attached to material particles, on which constitutive

relations are carried out.

Each grid carries its own set of unknowns. Information needs to be trans-

ferred back and forth between the two grids during computation. At the be-

ginning of each time step, the initial guess of local stress and polarization are

computed on the material grid given the initial strain rate. The polarization
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field is transferred to the computation grid, on which fast Fourier transform is

performed. The updated velocity gradient is then transferred back to the ma-

terial grid so that the stress related fields can be updated using the constitutive

model. At the end of the time step, the computation and material grids are de-

formed. The material particles move according to local velocity (Eq. (4.39)) and

the regular computation grid evolves with the average velocity gradient:

x(X) = (I + L∆t) X. (4.40)

A schematic showing the operation of the multi-grid strategy is depicted in

Fig. 4.2.
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Figure 4.2: A schematic description of the multi-grid CEPFFT strategy.
The constitutive model is applied only on the material grid,
whereas fast Fourier transform operates on the computation
grid.

Given nodal values fc(xa
c) of a function f (x) on the computation grid (de-

noted by subscript c), the interpolated value at any material point xp in the mi-
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crostructure (denoted by subscript p) is given as

fp(xp) =
A∑
a

Na(xp) fc(xa
c), (4.41)

where Na(xp), a = 1, . . . , A are the finite element basis functions for the element

that contains particle xp. Quadrilateral (in 2D) and brick (in 3D) elements are

used for the computation grid.

The inverse transfer from the material grid to the computation grid is per-

formed using the same interpolation functions [60]. We assume that all material

particles have the same ‘mass’ mp. The ‘mass’ of a computational node is de-

fined as

mc(xc) =
K∑

k=1

mk
pNa(xk

p). (4.42)

The sum is over all material particles that are contained in the elements that

share a common computation node xc. Na is the basis function that is associated

with the node xc, and defined in the element which contains particle xk
p. The

function value fc of f at any computation node xc is therefore:

fc(xc) =
1

mc(xc)

K∑
k=1

mk
pNa(xk

p) fp(xk
p). (4.43)

A 2D illustration of the initial and deformed computation and material grids

is shown in Fig. 4.3, where big red dots represent material particles and small

black dots are the nodes of the computation grid. The deformed computation

grid remains regular so that fast Fourier transform can be conducted, while ma-

terial particles move heterogeneously. In most PIC studies, the material grid is

finer than the computation grid. In the current work, however, we employ the

same resolution of the two grids.
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Figure 4.3: (a) Initial computation and material grids. (2) Deformed com-
putation and material grids. The red dots denote material par-
ticles and the black dots denote nodes of the computation grid.
The blue dash-dot lines show the connection between one ma-
terial particle (A) and computation nodes and the red dashed
lines are the connections between one computation node (3)
and surrounding material particles.

This multi-grid strategy requires extra computation time. In the literature,

one regular grid is used and the material grid is assumed to coincide with the

computation grid at all times [69, 97]. For numerical examples, we will conduct

simulations primarily using this single-grid simplification. Comparison with

the results obtained from the multi-grid approach will be reported. It will be

shown that for the examples considered, the mechanical responses computed

from the multi- or single-grid approaches do not vary significantly, although

the deformed microstructures have distinct geometry.

The orientations of crystals also evolve with deformation. Upon conver-

gence, the local crystallographic lattice rotations can be updated by the spin

tensor calculated by

ω̇(x) = Ω̇ + ˜̇ω(x) − ω̇slip(x), (4.44)

where Ω̇ = antisym(∇V) is the average spin tensor over the microstructure do-

main. ˜̇ω(x) = ˜̇ωe(x) + ˜̇ωp(x) is the spin fluctuation induced by elastic and plastic

rotation. The last term that is subtracted is the rotation rate due to plastic shear

156



(slip) that does not distort the crystal lattice. It is calculated by

ω̇slip(x) =
Ns∑
α

β(α) · γ̇(α), (4.45)

where γ̇(α) is the shearing rate on slip system α, β(α) is the anti-symmetric Schmid

tensor, β(α) = antisym(S(α)) = 1
2 (s(α) ⊗ n(α) − n(α) ⊗ s(α)), and s(α), n(α) are the slip

direction and normal to the slip plane of the α-th slip system, respectively.

4.3 Numerical examples

In this section, we present numerical examples conducted using the fast Fourier

transform based approach. Comparison between different formulations (visco-

plasticity vs. elasto-viscoplasticity) and between different methods (finite ele-

ment method vs. fast Fourier transform based methods) are conducted to vali-

date the current developments. In addition, the basic formulation introduced in

this paper is compared with the augmented Lagrangian approach formulated

in [68, 97]. Mechanical response and fatigue properties measured by strain

based fatigue indicator parameters [82] of IN100 microstructures are studied

using the novel CEPFFT method. The computational efficiency of CEPFFT and

crystal plasticity finite element method are presented to show the merit of the

CEPFFT method. The use of the multi-grid strategy is also discussed.
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4.3.1 Basic formulation versus the augmented Lagrangian for-

mulation

We will start with a benchmark plane strain example of 3D polycrystalline mi-

crostructure simulated using the crystal visco-plasticity fast Fourier transform

method (elastic response is neglected). The single-grid strategy is adopted. The

crystal visco-plastic constitutive model proposed in [7] along with a Voce type

hardening model described in [97] are implemented in the basic framework

highlighted earlier in this paper as well as in the augmented Lagrangian for-

mulation [68, 97]. Through this particular constitutive law, the stress-strain rate

relation formulated in Eq.(4.18) is specified as follows:

ε̇p(x) =Mp
s (σ(x)) : σ(x), (4.46)

where the secant plastic compliance Mp
s is taken as:

Mp
s (σ(x)) = γ̇0

Ns∑
α

m(α)(x) ⊗m(α)(x)
κ(α)(x)

∣∣∣∣∣∣m(α)(x) : σ(x)
κ(α)(x)

∣∣∣∣∣∣(1/m−1)

. (4.47)

In the equation above, γ̇0 is a reference rate of shearing, m characterizes the

material rate sensitivity, κ(α)(x) is the slip resistance of system α, Ns is the number

of active slip systems, and m(α) denotes the symmetric Schmid tensor of slip

system α:

m(α) = sym(S(α)) =
1
2

(
s(α) ⊗ n(α) + n(α) ⊗ s(α)

)
, (4.48)

where s(α) and n(α) are the slip direction and slip plane normal of the system α,

respectively.

