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Abstract—In this paper, we derive closed form approximations 
for the capacity of a point-to-point, deterministic Gaussian 
MIMO communication channel. We focus on the behavior of 
the inverse eigenvalues of the Gram matrix associated with the 
gain matrix of the MIMO channel, by considering small 
variance and large power assumptions. We revisit the concept 
of deterministic MIMO capacity by pointing out that, under 
transmitter power constraint, the optimal transmit covariance 
matrix is not necessarily diagonal. We discuss the water filling 
algorithm for obtaining the optimal eigenvalues of the 
transmitter covariance matrix, and the water fill level in 
conjunction with the Karush-Kuhn-Tucker optimality 
conditions. We revise the Telatar conjecture for the capacity of 
a non-ergodic channel. We also provide deterministic examples 
and numerical simulations of the capacity, which are discussed 
in terms of our mathematical framework. 

Index Terms—MIMO, transmitter optimization, channel 
capacity, Telatar conjecture, water filling. 

I. INTRODUCTION 
 In this paper we reexamine some of the fundamental 

concepts of MIMO channel capacity, focusing on 
deterministic MIMO channels. However, we also consider 
probabilistic channels, both of the ergodic and non-ergodic 
type. Our analysis shows that Telatar's conjecture [1] for the 
capacity of a non-ergodic channel needs a similarity 
adjustment via unitary matrices. We present evidence of this 
claim by extrapolating from the deterministic case. 

 We have found that some of the fundamental results in 
MIMO capacity have taken on the status of "folk theorems" 
here, we gather these results and make sure they are on firm 
mathematical ground. 

 Furthermore, as in the spirit of [2, 3], we have given 
approximations for the capacity of deterministic MIMO 
channels under realistic transmitter power constraints and 
properties of the gain matrix. These approximations are 
important for gleaning information about how capacity 
behaves, without the necessity of numerical calculations at 
every stage of the analysis. 

To assist the reader, we conclude the introduction with a 
subsection on the notation used in this paper. 

 
A. Notation 

All vectors and matrices are complex, unless noted 
otherwise. Vectors are denoted by bold lower-case letters ࢇ, 
matrices are denoted by bold upper-case letters ۯ . The 
determinant of ۯ is det	(ۯ), rank	(ۯ) is the rank, tr(ۯ) is the 
trace, and ۯ∗ denotes the conjugate transpose. We denote the 
(i, j) entry of 	ۯ  by  ,. For real x, x+ denotes max(x, 0), for 
complex ݖ	 , ݖ̅  denotes the conjugate of z, and |ݖ|ଶ	= ݖ̅ݖ	 .        
The ݊ × ݊ identity matrix is written as ۷ . Given an ݊ × ݊  
matrix 	ۯ , we denote the spectrum of 	ۯ  as the multiset of 
eigenvalues ߝ  (possibly with repeated values) as                  
ଵߝ}≜ ()݃݅݁  ()}. We have a similar multiset ݁݅݃ାߝ,...,
consisting, with multiplicity, of the positive (if any) 
eigenvalues of 	ۯ . If ۯ has only real eigenvalues ߝ, then we 
may order them in non-increasing order. We denote the 
multiset of eigenvalues listed in non-increasing order as  
݁ଓ݃ሬ⃖ሬሬሬሬሬ(ۯ) ≜ {εଵ⃖ሬሬ, … ,ε୬⃖ሬሬ, }, where ε⃖ 	≥	εାଵሬ⃖ሬሬሬሬሬሬ. 

We use the notation  to represent a diagonal matrix. If 
the diagonal matrix is a diagonalization1 of the matrix ۯ, then 
we write  ۯ. Note that ۯ is, in general, not unique since 
there may be more than one diagonalization of 	ۯ . If ۯ  is 
diagonalized by a unitary2 matrix ܃, that is  ۯ =     ,*܃ۯ܃
then we have that ۯ  = U*AU, which easily tells us that 
eig(ۯ) = eig(ۯ). Therefore, the diagonal entries of  ۯ   are, 
with multiplicity, the eigenvalues of 	ۯ. Note that the spectral 
theorem [4, Thm. 2.5.6] tells us that any Hermitian3 matrix is 
diagonalized by a unitary matrix. The notation  (భ,..,)  
(often written in other literature as diag(ܽଵ, … ,ܽ))  denotes 
the specific ݊ × ݊  diagonal matrix with ܽ  in the i,i entry. 
Note that (భ,..,)  is a specific matrix of the form 	ۯ .  

                                                        
1 That is A and  are similar. 
2 A square matrix U is unitary iff  ܃∗ =  .ି܃
3 A square matrix M is Hermitian (self-adjoint) iff ۻ =  .∗ۻ
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Finally, if the diagonal entries of 	ۻ  are denoted as M, ,  
then we use the notation , to be the diagonal matrix with 
(i, i) entry ܯ,. 

