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Summary

We report here on the work performed during the third year (october 2011 -
october 2012) of the contract FA 8655-10-C-4002 on Multiscale problems in
materials science: a mathematical approach to the role of uncertainty.

We recall that the bottom line of our work is to develop affordable numer-
ical methods in the context of heterogeneous, possibly stochastic materials.
Many partial differential equations of materials science indeed involve highly
oscillatory coefficients and thus small length-scales. When the microstructure
of the materials is periodic, or random and statistically homogeneous, homog-
enization theory can be used, and allows to appropriately define averaged
equations from the original oscillatory equations. The theoretical aspects of
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these problems are now well-understood, in general. On the other hand, the
numerical aspects have received less attention from the mathematics commu-
nity, in particular in the case of stationary ergodic random problems, which
are one instance often used for modelling uncertainty of continuous media.
In that latter case, standard methods available in the literature often lead to
very, and sometimes prohibitively, costly computations.

The situation is even more challenging when no structural assumption
(periodicity, statistical homogeneity, . . . ) on the materials microstructure
can be made. In the absence of such an assumption, homogenization theory
still holds, but does not provide any explicit formulae amenable (even pos-
sibly after some approximation) to numerical computation. One possibility
is then to directly address the original problem (rather than passing to the
limit of infinite scale separation), and to use dedicated numerical approaches
for such multiscale problems, such as, for instance, the Multiscale Finite
Element Method (MsFEM).

In this report, we first consider a variant of stochastic homogenization,
well suited to model materials that are periodic up to a random deformation.
We have already considered this variant in our previous report [3], but with a
perspective different from the one here. This variant admits a homogenized
limit. However, the homogenized matrix is expensive to compute, as is often
the case in stochastic homogenization. We propose here an efficient MsFEM
type approach dedicated to that setting.

We next turn to studying the robustness of the MsFEM approach to
perturbations of the equation coefficients that are non oscillatory. Our idea
is that MsFEM approaches are devoted to capturing the highly oscillatory
modes of the solution, which are poorly captured by a standard FEM ap-
proach using a limited number of degrees of freedom. When the coefficient in
the equation is modified by a non-oscillatory component, the high frequencies
are not modified, and the MsFEM approach can be expected to be robust
with respect to these perturbations. This is exactly the question we consider
in the second part of this report.

The works described below have been performed by Claude Le Bris (PI),
Frédéric Legoll (Co-PI) and Florian Thomines (third year Ph.D. student).

2
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1 Introduction

During this third year of contract, we have pursued our effort on developing
affordable numerical methods in the context of stochastic homogenization.

Many partial differential equations of materials science indeed involve
highly oscillatory coefficients and small length-scales. Homogenization the-
ory is concerned with the derivation of averaged equations from the original
oscillatory equations, and their treatment by adequate numerical approaches.
Stationary ergodic random problems are one of the most famous instances of
mathematical uncertainty of continuous media.

The purpose of this report is to present the recent progress we have made
on this topic, with the aim to make numerical random homogenization more
practical. As already mentioned in our two previous reports, because we
cannot embrace all difficulties at once, the case under consideration here
is a simple, linear, scalar second order elliptic partial differential equation
in divergence form, for which a sound theoretical groundwork exists. We
focus here on the different manners the problem can be handled from the
computational viewpoint.

In this report, we are concerned with various questions related to the
MsFEM approach. We recall that this is one approach (among others, see
e.g. [13] for an alternative) to address highly oscillatory problems when the as-
sumptions needed by the homogenization theory on the materials microstruc-
ture (such as periodicity, statistical homogeneity, . . . ) are not met. We have
already contributions extending the range of applicability of that approach,
see our publication [4] and the previous reports [2, Section 4] and [3, Section
3].

We begin, in Section 2, with a brief description of periodic homogenization
and the MsFEM approach in a deterministic setting. The only purpose of
that section is the consistency of this report.

In Section 3, we consider a variant of stochastic homogenization, intro-
duced by the PI and co-workers in [9, 10] some years ago. This model is
adequate to represent materials that are random deformations of a perfect
periodic material. A typical example is a composite material with fibers.
Fibers are all identical, they would be located on a periodic lattice in the
ideal situation. However (for instance as a consequence of the manufacturing
process), their actual positions are now random. In our previous report [3,
Section 5], we have presented and analyzed a procedure to practically ap-

3
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proximate the homogenized matrix. In this report, we propose a MsFEM
type approach to compute an approximation of the solution to the original
highly oscillatory problem. Although the setting is stochastic, it turns out
that the approach we propose does not require the recomputation of the Ms-
FEM basis functions for each new realization of the material. This is why
the proposed approach is much less expensive than the natural adaptation of
the MsFEM approach to the stochastic problem at hand. The performance
of the approach is illustrated by some numerical tests, which demonstrate
the accuracy of the computed approximation.

In Section 4, we next turn to a question which is originally motivated by
inverse problems in multiscale science. Assume that we model our hetero-
geneous materials with the oscillatory coefficient b(x)Aε(x), and that we do
not have a good knowledge of b. This situation corresponds to the case when
we accurately know the properties of our materials, up to a slowly varying,
macroscopic envelop. Otherwise stated, the high frequency modes are well
identified, but the way they change over macroscopic distances is not well
characterized. One possibility to define a relevant b is to search for b so
that the homogenized properties of the materials are as close as possible to
the ones that are observed in practice. We thus want to optimize on b, and
are thus going to iterate on this function, until we find the best one. For
each iterate, we need to very efficiently compute the corresponding homog-
enized properties or the homogenized solution (because such a computation
is needed at each iteration of the optimization loop). In the specific setting
considered here, the high frequency modes are independent of b, since b is
only slowly varying. We thus expect that the MsFEM approach, which aims
at properly taking into account the high frequencies present in the problem,
should be insensitive to the choice of b. Otherwise formulated, we expect the
MsFEM basis functions to be robust with respect to modifications on b. In
Section 4.1, we consider the above case where the coefficient reads b(x)Aε(x),
and indeed show that the MsFEM basis functions can be computed indepen-
dently of b. As shown in Section 4.2, the situation is different, and more
challenging, when the coefficient reads b(x) + Aε(x). For that latter case,
we propose an approximation strategy based on Proper Generalized Decom-
position ideas, and numerically demonstrate its efficiency. For the sake of
simplicity, and because again we cannot embrace all difficulties at once, we
only consider deterministic models in that Section 4.

4
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We eventually collect in Section 5 some possible future directions of re-
search that we may consider if EOARD decides to renew our funding.

2 Periodic homogenization and MsFEM ap-

proaches

[Detailed presentation can be read in [1, 2].]

For the consistency of this report, we recall in this section some ground-
work on periodic homogenization and on related approaches for deterministic,
non necessarily periodic, heterogeneous materials. More details can be read
in our first report [2] and references therein, and also in the review article [1]
that we published.

The problem under consideration writes

−div [Aε(x)∇uε] = f(x) in D, uε(x) = 0 on ∂D, (1)

where D is a regular, bounded domain in R
d, and where, for any ε, the matrix

Aε is symmetric, bounded and definite positive. The parameter ε encodes the
typical size of the heterogeneities. We manipulate for simplicity symmetric
matrices, but the discussion carries over to non symmetric matrices up to
slight modifications.

2.1 Periodic homogenization

Assume that, in (1), the matrix Aε reads

Aε(x) = Aper

(x
ε

)
(2)

where the matrix Aper is symmetric definite positive and Z
d-periodic. In

this framework, it is well known that, as ε → 0, the solution uε to (1)–(2)
converges to u⋆ solution to the homogenized problem

−div
[
A⋆

per∇u
⋆
]

= f(x) in D, u⋆(x) = 0 on ∂D, (3)

where the homogenized matrix A⋆
per reads

∀1 ≤ i, j ≤ d,
[
A⋆

per

]
ij

=

∫

Q

(ei +∇wei
)T Aper

(
ej +∇wej

)
, (4)

5
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where Q = (0, 1)d and where, for any p ∈ R
d, the so-called corrector wp is

the (unique up to the addition of a constant) solution to
{
−div [Aper (p+∇wp)] = 0 on R

d,

wp is Z
d-periodic.

(5)

The practical interest of the approach is evident. No small scale ε is present
in the homogenized problem (3). At the price of only computing d peri-
odic problems (5) (as many problems as dimensions in the ambient space),
the solution to (1)–(2) can be efficiently approached for ε small. In con-
trast, a direct attack of (1)–(2) would require taking a meshsize smaller than
ε, to appropriately capture the variation of the materials properties at the
microstructure scale. The difficulty has been circumvented.

2.2 MsFEM approach

The homogenization result recalled in Section 2.1 heavily relies on the pe-
riodicity assumption (2). Although it is possible to somewhat relax this
assumption and still obtain explicit formulae for the homogenized matrix,
there are many cases of practical interest for which the existence of a homog-
enized matrix is known, but no explicit formulae are available. For practical
purposes, alternative approaches are needed.

The Multiscale Finite Element Method (MsFEM approach) is one such
approach (note that other approaches have also been proposed within the
same paradigm, we refer e.g. to [13]). The MsFEM is designed to directly
address the original problem (1) by performing a variational approximation
using pre-computed basis functions χε

i that are adapted to the problem. The
method is not restricted to the periodic setting, in contrast to the homog-
enization theory recalled above. We do not assume that (2) holds. In the
sequel, we briefly describe the approach, and refer to our publication [4] (see
also [5]) for more details and comprehensive numerical tests.

In the sequel, we argue on the variational formulation of (1):

Find uε ∈ H1
0 (D) such that, ∀v ∈ H1

0(D), Aε(u
ε, v) = b(v), (6)

where

Aε(u, v) =

∫

D

(∇v(x))TAε(x)∇u(x) dx and b(v) =

∫

D

f(x)v(x) dx.

We introduce a classical P1 discretization of the domain D, with L nodes,
and denote χ0

i , i = 1, . . . , L, the basis functions.

6
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Definition of the MsFEM basis functions Several definitions of the
MsFEM basis functions have been proposed in the literature (see e.g. [16,
14, 11]). They give rise to different variants of the method. In the following,
we present one of these variants. For any finite element (e.g. triangle) K, we
consider the problem

{
−div

(
Aε(x)∇χε,K

i

)
= 0 in K,

χε,K
i = χ0

i |K on ∂K.
(7)

By construction, these functions χε,K
i , that are numerically precomputed,

encode the fast oscillations present in (1).
Note the similarity between (7) and the corrector problem (5). Note also

that the problems (7), indexed by K, are all independent from one another.
They can hence be solved in parallel, using a discretization adapted to the
small scale ε.

Macro scale problem We now introduce the finite dimensional space

Wh := span {χε
i , i = 1, . . . , L} ,

where χε
i is such that χε

i |K = χε,K
i for all K, and proceed with a standard

Galerkin approximation of (6) using Wh:

Find uε
h ∈ Wh such that, ∀v ∈ Wh, Aε(u

ε
h, v) = b(v). (8)

The function uε
h is the MsFEM approximation of the exact solution uε. Note

that the dimension of Wh is equal to L: the formulation (8) hence requires
solving a linear system with only a limited number of degrees of freedom.

Numerical illustration In order to illustrate the MsFEM approach, we
solve (1) in a one dimensional setting with

Aε(x) = 5 + 50 sin2
(πx
ε

)
,

on the domain D = (0, 1), with ε = 0.025 and f = 1000. We subdivide the
interval (0, 1) in L = 10 elements. On Figure 1, we plot the MsFEM basis
functions in a reference element and the MsFEM solution uε

h.

7
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Figure 1: Left: Multiscale basis functions χε,K in the reference element.
Right: MsFEM solution uε

h in the domain (0, 1).

3 A MsFEM type approach for a variant of

stochastic homogenization

[Work expanded in [5].]

As announced in the conclusion of our previous report [3], we consider
here a variant of the classical setting of stochastic homogenization, originally
introduced a few years ago in [9, 10], and propose for that variant a MsFEM
type approach. We briefly review the problem under consideration, before
recalling the corresponding homogenization results and eventually describing
our contribution.

3.1 A variant of stochastic homogenization and its ho-
mogenized limit

The equation under consideration is

−div
[
A
(x
ε
, ω
)
∇uε

]
= f(x) in D, uε(x, ω) = 0 on ∂D, (9)

where the matrix A is the composition of a Z
d periodic matrix Aper with a

stochastic diffeomorphism Φ:

A
(x
ε
, ω
)

:= Aper

[
Φ−1

(x
ε
, ω
)]
. (10)

We assume that, almost surely, the map Φ(·, ω) is a well-behaved diffeomor-
phism from R

d to R
d (in the sense that EssInfω∈Ω,x∈Rd (det(∇Φ(x, ω))) = ν >

8
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0 and EssSupω∈Ω,x∈Rd |∇Φ(x, ω)| = M < +∞), and that it satisfies

∇Φ is stationary. (11)

Formally, such a setting is well suited to model materials that are periodic,
in a given reference configuration. The latter is only known up to a cer-
tain randomness. Materials we have in mind are ideally periodic materials,
where some random deformation (modelled by Φ) has been introduced, for
instance during the manufacturing process. Assumption (11) means that ∇Φ
is statistically homogeneous, i.e. the randomness is the same anywhere in
the material. We refer e.g. to [2, Section 2.2] for a brief discussion of the
notion of stationarity in the context of random homogenization.

The problem (9)-(10) admits a homogenized limit when ε vanishes. It is
indeed shown in [9] that, under the above assumptions, the solution uε(·, ω)
to (9)-(10) converges as ε goes to 0 to u⋆, solution to the deterministic ho-
mogenized problem

−div [A⋆∇u⋆] = f(x) in D, u⋆(x) = 0 on ∂D.

The homogenized matrix A⋆ is given by, for any 1 ≤ i, j ≤ d,

A⋆
ij = det

(
E

(∫

Q

∇Φ(y, ·)dy

))−1

×

E

(∫

Φ(Q,·)

eT
i Aper

(
Φ−1 (y, ·)

) (
ej +∇wej

(y, ·)
)
dy

)
,

where Q = (0, 1)d and where, for any p ∈ R
d, wp solves the corrector problem





−div
[
Aper

(
Φ−1(y, ω)

)
(p+∇wp(y, ω))

]
= 0 in R

d,

wp(y, ω) = w̃p

(
Φ−1(y, ω), ω

)
, ∇w̃p is stationary,

E

(∫

Φ(Q,·)

∇wp(y, ·)dy

)
= 0.

