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Abstract 

More than 50% of the US Army Corps of Engineers’ locks and their 
approach walls have continued past their economic lifetimes. As these 
structures wear out, they must be retrofitted, replaced, or upgraded with a 
lock extension. Innovative designs must be considered for Corps hydraulic 
structures, particularly flexible approach walls, and new tools for 
evaluating these designs must be developed. 

The Computer-Aided Structural Engineering (CASE) computer program 
CPGA performs basic pile group analyses using Saul’s method. It is intended 
to be a simple program to aid in the rapid pile group analysis/design of the 
Corps hydraulic structures that are founded on groups of piles. The analysis 
uses the stiffness method, with the pile cap assumed to be rigid and the piles 
assumed to be linearly elastic. Soil resistance to pile movement may be 
included. 

Probabilistic data generated during a reliability analysis of Corps hydraulic 
structures is formally used in risk and reliability engineering for major 
rehabilitation studies. Reliability studies deal with the demand on a system 
and the capacity of the system to respond to that demand. Both the demand 
and capacity can contain uncertainty, so the interaction of demand and 
capacity also will be uncertain. A reliability index can be determined for the 
uncertain interaction, and the probability of unsatisfactory performance can 
be determined from the reliability index. 

This report deals with the extension of CPGA to include the generation of 
probabilistic data and application of risk-based methods to the analysis of 
the Corps pile group-founded hydraulic structures. The software is named 
CPGA-R, with the R referring to the new reliability analysis capability. 
CPGA-R uses both Advanced Second Moment (ASM) and Importance 
Sampling Simulation reliability analyses techniques. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Preface 

More than 50% of the Corps’ locks and their approach walls have continued 
past their economic lifetimes. As these structures wear out, they must be 
retrofitted, replaced, or upgraded with a lock extension. Energy-absorbing 
flexible approach wall structural systems are being considered. They are less 
expensive to replace and provide extra protection for barge train traffic and 
personnel.  

This technical report describes engineering methodologies for analyzing 
flexible approach wall systems founded on groups of piles and subjected to 
barge train impact loading. The computer program CPGA can perform an 
analysis/design of pile group-founded structures, including hydraulic ones 
that might experience impact loads tens of feet above the mudline. It can 
determine if a pile-founded hydraulic structure gives satisfactory 
performance. However, there is always some uncertainty in the demand and 
capacity of these structures. There are several reliability methodologies that 
can be used to compute the probability of unsatisfactory performance, given 
a method for determining unsatisfactory performance and with formal 
consideration of uncertainties in the demand and capacity of the structure. 

This report introduces reliability methods and deals with an extension of 
CPGA to include the generation of probabilistic data and application of risk-
based methods to the analysis of the Corps pile group-founded hydraulic 
structures. The software is called CPGA-R, with the R referring to the new 
reliability analysis capability. Both Advanced Second Moment (ASM) and 
Importance Sampling Simulation reliability analyses techniques are 
implemented within the program. 

This report was authorized by Headquarters, US Army Corps of Engineers 
(HQUSACE), and was written from July to December 2012. It was 
published under the Navigation Systems Research Program, Work Unit 
“Flexible Approach Walls.” At the time of publication, Jim Walker was the 
HQUSACE Navigation Business Line Manager. Funding to develop CPGA-R 
was provided by Reliability Model for Major Rehabilitation. Anjana 
Chudgar was the HQ Lead when it was initiated in FY12, and Richard 
Ludwitzke was Lead at the time of publication. 
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1 Introduction 

More than 50% of the US Army Corps of Engineers’ (USACE) locks and 
approach walls have exceeded their economic lifetimes and, as these 
structures wear, they must be retrofitted, replaced, or upgraded with a lock 
extension. Energy-absorbing, flexible approach wall structural systems are 
being considered. The next-generation flexible structures are less expensive 
to replace and provide extra protection for barge train traffic and personnel.  

This report describes engineering methodologies for analyzing flexible 
approach wall systems founded on groups of piles and subjected to barge 
train impact loading. The computer program CPGA can perform an 
analysis/design of pile group-founded structures, including hydraulic 
structures that might have impact loads applied tens of feet above the 
mudline. CPGA can determine if a pile-founded hydraulic structure gives 
satisfactory performance. However, there is always some uncertainty in the 
demand and capacity of these structures. Several reliability methodologies 
can compute the probability of unsatisfactory performance, given a method 
for determining unsatisfactory performance and formal consideration of 
uncertainties in the demand and capacity of the structure. 

This report introduces reliability methods and deals with the extension of 
CPGA to include the generation of probabilistic data and application of risk-
based methods to the analysis of the Corps pile group-founded hydraulic 
structures. The software is named CPGA-R, with the R referring to the new 
reliability analysis capability. CPGA-R uses both Advanced Second Moment 
(ASM) and Importance Sampling Simulation reliability analyses techniques. 

1.1 CPGA history 

Structural systems founded on pile groups are common features at Corps 
dams (Figures 1.1 and 1.2), spillways (Figure 1.3), and navigation structures 
(e.g., locks and upstream and downstream approach walls, as shown in 
Figure 1.4). The sheer number of piles used on dam and spillway projects 
can make the piles seem like an underground forest. This forest is the 
substructure that supports the hydraulic structure above.  

A pile group founded on soil, or a bent/structural deck system that is 
supported above the mudline, transfers the load (e.g., due to barge impact) 
from its cap into the ground as a part of a substructural foundation system.  
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Figure 1.1. Design of the Red River Lock and Dam 1 (USACE 1991). The Red River runs through Louisiana. 

 
Figure 1.2. Pile forest at Red River Lock and Dam 1 (USACE 1991). 
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Figure 1.3. Pile layout for spillway at Melvin Price Lock and Dam in St. Louis, Missouri. 

 
Figure 1.4. Lock and Dam 3 guide wall design (Mississippi River, near Red Wing, Minnesota). 
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Hartman et al. (1989) developed CPGA for assessing pile groups under user-
defined loads and moments applied to the pile cap (or bent). CPGA can 
provide a strength evaluation of a pile foundation that includes both the 
individual piles and their rigid cap. The pile group cap is assumed to be 
nondeformable (i.e., rigid or inflexible). Each pile is represented by the 
calculated stiffness coefficients (Saul 1968). The stiffness coefficients of all 
piles are used to compose the stiffness matrix for the user-specified total 
pile group model. Pile cap displacements are calculated by multiplying the 
inverse of the pile group stiffness matrix by the set of user-specified applied 
loads. The user-specified static loads and/or moments are applied at the 
user-defined origin for this structure. CPGA calculates the equilibrium of 
forces by transforming the deformations of each pile into forces and 
moments acting at the pile top, then transforming those forces to the origin, 
and summing all the pile forces at the user-defined origin to match the load. 
The displacement of each pile head can be determined from the pile cap 
displacement. The force acting on each pile is equal to the pile stiffness 
multiplied by the pile head displacement. To determine unsatisfactory 
performance, the resultant forces can be compared to the user-defined 
allowable loads. To determine failure of the pile, axial loads and combined 
bending factors are identified at each pile. 

Reliability studies deal with the demand on a system and the capacity of 
the system to respond to that demand. Both the demand and the capacity 
can be uncertain, therefore the interaction of demand and capacity also 
will be uncertain. A reliability index can be determined for this uncertain 
interaction, and the probability of unsatisfactory performance can be 
determined from this reliability index. Unsatisfactory performance is not 
only a catastrophic failure, but also any unacceptable deflection between 
expected and observed performance (Baecher and Christian 2003).  

Limit states define the performance of a structural system. When a system 
exceeds a limit state, it has unsatisfactory performance. For instance, if a 
lock wall is moved too far from its initial, configured position, the moving 
parts connected to that lock wall (i.e., gates) might not be able to travel or 
align properly. 

The limit states for CPGA can include the axial loads and bending factors 
introduced at each pile due to a load applied to a pile cap or due to pile cap 
displacement. The axial loads consider soil failures due to plunging or 
pull-out of the pile, depending on the direction of axial loading of the pile. 
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The combined bending and axial compression on the pile can lead to 
failure of the connection of a pile to the pile cap or hinging of the pile (e.g., 
near the mudline).  

Reliability studies are performed to determine the probability of 
unsatisfactory performance (PU) of a structural system for a limit state or 
limit states affecting system performance. The reliability of the system is 
defined as the complement of the probability of unsatisfactory performance 
(1-PU) and is the probability of proper or satisfactory performance during 
which the structure behaves safely. 

A 1991 Corps engineering manual (EM) discusses displacement limitations 
at the pile cap for proper operations at locks and dams. To maintain proper 
operation and integrity of the structure, the horizontal and vertical displace-
ments resulting from applied loads should be limited (USACE 1991). For 
locks and dams, experience has shown that vertical deflections of ¼ in. and 
lateral deflections of ¼ to ½ in. represent long-term movements, although 
operational requirements might dictate tighter restrictions on deformations. 
These limitations should be maintained in the calculated pile head move-
ments. The displacement guidance in the Corps EM needs to be adapted for 
use with next-generation, flexible approach walls. Specifically, barge train 
impact loadings of the impact beam or deck can occur tens of feet above the 
pile-to-soil foundation interface. The additional deflections that occur in 
these piles, where the pile extends above the ground surface, will need to be 
accounted for in the displacement criteria for flexible approach walls.  

Published in 1997 was a US Army Engineer Waterways Experiment Station 
technical report (TR) about how to perform, using CPGA, a reliability study 
of a pile-based navigations structure. The TR outlined the structure of 
RCPGA, a software package for performing a reliability study of a CPGA 
model (Ayyub et al. 1997). It also defined the limits states required for the 
reliability study and methods for transforming distributions and correlated 
variables. The software that was to accompany the report was not released 
to the Computer-Aided Structural Engineering (CASE) library, but the 
results of runs made with the program were in the report. The results were 
extended in this report, and relevant sections of the 1997 report have been 
included. 

At the beginning of this investigation, the goals were to include reliability 
methods for CPGA input models and to supply a set of routines that would 
be portable and easy to use for reliability studies relating to new and 
existing Corps engineering software such as programs in the CASE library.  
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CPGA does not consider the flexibility of a pile cap or the nonlinearity of 
soil behavior. This is especially true for pile shadowing, which is the result 
of pile forces acting through the soil to affect another pile in close 
proximity (as much as 8 pile diameters) (Ebeling et al. 2012).  

1.2 Revisiting RCPGA	

Ayyub et al. (1997) expanded CPGA to perform reliability analyses of 
Corps hydraulic structures (e.g., locks and dams), creating the software 
RCPGA. But RCPGA was not finalized nor added to the CASE library. Due 
to Corps district needs, this reliability capability has been reintroduced as 
a result of this new effort. The Ayyub et al. (1997) report served as a basis 
for the formulation. The authors of this report developed a set of software 
routines that uses the reliability formulations discussed in this report and 
implemented them with respect to the CPGA program. Ayyub et al. (1997) 
is the basis for this research and development effort. At the request of 
Headquarters, US Army Corps of Engineers (HQUSACE), the reliability 
formulation and numerical procedures developed were designed to be 
portable for use in new and existing Corps engineering applications such 
as CASE programs. This required additional research of reliability 
methods and an expansion of the procedure in Ayyub et al. (1997).  

1.3 Overview 

Reliability studies deal with the demand on a system and the capacity of 
the system to respond to that demand. Both the demand and the capacity 
can be uncertain, therefore the interaction of demand and capacity also 
will be uncertain. A reliability index can be determined for this uncertain 
interaction, and the probability of unsatisfactory performance can be 
determined from this reliability index. Keep in mind, unsatisfactory 
performance is not only a catastrophic failure resulting in the formation of 
a plastic hinge within the pile or at the pile-to-cap connection, but also is 
any unacceptable, excessive deflection of the pile cap.  

Figure 1.5 shows a structure where two variables (X1 and X2) are 
introduced that vary the demand on the system. A single limit state is 
discussed in the figure, but the program will look for limit states for each 
pile as well as the specified limits at the pile cap. In fact, each component 
of the pile cap displacement can have a limitation for a reliability analysis. 
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Figure 1.5. Site information (geometry and loads) for a two-variable reliability analysis.  

The limit states for a pile group using CPGA-R include the axial loads and 
combined bending factors introduced at each pile for a load applied to a pile 
cap. The axial load factor for an individual pile considers soil failure due to 
plunging or pull-out of the pile. The combined bending and axial compres-
sion on the pile can lead to a structural failure anywhere within a pile. It is 
common for such a failure to occur at the pile’s connection to its cap or at 
the hinging of the pile at the mudline.  

The possible variables of the CPGA-R program are numerous and include 
the pile positions, angles, and batter; pile properties; pile design load 
strengths; unsupported buckling load calculation; soil modulus values; and 
loads acting on the pile structure. These variables are defined by their mean 
values and standard deviations along with a distribution type (e.g., normal, 
lognormal, triangular, and uniform). Uncertainties in all these variables are 
assessed by CPGA-R, and for all the user-specified limit states, to compute 
the probability of unsatisfactory performance (PU) of the structural system 
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for single or multiple limit states affecting system performance. It has been 
observed that multiple limit states can have a nonlinear additive effect on 
the determination of the value for the probability of unsatisfactory 
performance, which is an area measure, and must be considered 
accordingly.  

Two reliability methods are Advanced Second Moment (ASM) and 
Importance Sampling Simulation. 

ASM is a more traditional method used to estimate the probability of 
unsatisfactory performance (PU) by employing a numerical procedure to 
find the distance to the closest response surface to the mean values G(X), 
defined as Capacity – Demand = 0, given by a statistical coefficient (, 
which is used to compute the value for PU (Figure 1.6).  is the number of 
standard deviations the response surface is from the mean (i.e., centered 
in uniform normal distribution space) of all of the variables. In summary, 
the closest of the multiple limit state surfaces controls the value of  and, 
thus, the computed value for PU. This value is accurate for a single, linear 
response state, but provides only an approximation for multiple limit 
states that combine to form a nonlinear response surface. For CPGA-R, 
most limits states are linear.  

The Importance Sampling Simulation method is a more recent 
development. It uses a Latin Hypercube procedure to more accurately 
compute PU, especially for cases involving nonlinear and/or multiple 
response surfaces. For each of the thousands of simulations, the Latin 
Hypercube method generates a CPGA-R input file with specific random 
values from each variable’s distribution, assigned to the user-defined 
variables, and a CPGA-R analysis is performed on the resulting file. The 
simulation method computes PU as equal to the number of simulations 
resulting in unsatisfactory performance (i.e., G(X) of Capacity – Demand 
<= 0.0) divided by the total number of simulations (Figure 1.7). Importance 
Sampling takes weighted simulations about a point, using a normal 
distribution, closer to the response surface. The weighting of the simulation 
restores the probabilities of the original distributions, so Importance 
Sampling gives more accurate results with fewer simulation runs. The ASM 
method is used to provide a point at  distance from the actual mean, and 
this point acts as the mean for the weighted simulation distribution.  
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Figure 1.6. Finding an ASM design point (in variables X1 and X2 space). 
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Figure 1.7. Simulation runs determine the regions and probabilities of unsatisfactory performance. 

Notice that the multidimensional problem (2D case in Figure 1.6) has each 
axis normalized with an equivalent normal distribution so that the mean is 
at the origin and a standard deviation for a normal distribution is the unit 
distance. Given this condition, any line that passes through the origin, 
such as section I-I, follows a normal distribution and, given a distance 
from the origin (), the probability of unsatisfactory performance is the 
same. This is implied by the concentric bands of blue in the 2D example 
problem of Figures 1.6 and 1.7. These concentric bands reflect a normal 
distribution that is more commonly presented in the section I-I cut in the 
top image of Figure 1.6.  

1.4 Report contents 

 Chapter 2 discusses simulation methods and the ASM formulation. 
 Chapter 3 provides an overview of the CPGA-R graphical user interface 

(GUI). 
 Chapter 4 compares CPGA-R results with those first presented in 

Ayyub et al. (1997) for example problems originally discussed by 
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Ayyub. Other example problems to highlight key findings also are 
presented and discussed. 

 Chapter 5 features the summary, conclusions, and future research. 
 Appendix A summarizes the calculation of skin friction and tip 

capacities of piles. These parameters have a large bearing on the 
individual capacity of piles. 

 Appendix B discusses the probability density function (PDF) 
distributions used by CPGA-R and their properties. This discussion 
covers how the distributions are defined and the resulting probabilities 
are computed. 

 Appendix C contains the specification of the pile group reliability file, a 
file that has an extension of .PGR.  
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2 Reliability Methods 

2.1 Variable space 

All reliability methods depend on a carefully constructed set of data that can 
vary and have implications on the performance of a system being studied. 
For the method discussed in this chapter, these data often differ according 
to a normal statistical distribution (e.g., pile positions possess an average 
center relative to the designated pile layout plan positions, but typically 
deviate during placement according to a normal distribution with a constant 
standard deviation). The normal distribution for an example using two 
independent variables is shown in Figure 2.1. If these two variables are not 
correlated, they are orthogonal and can be joined to form a multidimen-
sional vector space in which each variable forms a different coordinate axis 
and, therefore, a direction vector. This state variable space, ̅ݒ, can be 
changed with an affine1 transformation so that the mean values for each 
variable are at the origin of the space and the unit distance is the standard 
deviation for each variable, describing the vector space ̅ݔ, as shown in 
Figure 2.2. Any point in this vector space can be described by providing a 
value on each axis to form the vector Ԧܺ, with one value for each variable. 

