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Abstract This work develops a framework for SIMP-based
topology optimization of a metallic panel structure sub-
jected to design-dependent aerodynamic, inertial, elastic,
and thermal loads. Multi-physics eigenvalue-based design
metrics such as thermal buckling and dynamic flutter are
derived, along with their adjoint-based design derivatives.
Locating the flutter point (Hopf-bifurcation) in a precise and
efficient manner is a particular challenge, as is outfitting the
optimization problem with sufficient constraints such that
the critical flutter mode does not switch during the design
process. Results are presented for flutter-optimal topologies
of an unheated panel, thermal buckling-optimal topologies,
and flutter-optimality of a heated panel (where the latter
case presents a topological compromise between the former
two). The effect of various constraint boundaries, temper-
ature gradients, and (for the flutter of the heated panel)
thermal load magnitude are assessed. Off-design flutter and
thermal buckling boundaries are given as well.

Keywords Panel flutter · Topology optimization ·
Aerothermoelasticity

1 Introduction

Panel flutter has received a great deal of attention over
the last fifty years within the computational aeroelasticity
community. The problem is classically defined by a very

B. Stanford (�) · P. Beran
U.S. Air Force Research Laboratory,
Wright-Patterson AFB, OH, 45433 USA
e-mail: bretkennedystanford@gmail.com

thin two-dimensional elastic structure, constrained in some
capacity at either edge, and subjected to high supersonic
flow over the top surface. For increasing flow speeds, a
pair of complex conjugate eigenvalues of the system can
cross the imaginary axis via a Hopf-bifurcation, and the
subsequent loss of dynamic stability is defined as flutter.
This system has received such widespread attention due,
in part, to the fact that the aeroelastic system is computa-
tionally tractable, yet can display highly-complex coupled
unsteady behavior. Furthermore, a wide range of aerospace
configurations utilize elastic panels (high-speed aircraft, jet
engines, space re-entry vehicles, missiles, etc.), and the need
to prevent aeroelastically-induced panel failures can have
a substantial impact on the overall design process. Impor-
tant early papers on this subject are given by Fung (1958),
Dugundji (1966) and Dowell (1966), more recent survey
papers are given by Dowell (1970), Reed et al. (1987), and
Mei et al. (1999).

Beyond the basic problem description given above, many
additional factors may be included in the panel flutter anal-
ysis (e.g., a static pressure differential, various boundary
conditions and support mechanisms, post-flutter nonlinear
limit cycle oscillations, acoustic loadings: all of which are
covered in the cited review papers), with thermal effects of
particular concern for this work. If both ends of the panel
are constrained from moving and/or rotating, the application
of a temperature field will weaken the panel, and a buck-
ling temperature can be identified, above which the structure
is statically unstable to transverse loadings. The heating
fundamentally alters the flutter point of the panel as well,
which is now defined by a balance of inertial, elastic, aero-
dynamic, and thermal effects: aerothermoelasticity. Survey
papers on this general subject are given by Garrick (1963),
Thornton (1992), McNamara et al. (2008), and McNamara
and Friedmann (2011). Many papers have been written
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150 B. Stanford, P. Beran

which specifically detail the buckling and flutter boundaries
of heated panels: see Schaeffer and Heard (1965), Yang and
Han (1976), Xue and Mei (1993), and Librescu et al. (2004)
(prescribed temperature field), Abbas et al. (1993) and Gee
and Sipcic (1999) (temperature field obtained via aerody-
namic heating), and Thornton and Dechaumphai (1988),
Kontinos (1997), Culler and McNamara (2010), and Miller
et al. (2011) (temperature field obtained via a balance of
aerodynamic heating, thermal radiation, and transient heat
transfer throughout the vibrating structure).

As with any aero-structural component, the weight of
a panel should be as low as possible, provided that the
resulting physical response is acceptable. In the context of
the above discussion, this would imply a minimum-mass
structure with constraints on buckling and flutter, though
vibrations, deflections, stresses, noise, and fatigue life may
also be of concern. Many papers exist which consider the
minimum mass of a thin panel under a flutter constraint,
or vice-versa: maximum flutter speed under a mass con-
straint. This may be done by parameterizing the thickness
distribution throughout the panel (via either discrete or con-
tinuous variables), where a change in thickness impacts both
the inertial and elastic loads throughout the panel. Early
work in this area is given by Weisshaar (1972) and Peirson
(1975), and additional papers are found by Weisshaar
(1976), Van Keuren and Eastep (1977), Beiner and Librescu
(1983), Barboni et al. (1999), and Palaniappan et al. (2006).
Panel flutter objectives/constraints have also been handled
with planform parameters (Livne and Mineau 1997), opti-
mal placement of piezoelectric actuators and dampers (Nam
et al. 1996; Sadri et al. 2002; Tanaka et al. 2005), and stack-
ing sequence design (Hirano and Todoroki 2004; Seresta
et al. 2006). Structural optimization of panels for buck-
ling loads is also well-studied (see Manickarajah et al.
2000 and Maalawi 2002 for overviews on the subject), with
thermal effects accounted for by Foldager et al. (2001),
Chen et al. (2003), and Wang et al. (2004) (among many
others). But the work of Seresta et al. (2006) appears
to be one of very few that conducts structural optimiza-
tion of a panel with both flutter and buckling (thermal
or otherwise) metrics, providing Pareto trade-offs between
the two.