(12)

3.2 A MsFEM-type approach

Our aim here is to propose a MsFEM-type approach for (9)-(10). One mo-
tivation is that, as is standard in stochastic homogenization, the corrector

9

Distribution A:  Approved for public release; distribution is unlimited.



problem (12) is set on the complete space R
d, and is thus challenging to solve

in practice.
Note that efficient MsFEM approaches are not easy to derive in stochastic

settings, when the equation of interest writes in the general form

−div [Aε(x, ω)∇uε(x, ω)] = f(x) in D, uε(x, ω) = 0 on ∂D. (13)

As pointed out in our first report (see [2, Section 4.1]), a natural adapta-
tion of the deterministic MsFEM approach presented in Section 2.2 to the
problem (13) would involve computing, for each new random realization of
the matrix Aε(x, ω), new highly oscillatory basis functions (see indeed (7)).
This is prohibitively expensive. However, in particular settings, dedicated
MsFEM-type approaches can be proposed. We have considered in our pre-
vious reports (see [2, Section 4.2] and [3, Section 3]) a weakly-stochastic
setting, where the random matrix Aε(x, ω) in (13) is a small perturbation of
a deterministic matrix, and proposed for that particular setting an appropri-
ate and efficient MsFEM approach (see our publication [4]). In what follows,
we consider the particular setting (9)-(10), and use in an essential manner
the fact that it is built upon a periodic matrix, randomly deformed.

We know from (12) that the expectation of w̃p is a Z
d periodic function.

Our approach is based on approximating the corrector w̃p in (12) by a periodic
function w̃per

p .

To proceed, it is useful to write the corrector problem (12) in a variation-
nal form. As shown in [9], we have that

E

[∫

Φ(Q,·)

(∇ψ(y, ω))TAper

(
Φ−1(y, ω)

)
(p+∇wp(y, ω))dy

]
= 0

for all ψ̃ stationary, and where ψ = ψ̃ ◦ Φ−1. The above expression can be
rewritten, after a change of variables, as

E

[∫

Q

det(∇Φ)
(
∇ψ̃
)T

(∇Φ)−1Aper

(
p+ (∇Φ)−T∇w̃p

)]
= 0.

We introduce the notation Φ = E(Φ). Our idea is to approximate the random
function w̃p by a Z

d periodic function w̃per
p , solution to

∫

Q

det
(
∇Φ
) (
∇ψ̃
)T (
∇Φ
)−1

Aper

(
p+

(
∇Φ
)−T
∇w̃per

p

)
= 0 (14)

10
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for all functions ψ̃ that are Z
d-periodic. Note that w̃per

p is uniquely defined
(up to the addition of a constant) by the above problem.

Remark 1 In general, the function w̃p is not periodic. An explicit counter-
example is given in [9]. In the numerical tests below, we will consider that
particular example, and show that our approach yields accurate results even
in that difficult case. See also Remark 4 below.

Definition of the basis functions As in Section 2.2, we introduce a
classical P1 discretization of the domain D, with L nodes, and denote χ0

i ,
i = 1, . . . , L, the basis functions. We denote

Vh := Span(χ0
i )

the associated finite dimensional space.
Let w̃per

p be a solution to (14). We set

wapp
p (x, ω) := w̃per

p

(
Φ−1(x, ω)

)
(15)

and introduce the vector W (x, ω) ∈ R
d, whose components are given by

Wj(x, ω) = eT
j W (x, ω) := wapp

ej
(x, ω), 1 ≤ j ≤ d.

The highly oscillatory basis functions are defined by

χε
i (x, ω) := χ0

i

(
x+ εW

(x
ε
, ω
))

, 1 ≤ i ≤ L.

Remark 2 In the case when Φ(x, ω) = x, the problem (9)-(10) under con-
sideration is exactly the highly oscillatory problem (1)-(2), with a periodic
matrix coefficient. In that case, the approach proposed above is identical to
the MsFEM-type approach proposed in [11] to address (1)-(2).

Macro scale problem We introduce the finite dimensional space

Wh := Span(χε
i )

and proceed with a Petrov-Galerkin approximation of (9)-(10). The numer-
ical approximation uε

h ∈ Wh is defined as the unique solution to the weak
formulation

∀v ∈ Vh,

∫

D

(∇v(x))TAper

(
Φ−1

(x
ε
, ω
))
∇uε

h(x, ω) dx =

∫

D

f(x)v(x) dx.

(16)

11
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The main feature of the proposed approach is that, although the highly
oscillatory basis functions χε

i are stochastic (and thus depend on the realiza-
tion of the random material), we actually do not have to solve a new problem
for each new realization of the material (i.e., for each new realization of the
diffeomorphism Φ) to compute these basis functions. The basis functions are
indeed given by (15), where the deterministic function w̃per

p has been pre-
computed. For each new realization, we thus only have to evaluate the new
basis functions. This is the main advantage in terms of cost in comparison
with a natural application of the MsFEM approach on the problem (9)-(10).

Note that, for each new realization of the material, we have to recompute
the stiffness matrix of the problem, which is given by

Kij(ω) =

∫

D

(∇χ0
i (x))

TAper

(
Φ−1

(x
ε
, ω
))
∇χε

j(x, ω) dx, 1 ≤ i, j ≤ L.

A natural adaptation of the MsFEM approach on the problem (9)-(10) would
also involve recomputing the stiffness matrix for each new realization.

Remark 3 We have chosen in (16) to perform a Petrov-Galerkin approxi-
mation of the problem, where the space Vh of the test functions v is different
from the space Wh of the numerical solution uε

h. It is also possible to use a
Galerkin approximation, which yields results the accuracy of which is similar,
although not as good, as the results presented below.

Some elements of analysis in a one-dimensional setting In the one-
dimensional setting, the corrector problem (12) reads






−
d

dy

[
Aper

(
Φ−1(y, ω)

)(
1 +

dw

dy
(y, ω)

)]
= 0 in R,

w(y, ω) = w̃
(
Φ−1(y, ω), ω

)
,

dw̃

dy
is stationary,

E

(∫

Φ(Q,·)

dw

dy
(y, ·)dy

)
= 0.

(17)

This problem can be analytically solved, and we obtain that

dw

dy
(y, ω) =

C

Aper(Φ−1(y, ω))
− 1,

12

Distribution A:  Approved for public release; distribution is unlimited.



where C is a deterministic constant given by

1

C
=

1

E

(∫ 1

0
Φ′(y, ·)dy

)E

(∫ 1

0

1

Aper(y)
Φ′(y, ·)dy

)
. (18)

Since w̃(y, ω) = w(Φ(y, ω), ω), we compute by the chain rule that

dw̃

dy
(y, ω) =

dΦ

dy
(y, ω)

dw

dy
(Φ(y, ω), ω) =

dΦ

dy
(y, ω)

(
C

Aper(y)
− 1

)
. (19)

We have now completely characterized the solution to the corrector prob-
lem (17). We next turn to the problem (14) that we introduced in our
MsFEM-type approach. In the one-dimensional setting, this problem reads

∫ 1

0

dψ̃

dy
Aper

(
1 +

(
dΦ

dy

)−1
dw̃per

dy

)
= 0

for all functions ψ̃ that are Z-periodic. Again using the specificities of the
one-dimensional setting, we can analytically solve this problem, and obtain
that

dw̃per

dy
=
dΦ

dy

(
C

Aper
− 1

)
(20)

where the constant C is again given by (18). Comparing (19) and (20), we
see that the exact corrector w̃ and our approximate solution w̃per are related
by

dw̃per

dy
= E

(
dw̃

dy

)
.

This somehow shows the consistency (at least in the one-dimensional setting)
of our approximate problem (14). Note however that the one-dimensional
case may be misleading in that respect, as it is the only case where the
gradient of the corrector wp solution to (12) is of the form of “ a periodic
function composed with the diffeomorphism Φ−1”. In general, this is not
the case, as explicitly pointed out in [9]. Numerical tests are therefore of
paramount importance to validate the approach.

Numerical tests We have considered the problem (9)-(10) on the domain
D = (0, 1)2, for two test cases represented on Figure 2. In both cases, the

13
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periodic matrix Aper represents hard inclusions in a soft material. In the
first test case (top row of Figure 2), inclusions have a circular shape, and
the diffeomorphism Φ−1 corresponds to a translation of these inclusions by
a random vector. More precisely, on each cell k +Q (with Q = (0, 1)d), the
function Φ−1 is a translation by a random vector Xk(ω) ∈ R

2. The random
variables Xk are independent and identically distributed. In the second case
(bottom row of Figure 2), inclusions have a T shape, and the diffeomorphism
Φ−1 corresponds to a rotation of these inclusions by a random angle θ, which
can take four values, with equal probability: θ = 0, π/2, π or 3π/2.

Remark 4 The second test case is inspired by (and the resulting function Φ
is very close to) the counter-example discussed in [9]. It is shown there that,
for this counter-example case, the gradient of the corrector wp solution to (12)
is not of the form of “ a periodic function composed with the diffeomorphism
Φ−1”. Despite this fact, we show below that the ansatz (15) (and the resulting
MsFEM-type approach described above) actually yields accurate results (see
the second line of Table 1).

Figure 2: Left: the periodic material modelled by Aper. Right: a realization
of Aper(Φ

−1). Top row: Φ is a translation of circular inclusions. Bottom row:
Φ is a rotation of T-shaped inclusions.

14

Distribution A:  Approved for public release; distribution is unlimited.



We work with the parameters ε = 0.025 and H = 1/30. The error
between two random functions u1 and u2 is defined by

e(u1, u2) = E

(
‖∇u1 −∇u2‖L2(D)

‖∇u2‖L2(D)

)
. (21)

We have considered 30 realizations of Φ and approximated the above expec-
tation as an empirical mean over these 30 realizations.

In Table 1, we compare the exact solution uε(·, ω) of (9)-(10) (computed
using a finite element method with a fine mesh of size h = ε/40 adapted to
the small scales present in the problem) with the approximation uBLL(·, ω)
obtained using the approach described above and with the approximation
uMsFEM(·, ω) obtained using the standard MsFEM approach (as described
in Section 2.2), with the recomputation of the basis functions for each new
realization of Φ.

Of course, the computational cost to obtain many realizations of uBLL is
much smaller than that to obtain the same number of realizations of uMsFEM.
In the former case, and in contrast to the latter case, we do not have to
recompute the highly oscillatory basis functions. On the other hand, our
approach being a MsFEM type approach, the error uε − uMsFEM seems to
be the best error we can achieve. It is thus natural to compare the error we
obtain, that is uε − uBLL, with that “reference” error.

Example e(uε, uMsFEM) e(uε, uBLL) e(uMsFEM, uBLL)
Translation 7.26% 10.38% 9.33%
Rotation 9.34% 10.58% 8.63%

Table 1: Errors (21) for the two test cases considered.

We observe that, for both test cases, the error e(uε, uBLL) is of the same
order as the reference error e(uε, uMsFEM). Our approach thus yields an ap-
proximation uBLL which is as accurate as the approximation uMsFEM provided
by a standard MsFEM approach, for a much smaller computational cost.
Note also that the order of the error observed here (of 7 to 10 % in the H1

norm) is the standard order obtained with MsFEM approaches (see e.g. [2,
Section 4.2, Table 2]).

These first numerical results are encouraging. Note however that they
both correspond to the specific case where ∇Φ is piecewise constant. Definite
conclusions on the interest of the approach yet need to be obtained, e.g. using
test cases with more complex diffeomorphisms Φ.

15
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4 Robustness of the MsFEM approach to a

macroscopic perturbation of the diffusion

coefficient

[Work expanded in [5].]

This section is devoted to a preliminary study of the following question.
Assume that we know the corrector wp associated to a periodic coefficient
Aper by the corrector problem (5). Is it possible, using wp, to approximate
the corrector w̃p associated to a macroscopic perturbation of Aper? Other-
wise formulated, once we know how to homogenize (1) with the coefficient

Aε(x) = Aper

(x
ε

)
, is it possible to efficiently homogenize (1) for the highly

oscillatory matrix Ãε(x) = b(x)Aper

(x
ε

)
, or Ãε(x) = b(x) +Aper

(x
ε

)
? Note

that, in both cases, the difference between Ãε(x) and Aε(x) only comes from
a function b that has no small scale oscillation (thus the terminology “macro-

scopic perturbation”). In particular, the high frequencies present in Ãε(x)
are identical to the high frequencies present in Aε(x). This is the reason
why we expect that, once we have resolved these highly oscillatory modes for
Aε(x), we may deduce the highly oscillatory modes of Ãε(x).

Remark 5 The same question may be asked for the MsFEM highly oscil-
latory basis functions, rather than the periodic corrector. See Section 4.2
below.

A motivation for this question is the following optimization problem.
Assume that we model our material with some coefficient matrix Aε(x) =

Aper

(x
ε

)
+b(x), that we know that the highly oscillatory component is accu-

rate, and that we want to optimize on the macroscopic component b in order
to reproduce with this model some known results (such as experimental data)
on the homogenized behavior. In the optimization loop, we need to compute,
for each new trial value of the function b, the homogenized coefficient. For
the sake of efficiency, we thus need to perform this homogenization procedure
with a computational cost as small as possible.
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4.1 Multiplicative pertubation

As a first step, we consider a multiplicative perturbation. The coefficient
Ãε(x) reads

Ãε(x) = b(x)Aper

(x
ε

)
, (22)

where b is a scalar-valued function. The problem under consideration then
reads

−div
[
b(x)Aper

(x
ε

)
∇uε(x)

]
= f(x) in D, uε = 0 on ∂D. (23)

When ε → 0, the function uε converges to u⋆, solution to the homogenized
problem

−div [A⋆(x)∇u⋆] = f(x) in D, u⋆(x) = 0 on ∂D,

where the homogenized matrix is given by A⋆(x) = b(x)A⋆
per, where A⋆

per

is defined by (4)-(5). In this case, the corrector associated to Ãε(x) =
b(x)Aper(x/ε) is identical to the corrector associated to Aε(x) = Aper(x/ε).