The transformation of the normally distributed data for Axis 1 in the ̅ݔ 
vector space is described as: 

 
( )μ

σ
I

I

I v

I
v

v
X

-
=  (2.1) 

The complimentary transformation is given as: 

 ( *σ ) μ
I II I v vv X= +  (2.2) 

An important effect of this multidimensional space (̅ݔ), composed of axes 
that are normalized so that the unit distance is one standard deviation and 
with values that are distributed using a standard normal distribution 
(Figure 2.1c), is that any point on a hyper-sphere centered at the origin and  

                                                                 

1 An affine transformation is a spatial transformation that preserves the linearity of line segments and 
the ratios of linear segments. 
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Figure 2.1. 1D variable space with a normal PDF distribution and 2D variable space with normal 

PDF distributions for each variable axis. 

 
Figure 2.2. (a) Untransformed and (b) transformed (standard normal) variable axes. 
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with a certain radius will have the same probability of occurrence. This 
means the Euclidean distance of a point can be used to measure probability. 
This is represented in Figure 2.1c, where the background colors go from 
darker blue at the origin to lighter blue away from the origin in concentric 
bands that match the banding in the accompanying section cuts through the 
origin (Figure 2.1a and b). 

2.2 Performance function 

Reliability is based on the performance of a system as the variables in ̅ݒ 
change. Therefore, it is important to know when the system fails. System 
failure will be discussed here, defining failure with respect to a CPGA 
analysis discussed later.  

A limit state is the boundary between satisfactory and unsatisfactory 
performance of a structure (Nowak and Collins 2000, 2013). These limit 
states are further broken into ultimate limit states and serviceability limit 
states, depending on their severity. Ultimate limit states are related mostly 
to the system’s loss of load-carrying capacity. For an individual pile, an 
ultimate limit state might involve exceeding the moment-carrying capacity, 
or plastic hinging of the pile. Serviceability limit states are related to gradual 
deterioration, comfort user, or maintenance cost. For a pile-founded 
structure, excess deformation, according to engineering standards, might be 
a serviceability limit state. 

This limit state boundary is represented mathematically by a performance 
function that is positive for satisfactory performance of the structure, 
negative for unsatisfactory, and 0.0 at the limit state being investigated. The 
performance function can be defined with respect to the capacity of the 
structure, R, and the demand on the structure, Q. With respect to the 
capacity and demand, the performance function becomes: 

 ( ),g R Q R Q= -  (2.3) 

Using this definition of the performance function, satisfactory performance 
occurs when the capacity (R) exceeds the demand (Q), and unsatisfactory 
performance occurs when the demand (Q) meets or exceeds the capacity 
(R). The limit state occurs when the demand is balanced by the capacity. 
This can be related to the probabilities of whether the system performance 
is satisfactory or unsatisfactory (Figure 2.3). 
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Figure 2.3. Capacity vs. demand related to the probability of unsatisfactory performance (after 

Nowak and Collins 2000, 2013). 

The performance function is stretched or compressed when the 1D variable 
space is transformed between the physical space and the standard normal 
distribution space. Because an affine transformation is used, the function is 
translated and scaled linearly (Figure 2.4). For multiple dimensions, each 
axis might have a different scale, causing the response function to stretch 
and compress non-uniformly between dimensions, but the affine property is 
held (Figure 2.5).  

 
Figure 2.4. A performance function for a single variable axis (untransformed and transformed). 
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Figure 2.5. A complex two-variable, G(V), function. 

The state of the structure can be determined from a set of variables that 
describes a variable space (̅ݒ). The variables in this space can affect the 
capacities as well as the demands on the structure. Given this variable 
space, it is possible to represent the performance function in the variable 
space as ܩሺሬܸԦሻ, where ሬܸԦ is the vector representation of a point in the vector 
space, ̅ݒ. The performance function is still a representation of capacity vs. 
demand, and is represented as: 

 ( )G V R Q= -


 (2.4) 

Variables can be chosen that do not affect the capacity of the structure 
(e.g., the applied force in the X direction might not affect the capacity of 
the structural system in the Y direction). Likewise, variables can be chosen 
that do not affect the demand on the structure. The user must select a set 
of variables that affects either the capacity, demand, or both in order for 
the ܩሺሬܸԦሻ function to evaluate a limit state. 
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2.3 Probability of unsatisfactory performance 

Given a limit state function based on variables ܩሺሬܸԦሻ, the probability of 
unsatisfactory performance can be given by:  

 ( ) ( )( ) ( )( ),uP P R Q P g R Q P G V= - < = < = <0 0 0


 (2.5) 

The probability of unsatisfactory performance (Pu) can be estimated using 
simulation techniques (e.g., Monte Carlo, Latin Hypercube, Importance 
Sampling). The ASM method can be used to determine the most likely 
vector to occur at the limit state boundary, also called the response 
surface, defined as:  

 ( )Z   G V= =0


 (2.6) 

This vector can pinpoint what variable conditions will cause unsatisfactory 
performance and provide a way of increasing estimation accuracy using 
Importance Sampling (to be discussed later).  

2.4 Monte Carlo and Latin Hypercube simulations 

Monte Carlo simulation estimates the probability of unsatisfactory 
performance by sampling the vector space ሺ̅ݒሻ with a large number of 
sample points ሺ పܸሬሬԦሻ randomly selected according to the distribution space. 
This estimation is accurate for: 

 ( ) ( )uP f x p x dx= ò  (2.7) 

where f(x) is the performance function and p(x) is the probability of x 
being chosen. This leads to a discrete probability of unsatisfactory 
performance of: 

 ( )|
( ( )),  

|

N
i

u i
i

I G V
P I G V where

N I otherwise=

ì üï ï= <ï ïï ï= í ýï ïï ï=ï ïî þ
å

1

1 01

0




 (2.8) 

The issue inherent with the Monte Carlo method for estimating the 
probability of unsatisfactory performance is that an inordinately large 
number of samples occurs where the probability density function has its 
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highest value. For a normal (Gaussian) distribution, this value occurs at the 
mean. To fully explore the region of interest also is known as the ̅ݒ space 
(Figure 2.6), a large number of samples must be chosen (Figure 2.7).1 In 
fact, the estimate of the probability of unsatisfactory performance can 
become entirely accurate with an infinite number of samples. 

The Latin Hypercube simulation method partitions the ݒԦ vector space into a 
discrete set of regions based on equivalent cumulative distribution function 
(CDF) steps (Figure 2.8). This means the space is divided by areas of equal 
probability (Swiler and Wyss 2004). Each dimension has the same  

 
Figure 2.6. 2D variable space for Monte Carlo simulation. 

                                                                 
1 In these figures, each blue, circular line is concentric about the center of mean values and possesses a 

unique value of probability such as Figure 2.1. These blue, circular lines are included for reference 
when interpreting the resulting simulation data. The value of probability for each circular line is 
according to the normal distribution function. 
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Figure 2.7. Monte Carlo simulation samples for the previous 2D variable 

space evaluated with the performance function (black samples have 
G(X)>0.0, and red samples have G(X)<0.0). 

 
Figure 2.8. Creating a set of equal area bins in standard normal space. 



ERDC/ITL TR-13-2 20 

 

number of divisions, which is equivalent to the number of samples 
(Figure 2.9).1 For each sample, Ԧܵ, each dimension has a division chosen at 
random. These divisions are constrained, not to be chosen again for any of 
the following samples. When a division for each dimension has been chosen 
for the sample, a value for that sample is chosen from a uniform distribution 
for the range of each division, generating a random value in that bin. When 
the final sample has been assigned, all the divisions for all the dimensions 
will be assigned, one to each sample (Figure 2.10). In this way, the set of 
samples can be smaller, but still explore a greater portion of the ̅ݒ space. 
The advantage of this simulation technique is, typically, the number of 
samples can be reduced by a factor for each dimension.  

The Latin Hypercube method can directly accommodate inter-variable 
correlation. The set of samples can be viewed as an NxM matrix, where N 
is the number of samples and M is the number of variables. If variables p  

 
Figure 2.9. Partitioning a 2D variable space for a Latin Hypercube selection of samples 

for two variables with normal distributions. 

                                                                 
1 In this figure, each blue, circular line is concentric about the center of mean values and possesses a 

unique value of probability such as Figure 2.1. These blue, circular lines are included for reference 
when interpreting the resulting simulation data. The value of probability for each circular line is 
according to the normal distribution function. 
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Figure 2.10. Using the normally distributed regions to assign samples according to the Latin 

Hypercube method for generating samples. 

and q are correlated, the variables in the q column of the samples may be 
redistributed based on the variables in the p column to maintain the 
correlation coefficient value (ߩ).  

2.5 Advanced Second Moment (ASM) 

2.5.1 ASM for uncorrelated, normal distributions 

The ASM technique, also called Advanced First Order Second Moment 
(AFOSM), is a method for finding the minimum distance that a capacity-vs.-
demand surface, based on the function G(), is from the origin of a defined 
vector space. This differs from the First Order Second Moment (FOSM) 
technique, which approximates a nonlinear capacity-vs.-demand surface 
with a hyperplanar surface in multidimensional space (Melchers 2001), 
which forms a linear surface in 2D space (i.e., considering two independent 
variables). The FOSM technique uses the linear definition of the capacity-
vs.-demand surface to quickly estimate the closest surface point to the 
origin, without having to perform multiple iterations to find the actual 
nonlinear capacity-vs.-demand surface’s closest point.  
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For a reliability analysis, the surface function is the limit state boundary 
function. Recall that this vector space, ̅ݒ, can be transformed into the vector 
space ̅ݔ, where the probability of occurrence is based on the Euclidean 
distance from the origin. In this case, the distance is the reliability index of 
the design with respect to that point (Ditlevsen 1981). The point (in the 
normalized vector space, ݔ	ഥ , Figure 2.11) on the surface G( ሬܸԦ)=0 (where the 
design point has been transformed from ̅ݔ-space to ̅ݒ-space) that is closest 
to the origin is called the design point. The distance from the origin to this 
design point in the ̅ݔ space is referred to as the reliability index, Table 2.1 
and Figure 2.12), and this value can be used to determine the probability 
that this point will be chosen from the variable distributions.1 In terms of 
reliability analysis, the probability of unsatisfactory performance can be 
given by PU = 1 – () for an arbitrary axis with a linear limit state, where 
() is the cumulative distribution function. Table 2.1 lists values of  and its 
corresponding PU values. 

The ASM technique works because any hyperplanar surface can be fully 
described by a directional cosine vector (ߙ) and the distance from the origin 
 for the closest point on the hyperplanar surface (Figure 2.12). The vector (ߚ)
describing the resultant of all directional cosine vectors, , also is identified 
in Figure 2.12. This resultant directional cosine vector (ߙ) is perpendicular 
to the hyperplanar surface labeled as the ASM Response Surface (i.e., where 
G( ሬܸԦ) = 0). This resultant directional cosine vector  is a unit vector, with the 
magnitude of each component vector along a variable Xi axis, |ߙ௜|, being a 
cosine value for that direction with respect to the unit vector . The 
components of the directional cosine vector ߙ௜	multiplied by the distance,  
are shown for variables X1 and X2 in Figure 2.13 and lay along each 
respective axis. For the ̅ݒ space, the vector ሬܸԦ’s components that define the 
plane are given by: 

 μ α βσ
i ii v i vV = -  (2.9) 

At the start of the reliability analysis, the directional cosine  is unknown. 
However, it can be estimated by determining the vector on the surface, 
G( ሬܸԦ), that is approaching a 0.0 value from the mean value at the fastest 
rate. The rate at which each component approaches the 0.0 value can be 
determined by computing the partial derivative of G with respect to each 
variable (V1, V2, …) at the mean value.  
                                                                 
1  is the distance of the variable value from the expected value () (i.e., its mean, in units of standard 

deviation ()). 
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Figure 2.11. Using the reliability index () to determine the probability 

and cumulative probability for an event. 

 

Table 2.1. Reliability index () and probability of 
unsatisfactory performance (PU). 

 PU = 1-() 

0 5.000000000000E-01 

1 1.586552539315E-01 

2 2.275013194818E-02 

3 1.349898031630E-03 

4 3.167124183678E-05 

5 2.866515719235E-07 

6 9.865877004245E-10 

6.36 1.008768624189E-10 

6.71 9.731215833142E-12 

7 1.279865102788E-12 

8 6.661338147751E-16 

9 Out of range for a double-
precision variable 
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Figure 2.12. In a two-variable space with a linear response surface,  is the 

distance from the origin to a design point on the surface. 

 
Figure 2.13. The directional cosines  combine to form the unit vector directed 

from the origin to the design point. 
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Referring to Figure 2.5, which shows a nonlinear G( ሬܸԦ) surface, with 
particular attention paid to the region above the origin at the means of this 
2D normal space, a pair of partial derivatives are made numerically in the 
positive and negative direction of an individual axis resulting in a total of 
four partial derivatives for a two-variable problem. The direction along each 
variable axis with the steepest slope approaching G( ሬܸԦ)=0.0 is selected for 
each variable as the direction of the vector. The magnitudes of each axis, 
  .௜|, are computed according to Equation 2.11ߙ|

Recall that the response surface for vector ሬܸԦ is defined by: 

 ( ) .G V =0 0


 (2.10) 

This can be performed by setting: 
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with the initial trial value for  set to 0.0, so that the initial vector ሬܸԦ is 
composed of only the mean values. A numerical procedure, along with 
Equations 2.9, 2.10, and 2.11, is to calculate the i values for each of the i 
variables. 

When the directional cosine () has been determined, it is possible to 
determine  using numerical methods (e.g., the Regula-Falsi method) so 
that the current design point (vector ሬܸԦ) is on the response surface, where 
Equation 2.9 is satisfied (Figure 2.13). 

For nonlinear performance functions, the current design point might not 
be the point with the minimum distance from the mean values. For this 
case, partial derivatives for each axis at the current design point (vector ሬܸԦ) 
are computed (Equation 2.11) to determine the direction and magnitudes 
for a new directional cosine from the origin at the means. The  value is 
determined from Equation 2.9. This process is performed until the new  
and the old  converge within a certain tolerance.  
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This solution might not reach the absolute minimum distance point to the 
response surface for particularly complex nonlinear surfaces, rather a local 
minima. Most engineering problems do not have particularly complex 
nonlinear response surfaces, so this ASM method will see widespread 
usage. 

2.5.2 Dealing with non-normal distributions 

For the ASM reliability method to return a value of probability based on , 
all the random variables must be independent and distributed according to 
a normal distribution, says the Hasofer-Lind approach (Baecher and 
Christian 2003; Hasofer and Lind 1974). To handle non-normal distribu-
tions, the non-normal distribution variable must be changed to an equiva-
lent normally distributed random variable. This is called the Rosenblatt 
transformation (Rosenblatt 1952). Rackwitz and Fiessler (1976 and 1978) 
impose two conditions on the equivalent normally distributed random 
variable that enable the determination of the two parameters of that 
distribution, ߤ௏೔

ே  and ߪ௏
ே. The cumulative distribution functions and prob-

ability density functions of the non-normal and normal distributions should 
be equivalent at the current design point for the performance function. 

These conditions (CDF and PDF) can be expressed, respectively, in: 
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where Fi is the non-normal CDF, fi is the non-normal PDF,  is the standard 
normal CDF, and  is the standard normal PDF. From these conditions, it 
can be shown that the standard deviation and mean, respectively, are: 
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The PDF of a standard normal distribution is a continuously positive 
function. Bounded distributions including triangular PDFs are not. While 
it is possible to get equivalent CDF values between the standard normal 
distribution and a bounded non-normal distribution (Figure 2.14), it 
might be impossible to find an equivalent PDF between distributions. In 
this case, the standard deviation can be calculated and the mean of the 
standard deviation varied to find the appropriate CDF value. The PDF in 
this case will be a close estimate at convergence. 

 
Figure 2.14. Finding the position of equivalent cumulative probability for a normal distribution as from a non-

normal distribution (after Ang and Tang 1984). 

2.5.3 Correlated random variables 

In certain situations, it is unrealistic to believe that variables chosen for a 
reliability analysis will be independent of one another. In these other 
instances, such as the case in which the variables are the soil material 
properties of the angle of internal friction and cohesion for soil layers, 
variables might be related to some degree. For our discussion, a pair of 
variables (V1 and V2) is correlated with a correlation coefficient (). If the 
two variables have a standard normal distribution, they can be changed to 
a pair of non-correlated variables by solving for two eigenvalues and the 
corresponding eigenvectors: 
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where t=√0.5. The variances for these two variables are equal to the 
eigenvalues (): 

 'σ λ ρ
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= = +
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2
1 1  (2.17a) 
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2 1  (2.17b) 

The directional cosines for these newly uncorrelated values must be 
determined from the original correlated values using: 
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and 

 ( )' 'μ σ β α λ α λV V V V
V t= - +

1 1 1 2
1 1 2  (2.19a) 

 ( )' 'μ σ β α λ α λV V V V
V t= - -

2 2 1 2
2 1 2  (2.19b) 

Ditlevsen (1981) presents a detailed derivation of these equations for 
transforming correlated random variables into corresponding non-
correlated random values.  