This work is concerned with using a subset of structural
optimization, topology optimization, to optimize aerther-
moelastic panels for flutter and buckling metrics. Smaller
length-to-thickness ratios than might be traditionally con-
sidered (L/h ∼ 100) are utilized here (L/h = 25), so that
the cross-section of the two-dimensional panel may be dis-
cretized into a series of quadrilateral finite elements. Each
element is assigned a design variable, which continuously
interpolates between 0 (void) and 1 (solid), and the opti-
mal layout of material within the panel may be obtained

such that the structure behaves as intended when subjected
to thermal and aerodynamic effects. The monograph by
Bendsøe and Sigmund (2003) provides a general overview
of the method. In the field of dynamics, topology opti-
mization has been used to tailor the response of structures
subjected to dynamic loads (Ma et al. 1995; Min et al. 1999;
Tcherniak 2002; Jog 2002; Jensen 2007, 2009; Stanford and
Beran 2011a, b), and (of more concern to this work) to
optimize free vibration eigenvalues (Pedersen 2000; Maeda
et al. 2006), frequency gaps (Du and Olhoff 2007), or
complete frequency response spectra (Yoon 2010a). The
method has also been used for buckling design (Neves et al.
1995; Rahmatalla and Swan 2003), numerous thermoelas-
tic studies (Jog 1996; Li et al. 2000; Sigmund 2001), and
convection heat transfer (Bruns 2007), each of which is a
field that may be significant to panel design. It is particu-
larly important to note that, given the large number of design
variables utilized in topology optimization (in comparison
to shape, sizing, or stacking sequence optimization), several
papers (Du and Olhoff 2007; Neves et al. 1995) have noted
that the large design freedom can lead to eigenvalue-related
optimization issues. Specifically, repeated eigenvalues and
discontinuous mode-switching must be accounted for.

Aeroelastic applications of topology optimization are
rare. Eschenauer and Olhoff (2001) and Krog et al. (2004)
both studied the topological design of internal wing ribs,
but the aerodynamic loads are prescribed, not design-
dependent. Studies which include aerodynamic loading
feedback via true fluid-structure coupling are given by
Maute and Allen (2004) (topology of an underlying wing
structure), Maute and Reich (2006) (compliant airfoil mor-
phing mechanisms), Gomes and Suleman (2008) (wing box
design for rolling maneuvers), Stanford and Ifju (2009)
(membrane wing design), Yoon (2010b) (monolithic meth-
ods for fluid-structure interaction in topology optimiza-
tion), Kreissl et al. (2010) (microfluiduc devices), and
Stanford and Beran (2011a) (compliant flapping mecha-
nisms). Only the latter paper deals with dynamic aeroe-
lasticity, rather than steady fluid-structure interaction.
Recently, some researchers have specifically incorporated
aeroelastic instability (i.e., flutter) into the topology opti-
mization of cantilevered wing structures: see Stanford and
Beran (2011b) and De Leon et al. (2012).

Many topology and (more generally) structural opti-
mization papers cited above study the individual elements
important to an aerothermoelastic panel. To the best of the
author’s knowledge, none have combined them into a single
topology optimization framework, which is the goal of this
paper. The development of such a framework is important in
the sense that both buckling and flutter are common modes
of failure for aerospace panels (Mei et al. 1999), but design
trends needed to alleviate them can be at strong odds with
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Aerothermoelastic topology optimization with flutter and buckling metrics 151

one another (Seresta et al. 2006). The specific objectives are
as follows:

1. A quasi-static thermoelastic model will be developed:
the temperature of the top and bottom panel surfaces
is prescribed, and the conduction through the topol-
ogy of the internal layout is subsequently computed.
This model will be used to compute stresses, and the
concomitant critical buckling temperatures of the panel.

2. Assuming that the characteristic time of the thermal
system is large relative to the vibration of the panel
(Culler and McNamara 2010), linear piston theory aero-
dynamics (Ashley and Zartarian 1956) (a common tool
for panel analysis) will be used to compute the flutter
speed of the panel for a prescribed top and bottom panel
surface temperature.

3. The analytical sensitivities of both the critical buck-
ling temperature and the flutter speed with respect to
a large number of topological design variables will be
computed, for a given material interpolation scheme
between solid and void.

4. Three basic types of topology optimization problems
will be solved: maximum thermal buckling load, max-
imum unheated flutter speed, and maximum heated
flutter speed (with a prescribed top and bottom panel
surface temperature), where the latter problem should
pose a topological compromise between the two former.
A set of constraints will be carefully posed such that
mode-switching is avoided during the optimization pro-
cess, as discussed in by Hanoaka and Washizu (1980).

5. The dependence of the optimal panel topology upon
various factors will be assessed: constraint boundaries,
ratios of the prescribed upper and lower panel sur-
face temperatures, and (for the flutter of the heated
panel) magnitude of the thermal load. Furthermore,
the off-design performance of the topologies will be
examined.