The volume average of the local secant plastic modulus is taken to be the

modulus of the reference medium defined by Eq. (4.21) (Cp0 = ⟨Mp−1
s ⟩h). The
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corresponding tangent plastic compliance in Eq. (4.29) at this specific case is

Mp
t =

1
mMp

s . The plastic compliance in Eq. (4.36) for the integrated method high-

lighted in Section 4.1.5 is Mp =Mp
s .

FCC aluminum is considered. A cubic polycrystalline microstructure com-

posed of 64 grains is generated using the Voronoi tessellation scheme [106] in an

1mm3 domain. The microstructure is discretized by 16 × 16 × 16 equally spaced

voxels. The macroscale velocity gradient is

L = ∇V =


0.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 −1.0

 × 10−3(s−1). (4.49)

The rate-dependent flow rule as given in [97] is used with γ̇0 = 1s−1 and

m = 0.1. The parameters in the Voce type hardening law are selected according

to [97]: κ0 = 47.0MPa, κ1 = 86.0MPa, θ0 = 550.0Mpa, and θ1 = 16.0MPa. An ar-

bitrary random texture is assigned to the microstructure. The initial microstruc-

ture configuration and pole figures showing the random orientation distribu-

tion are shown in Fig. 4.4.

This example is aiming at validating the implementation of the basic FFT

framework by providing a comparison with the alternative augmented La-

grangian implementation. After the thickness of the microstructure reduces by

50%, the deformed microstructure and its stress and strain fields are plotted in

Fig. 4.5. For both implementations, the stress distribution over the microstruc-

ture is consistent with the grain geometry. The local mechanical responses of

the two simulations are very close. Both intergranular and intragranular het-

erogeneities of the stress and strain rate fields are captured.
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Figure 4.4: (a) The image representation of a 3D polycrystalline mi-
crostructure containing 64 grains. (b) Pole figures of the mi-
crostructure with randomly assigned orientations.

The homogenized (i.e. volume-averaged) effective stress-strain responses of

the entire microstructure computed by the two different algorithms are shown

in Fig. 4.6(a). The two curves almost overlap. Pole figures showing the orien-

tation distribution of deformed microstructure are depicted in Fig. 4.6(b), from

which we observe the typical plane strain deformation texture pattern for both

cases. From the above comparison of the local and effective mechanical re-

sponses, we conclude that consistent results are obtained from the two algo-

rithms.

An error analysis is also conducted to reveal the performance of the two for-

mulations. The convergence error, as a function of iteration steps, of the basic

formulation (defined by Eq. (4.33)) and of the augmented Lagrangian formula-

tion (the larger value of the strain error err(ε) and stress error err(σ) as defined

in [62]) are depicted in Fig. 4.7(a), while the equilibrium error (Eq. (4.32)) of

both algorithms is shown in Fig. 4.7(b). The error is captured at the first time

step with ∆t = 0.1. It was observed that the convergence rate of the basic formu-

lation is comparable with the augmented Lagrangian formulation for the cur-
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Figure 4.5: Contour plots of plane strain deformed microstructures evalu-
ated by different algorithms. The top layer is the equivalent
(plastic) strain field, and the bottom layer is the equivalent
stress field. (a) Crystal visco-plasticity fast Fourier transform
approach implemented in the basic formulation (b) Crystal
visco-plasticity fast Fourier transform approach implemented
in the augmented Lagrangian formulation.

rent example. The equilibrium error of the two formulations approaches a very

close value as the number of iterations increases, although the fluctuation of the

basic formulation is larger than that of the augmented Lagrangian case. The

basic formulation performances sufficiently well for the current polycrytalline

plasticity problem. The main reason is that the contrast between grains with

different orientations is mild. For problems with high contrast, the augmented

Lagrangian is expected to offer better convergence, while the basic formulation

may even fail to converge [84, 85, 120]. Considering the simple structure of the

basic formulation, we are employing it for the CEPFFT implementation.

It is also worth mentioning that the equilibrium error is mostly determined

by the resolution of the microstructure. For high resolution, the equilibrium
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Figure 4.6: (a) The homogenized effective stress-strain responses com-
puted by the basic and augmented Lagrangian crystal visco-
plasticity FFT algorithms. (b) Pole figures of the deformed mi-
crostructure texture.
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Figure 4.7: (a) Evolution of the convergence error as a function of the num-
ber of iterations of the augmented Lagrangian formulation in
comparison with the convergence error of the basic formula-
tion. The error axis uses logarithmic scale. (b) Evolution of the
absolute (equilibrium) error as a function of the number of it-
erations of the two formulations. The error axis uses normal
scale.

condition is fulfilled with smaller error (see Fig. 4.8). When the number of pixels

per side is doubled, the equilibrium error is approximately halved.

162



Pixel number 

per side

Equilibrium 

error

8 4.292371e-02

16 2.195340e-02

32 1.116329e-02

64 5.609229e-03

E
q
u
il
ib
ri
u
m
e
rr
o
r

0.01

0.02

0.03

0.04

0.05

Pixel number per side
0 10 20 30 40 50 60 70
0

0.01

Figure 4.8: Equilibrium error as a function of resolution (number of pixels
per side) computed by the basic formulation. The equilibrium
error is evaluated when the convergence error reaches below
10−7.