In a MsFEM context, we have the same type of result. As in Section 2.2,
introduce the P1 finite element space Vh = Span(χ0

i , 1 ≤ i ≤ L). Compute
the highly oscillatory basis function χε

i by solving (7). These functions are
therefore independent of the macroscopic function b. We next introduce the
MsFEM space Wh = Span(χε

i , 1 ≤ i ≤ L), and perform a Galerkin approx-
imation of (23) using the space Wh. Because of the specific structure (22),
such an approach provides an approximation of uε solution to (23) whose
accuracy is essentially independent of b. For each new trial function b, we do
not have to recompute the MsFEM basis functions.

4.2 Additive pertubation

We now consider an additive perturbation, in the sense that the coefficient
Ãε(x) reads

Ãε(x) = b(x) + Aper

(x
ε

)
. (24)

We do not assume that b is much larger, or much smaller, than Aper. The

ratio
‖b‖L∞

‖Aper‖L∞
is of the order of one.
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For the sake of simplicity, consider first the case when b is a constant
function. The corrector equation associated to the coefficient (24) then reads

{
−div[(Aper(y) + b) (p+∇w̃p(y))] = 0 on R

d,
w̃p is Z

d-periodic.

As can be seen on the one-dimensional case, there is no relation between w̃p

and the corrector wp associated to the coefficient Aε(x) = Aper(x/ε), which
solves (5). This case is such much more challenging than the case considered
in Section 4.1. In what follows, we propose a numerical approach, based on
a tensor-product decomposition, to address this setting.

Principle In the sequel, we consider coefficients of the form

Aε(x, µ) = Aε
0(x) + µb(x), x ∈ D, µ ∈ Λ, (25)

where Λ ⊂ R
p is a bounded open set. The coefficient Aε(x, µ) is thus equal to

the highly oscillatory coefficient Aε
0(x), up to the addition of a macroscopic,

non oscillatory function µb(x). We do not assume that Aε
0(x) is periodic, and

therefore put ourselves in the MsFEM context. Our aim is to efficiently com-
pute the highly oscillatory basis functions χε

i (x, µ), solution, in each element
K, to

−div [Aε(x, µ)∇χε
i (x, µ)] = 0 in K, χε

i (x, µ) = χ0
i (x) on ∂K, (26)

where χ0
i are the standard P1 finite element basis functions. In turn, the

functions χε
i (x, µ) will be used to perform a Galerkin approximation of the

problem

−div [Aε(x, µ)∇uε(x, µ)] = f(x) in D, uε(·, µ) = 0 on ∂D, (27)

for many values of the parameter µ ∈ Λ.
This question has been addressed in [15], where an approach based on the

expansion of χε
i (x, µ) in terms of a Neumann series is proposed. Our approach

is different, and consists in adapting the Proper Generalized Decomposition
(PGD) technique [17, 12, 19, 18] to the current context. More precisely, we
are going to approximate χε

i , function of the two variables x and µ, as a sum
of products of a function depending only on x by a function depending only
on µ.

18

Distribution A:  Approved for public release; distribution is unlimited.



We now proceed in details. We first change of unknown function and
define

vε,K
i = χε

i |K − χ0
i

∣∣
K
. (28)

We infer from (26) that

−div
[
Aε(x, µ)

(
∇χ0

i (x) +∇vε,K
i (x, µ)

)]
= 0 in K, vε,K

i (x, µ) = 0 on ∂K.

(29)
The advantage of considering vε,K

i is that this function satisfies homogeneous
boundary conditions on ∂K, in contrast to χε

i . Our approach is based on the
assumption that vε,K

i (x, µ) writes as follows:

vε,K
i (x, µ) ≈

N∑

j=1

gi,j(µ) f ε,K
i,j (x) (30)

for a small number of terms N , where the functions µ 7→ gi,j(µ) are indepen-

dent of x and the functions x 7→ f ε,K
i,j (x) are independent of µ. Once these

functions have been identified, computing the basis functions χε
i (·, µ) for any

value of µ just amounts to evaluating N functions of µ using (28) and (30),
rather than solving the partial differential equations (26).

Algorithm The functions gi,j(µ) and f ε,K
i,j (x) are iteratively defined. As-

sume that they have been built for any j ≤ k − 1. To build gi,k and f ε,K
i,k ,

we introduce two variational formulations. The first one consists in finding
f ε,K

i,k ∈ H
1
0 (K) solution to

∀w ∈ H1
0 (K), Ak(f

ε,K
i,k , w) = −Fk(w), (31)

with

Ak(f
ε,K
i,k , w) =

∫

K

∫

Λ

(
Aε(x, µ)∇f ε,K

i,k (x) · ∇w(x)
)
g2

i,k(µ) dx dµ

and

Fk(w) =
∫

K

∫

Λ

(
Aε(x, µ)

(
∇χ0

i (x) +

k−1∑

j=1

gi,j(µ)∇f ε,K
i,j (x)

)
· ∇w(x)

)
gi,k(µ) dx dµ.
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Note that it is natural to look for f ε,K
i,k in the space H1

0 (K), since vε,K
i satisfies

homogeneous Dirichlet conditions on ∂K.
The second variational formulation consists in finding gi,k ∈ L

2(Λ) such
that

∀h ∈ L2(Λ), Bk(gi,k, h) = −Rk(h), (32)

where

Bk(gi,k, h) =

∫

K

∫

Λ

(
Aε(x, µ)∇f ε,K

i,k (x) · ∇f ε,K
i,k (x)

)
gi,k(µ)h(µ) dx dµ

and

Rk(h) =
∫

K

∫

Λ

(
Aε(x, µ)

(
∇χ0

i (x) +

k−1∑

j=1

gi,j(µ)∇f ε,K
i,j (x)

)
· ∇f ε,K

i,k (x)

)
h(µ) dx dµ.

Note that the two variational formulations (31) and (32) are coupled,
as they both involve the unknown functions f ε,K

i,k and gi,k. However, each
unknown function only depends on one variable (x or µ). Solving these two
coupled problems is expected (and this is indeed the case) to be easier than
solving a single problem on a function depending on both variables x and
µ. One possibility to solve (31) and (32) is to use the following iterative
algorithm. Let η be the accuracy we wish to reach and let e denote the error.
We proceed as follows:

1. Initialization: set e = 1 and gi,k(µ) = 1/
√
|Λ|, so that ‖gi,k‖L2(Λ) = 1.

2. Iterate:

(a) set T = gi,k(µ);

(b) find f ε,K
i,k solution to (31);

(c) find gi,k solution to (32);

(d) multiply the function gi,k by a constant such that its L2 norm is

equal to 1: gi,k ← gi,k/
√∫

Λ
g2

i,k;

(e) compute the difference e =

∫

Λ

(gi,k−T )2 between the new and the

old iterate;
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(f) if e > η, go back to Step 2a.

In practice, at Steps 2b and 2c, both problems (31) and (32) can be solved
by classical methods. For instance, we can discretize the bounded domain
Λ ⊂ R

p and use a finite element method to solve (32), and likewise for (31).

Assume now that the functions gi,k and f ε,K
i,k have been computed on each

element K and for each k ≤ N . We now want to solve (27), for some value
of the parameter µ ∈ Λ. We introduce the MsFEM space

Wµ
h := Span{χε

i (x, µ)}.

The Galerlin approximation uε
h(x, µ) ∈ Wµ

h of the solution uε(x, µ) to (27) is
defined as the solution to

∀v ∈ Wµ
h ,

∫

D

(∇v)TAε(·, µ)∇uε
h(·, µ) =

∫

D

fv.

Numerical illustration We work in dimension two, with Aε(x1, x2, µ) =
aε(x1, x2, µ) Id, where

aε(x1, x2, µ) = 1 + 100 sin2
(πx1

ε

)
sin2

(πx2

ε

)
+ 100µ, (x1, x2) ∈ R

2,

which is indeed of the form (25). The computational domain is D = (0, 1)2

and the parameter domain is Λ = (0, 1). We set ε = 0.05. We compute the
functions gi,k and f ε,K

i,k as explained above, and evaluate the error

eKN(µ) =

∥∥∥∥∥∇χ
ε
i (·, µ)−

[
∇χ0

i +
N∑

j=1

gi,j(µ)∇f ε,K
i,j

]∥∥∥∥∥
L2(K)

‖∇χε
i (·, µ)‖L2(K)

, (33)

where χε
i (x, µ) is the exact basis function for the parameter µ, which solves (26).

We have worked with the following numerical parameters. The open set
Λ is discretized with a mesh of size hΛ = 0.1. To solve (26), (31) or (32) in
practice, each finite element K is discretized with a mesh of size h = H/30,
where H = diam(K). We take H = 1/7.

In Table 2, we show the error (33) as a function of N , that is the number
of terms used in (30) to approximate vε,K

i . We observe a fast convergence
of the error with respect to N . Two terms in (30) are actually enough to
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N eKN (µ = 0.5) eKN (µ = 0.67)
1 18.15% 18.56%
2 3.78% 4.18%
3 3.11% 3.30%
4 2.82% 3.13%

Table 2: Error (33) for two values of the parameter µ (all these errors cor-
respond to the same choice of finite element K; similar results are obtained
for a different choice).

obtain an approximation of vε,K
i (and therefore of χε

i ) with an error smaller
than 5 %.

Obviously, these encouraging results are only preliminary. More tests are
needed to get a better understanding of this approach, its limitations and
the regime where it is indeed advantageous.

5 Proposed directions of research for an ex-

pected renewed funding

If EOARD decides to renew our funding, there are a number of directions of
research on which we might consider proceeding (subject to EOARD approval
of course). We summarize here some of them.

In Section 4, we have performed a preliminary study on the robustness
of the MsFEM approach to perturbations that are non-oscillatory. This
question is actually part of a much broader question, which is related to
inverse problems in multiscale science.

A first remark is that all models that involve a random parameter require
some knowledge on the distribution of this random parameter (actually, they
most often require a complete knowledge of that distribution). In practice, ac-
cess to this distribution is difficult. One is therefore bound to assume a given
form (Gaussian, . . . ) for the distribution and proceed with the computation.
A question of major practical interest is to a posteriori prove, or disprove
the validity of this assumption. Otherwise stated, tests of hypotheses in the
context of engineering problems is an important issue. A preliminary step,
before trying to identify the distribution of the random parameters, is to as-
sume a specific form of this distribution, depending on a few quantities (e.g.
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assume a Gaussian distribution with an unknown variance) and identify these
quantities. To solve this identification problem, it is important to be able to
solve efficiently the forward problem (given the microscopic field A, compute
the macroscopic, homogenized behavior). Efficient methods such as the ones
proposed within this contract are then of paramount importance.

Another remark is that the question of inverse problems in materials sci-
ence is of course not new. However, our context is very specific, owing to
the fact that homogenization acts as a filter. Many features of the coefficient
Aε in the problem (1) (or its stochastic version (13)) are filtered out by the
homogenization procedure. Several fields Aε can lead to the same homoge-
nized matrix A⋆. It is hence hopeless to try to recover the field Aε from the
sole knowledge of A⋆, or of properties of the homogenized material. From
A⋆, one can only expect to recover the class of microscopic fields that cor-
respond to this homogenized behavior. This class probably contains many
materials, different at the fine scale, but equivalent from the macroscopic
standpoint. All of these are thus admissible, if the only information we have
is a macroscopic information.
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Summary

We report here on the work performed during the second year (october 2010
- october 2011) of the contract FA 8655-10-C-4002 on Multiscale problems in
materials science: a mathematical approach to the role of uncertainty.

We recall that the bottom line of our work is to develop affordable numer-
ical methods in the context of stochastic homogenization. Many partial differ-
ential equations of materials science indeed involve highly oscillatory coeffi-
cients and thus small length-scales. Homogenization theory is concerned with
the derivation of averaged equations from the original oscillatory equations,
and their treatment by adequate numerical approaches. Stationary ergodic
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random problems (and the associated stochastic homogenization theory) are
one instance for modelling uncertainty of continuous media. The theoretical
aspects of these problems are now well-understood, in general. On the other
hand, the numerical aspects have received less attention from the mathemat-
ics community. Standard methods available in the literature often lead to
very, and sometimes prohibitively, costly computations.

In this report, we first focus on a class of materials of moderate difficulty
but of significant relevance, that of random materials where the amount of
randomness is small. They can be considered as stochastic perturbations of
deterministic materials. We have presented in the previous report (see [3])
a possible extension of the well-known Multiscale Finite Element Method
(MsFEM) to such a weakly stochastic setting, along with detailed numer-
ical results. We are now in position to provide a complete analysis of the
approach, extending that available for the deterministic setting.

We next consider a different weakly stochastic setting. Rather than per-
turbing the deterministic material by frequent but small random amounts,
we consider a setting in which the deterministic material is rarely perturbed.
However, when it occurs, the perturbation is large. Because this setting is a
weakly stochastic setting, the workload to compute the homogenized matrix
is already smaller than in generic stochastic homogenization. We show here
how to further reduce the workload by using a Reduced Basis approach.

We finally turn to a variant of stochastic homogenization, where the ran-
domness is not small, and describe in that context a truncation procedure to
compute, in practice, an approximation of the homogenized coefficient.

The works described below have been performed by Claude Le Bris (PI),
Frédéric Legoll (Co-PI) and Florian Thomines (second year Ph.D. student).

1 Introduction

During this second year of contract, we have pursued our effort on developing
affordable numerical methods in the context of stochastic homogenization.

Many partial differential equations of materials science indeed involve
highly oscillatory coefficients and small length-scales. Homogenization the-
ory is concerned with the derivation of averaged equations from the original
oscillatory equations, and their treatment by adequate numerical approaches.
Stationary ergodic random problems are one of the most famous instances of
mathematical uncertainty of continuous media.

2
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The purpose of this report is to present the recent progress we have made
on this topic, with the aim to make numerical random homogenization more
practical. As already mentioned in the previous report, because we cannot
embrace all difficulties at once, the case under consideration here is a simple,
linear, scalar second order elliptic partial differential equation in divergence
form, for which a sound theoretical groundwork exists. We focus here on
the different manners the problem can be handled from the computational
viewpoint.

We begin, in Section 2, with a brief description of stochastic homogeniza-
tion, the only purpose of which is the consistency of this report.

