
NPS-CS-13-003

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

PASSIVE TCP RECONSTRUCTION AND FORENSIC
ANALYSIS WITH TCPFLOW

by

Simson L. Garfinkel
Michael Shick

September 2, 2013

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Jan E. Tighe Douglas A. Hensler
Interim President Provost

The report entitled “Passive TCP Reconstruction and Forensic Analysis with tcpflow”
was prepared for and funded by Federal Bureau of Investigation.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Simson L. Garfinkel Michael Shick

Reviewed by: Released by:

Peter Denning, Chairman Jeffrey D. Paduan
Computer Science Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

iv

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

2–9–2013 Technical Report 2012-10-01—2013-09-30

Passive TCP reconstruction and forensic analysis with tcpflow

Simson L. Garfinkel, Michael Shick

Naval Postgraduate School
Monterey, CA 93943 NPS-CS-13-003

Federal Bureau of Investigation

Approved for public release; distribution is unlimited

The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department
of Defense or the U.S. Government.

Passive TCP session reconstruction essential for many kinds of network forensics and law enforcement operations, but it is is
complicated by packet loss, retransmissions, and possible attacks by adversaries. The key problem is that participants in the
TCP session may observe the TCP segments differently than the monitor. An Added complication is the lack of familiarity
with network protocols by many forensic analysts, resulting in the need for tools that are easy-to-use and able to tolerate a
wide range of data. To address these issues we rewrote the open source network forensics tool tcpflow, making it more robust
to anomalies that had been reported to us by users. We also improved the program’s usability and performance on large packet
captures, and added simple visualization that produces a one-page summary PDF for packet captures of any size.

TCP/IP; Digital Forensics; tcpflow; visualization; session reconstruction

Unclassified Unclassified Unclassified UU 19

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Table of Contents

1 Introduction . 1

2 Related Work . 2

3 Requirements . 3

4 Implementation . 5

5 Evaluation. 8

6 Future Work. 8

7 Conclusion . 8

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

Abstract

Passive TCP session reconstruction essential for many kinds of network foren-
sics and law enforcement operations, but it is is complicated by packet loss, retrans-
missions, and possible attacks by adversaries. The key problem is that participants
in the TCP session may observe the TCP segments differently than the monitor.
An Added complication is the lack of familiarity with network protocols by many
forensic analysts, resulting in the need for tools that are easy-to-use and able to
tolerate a wide range of data. To address these issues we rewrote the open source
network forensics tool tcpflow, making it more robust to anomalies that had been
reported to us by users. We also improved the program’s usability and performance
on large packet captures, and added simple visualization that produces a one-page
summary PDF for packet captures of any size.

1 Introduction
Law enforcement and cybersecurity investigators are increasingly monitoring networks as part
of both ongoing investigations. For example, some organizations capture packets in and out of
their networks and analyze the packets relating to a particular IP address if that host becomes
infected with malware. Such network forensics efforts cannot be performed with netflow data
or truncated frame headers, since investigators require access to the full network content. In-
vestigators also require efficient tools that can reassemble TCP segments into transcripts that
contain a byte-for-byte copy of the data delivered to the network application programs. These
transcripts are then viewed, searched, and subjected to additional processing by both human
examiners and automated tools.

Many technical factors complicate the process of working with full content captures. Unlike
traditional network monitoring, statistical sampling cannot be used, as the event sought by in-
vestigators may be a single TCP connection—or even a single IP frame. Because most equip-
ment subject to monitoring is not under the control of the investigator, there is typically no way
to regenerate or replay targeted events. Because forensics is invariably performed with passive
network taps, packet captures are frequently asymmetric or incomplete; it is not uncommon for
investigators to capture only packets sent in one direction.

Packet captures are typically delivered to investigators in the form of pcap files. Yet investigators
frequently lack the tools and technical skills to analyze these files [13]. Wireshark [18] is the
most popular network protocol analyzer today [14, 23]. But Wireshark will only reassemble
a single TCP stream at a time, and its string search capability will only find strings contained
within a single packet, and only when the stream is not compressed or otherwise encoded. This
is a problem, given that web servers are increasingly using gzip compression to deliver HTTP
pages.