4.3.2 Crystal elasto-viscoplastic FFT simulations for polycrys-

talline microstructures

We consider here the same problem using the CEPFFT method. Both the mi-

crostructure configuration and material parameters are identical to the previous

example. The elastic constants in the elasto-viscoplastic model are chosen to be

C11 = 110 × 103MPa, C12 = 59 × 103MPa, C44 = 26 × 103MPa. The CEPFFT results

are compared with the rigid visco-plastic computation as well as the results ob-

tained from the crystal plasticity finite element method. Both multi-grid and

single-grid strategies are adopted and compared.

In the finite element simulation, homogeneous boundary condition is ap-

plied to the microstructure to drive its deformation while the boundary con-

ditions of FFT-based simulations are periodic. The homogeneous boundary

condition enforces all boundary nodes to have the same deformation/velocity

gradient (e.g. Eq. (4.49) for the current plane strain problem), but heteroge-

neous nodal response inside the microstructure is allowed. This homogeneous
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boundary condition will result in different local mechanical responses on the

microstructure from those obtained using the periodic boundary condition, but

the homogenized effective response should be comparable. The FEM simulation

is conducted using our in-house solver extended based on Section 2.1.5 [72].

The constitutive model is the same as used in CEPFFT. The microstructure is

discretized by 16 × 16 × 16 elements to be consistent with the voxel model by

CEPFFT.

We first adopt the main CEPFFT proposed in Section 4.1.3 with a single-grid

strategy. The total strain, plastic strain, and stress fields of the deformed mi-

crostructure after 50% thickness reduction computed by different models are

plotted in Fig. 4.9. It is seen that CEPFFT gives very consistent prediction to

both strain and stress fields with the rigid visco-plastic results obtained in the

last example. The magnitude of the plastic strain field prediction by CEPFFT

is slightly smaller than the one predicted by visco-plastic approach. On the

other hand, the fields predicted by the FFT-based simulations show differences

(especially for strain fields) from those predicted by crystal plasticity finite ele-

ment simulations. The major causes of the differences between the FFT-based

methods and the FEM approach include: (1) the different boundary conditions

(periodic by the FFT-based methods and homogeneous by FEM), (2) the grain in

the FFT-based simulation is assigned to the digital model in the unit of “point”,

while it is assigned to the finite element model in the unit of “element” (each

element contains 8 points), (3) the fast Fourier transform results are computed

directly on the voxel points while the finite element results are computed on in-

tegration points and extrapolated to nodes using a least squares method, and (4)

algorithmic differences. However, we notice that the stress fields exhibit similar

patterns. This is because the mean strain predicted by the two methods is about
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the same and much larger in value than the fluctuations.

Figure 4.9: Contour plots of plane strain deformed microstructures evalu-
ated by different methods. The first row is the equivalent total
strain field, the second row is the equivalent plastic strain field,
and the bottom row is the equivalent stress field. (a) Crystal
visco-plasticity fast Fourier transform method. The total strain
and plastic strain are identical here since the elastic response
is ignored in this model. (b) Crystal elasto-viscoplasticity fast
Fourier transform method (CEPFFT) (c) Crystal plasticity finite
element method.

The homogenized effective stress-strain responses of the entire microstruc-

ture are compared in Fig. 4.10. The elastic response is successfully captured by

the CEPFFT model and is comparable to the finite element prediction. It is ob-

served that CEPFFT gives close prediction to the homogenized response with

the finite element approach even though the boundary conditions for the two

approaches are different.

The textures predicted by the three models are plotted using pole figures in

Fig. 4.11. It is observed that all the three sets of predicted pole figures are very

similar. The typical plane strain pattern is obtained.
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Figure 4.10: The homogenized effective stress-strain responses of plane
strain deformed microstructures predicted by different mod-
els. (a) Effective stress-total strain responses by CEPFFT and
crystal plasticity FEM; (b) The effective stress-plastic strain re-
sponses by the three methods. Note that here CVPFFT de-
notes crystal visco-plasticity fast Fourier method, and CPFEM
refers to crystal plasticity finite element method.
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Figure 4.11: Crystallographic textures, represented in pole figures, of
plane strain deformed microstructures predicted by three
models. (a) Crystal visco-plasticity fast Fourier trans-
form method (CVPFFT) (b) Crystal elasto-viscoplasticity fast
Fourier transform method (CEPFFT) (c) Crystal plasticity fi-
nite element method (CPFEM).

To check the convergence of the results with respect to increasing resolution,

we performed the same simulation on the same microstructure but discretized

by 32×32×32 voxels using CEPFFT. The local and effective mechanical responses

are compared in Figs. 4.12 and 4.13, respectively. It is observed that the two sets

of results are consistent. Plotted in the two figures are also the predictions using
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the modified CEPFFT approach introduced at the last of Section 4.1.5, where

stress is linked to total strain rate through an elasto-viscoplastic modulus. We

observe that the results from this modified implementation are close to the main

formulation (that computes elastic and plastic fluctuations separately), although

with milder spatial variation. The stress-strain curves predicted by the main and

modified CEPFFT almost coincide in the elasto-viscoplastic transition region (as

shown in Fig.4.13 (a)), indicating that the two formulations provide consistent

prediction to this example. It should be mentioned that the iteration of modified

formulation is cut after 100 steps at the elasto-viscoplastic transition part, where

the convergence rate becomes slow.