As pointed out above, random homogenization for general stochastic ma-
terials is very costly. Yet, it turns out that it is possible to identify classes of
materials of moderate difficulty but of significant relevance, where stochastic
homogenization theory and practice can be reduced to more affordable, less
computationally demanding problems. These materials are neither periodic
(because such an oversimplifying assumption is rarely met in practice), nor
fully stochastic. They can be considered as an intermediate case, that of
stochastic perturbations of deterministic (possibly periodic) materials. Note
that many practical situations, involving actual materials or media, can be
considered, at a good level of approximation, as perturbations of a deter-
ministic (often periodic) setting (see e.g. [15]). In this report, we discuss
two different weakly stochastic settings, and for each of them, we present
an efficient numerical approach to handle it. First, in Section 3, we provide
an analysis of a variant of the Multiscale Finite Element Method (MsFEM),
well adapted to the case when the matrix describing the properties of the
material is the sum of a deterministic term and a small random term. This
variant has been introduced in the previous report (see [3]), and extensive
numerical tests have been reported there. As explained below, we now have
a complete understanding of the approach, from the analysis viewpoint. We
wish to emphasize the fact that considering a stochastic perturbation of a
deterministic problem and handling it with a multiscale technique developed
in the deterministic setting is not restricted to the case of the MsFEM. Sim-
ilar entreprises can probably be undertaken in other settings, such as those
proposed in [19].

In Section 4, we turn to a different weakly stochastic setting, introduced
by the PI and a collaborator of his in [8, 9, 10]. This model is well suited
for representing materials with rare, but non small, perturbations with re-

3
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spect to a deterministic situation. A typical example is a composite material
embedding fibers, located, say, on a perfect, periodic lattice. The random
perturbation then consists in deleting some fibers (see Figure 1 below). This
setting is a weakly stochastic setting, as we assume that such an accident
occurs very rarely. However, it is clear that the local properties (at the mi-
croscopic level) of the material are significantly changed if the fiber is indeed
deleted. In the sequel, we show that the Reduced Basis approach can be used
in that context to speed-up the computation of the homogenized coefficient.

In Section 5, we next turn to a non-weakly stochastic setting, and consider
a variant of stochastic homogenization, introduced by the PI and co-workers
in [11, 12] some years ago. This model is well suited to represent materials
that are random deformations of a perfect periodic material. A typical exam-
ple is, again, a composite material with fibers. Fibers are all identical, they
would be located on a periodic lattice in the ideal situation. However (for
instance as a consequence of the manufacturing process), their actual posi-
tions are now random. In the sequel, we present and analyze a procedure to
practically approximate the homogenized matrix.

We collect in Section 6 some conclusions about the work performed so
far, and future directions.

2 Basics of stochastic homogenization

[Detailed presentation can be read in [2, 3].]

For the consistency of this report and the convenience of the reader not
familiar with the theory, we recall here some groundwork in stochastic ho-
mogenization, underlining why stochastic homogenization often leads to ex-
tremely expensive computations. More details can be read in [3] and refer-
ences therein, and also in the review article [2] that we published.

The typical random homogenization problem writes

−div
[
A
(x
ε
, ω
)
∇uε

]
= f(x) in D, uε(x) = 0 on ∂D, (1)

where A is a bounded, definite positive, stationary (i.e. statistically homo-
geneous) random matrix (see [3]). In this framework, it is well known that,
as ε→ 0, the solution uε to (1) converges to u⋆ solution to

−div [A⋆∇u⋆] = f(x) in D, u⋆(x) = 0 on ∂D, (2)

4
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where the homogenized matrix A⋆ reads

[A⋆]ij = E

[∫

Q

(ei + ∇wei
(y, ·))T A(y, ·)

(
ej + ∇wej

(y, ·)
)
dy

]
,

where Q = (0, 1)d and where, for any p ∈ R
d, the so-called corrector wp is

the (unique up to the addition of a constant) solution to





−div [A (y, ω) (p+ ∇wp(y, ω))] = 0 on R
d,

∇wp is stationary, E

(∫

Q

∇wp(y, ·) dy

)
= 0.

(3)

From the computational viewpoint, solving (3) is challenging, because it is
posed on the entire space R

d. The traditional approach is to truncate (3)
on a bounded domain, say the cube QN = (−N,N)d, and complement it
with e.g. periodic boundary conditions. We are thus left with solving the
truncated corrector problem

{
−div

(
A(·, ω)

(
p+ ∇wN

p (·, ω)
))

= 0 on R
d,

wN
p (·, ω) is QN -periodic.

(4)

In turn, the homogenized matrix A⋆ is approximated by the matrix

[A⋆
N ]ij (ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
A(y, ω)

(
ej + ∇wN

ej
(y, ω)

)
dy.

Although A⋆ itself is a deterministic object, its practical approximation
A⋆

N(ω) is random. It is only in the limit of infinitely large domains QN

that the deterministic value is attained. Indeed, as shown in [17, Theorem
1], we have

lim
N→∞

A⋆
N (ω) = A⋆. (5)

Errors between A⋆
N(ω) and A⋆ are due to (i) the truncation, and (ii) the fact

that the truncated problem is random in nature. Because of the truncation,
E [A⋆

N ] 6= A⋆. At fixed N , there is a systematic bias, which can only be
reduced by taking sufficiently large domains QN . In addition, computing
E [A⋆

N ] is also expensive. Indeed, a large number M of independent realiza-
tions of A⋆

N (ω) should be considered to compute an empirical mean, in the
spirit of Monte Carlo methods. It is only in the limit M → ∞ that the exact
mean E [A⋆

N ] is recovered.
The overall computation described above, that involves solving several

independent realizations of (4) on presumably large a domain QN , is thus
very expensive.

5
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3 A weakly-stochastic MsFEM approach

[Work expanded in [1, 4, 5].]

Following the encouraging numerical results reported in [3] on the variant
of the MsFEM for weakly stochastic settings, we have pursued our efforts and
obtained a complete analysis of the proposed approach, that we describe in
the sequel. For clarity, we begin this section by briefly recalling our approach.

3.1 The proposed approach

We consider the problem

−div(Aε
η(·, ω)∇uε

η(·, ω)) = f in D, uε
η(·, ω) = 0 on ∂D, (6)

where Aε
η(·, ω) ∈ (L∞(D))d×d is a random matrix satisfying the standard

coercivity and boundedness conditions. In contrast to (1), we do not assume

that Aε
η(x, ω) = Aη

(x
ǫ
, ω
)

for a fixed stationary matrix Aη. The MsFEM

approach is applicable in more general situations.
We suppose that Aε

η(x, ω) is highly oscillatory in both its deterministic
and stochastic components, and that it is a perturbation of a deterministic
matrix, in the sense that

Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω), (7)

where Aε
0 is a deterministic matrix and η is a small deterministic parameter.

This model may be well suited for heterogeneous materials (or, more gener-
ally, media) that, although not periodic, are not fully stochastic, in the sense
that they may be considered as a perturbation of a deterministic material.

We recall that the MsFEM approach aims at approximating the solution
of (6) by performing a variational approximation of the problem using pre-
computed basis functions φε

i that are adapted to the problem. The main idea
of our proposed approach is to compute a set of deterministic MsFEM basis
functions φε

i using Aε
0, the deterministic part of Aε

η in the expansion (7), and
then to perform Monte Carlo realizations at the macroscale level using a set
of M realizations of the random matrix

{
Aε,m

η (x, ω)
}

1≤m≤M
(see [3] for a

detailed presentation). Note that, for each of these realizations, we solve the
original problem, with the complete matrix Aε

η, and not only its deterministic
part. Only the basis set is taken deterministic.

6
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The deterministic basis functions φε
i are computed only once, hence the

computational saving in comparison to a natural adaptation of the MsFEM
to the stochastic setting, where, for each realization of the random matrix Aε

η,
new basis functions are computed before solving the macroscopic problem.

As illustrated by the numerical tests reported in [3, 4], our proposed
approach is extremely efficient when Aε

η is a perturbation of Aε
0. In addition,

the small parameter η does not need to be extremely small for our approach
to be highly competitive.

3.2 Analysis

We now turn to the analysis of our approach. We recall that, in the deter-
ministic setting, a classical context for proving convergence of the MsFEM
approach (see [21]) is the case when, in the reference highly oscillatory prob-
lem

−div(Aε∇uε) = f in D, uε = 0 on ∂D, (8)

the matrix reads Aε(x) = Aper

(x
ε

)
for a fixed periodic matrix Aper. Likewise,

to be able to perform our theoretical analysis in the stochastic setting, we

assume that Aε
η(x, ω) = Aη

(x
ε
, ω
)

for a fixed stationary random matrix Aη,

although, we repeat it, the approach can be used in practice for more general
cases. The problem (6) then admits a homogenized limit when ε vanishes.

Our proof follows the same lines as that in the deterministic setting, which
we now briefly review. The MsFEM is a Galerkin approximation, the error
of which is then estimated using the Céa lemma:

‖uε − uM‖H1(D) ≤ C inf
vh∈Wh

‖uε − vh‖H1(D), (9)

where uε is the solution to the reference deterministic highly oscillatory prob-
lem (8), uM is the MsFEM solution, Wh = Span(φε

i ) is the MsFEM basis set,
and C is a constant independent of the small length-scale ε present in Aε

and of the macroscopic mesh-size h. Taking advantage of the homogenization
setting, we introduce the two-scale expansion

vε = u⋆ + ε
d∑

i=1

w0
ei

( ·
ε

) ∂u⋆

∂xi

7
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of uε, where u⋆ is the homogenized solution and w0
ei

is the periodic corrector
associated to ei ∈ R

d. We deduce from (9) that

‖uε − uM‖H1(D) ≤ C

(
‖uε − vε‖H1(D) + inf

vh∈Wh

‖vε − vh‖H1(D)

)
.

The first term in the above right-hand side is estimated using standard ho-
mogenization results on the rate of convergence of vε − uε. To estimate the
second term, one considers a suitably chosen element vh ∈ Wh, for which
‖vε − vh‖H1 can be estimated directly. The main idea is that the highly
oscillating part of vε can be well approached by an element in Wh, since,
by construction, the highly oscillatory basis functions φε

i are defined by a
problem similar to the corrector problem, and thus encode the same highly
oscillatory behavior as that present in the correctors w0

ei
. We are thus left

with approximating the slowly varying components of vε, for which standard
FEM estimates are used.

Following the same strategy in our stochastic setting, we estimate the
distance between the solution uε

η to the reference stochastic problem (6)-(7)
and the weakly stochastic MsFEM solution uS as

‖uε
η(·, ω) − uS(·, ω)‖H1(D) ≤ C

(
‖uε

η(·, ω) − vε
η(·, ω)‖H1(D)+

inf
vh∈Wh

‖vε
η(·, ω) − vh‖H1(D)

)
. (10)

We observe that a key ingredient for the proof is the rate of convergence of
the difference between the reference solution uε

η and its two-scale expansion
vε

η. Such a result is classical in periodic homogenization, but, to the best of
our knowledge, open in the general stationary case (in dimensions higher than
one). One only knows that uε

η−v
ε
η vanishes (in some appropriate norm) when

ε→ 0. However, in the particular case when Aε
η is only weakly stochastic, we

have shown in [5, Theorem 2] such a result, useful to control the first term
in (10):

√
E

(
‖uε

η − vε
η‖

2
H1(D)

)
≤ C

(√
ε+ η

√
ε ln(1/ε) + η2

)
,

where C is a constant independent of ε and η. This result relies on asymptotic
properties of the Green function of the operator L = −div [Aper∇·], a topic
of independent interest which has been investigated in [1].

8
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Hence, exploiting the specificity of our weakly stochastic setting, we have
estimated the error given by our approach as (see our main result, Theorem 10
in [4]):

√
E

[
‖uε

η − uS‖
2
H1

h

]
≤ C

(
√
ε+ h+

ε

h
+ η

( ε
h

)d/2

ln(N(h)) + η + η2C(η)

)
,

where C is a constant independent of ε, h and η, C is a bounded function as
η goes to 0, N(h) is the number of elements in the mesh (roughly of order
h−d in dimension d), and ‖ · ‖H1

h
is a broken H1 norm, defined by

‖u‖H1

h
:=

(
∑

K∈Th

‖u‖2
H1(K)

)1/2

where, in the above sum, K is any element of the coarse mesh Th.

Remark 1 As is often the case in the deterministic MsFEM, we use in [4]
the oversampling technique, which is known to improve the accuracy of the
numerical results. Consequently, the basis functions φε

i do not belong to
H1

0 (D), hence the use of a broken H1 norm in the above estimate. We refer
to [4] for more details.

It is worth noticing that, when η = 0 in (7), our approach reduces to the
standard deterministic MsFEM (with oversampling), and the above estimate
then agrees with those proved in [21].

4 Reduced Basis approach in a weakly stochas-

tic homogenization setting

[Work expanded in [6].]

4.1 Summary of previous works

In the previous works [8, 9, 10], not funded by EOARD, the PI and a collab-
orator of his introduced the following weakly stochastic case.

Consider the highly oscillatory problem (1), where the matrix A reads

A(x, ω) = Aper(x) + bη(x, ω)Cper(x) (11)

9
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where Aper and Cper are two periodic matrices, and

bη(x, ω) =
∑

k∈Zd

1Q+k(x)B
k
η (ω)

where
{
Bk

η

}
k∈Zd

are i.i.d. scalar random variables, sharing the following law:

Bk
η = 1 with probability η, and Bk

η = 0 with probability 1− η. In the sequel,
η is a small parameter, so that A = Aper “most of the time”. We hence see
that the perturbation introduced by bη(x, ω)Cper(x) in (11) is rare. On the
other hand, since Aper + Cper is very different from Aper, the perturbation,
when it occurs, is large. See Figure 1 for some illustration.

Figure 1: From left to right: perfect material (modelled with Aper), material
with one defect and two defects.