2.5.4 ASM algorithm 

The ASM algorithm presented in this subsection has been modified from 
the AFOSM method to include ones for working with non-normal 
distributions and correlated random variables. 

The ASM algorithm: 
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1. Assign the mean value for each random variable as a starting design point 
value (i.e., (V1,V2,…,VN) = (1,2,…,N)). 

2. Compute the standard deviation and mean of the equivalent normal 
distribution for each non-normal random variable by using Equations 2.14 
and 2.15 or by adjusting the mean so that an equivalent CDF is determined 
for the standard deviation of the original data. 

3. Compute the partial derivative, G()/Vi, of the performance function with 
respect to each non-correlated random variable evaluated at the design 
point as needed to satisfy Equation 2.11. 

4. Compute the directional cosine, i , for each non-correlated random 
variable as given in Equation 2.11 at the design point. For correlated pairs 
of random variables, Equations 2.18a and b should be used. 

5. Compute the reliability index, ,by substituting Equation 2.11 for non-
correlated random variables and Equations 2.18a and b for correlated 
random variables into the G() performance function of the vector ሬܸԦ 
(Equation 2.9) and satisfying the limit state G() = 0 (Equation 2.10) by 
using a numerical root-finding method. 

6. Compute a new estimate of the design point by substituting the resulting 
reliability index, , obtained in Step 5 into Equation 2.9 for non-correlated 
random variables and Equations 2.19a and b for correlated random 
variables. 

7. Repeat Steps 2 through 6 until the reliability index, converges within an 
acceptable tolerance, . 

2.5.5 ASM caveats  

The ASM method is merely an estimate of the actual probability of 
unsatisfactory performance. It is accurate only if the limit state (response) 
surface, where G()=0, is linear. The response surface might be nonlinear if 
the G() function is nonlinear or if multiple limits states are included in the 
G() function (Figure 2.15).  

For these nonlinear response surfaces, sampling (simulation) methods 
provide better results because they represent a weighted area sampling of 
the entire variable space, rather than partitioning the space with a 
hyperplane. This is shown by combining two limit states and their response 
surfaces to create a new response surface (Figures 2.16a through c). 
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Figure 2.15. Combining limit states creates a nonlinear ASM response surface. 

Despite its nonlinear limitations, the ASM serves two important purposes. 
It provides a vector in variable space to the most likely failure mechanism. 
This vector can be analyzed to investigate possible designs or remediation 
strategies for the structural system being investigated and for the 
combination of factors defined in terms of multiple variables that decrease 
the probability of unsatisfactory performance. 

Second, the ASM-generated vector provides a point in the weighted space 
at which sampling can be enhanced for better precision. If more sample 
points are collected in the region of highest probability for changing from 
satisfactory to unsatisfactory performance, on either side of the response 
surface G()=0, the precision can be enhanced. This is discussed in the next 
section.  
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(a) 

 
(b) 

 
(c) 

Figure 2.16. (a and b) Two response surfaces, with Latin 
Hypercube samples; each have a PU<0.5, but (c) combining the 

two creates PU>0.5. 



ERDC/ITL TR-13-2 32 

 

2.6 Importance Sampling 

This method attempts to improve the accuracy of a simulation by using a 
different distribution to sample from (Q) than the actual variable distribu-
tion (P). Figure 2.17 shows these two distributions. The objective is to 
minimize the required number of simulation runs. This method relies on 
choosing an appropriate distribution to sample from, typically one that is 
closer to the area of interest, where the data is changing (Lemaire 2009). 
For reliability, that distribution would have to be close to the point where 
the G() approaches 0.0. 

 
Figure 2.17. For sample Xi, the distance to the original mean and the distribution mean can be determined and 

the probabilities computed. 

Because the design point from the ASM method lies on this response 
surface, it is more efficient and accurate to sample around this point, 
substituting it as the mean for the distributed points (Q). The standard 
deviation of each variable is maintained. If the distribution is a non-
normal or truncated distribution, a semi-equivalent standard normal 
distribution is computed and substituted for the non-normal distribution, 
with a mean moved to the design point. 

However, these sample points must be weighted to correspond to the 
original distribution. Equation 2.7 shows how to compute the estimation of 
the probability of unsatisfactory performance for samples taken according 
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to the original distribution. If we multiply the equation by the probability of 
the second distribution divided by itself, then (Melchers 2001): 

 ( )
( )
( )

( )u

p x
P f x q x dx

q x
=ò  (2.20) 

with f(x) being the performance function, p(x) being the probability 
according to the original distribution space, and q(x) being the probability 
of occurrence for the sample distribution space. One prerequisite must be 
met: the p(x) probability needs to be 0.0 when the q(x) probability is 0.0. 
This ensures absolute continuity between q(x) and p(x). Otherwise, the 
equation suffers from a division by 0. Stated mathematically: 

 ( ) ( ){ } ( ), { }q x q x p x" =  =0 0  (2.21) 

This condition can be guaranteed by making both p(x) and q(x) 
probabilities from a standard normal distribution, which is defined always 
to have a non-zero probability. 

The probability of unsatisfactory performance can be approximated for a 
discrete number of samples by: 
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It is possible to determine the distance in standard normal space for the 
original distribution and the sampling distribution, respectively: 
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The weighting function based on these  vectors is then: 
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where P() is the probability in the original vector space and Q() is the 
probability in the sampling vector space. This simplifies Equation 2.22 to:  
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 (2.25) 

Figure 2.18 shows the accuracy improvements derived from using a sample 
space at an ASM design point for a CPGA-R reliability analysis of a pile 
group-founded structure. When samples are drawn in the original distribu-
tion space (via the Latin Hypercube simulation technique), no samples are 
drawn in the unsatisfactory region. By sampling from the distribution 
centered at the ASM design point, using Importance Sampling, the shape of 
the performance surface can be ascertained and very small but non-zero 
probability of unsatisfactory performance can be returned (Figure 2.19).  

2.7 Specific CPGA information for running a reliability analysis 

2.7.1 Introduction 

The G( ሬܸԦ) function is the method by which unsatisfactory performance can 
be measured for a reliability analysis. Unsatisfactory performance of 
individual piles can be caused by combined loads that exceed pile strength, 
and/or excessive deformations. To make such an assessment, two types of 
performance measures are needed: pile strength and pile cap displacement. 

The limit states for CPGA include the axial loads and bending factors 
introduced at each pile because a load is applied to a pile cap, as well as 
pile cap displacement. The axial loads consider soil failures due to 
plunging and pull-out of the pile. The combined bending and axial 
compression on the pile can lead to failure of the connection of a pile to 
the pile cap or hinging of the pile at or near to the mudline. 

USACE (1991) constrains the combined bending and axial compression in 
the upper pile region to: 

 .bya bx

a b b

ff f

F F F
£1 0   (2.26) 
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Figure 2.18. An example of Importance Sampling giving better results than sampling about the original 

distribution. 

 
Figure 2.19. The sampling distribution is centered at the ASM design point on the 

response surface. 
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where: 

 fa =  computed axial unit stress; 
 Fa =  allowable axial stress; 
 Fa =  5/6 x 3/5 Fy = 1/2 Fy = 18 ksi (for A-36 materials); 
fbx and fby =  computed unit bending stress; 
 Fb =  allowable bending stress; 

 Fb = 5/6 x 3/5 Fy = 1/2 Fy = 18 ksi (for A-36 noncompact 
sections); 

or 

 Fb = 5/6 x 2/3 Fy = 5/9 Fy = 20 ksi (for A-36 compact sections). 

A 1991 Corps EM discusses displacement limitations at the pile cap for 
proper operations at locks and dams. It says the horizontal and vertical 
displacements resulting from applied loads should be limited to maintain 
the proper operation and integrity of the structure (USACE 1991). For 
locks and dams, experience has shown that vertical deflections of ¼ in. 
and lateral deflections of ¼ to ½ in. represent long-term movements, 
although operational requirements might dictate tighter restrictions on 
deformations. These limitations should be maintained in the calculated 
pile head movements. The EM displacement guidance needs to be adapted 
for use with next-generation, flexible approach walls. Specifically, loadings 
of the impact beam or deck can occur tens of feet above the pile-to-soil 
foundation interface that is below the mudline (i.e., at the top of the 
foundation). The additional deflections that occur in cases where the pile 
extends above the ground surface will need to be accounted for in the 
displacement criteria for flexible approach walls.  

2.7.2 Pile stiffness 

Lateral, axial, and torsional stiffness must be determined for a wide range 
of pile-soil conditions (Ayyub et al. 1997). The stiffness of a pile is a 
function of pile properties such as length, pile head boundary conditions, 
cross-sectional area, and moment of inertia; soil properties such as soil 
strength, unit weight, and stiffness; environmental factors such as ground-
water table, deposit characteristics, and driving methods; and loading 
conditions such as cyclic, group, and time effects (Hartman et al 1989). A 
pile stiffness matrix can be represented by a 6-by-6 matrix of stiffness 
coefficient relating pile head forces to pile head displacements. Consult 
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Hartman et al. (1989) for general information about the methods used in 
CPGA to determine the lateral, axial, and torsional stiffness for a single 
pile.  

The applied shearing forces and applied moments to a specified pile head 
engage the lateral stiffness of the pile and the soil foundation (that provides 
reactions for the piles). Several methods are available to determine stiffness. 
CPGA uses the classic beam-on-elastic foundation theory to model the 
behavior of a single pile, and represents the actual nonlinear modules of 
subgrade reaction by equivalent elastic secant modules. Such a model 
considers variation of pile displacement, skin friction resistance, and axial 
force along the pile length (Hartman et al. 1989). The axial stiffness of a pile 
is the axial force required to displace the pile cap a unit distance in an axial 
direction. 

The CPGA analysis approach accounts for the pile-soil effect by applying 
an empirical factor to the axial stiffness coefficient for axially loaded 
structures. For compression piles, this coefficient ranges from 0.5 to 2.0. 
The accuracy of this approach depends on the accuracy in selecting this 
coefficient, which is correlated with available geotechnical data. Axial load 
in compression piles is transferred to the soil by a combination of tip 
bearing and skin friction (Hartman et al. 1989). The axial stiffness of 
tension piles usually is taken as 0.5 in sand and 0.75 to 0.8 in clay of the 
axially compression stiffness for that pile (Hartman et al. 1989). The 
torsional pile stiffness does not have a big effect on the pile group stiffness. 
Neglecting the torsional stiffness can be adequate for piles that are not 
fixed into the pile cap. The torsional pile stiffness can be considered in 
design, as described by O’Neill (1964), Stoll (1972), and Scott (1981). The 
1989 CPGA manual notes that, for complex pile-soil conditions, pile head 
lateral, axial, and torsional stiffness should be calculated numerically 
using methods described by Dawkins (1978). 

2.7.3 Pile strength performance limits 

Pure axial load 

The interaction value (IV) for a pile subjected to a pure axial load is given 
by: 

 .
F

IV
AC OSF

æ öæ ö÷ ÷ç ç= £÷ ÷ç ç÷ ÷ç çè øè ø
3 1

1 0  for piles in compression (2.27a) 



ERDC/ITL TR-13-2 38 

 

or 

 .
F

IV
AT OSF

æ öæ ö÷ ÷ç ç= - £÷ ÷ç ç÷ ÷ç çè øè ø
3 1

1 0  for piles in tension (2.27b) 

where AC and AT = allowable axial compressive and tensile loads; F3 = 
actual axial load (positive equals compression); and OSF = overstress 
factor modifier where, for usual loads, OSF = 1.0 and, for unusual or short 
duration cases, OSF = 1.33. As the interaction value (IV) becomes 1 or 
larger, the potential of unsatisfactory performance in terms of strength 
failure of a pile becomes more imminent. 

Combined loads 

The interaction method is used to deal with combined loads. The actual 
bending moments first are multiplied by a moment magnification factor to 
account for the second-order effect of load deformation for unsupported 
piles. The magnified moment and the actual axial loads then are compared 
to pile strength in bending and axial load using interaction equations 
(Hartman et al. 1989). The actual moments used in the interaction 
equations are the maximum moments in each pile for the load condition 
under consideration. For pinned piles, the maximum moments occur some 
distance below the pile cap level, which acts as a support to the piles. For a 
fixed pile, the maximum moments occur at the pile cap level or some 
distance below the ground level. In this section, interaction equations used 
to assess the adequacy of piles subjected to combined axial and bending 
loads are summarized for steel and timber piles. These equations are 
based on service-loads conditions and the working strength method 
(Hartman et al. 1989).  

For steel H-piles subjected to axial compression and bending, the 
interaction value (IV) is given by: 

 .
M MF

IV MF MF
AC AM AM OSF

æ öæ ö æ ö æ ö÷ç ÷ ÷ç ç ÷ç÷÷ ÷ç= + + £ç ç ÷÷ç÷ ÷ç ç ç ÷ç÷÷ ÷ç ç è ø÷ç è ø è øè ø

1 23 1
1 2 1 0

1 2
 (2.27c) 

where F3 = actual axial load; AC = allowable axial load in compression; M1 
= actual bending moment about the 1 axis, where the 1 and 2 axes are the 
local axis for the each pile, (Hartman et al. 1989); M2 = actual bending 
moment about the 2 axis; AM1 = allowable bending moment about the 1 
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axis; AM2 = allowable bending moment about the 2 axis; MF1 = moment 
magnification factor about the 1 axis; MF2 = moment magnification factor 
about the 2 axis; and OFS = overstress factor. For steel H-piles subjected 
to axial tension and bending, the interaction value (IV) is given by: 

 .
M MF

IV
AT AM AM OSF

é ùæ ö- ÷ê úç= + + £÷ç ÷ê úçè øë û

1 23 1
1 0

1 2
 (2.27d) 

where AT = allowable axial load in tension. For rounded timber and steel 
piles, the corresponding equations are: 
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and 
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As the interaction value (IV) becomes 1 or larger, the potential of 
unsatisfactory performance in terms of strength failure of a pile becomes 
more imminent. 

Pile cap displacement performance 

The pile cap displacement matrix of size 6 is determined by CPGA 
(Hartman et al. 1989) as: 

 { } [ ]{ }Q K DS=  (2.28) 

where Q = applied loads; K = stiffness matrix; and DS = displacements. 
The Q and DS vectors (i.e., 6-by-1 matrices) are given by: 
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 (2.29) 
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and  
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 (2.30) 

where P and M are applied loads and moments in the x, y, and z 
directions; and D and R are displacements and rotation in the x, y, and z 
directions. The K matrix is for the pile group. Equation 2.21 can be used to 
solve for the six DS. The performance function for displacements is: 

   DS DL<  (2.31) 

where DL = the displacement limit that need to be set for the six displace-
ment types. The user specifies this value in a CPGA-R reliability analysis. As 
the displacement (DS) reaches the displacement limit (DL) or larger, the 
potential of unsatisfactory performance in terms of displacement failure of a 
pile cap becomes more imminent. 

Recall, for locks and dams, experience has shown that vertical deflections 
of ¼ in. and lateral deflections of ¼ to ½ in. represent long-term 
movements, although operational requirements might dictate tighter 
restrictions on deformations (USACE 1991). 
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3 CPGA-R Graphical User Interface (GUI) 

3.1 Revisiting the CPGA GUI 

The original CPGA GUI allows for the definition of and solution to pile 
group problems. It permits input of as many as 2,000 piles and databases 
of pile and soil properties, as well as a database of loads to be applied to 
the pile group. The piles are specified individually by the location of the 
top of the pile, the batter and angle, and whether the top is fixed, pinned, 
or free of the pile cap. Pile properties and limits are assigned to a pile as 
indexes into a property database. 

The databases of properties can hold 20 entries each that might hold 
multiple properties. For instance, a pile properties database entry contains 
the Young’s modulus for the pile (E), moments of inertia along the two 
lateral axes of the pile (I1 and I2), the area of the pile (Area), and matrix 
terms for pile interactions with the soil (C33 and B66). 

Load cases are entered into their own database. These entries include the 
forces and moments acting at the origin of the system. As many as 40 load 
case database entries can be created. These loads are applied to the whole 
system and not associated with individual piles. 

These pile and database details will be important in the following 
discussion of GUI additions for reliability analysis. 

As with any revisitation of a software product, new features were added to 
make the original interface better and to preposition the additions. Most of 
the upgrades were cosmetic, but two features should be mentioned.  