Figure 4.12: Contour plots of plane strain deformed microstructures with
different resolution and methods. The first row is the equiv-
alent total strain field, the second row is the equivalent plas-
tic strain field, and the bottom row is the equivalent stress
field. (a) The main CEPFFT method using 16 × 16 × 16-
voxel microstructure. (b) The main CEPFFT method using a
32 × 32 × 32-voxel microstructure. (c) The modified CEPFFT
using a 16 × 16 × 16-voxel microstructure.

We also studied the equilibrium error of the main CEPFFT approach for mi-
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Figure 4.13: (a) The homogenized effective stress-total strain responses for
a 16 × 16 × 16-voxel microstructure and a 32 × 32 × 32-voxel
microstructure obtained using different formulations. (b)
Crystallographic textures represented in pole figures. Main
CEPFFT refers to the main crystal elasto-viscoplasticity FFT
method implemented using the separate formulation and
Modified CEPFFT refers to the integrated formulation using
the homogeneous elasto-viscoplastic medium approach Sec-
tion 4.1.5.

crostructures with different resolution. The improvement of error with refin-

ing the image is seen from Fig. 4.14(a), which is similar to the visco-plasticity

case. The convergence of the CEPFFT model as a function of iteration number

is shown in Fig. 4.14(b). We observe a fast convergence rate for all tests.

In order to study the effect of heterogeneous deformation on mechanical re-

sponses, we next repeat the above simulations using the CEPFFT implemented

with the multi-grid strategy. The deformed material grid obtained by the multi-

grid strategy and the homogeneous approximation are plotted in Fig. 4.15. Con-

tour plots of local mechanical responses are shown in Fig. 4.16. Comparing with

the single-grid results, we find that the predicted mechanical responses do not

vary much, although the deformed microstructures becomes irregular. The ef-
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Figure 4.14: (a) Equilibrium error as a function of resolution (number of
pixels per side). The equilibrium error is evaluated using the
basic formulation when the convergence error reaches below
10−7. (b) Convergence error versus number of iterations.

fective stress-strain curve and grain orientation distribution predicted by the

multi-grid strategy are almost identical with the corresponding results obtained

by the single-grid prediction and are not repeated here.

Figure 4.15: (a) Deformed microstructure predicted by multi-grid
CEPFFT. (c) Deformed microstructure predicted by single-
grid CEPFFT.

We next examine an example of simple shear of the microstructure using

different models in order to better validate the current development, especially

for the texture evolution. The same polycrystalline microstructure containing 64

grains and material parameters are used, while the imposed velocity gradient
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Figure 4.16: Contour plots of plane strain deformed microstructures com-
puted using different strategies. The first row shows re-
sults obtained from the multi-grid CEPFFT, and the bottom
row shows results obtained from the single-grid CEPFFT. (a)
Equivalent total strain (b) Equivalent plastic strain (c) Equiv-
alent stress.

becomes

L = ∇V =


0.0 −1.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

 × 10−3(s−1). (4.50)

The single-grid strategy along with the main CEPFFT formulation is firstly

adopted. The homogenized effective stress-strain responses of the entire mi-

crostructure are compared with the rigid visco-plasticity FFT and finite element

simulation in Fig. 4.17. The elastic response is successfully captured by the

CEPFFT model.

The crystallographic textures described by pole figures are depicted in

Fig. 4.18. We can see once more that different models give very close predic-

tion of the texture evolution of the simple shear mode.
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Figure 4.17: The homogenized effective stress-strain responses of sheared
microstructures predicted by different models. (a) Effective
stress-total strain responses by CEPFFT and crystal plastic-
ity finite element method (CPFEM); (b) Effective stress-plastic
strain responses by three methods. CVPFFT refers to crystal
visco-plasticity fast Fourier transform method.
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Figure 4.18: Crystallographic textures, represented in pole figures, of
sheared microstructures predicted by three models. (a) Crys-
tal visco-plasticity fast Fourier transform method (CVPFFT).
(b) Crystal elasto-viscoplasticity fast Fourier transform
method (CEPFFT). (c) Crystal plasticity finite element method
(CPFEM).

To check the convergence of the results with respect to increasing resolu-

tion for simple shear deformation, we also performed the same simulation on

the same microstructure but discretized by 32 × 32 × 32 voxels. The homoge-

nized effective stress-strain responses are compared in Fig. 4.19, along with the

crystallographic texture after shearing. The results computed using the modi-

fied CEPFFT formulation discussed at the last of Section 4.1.5 are also demon-
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strated. The stress-strain curves predicted by the main and modified CEPFFT

shows small difference in the elasto-viscoplastic transition region (as shown in

Fig.4.19 (a)). This is because the convergence rate of the modified formulation

becomes very slow at the transition part. The iteration is cut after 100 steps for

modified formulation.
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Figure 4.19: (a) The homogenized effective stress-total strain responses by
a 16 × 16 × 16-voxel microstructure and a 32 × 32 × 32-voxel
microstructure under simple shear obtained using different
formulations. (b) Crystallographic textures represented in
pole figures. Main CEPFFT refers to the main crystal elasto-
viscoplasticity FFT method implemented using the separate
formulation and Modified CEPFFT refers to the crystal elasto-
viscoplasticity implementation using the integrated formula-
tion.

The local mechanical responses are also estimated. Plotted in Fig. 4.20 are

the stress fields computed by (a) the rigid visco-plasticity FFT on a 16 × 16 × 16-

voxel microstructure, (b) the main CEPFFT algorithm on a 16 × 16 × 16-voxel

microstructure, (c) the modified CEPFFT algorithm on a 32 × 32 × 32-voxel mi-

crostructure, (d) the modified CEPFFT algorithm on a 16 × 16 × 16-voxel mi-

crostructure, (e) the multi-grid CEPFFT on a 16 × 16 × 16-voxel microstructure

with irregular deformation, and (f) the finite element method on the microstruc-
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ture discretized by 16 × 16 × 16 elements. Consistent results are observed.