2 Problem description

The geometry of a metallic panel structure considered in this
work can be seen in Fig. 1. This test case is meant to emu-
late the aerospace configurations described above: an elastic

Fig. 1 Panel geometry and design domain

surface embedded in an otherwise rigid plane (the outer sur-
face of a high-speed aircraft wing, or the side of a re-entry
vehicle, for example), exposed to flow over its top surface
only. The length and thickness of the two-dimensional panel
are L and h, respectively, the structure is assumed to be
infinitely-long in the third dimension, and both the lead-
ing edge and the trailing edge are restricted from moving.
As noted above, L/h is fixed as 25: this is smaller than
found in typical panel flutter studies (which may utilize
thin beam/plate methods), but is required to study the inter-
nal topology of the structure in a computationally feasible
manner.

The panel cross section will be discretized into a series
of bilinear finite elements, and each element assigned a den-
sity measure xe which smoothly varies between 0 (void) and
1 (solid). Portions of the panel are fixed as solid (elements
that lie in the upper 10 % or the lower 5 %, as drawn in
Fig. 1), the remainder constitutes the design domain. Finite
element nodes that lie along the upper and lower surfaces
are prescribed spatially-uniform temperatures TU and TL,
respectively, and the upper surface of the panel is subjected
to high-speed supersonic flow (flow density ρ∞, flow veloc-
ity U∞, and Mach number M∞ > 1). Prescribing the upper
surface of the panel to always remain solid (xe = 1) cir-
cumvents potential ambiguities concerning the transfer of
aerodynamic loads to the structure, though strategies are dis-
cussed by Yoon (2010b). Prescribing the lower surface of
the panel to remain solid as well, though this surface is not
exposed to aerodynamic loads, is found to help stabilize the
topology optimization process.

3 Aerothermoelastic modeling framework

Linear unsteady finite element solutions are used to ascer-
tain the thermal buckling and flutter boundaries of the panel
topologies. The geometry seen in Fig. 1 is discretized into
bilinear Q4 finite elements, a common choice for topology
optimization (Bendsøe and Sigmund 2003). The remainder
of this section details the computational steps needed to
compute the relevant metrics.

3.1 Heat conduction modeling

A typical assumption in panel analyses is to assume a set
temperature distribution throughout the entirety of the struc-
ture (Xue and Mei 1993). This is reasonable in the sense
that the Biot number for a thin panel is small enough to
warrant a lumped-capacity model (Gee and Sipcic 1999),
though the temperature of the panel could be linked to
the flow conditions via an aerodynamic heating model
(assumption of an adiabatic wall temperature, for example).
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152 B. Stanford, P. Beran

A compromise between the two approaches is taken for this
work, in that the thermal boundary conditions of the panel
are prescribed, but the internal conduction is subsequently
computed. Presumably, the small value of L/h and the
substantial variations in mechanical properties throughout
an optimized topology limit the usefulness of a lumped-
capacity assumption. Furthermore, unsteady thermal effects
are neglected for this work, assuming that the time scale of
the thermal system is large relative to the vibration of the
panel (Culler and McNamara 2010).

In addition to the prescribed temperature boundary con-
ditions stated in Fig. 1, adiabatic boundary conditions are
applied to the sides of the panel. The conductivity matrix of
the panel is assembled over each finite element (e) in the
typical manner (Cook et al. 2002):

KT =
∑

e

(
KT e · (xe)

p
)

(1)

where xe is the relative density of each finite element
and p is the penalization power. The solid-void interpo-
lation scheme used here is SIMP (solid isotropic material
with penalization), described extensively by Bendsøe and
Sigmund (2003) and Gao and Zhang (2010) specifically
with regard to thermoelastic problems. KT e is an elemental
conductivity matrix (one temperature degree of freedom per
node) for the fully solid material. The assembled matrixKT

is then partitioned into known (Tc) and unknown (Tx ) nodal
temperatures:

KT · T =
[
KTxx KTxc

KTcx KTcc

]
·
{
Tx

Tc

}
= 0 (2)

where the prescribed vector Tc is entirely composed of TU

(nodes along the upper surface) and TL (nodes along the
lower surface). For the linear analysis considered here, TU

is set equal to unity. The unknowns are then computed as:

KTxx · Tx = RT (3)

The thermal load vector RT is defined by −KTxc · Tc.
If TL is set equal to TU (uniformly heated panel) the con-

duction problem of (3) becomes trivial, as the temperature
at every node is equal to TU , entirely independent of the
topology of the structure xe. Only when TL differs from TU

is thermal conduction activated throughout the panel, and a
dependency on xe is introduced.

3.2 Panel stresses

The temperature is assumed to be spatially uniform within
each finite element (Te), and is computed by simply averag-
ing the four nodal temperatures found in the vector T . The

initial elastic stresses within each element, due to thermal
expansion, are then given by:

σ oe = −α · Te · E · (xe)
p

1 − v
· { 1 1 0

}T
(4)

where α is the coefficient of thermal expansion, v is the
Poisson’s ratio, and E is the elastic modulus of the structure.
A power law interpolation (SIMP) is used here as well, with
the penalty p assumed to be identical to that used for the
conduction terms in (1). Furthermore, the thermal expansion
coefficient is assumed to be independent of xe: both of these
assumptions follow those made by Sigmund (2001). From
σoe , a thermal load vector F may be computed by assem-
bling contributions from each element. A linear stiffness
matrix is given by the following assembly:

K =
∑

e

(
Ke · (xmin + (1 − xmin) · (xe)

p
))

