
© 2012 Carnegie Mellon University

A Mashup of Techniques to
Create Reference
Architectures

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Rick Kazman, John McGregor

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
A Mashup of Techniques to Create Reference Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
SEI Architecture Technology User Network Conference (SATURN 2012), May 7-11, 2012, St Petersburg,
FL.

14. ABSTRACT
A reference architecture is a complex and high-risk artifact. It is essential to the successful definition and
management of a set of architectures that share common attributes and assets. You simply cannot afford to
get it wrong, but there are few techniques that have been specifically aimed at defining reference
architectures. We have developed a mashup of existing techniques that supports an architecture team in
organizing the inputs required to create a robust reference architecture. This mashup takes advantage of
several proven, widely used architecture methods. This approach allows the architecture-definition team to
incrementally define the appropriate abstractions and patterns and to organize the information so that it is
accessible and actionable. The resulting technique has been applied to a large development effort aimed at
creating a family of embedded computing architectures and applications for the DoD. The mashup is
proving to be effective at focusing the team and giving them practical and proven tools for coordinating
their work and making meaningful progress.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Copyright 2012 Carnegie Mellon University.

This material is based upon work supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-
IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

3
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

The Context

Our client wanted to create a reference architecture to enable large-
scale strategic reuse.

A major long-term effort in which assets are to be produced by a central
team and used by distributed teams.

The distributed teams are independent of the central team.

This was a cultural as well as a SE challenge.

4
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

The Problem

The client needs an overarching architectural framework if the project is
to be successful

• a set of standards, technologies, …
• more importantly a set of rules and architectural approaches.

Without the rules and architectural approaches the natural tendency—
with large numbers of quasi-independent stakeholders, each with their
own goals, budgets, and schedules—is towards anarchy.

5
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

The Techniques

We created a mashup of existing SEI architecture methods to begin
address their goal of creating a reference architecture:

• QAW
• ADD
• Ecosystem modeling
• Reference Architecture
• Reference Architecture Documentation
• Continuous ATAM

ADD and Architecture Definition had to be adjusted to produce a
reference architecture.

This required extensive mentoring.

6
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Scope

The scope of the development planned by the various teams limits the
applicability of the reference architecture.

In our case the scope was broadly stated in an ecosystem model.

Our reference architecture needed to address the requirements of all
products in the ecosystem.

7
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Ecosystem Modeling

For an ultra-large-scale system—a socio-technical ecosystem—to grow
and flourish, it needs to enable creativity while minimally restricting
developers and users.

The internet accomplishes this by only specifying interconnectivity
standards, primarily protocols (e.g. IP). But the internet has no “goal”.

Commercial ecosystems accomplish this by providing a “platform” on
which individual applications are built and deployed, e.g. iPhone,
Android, Facebook, Eclipse, etc.

Our program is establishing an ecosystem around a centrally provided
platform and a set of reusable assets.

8
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Software Ecosystems

A software ecosystem has a “hub,” which provides a platform. In our
case the core asset team will provide an platform consisting of an asset
base and runtime environment.

Programs of Interest will obtain resources from, and contribute
resources to, the ecosystem.

The organization at the hub can analyze the relations in the ecosystem
and develop strategies that enhance ecosystem health.

Software ecosystems such as surrounding the open source Eclipse
Foundation and that surrounding the commercial Microsoft use different
governance models. Our client’s ecosystem has strict hierarchical
control which can make ensuring architectural conformance easier.

9
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Strategic Ecosystem Modeling for Decision Making

Each development team is the hub of a cluster of consumers and
suppliers and will foster competitors and alternatives.

There may be overlaps where organization can be both producers and
consumers of each others assets and products.

Strategic modeling is used to understand the ecosystem and to guide
decisions to enhance that ecosystem.

10
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Quality Attributes

For a reference architecture the quality attribute requirements have to be
defined
• in a sufficiently broad manner to address the complete range of products to

be covered by the architecture or
• in a narrowly focused manner in each of several configurations that address

specific markets

We identified a few system categories that affected quality attributes:
• desktop
• mobile
• airborne

For example, the testability and security requirements of each of these
will differ.

11
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Inputs/Constraints

Inputs and constraints came from both general software engineering
techniques and problem-specific information
• General

– ADD technique definition
– RUP definition
– Documenting Software Architectures book
– ISO/IEC/IEEEFDIS 42010

• Specific

– QAW outputs, primarily quality attribute scenarios
– Additional scenarios developed through white papers
– Architectures from similar systems
– Ecosystem model for the program

12
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

ADD Steps
Quahty attribute

requirements

A ll req uirem ents are w ell-formed
and priorit ized by s takehold ers

~step" 1: c 0rit1nii" ther
suff1c1ent requireme

mtormat1on

Step 2: Choose an element of the system to
decompose

Key:

..
lnpuVoulput
artifact

~Process
-.Jstep

• Software Engineering Institute I CarnegieMellon

13
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Modifications to ADD

The emphasis of ADD becomes more “conceptual”.