II. MIMO CHANNEL MODEL 
We consider a point-to-point Gaussian MIMO 

communication channel, where the single sender employs T 
transmitting antennas, and R antennas are used by the sole 
receiver. The seminal reference for the analysis of MIMO 
capacity is Telatar [1]. The channel, in normalized4 form (see 
[5, Sec.II.A]), between the sender and the receiver is given by 

 
࢟         = +࢞ࡴ  (1)                                    

 
where ࢞ is the transmitted ܶ × 1  input vector of the sender, 
ܴ is the ࢟ × 1 received vector, the gain matrix ࡴ is	ܴ × ܶ, 
and ܖ  is the ܴ × 1 additive white circularly symmetric 
complex Gaussian noise random vector with covariance 
matrix [∗]ܧ= ۷ோ. (Such a random vector has zero mean, 
and is totally described by its covariance matrix [6, Sec 
A.1.3]). We may also denote such a MIMO channel as a (T, 
R) MIMO channel.  
     The transmit covariance ܶ × ܶ matrix is defined as the 
expectation matrix ۿ ≜  The MIMO communication .[∗ܠܠ]ܧ
system is assumed to have a total power (for all transmitting 
antennas) constraint given by the non-negative real number  
P  such that (ۿ)ݎݐ ≤ ܲ . Note that since (ۿ)ݎݐ		 =
tr([∗ܠܠ]ܧ) = [∗ܠܠ]trܧ =  we may also express our	[ܠ∗ܠ]ܧ
power constraint as	[࢞∗࢞]ܧ ≤ ܲ. 

Telatar discusses two types of MIMO communication 
channels: 
1. Deterministic — The gain matrix ۶ is deterministic. In 

this scenario ۶  is known by both the sender and the 
receiver. 

2. Probabilistic — The gain matrix ۶  is random and its 
distribution is known by the sender, and its realization is 
known by the receiver. Often the condition of Rayleigh 
fading is assumed (which means that the magnitudes of 
the elements of the random matrix ۶ are independently 
Rayleigh distributed), but it does not have to be so. There 
are two possible cases in this scenario. 

a) Ergodic5 — The gain matrix ۶ is probabilistic, 
and each time the sender transmits, a realization 
of ۶ is chosen according to its distribution. 

b) Non-ergodic — The gain matrix ۶  is 
probabilistic, but once it is picked it never 
changes. 

 
Let us start with the first situation. 
 
2.1 Deterministic Channel 
      We assume that the gain matrix ۶  (the channel state 
information, hereafter CSI), is known perfectly by the sender 

                                                        
4The normalization is done, as in [1], by modifying ۶, so that the noise has 
unit power. 
5This term is used in the sense that the temporal average is equivalent to 

keeping time constant, but averaging over different realizations. 

and receiver. Given ۿ , such that	(ۿ)ݎݐ 	≤ 	ܲ , the mutual 
information6 [1, 5] between the sender and the receiver is  
 

 ℐ(ۿ) ≜ 	log	det	(۷ோ 	+  (2)                   .(∗۶ۿ۶	
 

     Since the additive noise is normalized to have variance 1, 
the signal to noise ratio (SNR) is given by P/1 = P.  
      Mutual information is well-defined in the sense that 
det(۷ோ 	+ (∗۶ۿ۶	 ≥ 1. This is becausedet(۷ோ 	+ (∗۶ۿ۶	 =
∏ (1 + ε୧୧ ), where ߝ  are the eigenvalues (with multiplicity) 
of  ۶۶ۿ∗ . Thus, for the mutual information to be 
well-defined, it suffices to show that the eigenvalues ߝ ≥ 0. 
First, since ۿ  is a covariance (complex) matrix, it is 
Hermitian. Second, a covariance matrix [7] is positive 
semidefinite (psd)7. Note that since ۿ is psd, ܞ∗۶ۿ۶∗ܞ =
(ܞ∗۶)ۿ∗(ܞ∗۶) ≥ 0. Then, it follows that ۶۶ۿ∗ is also psd. 
Therefore, as required, we have shown that the eigenvalues of 
  .are non-negative ∗۶ۿ۶
      The very important determinant identity [8, Cor. 18.1.2], 
[7, 1.13.Thm.9] is often used in MIMO papers, yet the proof 
is hard to find. For the sake of completeness, since some 
tricks are used, we sketch the proof given in our references 
above. 
Theorem 2.1. (Determinant Identity) If  is ݉ × ݊ and    is  
݊ × ݉		then 

det(۷ + (۰ۯ = det(۷ +  (3)                    .(ۯ۰
Proof.  Since 
  

																					൬۷୫ ۯ−
۰ ۷୬

൰ = ൬۷୫ + ۰ۯ ۯ−
 ۷୬

൰ ൬۷୫ 0
۰ ۷୬

൰ 

 

																																											= ൬۷୫ 
۰ ۷୬

൰ ൬۷୫ ۯ−
 ۷୬ +  ൰ۯ۰

we have that     
          

			det ൬۷୫ + ۰ۯ ۯ−
 ۷୬

൰det ൬۷୫ 
۰ ۷୬

൰ =	 

 