Figure 4.20: Stress contour plots of sheared microstructures evaluated by
different methods. (a) Crystal visco-plasticity fast Fourier
transform method (CVPFFT). (b) Crystal elasto-viscoplasticity
fast Fourier transform method (CEPFFT) implemented with
the main formulation with single-grid strategy. (c) CEPFFT
implemented in the modified formulation with single-grid
strategy on a 32 × 32 × 32-voxel microstructure. (d) CEPFFT
implemented in the modified formulation with single-grid
strategy. (e) CEPFFT implemented in the main formulation
with multi-grid strategy. (f) Crystal plasticity finite element
method (CPFEM).

4.3.3 Investigation of fatigue indicator parameters of IN100

In this subsection, we adapt the CEPFFT method to study fatigue properties of

Ni-based superalloys. The homogeneous constitutive model developed in [98]

for IN100 at high temperature (650◦C) is employed. The constitutive model has

been summarized in Section 2.2.4. According to this constitutive model, the

tangent plastic compliance as required by Eq. (4.29) can be derived as

Mp
t (x) =

dε̇p

dσ
=

Ns∑
α

(
dε̇p

dγ̇(α)

dγ̇(α)

dτ(α)

dτ(α)

dσ

)
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=

Ns∑
α

m(α)(x) ⊗m(α)(x)

γ̇1
n1

D(α)
λ

⟨ |τ(α)
λ − χ

(α)
λ | − κ

(α)
λ

D(α)
λ

⟩n1−1

+ γ̇2
n2

D(α)
λ

⟨ |τ(α)
λ − χ

(α)
λ |

D(α)
λ

⟩n2−1 , (4.51)

where γ̇1 and γ̇2 are constants related to the initial shearing rate, while n1 and

n2 quantify the inverse of the material rate sensitivity. τ(α)
λ , χ(α)

λ , and D(α)
λ are the

resolved shear stress, back force, and drag stress of slip system α, respectively,

with λ = {oct, cub} referring to the octahedral and cube slip systems, respectively.

The function ⟨x⟩ returns x if x > 0 and returns 0, otherwise.

The secant plastic modulus required by Eqs. (4.21) and (4.36) is taken to be

Cp =Mp−1
s with

Mp
s (x) =

Ns∑
α

m(α)(x) ⊗m(α)(x)

γ̇1
1

D(α)
λ

⟨ |τ(α)
λ − χ

(α)
λ | − κ

(α)
λ

D(α)
λ

⟩n1−1

+ γ̇2
1

D(α)
λ

⟨ |τ(α)
λ − χ

(α)
λ |

D(α)
λ

⟩n2−1 . (4.52)

With these relations, the algorithm proposed in Section 4.1 can be applied to

IN100 superalloy. The constitutive equations and parameters are the same as

Section 2.2 and detailed in [98, 109, 110]. The fatigue indicator parameters de-

fined in [109] are computed to measure the fatigue properties.

The same microstructure configuration as in the previous examples is used

and the initial texture is random. The volume fractions and sizes of γ′ precip-

itates are given by fp1 = 0, fp2 = 0.42, d2 = 108nm, fp3 = 0.11, d3 = 7nm. The

microstructure is subjected to a 3-loop cyclic loading (tension and compression

along the z-direction). The stress-strain response in the z-direction during the

3 loading loops is plotted in Fig. 4.21 with comparison to an FEM simulation

that adopts the same constitutive model. The CEPFFT models implemented in
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both the separate formulation and the integrated formulation are tested. The

single-grid update strategy is adopted. The microstructure input to the CEPFFT

simulation is discretized by 16 × 16 × 16 voxels to be consistent with the finite

element input (16 × 16 × 16 cubic elements). The CEPFFT simulations give sim-

ilar prediction to the stress-strain “loop” with the finite element model. Note

that the loop predicted by the main CEPFFT algorithm is wider than the loops

obtained from the FEM or the modified CEPFFT algorithm. The difference is re-

sulted from the different choice of the modulus for the homogeneous reference

medium.
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Figure 4.21: Stress-strain responses of three loops of cyclic loading com-
puted by CEPFFT and CPFEM. Main CEPFFT refers to the
main crystal elasto-viscoplasticity FFT method implemented
using the separate formulation, modified CEPFFT refers to the
crystal elasto-viscoplasticity implementation using the homo-
geneous elasto-viscoplastic medium approach, and CPFEM is
the crystal plasticity finite element method.

We next compute strain based fatigue indicator parameters (FIPs) related to

small crack formation and early growth [82]. The three fatigue indicator pa-

rameters of interest are the cumulative plastic strain per cycle (Pcyc), the Fatemi-

Socie parameter (PFS ), and the maximum range of cyclic plastic shear strain

parameter (Pmps). The definitions of these fatigue indicator parameters can be
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found in [109] and described in Section 2.2.4. Contour plots of fatigue indicator

parameters over the microstructure are plotted in Fig. 4.22. All fatigue indica-

tor parameters are computed for the last (3rd) loading loop. We observe that

the fatigue indicator parameters contour plots demonstrate similar patterns in

CEPFFT and crystal plasticity finite element simulations. The results predicted

by the main CEPFFT approach show more heterogeneity and are closer to fi-

nite element results than the modified CEPFFT model. Again, the difference

between the main and modified CEPFFT results comes from the fact that the

convergence rate of the latter is slower than the former, especially at the elasto-

viscoplastic transient region. During the simulation, we stop the iterative oper-

ation of the modified CEPFFT and continue to the next time step after it reaches

100 iterations.

Figure 4.22: Contour plots of fatigue indicator parameters fields. Main
CEPFFT results are placed in the top row, results from the
modified CEPFFT formulation are placed in the middle row,
and crystal plasticity finite element results are located in the
bottom row. (a) Pcyc, (b) PFS , (c) Pmps.