The “elements” in the ADD description were described more abstractly.
Quality attributes—but not specific quality goals—were identified.

Architecture patterns were described but not concretely instantiated.

Documentation notation (UML) was used: architecture elements are
abstractions but crisply defined abstractions rather than vague notions.

14
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Outputs from ADD

The output of ADD is a system design in terms of the roles,
responsibilities, properties, and relationships among software elements.
• software element: a computational or developmental concept that

fulfills roles and responsibilities, has defined properties, and relates
to other software elements to compose the system architecture

• role: a set of related responsibilities
• responsibility: the functionality, data, or information that a software

element provides
• property: additional information about a software element such as

name, type, quality attribute characteristic, protocol, and so on
• relationship: a definition of how two software elements are associated

with or interact with one another

15
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

“n” Week Review Cycle

We used ADD in an iterative, incremental manner
For each iteration:

• Assign a set of requirements
• Architecture sub-team:

• designs a solution
• documents it
• presents it in a review following the peer review process

• Risks, sensitivities, tradeoffs and issues are analyzed and collected
• Revisions are planned
• Here we go again

Based on F. Bachmann’s “Give the Stakeholders What They Want:

Design Peer Reviews the ATAM Style”, Crosstalk

16
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

A Starting Point for a Reference Architecture

The client has adopted the Eclipse Platform as the basis for a set of
development environment products:
• It might release all of the SDK under the Eclipse Public License

(EPL) setting up an environment where the client could freely provide
the SDK to all teams.

• A new license could be established that restricts certain activities and
gives client greater control. Paths through the ecosystem can be
examined for license compatibility.

To ensure that the identified product qualities are actually achieved,
information needs to be propagated through the ecosystem. Suppliers,
whose products negatively impact quality, need to be notified of required
quality levels.
The ecosystem can be the basis for organizational qualities such as
performance or productivity.

17
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Accomplishments

Two initial releases of the reference architecture have been made.

Two primary foci
• the basic environment – Eclipse Platform plus
• communication buses – 2 buses plus gateways to link instances of

both

Overarching risks have been identified
• if the scope is too narrowly defined there is a risk the architecture will

be inadequate
• if the concepts in the reference architecture are too concrete the

architecture may not be sufficiently flexible

18
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Using UML

Even though the definitions in the reference
architecture are conceptual they still need to
be precise.

The team began UML training to provide
clear, concise abstractions.

19
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Dual Purpose
Using Eclipse to develop the architecture description had the additional
benefit of getting the architects familiar with the Eclipse IDE.

20
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Results and Observations - Challenges

Architects gave too much detail – implementation versus architecture.

Constantly got wrapped up in functionality and forgot QAs until
reminded.

They wanted strategic reuse but they were operating tactically; they
failed to see the ecosystem as charting strategic directions.

Reference architecture is a long-term strategy and the team continued
with a short-term view.

Explaining the value of strategy to tactical engineers is difficult.

21
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Result and Observations - Wins

They have existing architectures and deep experience. But they were
very focused on their own legacy and details.

Now teams are beginning to focus on architectural concepts; amount of
“useless” (i.e. implementation, short-term focused) material generated
has decreased.

They have begun to use architecture concepts as vocabulary, e.g. using
a “gateway pattern” to generalize different bus protocols.

Starting to realize what should go into the architecture documentation.

Moving toward the goal of a single reference architecture.

22
SATURN 2012
Kazman, McGregor
© 2012 Carnegie Mellon University

Conclusions

Creating a reference architecture is hard.

This required experienced architects to think differently! None of them
had ever described or even used a reference architecture before.

To meet this challenge we had to tailor and combine a number of
existing architecture creation, analysis, and description methods.

Early results from this mashup are promising.

	A Mashup of Techniques to Create Reference Architectures�
	Slide Number 2
	The Context
	The Problem
	The Techniques
	Scope
	Ecosystem Modeling
	Software Ecosystems
	Strategic Ecosystem Modeling for Decision Making
	Quality Attributes
	Inputs/Constraints
	ADD Steps
	Modifications to ADD
	Outputs from ADD
	“n” Week Review Cycle
	A Starting Point for a Reference Architecture
	Accomplishments
	Using UML
	Dual Purpose
	Results and Observations - Challenges
	Result and Observations - Wins
	Conclusions