				= det ൬۷୫ 
۰ ۷୬

൰ det ൬۷୫ ۯ−
 ۷୬ +  ൰ۯ۰

 
One can easily show by induction that partitioned matrices of 

the form ൬ۻଵ ଶۻ
 ଷۻ

൰ or ൬ۻଵ 
ଶۻ ଷۻ

൰ have determinant equal 

to det(ۻଵ) det	(ۻଷ). Thus the result trivially follows.� 
 
Corollary 2.1. ([7]) The scalar ߣ is a non-zero eigenvalue of 
 .  iff  it is a non-zero eigenvalue of 
Proof. Say that λ	 ≠ 	0	is an eigenvalue of  . Then we 
know that det( ۷ߣ ۰ۯ− )=0. Since det	(۷ߣ − (۰ۯ =
det۷)ߣ − (۰ۯଵିߣ = λ୫ det(۷୫ − (۰ۯଵିߣ =
λ୫ det(۷୫ − (ۯଵ۰ିߣ = λ୫ି୬ det(ૃ۷୬ − 	λ	So .((ۯ۰ ≠ 	0	is 
also an eigenvalue for BA, the rest follows. � 
The determinant identity allows us to express ℐ(ۿ)	as 
 

                                                        
6All logarithms are base 2, therefore information is measured in bits. 
7We say that an ݊ × ݊ matrix ۻ is psd iff ܞۻ∗ܞ ≥ 0	for all ݊ vectors v.  
Note that if ܞ is an eigenvector of  ۻ with eigenvalue	λ, then		0 ≤ ܞۻ∗ܞ = 
λ|ܞ|	so any eigenvalue of M must be non-negative. (Note that the converse 
is true provided ۻ is also Hermitian). 

[Downloaded from www.aece.ro on Tuesday, September 13, 2011 at 15:17:16 (UTC) by 38.105.72.33. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]
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                       ℐ(ۿ) = log det(۷் +  (4)                       .(۶∗۶ۿ
 
The MIMO deterministic capacity, in units of bits per second 
per Hertz (bps/Hz) 8 , is the maximum of the mutual 
information under a transmitting power constraint 
 

C	 ≜ 	 max
ஸ(ۿ)௧:ۿ

ℐ(ۿ). 

                                                                                            (5) 
Note that H*H is, by definition, a Gram matrix. What is 
important, aside from H*H being Hermitian, that it is also 
positive semi-definite. This is because v*H*Hv = |Hv|2 ≥ 0. 
Some observations are in order. 

 The first observation is that the maximum is 
well-defined. By this we mean a supremum, for the 
above constrained subset, of ℐ(∙) exists, but one must 
show that a maximum is actually achieved on the subset. 
The covariance matrices Q with trace less than or equal 
to P form the inverse image of a closed set, in the natural 
matrix topology that  ܶ × ܶ	 covariance matrices inherit 
from the topology of all ܶ × ܶ	 matrices. Now, we use 
the Frobenius norm [4] of Q, ||ۿ|| ≜ ඥtr(ۿۿ∗) 		=
	ඥtr(ۿଶ)	which is bounded, since the trace of Q, which 
is the sum of the eigenvalues, is bounded by P. Thus, we 
see that ۿ ∶ (ۿ)ݎݐ	 	≤ ܲ	is a compact set, so a maximum 
is obtained. Note, one may also make a direct 
Karush-Kuhn-Tucker (KKT) optimization argument as 
in [9, Appendix]. 

 The second observation is that we can replace the 
maximization constraint Q : tr(Q)	≤ P in (5) with Q : 
tr(Q) = P. Let us show this by contradiction. We ignore 
the logarithm, since it is an increasing function and just 
concentrate on det (IT + HQH*). Say that the maximum 
of the determinant is obtained for some Q' : tr(Q') = P1 < 
P. We know that det(۷் 	+ (∗ᇱ۶ۿ۶	 	= 	ැ (1 + )୧ߝ , 
where the ߝ  are, as before, the possibly non-distinct 
eigenvalues (with multiplicity) of  HQ'H*. Consider the 

matrix Q'' = 
1

P
P

Q'. If μi are the eigenvalues of Q', then 

1

P
P

   are the eigenvalues of  Q'', so tr(Q'') = P. Noteߤ 

that det(IT +HQ'H*) = det(IT +
1

P
P

HQ'H*) = ∏ (1 +୧

1

P
P
ߝ ). Since there must be at least oneߝ ≠ 0  (we do 

not consider cases where H is the zero matrix, and we 
know that Q' is not the zero matrix), we see that 

∏ (1 +
1

P
P
)୧ߝ > 	ැ (1 + )୧ߝ . So, by contradiction, we 

have9  that 
																				C	 = 	maxۿ∈ ℐ(ۿ)	                        (6) 

 

                                                        
8 We have initially factored the bandwidth, in Hz, out of the capacity 

equation. 
9 See footnote 7. 

where  is the set of  T T covariance matrices with 
trace P.� 

Since the CSI is known, both the sender and receiver 
know eig(H*H) ={μ1, …, μT}, and eig+(H*H) = {μ1, …, μζ}, 
where ϛ	 ≤ 	min{ܶ,ܴ} . Note that we could also use the 
identical (by Cor. 2.1) multiset eig+(HH*). 

Since log is an increasing function, maximizing the 
mutual information ℐ(Q) can be done by maximizing  det(IT 
+ QH*H). We call any Q that maximizes ℐ(Q) optimal and 
use the notation Qop for an optimal Q, since the eigenvalues 
of Q are denoted as qi, we denote the eigenvalues10 of a Qop 
as	ݍ

. Let eig(Q) = {q1,..., qT}, we are interested in this 
eigenvalue spectrum when Q is optimal. 