This article presents some of the requirements for passive TCP reconstruction and other aspects

1

of modern network forensics and shows how we addressed them in tcpflow, an open source
network forensics tool that was initially developed by Jeremy Elson in 1999, abandoned in
2003, and largely rewritten by the authors of this paper over the past four years. This article’s
contributions include an explanation of why the requirements for Internet measurement tools
used for forensics differ from other uses; details of how we implemented those requirements in
tcpflow; and a description of our new visualization for packet captures. From the point of view
of our users, however, it is the usability of our visualization that is key: it is available today,
implemented in open source software, and runs on Windows, Linux and Macs.

2 Related Work
Corey et al. described the requirements for a network forensic analysis tool (NFAT) in 2002 [4].
Casey reviewed other tools in 2004 [3]. Pilli et al. surveyed NFAT frameworks and presented
research challenges in 2010 [23], identifying the largest research challenges as collection of
data and detection of attacks; data fusion and examination; analysis; investigation; and incident
response. Surprising to some, virtually every digital forensics technical problem or requirement
identified over the past decade remains with us today. Computers are faster and hard drives
are larger, but bandwidth, the number of users, and the complexity of data have also increased.
In many ways forensics is harder now than it was in 2002 due to the increasing diversity of
devices, protocols, data formats, relays, and the increasing use of encryption [9].

Dharmapurikar and Paxson [5] presented a hardware-based approach for reassembling TCP
streams in the presence of adversaries. Their requirements are different from ours, in that their
system is designed for an inline NIDS that must make real-time decisions as to whether or
not to pass individual packets. Because their system is inline, it is guaranteed to observe both
directions. Another key difference is the adversary model: Dharmapurikar and Paxson assume
an adversary that must participate in TCP handshake and is attempting to exhaust the memory
space or memory bandwidth of the monitor. Like Hahn et al. [12], we are additionally concerned
with adversaries that use overwriting attacks, possibly with changing TTLs, so that the monitor
assembles a different TCP transcript than the target system

Passive TCP stream reassembly is implemented in many network intrusion prevention and de-
tection tools (e.g. Bro [22] and Suricata [27]). The requirements for these systems is subtly
different from ours, as an IPS can simply terminate connections that it cannot reassemble. Like-
wise, many of these systems were designed to work with flows in a manner similar to that of
the Windows or Linux stack. For example, Wojtczuk asserts that “libnids predicts behaviour of
protected Linux hosts as closely as possible.” [29] The challenge is that reorderings observed
by the monitor may not the same as those observed by the participants: in is occasionally nec-
essary to make a best-effort attempt to recover the stream content even if a well-behaved TCP
implementation would not. This is particularly true when the monitor receives data segments
before the first SYN or after a FIN or RST. We have examined the source code Bro and libnids
and found that they will not reassemble streams that have such reorderings.

Another challenge for passive TCP reassembly is the possibility of an attacker mounting a

2

denial-of-service attacks on the NIDS CPU; Dreger et al. discuss this in more depth [6].

Much of our effort has been aimed at developing a command-line tool that is easy to use by
examiners and easy to integrate with automated processing. For example, tcpflow can create a
few million transcript files in a few thousand directories; these transcripts can then be searched
with grep, viewed with emacs, or analyzed with other programs. We originally implemented this
approach based on personal preference; Botta et al. [2] studied security practitioners and found
that generic text and information management tools such as grep offer significantly usability
and performance advantages over integrated GUI-based systems for experienced administrators.

Users of our tool requested a simple one-page visualization to provide an overview of the pcap
file being analyzed. There are more than two decades of work on the visualization of network
capture data and we cannot summarize it here. Much of this work has been to develop interactive
visualizations for use by analysts, but there has also been some work on one-page displays (e.g.,
[1, 24, 26]). Estan et al.’s Autofocus [7] attempted used a clustering algorithm to identify and
then visualize the most significant parameters of a resource-consuming network flows. Palomo
et al. explored the use of hierarchial SOMs for visualizing network forensics traffic data [21].
Our work differs from these in part because our visualization is designed to produce consistent
imagery no matter whether it is given a hundred packets or a hundred million, making it possible
to directly compare different graphs from different captures.