As explained in Section 2, we approximate A⋆ using the standard trunca-
tion method for the corrector problem (see (4)). By enumerating all possible
realizations of A(x, ω) on QN , we obtain an expansion of E [A⋆

N ] in powers of
η (see [9, 10, 2]):

E [A⋆
N ] = A⋆

per + ηA⋆,N
1 + η2A⋆,N

2 + · · · , (12)

where

A⋆,N
1 ei =

∫

QN

A1(∇w
1,N
ei

+ ei) −

∫

QN

Aper(∇w
0
ei

+ ei),

A⋆,N
2 ei =

1

2

Nd−1∑

s=1

(∫

QN

A1,s
2 (∇w2,s,N

ei
+ ei) − 2

∫

QN

A1(∇w
1,N
ei

+ ei)

+

∫

QN

Aper(∇w
0
ei

+ ei)

)
, (13)

10
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where w0
p is the corrector associated to Aper (perfect material), solution to

−div
[
Aper

(
p+ ∇w0

p

)]
= 0, w0

p is Q-periodic, (14)

and w1,N
p is the corrector associated to A1 = Aper + 1QCper (material with

one defect):

−div
[
A1

(
p + ∇w1,N

p

)]
= 0, w1,N

p is QN -periodic. (15)

In turn, w2,s,N
p is the corrector associated to A1,s

2 = Aper +1QCper +1Q+sCper

(material with two defects, located in Q and Q+ s):

−div
[
A1,s

2

(
p+ ∇w2,s,N

p

)]
= 0, w2,s,N

p is QN -periodic. (16)

Note that the periodic boundary conditions in (15)-(16) allow us to assume,
without loss of generality, that the first defect is located in the cell Q.

It has been shown numerically in [9, 10] that the expansion (12) is not
only valid in the asymptotic regime η ≪ 1, but also for practical small values
of η. In some cases, the expansion is even valid for values of η as large as
0.5, in which case the random variables Bk

η take value 0 and 1 with equal
probability.

Note that the computation of A⋆,N
2 , when necessary, requires to solve the

corrector problems (16) for any value of s (the position of the second defect).
In the sequel, we propose to use a Reduced Basis approach to solve these
Nd − 1 problems, that are parameterized by s.

All the results of this section are illustrated with the same two-dimensional
numerical example, that we now introduce. We take

Aper(x, y) = 20 Id2 + 100
∑

k∈Z2

1Q+k(x, y) sin2(πx) sin2(πy) Id2

and
Cper(x, y) = −100

∑

k∈Z2

1Q+k(x, y) sin2(πx) sin2(πy) Id2.

In line with Figure 1, this test case represents a material with constant
properties, reinforced by a periodic lattice of circular inclusions. Loosely
speaking, the perturbation consists in randomly eliminating some fibers. See
Figure 2 for a particular realization of the material.

In the sequel, we focus on the first entry [A⋆
N ]11 of the homogenized ma-

trix. We thus set p = e1 in (14), (15) and (16). These corrector problems
are numerically solved using a mesh of size h = 1/10. Qualitatively similar
conclusions are obtained with the other entries.

11
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Figure 2: Left: the perfect (periodic) material. Right: a realization of the
material with some defects.

4.2 Difficulties

In [6], we propose to use a Reduced Basis approach to speed-up the compu-
tation of the family of problems (16) parameterized by s, the weak form of
which is

∀v ∈ H1
per(R

d), a(w2,s,N
p , v; s) = bp(v), (17)

where

a(u, v; s) :=

∫

QN

(∇v)T A1,s
2 ∇u and bp(v) :=

∫

QN

(∇v)T A1,s
2 p.

The Reduced Basis approach (see [13] for a presentation of the method in
the stochastic case) can be understood as a way to approximate the set of
functions

E :=
{
w2,s,N

p , 1 ≤ s ≤ Nd − 1
}

by an element in the space

XM = Span{w2,sm,N
p , 1 ≤ m ≤M}, (18)

for some well-chosen values of sm, 1 ≤ sm ≤ Nd−1. This approach is efficient
if we can choose a small value for the dimension M of XM , while maintaining
accuracy.

Once XM has been defined, we approximate the solution of (17) us-
ing a standard Galerkin approximation on XM : we approximate w2,s,N

p by
w2,s,N,M

p ∈ XM , solution to

∀vM ∈ XM , a(w2,s,N,M
p , vM ; s) = bp(vM). (19)

12
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The construction of XM is performed beforehand by computing the solution
of (17) for some values of the parameter s. The set of appropriate param-
eters {sm}1≤m≤M is selected using a standard procedure, called the Greedy
procedure. The Reduced Basis approach is expected to be efficient because
M is small (the problem (19) is hence posed in a low-dimensional space, and
thus easy to solve) and because there are Nd − 1 problems (17) to be solved.

Blindly applied to the family of problems (17), the Reduced Basis ap-
proach is not efficient, because we would have to take M of the order of
Nd. The reason is the following. We first compute the solution of the prob-
lem (17) for all the different values of the parameter s, and then proceed
with a Proper Orthogonal Decomposition of the family

(
w2,s,N

p

)
1≤s≤N2−1

for

the H1 scalar product. We then look at the decay of the spectrum, which is
shown on Figure 3. We observe no decay of the spectrum, which indicates
that the functions w2,s,N

p are linearly independent. There is no good struc-
ture in that family, and therefore we would need to choose M of the order
of Nd to accurately approximate the functions in E by an element in XM .
There is thus no speed-up. The appropriate way of applying the Reduced
Basis approach is described in Section 4.3.1.

0 20 40 60 80 100 120
10

−2

10
−1

10
0

10
1

Figure 3: POD (using the H1 scalar product) of the family
(
w2,s,N

p

)
1≤s≤N2−1

,

for N = 11.

A second difficulty is that the Reduced Basis approach requires an a pos-
teriori error estimator, both to select the appropriate values of sm in (18),
and to assess the quality of the final outcome. In our particular context,
because of the specificities of our problem, the computation of the classi-
cal error estimator turns out to be prohibitively expensive. We describe in
Section 4.3.2 a way to circumvent this difficulty.
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4.3 Adjustment of the Reduced Basis approach

In this section, we show how to address the two difficulties underlined above.

4.3.1 Building a family of functions with a good structure

We have seen above that there is no good structure in the family of functions
w2,s,N

p . In this section, we rewrite these functions as linear combinations

of the functions
(
w2,s,N

p

)
1≤s≤Nd−1

and
(
w̃2,s,N

p

)
1≤s≤Nd−1

defined below. The

interest is that these two latter families have a good structure.
To build these good families, we begin by introducing

w1,N
p = w1,N

p − w0
p,

w2,s,N
p = w2,s,N

p − w1,N
p − w1,N

p (· − s) + w0
p,

where w0
p, w

1,N
p and w2,s,N

p are defined by (14), (15) and (16), respectively.
Heuristically, this amounts to subtracting the appropriate reference function
from the correctors w1,N

p and w2,s,N
p . One can show that w1,N

p and w2,s,N
p go

to 0 at infinity, and are hence essentially supported in a compact domain, in
contrast to w1,N

p and w2,s,N
p . We see that w1,N

p is solution to

{
− div

(
A1∇w

1,N
p

)
= div(1QCper(∇w

0
p + p)),

w1,N
p QN − periodic,

and w2,s,N
p is solution to

{
− div

(
A1,s

2 ∇w2,s,N
p

)
= div

(
1{Q+s}Cper∇w

1,N
p

)
+ div

(
1QCper∇w

1,N
p (· − s)

)
,

w2,s,N
p QN − periodic.

(20)

We next use the linearity of (20), and rewrite w2,s,N
p as

w2,s,N
p = ŵ2,s,N

p + w̃2,s,N
p ,

where ŵ2,s,N
p solves

{
− div

(
A1,s

2 ∇ŵ2,s,N
p

)
= div

(
(1{Q+s}Cper∇w

1,N
p

)
,

ŵ2,s,N
p QN − periodic,

14
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and w̃2,s,N
p solves

{
− div

(
A1,s

2 ∇w̃2,s,N
p

)
= div

(
1QCper∇w

1,N
p (· − s)

)
,

w̃2,s,N
p QN − periodic.

Due to the periodic boundary conditions, we have w̃2,s,N
p = ŵ2,−s,N

p (· − s).
After tedious but straightforward computations, and assuming for the sake of
simplicity that Aper is symmetric, we recast the matrix A⋆,N

2 defined by (13)
as

(
A⋆,N

2

)
ij

=
N2−1∑

s=1

∫

QN

(1Q + 1Q+s)(∇w
0
ej

+ ej)
TCper∇w̃

2,s,N
ei

+

∫

Q

(∇w0
ej

+ ej)
TCper∇w

1,N
ei

(· − s).

Only the functions w1,N
p and

{
w̃2,s,N

p

}
1≤s≤Nd−1

are needed to evaluate A⋆,N
2 .

A similar formula holds if Aper is not symmetric, up to slight modifications.

We now numerically test for the linear independence, or dependence, of
the functions

(
w2,s,N

p

)
1≤s≤N2−1

and
(
w̃2,s,N

p

)
1≤s≤N2−1

, with N = 11. There

are N2−1 = 120 functions is each family. We compute the POD of the family(
w2,s,N

p

)
1≤s≤N2−1

and of the family
(
w̃2,s,N

p

)
1≤s≤N2−1

, and plot in Figure 4 the

120 POD eigenvalues in decreasing order.
In contrast to Figure 3, we now observe a decay in the eigenvalues. There

is a good structure in both families
(
w̃2,s,N

p

)
1≤s≤N2−1

and
(
w2,s,N

p

)
1≤s≤N2−1

.

Therefore, much fewer vectors are needed to approximate these families than
for approximating the family

(
w2,s,N

p

)
1≤s≤N2−1

considered in Section 4.2.

Otherwise stated, we expect that the dimension of the Reduced Basis ap-
proximation space that we will need is low, in contrast to the situation of
Section 4.2. Note also that the decay is somewhat stronger for the family(
w̃2,s,N

p

)
1≤s≤N2−1

than for
(
w2,s,N

p

)
1≤s≤N2−1

.

4.3.2 Modifying the error estimator

We now address the second difficulty identified at the end of Section 4.2,
related to the classical a posteriori estimator, and suggest an alternative
estimator, better suited to our context here.
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Figure 4: POD (using the H1 scalar product) of the family
(
w2,s,N

p

)
1≤s≤N2−1

(left) and of the family
(
w̃2,s,N

p

)
1≤s≤N2−1

(right), for N = 11.

The idea is to use the ℓ2 norm of the discrete residual, rather than the clas-
sical estimator, based on the norm of the dual of the residual. Let us denote
Wh := span(φi) the finite element space used to solve the problem (16), in
the reference approach. We define the ith component of the discrete residual
as

Gm
i (s) := a(w2,s,N,m

p , φi; s) − bp(φi),

where w2,s,N,m
p is the approximation of the solution to (16) computed using

the approximation space Xm (see (19)). In the sequel, we work with the error
estimator

∆̃m(s) := ‖Gm(s)‖ℓ2 =

√∑

i

[Gm
i (s)]2.

The classical error estimator is denoted ∆m(s).

4.4 Numerical results

We collect here numerical results that demonstrate the efficiency of our ap-
proach.

We first compute the relative error onA⋆,N
2 between the reference value (13)

and its approximation obtained using the Reduced Basis approach, for differ-
ent values of the dimension M of the approximation space XM . In Figure 5,
we plot this indicator for two components of the matrix A⋆,N

2 . We observe

that, for both estimators ∆m(s) and ∆̃m(s), the accuracy improves rapidly
with M . Choosing a value for M of the order of 20 is enough to obtain a good
accuracy. Since this value is much smaller that the total number of functions
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to compute, which is here N2 − 1 = 120, we obtain a good computational
speed-up.

Figure 5: Relative error on A⋆,N
2 as a function of the dimension M of the

Reduced Basis space XM . Left: (A⋆,N
2 )11. Right: (A⋆,N

2 )12.

Next, in Figure 6, we plot the indicator

e(m) := max
1≤s≤N2−1

(
‖∇w2,s,N

p −∇w2,s,N,m
p ‖L2(QN )

‖∇w2,s,N
p ‖L2(QN )

)
, (21)

for the two Reduced Basis approaches (using the error estimators ∆m or

∆̃m). In both cases, we observe a significant decay of e(m) as a function of
m. Starting from an error of 100% with m = 1 (the Reduced Basis space is of
dimension one), we see that the error decreases down to 2% for M ≈ 20. As
above, we hence see that a small value of M is sufficient to ensure accuracy,
hence the computational speed-up.

On Figure 7, we show in which order the relevant cells (i.e. parameters
sm) are selected by the Greedy procedure. We compare in this matter the
two error estimators. We observe that, although the actual order may vary,
the two estimators provide the same set of parameters {sm}1≤m≤M , both for
the eight and the twenty best parameters.

5 A variant of stochastic homogenization

[Work expanded in [7].]

As announced in the previous report [3], we have considered a variant
of the classical setting of stochastic homogenization, originally introduced a

17
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Figure 6: Relative error (21) on the two-defects correctors w2,s,N
p . The mag-

nitude of the residual error for large M (of the order of 2 %) is close to the
Finite Element error.

Figure 7: Ordering of the cells selected by the Greedy procedure, for the two
error estimators, ∆m(s) (left) and ∆̃m(s) (right).

few years ago in [11, 12]. The equation under consideration is (1), where
the matrix A is the composition of a periodic matrix Aper with a stochastic
diffeomorphism Φ:

A
(x
ε
, ω
)

:= Aper

[
Φ−1

(x
ε
, ω
)]
. (22)

We assume that, almost surely, the map Φ(·, ω) is a well-behaved diffeo-
morphism (in the sense that EssInfω∈Ω,x∈Rd (det(∇Φ(x, ω))) = ν > 0 and
EssSupω∈Ω,x∈Rd |∇Φ(x, ω)| = M < +∞), and that it satisfies

∇Φ is stationary. (23)

Formally, such a setting is well suited to model materials that are periodic,
in a given reference configuration. The latter is only known up to a cer-
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tain randomness. Materials we have in mind are ideally periodic materials,
where some random deformation has been introduced, for instance during
the manufacturing process. Assumption (23) means that ∇Φ is statistically
homogeneous, i.e. the randomness is the same anywhere in the material.

The problem (1)-(22) admits a homogenized limit when ε vanishes. It
is indeed shown in [11] that, under the above assumptions, uε(·, ω) solu-
tion to (1)-(22) converges as ε goes to 0 to u⋆, solution to the homogenized
problem (2). The homogenized matrix A⋆ is given by, for any 1 ≤ i, j ≤ d,

A⋆
ij = det

(
E

(∫

Q

∇Φ(y, ·)dy

))−1

×

E

(∫

Φ(Q,·)

eT
i Aper

(
Φ−1 (y, ·)

) (
ej + ∇wej

(y, ·)
)
dy

)
, (24)

where Q = (0, 1)d and where, for any p ∈ R
d, wp solves the corrector problem






−div
[
Aper

(
Φ−1(y, ω)

)
(p+ ∇wp(y, ω))

]
= 0 in R

d,
wp(y, ω) = w̃p(Φ

−1(y, ω), ω), ∇w̃p is stationary,

E

(∫

Φ(Q,·)

∇wp(y, ·)dy

)
= 0.