In terms of historical precedence, Telatar [1] discusses the 
idea of converting a point-to-point MIMO channel into 
orthogonal parallel, noninterfering SISO channels11. Also, 
[10] discusses "water filling" on the inverse eigenvalues of 
eig+(H*H). 

We can ignore log (∙)  in our discussion and simply 
concentrate on det(IT + QH*H). If Q commuted with H*H, 
then det(IT + QH*H) could be trivially expressed [4, 
Thm.2.5.5], [11, Thm.3.1]. However, a priori we have no 
reason to assume such commutativity. Telatar [1, Sec. 3.2] 
cleverly applies the determinant identity (3) twice and shows 
that det(IT + QH*H) ≤  det(IT + ΛQΛH*H) = 
∏ (1 +
୧ୀଵ ୕, 	ୌ∗ୌ, 	). However, there is a slight gap in 

Telatar's exposition. He has to show that the maximum is 
obtained for some Q' that is a covariance matrix with trace P, 
and then show that det(IT + Q'H*H) = det(IT +ۿ۶∗۶). We 
will bridge that gap. 

      Since H*H is Hermitian, by the spectral theorem [4, 
Thm. 2.5.6], there exists a unitary matrix ܃ , such that                   
۶∗۶ =  .܃∗۶∗۶܃

      Consider ܃*Q܃, this matrix is Hermitian, and, because 
܃*Q܃ ,-1, it has the same spectrum as Q. Therefore܃ = *܃ ∈ 

Ф. Note that ܃*Q܃ ∈ Ф has real non-negative diagonal 
values and its trace is P. Therefore, (∗ொ), ∈  . ࢶ

Let Q' = ܃*ΛQ܃, then ۿ′	 ∈  .also12  	ࢶ	
Consider det (IT + Q'H*H) = det (IT + Q'܃*ΛH*H܃) = 

det(IT + ܃*ΛQ܃܃*ΛH*H܃) = det(IT + ܃*ΛQ*ΛH*H܃) and, by 
the determinant identity 
det(IT + ܃܃ ∗ۿ۶∗۶) = det (IT+ ۿ۶∗۶). 
     Thus, we have shown that det (IT + ۿ۶∗۶) is not only an 
upper limit, but it is actually an achievable value for some  
	′ۿ ∈ ܂(۷	Therefore it suffices to maximize det .ࢶ	 +
		ۿ۶∗۶) for 	ۿ	 ∈  .ࢶ	

Trivially, we have that 
 

det(IT + ۿ۶∗۶) = ∏ (1 + )ߤݍ                   (7) 
 

                                                        
10A priori there may be many such multisets of optimal eigenvalues. 
11 SISO stands for Single Input Single Output — the classical Shannon-type 
channel. 
12 A priori there is no reason why Q’ should be diagonal; this is contrast to        
Telatar’s confusing statement that the maximizing Q is diagonal. Actually, 
his statement applies to Hadamard’s inequality−−which, in fact, is 
maximized by some diagonal Q –not to the maximization of the mutual 
information. 

[Downloaded from www.aece.ro on Tuesday, September 13, 2011 at 15:17:16 (UTC) by 38.105.72.33. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]
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Since the μi are fixed, we must determine the corresponding 
qi that maximize (7). We denote these maximizing 
eigenvalues as ݍ

 . Note that 
max
∋ۿ

det(۷ࢀ 	+ 	ۿ۶∗۶) 

is well-defined since we may let Q be (
,…,	

) ∈ 	. 
     The optimal eigenvalues are obtained by water filling and 
applying the Karush-Kuhn-Tucker (KKT) [12, 13] optimality 
conditions: 
 

ݍ 
 = 	 ቀ߱ −	 ଵ

ఓ
ቁ
ା

.	                                  (8) 

 
where ߱ is the water fill level. If it were not for the (∙)+ 
operation, finding the water level ߱  would be trivial we 
would just sum the non-zero ݍ

, set the sum to P and solve 
for ߱ . We have the multisets (in non-increasing) order 
݁ଓ݃ሬ⃖ሬሬሬሬሬ (H*H) and ݁ଓ݃ାሬ⃖ሬሬሬሬሬሬሬሬ  (H*H), which gives us the unique 
multiset (in non-increasing order)	 ݁ଓ݃ାሬ⃖ሬሬሬሬሬሬሬሬ (Qop). This gives us 
the unique multiset of {ݍଵ⃖ሬሬ

,⋯ ሬ்⃖ݍ,
} ,	where 

 

ప⃖ݍ
 = 	 ൝

߱ − ଵ
ఓ

←

for		1 ≤ ݅ ≤ ϛ

0 	for		ϛ ≤ ݅ ≤ ܶ.
                     (9) 

 
Note that the 	ݍ

 correspond to the power allocated on the 
orthogonal parallel channels discussed above. This is the 
approach shown in [1, Sec. 3.2] where it is stated that when 
we have perfect CSI (knowledge of a fixed H)13, then 

 

∗൫భ,…,܃) + log det(IT = ܥ              
൯܃)۶∗۶).            (10) 

Thus, 

ܥ = logෑ൫1 + ݍ
ߤ൯

்

ୀଵ

= 	 log൫1 + ݍ
ߤ൯.