An alternative to TCP reconstruction is to use a proxy such as the Charles Web Debugging Proxy
[28]. This approach has the advantage of perfect capture, but the disadvantage of requiring
network reconfiguration.

The sketch data structure has been widely used to tally counts in high-performance network
monitoring systems [8, 16, 25]. Unfortunately sketches introduce probabilistic errors, so we
avoid them and developed an approach based on radix trees instead.

3 Requirements
In 2008 NPS created a network forensics analysis exercise that required the ability to perform
web browser identification to overcome scrambling from network address translation. Frus-
trated by Wireshark, we developed a solution that involved creating a separate Unix file for
each TCP session, using grep to find the TCP session associated with the fictional criminal ac-
tivity, examining the TCP session with more to find browser-identifying strings, and then using
grep a second time to find all of the other TCP streams associated with that browser. Those
streams were then manually examined for information that identified the perpetrator.

Since then, we have maintained tcpflow as a freely available open source tool for digital foren-
sics education and demonstrations. The tool’s primary requirement is to ingest pcap files and
produce a separate transcript file for each side of each TCP session. Examiners then analyze
these files using existing tools. tcpflow has also been incorporated into automated analysis sys-
tems. Over the years we have been contacted by a variety of practitioners that have used to tool

3

in their work and have required additional features. Here we present some of those require-
ments.

3.1 Ease of Installation and Use
The primary requirement we have observed among practitioners is that tools be easy-to-use.
Surprisingly, ease-of-use frequently trumps performance, functionality and even correctness:
practitioners will use tools that lose data and occasionally produce incorrect results in preference
to other tools that are technically superior but beyond the practitioner’s ability to compile, run,
or interpret the results.

Although such attitudes may seem at odds with the legal requirements for courtroom admissibil-
ity, in practice few cases actually go to trial, few trials involve the direct presentation of digital
evidence, and few defense attorneys have the technical sophistication to dispute the correctness
of a tool [20]. Nevertheless, we believe it is important to have tools that are both easy-to-use
and technically correct.

3.2 Content discovery and attribution
For many practitioners the goal of a network forensics investigation is to identify content within
a collection of packets and determine what was sent, who sent it, and where it was received.
Most examiners therefore perform offline analyses. The tool need not run at wire speed, but
it must be able to handle any amount of data with consumer hardware within a timeframe
consistent with the investigation.

Many users have an additional requirement that objects sent by HTTP or email be extracted
from the pcap file and saved in the file system as individual files with descriptive filenames and
appropriate extensions. ZIP and gzip-compressed HTTP streams must be decompressed. In
many cases it is helpful to compute the MD5 hash value of each object sent by HTTP so that
the hashes can be compared with a database of malware or known content.

3.3 Live Analysis
We were surprised to discover that a significant number of tcpflow’s users were not performing
forensic analysis, but were using the program for a variety of other purposes, such as protocol
debugging and art projects. These users relied on tcpflow’s ability to perform real time capture
and reassembly of data sent by HTTP and wrote their own post-processing software to ingest
the resulting transcript files. Thus it was important that all aspects of the program continued to
support live analysis.

3.4 Resilient Passive TCP Reassembly
TCP is an interactive two-party protocol designed to reliably transport byte streams across a
best-effort network that may occasionally corrupt, drop, duplicate or reorder frames. These
mechanisms rarely help a passively monitoring third party. Instead, the monitor must accept all
frames that are received and attempt to make the best possible use of the data.

4

Additional complications include: 1) The monitor may miss any frame. In the extreme case,
asymmetric routing may result in the monitor capturing only one side of the connection; 2) The
monitor may capture frames sent but not received; 3) The monitor may capture frames not sent
but received, or neither sent nor received. (In both cases, such frames may be sent by an attacker
with the goal of disrupting the monitoring.)

Analysts are often unable to diagnose network capture problems—or are simply uninterested
in doing so. They need tools that work with the data that they have on the hardware that’s
available.

3.5 Simple Graphical Reporting
Several of our users wanted a way to quickly review the contents of gigabyte sized pcap files
and answer questions such as: What kind of data were collected? Is there a time gap? Which
protocols were in use? How much of the data is to/from the target hosts? Although there has
been substantial work on TCP visualization, most of this work has been research and has not
produced graphs that are readily easy to interpret without training, and few have been opera-
tionalized into tools that are available to examiners.