(25)

The first question we address in [7] is to precisely understand the behavior
of uε(x, ω) − u⋆(x) when ε goes to 0, where uε is the solution to the highly
oscillating problem and u⋆ the solution to the homogenized problem. In the

classical random ergodic setting, the convergence of
uε(x, ω) − u⋆(x)

√
ε

to a

Gaussian process has been shown in [16, 18] for the one-dimensional case.
We show in [7] a similar result, for the variant we consider here.

We have also investigated the question of how to approximate the homog-
enized matrix (24) in practice. Note indeed that the corrector problem (25)
is posed on the entire space R

d, and thus challenging to solve. In the classical
context, described in Section 2, the corrector problem (3) is also posed on R

d,
and a standard procedure is to solve the corrector problem on a truncated
domain QN = (−N,N)d (see (4)). The convergence of the procedure when
N → ∞ is given by [17, Theorem 1]. In [7], we perform a similar analysis in
the context of (24)-(25). In the following, we first describe a numerical strat-
egy to approximate the homogenized matrix A⋆, which was first introduced
in [14]. We next provide an example of numerical results, before turning to
the analysis of the approach.
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Derivation of the truncated problem The weak formulation of the
corrector problem (25) reads as follows (see [11]): for all ψ̃ stationary, we
have

E

(∫

Φ(Q,·)

(∇ψ(y))TAper

(
Φ−1(y, ω)

)
(p+ ∇wp(y, ω))dy

)
= 0,

where ψ = ψ̃ ◦ Φ−1. The above expression can be rewritten, after a change
of variables, as

E

[∫

Q

det(∇Φ)
(
∇ψ̃
)T

(∇Φ)−TAper

(
p+ (∇Φ)−1∇w̃p

)]
= 0.

As ψ̃, ∇Φ, Aper and ∇w̃p are stationary, this equivalently reads, because of
the ergodic theorem,

lim
N→∞

1

|QN |

∫

QN

det(∇Φ)
(
∇ψ̃
)T

(∇Φ)−TAper

(
p + (∇Φ)−1∇w̃p

)
= 0.

At fixed N , we now define the approximate corrector w̃N
p as the QN -periodic

function satisfying
∫

QN

det(∇Φ)
(
∇ψ̃
)T

(∇φ)−TAper

(
p+ (∇φ)−1∇w̃N

p

)
= 0

for all ψ̃ QN -periodic, or, equivalently,
{

−div
[
det(∇Φ)(∇φ)−TAper

(
p+ (∇φ)−1∇w̃N

p

)]
= 0,

w̃N
p (·, ω) is QN -periodic.

(26)

In turn, we approximate the homogenized matrix A⋆ defined by (24) by, for
any 1 ≤ i, j ≤ d,

[A⋆
N(ω)]ij = det

(
1

|QN |

∫

QN

∇φ(·, ω)

)−1

×

1

|QN |

∫

φ(QN ,ω)

eT
i Aper

(
φ−1(y, ω)

)(
ej + ∇wN

ej
(y, ω)

)
dy (27)

where wN
p (y, ω) = w̃N

p (φ−1(y, ω), ω). Note that, as is standard when ap-
proximating the homogenized matrix of stochastic elliptic problems, the ap-
proximation A⋆

N(ω) is a random matrix, even though the exact homogenized
matrix (24) is deterministic. This is a by-product of working on the truncated
domain QN rather than R

d.
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Numerical illustration Some numerical tests following our strategy (26)-
(27) are reported in [2, Section 3.2]. We reproduce here some of them.

Consider the following two dimensional test-case: we give ourselves two
families (Xk)k∈Z and (Yk)k∈Z of i.i.d. random variables, all sharing the uni-
form law U([a, b]), with a = −2.25 and b = 5.75. We then consider the
diffeomorphism Φ(x, ω) = 6 x + Ψ(x, ω), with x = (x1, x2) ∈ R

2, Ψ(x, ω) =
(ψX(x1, ω), ψY (x2, ω)), where

ψX(x1, ω) =
∑

k∈Z

1[k,k+1[(x1)

(
k−1∑

q=0

Xq(ω) + 2Xk(ω)

∫ x1

k

sin2(2πt) dt

)
,

and likewise for ψY . The periodic matrix Aper is defined, for all x ∈ Q, by

Aper(x) = aper(x) Id2, aper(x1, x2) = β + (α− β) sin2(πx1) sin2(πx2),

with α = 10 and β = 1. The results obtained with (26)-(27) are shown on
Fig. 8. We indeed observe the convergence of our approximation as N → ∞.
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[A
⋆ N

] 1
1

Figure 8: For any N , following (26)-(27), we compute several realizations of
A⋆

N(ω), and build from these a confidence interval for E [(A⋆
N )11].

Convergence of the numerical strategy In [7], we study the conver-
gence of our approach, as N → ∞. We obtained the following result, which
generalizes [17, Theorem 1] (see (5) above) to the variant we consider here.
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Theorem 1 Let Φ be a diffeomorphism that satisfies (23), and Aper be a
periodic, coercive and bounded matrix. Then the random matrix A⋆

N(ω) de-
fined by (27) converges almost surely when N → ∞ to the deterministic
homogenized matrix A⋆ defined by (24).

6 Conclusions and agenda for the third year

of contract

We summarize here the directions of research we wish to pursue during the
third year of contract.

A first track is to develop a MsFEM-type approach for random materials
modelled by (1)-(22) (see Section 5). Our idea relies on approximating the
solution to the corrector problem (25) by the periodic corrector (associated
to the periodic matrix Aper) composed with the random diffeomorphism Φ.
The advantage of this approximation is that, for any new realization of Φ, we
do not have to recompute the corrector. We have developed a MsFEM-type
approach using this approximation, and have performed some preliminary
numerical experiments, that yield encouraging results. More comprehensive
tests are yet needed to better understand the capabilities of this approach.

A second direction concerns the use of Reduced Basis methods in a multi-
scale context. We have seen in Section 4 that the Reduced Basis approach can
be used to speed-up the computation of the corrector problems. In the next
future, we would like to apply this approach in the context of the spectral
multiscale method introduced by Y. Efendiev and J. Galvis [20].

The spectral multiscale method is designed to address the highly oscilla-
tory problem (8) in the case when the ratio between the maximum and the
minimum values of Aε is large (high contrast problem). The main idea is
to complement the standard MsFEM approximation space Wh = Span {φε

i}
(where φε

i are the MsFEM basis functions, see Section 3 above) with eigen-
functions that correspond to small eigenvalues. More precisely, consider the
local eigenvalue problem

−div [Aε∇ψωi

ℓ ] = λℓÃ
εψωi

ℓ in ωi, (28)

with homogeneous Neumann boundary conditions, where ωi := supp(φε
i ) is

the support of the MsFEM highly oscillatory basis functions φε
i and where
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the weight Ãε is defined by Ãε =
1

h2

(
∑

i

|∇φε
i |

2

)
Aε. Note that, by def-

inition, the first eigenvalue λℓ=0 is exactly zero, and the eigenvector ψωi

ℓ=0

associated to that eigenvalue is constant in ωi. We then select the eigenvec-
tors ψωi

ℓ associated with an eigenvalue λℓ below a certain threshold τ ≥ 0,
and construct the so-called spectral multiscale basis functions

χε
i,ℓ := φε

i ψ
ωi

ℓ .

The spectral multiscale method consists in performing a Galerkin approxi-
mation of (8) on the approximation space W := Span(χε

i,ℓ). Note that, since
ψωi

ℓ=0 is a constant function, the function χε
i,ℓ=0 is proportional to φε

i . Hence
the space W contains the standard MsFEM approximation space Span(φε

i ).
Our project is to use the Reduced Basis approach to more efficiently

compute the eigenfunctions ψωi

ℓ needed to build W.
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Summary

We report here on the work performed during the first year (october 2009 -
october 2010) of the contract FA 8655-10-C-4002 on Multiscale problems in
materials science: a mathematical approach to the role of uncertainty.

The bottom line of our work is to develop affordable numerical methods in
the context of stochastic homogenization. Many partial differential equations
of materials science indeed involve highly oscillatory coefficients and small
length-scales. Homogenization theory is concerned with the derivation of av-
eraged equations from the original oscillatory equations, and their treatment
by adequate numerical approaches. Stationary ergodic random problems
(and the associated stochastic homogenization theory) are one instance for
modelling uncertainty in continuous media. The theoretical aspects of these
problems are now well-understood, at least for a large variety of situations.

1
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On the other hand, the numerical aspects have received less attention from
the mathematics community. Standard methods available in the literature
often lead to very, and sometimes prohibitively, costly computations.

In this report, we first review an approach popular in particular in the
computational mechanics community, which is to try and obtain bounds on
the homogenized matrix, rather than computing it. Only computations of
moderate difficulty are then required. However, we will show that, not un-
expectedly, this method has strong limitations.

We will next introduce a class of materials of significant practical rele-
vance, that of random materials where the amount of randomness is small.
They can be considered as stochastic perturbations of deterministic materials,
in a sense made precise below. We will adapt to such a case the well-known
Multiscale Finite Element Method (MsFEM), and design a method which is
much more affordable than, and as accurate as, the original method.

The works described below have been performed by Claude Le Bris (PI),
Frédéric Legoll (Co-PI), and Florian Thomines (first year Ph.D. student).

1 Introduction

Many partial differential equations of materials science involve highly oscilla-
tory coefficients and small length-scales. Homogenization theory is concerned
with the derivation of averaged equations from the original oscillatory equa-
tions, and their treatment by adequate numerical approaches. Stationary
ergodic random problems are one of the most famous instances of mathe-
matical uncertainty of continuous media. However, the elaborate tools and
techniques of (i) mathematical probability, stochastic analysis, and (ii) nu-
merical analysis and large-scale computing have not yet permitted practical
computations. These are most often accomplished otherwise by the engineer-
ing community, using more traditional approaches. Despite definite achieve-
ments by leading experts, numerical analysis of stochastic, and more gener-
ally speaking non periodic, homogenization problems remains in its infancy.

The purpose of this report is to present the recent progress we have made
during last year on this topic, with the aim to make numerical random ho-
mogenization more practical. Because we cannot embrace all difficulties at
once, the case under consideration here is a simple, linear, scalar second or-
der elliptic partial differential equation in divergence form, for which a sound

2
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theoretical groundwork exists. We focus here on different practical compu-
tational approaches.

This report begins, in Section 2, with a brief introduction to stochastic
homogenization. There is of course no novelty in such an introduction, the
only purpose of which is the consistency of this report and the convenience of
the reader not familiar with the theory. We will recall there why stochastic
homogenization often leads to extremely expensive computations.

In Section 3, we describe a classical approach from the applied commu-
nities, which is to try and obtain bounds on the homogenized matrix, rather
than computing it. The computational gain is evident. We will report on
some numerical experiments. Such experiments are likely to not be new. But
they at least show, quantitatively and qualitatively, the strong limitations of
such an approach.

As pointed out above, random homogenization for general stochastic ma-
terials is very costly. Yet, it turns out that it is possible to identify classes of
materials of significant practical relevance, where stochastic homogenization
theory and practice can be reduced to more affordable, less computationally
demanding problems. These materials are neither periodic (because such an
oversimplifying assumption is rarely met in practice), nor fully stochastic.
They can be considered as an intermediate case, that of stochastic perturba-
tions of deterministic (possibly periodic) materials. The case when the tensor
describing the properties of the material is the sum of a periodic term and
a small random term is an instance of such an approach. In Section 4, we
show that we can adapt to that particular setting the well-known Multiscale
Finite Element Method (MsFEM), which is designed to directly address the
highly oscillating elliptic problem, rather than studying the limit problem
when the typical small lengthscale goes to 0. This method has been initially
proposed for deterministic problems [24, 21, 22, 14], and has been recently
adapted to the stochastic setting [18]. It then leads to extremely intensive
computations. We show in the sequel that, if the problem is only weakly
stochastic, then it is possible to design a method as accurate as the original
MsFEM, with a much smaller computational cost. As we explain below, this
method is accurate provided the stochastic perturbation is indeed small.

We collect in Section 5 some conclusions about the work performed so
far, and future directions for the next two years of contract.

3

Distribution A:  Approved for public release; distribution is unlimited.



2 Basics of stochastic homogenization

[Detailed presentation can be read in [1].]

Stochastic homogenization is best understood in the light of the easiest
context of homogenization: periodic homogenization. This is the reason why
we begin with Section 2.1 laying some groundwork in the periodic context,
before turning to stochastic homogenization per se in Section 2.2.

We refer to, e.g., the monographs [15, 19, 25] for more details on homoge-
nization theory, and to the review article [1] that we wrote, addressing some
computational challenges in numerical stochastic homogenization. A super
elementary introduction is contained in [13].

In this section, we present classical results of the literature. The reader
familiar with stochastic homogenization can proceed directly to our contri-
butions, detailed in Sections 3 and 4.

2.1 Periodic homogenization

For consistency, we recall here some basic ingredients of elliptic homogeniza-
tion theory in the periodic setting. We consider, in a regular bounded domain
D in R

d, the problem




−div
[
Aper

(x

ε

)
∇uε

]
= f in D,

uε = 0 on ∂D,
(1)

where the matrix Aper is symmetric definite positive and Z
d-periodic. We

manipulate for simplicity symmetric matrices, but the discussion carries over
to non symmetric matrices up to slight modifications.

The microscopic problem associated to (1), called the corrector problem
in the terminology of homogenization theory, reads, for p fixed in R

d,
{

−div (Aper(y) (p + ∇wp)) = 0 in R
d,

wp is Z
d-periodic.

(2)

It has a unique solution up to the addition of a constant. Then, the homog-
enized coefficients read

[A⋆]ij =

∫

Q

(ei + ∇wei
(y))T Aper(y)ejdy, (3)

4
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where Q is the unit cube, and where wei
denotes the solution to (2) for p = ei,

with ei the canonical vectors of R
d. The main result of periodic homogeniza-

tion theory is that, as ε goes to zero, the solution uε to (1) converges to u⋆

solution to {
−div [A⋆∇u⋆] = f in D,

u⋆ = 0 on ∂D.
(4)

Several other convergences on various products involving Aper

(x

ε

)
and uε

also hold. All this is well documented.