Preview function 

A new method for previsualizing the data input as a 3D plot of piles has 
been added so the user can verify the pile layout and load conditions applied 
to the system. This new feature is accessed by using a button to the right of 
the pile entry area (Figure 3.1a). A new window then opens, showing the pile 
layout and the origin of the coordinate system, where load cases are applied. 
A drop-down list allows the user to select a specific load case to visualize. 
The user can right-click-drag on the view area to look at the system 
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(a) The CPGA-R GUI with added 3D input viewing feature. 

 
(b) The input piles, displayed with loads and load directions in 3D. 

Figure 3.1. Illustration of the new 3D input viewing features of CPGA-R. 
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from another angle (Figure 3.1b). The magnitudes of the currently selected 
loads are displayed in the upper-left corner of the display area. A menu 
option allows the user to close this window.  

Pile Information function 

When the user moves the mouse cursor over a pile in the pile entry area, 
that pile is colored dark green and an information box appears to the right 
of the pile entry area. This box contains the pile number, position, batter, 
angle, and database assignments for properties of the pile (Figure 3.2). 

3.2 GUI additions to support CPGA reliability analysis  

To apply reliability techniques to CPGA, the GUI needed to be changed to 
allow for variable creation, definition of limit states, and for elements to 
perform the reliability analysis (i.e., Latin Hypercube simulation, ASM, or 
Importance Sampling based on an ASM analysis). Input files and the 
methods to access them also have been added to the interface for the 
original CPGA program. The resulting program is called CPGA-R, with the 
R reflecting the reliability analysis capability of the software. 

The CPGA-R program has been modified to allow for a standard CPGA 
deterministic analysis, plus a reliability analysis. To differentiate between 
data that allows for only a standard run and data that includes reliability 
information, a drop-down list selector was added at the upper-right corner 
of the main window with options for either standard or reliability input 
(Figure 3.3). A circle in this window designates a vertical pile, while a 
triangle designates a batter pile. Figure 3.3 shows there are two vertical 
piles and three batter piles being used in this model. When the standard 
mode for data input is selected, the menu items related to input of 
reliability information and the menu items associated with running a 
reliability analysis are disabled. Choosing the reliability option enables 
these menu items. 

Data for a complete CPGA analysis should be entered before reliability 
input is created. The CPGA model, of course, defines which data may be 
varied. This does not mean that the CPGA data may not be altered, but 
deletion of previously existing data could mean reliability data might not 
match the newly executed model. It is highly recommended that reliability 
data not be entered until a complete CPGA pile group input model is 
created. 
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Figure 3.2. The Pile Information addition to the CPGA-R GUI. 

To create reliability input, select the Reliability->Set Parameters option 
from the main menu (Figure 3.4). This opens the Reliability Input window 
(Figure 3.5).  
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Figure 3.3. The CPGA-R window (with reliability input). 

 
Figure 3.4. The Set Parameters menu. 

 
Figure 3.5. The Reliability Input window. 
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The Reliability Input window has three parts: the Reliability Variable 
Input and Variable Correlation sections, and the Select Limit States 
button, which opens the Select Limit States window.  

3.2.1 Reliability Variable Input  

This section is where the variables for a reliability analysis are defined. 
Variables are defined based on existing data items in the pile group model. 
Specifying which input data will vary is the job of the top three drop-down 
input lists. These drop-down lists allow the user to select a Data Type, Data 
ID, and Constituent ID. The Data Type can be a pile (for individual piles), a 
property database, or the load database. The Data ID is either a pile number 
or an index for an entry in a database. The Constituent ID is the selector for 
a specific entry for a pile or database. For instance, the user might select a 
Data Type of Pile, a Data ID of 5, and a Constituent ID of X to make a 
variable of the fifth pile’s X coordinate. Similarly, selecting a Data Type of 
Soil, a Data ID of Soil2, and a Constituent ID of the soil modulus of 
elasticity esoil allows the engineer to make a variable of the 2nd soil database 
entry of esoil. 

How the data varies is specified below the variable selectors. The first 
entry is the Distribution Type. The types available in the drop-down list 
are Normal, Bounded Normal, Log-Normal, Bounded Log-Normal, 
Uniform, and Triangle. Each distribution has a different subset of input 
data. A diagram to the right of the Distribution Type selector shows a 
graphical plot of the different inputs and how they are applied. 

Normal Distribution extends to plus and minus infinity, but has the 
greatest probability at the mean, a spread determined by the standard 
deviation or the coefficient of variation (COV), which is the standard 
deviation divided by the mean.  

Bounded Normal Distribution has boundaries for how far the variable will 
vary. The mean and standard deviation/coefficient of variation are 
specified as before, but the limits for how the variable varies are entered in 
absolute model coordinates. The area of the PDF must still equal 1.0; 
therefore, the area of the PDF distribution beyond the boundaries is 
calculated and that area is redistributed under the bounded region as a 
uniform region and summed to the original PDF values at that location. 
The upper and lower bounds are enforced in the input. 
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Log-Normal Distribution is the logarithm of the Normal Distribution. This 
PDF distribution extends from a 0.0 to plus infinity or from 0.0 to minus 
infinity, depending if the mean is positive or negative, respectively. The 
inputs for this distribution are the mean and the standard deviation.  

Bounded Log-Normal Distribution has boundaries for how far the variable 
will vary. The mean and standard deviation/coefficient of variation are 
specified as before, but the limits for how the variable varies are entered in 
absolute model coordinates. Specifying a limit that is of the opposite sign 
of the mean implies that boundary is not needed, because the PDF is 0.0 at 
that location. The area of the PDF must still equal 1.0; therefore, the area 
of the PDF curve beyond the boundaries is calculated and that area is 
distributed under the bounded region as a uniform region and summed to 
the original PDF values at that location. 

Uniform (Bounded Uniform) Distribution is defined only by the absolute 
boundary conditions. Because the area of the PDF is guaranteed to be 1.0, 
the Bounded Uniform Distribution is a rectangle with fixed probability 
between the bounds. 

Triangular Distribution is defined by three absolute coordinates: the lower 
boundary, upper boundary, and point of peak probability. The data input 
is limited so the lower bound is less than or equal to the peak coordinate 
which, in turn, is less than or equal to the upper boundary. The lower 
boundary for this PDF is less than the upper boundary. In this manner, 
triangular regions can be created that are right rectangular in either 
direction, and any distribution may lay between bounds. 

Left of the Distribution Type plot is a Plot Distribution button. Clicking 
this button brings up a plot of the currently input distribution, enabling 
the user to view the PDF and verify the data will be dispersed in a fashion 
consistent with the user’s intention. The window that displays the data will 
show the distribution in terms of a PDF or a CDF. 

When the data entered is correctly tailored for the selected Data Type, 
Data ID, and Constituent ID, the user can create the variable for a 
reliability analysis by clicking the Create Variable button beneath the 
distribution creation box. The variable is created in the list beneath the 
Create Variable button. 

CPGA-R allows for the creation of as many as 2,000 piles with their own 
locations, angles, and batters. Because there might be a large number of 
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piles needing variable geometric properties, the Select Pile Groups and 
Create Variables button was added to the Reliability Input window. This 
button is centered above the defined variable grid. 

Pressing the Select Pile Groups and Create Variables button activates the 
Select Piles for Assigning Variable Properties window (Figure 3.6), which 
allows the user to select a set of piles that will have variable properties. 

 
Figure 3.6. The Select Piles for Assigning Variabale Properties 

window for creating groups of pile variables. 

Piles are selected by using a left mouse click-drag operation (Figure 3.7a). 
Piles that have their pile centers in the selection box are selected. Selected 
piles are shown in pink (Figure 3.7b). Using the Ctrl key during the 
selection process allows for more piles to be added to the set. To deselect 
all piles, use the left mouse click-drag operation, without pressing the Ctrl 
key, to choose an area containing no pile centers. 

 
 

(a) Left mouse click-drag selection box. (b) Selected piles. 

Figure 3.7. Using the left mouse click-drag operation to select multiple piles. 
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Because a large number of piles can occupy a large area, the pile selection 
area has a zoom feature that is accessed using the right mouse. The area 
defined by the right mouse click-drag operation is zoomed to fill the screen 
and make pile selection easier (Figure 3.8). To show the full extent of the 
piles, press the Zoom Extents button to the right of the pile selection area. 

 

(a) Right mouse click-drag operation to create a zoom area. 

 

(b) Magnified window when the area is selected. 

Figure 3.8. Zooming to aid in the selection process. 

When the proper piles have been selected, press the Accept Selection 
button. Pressing the Cancel Selection button ends the process, with no 
variables created. Pressing the Accept Selection button opens the Selected 



ERDC/ITL TR-13-2 50 

 

Pile Variable Definition window (Figure 3.9), allowing multiple variables 
to be created for each pile in the selection list. 

 
Figure 3.9. The Selected Pile Variable Definition window. 

The check-boxes to the left of the window permit the user to choose which 
geometry properties will vary for the selected piles. If the Position X check-
box was checked, the user could input data for how each selected pile’s X-
position would vary. Once a box is checked, properties distribution can be 
determined using the drop-down combo box. The choice of distributions is 
the same as the options available in the Reliability Input window (Normal, 
Bounded Normal, Log-Normal, Bounded Log-Normal, Uniform, and 
Triangle). An iconic representation of the chosen distribution is at the far 
right of the window.  

Different inputs are required for different distributions. For instance, 
Normal Distribution requires only the standard deviation to be input, 
whereas Triangular Distribution requires the start point, end point, and 
point at the peak of the distribution (mid). The input windows for these 
variables are enabled based on the chosen distribution (Figure 3.10). Keep 
in mind, the distribution variables are supposed to be input relative to the 
current location, angle, and batter of each selected pile. 

Figure 3.11 shows the result of pressing the Add Variables button in the 
Selected Pile Variable Definition window, with the selected piles and 
variables defined in Figure 3.10. For piles 3, 4, and 5, new variables were 
defined for the X and Z locations and added to the list. Pile numbers can 
be recovered in the input window’s pile input area by moving the mouse 
over individual piles, as discussed in Subsection 3.1 of this chapter. The X 
location variables use a Normal Distribution and the Z location variables 
use a Triangular Distribution.  
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Figure 3.10. Chosen properties and their distribution inputs. 

 
Figure 3.11. Variables created with the selected piles. 

To delete a variable, select it in the list below the Create Variable button 
and click the Delete Variable button. The currently selected reliability 
variable will be removed from the list. 

3.2.2 Variable Correlation 

This section is in the upper-left part of the Reliability Input window. A list of 
correlations among the variables can be created by specifying any two 
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variables and the value for their correlation coefficient (). Two drop-down 
lists allow the user to select variables, according to their indexes in the 
variable list in the Reliability Variable Input section. The correlation coeffi-
cient text box allows for the input of a correlation coefficient (between 
-1.0 to 1.0. When the correlation has been specified, clicking Create Correla-
tion checks the input for correctness, then, if the data is correct, adds this 
correlation to the list. If a correlation has been created between the two 
selected variables, the correlation coefficient for the existing correlation is 
changed to the new value for . Selecting a correlation on the list and 
clicking the Delete Correlation button removes the selected correlation from 
the list. 

3.2.3 Assign Limit States  

Pressing this button in the Reliability Input window opens the Assign Limit 
States window (Figure 3.12), which contains methods for assigning specific 
limit states that will be checked in ASM and simulation runs. This window 
divided among three areas: Displacement and Rotations, Individual Pile 
Limit State Grid, and Group Pile Selection. 

 
Figure 3.12. The Assign Limit States window, with two limit states selected. 
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The Displacements and Rotations area has a series of check-boxes for X, Y, 
and Z displacements and rotations about the X, Y, and Z axes. Each 
checked item has an input text box to enter the pile cap motion allowed 
before a limit state is exceeded. For instance, in the input above, if the pile 
cap is displaced by more than 0.25 in. (0.11 ft) in either direction of the X 
axis, a limit state is exceeded. 

The Individual Pile Limit State Grid area has a check-box for the Axial Load 
Factor (ALF) and Combined Bending Factor (CBF) for each individual pile. 
Checking a box means the limit state for that individual pile will be tested 
for a simulation or ASM run. 

Because there can be as many as 2,000 piles in a CPGA-R input file, it can 
become difficult to check the check-boxes for a large number of individual 
piles. In these circumstances, the group pile selection area becomes 
important. Selection and zooming can be performed with the left and right 
click-drag operations, respectively. This occurs in much the same manner 
as pile selection occurs in the Pile Selection window. However, when piles 
are selected with the left click-drag operation (Figure 3.13), they are not 
highlighted. Instead, when a selection is finished, a window appears that 
lets the user choose which limit state(s) will be assigned to each individual 
pile in the selection (Figure 3.14).  

When this window is accepted, the Individual Pile Limit State Grid area is 
updated to reflect the changes to the selected piles (Figure 3.15). 

When the correct limit states have been changed, the user can accept the 
changes. Declining the changes will keep the limit states the same as 
before the Assign Limit States window was opened. 

3.3 GUI additions for saving and restoring reliability information  

Once reliability information has been entered for a CPGA-R analysis, the 
user probably will want to save that information. Also, the user might want 
to re-create the output, to solve with minor model changes, or to make edits 
to the reliability input. For these circumstances, a pile group reliability 
(.PGR) file was created. The .PGR file contains all the information typed in 
the Reliability Input window. This information is kept in a separate file from 
the CPGA data file because it is not required by the CPGA processor. 
However, the CPGA data file path is stored in the .PGR file, so the files can 
be retrieved together. The format for the .PGR file is in Appendix C. 
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Figure 3.13. Selecting multiple piles for limit state assignment. 

 
Figure 3.14. Setting the limit state for selected piles. 

To save the file, the user must choose from the main menu on the CPGA-R 
window File->Save Reliability or File->Save Reliability As (Figure 3.16). If 
a new .PGR is being created, a file dialog is opened so the user can name 
the file.  

To load a .PGR file, the user must choose the File->Open Reliability option 
from the main menu on the CPGA-R window. This will bring up a file dialog 
to open an existing .PGR file. The sister CPGA data file is loaded with the 
.PGR file so the variables defined match the CPGA input. When the .PGR 
data has been loaded, the drop-down menu in the upper left of the CPGA-R 
main window will be changed to show reliability data has been input. 
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Figure 3.15. Updating the individual piles. 

 
Figure 3.16. The reliability file options from the CPGA-R main menu. 

3.4 Performing a reliability run 

There are a couple of ways to perform a CPGA reliability analysis. These 
options are available from the CPGA-R Analyze main menu option, when 
the reliability mode has been set for the program (Figure 3.17). 

They are the ASM option, and the Latin Hypercube and Importance 
Sampling combined with Latin Hypercube simulation options. 
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Figure 3.17. CPGA-R Analyze options (with reliability options). 

The difference between the ASM and simulation options is explained in 
Chapter 2. To perform an ASM analysis, the user can click the menu 
option and the program will perform the necessary runs, and converge to a 
solution for all possible limit states. Also, the most likely limit state to 
occur is revealed at the end of the analysis output data. 

When the user selects the Latin Hypercube or Importance Sampling 
simulation method, he will be asked to enter a number of simulation runs 
to make. The runs will be started, checking for any limit state to be 
reached.  

When the reliability run is finished, the results will be shown in the 
Reliability Output window (Figure 3.18) and can be saved to another 
location. The results give the probability of unsatisfactory performance for 
the limit states involved and the overall or greatest probability of 
unsatisfactory performance. Detailed information about intermediate and 
final values for the reliability parameters discussed in Chapter 2 is 
presented in this ASCII output file. This output provides the information 
for use in a risk and reliability engineering for major rehabilitation studies 
(USACE 2011). 

 
Figure 3.18. CPGA-R Reliability Output window. 
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4 Testing CPGA-R 

CPGA-R testing is the focus of this chapter. Comparisons are made to 
results computed using RCPGA in the initial test problems (Ayyub et al. 
1997). Additional problems aim to highlight fundamental differences 
among the reliability methods of ASM, Latin Hypercube simulation, and 
Importance Sampling with Latin Hypercube simulation.  

4.1 CPGA-R 

To perform an execution, CPGA-R requires two files: a fully qualified 
CPGA input file and the reliability data, either input through the reliability 
main menu item or from a .PGR file. To test CPGA-R, an example CPGA 
base file was used with varying reliability data. Described next are the 
input data and the resulting output for different reliability analyses.  

4.1.1 CPGA base input file 

Ayyub et al. (1997) used one of the example problems provided with the 
original distribution of CPGA for his own. This problem was chosen 
because it represents a typical batter pile system for supporting the base 
reinforced concrete slab of the retaining wall section, and that first had 
been analyzed by Hrennikoff (1950). This example features a low number 
of piles, and the system vertical and batter piles supporting the cap.  

Hrennikoff (1950) presented a retaining wall supported by transverse rows 
of piles centered at 3-ft intervals along the wall (Figure 4.1). There are five 
piles in a row, with the first two back piles being vertical and the three 
front piles inclined with a 3-to-1 batter. The unit weight of the concrete is 
150 lb/ft3, and the unit weight of the soil is 100 lb/ft3. The angle of friction 
for the soil is 30°. The earth pressure is found using Rankine’s theory. The 
pressure, along the imaginary section cut B-B in Figure 4.2, at the back is 
given by: 

 γA moist B B AP H k-= 21
2

 (4.1) 
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Figure 4.1. Example problem of retaining wall on piles (after Hrennikoff 1950). 
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Figure 4.2. A simplified model of the Hrennikoff example. 