4 Implementation
With version 1.4, tcpflow has been rewritten in C++ with an automake-generated build system
and restructured to use the plug-in API that we have developed for bulk_extractor [11], a high-
performance open source computer forensics triage tool.

4.1 Support for Existing Forensics APIs
Essentially, tcpflow is now a framework that loads plug-ins and then reads one or more pcap
files. Each plug-in can register to process captured frames or reassembled streams. The passive
TCP is implemented by the scan_tcpdemux plug-in, which reassembles the TCP streams and
submits the streams to the framework for further processing. Although the current version could
use bulk_extractor’s scan_base64 and scan_gzip to extract and decode HTTP and email MIME
objects, we instead opted to write a new plug-in that uses the Joyent http_parser [15] to decode
and extract the embedded objects. These objects are then recursively re-analyzed using the
framework.

We also provide a scan_md5 scanner to calculate the MD5 of each stream, and a scan_netviz
module (§4.4) to create a visualization of the processed packets. The plug-in architecture makes
it easy for organizations to add their own functionality with internal, non-public modules.

tcpflow was adapted to output a list of every connection using Digital Forensics XML [10].
Despite DFXML’s verbosity, the format makes it relatively easy to associate each flow with the
specific file used to hold the transcript. The DFXML file can be readily augmented with the
MD5 hash value the flow’s contents, and can readily represent objects that are extracted from
HTTP flows, even when the extraction requires decompression or other forms of decoding.
DFXML allows post-processing of flows with existing disk forensic tools.

5

Using the bulk_extractor framework minimizes the training required for programmers to switch
between the projects, and helps assure that the tool will be maintained by the very limited
development capabilities in the computer forensics community.

Finally, we have added numerous convenience features to tcpflow, such as the ability to read
frames directly from gzip and ZIP-compressed files.

4.2 Passive TCP Reconstruction
The scan_tcpdemux module implements a passive TCP that maintains a separate TCP state
machine for every flow observed. As a result, no special code is required to reconstruct TCP
connections for which only one direction is captured. Flows are identified by their five-tuple.

As the missed segments may include one of the segments from the initial three-way handshake,
tcpflow creates a new state machine on the first segment it receives of any TCP flow. If the
first segment does not have the SYN bit set, the initial sequence number (ISN) is assumed to be
one less than that segment’s sequence number. In testing we discovered that a segment several
segments into a connection might be the first to be observed by the monitor, followed several
seconds later by retransmission of segments earlier in the connection (but still without the initial
SYN). To handle this situation, tcpflow computes a new ISN whenever a segment is discovered
before the ISN and inserts the bytes from that segment at the start of the transcript file, shifting
the rest of the content towards the rear to make room. The current implementation performs this
shift on disk, which is an expensive operation, but it avoids the need to buffer the data for all
open connections in memory, which offers protection against so-called “elephant flows.” Such
huge flows can be further defended against by setting tcpflow’s -b max_bytes parameters.

The passive TCP performs further processing on TCP connections when a FIN or RST is re-
ceived, but only if all bytes in the connection are present in the transcript file. Otherwise the
TCP state machine is kept active in memory until either the retransmitted segments are received
or a user-configurable timeout is reached. tcpflow distinguishes resent frames that have different
content by comparing the frame’s content with the transcript file. Segments received after a FIN
or RST are also processed, as segment may be an attack sent to the monitor and not observed
by the participants.

The transcript filenames can be built from IP addresses, ports, connection numbers, and other
information; the pattern can be specified on the command line. Three built-in patterns will auto-
matically bin connections by connection number in one, two or three directory layers, assuring
that tcpflow will put not more than 1000 transcripts in a directory while allowing the program to
process 106, 109 or 1012 individual connections with two, three or four directory levels. (With
1012 files, the examiner would hopefully use some kind of high-performance cluster file system
for analysis.)