/
(
1 − v2) (5)

where Ke is an elemental stiffness matrix for the fully solid
material (as in (1)). This matrix is computed assuming a
unit depth of the structure, and is divided by (1 − v2) to
account for this very-long third dimension (i.e., a semi-
infinite plate). xmin is a lower bound on the element density
(0 < xmin ≤ xe ≤ 1). In general, a small positive value
of xmin is utilized to prevent singular stiffness matrices
due to void portions of the topology, and also to allow
for the reappearance, during the optimization process, of
material in elements that were once void (i.e., to prevent
design gradients from becoming exactly zero). The specific
material interpolation scheme used in (5) is a minor mod-
ification of that used for (1), and is taken from Bendsøe
and Sigmund (2003). The modified interpolation scheme is
aimed at preventing artificial local vibration and buckling
modes in low-density elements, as the ratio of mass to
stiffness (for vibration problems) or nonlinear stress stiffen-
ing to linear stiffness (for buckling problems) is finite for
small values of xe. Additional schemes to avoid this prob-
lem in eigenvalue-based topology optimization are given by
Tcherniak (2002), Pedersen (2000), Du and Olhoff (2007),
and Neves et al. (1995). Furthermore, Pedersen (2000)
discusses situations where (5) is unable to prevent the devel-
opment of localized modes, though the method is found to
be completely satisfactory for the cases presented here.

Next, a linear system is solved for the thermally-induced
deflections of the structure:

K · u = F (6)

The stresses produced by the deflection vector u are then
computed, and superposed upon σoe to obtain the total
stresses within each element (Cook et al. 2002):

σe = σoe + E · (xe)
p

1 − v2
·
⎡

⎣
1 v 0
v 1 0
0 0 (1 − v)/2

⎤

⎦ · Be · ue (7)
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where Be is a strain-displacement matrix, and ue are the
nodal displacements (two degrees of freedom per node) of
each element, taken as a subset of u. It should be noted that
a plane-stress formulation is utilized in (5) and (7), which
follows from the common methodology found in the panel
literature (Dowell 1970; Librescu et al. 2004; Culler and
McNamara 2010), and a desire to reproduce well-known
panel stability boundaries (Fig. 3). A plane-strain assump-
tion is certainly arguable in light of the very-long third panel
dimension (semi-infinite plate), though the boundary condi-
tions in this third dimension are unspecified, both here and
in the general literature. Future work may assess the impact
of this assumption upon the optimal topology.

3.3 Thermal buckling

A geometric stress stiffness matrix for the structure may be
assembled as:

Kσ =
∑

e

(
GT

e · Se (σ e) ·Ge · Ve

)
(8)

where Ve is the volume of the element, Se is a matrix re-
ordering of the element stress σe, andGe is a shape function
differentiation matrix; each of which is described by Cook
et al. (2002). The buckling eigenproblem is defined as:

(K + Tk ·Kσ ) ·�k = 0 (9)

where �k is the eigenvector associated with the kth eigen-
value Tk , and Tk is a multiplicative factor of the upper panel
temperature TU (Fig. 1), which has been set to unity for (2).
Each buckling temperature factor is positive, and ordered
such that 0 < T1 ≤ T2 ≤ . . . TNm−1 ≤ TNm . Nm is
the number of retained modes (for the purposes of eigen-
value separation constraints, as discussed below), which is
much smaller than the total degrees of freedom of the elastic
system. The critical buckling temperature of the system is
defined as T ∗ = T1, which can be nondimensionalized as:

R∗ = α · E · T ∗ · h · L2

D
(10)

where the bending stiffness of the panel is given by D =
E · h3/

(
12 · (1 − v2)

)
. For a solid panel with uniform heat-

ing (TL = TU = 1) and clamped boundary conditions
(which are assumed for this work, as drawn in Fig. 1), an
analytical value of R∗ = 4 · π2 is obtained (Shigley and
Mishke 2001). Alternatively, if TL is set to 0 and TU = 1,
double this value is expected: R∗ = 8 · π2.

Only buckling modes in the plane of the panel structure
of Fig. 1 are included in the Nm modes, though buckling
(or flutter) modes can certainly develop in the omitted third
direction. These may be accounted for within the context
of the two-dimensional finite element model used here via

a finite strip method, but their inclusion is out-of-scope for
the current paper, and may be considered in future efforts.

3.4 Aerodynamic modeling

Linear quasi-steady piston theory relates the aerodynamic
pressure pa at a point along the upper surface of the panel
to the instantaneous velocity of that point:

pa = ρ∞ · U2∞√
M2∞ − 1

·
(

∂w

∂x
+ M2∞ − 2

M2∞ − 1
· 1

U∞
· ∂w

∂t

)
(11)

where x is the freestream direction along the panel in Fig. 1,
w is the transverse deflection of the panel, and t is time.
Terms are included in (11) to correct the aerodynamic pres-
sure for low Mach numbers (Dowell 1966); for values of
M∞ much larger than unity, (11) coincides with that origi-
nally given by Ashley and Zartarian (1956). Equation (11)
has a stiffness-based component (via ∂w/∂x) and a tempo-
ral component (via ∂w/∂t), and so aerodynamic stiffness
and damping matrices may be computed by looping over
each finite element edge which lies along the top surface
(as only this surface is exposed to the flow), but assembling
into matrices which are the same size as K and Kσ above.