The practical interest of the approach is evident. No small scale ε is
present in the homogenized problem (4). At the price of only computing d
periodic problems (2) (as many problems as dimensions in the ambient space)
the solution to problem (1) can be efficiently approached for ε small. A
direct attack of problem (1) would require taking a meshsize smaller than ε.
The difficulty has been circumvented. Of course, many improvements and
alternatives exist in the literature.

2.2 Stochastic homogenization

The mathematical setting of stochastic homogenization is more involved than
that of the periodic case.

We put ourselves in the usual probability theoretic setting for stationary
ergodic homogenization, with the exception that our notion of stationarity
is discrete. It intuitively means the following. Pick two points x and y 6=
x at the microscale in the material and assume y = x + k with k ∈ Z

d.
The particular local environment seen from x (that is, the microstructure
present at x) is generically different from what is seen from y (that is, the
microstructure present at y). However, the average local environment in x
is assumed to be identical to that in y (considering the various realizations
of the random material). In mathematical terms, the law of microstructures
is the same. This is stationarity. On the other hand, ergodicity means that
considering all the points in the material amounts to fixing a point x in this
material and considering all the possible microstructures present there.

2.2.1 Main result

With the same setting as that described for periodic homogenization, we
may now briefly describe the main result of stochastic homogenization. The

5
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solution uε to the boundary value problem




−div
(
A

(x

ε
, ω

)
∇uε

)
= f in D,

uε = 0 on ∂D,
(5)

converges, when ε → 0, to the solution u⋆ of (4) where the homogenized
matrix is now

[A⋆]ij = E

(∫

Q

(ei + ∇wei
(y, ·))T A (y, ·) ej dy

)
. (6)

The corrector problem now reads




−div [A (y, ω) (p + ∇wp(y, ω))] = 0 on R
d,

∇wp is stationary, E

(∫

Q

∇wp(y, ·) dy

)
= 0.

(7)

A striking difference between the stochastic setting and the periodic setting
can be observed comparing (2) and (7). In the periodic setting, the corrector
problem is posed on a bounded domain, namely the periodic cell Q. In sharp
contrast, the corrector problem (7) of the random setting is posed on the
whole space R

d, and cannot be reduced to a problem posed on a bounded

domain. The reason is, condition E

(∫

Q

∇wp(y, ·) dy

)
= 0 in (7) is a global

condition. It indeed equivalently reads, because of the ergodic theorem,

lim
R−→+∞

1

|BR|

∫

BR

∇wp(y, ·) dy = 0 for any sequence of balls BR of radii R.

The fact that the random corrector problem is posed on the entire space
has far reaching consequences for numerical practice. Actually, this is proba-
bly the main source of all the practical difficulties of stochastic homogeniza-
tion.

2.2.2 The direct numerical approach

Practical approximations of the homogenized problem in random homoge-
nization are not easily obtained, owing to the fact that the corrector prob-
lem (7) is set on the entire space. In practice, truncations have to be con-
sidered, and the actual homogenized coefficients are only obtained in the
asymptotic regime.

6
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Let us now be more explicit. In practice, the matrix A⋆ is approximated
by the matrix

[A⋆
N ]ij (ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
A(y, ω)

(
ej + ∇wN

ej
(y, ω)

)
dy, (8)

which is in turn obtained by solving the corrector problem on a truncated
domain, say the cube QN = (−N, N)d ⊂ R

d:

{
−div

(
A(·, ω)

(
p + ∇wN

p (·, ω)
))

= 0 on R
d,

wN
p (·, ω) is QN -periodic.

(9)

Although A⋆ itself is a deterministic object, its practical approximation A⋆
N

is random. It is only in the limit of infinitely large domains QN that the
deterministic value is attained (the convergence limN→∞ A⋆

N (ω) = A⋆ has
been shown in [16, Theorem 1]).

At fixed N , the approximate homogenized matrix A⋆
N is random: a set of

M independent realizations of the random coefficient A are therefore consid-
ered. The corresponding truncated problems (9) are solved, and an empirical
mean of the truncated coefficients (8) is inferred. This empirical mean only
agrees with the theoretical mean value of the truncated coefficient within a
margin of error which is given by the central limit theorem (in terms of M).
For a sufficiently large truncation size N , this truncated value is admittedly
the exact value of the coefficient. The overall computation described above
is thus very expensive, because each realization requires a new solution to
the problem (9) of presumably large a size since N is taken large.

3 Bounds for homogenization

[Work expanded in [1].]

Given the above computational workload, practitioners, especially scien-
tists from the applied communities (computational mechanics, . . . ), some-
times choose to avoid computing actual homogenized equations and concen-
trate on bounds on the homogenized matrices A⋆. In [1], we have carefully
studied this approach, which has some (strong, as will be seen below) limi-
tations.

7
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We consider here the specific case of composite materials consisting of
only two phases. We denote by A and B the associated matrix coefficients,
modelling the properties of the phases. We also fix the average volume frac-
tion θ of the phase A. For simplicity, we assume here that θ is uniform over
the whole material. The problem is to find all possible homogenized materi-
als, that is, mathematically, matrices A⋆, that can be attained homogenizing
such phases A and B with the volume fraction θ.

In this specific case, some bounds on the homogenized coefficients may
be established. Here, we present one example of such bounds (actually the
most famous one). The case we consider is a scalar equation of the type (1)
with a matrix coefficient Aε(x) that needs not be periodic, nor stationary
ergodic, and that reads

Aε(x) = χε(x)A + (1 − χε(x))B

where χε(x) is the caracteristic function of phase A. Obtaining estimates
on A⋆ without being in position to explicitly compute A⋆ at a reasonable
computational price is the whole interest of the approach by “bounds”.

3.1 The Hashin-Shtrikman bounds

Based on the density of the matrices obtained by periodic homogenization
in the set of matrices obtained by arbitrary homogenization, it is possible
to derive the following Hashin-Shtrikman bounds on A⋆. In the sequel, we
assume B ≥ A.

Under the above assumptions, any homogenized matrix A⋆ satisfies the
upper bound

A⋆p · p ≤ Bp · p + θ min
η∈Rd

[
2p · η + (B − A)−1η · η + (1 − θ)h(η)

]
(10)

for any p ∈ R
d, where h(η) is defined by

h(η) = min
k∈Zd,k 6=0

|η · k|2

Bk · k
.

Similarly, any homogenized matrix A⋆ satisfies the lower bound

A⋆p · p ≥ Ap · p + (1 − θ) max
η∈Rd

[
2p · η − (B − A)−1η · η − θg(η)

]
, (11)

8
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where g(η) is defined by

g(η) = max
k∈Zd,k 6=0

|η · k|2

Ak · k
.

Furthermore, the upper bound can always be attained: for any p ∈ R
d, there

exists a function χ, Z
d-periodic and that generally depends on p, such that

for the matrix A⋆
p obtained by periodic homogenization of

A(
x

ε
) = χ(

x

ε
)A + (1 − χ(

x

ε
))B,

the inequality (10) becomes an equality (see e.g. [30]). Likewise, the lower
bound (11) can always be attained. We have summarized in [1, Section 2.3.2]
a proof of the Hashin Shtrikman bounds.

Remark 1 Besides the Hashin-Shtrikman bounds, many other estimates have
been proposed, such as the dilute approximation, the self-consistent method [31]
and the Mori Tanaka methods [28]. They are all based on the fact that the
problem of a single inclusion in an infinite material (Eshelby problem) is ana-
lytically solvable [23]. Similarly to the Hashin-Shtrikman bounds, the spatial
distribution of the phases is not taken into account in these other bounds.
The accuracy of these estimates and bounds strongly depends on the contrast
between A and B and the volume fraction θ as shown on Figure 1 below.

3.2 Numerical illustration

We consider a two-phase composite with A and B. We denote by a the
scalar conductivity of A (respectively b the conductivity of B) with a < b.
We denote by d the dimension, and by θ the volume fraction of A.

We consider the case of the random checkerboard, for which the exact
homogenized matrix is known: A⋆ = a⋆ Id =

√
ab Id. In this simple case,

the different bounds and estimates have an analytical form: the homogenized
coefficient a⋆ is bounded from below by the harmonic mean (often called the
Reuss bound) and from above by the arithmetic mean (often called the Voigt
bound):

1

θ/a + (1 − θ)/b
≤ a⋆ ≤ θa + (1 − θ)b.

9
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These bounds are also called Wiener Bounds or Paul bounds. In this case,
the Hashin-Shtrikman bounds detailed above read (see e.g. [25, page 188]):

a

(
1 +

d(1 − θ)(b − a)

da + θ(b − a)

)
≤ a⋆ ≤ b

(
1 −

dθ(b − a)

db + (1 − θ)(a − b)

)
,

and the Self-Consistent model leads to an estimate λeff of the effective con-
ductivity a⋆ defined implicitly (see [26]) by

θ
a − λeff

a + 2λeff

+ (1 − θ)
b − λeff

b + 2λeff

= 0.

On Figure 1 we plot these bounds and estimates for different values of the
contrast, defined by b/a, for a = 1. Note that in this case, by construction,
the volume fraction for any a and b is θ = 1/2. In Tab. 1, we collect the
values of all these bounds and estimates, for the particular case a = 1 and
b = 10.

Figure 1: Different bounds for the checkerboard test case.

A⋆ Harmonic HS- SC Model HS+ Arithmetic
3.16 1.81 2.38 4.00 4.19 5.50

Table 1: Values of bounds and estimate for a contrast of b/a = 10.

We verify that, for the critical volume fraction θ = 0.5, even for a contrast
which is not extremely large (a = 1 and b = 10), the range of homogenized
matrix atteignable, given by the Hashin-Shtrikman bounds, is wide. In such
a case, the spatial distribution of phases, which is not taken into account on

10
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the bounds, is certainly important. Note also that a typical case for real-
world composites is more challenging than the case above, since the contrast
is usually larger (of the order 100 rather than 10) and the volume fraction is
similar.

Our numerical example therefore shows that, in many cases, the Hashin
Shtrikman bounds cannot provide accurate estimates of the homogenized ma-
trix. For a contrast of 10, the error between the bounds and A⋆ is larger than
25 %. For a contrast of 100, the upper bound is three times as large as the
actual homogenized value, which is itself three times as large as the lower
bound. There is therefore a need for developing efficient numerical methods
that provide more accurate results.

4 A weakly-stochastic MsFEM approach

[Work expanded in [3].]

In this section, we show how the Multiscale Finite Element Method (Ms-
FEM) can be adapted to the stochastic setting. We refer to [20] for a review
on the MsFEM approach. Let us recall here that this method is designed
to directly address the original problem (namely (5) in the case of interest
here), keeping ε at its fixed value, rather than studying the limit problem
when ε → 0 (as we do in Section 2, going from (5) to (4)). Another interest
of this method is that it does not require any explicit formula for the homog-
enized tensor (such as (2)-(3), or (6)-(7)), which are not always available.
More details and comprehensive numerical tests are published in [3]. See
also [4].

4.1 MsFEM approaches

For consistency and to set our notation, we briefly review the classical, de-
terministic setting for MsFEM approaches. We next turn to the stochastic
setting. We consider problem (1), which we reproduce here for convenience,

{
−div(Aε(x)∇uε(x)) = f(x) in D,

uε = 0 on ∂D,
(12)

where Aε is a symmetric matrix satisfying the standard coercivity and bound-
edness conditions. Note that the approach is not restricted to the periodic
setting, so we do not assume that Aε(x) = A(x/ε) for a periodic matrix A.

11
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As recalled above, we wish here to keep ε fixed at a (small) given value.
The MsFEM approach consists in performing a variational approximation of
(12) where the basis functions are defined numerically and encode the fast
oscillations present in (12). In the sequel we will argue on the variational
formulation of (12):

Find uε ∈ H1
0 (D) such that, ∀v ∈ H1

0 (D), Aε(u
ε, v) = b(v), (13)

where

Aε(u, v) =
∑

i,j

∫

D

Aε
ij(x)

∂u

∂xi

∂v

∂xj

dx and b(v) =

∫

D

f v dx.

We introduce a classical P1 discretization of the domain D, with L nodes,
and denote φ0

i , i = 1, . . . , L, the basis functions.

Definition of the MsFEM basis functions Several definitions of the
basis functions have been proposed in the literature (see e.g. [24, 21, 22, 14]).
They give rise to different methods. In the following, we present one of these
methods. We consider the problem

{
−div(Aε(x)∇φε,K

i ) = 0 in K

φε,K
i = φ0

i |K on ∂K.
(14)

Note the similarity between (14) and the corrector problem (2). Note also
that the problems (14), indexed by K, are all independent from one another.
They can hence be solved in parallel, using a discretization adapted to the
small scale ε.

Macro scale problem We now introduce the finite dimensional space

Wh := span {φε
i , i = 1, . . . , L} ,

where φε
i is such that φε

i |K = φε,K
i for all K, and proceed with a standard

Galerkin approximation of (13) using Wh:

Find uε
h ∈ Wh such that, ∀v ∈ Wh, Aε(u

ε
h, v) = b(v). (15)

The dimension of Wh is equal to L: the formulation (15) hence requires
solving a linear system with only a limited number of degrees of freedom.

12
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Numerical illustration In order to illustrate the MsFEM approach, we
solve (12) in a one dimensional setting with

Aε(x) = 5 + 50 sin2
(πx

ε

)
,

on the domain D = (0, 1), with ε = 0.025 and f = 1000. We subdivide the
interval (0, 1) in L = 10 elements. On Figure 2, we plot the MsFEM basis
functions in a reference element and the MsFEM solution uε

h.
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Figure 2: Left: Multiscale basis functions φε,K in the reference element.
Right: MsFEM solution uε

h in the domain (0, 1).

Natural adaptation to the stochastic setting When applied to the
stochastic problem

{
−div(Aε(x, ω)∇uε(x, ω)) = f(x) in D,

uε = 0 on ∂D,
(16)

where the practical issue is to build an estimate of the mean E(uε(x, ·)) using
a Monte-Carlo simulation method, the natural adaptation of the MsFEM
method is the following: for each random realization m, first construct a
MsFEM basis and next solve the macroscale problem. This approach requires
a significantly large number of computations, since, for each realization, a
new basis of oscillating functions is built, and a problem at the macroscale
is solved. Such an approach has been described and analyzed in e.g. [18].