The convergence of the CEPFFT simulation with respect to resolution and
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the multi-grid effect are also tested for this fatigue problem. The fatigue indica-

tor parameters are plotted in Fig. 4.23. It is observed that the deformation het-

erogeneity does not affect significantly the fatigue indicator parameters fields

and the distortion of the microstructure is small since the total strain is small

for this problem. The finer microstructure (32 × 32 × 32 voxels) gives consistent

prediction to local fatigue indicator parameters with the coarse grid prediction,

while larger heterogeneity is captured.

Figure 4.23: Contour plots of fatigue indicator parameters fields evaluated
by the multi-grid CEPFFT on coarse microstructure (top row),
single-grid CEPFFT on coarse microstructure (middle row),
and single-grid CEPFFT on fine microstructure (bottom row).
(a) Pcyc, (b) PFS , (c) Pmps.

Grain level fatigue indicator parameters, namely the maximum and average

fatigue indicator parameters of voxels within individual grains [109] are also

extracted. Their distributions are shown in Fig. 4.24. The distributions com-

puted using the main CEPFFT based on the 16 × 16 × 16-voxel microstructure

are shown in (a). The ones computed using the main CEPFFT on the 32×32×32-

voxel microstructure are plotted in (b). The results of the integrated formulation
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of CEPFFT are depicted in (c), and the crystal plasticity finite element results are

given in (d). These results are obtained using the single-grid strategy. In the fig-

ure, the FIP with “max” prefix means the maximum value of the FIP of voxels

within an individual grain. The one with “ave” prefix indicates that it is the

average FIP over voxels within an individual grain. The distributions are nor-

malized by the maximum value of each FIP over all grains of the microstructure.

It is seen that the distributions of grain level fatigue indicator parameters pre-

dicted by the main CEPFFT on the finer microstructure are closer to the finite

element results. The ones predicted by the main CEPFFT on coarse microstruc-

ture are also close to the fine microstructure estimations.

The maximum and average FIP distributions predicted by the modified

CEPFFT (Fig.4.24 (c)) do not exhibit major difference, which is observed in the

main CEPFFT prediction (Fig.4.24 (a)). This is consistent with the contour plots

of the FIP fields (Fig. 4.22). The close maximum and average FIP distributions

shown in Fig. 4.24(c) imply that the intragranular heterogeneity of FIPs pre-

dicted by the modified CEPFFT formulation is weak. The main reason is that,

since the modulus for the modified formulation defined in Eq. (4.36) (with Mp

given by Eq. (4.52)) does not provide sufficiently good convergence rate, the

computation is stopped at each time step at the 100-th iteration. A more so-

phisticated modulus of the reference medium is therefore needed to resolve this

problem.
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Figure 4.24: Distribution of the fatigue indicator parameters among grains
computed by (a) Main CEPFFT with coarse microstructure, (b)
Main CEPFFT with fine microstructure, (c) Modified CEPFFT
with coarse microstructure and (d) crystal plasticity finite ele-
ment method. These distributions are normalized by the max-
imum values of each FIP over all grains.

4.3.4 Computational efficiency

The computational efficiency of the CEPFFT method is important since our

goal is to develop a highly efficient full-field simulator that can be adopted in

stochastic simulations as the deterministic solver to further study the probabilis-

tic nature of material properties. As mentioned before, with the employment of

fast Fourier transform to solve for local mechanical responses, the cumbersome

matrix inversion in finite element simulation is circumvented, which leads to

great improvement in the computation speed. The computation times for mi-

crostructures subjected to plane strain deformation up to 0.02 and 1 complete

loop of cyclic loading are reported in Table 4.1 and Fig. 4.25. The performance

of the simple shear simulation is very similar to the plane strain example and

is not demonstrated. In the plane strain test, the time increment adopted for
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the finite element simulation is ∆t = 0.25, which is smaller than that for the fast

Fourier transform simulation (∆t = 0.5), in order to reach convergence of the

time integration. In the cyclic loading test, the time step is reduced to ∆t = 0.1

for both cases considering the small strain range. All tests were run on the

Teragrid TACC Lonestar Linux Cluster. Each computation node contains two

Xeon Intel Hexa-Core 64-bit Westmere processors, the core frequency of which

is 3.33GHz. Single-grid morphology evolution strategy and main formulation

are adopted by all CEPFFT tests. The examples are conducted in both serial and

parallel computation. We observe that the CEPFFT simulation is much faster

than the crystal plasticity finite element method. Similar report on the com-

putation efficiency of FFT-based crystal plasticity methodology can be found

in [97].
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Figure 4.25: Computation times of simulations using different methods on
microstructures with different resolutions. (a) Plane strain de-
formation to 0.02 strain. (b) One complete loop of cyclic load-
ing of the IN100 microstructure. The computation times are
shown in logarithmic scale. In the figure, 1ProcCEPFFT-16P
means the CEPFFT simulation of a microstructure discretized
by 16 × 16 × 16 voxels using 1 processor and 1ProcCPFEM-
16E means the crystal plasticity finite element simulation of
a microstructure discretized by 16 × 16 × 16 elements using 1
processor.
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Table 4.1: Computation times for microstructures under plane strain and
cyclic deformations simulated using different methods. CPFEM
refers to crystal plasticity finite element method.