The panel deflection at any time due to aerodynamic
forces is given by the vector q, which is the same size as
the thermal deformation vector u, and has two displacement
degrees of freedom at each node. The third and fourth nodes
of the bilinear finite element lie along its upper surface, and
the third node lies downstream of the fourth (i.e., has a larger
value of x). The aerodynamic pressure applied to each finite
element along the top surface can then be given by:

pa = ρ∞ · U2∞√
M2∞ − 1

·

⎛

⎜⎜⎜⎝

1

Le

· [ 0 0 0 0 0 1 0 −1
] · qe +

M2∞ − 2

M2∞ − 1
· 1

U∞
· 1

2
· [ 0 0 0 0 0 1 0 1

] · q̇e

⎞

⎟⎟⎟⎠

(12)

where qe is the elemental deflection vector, q̇e is the time
derivative of that vector, and Le is the length of the upper
surface of the element. It can be seen that only the trans-
verse degrees of freedom of the top two nodes of the element
correspond to an aerodynamic response, in keeping with
(11). A work-equivalent aerodynamic force vector for that
element is then computed:

F ae = −pa · Le

2
· [ 0 0 0 0 0 1 0 1

]T
(13)

where the negative sign is indicative of the fact that posi-
tive aerodynamic pressure on the top surface will push the
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structure downward. As with (11), only transverse forces
along the upper surface are produced.

A global aerodynamic force vector Fa may be computed
by assembling over the finite elements along the top surface
(etop). Because Fa must be the same size as the stiffness
matrices in (9), aerodynamic forces at finite element nodes
within the panel are zero. The force vector may be written
as a linear combination of q and q̇:

Fa =
∑

etop

(
Fae

) = √
λ · Ca · q̇ + λ ·Ka · q (14)

The aerodynamic stiffness matrix Ka reflects aerodynamic
pressures proportional to q in (12), the aerodynamic damp-
ing matrix Ca reflects proportionality to q̇, and the aerody-
namic pressure parameter is defined as Dowell (1966):

λ = ρ∞ · U2∞ · L3

D ·√M2∞ − 1
(15)

3.5 Panel dynamics

A mass matrix for the panel may be computed as:

M =
∑

e

(Me · xe) (16)

where Me is a consistent mass matrix for the fully solid
material, and elemental mass terms are assumed to be lin-
early proportional to the element density (Pedersen 2000).
A structural damping matrix is computed via Rayleigh
damping (Cook et al. 2002):

C = αc ·M + βc ·K (17)

For dynamic compliance (resonance) problems, Tcherniak
(2002) recommends computing an elemental Ce based on
proportionality to Me and Ke, and then assembling into
global form similarly to (16), with xe raised to a power less
than unity (e.g., (xe)

1/2). This can help remove intermediate
densities from the topology during the optimization process,
as these densities will dissipate a relatively large amount of
energy, decreasing actuator quality. This strategy has been
successfully used by Stanford and Beran (2011a) as well,
but for the eigenvalue-based problems considered here the
simpler approach of (17) is satisfactory.

Combining information from (5), (8), (14), (16), and
(17), the equations of motion for the panel can be written as:

M ·q̈ + (
C−√

λ · Ca

) · q̇+(K+T ·Kσ −λ ·Ka) · q=0

(18)

T is a multiplicative factor of the upper panel tempera-
ture (where TU , as above, is set to unity). The applied

temperature T is entirely unrelated to the pre-computed
critical temperature T ∗ in (9); values above or below T ∗
may be selected. Furthermore, T may be nondimension-
alized as in (10): R = α · E · T · h · L2/D. If both T

and λ are set equal to zero, (18) represents the free vibra-
tion of an unheated panel, and a characteristic frequency
(the first bending vibration mode) is identified as ωo =
(4.73)2 · √D/(ρm · h · L4), where ρm is the density of the
panel. If a positive value of λ is selected, (18) provides the
aerodynamically-forced vibration of a panel with a mass
ratio of: μ = ρ∞ · L/(ρm · h). The inclusion of non-zero
values of λ and T subjects the panel to both aerodynamic
and thermal loads, where it is understood that Kσ must be
computed by first solving for the temperature distribution
T throughout the panel (2), then computing the thermal
deformations u (6), and finally the element stresses σe (7).

Defining the vector η = {qT q̇T }T , (18) may be placed
in standard first-order form:

[
I 0
0M

]
·
{
q̇

q̈

}

=
[

0 I

−K−T ·Kσ +λ ·Ka −C+√
λ · Ca

]
·
{
q

q̇

}
(19)

A · η̇ = B · η (20)

The state vector is assumed to be of the form η = ψ · eβ·t ,
which leads to the following eigenproblem:

(B − βk ·A) · ψR
k = 0 (21)

where ψR
k is the right eigenvector associated with the kth

eigenvalue βk , both of which, in general, will be complex-
valued. Specifically, βk are complex conjugate pairs, where
the imaginary part is indicative of the frequency of vibra-
tion, and the real part dictates stability: a positive real part
is an unstable mode with unbounded growth in time.