4.2 A weakly stochastic setting

As seen above, considering general random materials lead to extremely ex-
pensive computations. The question arises to know whether this general ran-
dom context is really relevant, and whether adequate modifications can lead
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to substantial improvements. Our line of thought here is based on the fol-
lowing two-fold observation: classical random homogenization is costly but
perhaps, in a number of situations, not necessary. Many materials, albeit
not deterministic, are not totally random. Some of them can be considered
as a perturbation of a deterministic material. The homogenized behaviour
should expectedly be close to that of the underlying deterministic material
(and thus tractable from the practical viewpoint), up to an error depending
on the amount of randomness present.

Model We introduce and study here a specific model for a randomly per-
turbed deterministic material (we refer to [12] for a quick overview of this
setting, and some of the associated numerical techniques, and to [1] for a
more comprehensive review of our contributions along these ideas). We are
interested in the following elliptic problem

{
−div

(
Aε

η(x, ω)∇uε
η

)
= f(x) in D ⊂ R

d,
uε

η = 0 on ∂D,
(17)

that is (16) with

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω), (18)

where η ∈ R is a small parameter, Aε
0 is a deterministic matrix uniformly

elliptic and bounded, and Aε
1(x, ω) is a bounded matrix. The matrix Aε

η is
hence a perturbation of the deterministic matrix Aε

0.

Remark 2 The above setting is of course one possible setting where the the-
ory may be developed. Other forms of random perturbations of deterministic
(possibly periodic) problems could also be addressed. See e.g. [5, 6, 7, 8] and
the review article [1].

In the case (18), a MsFEM method alternative to the one presented in
Section 4.1 can be proposed. The idea is to compute the MsFEM basis
functions only once, with the deterministic part of the matrix Aε

η and next
to perform Monte-Carlo realizations only for the macro scale problems. We
refer to [3] for all the details.

As above, we hence first solve (14), with Aε ≡ Aε
0, and build the finite

dimensional space

Wh := span {φε
i , i = 1, . . . , L} .

14
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We next proceed with a standard Galerkin approximation of (17) using Wh:
for each m ∈ {1, . . . , M}, we consider a realization Aε,m

η (·, ω) and compute
um(·, ω) ∈ Wh such that

∀v ∈ Wh,
∑

i,j

∫

D

(Aε,m
η )ij(x, ω)

∂um

∂xi

(x, ω)
∂v

∂xj

(x)dx =

∫

D

f(x)v(x)dx. (19)

Since the MsFEM basis functions are only computed once, a large computa-
tional gain is expected, and this is indeed the case.

Numerical studies We now estimate the performance of the approach. To
this aim, we compare the solution of the above approach with the solution of
the direct approach (of Section 4.1) and, for reference, the solution to (17)
obtained using a finite element method with a mesh size adapted to the small
scale ε. Our estimators are built as follows:

e(u1, u2) = E

(
||u1 − u2||N

||u2||N

)
, (20)

where N is the norm used, u1 and u2 are the solutions obtained with any two
different methods. The expectation is in turn computed using a Monte-Carlo
method. Considering M realizations {Xm(ω)}1≤m≤M of a random variable

(here X(ω) =
||u1(·, ω)− u2(·, ω)||N

||u2(·, ω)||N
), we compute the empirical mean µM

and the empirical standard deviation σM as

µM(X) =
1

M

M∑

m=1

Xm(ω),

σ2
M(X) =

1

M − 1

M∑

m=1

(Xm(ω) − µM(X))2 .

As a classical consequence of the Central Limit Theorem, it is commonly
admitted that E(X) satisfies

|E(X) − µM(X)| ≤ 1.96
σM (X)
√

M
.

We consider the following numerical example. Let (Xk,l)(k,l)∈Z2 denote a
sequence of independent, identically distributed scalar random variables uni-
formly distributed over the interval [0, 1]. We define the random conductivity
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matrix as

Aε
η(x, y, ω) =

∑

(k,l)∈Z2

1(k,k+1](
x

ε
)1(l,l+1](

y

ε
)

(
2 + P sin(2πx/ε)

2 + P sin(2πy/ε)

+
2 + sin(2πy/ε)

2 + P sin(2πx/ε)

)
(1 + ηXk,l(ω)) Id2,

with the parameters P = 1.8 and ε = 0.025. Then we compute uref solu-
tion to (17) on the domain D = (0, 1)2, with f ≡ 1. Let uM and uS be
its approximation by the general MsFEM approach (of Section 4.1) and the
weakly-stochastic MsFEM approach described above, respectively. The nu-
merical parameters for the computation are determined using an empirical
study of convergence. We used for the reference solution a fine mesh of size
hf = ε/40. The MsFEM basis functions are computed in each element K
using a mesh of size hM = ε/80. The coarse mesh size is H = 1/30. We
consider M = 30 realizations.

We report in Tables 2 and 3 the estimator (20), along with its confidence
interval, for the norms H1(D) and L2(D), respectively.

η e(uM , uref) e(uS, uref) e(uS, uM)
1 8.12 ± 0.19 17.37 ± 0.78 15.51 ± 0.87

0.1 7.17 ± 0.02 7.62 ± 0.07 2.56 ± 0.10
0.01 7.15 ± 0.002 7.28 ± 0.007 1.39 ± 0.002

Table 2: H1(D) error (in %).

η e(uM , uref) e(uS, uref) e(uS, uM)
1 0.56 ± 0.08 1.69 ± 0.49 1.47 ± 0.50

0.1 0.54 ± 0.01 0.57 ± 0.06 0.20 ± 0.07
0.01 0.53 ± 0.001 0.62 ± 0.005 0.11 ± 0.003

Table 3: L2(D) error (in %).

We observe that, when η is small (here, η ≤ 0.1), the alternative approach
provides a function uS that is an approximation of uref as accurate as uM .
Recall that, since the MsFEM basis has only been computed once, the cost
for obtaining an empirical approximation of E(uS) is much smaller than that
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for obtaining the corresponding empirical estimator of E(uM). This demon-
strates the efficiency of the approach. As expected, when η is not small
(say η ≈ 1), the accuracy of the solution uS computed with the alternative
approach proposed here decreases.

Elements of proof In [3], we have analyzed the method introduced here
in the one-dimensional setting (see also [4]). For the sake of analysis, we

assume that the highly oscillating coefficient reads aε
η(x, ω) = aη

(x

ε
, ω

)
,

where aη satisfies the standard assumption of stochastic homogenization (see
Section 2.2). The problem (17) now reads





−
d

dx

(
aη

(x

ε
, ω

) d

dx
uε

η(x, ω)

)
= f(x) in (0, 1),

uε
η(0, ω) = uε

η(1, ω) = 0.
(21)

We assume that the randomness is small, in the sense (see (18)) that

aη(x, ω) = aper(x) + η a1(x, ω), (22)

where aper is a deterministic, periodic function and η is a small deterministic
parameter.

In [3], we have bounded from above the difference between u⋆
η, the so-

lution to the homogenized equation (4), and the weakly-stochastic MsFEM
solution, in the following sense. For a given realization of the random co-
efficient aη(x, ω), let u(·, ω) be the weakly-stochastic MsFEM solution, that
solves (19). By construction, this solution is a linear combination of the
highly oscillating basis functions:

u(x, ω) =

L∑

i=1

Ui(ω)φε
i(x).

Let vw−MsFEM(x, ω) be the associated representation in terms of standard P1
basis functions:

vw−MsFEM(x, ω) =
L∑

i=1

Ui(ω)φ0
i (x).

We have the following estimate:

‖u⋆
η − vw−MsFEM(·, ω)‖H1(0,1) ≤ C

(
h +

ε

h
+ ησε

h(ω) + η2C(η)
)

(23)
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where C is a deterministic constant, independent of h, ε and η, and C(η) is a
deterministic function, bounded when η → 0. In the above bound, σε

h(ω) is
a random number, independent of η, that depends on ε, h and the random
term a1(x, ω) in (22).

Let us comment on (23). Assume that η = 0, i.e. the problem (21) is a
periodic problem. Then our method is identical to the standard deterministic
MsFEM method, and we recover from (23) the classical bound known in that
case, namely

‖u⋆
η − vMsFEM‖H1(0,1) ≤ C

(
h +

ε

h

)
.

Assume now that a1 is deterministic. Then our method is not exactly the
MsFEM method, since we do not take into account a1 to build the highly
oscillating basis functions. In that case, σε

h(ω) turns out to vanish, and we
infer from (23) that

‖u⋆
η − vw−MsFEM‖H1(0,1) ≤ C

(
h +

ε

h
+ η2C(η)

)
.

We hence observe that, provided the term neglected to build the basis func-
tions is small (namely η ≪ 1), we obtain a similar accuracy as with the
standard MsFEM method.

A similar conclusion holds in the general case (22). Note also that the
bound (23) is valid for any realization ω of the randomness. It is therefore
a more precise result than a bound on the expectation of the error, where
all random realizations are averaged. For instance, the bound (23) allows to
understand what is the probability distribution of the error.

5 Conclusions and plan for the following years

In this report, we have first reviewed an approach to obtain bounds (here, the
Hashin-Shtrikman bounds) on the homogenized matrix. This approach only
involves computations of moderate difficulty. However, we have outlined the
strong limitations of such a strategy. In some cases, the difference between
the lower and upper bounds is indeed very large. The obtained estimations
are then inaccurate. This motivates the development of efficient numerical
methods that provide more accurate results.

To this aim, we have focused on weakly stochastic materials, for which we
successfully adapted the well-known Multiscale Finite Element Method (Ms-
FEM). We have proposed a method with a much smaller computational cost
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than the original MsFEM in the stochastic setting. Provided the stochastic
perturbation is indeed small, the method we propose is as accurate as the
original one.

We summarize now the directions of research we wish to pursue during
the following years.

A variant of classical random homogenization In the short term, our
aim is to study a particular setting for stochastic homogenization, which is
not the classical setting described in Section 2.2 (where the random coefficient
A in (5) is stationary). The setting we wish to study is the case when the
random coefficient is the composition of a standard deterministic and periodic
function Aper with a stochastic diffeomorphism:

Aε(x, ω) = Aper

[
Φ−1

(x

ε
, ω

)]
(24)

where, for any random realization ω, the application x 7→ Φ(x, ω) is a diffeo-
morphism. Formally, such a setting models a microstructure that is periodic,
in a given reference configuration. The latter is only known up to a certain
randomness. Materials we have in mind are ideally periodic materials, where
some random deformation has been introduced, for instance during the manu-
facturing process. Othewise stated, these are periodic materials seen through
random glasses! This setting has been initially introduced in [9], where the
homogenized problem is identified.

An interesting question in that context is that of numerical discretization.
In the classical context, a standard procedure is to solve the corrector problem
on a truncated domain (see (8) and (9)). The convergence of the procedure
is given by [16, Theorem 1]. We currently work on a similar analysis in the
context of (24) (see [2]).

A more theoretical question is to precisely understand the behaviour of
uε(x, ω) − u⋆(x) when ε goes to 0, where uε is the solution of the highly
oscillating problem and u⋆ the solution of the homogenized problem. In
the classical setting, and in the one-dimensional case, the convergence of
ε−1/2(uε(x, ω) − u⋆(x)) to a Gaussian process has been shown in [17]. This
question, in the context of (24), is addressed in [2].

The setting (24) is in general not a weakly stochastic setting, as the
amount of randomness present in Φ may be large. Yet, in the case when the
diffeomorphism Φ is close to the identity, namely

Φ(x, ω) = x + ηΨ(x, ω) + O(η2) (25)
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for a small deterministic parameter η, the amount of randomness turns out
to be small. This case is thus another instance of randomly perturbed deter-
ministic materials (recall Section 4.2, where we introduced another weakly
stochastic setting, and Remark 2, where we pointed out other weakly stochas-
tic settings). The case (24)-(25) has been studied in [10, 11].

A Fast Fourier Transform approach In the course of our investigations,
we have identified the following tracks of research, which are closely related
to the research directions of the contract.

First, in the periodic homogenization setting recalled in Section 2.1, a
method based on Fast Fourier Transform has been proposed in [29, 27]. The
idea is as follows. Let A0 be a constant symmetric positive matrix. The
corrector problem (2) is equivalent to

{
−div (A0 (p + ∇wp)) = div ((Aper(y) − A0) (p + ∇wp)) in R

d,

wp is Z
d-periodic.

The idea of [29, 27] is to solve this problem iteratively. Knowing the iterate
wk

p at iteration k, the next iterate wk+1
p is defined as the unique solution to

{
−div

(
A0

(
p + ∇wk+1

p

))
= div

(
(Aper(y) − A0)

(
p + ∇wk

p

))
in R

d,

wk+1
p is Z

d-periodic.

As A0 is a tensor independent of y (in contrast to Aper(y)), the above problem
can be solved very efficiently using a Fourier transform. Hence, rather than
solving (2), we are left with solving many times a simpler problem.

Our aim is to compare this iterative method with the standard method,
in term of efficiency. The choice of A0 is most probably of paramount impor-
tance, since the convergence rate (and also the fact that the iterations in k
converge or not) depends on it. We have already run some preliminary tests
with this method, but definite conclusions are yet to be obtained.

Second, in the context of stochastic homogenization, approaches using
some decomposition of the random matrix A(x, ω) in (5) would be worthwhile
to investigate.
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périodique faiblement perturbé aléatoirement [Homogenization of a
weakly randomly perturbed periodic material], C. R. Acad. Sci. Série I,
348:529–534, 2010.

[6] A. Anantharaman and C. Le Bris, A numerical approach related
to defect-type theories for some weakly random problems in ho-
mogenization, SIAM Multiscale Modeling & Simulation, submitted,
http://arxiv.org/abs/1005.3910

[7] A. Anantharaman and C. Le Bris, Elements of mathematical foun-
dations for a numerical approach for weakly random homogeniza-
tion problems, Communications in Computational Physics, submitted,
http://arxiv.org/abs/1005.3922

21

Distribution A:  Approved for public release; distribution is unlimited.



[8] X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in
stochastic homogenization using antithetic variables, Markov Processes
and Related Fields, submitted.

[9] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de
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