4.3 Defending Against Attacks
It is relatively easy to attack a passive TCP using maliciously crafted TCP segments.

6

Consider a four segment sequence with a A SYN-ACK segment (ISN of 1); a 300-byte segment
(seq of 2); a 300-byte segment (seq of 230); a FIN (seq of 230 + 1). Reading these segments,
many passive TCPs will create a gibibyte-sized transcript filled with zeros; tcpflow has a user-
settable [-m maximum gap]; gaps detected that are larger result in the current transcript being
terminated and new one started.

Another attack is to send segments that appear to come from every possible IPv4 address, which
will cause any associative array keyed on source IP address to consume a significant amount
of memory. We defend by shrinking the tr1::unordered_map as necessary to free memory
pressure and through the use of the IP address radix tree, discussed in section 4.5.

4.4 A Useful 1-Page Visualizations
In response to user requests, we created a plug-in that would produce 1-page PDF file that would
summarize the processed capture.

Our users have a relatively simple problem that was unmet by existing visualization tools: they
are frequently provided with one or more pcap files that they need to be able to validate before
passing on for sophisticated analysis (a process that may be backlogged). Our users needed to
know the time span that a network capture encompasses, whether or not there are holes, the
hosts and the protocols involved. The result must be suitable for inclusion in a printed report,
and different examiners must produce the same visualization when given the same data.

We address these requirements with a single-pass visualization that shows a series of bar graphs
showing data received over time, the top senders and receivers by IP address and by TCP port.
To address varying time scales we build histograms at multiple time resolutions (minute, hour,
day week, month, year, decade, and semicentury), with each bucket being a map with slots for
corresponding to each protocol port. We use the same color scheme for all graphs, so that the bar
graphs showing popular ports is a key for the time-based histogram. A cumulative distribution
function is drawn across all bar graphs, with the line in a layer that is over the bars but behind the
text labels for maximum legibility. The result is a visualization that is completely automated,
conveys information that is case-relevant, and can be generated at little computational cost (The
visualization of the sanjose capture shown in Figure 1 involved roughly 48 million packets and
required 562 seconds of clock time and 72MB of RAM (measured by maxrss) on a Mac Pro
running MacOS 10.8.3.) In a future version we hope to include a two-dimensional map showing
host-pair communications and relying on the same color scheme.

4.5 IP Address Radix Tree
The two address bar graphs in the visualization use a sparse radix tree to store counts associated
with individual IP addresses.

Each node of the tree consists of a counter and pointers to two nodes; IP addresses are encoded
as the location of leaves on the tree. When the tree has more than a predetermined number of
nodes, the tree is walked to find the deepest node with one or two leaves that have the lowest

7

counts; the leaves are then pruned and their counts added to node’s, which is now a leave. In this
way hosts that have relatively little traffic are naturally combined into subnets, while hosts with
lots of traffic are maintained with individual counts, even if they have adjacent IP addresses on
the same subnet. (For example, note that the top source address in Figure 1 is 48.1.136.0/24.)
While such summarization is not appropriate for flow analysis or a detailed report, we believe it
is appropriate for our one-page visualization, where data reduction is essential. Added benefits
are that the radix tree requires no configuration, and that IP addresses are combined into rarely
used blocks with common prefixes, similar to CIDR blocks. Finally, a single tree can store
both IPv4 and IPv6 addresses. It is also possible to store source-destination pairs in the tree by
bit-interleaving the addresses, although more work is required to understand the behavior of our
implementation before it is ready for general use.

5 Evaluation
Figure 2 shows the visualization applied to one of the anonymized Internet traces from IPv6
Day available from CAIDA; for comparison, we also show the time-based histogram applied
to the “outside” capture files from the MIT Lincoln Labs 1999 DARPA Intrusion Detection
Evaluation [17].

6 Future Work
The original tcpflow was developed at a time when computers had relatively small memories
and, as a result, all connections are buffered on disk. A passive TCP that keep segments in
memory until a connection is complete or memory is exhausted might significantly improve
performance; currently such buffering is performed by the operating system.

We hope to make scan_tcpdemux a linkable library and implement the libnids interface, allow-
ing direct comparison of speed and accuracy of the two passive TCP implementations. We plan
to publish a set of pcap files that demonstrate specific failures of existing passive TCP systems
that tcpflow handles properly.