்

௧ୀଵ

14 

   (11) 

     One must perform an iterative algorithm to find first the 
ݍ
 , and then obtain ߱ by summing the non-zero ݍ

	and 
setting that to P. It is an issue of how much power P is 
available. 

     The water filling analogy of the solution algorithm is as 
follows: We have a water tank with infinitely high sides that 
is T units across and one unit deep. We place T bricks in the 
bottom of the tank. The ith brick is 1 unit long and deep and 
ଵ
ఓ

←

 units high, and we consider them in ascending order of 

height 	 ଵ
ఓ

←

  from brick 1 to brick T. The key to determining ω 

is to keep in mind that tr(Qop) = ∑ ݍ


  = P. The procedure is 
as follows: 

1. The heights of the bricks are non-decreasing as we go 
from left to right, i.e., the first brick that we consider 

                                                        
13Keep in mind that need not equal ప⃖ݍ		

 , and similarly for the ݍ
	and 

similarly for the ߤప⃖  and ߤ. 
14 Which is also equal to ∑ log൫1 + ప⃖ݍ

ߤప⃖൯்
ୀଵ . 

is the shortest one. There is always enough water 
(i.e., power P) to cover the first brick, and therefore   
ଵ⃖ሬሬݍ 
 = 	ω − ଵ

ఓ
భ←
	> 0. We initially set ω = P +	 ଵ

	ఓ

←

 . 

The height of  ଵ
ఓ
మ←
	determines if there is residual 

power to cover the second brick; that is if ܲ + 	 ଵ
ఓ
భ←
	<

	 ଵ
ఓ
మ←
  we cannot cover the second brick and we stop 

here, else: 
2. We have enough power to cover at least the first two 

bricks and we now also have that                              
ݍ
మ
←
 = ߱ −	 ଵ

ఓ
మ←
	> 0 . We know the eigenvalues of  

Qop and adjust the water fill level such that ߱ =
ଵ
ଶ	
	(ܲ + 	 ଵ

ఓ
భ←

+ 	 ଵ
ఓ
మ←

) . We now determine if we have 

enough power to cover the third brick, that is, if 

ܲ	 ≤ 	 ଶ
ఓయ
−	ଵ

ଶ
ቆ	 ଵ
ఓ
భ←
	+ 	 ଵ

ఓ
మ←
ቇ we are done, else: 

3. We keep iterating this process until all the bricks are 
covered or we run out of power. The index of the last 
brick that is covered is 	ϛ	 ≤ ܶ. This gives us a water 
fill level of 

߱ = 	
ܲ
ϛ + 	

1
ϛ 	


1
ߤ

←

ϛ

ୀଵ

. 

                    (12) 

What is interesting about the above equation is that the water 
fill level is given by the total power P normalized by ϛ added 
to the average heights of the bricks that are covered. 
Furthermore, this tells us that the non-zero eigenvalues of  
Qop are 

ݍ

←
 = 	

⎩
⎨

⎧ ܲ
ϛ + 	ቌ

1
ϛ


1
ߤ
ೖ
←

ϛ

ୀଵ

ቍ−	
1
ߤ

←
			for		1 ≤ ݅ ≤ ϛ

0																																													for		ϛ < ݅ ≤ ܶ.

 

  (13) 

Since ߱ ≥ (<) ଵ
ఓ
ೖ
←
݅	ݎ݂	 ≤ (>)ϛ, we have: 

 

ߤ߱ 

← = 	 ൜ ≥ 1					for			1 ≤ ݅ ≤ ϛ

< 1						for			ϛ < ݅ ≤ ܶ.	                       (14) 

 
From (11) we obtain Telatar’s result [1, Sec. 3.2]: 
 

ܥ = 	 log൭1 + ൭߱ −	
1
ߤ

←
൱ߤ


←൱

ϛ

ୀଵ

+ 	  log(1 + 0)
்

ୀచାଵ

 

                                                                                          (15) 

				= 	 log(߱ߤ

←



ୀଵ

) +  0
்

ୀାଵ

 

                                                                                          (16) 

	= ቀlog ቀ߱ߤ

←ቁቁ

்

ୀଵ

	ା = 	(log(߱ߤ))
்

ୀଵ

	ା 	 

                   (17)          
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      Notice that if the 	 1
ߤ
݅←
, ݅	 < ϛ		are clustered about their mean 

1/μ we can approximate 

1
ߞ


1
ߤ
ೖ
←



ୀଵ

=
1
 .ߤ

 (18) 
We call this the Small Variance Assumption (SVA); using it 
in (12) and (13), we obtain the SVA value of the water-fill 
level: 

         SVA:   ߱ = 


+ ଵ
ఓ

, ݍ

←
 ≈ ቊ



	for	1 ≤ ݅ ≤ ߞ

0			for	ߞ < ݅ ≤ ܶ.
          (19) 

2.1.1 SVA Capacity Approximation 

If the SVA is assumed then we approximate the capacity as 
follows  

ௌܥ =  log ൬1 +
ܲ
ߞ ߤ 

←൰


ୀଵ

 