3.6 Flutter computations

Flutter is defined as a loss of dynamic stability of the equa-
tions of motion (20) about an equilibrium solution, which
for this work is assumed to be the trivial state: ηe = 0.
For an unheated panel with a geometry as drawn in Fig. 1,
this is exactly true, as the panel has no curvature (camber)
and is not oriented at an angle of attack to the free-stream
vector: perturbations to the system state will always set-
tle back to an undeformed state, as long as the flow speed
is below the flutter speed. For a heated panel, this is only
an assumption (unless both the heating and the topology
are uniform), as there will be some static offset deforma-
tion associated with the thermal loads (u). But the effect
should be small, and so this nonlinearity is not included
(Hanoaka and Washizu 1980); pre-buckling deformations

Author's personal copy

6 
Approved for public release; distribution unlimited.



Aerothermoelastic topology optimization with flutter and buckling metrics 155

have been similarly ignored in the thermal buckling eigen-
problem of (9).

Flutter occurs at a Hopf-bifurcation point: for increasing
values of λ, a pair of complex conjugate eigenvalues βk of
the system cross the imaginary axis. Defining the aeroelastic
damping of each mode as gk = Re(βk), the system loses
stability (grows exponentially with time) via flutter when
gk of any mode becomes positive (Bisplinghoff et al. 1955).
The damping of the composite response, G, corresponds to
the eigenvalue with the largest real part (the most unstable
mode): G = max(gk). The flutter point is the point where
G = 0, and occurs at λ = λ∗; the imaginary portion of
this critical eigenvalue at λ∗ is the flutter frequency, ω∗. An
example of this process is given in Fig. 2. The eigenvalues at
λ = 0 (wind off) are the uncoupled vibration eigenvalues of
the system, and Re(βk) is entirely governed by the structural
damping C. If both damping parameters (αc and βc) are set
to zero (which is not the case in Fig. 2), G = 0 at this point
as well, though λ = 0 is not a Hopf-bifurcation point. If the
applied temperature T is larger than the critical value of T ∗,
the buckled panel will have at least one eigenvalue whose
imaginary portion is equal to zero at λ = 0.

Several methods can be used for locating the flutter
point in a direct manner: most require an initial guess for
λ∗, ω∗, and the eigenvector ψR∗ (aeroelastic mode) asso-
ciated with this critical eigenvalue. This can be done by
setting λ = 0, computing the eigenvalues βk , and evaluating
G = max(Re(βk)). If G is less than 0, λ is augmented by
some 
λ, and the process is repeated until G becomes pos-
itive. Provided that 
λ is not too large, the value of λ at
which this occurs should be a reasonable approximation to
λ∗, and the least-stable mode provides initial guesses for
ω∗ and ψR∗. The repetitive eigenvalue computations dur-
ing the search for λ∗ can be very costly, particularly if 
λ

is of a small size. In an optimization context, the process
may be conducted just once for the initial baseline design:
a subsequent design iterate may use the previous design
iterate’s flutter point as an initial guess. It will be shown
however, that eigenvalue information is needed in the range
0 ≤ λ ≤ λ∗ to properly stabilize the flutter optimization
problem, and so this λ-marching process is conducted for
every design iterate.

Once an initial guess has been obtained, the precise loca-
tion of the flutter point may be computed with a class of
techniques that track the position of the least stable eigen-
mode. Three methods fall within this class: (1) direct eige-
nanalysis for the most unstable mode, (2) direct analysis of
the expanded system of equations for the Hopf-bifurcation
point, and (3) an inverse power method with shifting.
Only the first will be discussed here due to its inher-
ent simplicity; the interested reader may study the second
approach (Griewank and Reddien 1983; Morton and Beran
1999), or the third approach (Timme et al. 2011), which
have both been successfully applied to complex aeroelastic
problems.

The first approach uses Newton’s recurrence formula to
drive G to zero:

λn+1 = λn − ω · (∂G/∂λ)−1 · G
(
λn
)

(22)

where n is the iteration number. Solving the eigenproblem
(21) at the current iterate λn provides G(λn), which is the
damping of the least stable mode (if the λ-marching process
detailed above is used, G(λ0) will be positive). The right
and left eigenvectors may also be obtained (ψR , ψL), and
then the slope of the damping with respect to λ is computed
as (Murthy and Haftka 1988):

∂G

∂λ
= Re

⎛

⎝
(
ψL

k

)T ·
(

∂B
∂λ

− βk · ∂A
∂λ

)
· (ψR

k

)

(
ψL

k

)T ·A · (ψR
k

)

⎞

⎠

= Re

((
ψL

k

)T · ∂B
∂λ

· (ψR
k

)

(
ψL

k

)T ·A · (ψR
k

)

)
(23)

where it can be seen in (20) that A has no dependence on
λ (∂A/∂λ = 0), and the mode number k in (23) corre-
sponds to the least stable mode. The region of convergence
of (22) is wide above the flutter point (λn > λ∗, where the
unstable mode is clearly distinguished from the others, as
seen in Fig. 2), but narrow below λ∗. As such, an under-
relaxation factor ω is typically needed to prevent overshoots
that may drive the approximation well below the flutter

Fig. 2 Normalized eigenvalue
migration for a solid panel with
a volume fraction of 0.35
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point. This process requires the repeated computation of a
right and a left eigenvector, whose cost will depend strongly
upon the sparsity of A and B (Lehoucq et al. 1998). Upon
convergence of (22): λ → λ∗, ω → ω∗, ψR → ψR∗,
and ψL → ψL∗. Information about higher eigenmodes at
the flutter point (β∗

k , ψR∗
k , ψL∗

k ) are not directly available
using this method, but they can be obtained by re-solving
(21) at λ∗.