By Rankine’s equation: 

 A

sin
k
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=
+ f

1
1

 (4.2) 
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where HB-B is 27’+3’, or 30’. The earth pressure, along the imaginary 
section cut A-A in Figure 4.2, at the front is given by Hrennikoff as equal 
to half the passive earth pressure resultant force: 

 γP moist A A PP H k-

æ ö÷ç= ÷ç ÷çè ø
21 1 1

2 2 2
 (4.3) 

By Rankine’s equation: 

 P

sin
k

sin
+ f

=
- f

1
1

 (4.4) 

where HA-A is 2’+3’, or 5’. The downward acting force at the base of the 
structure, shown in the figure to be acting above the third pile, is the 
weight of the entire structure and soil contained between imaginary 
sections A-A and B-B, or 113.1 kips. The horizontal force acting on the 
structure is PA – ½ PP , or 39.375 kips. The moment acting at the base of 
the structure and shown in the figure to be acting the third pile is: 

 C B B A A A A CGM H P H P D W- -

æ ö÷ç= - -÷ç ÷çè ø
1 1 1
2 2 2

 (4.5) 

where DCG is the horizontal distance from the center of gravity of the 
section between imaginary sections A-A and B-B and located in the figure 
that is near to the third pile. The weight of the structure (W) is 113.1 kips. 
The computed moment is 173.4 kips. 

One of the first intentions of this software development and testing effort 
was to replicate Ayyub’s results. Therefore, this same input file, which is 
shown graphically in Figure 4.3 for the Figure 4.4 pile-founded retaining 
wall model and using the Table 4.1 text file input data, was used to test 
CPGA-R. 

Ayyub et al. (1997) considered five variables in the Hrennikoff test 
problem: shear force, axial force, moment applied to the pile cap, and the 
X coordinates for Piles 1 and 2. They are listed in Table 5.1 in Figure 4.3. 
The mean values and standard deviations for each distribution (chosen as 
Normal) are listed in this table. Six limit states were specified in this 
problem: the axial failures of Piles 1 and 2; the bending failures of Piles 1 
and 2; a pile-cap X-displacement limit state, DX, with a displacement limit 
of DL=0.110 ft; and a pile-cap Z-displacement limit state, DZ, with a 
displacement limit of DL=0.0.029 ft.  
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Figure 4.3. Input and output details from the RCPGA Example1 analysis made by 

Ayyub et al. (1997). 

 
Figure 4.4. Example 1 CPGA problem (after Ayyub et al. 1997). 
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Table 4.1. Example input file. 

10 EXAMPLE PROBLEM 1 
15 title line 2 
20 PROP 1500 322.06 322.06 63.6 2.0 0 ALL 
30 SOIL ES 0.312 L 30.0 0 ALL 
40 FIX ALL 
50 ALLOW R 50.0 25.0 63.6 127.2 143.2 143.2 ALL 
60 BATTER 3.0 1 2 3 
70 ANGLE 180 ALL 
80 PILE 1 -5.0 0 0 
90 ROW X 5 1 2.5 2.5 3.0 4.0 
100 LOAD 1 -39.375 0 113.1 0 173.4 0 
115 FOUT 1 3 4 5 6 7 
120 PSO 
130 PFO ALL 

These six limit states are prescribed for the selected piles and pile cap in 
the reliability analysis input as: 

 the Axial Load Factor, ALF, for Piles 1 and 2 (labeled Limit State #1 in 
Table 5-2a in Figure 4.3); 

 the Combined Bending Factor, CBF, for Piles 1 and 2 (labeled Limit 
State #2 in Table 5-2a in Figure 4.3); 

 the pile cap displacement limit, DL, for a DX displacement (labeled 
Displacement 1, set equal to 0.110 ft, in Table 5-2b in Figure 4.3); and 

 the pile cap displacement limit, DL, for a DZ displacement (labeled 
Displacement 3, set equal to 0.029 ft, in Table 5-2b in Figure 4.3).  

The 1997 RCPGA computed values for the six limit states using the ASM 
reliability analysis method are summarized for each variable in Tables 5-2a 
and 5-2b in Figure 4.3. These values are given in terms of beta and prob-
ability of unsatisfactory performance, PU. The PU values for the two 
displacement limit values at the pile cap have much higher probabilities 
than the PU values for the ALF and CBF at Piles 1 and 2. For this pile group 
system, the Pu value is computed by ASM as equal to 0.41647. 

This batter pile example has two vertical piles and three batter piles. The 
loads in this system are applied directly above the central batter pile (#3) 
and point along the negative X axis. All the piles are fixed to the pile cap, 
meaning rotation at the pile cap is not allowed. The piles are in a row along 
the X axis, which means there is less resistance to loads in the Y direction. 
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4.1.2 Reliability Test Run 1 

For Test Run 1, the input for Ayyub’s first ASM test was re-created for the 
five variables in Figure 4.5. The ALF and CBF limit states were specified 
for all five piles, as well as the X- and Z-displacement limit states for the 
pile cap (Figure 4.6). This example problem made variables of the load 
forces in the X and Y directions and the moment about the Y axis at the 
origin (above the center batter pile) of the CPGA input of Subsection 4.1.1. 
Also varied were the X positions for batter Piles 1 and 2. The amount of 
limit state displacement allowed for the pile cap was set to 0.11 ft in the X 
direction and 0.029 ft in the Z direction. All these variables were set as 
Normal Distributions, with a set mean and standard deviation. These 
values are shown in the Figure 4.6 input screen. 

This input set was created to be run in an ASM analysis for comparison 
with Ayyub’s 1997 results. It was hoped these results would validate the 
CPGA-R implementation, but the CPGA-R computed results were different 
than expected. This disparity is discussed in Subsection 4.2 of this chapter. 
It turns out that the original RCPGA1 implementation by Ayyub did not 
make changes to all the variables defined for the reliability run. The X 
positions of the pile locations were not varied. 

 
Figure 4.5. Run 1 probabilistic variable input. 

                                                                 
1 The software RCPGA was never finalized nor placed in the Corps Computer-Aided Structural 

Engineering (CASE) library of software. The authors of this report were not able to locate the RCPGA 
software. 
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Figure 4.6. Run 1 limit state input. 

For this test case, runs were performed with the CPGA-R ASM 
implementation technique, the Latin Hypercube simulation method with 
10,000 samples, and the Importance Sampling with Latin Hypercube 
simulation with 10,000 samples. These results, along with those reported 
in Ayyub et al. (1997) for the RCPGA ASM implementation technique, are 
summarized in the first row of Table 4.2. 

Table 4.2. Results for example problem test runs. 
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The computed values for the 1997 RCPGA and CPGA-R ASM methods 
have similar, but not exact, values. These values are different from the 
Latin Hypercube and Importance Sampling with Latin Hypercube simula-
tion results. Further tests would reveal why the simulation methods were 
different than the ASM results. 

4.1.3 Reliability Test Run 2 

Figures 4.7 and 4.8 show the input for CPGA-R, altered to match the actual 
execution of the RCPGA implementation of the ASM method, considering 
three variables of the shear force, the axial force, and the moment applied to 
the pile cap. After careful evaluation and making additional CPGA-R 
executions, it was concluded that the RCPGA results reported in Ayyub et al. 
(1997) indicated that the 1997 software likely had a deficiency. CPGA-R 
results proved to the authors of this report that the 1997 RCPGA program 
did not vary the X locations of the first two piles. Therefore, in a subsequent 
problem execution, the CPGA-R variables for those two conditions were 
removed. The reliability analyses then were re-run to determine if the ASM 
implementation would return the same design point and, thus, the same 
probability of unsatisfactory performance between the two ASM software 
implementations. As expected, the CPGA-R three-variable input run results 
matched exactly the 1997 Ayyub implementation in RCPGA for both the 
design point and the probability of unsatisfactory performance (Run 2 
results in Table 4.2). 

 
Figure 4.7. Run 2 probabilistic variable input. 
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Figure 4.8. Run 2 limit state input. 

Again, this input data set was run in simulation mode using both Latin 
Hypercube simulation and Importance Sampling with Latin Hypercube 
simulation. The results were different from the previous ones for those 
methods and still varied greatly from the two ASM results. The reason will 
be discussed next.  

4.1.4 Reliability Test Run 3 

So far, the input values of Figures 4.7 and 4.8 show the altered input for 
CPGA-R to match the execution of the 1997 RCPGA implementation of the 
ASM method. There was a disparity between the results of the simulation 
methods (Latin Hypercube and Importance Sampling with Latin Hyper-
cube) and the ASM results. As described in Chapter 2, the ASM technique 
creates an estimate of the probability of unsatisfactory performance, PU, by 
finding the most likely failure condition in which the design point is 
closest to the mean values for the variables using a weighted Euclidean 
distance, where each axis is scaled by the inverse of the standard deviation 
(Figure 2.2b), and assuming that the area of failure exists on one side of 
the hyperplane that is tangent to the vector from the mean origin to the 
design point. A design point is determined for each limit state, and the 
closest design point is chosen for the estimate. 

However, for multiple design points, this estimate might be inaccurate 
because the design point sets must be combined and the design surface 
might no longer be linear (planar, hyperplanar) in nature. To test this, the 
input in Figures 4.9 and 4.10 was developed. The variables are exactly the  
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Figure 4.9. Run 3 probabilistic variable input. 

 
Figure 4.10. Run 3 limit state input. 

same as the variables in Test Run 2; but, instead of creating pile cap 
displacement limits for both the X and Z directions, the only displacement 
limit state was the X-displacement limit state. It was recognized from the 
output that the limit states for the ALF and CBF of the piles had little 
bearing on this problem, as the design point was distant and the probability 
of unsatisfactory performance was low. 
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The results of Test Run 3 revealed this assumption was indeed correct and 
that removing one of the driving limit states would cause the probability of 
unsatisfactory performance for ASM, Latin Hypercube simulation, and 
Importance Sampling with Latin Hypercube simulation to give remarkably 
similar results. The Run 3 computed results in Table 4.2 show the 
percentage probability of unsatisfactory performance among the three 
methods was in a range of less than 0.5%.  

4.1.5 Reliability Test Run 4 

For the input data of Test Run 4 (Figures 4.11 and 4.12), verification was 
needed that the results of Test Run 3 were not a coincidence, but an actual 
result of minimizing the number of limit states. To that end, the variable 
input was kept the same as in Test Run 3, but the pile cap displacement 
limit was changed from the original X-displacement limit to the original 
Z-displacement limit only. If the theory that a single limit state would yield 
the most accurate ASM correlation to the simulation methods (Latin 
Hypercube and Importance Sampling with Latin Hypercube simulation), 
the probability of unsatisfactory performance should be nearly the same 
for all of them. 

 
Figure 4.11 Run 4 probabilistic variable input. 
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Figure 4.12. Run 4 limit state input 

The results of Test Run 4 revealed that this assumption was indeed correct 
and that removing one of the driving limit states would cause the prob-
ability of unsatisfactory performance for ASM, Latin Hypercube simulation, 
and Importance Sampling with Latin Hypercube simulation to give 
remarkably similar results. The Run 4 computed results in Table 4.2 show 
the percentage probability of performance among the three methods was, 
again, in a range of less than 0.5%.  

4.1.6 Visualizing ASM and simulation method results  
(Test Runs 5, 6, and 7) 

To visualize the computed results of simulation runs (Latin Hypercube 
and Importance Sampling with Latin Hypercube simulation), test cases 
with only two variables were constructed so the variable axes could be 
displayed in a 2D plot. The test run inputs above were modified to reduce 
the number of variables by one, from three variables to two (Figure 4.13). 
A single limit state of X displacement was specified so the results could be 
shown and compared to the planar division point at the ASM design point 
for Test Run 5 (Figure 4.14). 

Plots were made from the simulation runs (Figure 4.15). Each plot shows 
the coordinate system for the two variables (with the mean values at the 
origin), discrete levels of probability (the differently shaded circular blue 
lines of constant probability about the origin have been added for 
reference), and the samples given by location and state (red samples mean 
a limit state has been exceeded; black, no limit states exceeded).  
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Figure 4.13. Runs 5, 6, and 7 probabilistic variable input. 

 
Figure 4.14. Run 5 limit state input. 

Samples were taken using the Latin Hypercube method, with samples 
distributed about the origin for the upper left plot, and using Importance 
Sampling points by weighing variable locations about the design point 
from an ASM run. The probability of unsatisfactory performance for the 
simulation methods involves determining the area on either side of the 
curve by taking the samples and determining a ratio between the number 
of unsatisfactory performance samples (in red) and the total number of 
samples for the Latin Hypercube method, and by applying a weighted ratio 
for the Importance Sampling run based on the distance from the variable 
mean to the sampling mean, as discussed in Chapter 2. 
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Figure 4.15. Distribution of samples and results for Run 5 (using Latin Hypercube and 

Importance Sampling). 

The dividing surface between the unsatisfactory and satisfactory samples 
(in red and black, respectively) is linear. This implies the ASM method 
should account properly for the probability of unsatisfactory performance 
because, for ASM, the design point is the closest point on that line to the 
origin (at the means) that fully describes the line (normal to the origin to 
design point vector). The Run 5 computed results in Table 4.2 verify this, 
as the probability of unsatisfactory performance is within 0.3%.  

Test Run 6 follows the same procedure, but a different limit state 
(Figure 4.16). In this case, the variables are the same as in Test Run 5, but 
the driving limit state is set to the Z displacement. The results are in 
Figure 4.17. Again, the resulting limit state division appears to be linear, 
which implies the ASM method for determining the probability of unsatis-
factory performance should be accurate. The Run 6 computed results in 
Table 4.2 confirm this by returning a range of 1% for the probability of 
unsatisfactory behavior between the ASM and simulation methods.  

Test Run 7 shows a situation in which the ASM method does not match the 
actual performance of the system. In this case, the two driving limit states 
from the previous two test runs are combined (Figure 4.18). Figure 4.19  
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Figure 4.16. Run 6 limit state input. 

 
Figure 4.17. Distribution of samples and results for Run 6 (using Latin Hypercube and 

Importance Sampling). 
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Figure 4.18. Run 7 limit state input. 

 
Figure 4.19. Distribution of samples and results for Run 7 (using Latin Hypercube and 

Importance Sampling). 
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shows the decidedly nonlinear, V-shaped limit state curve that results 
from this combination. The ASM design point method will find only the 
closest point to the V-shaped surface, which is on one of the legs of the 
curve. This will result in an inaccurate estimation of the probability of 
unsatisfactory performance. This is verified in Table 4.2, where for Run 7 
the probability of unsatisfactory performance for the ASM method stays 
the same as for the previous test run (41.6%), and the Latin Hypercube 
and Importance Sampling with Latin Hypercube methods both agree on a 
higher probability of unsatisfactory performance (near 77%).  

4.1.7 Difference in Latin Hypercube and Importance Sampling  
(Test Runs 8 and 9) 

The same two variables used in the three previous test runs were used for 
Test Runs 8 and 9 (Figure 4.20). However, the limit state has been 
reduced to the limits states in the piles (i.e., ALF and CBF, Figure 4.21) 
with no displacement limit states specified. These limit states are much 
less likely to occur than the driving limit states of pile cap displacement 
shown in the three previous test runs. Therefore, when an ASM run is 
performed, the design point is at a greater distance from the mean origin. 
This impacts the Latin Hypercube method because simulation samples are 
more likely to be chosen about the origin (or mean values). Importance 
Sampling with Latin Hypercube takes samples about the design point from 
an ASM run and, therefore, catches the probabilities at the point of 
interest (i.e., on the design surface). If the limit states were to form a 
nearly linear design surface, the ASM value should be close to the 
Importance Sampling with Latin Hypercube simulation probability of 
unsatisfactory performance.  

Figure 4.22 shows Latin Hypercube and Importance Sampling with Latin 
Hypercube simulation with 10,000 samples taken. These simulation runs 
show the power of the Importance Sampling technique, as there are few 
samples for the Latin Hypercube method that begin to approach the 
design surface. The Importance Sampling technique has samples drawn 
from a mean value on the design surface and scaled to represent their 
actual probabilities. 

Figure 4.23 shows the same simulation with 1,000 samples chosen. In this 
case, the Latin Hypercube method would lose precision; but, because the 
Importance Sampling method takes samples close to where the design 
surface is, fewer samples are required for close precision. 
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Figure 4.20. Runs 8 and 9 probabilistic variable input. 

 
Figure 4.21. Runs 8 and 9 limit state input. 

Table 4.2 shows the results of Runs 8 and 9, for which the Latin 
Hypercube method did not work for extremely low probabilities of 
unsatisfactory performance, but the ASM design point-based Importance 
Sampling with Latin Hypercube simulation gave consistent values of the 
same magnitude as the ASM runs. For the higher and lower number of 
samples, the values also were of consistent magnitude. 