                                                                                          (20) 
where ߞ is, as before, the index of the last ߤ


← to be "covered 

with water." This lets us also express CSVA as 
 

ௌܥ = log det൭۷் + ∗܃ 

Λ൭∗, … … … … … … ,∗ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

	୭୬ୣୱ	ୟ୬ୢ	்ି	ୣ୰୭ୱ
൱܃ ∙ ۶∗۶൱  

                                                                                          (21) 
where as before H*H = ܃∗ΛH*H܃15. We express the diagonal 
matrix as ߞ	ones, followed by T - ߞ zeros because we do not 
have control over the ordering of how the eigenvalues of  
H*H are expressed in the diagonal form ܃∗ΛH*H܃. 
      If all of the ଵ

ఓ

←

 are approximately equal, then the index ߞ 

is set equal to T  because there is enough power to flow over 
all of the ଵ

ఓ

←

,	since they are all at the "same" height ଵ
ఓ

. 

Furthermore we can drop the index on the optimal 
eigenvalues of Qop. Thus we obtain the Strong Small 
Variance Assumption (SSVA; we use the word strong since it 
involves the maximal value ߞ = T) 

 

߱			:ܣܸܵܵ							 ≈ 
்

+ ଵ
ఓ

, ݍ
 ≈ ቊ


்
		for		1 ≤ ݅ ≤ ߞ

0			for			ߞ < ݅ ≤ ܶ.
            (22) 

 

2.1.2 SSVA Capacity Approximation 

If SSVA (which is a special case of the SVA) is assumed, 
then we approximate the capacity as follows 
 

ௌௌܥ = log det ൬۷் +
ܲ
ܶ۶ ∗ ۶൰ =  log ൬1 +

ܲ
ܶ ߤ 

←൰	
்

ୀଵ

 

                                                        
15 Note that if T = ߞ the diagonalizing matrices ܃, ܃* cancel out in (21) 

because the diagonal matrix has all ones down the diagonal and hence 
commutes with all matrices of the proper dimensions. 

=  log ൬1 +
ܲ
ܶ ߤ

൰ .
்

ୀଵ

 

(23) 
Note that under the SVA or SSVA the capacity 
approximation involves an, at worst, suboptimal choice of 
eigenvalues for Q, therefore ܥௌ,ܥௌௌ ≤  .ܥ

Two points must be stressed. First, the fact that the 1 ൗߤ  

are clustered around their mean  1  పൗതതതതതത  does not guarantee thatߤ
the ߤ are close to their mean ߤపഥ  and vice versa. Second, it is 
worth nothing that the deterministic MIMO capacity 
naturally involves the inverse of the eigenvalues of  H*H, not 
the eigenvalues  per se. 

 

2.2  Ergodic Channel 
 
      Recall that in this case H is probabilistic (it is usually 
assumed that H represents Rayleigh fading), and every time 
the channel transmits, a new realization of  H is drawn. In this 
situation expected values of mutual information and capacity 
are used. Of course, one must be cautious with such terms 
because Shannon’s [14] coding results were not originally 
given for such concepts, and new thoughts in coding and 
throughput must be considered. Following, the discussion as 
in [1], we define the ergodic capacity ℭ, also in units of 
bps/Hz as an expected value: 
 

ℭ ≜ ℰ[log det൫۷் + ൫ܲൗܶ ൯۶∗۶൯].                      (24) 

 
Note that multiplying the matrix H*H on the left by the scalar 
P/T is equivalent, to the matrix multiplication 
൫ൗ் ,…,ൗ் ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥ

ಃ	ೝೞ

۶∗۶. 

    We have that (24) can be expressed as: 
 

ℭ = ℰ[݈݃ෑ൬1 +
ܲ
ܶ ߤ

൰] = ℰ ൭ log ൬1 +
ܲ
ܶ ߤ

൰
்



൱
்



. 

  (25) 

where the ߤ are the random eigenvalues, with multiplicity, 
of  H*H. Thus, in the ergodic case the optimal Q is also of the 
form  

Λ൫ൗ் ,…,ൗ் ൯	 = 	 ൫ܲൗܶ ൯۷்.                        (26) 

2.3  Non-ergodic Channel  
 
2.3.1  Telatar's conjecture 

As above, we consider a probabilistic H. However, in the 
non-ergodic case, once H has been chosen it is constant. 
Attempting to maximize mutual information will fail, 
because there is a non-zero probability that the chosen H will 
not support a given capacity value. Nevertheless, if we 
incorporate the concept of outage probabilities, then one can 
attempt to find a Q that optimizes the throughput. The details 
for this are in [1, Sec. 5.1]. We now have the famous Telatar 
conjecture [1, Sec. 5.1]: 
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Conjecture 2.1. (Telatar) The optimal Q is of the form 


ଵ,…,ଵᇣᇤᇥ)ࢫ

ೖ
,,…,ଵᇣᇤᇥ)
షೖ

. The value of  k is inversely related to the 

outage  probability. 
 
2.3.2 Adjustment of the Telatar Conjecture 

Equation (21) mimics the Telatar conjecture for the 
non-ergodic channel. Note that (21) calls into question 
Telatar's choice of the optimal Q in his conjecture. We 
present a modified version of the conjecture below. 