Since many users of tcpflow are not comfortable coding in C++, we hope to create a gateway
that will make it easy to process completed TCP streams in Python.

Finally, we suspect that additional profiling will allow us to make additional performance im-
provements to the passive TCP state machine.

7 Conclusion
We have created a high-performance passive TCP implementation and visualization designed
to assist investigators with network forensics tasks. Rather than creating an integrated system,
our approach turns captured packets into individual transcript files, after which they can be
processed with other tools. The result is a system that makes it relatively easy for today’s
digital forensics practitioners to perform sophisticated network forensics tasks with relatively
little training.

8

TCPFLOW 1.4.0b1
Input: /corp/caida/packets/equinix-sanjose.dirA.20120606-235400.UTC.anon.pcap
Generated: 2013-05-05 11:08:59

Date range: 2012-06-06 19:54:00 -- 2012-06-06 19:54:59
Packets analyzed: 47,989,417 (43.75 GB)
Transports: Other 100%

1 minute (1 second intervals)

0 MB

196 MB

392 MB

588 MB

784 MB

0%

100%

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Top Source Addresses
0 B

3 GB

0%

100%
48

.1
.1

36
.0

/2
4

19
2.

0.
0.

0/
2

13
5.

12
8.

0.
0/

9

18
4.

21
.3

6.
19

2/
26

18
4.

21
.4

6.
2

16
0.

0.
0.

0/
4

18
4.

21
.4

0.
0/

22

18
0.

23
2.

0.
0/

13

48
.1

.1
44

.0
/2

0

48
.1

.1
37

.1
52

/2
9

Top Destination Addresses
0 B

4 GB

0%

100%
61

.1
60

.0
.0

/1
1

48
.1

28
.0

.0
/9

60
.5

5.
15

0.
0/

24

18
4.

0.
0.

0/
7

64
.0

.0
.0

/5

61
.1

28
.0

.0
/1

1

80
.0

.0
.0

/5

19
0.

10
4.

0.
0/

13

52
.0

.0
.0

/6

14
4.

0.
0.

0/
4

1) 48.1.136.0/24 - 3.01 GB (6%) 1) 61.160.0.0/11 - 3.66 GB (8%)
2) 192.0.0.0/2 - 2.84 GB (6%) 2) 48.128.0.0/9 - 1.82 GB (4%)
3) 135.128.0.0/9 - 2.08 GB (4%) 3) 60.55.150.0/24 - 1.54 GB (3%)

Top Source Ports
0 B

35 GB

0%

100%
80

19
35

44
3

80
80

80
00

56
75

7

53
25

1

20
90

4

49
47

1

52
84

4

Top Destination Ports
0 B

2 GB

0%

100%
80

44
3

59
23

7

63
00

3

40
87

7

59
89

2

19
35

62
69

2

64
06

5

41
62

1

1) 80 - 34.69 GB (81%) 1) 80 - 2.37 GB (5%)
2) 1935 - 2.07 GB (4%) 2) 443 - 915.25 MB (2%)
3) 443 - 756.91 MB (1%) 3) 59237 - 313.91 MB (0%)

Figure 1: tcpflow ’s one-page visualization. The color key for the timeline stacked bargraph is presented
in the source and destination graphs. Each graph includes a CDF. Here we shows the CAIDA equinix-
sanjose.dirA.20120606-235400.UTC.anon.pcap capture

TCPFLOW 1.4.0b1
Input: /corp//mitll/packets/ideval99/week1/friday/outside.tcpdump.gz + 14 more
Generated: 2013-05-01 09:53:24

Date range: 1999-03-01 08:00:06 -- 1999-03-20 01:02:44
Packets analyzed: 19,926,633 (4.80 GB)
Transports: IPv4 100%

2 weeks, 4 days (1 day intervals)

0 MB

127 MB

254 MB

381 MB

508 MB

0%

100%

M T W R F S S M T W R F S S M T W R F

Top Source Addresses
0 B

547 MB

0%

100%
20

7.
96

.0
.0

/1
1

17
2.

16
.1

12
.1

94

20
7.

0.
0.

0/
11

17
2.

16
.1

14
.4

8/
28

20
9.