ERDC/ITL TR-13-2 76 

 

 
Figure 4.22. Distribution of 10,000 samples and results for Runs 8 and 9 (using Latin 

Hypercube and Importance Sampling). 

 
Figure 4.23. Distribution of 1,000 samples and results for Runs 8 and 9 (using Latin 

Hypercube and Importance Sampling). 
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4.1.8 Influence of correlating variables in CPGA-R 

Figure 4.24 shows a reliability input for a two-variable problem in which 
the two variables have a 0.85 correlation coefficient. A positive correlation 
coefficient results in a direct correlation, not an inverse correlation for 
which a negative correlation coefficient value is specified. These variables 
are defined with the same values and limit states as in Run 7, with the first 
variable being a load along the X direction with magnitude of -39.4 kips, 
and the other variable being a load along the Z axis with a magnitude of 
113.1 kips. The two primary limit states are a displacement of 0.11 in. in the 
X direction and a displacement of 0.029 in. in the Z direction. A Latin 
Hypercube simulation run was performed. The text output results are 
shown in Figure 4.25, and the output visualization is shown in Figure 4.26. 

Correlating variables always leads to a scattering of sample points along the 
diagonal, because of the correlated nature of the two variables. Since the 
triangular shape of the resulting output stays the same, the probability of 
unsatisfactory performance changes only by altering the correlation. The 
Run 7 results in Table 4.1 show the uncorrelated probability of 
unsatisfactory performance is 76.99%. Linking the variables with a 
correlation coefficient of 0.85 gives a probability of unsatisfactory 
performance of 82.92% (Figure 4.25).  

 
Figure 4.24. Correlated variable input for Run 7 variables and limit states with a correlation factor of 0.85. 
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Figure 4.25. Results from the run with a correlation factor of 0.85. 

 
Figure 4.26. The spread and results of the simulation runs with a correlation factor of 0.85. 

Figure 4.27 shows the same input variables from the previous run with a 
negative correlation coefficient. A negative correlation coefficient is known 
also as an inverse correlation. The samples from an inverse correlation are 
drawn against the opposite diagonal as the direct correlation. Figure 4.28 
shows the results of running this inverse correlation, which results in a 
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much lower probability of unsatisfactory performance (50.44%) than with 
the direct correlation (82.92%) or uncorrelated (76.99%). Figure 4.29 
explains why. The samples are taken along the diagonal that follows the 
triangular area where satisfactory performance occurs, which lowers the 
probability of finding a sample with unsatisfactory performance.  

 
Figure 4.27. Using an inverse correlation factor (-0.85). 

 
Figure 4.28. Results given an inverse correlation factor (-0.85). 
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Figure 4.29. The spread and results of the simulation runs with an inverse correlation factor (-0.85). 

Table 4.3 shows the results of changing the correlation coefficient using a 
well-established correlation code for Latin Hypercube sampling, with 
results from adding the correlation code for the ASM method (for a single 
limit state, for testing purposes), and with Importance Sampling using 
Latin Hypercube methods. These results agree within 3%, which validates 
the correlation values are accurate. 

Table 4.3. Examples of correlating pairs of variables and the effects 
on the probability of unsatisfactory performance. 
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4.2 Understanding CPGA-R output formats 

4.2.1 Advanced Second Moment (ASM) output 

Table 4.4 shows the output from the CPGA-R software when an ASM run 
has been performed using input data equivalent to that of the RCPGA 
Example 1. This data uses the same five-pile Hrennikoff example in Figures 
4.1, 4.2, and 4.4. The variables defined are in Figures 4.3 and 4.5, and the 
limit states are in Figure 4.6. The output is divided into two sections.  

Table 4.4. Results of CPGA-R with the Example 1 input from the RCPGA manual. 

CPGA-R ASM Analysis Output 12/11/2012 7:40:27 AM 

Time to completion = 00:00:43 Total number of CPGA runs = 443 

Return Status States: 

 Unaffected means that the limit state is unaffected by all of the variables. 

 Computed means that the limit state was reached in the variable space.  

 Extreme means that the limit state was not found within 8 standard deviations of 
the mean. 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

Translation X = 0.110 3.4985665E-01 3.6322466E-01 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.7869550057912 0.737367350205002 

 LOAD 01 pz 111.830889805245 0.604592528472047 

 LOAD 01 my 173.040729281488 0.120814090900201 

 Pile 01 X -5.04444948271573 0.254103940749335 

 Pile 02 X -2.50941699079941 0.107668045877356 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

Translation Z = 0.029 2.0162977E-01 4.2010448E-01 Computed  
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 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.253514910467 -0.484345290939787 

 LOAD 01 pz 114.089038540607 -0.81755105797474 

 LOAD 01 my 173.572869896873 -0.100867990081267 

 Pile 01 X -4.97271857005927 -0.270613865834808 

 Pile 02 X -2.49411867698635 -0.116677722568372 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0001 ALF 6.0760755E00 6.2171590E-10 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.056096594625 -3.77388455360848E-02 

 LOAD 01 pz 141.532485034133 -0.780022198195576 

 LOAD 01 my 187.365128574415 -0.270439052801879 

 Pile 01 X -4.08795932555464 -0.300253166420285 

 Pile 02 X -1.77661777961133 -0.476289727617509 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0001 CBF 4.5275097E00 2.9929468E-06 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 
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 LOAD 01 px -45.7736261285423 0.93859100278118 

 LOAD 01 pz 103.945243937097 0.337036229455707 

 LOAD 01 my 172.104976136111 3.36542492596207E-02 

 Pile 01 X -5.13231740912199 5.84558588197023E-02 

 Pile 02 X -2.53402501971461 3.00634929594376E-02 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0002 ALF =8.000000E00 0 1.000000E-16 0 Extreme  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.4 0.291427906800489 

 LOAD 01 pz 113.1 -0.769433813892922 

 LOAD 01 my 173.4 -0.175295781335943 

 Pile 01 X -5 -0.540643862560158 

 Pile 02 X -2.5 -4.12117676536306E-03 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0002 CBF 4.4383974E00 4.5387028E-06 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -45.3069045520247 0.887273894297676 

 LOAD 01 pz 102.555669825237 0.395964959926241 

 LOAD 01 my 169.459514796039 0.104452727508188 

 Pile 01 X -5.42804246593377 0.192888289794857 
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 Pile 02 X -2.59824795030526 8.85467243017117E-02 

 

 

***************** 

* Final Results * 

***************** 

 

The greatest probability of failure occurs for the limit state: Translation Z = 
0.029 

 

The greatest probability of failure was 42.01E00% 

The first two lines of the CPGA-R output file give the run status of the 
program, including the date and time of the analysis and the amount of 
time required to perform it. Also, the total number of individual CPGA 
runs is reported. This is the number of runs required to perform the 
analysis and determine the probability of unsatisfactory performance for 
each limit state. 

The next four lines of the output file are a legend describing the return 
status of each limit state. The three return statuses are: 

 Unaffected: Limit states that are uncorrelated with the input data can 
be defined. In these cases, changing the variables does not make a 
CPGA run approach that limit state. Therefore, the probability of 
unsatisfactory performance is either 100% or 0%, depending on 
whether the limit state is exceeded or not met, respectively, at the 
mean values for the variables. 

 Computed: If the limit state approaches 0.0 and is computable within 
eight standard deviations for all its variables, the computed probability 
of unsatisfactory performance is reported. 

 Extreme: It is possible for a variable to be defined with a mean and 
standard deviation that will not converge to a design point that is 
within eight standard deviations of the mean. In this case, the 
probability of unsatisfactory performance approaches 100% or 0%. 
Therefore, the probability of unsatisfactory performance is reported as 
either 100% or 0%, depending on whether the limit state is exceeded or 
not met, respectively, at the mean values for the variables. 
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Each limit state’s results are given in the next section of output. The first 
line defines the limit state. For instance, the second limit state for the 
output in Table 4.4 is the pile cap translation in the Z direction, which is 
limited to a deflection of no more than 0.029 in. For this limit state, the 
distance all the variables moved from the mean is given by beta, which is 
approximately 0.2016. The probability of unsatisfactory performance is 
reported at the Failure Prob. This number falls on a scale of 0.0 to 1.0. For 
the same limit state of Z deflection, the failure probability is 0.4201 
(42.01%). Because the value can be computed from the given variables 
within eight standard deviations, the return status is given as computed. 

Beneath the probability of unsatisfactory performance values are the 
computed values for the design point. The design point is the closest point 
to the mean origin where the limit state has a value of 0.0. The card ID, 
index, and variable are used to identify the specific data that is varying for 
each variable. The value gives the actual value in the variable space of the 
design point. This value can be computed by taking the beta value from the 
probability of unsatisfactory performance line, multiplying it by the 
directional cosine value, and adding the product to the variable mean. 

The design point and the directional cosine vector are given so the user 
can determine which variables have the greatest effect on the limit state. 

The final results section presents the limit state with the highest probability 
of unsatisfactory performance. This limit state is the state most likely to be 
exceeded. The probability for that limit state is restated in percentile format.  

4.2.2 Latin Hypercube output and Importance Sampling with Latin 
Hypercube output 

The output format for the simulation methods Latin Hypercube and 
Importance Sampling are much simpler than for ASM, which returns 
information about the final state and location of the design point and each 
probability of unsatisfactory performance (Pu) for each limit state. The 
simulation methods have the same header information, describing the run 
and giving the time and date. Also given is the number of simulation runs 
performed. 

The rest of the output gives the probability of unsatisfactory performance 
in a decimal value and the coefficient of variation for that probability of 
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unsatisfactory performance. The probability of unsatisfactory performance 
applies to all the limit states.  

Tables 4.5 and 4.6 show output values for the Latin Hypercube method and 
the Importance Sampling combined with Latin Hypercube, respectively. 

Table 4.5. Results of CPGA-R with Example 1 input for a Latin Hypercube run. 

CPGA-R Latin Hypercube Analysis Output 12/12/2012 10:02:54 AM 

 

Time to completion = 00:20:56 Total number of CPGA runs = 10000 

 

Probability of unsatisfactory performance = .7767 with a coefficient of variation 
of : 5.3618876398803E-03 

Table 4.6. Results of CPGA-R with Example 1 input for an Importance Sampling run. 

CPGA-R Importance Sampling Output 12/12/2012 10:29:44 AM 

 

Time to completion = 00:19:57 Total number of simulation runs = 10000 

 

Probability of unsatisfactory performance = .76812434296304 with a coefficient of 
variation of : 5.95567106216815E-03 

4.3 Inconsistencies for ASM calculations in 1997 RCPGA  

In the original RCPGA formulation of the ASM algorithm (Ayyub et al. 
1997), as many as 2,000 variables could be defined. Also, limits could be 
established for pile cap displacement and rotation, as well as failure 
mechanisms at each pile, the Axial Load Factor (ALF) and Combined 
Bending Factor (CBF). A test problem for RCPGA was established with a 
five-variable vector and with six limit states (two for pile cap motion, and 
ALF and CBF for two piles). The variables established for the example 
were for the X and Z forces, Y moment acting on the pile cap, and 
displacements in the X direction for two of the five piles (Figure 4.5). 

The example problem and results from the original RCPGA program are in 
Figure 4.3. The CPGA input file for this five-pile problem is in Table 4.1. 
Figure 4.4 shows the placement of the piles according to the original CPGA 
input (in the CPGA-R interface).  
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The probabilistic input for the variables in Figure 4.3 for the original 
RCPGA software is in Table 4.7. Figures 4.5 and 4.6 show the same input 
as it would be entered into the GUI for CPGA-R.  

Table 4.7. Reliability input for variables in the 
RCPGA software. 

Example 1 RCPGA 
A3,1X,A5,1X,A1,2(1X,D12.6),2(1X,I4) 
1.00D-03 1.00D-04 
5 name Code mean sigma Cont1 Cont2 
NOR oad s -39.4 1.5 1 1 
NOR oad s 113.1 6.0 1 3 
NOR oad s 173.4 8.5 1 5 
NOR X s -5.0 .5 1 
NOR X s -2.5 .25 2 
1 
1 
2 
1 
2 
2 
1, 0.11 
3, 0.29D-01 

The RCPGA output is in Table 4.8. The greatest probability of unsatisfactory 
performance in the summary of reliability results at the end of the file is 
41.65% at the limit state of a displacement of 0.029 in the Z direction. 

Table 4.8. Output from RCPGA ASM method. 

ID = Example 1 RCPGA 
Total number of random variables = 5 
***** The input data ***** 
-x=rv- -name- ----mean-- --stddv-- --Distr- -cont1- -cont2- 
X( 1) oad -.394000D+02 .150000D+01 NOR 1 1 
X( 2) oad .113100D+03 .600000D+01 NOR 1 3 
X( 3) oad .173400D+03 .850000D+01 NOR 1 5 
X( 4) X -.500000D+01 .500000D+00 NOR 1 0 
X( 5) X -.250000D+01 .250000D+00 NOR 2 0 
***** The result ***** 
******************************************************** 
Limit state number (1-axial or 2-combined)= 1 
Pile number = 1 
The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 -.682647D-01 -.386341D+02 
X( 2) .600000D+01 .113100D+03 -.940074D+00 .155290D+03 
X( 3) .850000D+01 .173400D+03 -.334067D+00 .194640D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .747992D+01 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 -.682647D-01 -.386341D+02 
X( 2) .600000D+01 .113100D+03 -.940074D+00 .155290D+03 
X( 3) .850000D+01 .173400D+03 -.334067D+00 .194640D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .747992D+01 
Probability of unsatisfactory performance(Pu)= .371925D-13 
******************************************************** 
Limit state number (1-axial or 2-combined)= 1 
Pile number = 2 
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The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .346426D+00 -.465596D+02 
X( 2) .600000D+01 .113100D+03 -.914641D+00 .188712D+03 
X( 3) .850000D+01 .173400D+03 -.208377D+00 .197804D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .137780D+02 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .346426D+00 -.465596D+02 
X( 2) .600000D+01 .113100D+03 -.914641D+00 .188712D+03 
X( 3) .850000D+01 .173400D+03 -.208377D+00 .197804D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .137780D+02 
Probability of unsatisfactory performance(Pu)= .000000D+00 
******************************************************** 
Limit state number (1-axial or 2-combined)= 2 
Pile number = 1 
The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .939962D+00 -.457995D+02 
X( 2) .600000D+01 .113100D+03 .339470D+00 .103855D+03 
X( 3) .850000D+01 .173400D+03 .350899D-01 .172046D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .453881D+01 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .939962D+00 -.457995D+02 
X( 2) .600000D+01 .113100D+03 .339470D+00 .103855D+03 
X( 3) .850000D+01 .173400D+03 .350899D-01 .172046D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .453881D+01 
Probability of unsatisfactory performance(Pu)= .282858D-05 
******************************************************** 
Limit state number (1-axial or 2-combined)= 2 
Pile number = 2 
The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .903609D+00 -.455639D+02 
X( 2) .600000D+01 .113100D+03 .413949D+00 .101805D+03 
X( 3) .850000D+01 .173400D+03 .110170D+00 .169141D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .454760D+01 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .903609D+00 -.455639D+02 
X( 2) .600000D+01 .113100D+03 .413949D+00 .101805D+03 
X( 3) .850000D+01 .173400D+03 .110170D+00 .169141D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .454760D+01 
Probability of unsatisfactory performance(Pu)= .271312D-05 
******************************************************** 
Displacement number (for DX,DY,DZ,RX,RY,RZ) = 1 
The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .767160D+00 -.398189D+02 
X( 2) .600000D+01 .113100D+03 .629020D+00 .111726D+03 
X( 3) .850000D+01 .173400D+03 .125695D+00 .173011D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .364057D+00 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 .767160D+00 -.398189D+02 
X( 2) .600000D+01 .113100D+03 .629020D+00 .111726D+03 
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X( 3) .850000D+01 .173400D+03 .125695D+00 .173011D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .364057D+00 
Probability of unsatisfactory performance(Pu)= .357908D+00 
******************************************************** 
Displacement number (for DX,DY,DZ,RX,RY,RZ) = 3 
The i (iteration) = 1 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 -.506854D+00 -.392396D+02 
X( 2) .600000D+01 .113100D+03 -.855545D+00 .114183D+03 
X( 3) .850000D+01 .173400D+03 -.105556D+00 .173589D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .210931D+00 
The i (iteration) = 2 
x=rv. --sigmaEN--- ---meanEN--- ---alpha---- -----dp----- 
X( 1) .150000D+01 -.394000D+02 -.506854D+00 -.392396D+02 
X( 2) .600000D+01 .113100D+03 -.855545D+00 .114183D+03 
X( 3) .850000D+01 .173400D+03 -.105556D+00 .173589D+03 
X( 4) .500000D+00 -.500000D+01 .000000D+00 -.500000D+01 
X( 5) .250000D+00 -.250000D+01 .000000D+00 -.250000D+01 
The beta (safety index) = .210931D+00 
Probability of unsatisfactory performance(Pu)= .416471D+00 
******************************************************** 
***Summary of Reliability Results for Piles** 
-Pile- -LimitState- -Beta- ---Pu--- 
1 1 .747992D+01 .371925D-13 
2 1 .137780D+02 .000000D+00 
1 2 .453881D+01 .282858D-05 
2 2 .454760D+01 .271312D-05 
******************************************************** 
***Summary of Reliability Results for Displacements** 
-Displacement- ---Beta--- ---Pu--- 
1 .364057D+00 .357908D+00 

3 .210931D+00 .416471D+00 

The output of the CPGA-R software, given the same values and limit states, 
is in Table 4.4. The greatest probability of unsatisfactory performance was 
given for the limit state of a displacement of 0.029 in the Z direction, but 
the value was 42.01%.  