Conjecture 2.2. For a non-ergodic channel, the optimal Q is 
of the form ࢁ∗ 


ࢫ
ቆ∗,……………………………,∗ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ೖ	ೞ	ೌ	షೖ	ೝೞ	

ቇ
 The value of  k is .ࢁ

inversely related to the outage probability and U is unitary. 

2.4  Discussion 
We see in all three situations that the optimal Q, under either 
the SVA for the deterministic case or, in general, for the other 
two cases, is of the form ቀು,…,ುቁ

 or  


ቆଵ,…,ଵᇣᇤᇥ,

ೖ
,…,ᇣᇤᇥ
షೖ

ቇ
. 

      It remains to be seen how good the SVA approximation 
is, i.e., we wish to evaluate how far off from the actual 
capacity, the SVA capacity is. This approach was taken for 
binary input discrete memoryless channels in [15, 16, 2, 3]. 
We turn our attention to this issue in the next section. 

III. QUALITY OF THE APPROXIMATION OF DETERMINISTIC 
CAPACITY 

3.1  SSVA revisited 
      We will assume that we are in the deterministic case and 
analyze the SSVA a bit further. We assume that: 
1. There are T transmitting antennas, 
2. Both the sender and the receiver know H. 
3. The inverse eigenvalues 1 ൗߤ  of H*H are all 
approximately equal, and 
4. The value of the total transmission power P = tr(Q). 
From our previous results (23) we know that we can 
approximate the capacity as 

ௌௌܥ =  log ൬1 +
ܲ
ܶ
൰ߤ

்

ୀଵ

 

3.2  The Case of Large Power P 
Now let us examine the situation where the total power P = 
tr(Q) satisfies the inequality 

ܲ ≫
1
ߤ

்

ୀଵ

. 

This assures us that there is enough water to cover all of the 
inverse eigenvalues  ଵ

ఓ
. We find that the water fill level is 

߱ =
ܲ
ܶ +

1
ܶ


1
ߤ

்

ୀଵ

 

and that 

ݍ
 =

ܲ
ܶ + ൭

1
ܶ


1
ߤ

்

ୀଵ

൱−
1
ߤ

 

with 

ܥ = (log߱ߤ) =  log
்

ୀଵ

்

ୀଵ

ቌ൭
ܲ
ܶ +

1
ܶ


1
ߤ

்

ୀଵ

൱ߤቍ = 

	= (log (ߤ + log൭
ܲ
ܶ +

1
ܶ


1
ߤ

்

ୀଵ

൱൩
்

ୀଵ

. 

 
Since ܲ ≫ ∑ ଵ

ఓ
்
ୀଵ 		we may approximate the capacity as 

 

ܥ ≈(log (ߤ + log ൬
ܲ
ܶ
൰൨ = log ൬

ߤܲ
ܶ
൰൨

்

ୀଵ

்

ୀଵ

 

 
Thus we have the Large Power Assumption (LPA), which has 
an approximate capacity of 
 

ܥ															 ≈ ܥ = ܶ	log	 ൬
ܲ
ܶ
൰+  log ߤ

்

ୀଵ

 

																																		= ܶ log ൬
ܲ
ܶ
൰ + logෑߤ

்

ୀଵ

 

                                                                                          (27) 
Furthermore 16 , if the ߤ  are large enough we can 

approximate log ቀఓ
்
ቁ as log ቀ1 + ఓ

்
ቁ, which gives us the 

Large Power and Moderate Eigenvalues Assumption 
(LPMEA), which has a capacity approximation similar to the 
SSVA 

ொܥ =  log(1 +
ܲ
ܶ
(ߤ

்

ୀଵ

 

                                                                                          (28) 
Thus, whenever the conditions for the SSVA are met (that is, 
all the eigenvalues of H*H are approximately the same), or 
the conditions for the LPMEA are met (that is, P is much 
greater than the sum of the inverse eigenvalues of H*H and 
ߤܲ,݅∀ ≫ ܶ), the same form of the approximation can be 
used:  

ℵܥ = 	 log ൬1 +
ߤܲ
ܶ
൰

்

ୀଵ

 

                                                                                          (29) 

Therefore, for the remainder of the paper we use the notation 
ℵܥ , when the conditions of either SSVA or LPMEA are 
assumed to have been met. 

3.3 Deterministic Examples 
We use a (2,2) MIMO channel. Keep in mind that ߤ

భ
← ≥ ߤ

మ
←. 

We assume that we have enough power to cover with water 
both 1 ߤ

భ
←ൗ  and 1 ߤ

మ
←ൗ ≥ 1 ߤ

భ
←ൗ , that is ܲ ≥ 1 ߤ

మ
←ൗ − 1 ߤ

భ
←ൗ , so 

߱ = 
ଶ

+ ଵ
ଶ
ቆ ଵ
ఓ
భ←

+ ଵ
ఓ
మ←
ቇ, and 

                                                        
16 For large x we have that lim௫→ஶ(log(1 + (ݔ − log	(ݔ)) = 0. 
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ܥ = −2 + log (1 + (ܲ +
1
ߤ
మ
←

ߤ(
భ
←) + log(1 + (ܲ +

1
ߤ
భ
←

ߤ(
మ
←) 

						= −2 + log ቀ1 + ቀܲ + ଵ
ఓమ
ቁߤଵቁ+ log ቀ1 + ቀܲ + ଵ

ఓభ
ቁߤଶቁ. 