A verification study is given in Fig. 3, where data from
the aeroelastic model formulated above is compared to data
from Erickson (1966) and Beloiu et al. (2005). This is
done for a solid panel: referencing Fig. 1, each element has
a density xe of unity. Furthermore, the ratio of the mass
ratio to the Mach number, μ/M∞, is set to 0.1 (a typical
value for aeronautical applications (Dowell 1966)), and the
structural damping C is set to zero. Two stability bound-
aries are shown in Fig. 3. The upper boundary shows the
(nearly-linear) decrease in the flutter speed (λ∗) as heat-
ing is uniformly applied to the structure (i.e., increased R,
the normalized value of the multiplicative factor T in (18)).
The edges of the panel are constrained from moving, and so
the compressive thermal stresses weaken the structure and
thus lower its flutter speed. The lower set of points in the
figure details the boundary across which a buckled panel,
for a given value of R, is blown flat by the aerodynamic
loads. This boundary emanates from R = 4 · π2, noted
above as being the critical buckling load R∗ of the panel
(Shigley and Mishke 2001). Except for R∗, this latter
boundary is of no interest for the current topological design
study, but does present a useful comparison with published
data.

All combinations of (λ, R) below the flutter boundary
and above the buckling boundary would ultimately result in
a flat panel. Data points below the lower boundary result
in a static buckled panel, and data points above the upper
boundary result in nonlinear limit cycle oscillations (which
may or may not be periodic, depending on whether R is to

Fig. 3 Flutter and buckling boundaries for a solid panel with a vol-
ume fraction of 1, as compared with Erickson (1966) and Beloiu et al.
(2005)

the left or right of the point at which the two boundaries in
Fig. 3 meet) 0, but this behavior is beyond the scope of the
current work. Erickson (1966) and Beloiu et al. (2005) use
Euler–Bernoulli thin-beam modeling, with clamped bound-
ary conditions at either end, to compute these boundaries,
whereas the current work uses a lattice of plane-stress bilin-
ear finite elements. Despite this difference, and despite the
fact that L/h seen in Fig. 1 is clearly too large to be consid-
ered a thin beam/panel (much larger values are presumably
used in the two references), the current model matches well
with the published results. Unheated flutter speeds are given
as 636.57 by Erickson (1966), and computed as 633.05 in
the current work. The buckling load R∗/π2 is less accurate,
computed as 3.906 for the current work, whereas Beloiu
et al. (2005) arrive closer to the analytical solution of 4.
Numerical experiments have indicated that this is not due to
discretization errors, but rather to the geometrical violation
of the thin beam assumption. This same problem leads to
a moderate under-prediction of the flutter speed for heated
panels.

4 Sensitivity analysis

Topological design studies formulated below utilize the
thermal buckling eigenvalues Tk , the flutter speed λ∗, and
the dynamic eigenvalues βk for flow speeds in the range
0 ≤ λ ≤ λ∗, to form various objective functions and
constraints. The number of design variables (x, a vector
which collects the design density xe for each finite ele-
ment) will be very large, and so design derivatives must be
computed analytically, as is typically the case for topology
optimization.

4.1 Buckling derivatives

Considering the buckling eigenvalue problem of (9), the lin-
ear stiffness matrix K is an explicit function of the element
densities x, though the (nonlinear) stress-stiffness matrix
Kσ is an implicit function of the nodal temperatures and
element stresses as well, and of course these dependen-
cies must be accounted for. The total derivative of this
matrix is:

dKσ

dx
= ∂Kσ

∂x
+ ∂Kσ

∂u
· ∂u

∂x
+ ∂Kσ

∂T x

· ∂T x

∂x
(24)

Explicit x-dependencies come from both σ oe and the second
term in (7). Implicit dependencies via the thermal deforma-
tion u are due to the second term in (7), and dependencies
via the unknown nodal temperatures Tx are due to the
σoe computation in (4) (where a linear interpolation from
nodal values Tx to elemental values Te is assumed in the
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chain rule computation of ∂Kσ /∂Tx ). The derivatives of (3)
and (6) are:

∂KTxx

∂x
· Tx +KTxx · ∂T x

∂x
= ∂RT

∂x
(25)

∂K

∂x
· u+K · ∂u

∂x
= dF

dx
= ∂F

∂x
+ ∂F

∂Tx

· ∂Tx

∂x
(26)

Explicit derivatives of the thermal load vector RT are
computed via the matrix KTxc . Derivatives of F may be
computed via the σ oe computation of (4).

With this information, the gradients of the buckling
eigenvalues Tk are:

dTk

dx
=

(�k)
T ·
(
∂K
∂x

+Tk ·
(
∂Kσ
∂x

+ ∂Kσ

∂u
· ∂u
∂x

+ ∂Kσ

∂T x
· ∂T x

∂x

))
·(�k)

(�k)
T·Kσ ·(�k)

+ (λu)
T ·
(

∂K

∂x
·u+K · ∂u

∂x
− ∂F

∂x
− ∂F

∂T x

· ∂T x

∂x

)

+ (λT )T ·
(

∂KTxx

∂x
·T x +KTxx · ∂T x

∂x
− ∂RT

∂x

)
(27)

The first term in (27) is the well-known derivative of
an eigenvalue (Murthy and Haftka 1988) (where (�k)