Looking at the probabilities for exceeding the pile cap displacement limits, 
the values for RCPGA are different from the probabilities for exceeding the 
pile cap displacement limits in CPGA-R. Because the CPGA-R probabilities 
for unsatisfactory performance were higher than RCPGA’s and both 
programs’ design points generated values for the displacements at the 
limit state values, it seemed likely that CPGA-R was generating more 
accurate values. 

The difference came to light when the Ayyub et al. (1997) design points for 
RCPGA were examined in detail and it was revealed that the X positions of 
the two piles, which were specified as variables in the vector, were not 
changing. In Table 4.8, for each iteration of each limit state, the alpha 
values for the variables X(4) and X(5) are always 0.0, so the design point 
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values (dp) for those variables are always the same as the mean values for 
those variables (meanEN). This must have been a result of a logical mistake 
in the coding for the 1997 RCPGA. When the CPGA-R example file was 
rewritten to not include the displacements of the two piles (Figures 4.7 and 
4.8), the limit states for the deflection of the pile caps had the same 
probability as the runs in the original RCPGA example. This is shown by the 
greatest probability of unsatisfactory performance in Table 4.9, which has 
the same value (41.65%) for the same limit state (0.029-in. displacement in 
the Z axis).  

Table 4.9. Results of CPGA-R with Example 1 input from the RCPGA manual, modified 
to remove the pile translation variables. 

CPGA-R ASM Analysis Output 12/11/2012 7:44:53 AM 

 

Time to completion = 00:00:16 Total number of CPGA runs = 175 

 

Return Status States: 

 Unaffected means that the limit state is unaffected by all of the 

variables. 

 Computed means that the limit state was reached in the variable space.  

 Extreme means that the limit state was not found within 8 standard 

deviations of the mean. 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

Translation X = 0.110 3.6405653E-01 3.5790796E-01 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.8189342752799 0.767159750896063 

 LOAD 01 pz 111.726006249378 0.629020329475259 

 LOAD 01 my 173.011037935066 0.125695432343139 
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Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

Translation Z = 0.029 2.1093092E-01 4.1647062E-01 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.2396331976045 -0.50685409896392 

 LOAD 01 pz 114.182765138042 -0.855544820115319 

 LOAD 01 my 173.589251975613 -0.10555559263876 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0001 ALF =8.000000E00 0 1.000000E-16 0 Extreme  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.4 -6.82646597049929E-02 

 LOAD 01 pz 113.1 -0.940074032361122 

 LOAD 01 my 173.4 -0.334066984174823 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0001 CBF 4.5388135E00 2.8313107E-06 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 
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 LOAD 01 px -45.7994689101363 0.939962080832129 

 LOAD 01 pz 103.855249690723 0.339470152113608 

 LOAD 01 my 172.046233905082 3.50899190893674E-02 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0002 ALF =8.000000E00 0 1.000000E-16 0 Extreme  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -39.4 0.346425982664289 

 LOAD 01 pz 113.1 -0.914640838619028 

 LOAD 01 my 173.4 -0.208377481665756 

 

Limit State BETA Failure Prob. Return Status 

--------------------- ------------- ------------- ------------- 

 Pile #0002 CBF 4.5475952E00 2.7157633E-06 Computed  

 

 Design Point 

 ------------ 

 Card ID Index Variable Value Directional Cosine 

 ---------- ----- -------- ------------------ ------------------ 

 LOAD 01 px -45.5638718967269 0.903608989990676 

 LOAD 01 pz 101.805176880779 0.413948565198998 

 LOAD 01 my 169.141436014531 0.110169771615093 

 

 

***************** 

* Final Results * 

***************** 
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The greatest probability of failure occurs for the limit state: Translation 

Z = 0.029 

 

The greatest probability of failure was 41.65E00% 

An addition to the ASM code used in CPGA-R, as opposed to the original 
RCPGA, has been a software check that makes the user aware that certain 
limit states might be unaffected by a selected variable vector. In this case, 
varying any or all the variables in a vector will not make the ݂ሺ Ԧܺሻ function 
approach 0.0. In RCPGA, the onus was placed on the user to choose limit 
states that would be affected by any or all variables in vector Ԧܺ. In CPGA-R, 
all limit states are tested and unaffected variables are reported to the user. 
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5 Summary, Conclusions, and Future 
Research 

5.1 Summary and conclusions 

The report has addressed the creation of a validated reliability solution for 
pile placement using the pile group layout analysis software CPGA. This 
work, which follows the published research for the 1997 RCPGA software, 
has aimed to create a portable library of reliability routines that can be 
used with base CASE library software to introduce reliability analyses for a 
range of engineering problems such as pile layout and design. The routines 
followed the common reliability methods discussed in the RCPGA 
contractual report (Ayyub et. al. 1997) to establish the theory and 
limitations of the methods.  

When the theory was examined, shortcomings in the logic for the original 
1997 RCPGA software came to light and these problems were remedied in 
the new CPGA-R software. It also was recognized that, while the ASM 
method could give accurate results for limit states with a linear response 
surface, it is not accurate for cases in which the response surface is 
nonlinear, which can be a result of the nature of the system response curve 
or by having a response curve based on a selection of multiple limit states. 
However, simulation methods such as Latin Hypercube and Importance 
Sampling with Latin Hypercube can cover this weakness because they are 
area-based methods. Using the ASM method to provide a location for the 
secondary distribution function for Importance Sampling with Latin 
Hypercube is a particularly efficient and accurate method to measure 
reliability for CPGA problems. 

In creating the additions to the CPGA GUI for CPGA-R, weaknesses in the 
original CPGA GUI were addressed first to help the user understand the 
input model. Routines then were added to extend the program’s 
realiability analysis capabilities. These routines allowed the user to enter 
variable and limit state information in a manner that was consistent with 
the original CPGA user interface. Means to store and load this information 
was built into the GUI. 
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Also added were GUI methods to view the output of reliability analyses. 
Because reliability studies with multidimensional variables and multiple 
limit states can be abstract, significant effort was placed in making the 
output readable and, where possible, viewable. The authors of this report 
anticipate Corps district engineers will deal with multi-variable CPGA 
analysis problems. This means the results for N variables will be generated 
in N-variable space. This is difficult to visualize. To help provide a 
visualization of the reliability results for the ASM and simulation methods 
used in CPGA-R, several two-variable problems were analyzed and 
discussed in Chapter 4. The intent was to present graphically the reliability 
results generated by the ASM and simulation analyses and to relay a visual 
understanding of the reliability results. Chapter 4 and other parts of this 
report aimed to make the process clearer.  

5.2 Future research 

Reliability analysis is needed for major rehabilitation studies resulting in 
approach wall rehabilitations and/or extensions. Example reliability 
analyses discussed in Chapter 4 show the deformation limit state is 
generally the dominant one for the batter pile problem. 

Lateral deformation of a batter pile group is dominated by the value 
specified for the axial stiffness in the CPGA input. The axial pile stiffness is 
expressed as (Hartman et al. 1989; Ebeling et al. 2012): 

 
AE

b C
L

=33 33  (5.1) 

where 

 b33 = axial pile stiffness; 
 C33 = constant that accounts for the interaction between the soil and 

the pile; 
 A = cross-sectional area of the pile; 
 E = modulus of elasticity of the pile; 
 L = length of the pile. 

The term AE/L is the elastic stiffness of the pile acting as a short column 
with no soil present. The authors of this report recognize the deformations 
are dominated by the soil, not the compression of the pile. The C33 term 
may be interpreted as a scale factor of the axial stiffness of the pile to 
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account for the actions of the soil along the surface and tip of the pile. The 
coefficient (C33) accounts for the stiffness of the soil-pile system in its 
entirety.  

The original 1989 CPGA guidelines for design purposes (Hartmann et al. 
1989) give a compression pile C33 term, which typically ranges from 1.0 
and 2.0. There appears to be a relationship between C33 and pile length. 
Longer piles tend to have higher values of C33 than shorter ones.  

Long-term loading, cyclic loading, pile group effects, and pile batter can 
affect C33. In sand, long-term loading has little effect on the value of C33; 
however, consolidation in clay due to long-term loading can reduce C33.  

The value of C33 for single piles can be calculated using: 

 
Δ
δ

C =33  (5.2) 

where 

 ∆ൌ ௉௅

஺ா
; 

  = axial movement of the pile head due to axial load P; 
 P = allowable axial design load for the pile. 

More research will be conducted to provide data for defining a database of 
samples for key variables (i.e., the C33 term) used in the deterministic or 
reliability analysis of a cluster of in-line batter piles of flexible approach 
walls. Finite element modeling of 3D Soil-Structure Interaction may be used 
to help develop this database (especially the C33 term). Research will be 
conducted to determine soil interactions along the pile and at the batter pile 
tip, for defining simplified methods of design under the condition when the 
batter pile plunges into the soil because of loading. Results will be used to 
summarize the generated database and discuss the application of a 
reliability-based engineering procedure analyzing a flexible approach wall 
impact structure founded on clustered pile groups with batter piles, using 
CPGA-R and resulting in a minimum depth of pile embedment. This 
minimum depth of pile embedment will enable engineers to build cost-
effective, reliable flexible approach walls. 
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Appendix A: Skin Friction and Tip Capacities 
of Piles 

A.1 Introduction 

The skin friction capacity and limiting tip resistance of a pile founded in 
sand or in clay can be determined using one of the procedures outlined in 
this appendix. 

A.2 Skin friction and tip capacities of piles (USACE 1991) 

The skin friction and tip capacity of a pile founded in different materials 
(i.e., sand or clay) can be determined using one of the relationships in this 
section. This material was presented first in USACE (1991).  

A.2.1 Pile capacity  

Pile capacity should be computed by an experienced designer who is 
familiar with the various types of piles, how piles behave when loaded, and 
the soil conditions that exist at the site. 

A.2.1.1 Axial pile capacity  

The axial capacity of a pile can be represented by: 

 s t Q  QultQ = +  (A.1) 

 s s f AsQ =  (A.2) 

 t qAtQ =  (A.3) 

where: 

 Qult = ultimate pile capacity; 
 Qs = shaft resistance of the pile due to skin friction; 
 Qt = tip resistance of the pile due to end bearing; 
 fs = average unit skin resistance; 
 As = surface area of the shaft in contact with the soil; 
 q = unit tip-bearing capacity; 
 At = effective (gross) area of the tip of the pile in contact with the 

soil. 
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1. Piles in cohesionless soil 

a) Skin friction: For design purposes, the skin friction of piles in sand 
increases linearly to an assumed critical depth (Dc), then remains 
constant below that depth. The critical depth varies between 10 to 
20 pile diameters or widths (B), depending on the relative density 
of the sand. The critical depth is assumed as: 

 Dc = 10B for loose sands; 
 Dc = 15B for medium dense sands; 
 Dc = 20B for dense sands. 

The unit skin friction acting on the pile shaft can be determined by: 

  σ tanδs vf K ¢=  (A.4) 

 σ γ for   cv D D D¢ ¢= <  (A.5) 

 σ γ forc cv D D D¢ ¢= ³  (A.6) 

 s s sQ f A=  (A.7) 

where: 

 K = lateral earth pressure coefficient (Kc for compression piles and 
Kt for tension piles); 

 v’ = effective overburden pressure; 
 = angle of friction between the soil and the pile; 
 ’ = effective unit weight of soil; 
 D = depth along the pile at which the effective overburden pressure 

is calculated. 

Values of are in Table A.1. 

Table A.1. Values of  

Pile Material 

Steel 0.67 to 0.83  

Concrete 0.90 to 1.0  

Timber 0.80 to 1.0  
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Values of K for piles in compression (Kc) and piles in tension (Kt) 
are in Table A.2. Tables A.1 and A.2 present ranges of values of 
and K based on experience in various soil deposits. These values 
should be selected for design based upon experience and pile load 
tests. It is not intended for the designer to use the minimum 
reduction of the  angle while using the upper range K values. 

Table A.2. Values of K. 

Soil Type Kc Kt 

Sand 1.00 to 2.00 0.50 to 0.70 

Silt 1.00 0.50 to 0.70 

Clay 1.00 0.70 to 1.00 

Note: The above do not apply to piles that are prebored, jetted, or installed with a 
vibratory hammer. Picking K values at the upper end of the above ranges should 
be based on local experience. K , , and Nq values back-calculated from load tests 
may be used. 

For steel H-piles, As should be taken as the block perimeter of the 
pile and  should be the average friction angles of steel against sand 
and sand against sand ().Table A.2 contains general guidance to be 
used, unless the long-term engineering practice in the area indicates 
otherwise. Under-prediction of soil strength parameters at load test 
sites has at times produced back-calculated values of K that exceed 
the values in Table A.2. It also has been found both theoretically and 
at some test sites that the use of displacement piles produces higher 
K values than does the use of nondisplacement piles. Values of K 
that have been used satisfactorily, but with standard soil data in 
some locations, are in Table A.3. 

Table A.3. Common values for corrected K. 

Common Values for Corrected K 

Soil Type 

Displacement Piles Nondisplacement Piles 

Compression Tension Compression Tension 

Sand 2.00 0.67 1.50 0.50 

Silt 1.25 0.50 1.00 0.35 

Clay 1.25 0.90 1.00 0.70 

Note: Although these values may be used in some areas, they should not be used without 
validating them. 
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b) End bearing: For design purposes, the pile-tip bearing capacity can 
be assumed to increase linearly to a critical depth (Dc), then to 
remain constant. The same critical depth relationship used for skin 
friction can be used for end bearing. The unit tip bearing capacity 
can be determined by: 

  σ qvq N¢=  (A.8) 

where: 

 σ ’ γ’ for   v cD D D= <  (A.9) 

 σ ’ γ’ forv c cD D D= ³  (A.10) 

For steel H-piles, At should be the area within the block perimeter. 
A curve to obtain the Terzaghi and Peck (1967) bearing capacity 
factor Nq (among values from other theories) is in Figure A.1. To 
use the curve, one must obtain measured values of the angle of 
internal friction (), which represents the soil mass. 

c) Tension capacity: The tension capacity of piles in sand can be 
calculated using the K values for tension from Table A.2: 

 
n

 
tensioult sQ Q=  (A.11) 

2. Piles in cohesive soil 

a) Skin friction: Although called skin friction, the resistance is due to 
the cohesion or adhesion of the clay to the pile shaft. 

  s af c=  (A.12) 

 αac c=  (A.13) 

  s s sQ f A=  (A.14) 

where: 

 ca = adhesion between the clay and the pile; 
 = adhesion factor; 
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 c = undrained shear strength of the clay from a Q test. 

 
Figure A.1. Bearing capacity factor. 

The values of  as a function of the undrained shear are in 
Figure A.2a. 

An alternate procedure, developed by Semple and Rigden (1984), 
to obtain values of (which is especially applicable for long piles) 
is in Figure A.2b, where: 
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 α α α= 1 2  (A.15) 

 
Figure A.2. (a) Values of vs. undrained shear strength and (b) values of 12 applicable for long piles. 

and 

 αsf c=  (A.16) 

b) End bearing: Determine the pile unit tip-bearing capacity for piles 
in clay by: 

   q c= 9  (A.17) 

  t tQ A q=  (A.18) 
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However, the movement necessary to develop the tip resistance of 
piles in clay soils might be several times larger than that required 
to develop the skin friction resistance. 

c) Compression capacity: Find the ultimate compression capacity by 
combining the skin friction capacity and the tip-bearing capacity: 

   ult s tQ Q Q= +  (A.19) 

d) Tension capacity: Compute tension capacity of piles in clay by: 

  ult sQ Q=  (A.20) 

e) The pile capacity in normally consolidated clays (cohesive soils) 
also should be computed in the long-term S shear strength case. 
That is, develop an S case shear strength trend, as discussed 
previously, and proceed as if the soil is drained. The computational 
method is identical to that presented for piles in granular soils, and 
to present the computational methodology would be redundant. 
However, the shear strengths in clays in the S case are assumed to 
be > 0 and C = 0. 

Some commonly used S case shear strengths in alluvial soils are in 
Table A.4. 

Table A.4. S case shear strength. 