1-processor,

CEPFFT,

163-voxels

60-processors,

CEPFFT,

163-voxels

1-processor,

CEPFFT,

323-voxel

240-processors,

CEPFFT,

323-voxels

1-processor,

CPFEM,

163-elements

240-processors,

CPFEM,

163-elements

Plane strain 164s 5s 1309s 17s 12687s 154s

Cyclic loading 554s 16s 4385s 57s 29026s 348s

4.4 Conclusions

In this work, we developed an efficient FFT full-field model to investi-

gate elasto-viscoplastic properties of polycrystalline materials by interrogating

image-based realistic microstructures. The elastic and plastic responses were

computed separately. An integrated formulation was also proposed using a par-

ticular choice for the elasto-viscoplastic modulus. The predictive capability and

computational efficiency of the newly developed CEPFFT method were pre-

sented using numerical examples in comparison with a visco-plastic approach

and crystal plasticity finite element simulations. Error tests were conducted to

show the comparable performance of the basic and augmented Lagrangian al-

gorithms. The multi-grid strategy was implemented to predict the irregular de-

formation of the microstructure. The self-consistence (convergence with refin-

ing discretization) of the CEPFFT method was shown through simulations with

increasing resolution of the microstructure. Fatigue properties of Ni-based su-

peralloy microstructures described by fatigue indicator parameters were stud-

ied using the CEPFFT method. The main discoveries of this work are as follows:

1. The elastic response of the microstructure is successfully captured by
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CEPFFT. Fatigue properties of nickel-based superalloy microstructures

can be efficiently investigated using CEPFFT method. The computed re-

sults are comparable with those obtained from a crystal plasticity finite

element simulation.

2. The equilibrium error in simulations using the main formulation is compa-

rable to the one using the augmented Lagrangian algorithm and depends

on the resolution of the input image.

3. The CEPFFT model provides consistent prediction of the homogenized ef-

fective mechanical responses and local stress field with the finite element

and crystal visco-plasticity fast Fourier transform simulations. The crys-

tallographic texture patterns of microstructures under different deforma-

tion modes estimated by the three methods agree well.

4. The local strain fields obtained by the CEPFFT implementation agree very

well with visco-plastic results and have similar patterns with the crystal

plasticity finite element results.

5. The multi-grid strategy that uses separate computation and material grids

is adopted to predict the irregular configuration of deformed microstruc-

ture. It is observed that the heterogenous deformation does not result in

significant changes in the mechanical response for the tested examples in

comparison to the single-grid method.

6. The required computation time of CEPFFT is significantly less than that

of crystal plasticity finite element method since the methodology does not

require the solution of any matrix equations as in the FEM. This compu-

tational efficiency provides significant potential in integrating the FFT ap-

proach with stochastic multiscale materials simulations.
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7. Various CEPFFT formulations can be introduced. The approach high-

lighted in this paper computes separately the elastic and plastic fluctua-

tion responses. An integrated form with optimally designed modulus for

the homogeneous reference medium may further improve the computa-

tional efficiency.
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CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis, we studied the variability of mechanical properties/responses

of polycrystalline systems induced by microstructure uncertainties. The initial

given information was a number of microstructure samples generated through

certain pre-process and therefore have the same statistical constraints. Lin-

ear and nonlinear model reduction techniques were employed to construct

the low-dimensional surrogate model of the random microstructure feature

space. Taking the surrogate model as the input to the stochastic simula-

tion, new random samples can be efficiently generated and the uncertainty of

microstructure-sensitive material properties was quantified with the assistance

of proper physics-based deterministic simulations. The achievements of cur-

rent work include: (1) employment of PCA/KPCA and Isomap methods to

construct reduced-order model of random microstructure features at a single

material point; (2) development of bi-orthogonal decomposition scheme to re-

solve the “curse of dimensionality” in stochastic multiscale problems; (3) imple-

mentation of conventional crystal plasticity simulators based on Taylor and FE

methods; (3) development of an FFT-based full-field crystal plasticity solver to

efficiently and accurately evaluate elasto-viscoplastic behavior of realistic mi-

crostructures subjected to periodic deformation; (4) investigation of variability

of various mechanical properties/responses (stress-strain curve, fatigue indica-

tor parameters, stress distribution, etc.) induced by microstructure variations

by solving the stochastic partial differential equations using MC and/or ASGC

methodologies.
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The developments in the thesis set up the framework for efficient uncertainty

quantification of polycrystalline systems. However, there are still many open

areas require further research. Suggestions for the continuation of this study

are provided next.

5.1 Multiscale modeling of superalloy systems

A multiscale solver integrating mesoscale crystal plasticity constitutive model

with macroscale forging simulation has been developed in the current work

to study the effect of heterogeneous microstructures on the properties of the

final product. However, the mesoscale crystal plasticity model is still based

on continuum theory, which does not explicitly model the underlying phys-

ical behavior during plastic deformation. In order to make the simulation

more realistic, a multiscale framework that takes the microscale discrete dis-

location dynamics into consideration can be introduced. Over the past few

decades various discrete dislocation dynamics (DD) models have been devel-

oped [19, 20, 139, 111, 14]. While early works were limited to two-dimensions

(2D), recent research focuses on more realistic 3D simulation with the capability

of considering features like multiplication, dislocation intersection, cross-slip,

etc., which are crucial for the formation of dislocation patterns. This dislocation

dynamics approach is specially beneficial to superalloy systems, since the di-

rect modeling of dislocation structures and precipitates probes the underlying

mechanism of the strengthening effect of second phase precipitates. Mohles and

co-workers [90, 87, 91, 89, 88] have performed many simulations in which one

or more dislocations sweep across a glide plane intersected by many coherent

precipitates. Rao et al. followed this work and conducted simulations of a high-
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volume-fraction (40%) γ′ superalloy [99, 100]. The effects of precipitate shape,

volume fraction, and APB energy on the critical resolve shear stress (CRSS), and

further the yield strength, were studied. Recently, Vattré et al. [127] extended

Rao’s work to a higher, up to 70%, precipitate volume fraction. While in the pre-

vious studies, the DD simulations were carried out in 2D environment, Vattré’s

model was set up in 3D. Zbib and co-workers [135] also performed similar simu-

lations based on their 3D multi-scale discrete DD-FEM framework MDDP (mul-

tiscale dislocation dynamics plasticity) [138]. The future work could integrate

the DD approach into the current continuum simulation for more realistic mod-

eling of the physical system. The behavior of massive dislocations in the pre-

cipitate hardened superalloys should be studied. Uncertainties across different

scales are interested as well.