67
.2

9.
11

19
7.

21
8.

17
7.

69

17
2.

16
.1

16
.0

/2
2

17
2.

16
.1

14
.1

48

17
2.

16
.1

12
.1

00

20
6.

0.
0.

0/
9

Top Destination Addresses
0 B

1 GB

0%

100%
17

2.
16

.1
16

.0
/2

2

17
2.

16
.1

14
.1

68

17
2.

16
.1

13
.1

05

19
4.

7.
24

8.
15

3

17
2.

16
.1

13
.8

4

19
4.

27
.2

51
.2

1

17
2.

16
.1

14
.1

69

17
2.

16
.1

12
.1

94

17
2.

16
.1

14
.1

48

17
2.

16
.1

14
.2

07

1) 207.96.0.0/11 - 547.40 MB (11%) 1) 172.16.116.0/22 - 1.15 GB (24%)
2) 172.16.112.194 - 291.74 MB (6%) 2) 172.16.114.168 - 320.43 MB (6%)
3) 207.0.0.0/11 - 274.65 MB (5%) 3) 172.16.113.105 - 260.64 MB (5%)

Top Source Ports
0 B

3 GB

0%

100%
80

23
20 22 25 21 66

67
24

06
12

42
2

11
0

Top Destination Ports
0 B

368 MB

0%

100%
80

23

25

22
25

12
6

12
82

6

25
77

9

24
63

2

12
37

2

82
95

1) 80 - 3.13 GB (65%) 1) 80 - 367.77 MB (7%)
2) 23 - 455.28 MB (9%) 2) 23 - 325.89 MB (6%)
3) 20 - 195.42 MB (4%) 3) 25 - 102.10 MB (2%)

Figure 2: The timeline of the three week DARPA 1999 “outside” dataset [19] makes it easy to see
some of the criticisms of the data—for example, the lack of traffic on weekends.

9

References
[1] Richard Blum. Network Performance Open Source Toolkit Using Netperf, tcptrace, NISTnet, and SSFNet. John Wiley &

Sons, Inc., New York, NY, USA, 1 edition, 2003. ISBN 0471433012.

[2] David Botta, Rodrigo Werlinger, André Gagné, Konstantin Beznosov, Lee Iverson, Sidney Fels, and Brian Fisher. Towards
understanding it security professionals and their tools. 2007.

[3] Eoghan Casey. Tool review: Network traffic as a source of evidence: tool strengths, weaknesses, and future needs. Digit.
Investig., 1(1):28–43, February 2004. ISSN 1742-2876. http://dx.doi.org/10.1016/j.diin.2003.12.002.

[4] Vicka Corey, Charles Peterman, Sybil Shearin, Michael S. Greenberg, and James Van Bokkelen. Network forensics
analysis. IEEE Internet Computing, 6(6):60–66, 2002. ISSN 1089-7801.

[5] Sarang Dharmapurikar and Vern Paxson. Robust TCP stream reassembly in the presence of adversaries. In Proceedings
of the 14th conference on USENIX Security Symposium - Volume 14, SSYM’05, page 5. USENIX Association, Berkeley,
CA, USA, 2005. http://dl.acm.org/citation.cfm?id=1251398.1251403.

[6] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Predicting the resource consumption of net-
work intrusion detection systems. In Proceedings of the 11th international symposium on Recent Advances in In-
trusion Detection, RAID ’08, pages 135–154. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 978-3-540-87402-7.
http://dx.doi.org/10.1007/978-3-540-87403-4_8.

[7] Cristian Estan, Stefan Savage, and George Varghese. Automatically inferring patterns of resource consumption in network
traffic. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’03, pages 137–148. ACM, New York, NY, USA, 2003. ISBN 1-58113-735-4. http:
//doi.acm.org/10.1145/863955.863972.

[8] Cristian Estan and George Varghese. New directions in traffic measurement and accounting. SIGCOMM Comput. Com-
mun. Rev., 32(4):323–336, August 2002. ISSN 0146-4833. http://doi.acm.org/10.1145/964725.633056.

[9] Simson Garfinkel. Digital forensics: The next 10 years. In Proc. of the Tenth Annual DFRWS Conference, volume 7.
Elsevier, Portland, OR, 2010.