S Case Shear Strength 

Soil Type Consistency Angle of Internal Friction ( 

Fat clay (CH) Very soft 13° to 17° 

Fat clay (CH) Soft 17° to 20° 

Fat clay (CH) Medium 20° to 21° 

Fat clay (CH) Stiff 21° to 23° 

Silt (ML)  25° to 28° 

Note: The designer should perform testing and select shear strengths. These general data 
ranges are from tests on specific soils in site-specific environments and might not represent 
the soil in question. 
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3. Piles in silt 

a) Skin friction: The skin friction on a pile in silt is a two-component 
resistance to pile movement contributed by the angle of internal 
friction () and the cohesion (c) acting along the pile shaft. That 
portion of the resistance contributed by the angle of internal 
friction () is, as with the sand, limited to a critical depth of (Dc), 
below which the frictional portion remains constant; the limit 
depths are stated below. That portion of the resistance contributed 
by the cohesion might require limit if it is sufficiently large 
(Figures A.2a and b). The shaft resistance can be computed by: 

 γ’  δ αsf K D tan c= +  (A.21) 

where (D Dc) 

  s s sQ A f=  (A.22) 

where: 

 Qs = capacity due to skin resistance; 
 fs = average unit skin resistance; 
 As = surface area of the pile shaft in contact with soil; 
 K = see Table A.2; 
 = see Figures A.2a and b; 
 D = depth below ground up to limit depth Dc; 
  = limit value for shaft friction angle from Table A.1. 

b) End Bearing: The pile tip-bearing capacity increases linearly to a 
critical depth (Dc) and remains constant below that depth. The 
critical depths are: 

 Dc = 10 B for loose silts; 
 Dc = 15 B for medium silts; 
 Dc = 20 B for dense silts. 

The unit and bearing capacity can be computed by: 

  σ ’v qq N=  (A.23) 
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 σ ’ γ’ for   v cD D D= <  (A.24) 

 σ ’ γ’ forv c cD D D= ³  (A.25) 

  t tQ A q=  (A.26) 

where: 

 Nq = Terzaghi bearing capacity factor, Figure A.1; 
 v ’ = vertical earth pressure at the tip with limits; 
 At = area of the pile tip, as determined for sands. 

c) Compression capacity: By combining the two incremental 
contributors, skin friction and end bearing, the ultimate capacity of 
the soil/pile can be computed by: 

   ult s tQ Q Q= +  (A.27) 

d) Tension capacity: Compute tension capacity by applying the 
appropriate value of Kt from Table A.2 to the unit skin friction 
equation above. 

  
tensionult sQ Q=  (A.28) 

e) When designing pile foundations in silty soils, consider selecting a 
conservative shear strength from classical R shear tests. Also, test 
piles need to be considered a virtual necessity, and pile length 
might have to be increased in the field. 

4. Piles in layered soils: Piles most frequently are driven into a layered soil 
stratigraphy. For this condition, the preceding methods of computation 
can be used on a layer-by-layer basis. The end-bearing capacity of the pile 
should be determined from the properties of the layer of soil in which the 
tip is founded. However, when weak or dissimilar layers of soil exist within 
approximately 5 ft or eight pile tip diameters, whichever is larger, of the tip 
founding elevation, the end-bearing capacity will be affected. It is 
necessary to compute this effect and account for it when assigning end-
bearing capacity. In computing the skin resistance, the contribution of 
each layer is computed separately, considering the layers above as a 
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surcharge and applying the appropriate reduction factors for the soil type 
within that increment of pile shaft. 

a) Skin friction: The skin friction contributed by different soil types 
can be computed incrementally and summed to find the ultimate 
capacity. Consider the compatibility of strain between layers when 
computing the unit skin resistance. 

 
i i

N

S S S
i

Q f A
=

=å
1

 (A.29) 

where: 

 fsi = unit skin resistance in layer i; 
 Asi = surface area of pile in contact with layer i; 
 N = total number of layers. 

b) End bearing: The pile tip bearing should be computed based on the 
soil type in which the tip is founded, with limits near layer 
boundaries mentioned above. With the overlying soil layers as 
surcharge, use: 

Sand or silt:  

  σ ’v qq N=  (A.30) 

 σ ’ γ’ for   v cD D D= <  (A.31) 

 σ ’ γ’ for   v c cD D D= >  (A.32) 

  t tQ A q=  (A.33) 

Clay:  

   q c= 9  (A.34) 

  t tQ A q=  (A.35) 
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c) Compression capacity: By combining the skin resistance and end 
bearing, compute the ultimate capacity of the soil/pile by: 

   ult s tQ Q Q= +  (A.36) 

d) Tension capacity: Compute tension capacity by applying the 
appropriate values of Kt from Table A.2, as appropriate for 
granular soils, to the incremental computation for each layer, then 
combining to yield: 

  
tensionult sQ Q=  (A.37) 

5. Point-bearing piles: In some cases, the pile will be driven to refusal on 
firm, good-quality rock. Therefore, the capacity of the pile is governed by 
the structural capacity of the pile or the rock capacity. 

A.2.1.2 Pile group capacity  

The pile group capacity for piles in cohesionless and cohesive soils is: 

1. Piles in cohesionless soil: The pile group efficiency  is defined as: 

 η group

ult

Q

NQ
=  (A.38) 

where: 

 Qgroup = ultimate capacity of a pile group; 
 N = number of piles in a group; 
 Qult = ultimate capacity of a single pile. 

The ultimate group capacity of driven piles in sand is equal to or 
greater than the sum of the ultimate capacity of the single piles. 
Therefore, in practice, the ultimate group capacity of driven piles in 
sand not underlain by a weak layer should be taken as the sum of the 
single pile capacities (= 1). For piles jetted into sand,  is less than 1. 
For piles underlain by a weak layer, the ultimate group capacity is the 
smaller of the sum of the single pile ultimate capacities or the capacity 
of an equivalent pier with the geometry defined by enclosing the pile 



ERDC/ITL TR-13-2 110 

 

group (Terzaghi and Peck 1967). The base strength should be that of 
the weak layer. 

2. Piles in cohesive soil: The ultimate group capacity of piles in clay is the 
smaller of the sum of the single pile ultimate capacities or the capacity of 
an equivalent pier (Terzaghi and Peck 1967). The ultimate group capacity 
of piles in clay is given by the smaller of: 

  group ultQ NQ=  (A.39) 

 ( ) g
group g g b G G

g g

BD
Q B L D c c L B

B L

é ùæ öæ ö÷ ÷ç çê ú÷ ÷ç ç= + + + +÷ ÷ê úç ç÷ ÷÷ ÷ç çè øè øê úë û
2 5 1 1

5 5
 (A.40) 

where: 
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c
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BD
N

B L

æ öæ ö÷ ÷ç ç÷ ÷ç ç= + + £÷ ÷ç ç÷ ÷÷ ÷ç çè øè ø
5 1 1 9

5 5
 (A.41) 

and: 

 Bg = width of the pile group; 
 Lg = length of the pile group; 
 D = depth of the pile group; 
 ܿ̅ = weighted average of undrained shear strength over the depth 

of pile embedment (ܿ̅ should be reduced by  from Figure A.2); 
 cb = undrained shear strength at the base of the pile group. 

This equation applies to a rectangular section only. It should be 
modified for other shapes. 

A.3 Skin friction and tip capacities of piles (Castello 1980) 

The skin friction capacity of a pile founded in sand can be determined 
using the procedure recommended by Mosher (1984), who investigated 
load-transfer criteria of axially loaded piles in sand. One of the products 
from his investigation was a pair of charts attributed to the research of 
Castello (1980) for skin friction capacity and for pile tip capacity. These 
charts were identified as Figures 76 and 77 in the Mosher report and are 
reproduced in this report as Figures A.3 and A.4. Mosher’s evaluations of 
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the field data show the average standard error of the unadjusted values for 
side resistance are 25%. A second chart in the Mosher report is similar to 
Figure A.3 but was developed using adjustments for residual stresses, as 
presented by Castello. However, the average standard error was higher: 
32%. This second chart is not in this report due to its higher error. 

 
Figure A.3. Unit side resistance for piles in sand vs. relative length (Mosher 1984). 
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Figure A.4. Unit tip resistance for piles in sand vs. relative length (Mosher 1984). 

To determine the skin friction capacity curve of a pile founded in sand, 
using Figure A.3 requires knowledge of the effective angle of internal 
friction (’) for the sand, the embedded length (D), and the diameter of the 
pile (B). The curve will proceed from a relative depth of zero to the relative 
depth of pile tip determined by dividing the embedded length of the pile by 
the diameter of the pile. The value of skin friction capacity (or unit side 
resistance – with units of tsf) for a specified depth of embedment is 
determined by finding where the current relative depth intersects the 
curve for the angle ’, which is parabolic with depth. It is possible to 
approximate this parabolic curve with a piecewise linear definition for the 
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skin friction capacity curve. Interval relative depth values along the pile 
are determined by dividing the interval depth of embedment by the 
diameter of the pile. At these regular relative depth intervals, the skin 
friction capacity can be determined from the figure, as described above. 
The results are more accurate with an increasing number of intervals 
between the mudline and the total depth of embedment of the pile. 

To determine the unit tip resistance of a pile founded in sand, using 
Figure A.4 requires knowledge of the effective angle of internal friction (’) 
for the sand, the embedded length, and the diameter of the pile. The length 
of pile embedded in sand is normalized by the pile diameter. It is called the 
relative depth. For this relative depth and a specified value of ’, the unit tip 
resistance (in units of tsf) is obtained by intersecting the unit tip resistance 
value the appropriate curve for ’ in Figure A.4. Thus, the unit tip resistance 
of a pile founded in sand is established. 
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Appendix B: CPGA-R Probability Density 
Function (PDF) Distributions and Their 
Properties  

B.1 Introduction 

Six PDF distributions are used for reliability in CPGA-R: Normal, Bounded 
Normal, the Log-Normal, the Bounded Log-Normal, Uniform, and 
Triangular. The following sections give: 

 the function, f(x), for determining the probability at any point, x, on the 
distribution; 

 the range that the distribution covers; 
 the mean value of the distribution; 
 the variance (2) of the distribution. Variance is the square of the 

standard deviation ().  

B.2 PDF distributions 

B.2.1 Normal Distribution 

( )
( μ)

σ 
σ π

x

f x e
- -

=
2

221

2
 

Range =  5 , 5      

Mean =   

Variance = 2 

  

Figure B.1. Normal Distribution ( = -5, = 1). 
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B.2.2 Bounded Normal Distribution 
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-
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Range = (a, b) 

Mean (discussed below)  

Variance (discussed below) 

where a is the start of the 
bounded region and b is the 
end of the bounded region. 
Z is the area of the curve 
outside of the bounded 
region (not shown). 

The mean and variance can no longer be calculated with a simple equation, 
but must be solved numerically. The CDF for the curve is calculated by a 

finite differences method. The mean is given by    
1

n

i i
i

E x x f x


  . 

The variance is given by ܸܽݎሺݔሻ ൌ ∑ ݂ሺݔ௜ሻሺݔ௜ െ ሻଶ௡ߤ
௜ୀଵ . For CPGA-R the 

curve is broken into 100 discrete steps, and f(xi) is given at the center of 
the interval. 

Figure B.2 Bounded Normal Distribution (= -5, = 1, a = 
-6, b = -3). 
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B.2.3 Log-Normal Distribution 
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B.2.4 Bounded Log-Normal Distribution 
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where a is the start of the 
bounded region and b is the 
end of the bounded region. 
Z is the area of the curve 
outside of the bounded 
region (not shown). 

The mean and variance can no longer be calculated with a simple equation, 
but must be solved numerically. The CDF for the curve is calculated by 

afinite differences method. The mean is given by    
1

n

i i
i

E x x f x


  .  

Figure B.3. Log-Normal Distribution (= 5, = 3). 

Figure B.4. Bounded Log-Normal Distribution (=5, =3, 
a=1, b=8). 
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The variance is given by ܸܽݎሺݔሻ ൌ ∑ ݂ሺݔ௜ሻሺݔ௜ െ ሻଶ௡ߤ
௜ୀଵ . For CPGA-R the 

curve is broken into 100 discrete steps, and f(xi) is given at the center of 
the interval. 

B.2.5 Uniform Distribution 

( )  f x
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where a is the start of the 
region and b is the end of 
the region.  

 

B.2.6 Triangular Distribution 
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ଷ
 

Variance = 
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where a is the start of the triangular 
region and b is the end of the triangular region. The peak point of the 
triangle is given by c, where ܽ ൑ ܿ ൑ ܾ. Right triangular regions can be 
created by setting c to the same value as a or b. 

Figure B.5. Uniform Distribution (a = 1, b = 5.5). 

Figure B.6. Triangular Distribution (a = 1, b = 
10, c = 7). 
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Figure B.7. Right Triangular Distribution (a = 1, 
b = 10, c = 10). 

Figure B.8. Right Triangular Distribution (a = 1, 
b = 10, c = 1). 
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Appendix C: .PGR File Format 

C.1 Introduction 

To store the reliability information that is keyed into CPGA-R, a file format 
has been added to the original CPGA. This new and complementary format 
stores the information necessary to perform a reliability analysis for a 
CPGA file. While this file is created as a sister file for a specific CPGA input 
file, each file is separate.  

The .PGR file format: 

Card 1 – Header: 

“CPGA-R” 

This card is the reliability file header. If the file does not feature this 
header, it is not correct and, therefore, will not be read as a reliability file. 

Card 2 – CPGA path: 

“<path>” 

This card contains the fully defined path for the sister CPGA file with 
which the reliability file is associated. Opening the .PGR file in CPGA-R 
will load the sister file at the same time. Because fully defined paths can 
have spaces in their names, the file path should be in quotation marks. 

Card 2 – Number of variables: 

NUMVARS 

This card contains only the single integer value giving the number of 
variables that are going to be defined below. 

Card 3 – Variable data (repeated NUMVARS times): 

DATATYPE 
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DATAID 

DATACONSTITUENTID 

DISTDATA1 

DISTDATA2 

DISTDATA3 

DISTDATA4 

DISTTYPE 

This card is repeated for as many variables specified in Card 2. 

DATATYPE is a string variable that describes the table of data in CPGA 
that contains the variable. This variable is one of: 

 Pile; 
 PROP; 
 SOIL; 
 BIJ; 
 TENSION; 
 ALLOW; 
 DLS; 
 ASCPCP; 
 UNSUP; 
 PMAXMOM; 
 FUNSMOM; 
 LOAD. 

These correspond exactly according to the cards found in a CPGA file.  

DATAID is either an integer pile number or the title of a row in the data 
table specified by data type. 

DATACONSTITUENTID is the name of the specific element of the CPGA 
table that is being referenced. For instance, if LOAD is the DATATYPE, 
then px is the constituent force in the x direction for the specified load. 
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These different constituent elements are the different parts of the data 
tables stored in the CPGA data file: 

DISTDATA1 

DISTDATA2 

DISTDATA3 

DISTDATA4 

DISTTYPE 

The distribution type determines the data stored for each of the four 
DISTDATA floating point values. The DISTTYPE variable is a string 
variable with one of the following: 

 Normal; 
 Bounded Normal; 
 Log-Normal; 
 Bounded Log-Normal; 
 Uniform; 
 Triangle. 

The distribution data for Normal is:  

 DISTDATA1 = mean value; 
 DISTDATA2 = standard deviation. 

The distribution data for Bounded Normal is:  

 DISTDATA1 = mean value; 
 DISTDATA2 = standard deviation; 
 DISTDATA3 = lower-bound x value; 
 DISTDATA4 = upper-bound x value. 

The distribution data for Log-Normal is: 

 DISTDATA1 = mean value; 
 DISTDATA2 = standard deviation. 
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The distribution data for Bounded Log-Normal is: 

 DISTDATA1 = mean value; 
 DISTDATA2 = standard deviation; 
 DISTDATA3 = lower-bound x value; 
 DISTDATA4 = upper-bound x value. 

The distribution data for Uniform is: 

 DISTDATA1 = lower-bound x value; 
 DISTDATA2 = upper-bound x value. 

The distribution data for Triangle is: 

 DISTDATA1 = lower-bound x value; 
 DISTDATA2 = peak x value; 
 DISTDATA3 = upper-bound x value. 

Card 4 – Number of correlations: 

NUMCORRS 

This card contains only the single integer value giving the number of 
correlations that are going to be defined below. 

Card 5 – Correlation data (repeated NUMCORRS times): 

VARID1 

VARID2 

CORRELATIONCOEFFICIENT 

This card, which is repeated, contains two integer variables (VARID1 and 
VARID2) that are indexes of the list of variables defined with Cards 2 and 
3 above. These values should be different, and the pair should not be 
repeated. These two variables will be correlated to a certain degree, 
defined by the floating point value CORRELATIONCOEFFICIENT, which 
must fall between 0 and 1. 



ERDC/ITL TR-13-2 123 

 

Card 6 – Pile cap limits: 

DISPLACEMENTX 

DISPLACEMENTY 

DISPLACEMENTZ 

ROTATIONX 

ROTATIONY 

ROTATIONZ 

This card gives the displacement limits for the pile cap in a CPGA analysis. 
If the pile cap is shifted higher than these limits, then the structure is 
assumed to have failed in some fashion. These variables are floating point 
value or “*” if that limit does not matter. 
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