5.2 Uncertainty quantification with realistic polycrystalline mi-

crostructures

In the current uncertainty analysis, microstructures are represented using topo-

logical and crystallographic features such as sizes and orientations of con-

stituent grains. With the development of efficient full-field crystal plasticity fast

Fourier transform approach (Section 4) and robust model reduction techniques

[126, 12] (e.g. mixtures of principal component analyzers (MoPPCA) [124, 125]),

we are able to take realistic microstructures into stochastic simulation, in or-

der to provide more accurate prediction to material properties. However, the

complexity of the uncertainty quantification is increased as a trade-off. The key

problem is to find an appropriate representation for the realistic microstructure.
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The most straightforward representation of a microstructure is pixelized model

(here we use pixel for both 2D and 3D models) with each pixel associating with 3

parameters quantifying its crystallographic orientation. A vector that stores the

orientation parameters of all pixels becomes a point in the microstructure space.

The dimension of this pixelized model depends on its resolution, and is usually

very high-dimensional. Meanwhile, several unwelcome features come along

with this representation, especially when it is adopted for model reduction. For

example, the properties of a microstructure is mostly affected by its morpholog-

ical and crystallographic features that are determined by the relative position of

grains, while the pixelized model describes absolute positions of grains. There

is possibility that two microstructures share the same or very close underly-

ing features, such as grain size, shape, spatial distribution, orientation distri-

bution, misorientation distribution, etc., but exhibit different appearance in im-

age representation. These realizations with different appearance are essentially

identical in terms of microstructural features and properties. Treating them as

different microstructures is a waste of computation resource. The second prob-

lem associated with the pixelized representation is that the direct reconstruction

of microstructure images from reduced-order samples may give very vague or

unrealistic structures. This problems has been observed in two-phase materi-

als [58] and is worsen in the multi-phase (e.g. polycrystalline) situation. The

study of these unrealistic microstructures is meaningless and may produce mis-

leading properties. As a result, certain preprocessing needs to be conducted

before using the pixelized models in the stochastic simulation, so that the com-

putation is effective and efficient. A reconstruction technique is also needed

to find appropriate microstructure realizations corresponding to given reduced

representations. Another way of introducing realistic microstructures in the un-
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certainty quantification is to extract statistical features (e.g. n-point correlation

functions, orientation/misorientation distributions) from the original pixelized

model, and use them as the stochastic input. A reconstruction scheme is then

needed to produce realistic microstructure samples based on given statistical

features during stochastic simulation. The problem of this statistical represen-

tation is that the reconstruction error may be large and the reconstruction is

not unique. Considering the above issues, introducing realistic microstructure

into uncertainty analysis is an open research problem that is of great interest in

future research.

5.3 Advanced methodologies for uncertainty analysis, property

prediction and material design

Monte Carlo and adaptive sparse grid collocation are employed as the tools

to solve the stochastic problems in this thesis. It is known that MC method

becomes quickly intractable for complex problems in multiple random dimen-

sions and it has no control on the truncation error. ASGC has good perfor-

mance for problems with moderate input and output dimensions, but we find

that its application to high-dimensional problems (e.g. uncertainty quantifica-

tion of realistic polycrystalline microstructures) is sometimes problematic. In

addition, the model reduction sometimes leads to rapid variability of nearby

the microstructures. This large variability induces severe discontinuities in the

reconstructed input space which may lead to the fail of sparse grid colloca-

tion method. Therefore, developing alternative model reduction techniques

and SPDE solvers that are suitable for complex polycrystalline systems with
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high-dimensional input and output are of great interest. An idea is to cou-

ple the recently developed adaptive high-dimensional model representation ap-

proach [79] with ASGC to reduce further the curse of dimensionality in model-

ing complex systems. Bayesian regression methods [11] can also be considered

as an alternative way to give a reliable prediction to the variability of material

response/properties. Moreover, the current work focuses on the uncertainty

quantification of material properties/reponses induced by microstructure un-

certainties. Further research may give more attention to build efficient surro-

gate models for what-if analysis, which returns the expectation of output prop-

erties with possible variance corresponding to given input information. The

inverse problem estimating appropriate microstructure and environmental in-

put that result in observed mechanical properties/responses is also interested,

as it allows the design of microstructures and manufacture process to produce

materials having desired properties.
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[64] R. A. Lebensohn and C. N. Tomé. A self-consistent viscoplastic model:
prediction of rolling textures of anisotropic polycrystals. Materials Sci-
ence and Engineering: A, 175(1-2):71–82, 1994. NATO Advanced Research
Workshop on Polyphase Polycrystal Plasticity.
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[90] V. Mohles, D. Rönnpagel, and E. Nembach. Simulation of dislocation glide
in precipitation hardened materials. Computational Materials Science, 16(1-
4):144 – 150, 1999.

[91] Volker Mohles and E. Nembach. the peak- and overaged stages of par-
ticles strengthened materials: computer simulations. Acta Materialia,
49:2405–2417, 2001.

[92] A. Molinari, G. R. Canova, and S. Ahzi. A self consistent approach
of the large deformation polycrystal viscoplasticity. Acta Metallurgica,
35(12):2983–2994, 1987.

198



[93] H. Moulinec and P. Suquet. A fast numerical method for computing the
linear and nonlinear mechanical properties of composites. Comptes rendus
de l’Académie des sciences. Série II, Mécanique, Physique, Chimie, Astronomie,
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