[10] Simson Garfinkel. Digital Forensics XML. Digital Investigation, 8:161–174, February 2012.

[11] Simson Garfinkel. Digital media triage with bulk data analysis and bulk_extractor. Computers & Security, 32:57–72,
February 2013.

[12] Timothy Hahn, Michael L.H̃all Jr. Mohit jaggi, and Nicholas Leavy. Use of packet hashes to prevent TCP retransmit
overwrite attacks, March 3 2009. US Patent 7500264.

[13] H. Hibshi, T. Vidas, and L. Cranor. Usability of forensics tools: A user study. In IT Security Incident Management and
IT Forensics (IMF), 2011 Sixth International Conference on, pages 81–91. IEEE, 2011.

[14] Guillaume Jourjon, Salil Kanhere, and Jun Yao. Impact of an e-learning platform on cse lectures. In Proceedings of
the 16th annual joint conference on Innovation and technology in computer science education, ITiCSE ’11, pages 83–
87. ACM, New York, NY, USA, 2011. ISBN 978-1-4503-0697-3. http://doi.acm.org/10.1145/1999747.
1999773.

[15] Inc. Joyent. http-parser, 2013. https://github.com/joyent/http-parser. Last access April 21, 2013.

[16] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based change detection: methods,
evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, IMC
’03, pages 234–247. ACM, New York, NY, USA, 2003. ISBN 1-58113-773-7. http://doi.acm.org/10.1145/
948205.948236.

[17] MIT Lincoln Laboratory. DARPA intrusion detection data sets, 2000. http://www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/.

[18] Ulf Lamping, Richard Sharpe, and Ed Warnicke. Whireshark User’s Guide. Wireshark Foundation, 2012. http:
//www.wireshark.org/docs/wsug_html_chunked/.

[19] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar Das. The 1999 darpa off-line intrusion
detection evaluation. Comput. Netw., 34(4):579–595, October 2000. ISSN 1389-1286. http://dx.doi.org/10.
1016/S1389-1286(00)00139-0.

10

[20] Committee on Identifying the Needs of the Forensic Science Community. Strengthening Forensic Science in the United
States: A Path Forward. National Research Council, February 2009.

[21] E. J. Palomo, J. North, D. Elizondo, R. M. Luque, and T. Watson. 2012 special issue: Application of growing hierarchical
som for visualisation of network forensics traffic data. Neural Netw., 32:275–284, August 2012. ISSN 0893-6080.
http://dx.doi.org/10.1016/j.neunet.2012.02.021.

[22] Vern Paxson. Bro: A system for detecting network intruders in real time. Computer Networks, December 1999.

[23] Emmanuel S. Pilli, R. C. Joshi, and Rajdeep Niyogi. Network forensic frameworks: Survey and research challenges.
Digit. Investig., 7(1-2):14–27, October 2010. ISSN 1742-2876. http://dx.doi.org/10.1016/j.diin.2010.
02.003.

[24] Pin Ren, Yan Gao, Zhichun Li, Yan Chen, and B. Watson. Idgraphs: intrusion detection and analysis using histographs.
In Visualization for Computer Security, 2005. (VizSEC 05). IEEE Workshop on, pages 39–46, 2005.

[25] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang, Peter A. Dinda, Ming-Yang Kao, and
Gokhan Memik. Reversible sketches: enabling monitoring and analysis over high-speed data streams. IEEE/ACM Trans.
Netw., 15(5):1059–1072, October 2007. ISSN 1063-6692. http://dx.doi.org/10.1109/TNET.2007.896150.

[26] Timothy Jason Shepard. TCP packet trace analysis. Technical Report MIT/LCS/TR-494, Massachusetts Institute of
Technology Laboratory for Computer Science, February 1991.

[27] Suricata : Open source ids / ips / nsm engine, 2013. http://suricata-ids.org. Last accessed April 21, 2013.

[28] Karl von Randow. Charles proxy, 2013. http://www.charlesproxy.com. Last Accessed April 21, 2014.

[29] Rafal Wojtczuk. Libnids, March 2010. http://libnids.sourceforge.net.

11