 
     In our example, the water filling conditions are satisfied 
for P = 10, and 2 ≤ ଶߤ,ଵߤ ≤ 7 . Therefore, we can view 
(Figure 1) the capacity as a function of {(ߤଵ,ߤଶ)}, with a 
natural symmetry. Or, we can view it (Figure 2) as a function 
of the "fundamental domain" of ቄ൫ߤଵ⃖ሬሬ,ߤଶ⃖ሬሬ൯:ߤ

భ
← ≥ ߤ

మ
←ቅ, under 

the "action" that swaps ߤଵ with ߤଶ. 
     If the inverse eigenvalue variance of H*H is small then we 
have 

ℵܥ								 = log ൬1 +
ܲ
2 భߤ

←൰ + log ൬1 +
ܲ
2 మߤ

←൰ 

= log ൬1 +
ܲ
2 ଵߤ

൰ ൬1 +
ܲ
2 ଶߤ

൰ 

				= log ቀ1 + ܲ ఓభାఓమ
ଶ

+ ܲଶ ఓభఓమ
ସ
ቁ. 

 
This is illustrated in Figure 3 with P =10 and the ߤ ∈ [2,7]. 
      As we see, and not surprisingly, the analysis of 
approximations is directly related to the amount of power and 
the perturbations in inverse eigenvalues of  H*H. 

     If all T inverse eigenvalues are equal, any non-zero P will 
suffice to give us a water fill level  of  ܲ + 1 ൗߤ  .  In this case, C 
and  CSSVA are identical. This is well-illustrated in Figure 4. 
As the differences in inverse eigenvalues grows, so does the 
error. However, one must keep in mind that the difference in 
the inverse eigenvalues is inversely related to the difference 
in the actual eigenvalues. Therefore, if the eigenvalues are 
large, changing them does not have much of an effect upon 
the validity of the SSVA approximation. However, if the 
eigenvalues are small, then a slight change in them can result 
in a large error using the SSVA approximation, unless the 
power suitably grows. 

In Figure 4 we illustrate how slight the approximation 
error is if P = 10 and the eigenvalues of H*H are constrained 
to the interval [2, 7]. Note that in this scenario, the maximum 
difference between inverse eigenvalues is 1/2 - 1/7≈.36. If 
we keep the eigenvalues in the range in question, and force 
ourselves to have enough power to cover all the inverse 
eigenvalues with water, then this is about as bad as the 
approximation will get — which is not very bad at all. 
However, if we consider very small eigenvalues, then the 
situation changes. 

We let the eigenvalues be in [.0001, .0100]. We need a 
minimal power greater than 900, to cover both inverse 
eigenvalues. If we choose P = 1000, we see that we have a 
very large error (Figures 5 and 6). However, if we up the 
power to P = 10,000 we see in Figures 7 and 8 that we      
substantially reduce the error, and we can continue this 
process. In fact if P = 100,000 the error is O(10-3). 

In conclusion, we see that if the inverse eigenvalues are 
close to their mean value, we can approximate the capacity, 
and the same is true if we have large power. 

Capacity MIMO 2,2 with P=10 

 
Figure 1. ܥ = −2 + log ቀ1 + ቀܲ + ଵ

ఓమ
ቁ ଵቁߤ + log ቀ1 + ቀܲ + ଵ

ఓభ
ቁ  ଶቁߤ

 
Capacity MIMO 2,2 with P=10 

 

Figure 2. ܥ = −2 + log ቆ1 + ቆܲ + ଵ
ఓ
మ←
ቇ ߤ

భ
←ቇ + log ቆ1 + ቆܲ + ଵ

ఓ
భ←
ቇߤ

మ
←ቇ 

 
Capacity  MIMO 2,2 with P=10 

 
Figure 3. SSVA:	ܥℵ , P =10. 

 
DIFFERENCE MIMO 2,2 with P=10 

 

 
Figure 4. Difference: O(10-3), C - ܥℵ. 
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Capacity MIMO 2,2 with P=1000 

 
Figure 5. Capacity, P = 1000. 

 
DIFFERENCE MIMO 2,2 with P=1000 

 
Figure 6. C - ܥℵ , P = 1000. 

 
Capacity MIMO 2,2 with P=10000 

 
 

Figure 7. Capacity, P = 10,000. 
 

DIFFERENCE MIMO 2,2 with P=10000 

 
Figure 8. C - ܥℵ P =10,000. 

 
 

IV. CONCLUSION 
 We have examined the capacity formula for deterministic 

MIMO channels. We have put the analysis on a firm 
theoretical foundation and we have developed simple, closed 
form approximations for the capacity of the form 

 log ൬1 +
ܲ
ܶ ߤ

൰ .
்

ୀଵ

 

We have discussed the Telatar conjecture, and have 
restructured it. Note that an overall theme of this paper has 
been to show how capacity, in both the deterministic and 
probabilistic cases, is the natural study of the behavior of 
inverse eigenvalues. 
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