T ·
Kσ · (�k) is a modal normalization condition), the second
two represent the multidisciplinary nature of the problem
(Sigmund 2001): λu and λT are adjoint vectors, both of
which pre-multiply terms which are exactly equal to zero.
Collecting terms that pre-multiply ∂u/∂x provides a linear
system of equations for λu:

K · λu = −Tk · (�k)
T · ∂Kσ

∂u
· (�k)

(�k)T ·Kσ · (�k)
(28)

Similarly, λT is computed by collecting terms associated
with ∂T x/∂x:

KTxx · λT =
(

∂F

∂T x

)T

· λu − Tk · (�k)
T · ∂Kσ

∂T x
· (�k)

(�k)T ·Kσ · (�k)
(29)

Having solved these two systems (once per each eigenvalue
Tk of interest), (27) can be written in final form:

dTk

dx
=

(�k)
T ·
(

∂K
∂x

+ Tk · ∂Kσ

∂x

)
· (�k)

(�k)T ·Kσ · (�k)

+ (λu)
T ·
(

∂K

∂x
· u− ∂F

∂x

)

+ (λT )T ·
(

∂KTxx

∂x
· Tx − ∂RT

∂x

)
(30)

It should be noted that (30) specifically assumes that none
of the eigenvalues Tk are repeated (i.e., bimodal). Gradients

of repeated eigenvalues may be computed (Seyranian et al.
1994), but the current work instead forces adjacent eigen-
values to be separated by a certain amount during the
optimization process. Additional discussion regarding this
point is provided below.

4.2 Flutter derivatives

Gradients of the dynamic eigenvalue problem (21) pro-
ceeds in a similar manner to the process given above,
though differences arise because the dynamic eigenprob-
lem is complex-valued (i.e., left and right eigenvectors are
needed), and also due to dependence on the dynamic pres-
sure parameter λ. If eigenvalue derivatives are desired at a
given value of λ (less than the flutter speed λ∗), these may
be computed as Murthy and Haftka (1988):

dβk

dx
=

(ψL
k )T ·

(
∂B
∂x

+ ∂B
∂u

· ∂u
∂x

+ ∂B
∂T x

· ∂T x

∂x
−βk · ∂A

∂x

)
· (ψR

k

)

(
ψL

k

)T ·A · (ψR
k

)

+ (vu)
T ·
(

∂K

∂x
·u+K · ∂u

∂x
− ∂F

∂x
− ∂F

∂T x

· ∂T x

∂x

)

+ (vT )T ·
(

∂KTxx

∂x
·T x +KTxx · ∂T x

∂x
− ∂RT

∂x

)
(31)

where vu and vT are adjoint vectors. It can be seen that A,
which is only composed of the mass matrix, only has an
explicit dependence on x, whereas B depends on the ther-
moelastic problem as well, due to the inclusion ofKσ in this
matrix ((19) and (20)). Similar to (28) and (29), the adjoint
vectors are given by:

K · vu = −
(
ψL

k

)T · ∂B
∂u

· (ψR
k

)

(
ψL

k

)T ·A · (ψR
k

) (32)

KTxx · vT =
(

∂F

∂T x

)T

· vu −
(
ψL

k

)T · ∂B
∂T x

· (ψR
k

)

(
ψL

k

)T ·A · (ψR
k

) (33)

and the final eigenvalue derivatives are:

dβk

dx
=
(
ψL

k

)T ·
(

∂B
∂x

− βk · ∂A
∂x

)
· (ψR

k

)

(
ψL

k

)T ·A · (ψR
k

)

+ (vu)T ·
(

∂K

∂x
· u− ∂F

∂x

)

+ (vT )T ·
(

∂KTxx

∂x
· Tx − ∂RT

∂x

)
(34)

As above, this formulation assumes that none of the eigen-
values βk are repeated.
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If eigenvalue derivatives are desired at the flutter speed
λ∗, then a λ-dependence must be included in the chain rule:

dβ∗
k

dx
= ∂β∗

k

∂x
+ ∂β∗

k

∂λ
· ∂λ∗

∂x
(35)

where the partial derivative ∂β∗
k /∂x may be computed using

(34), with all terms evaluated at λ∗. The derivative of the
eigenvalues with respect to λ has already been given in (23),
but will be provided in a more general form here:

∂β∗
k

∂λ
=
(
ψL∗

k

)T · ∂B∗
∂λ

· (ψR∗
k

)

(
ψL∗

k

)T ·A · (ψR∗
k

) (36)

The flutter point derivative ∂λ∗/∂x is required because
of (35), but also because λ∗ will be used as a topologi-
cal objective function. It may be computed by considering
the aeroelastic damping at the flutter point, which is by
definition zero, regardless of the design vector:

G∗ = max
(
Re
(
β∗

k

)) = 0

dG∗

dx
= ∂G∗

∂x
+ ∂G

∂λ
· ∂λ∗

∂x
= 0 (37)

∂λ∗

∂x
= −

(
∂G

∂λ

)−1

· ∂G∗

∂x
(38)

The term ∂G/∂λ is the real part of (36) (which has already
been computed for use in (22) during the flutter point
search), and the term ∂G∗/∂x is the real part of (35), with
the mode number k in both equations corresponding to the
flutter mode.

5 Optimization strategies

Of the various restriction methods used in topology opti-
mization, a spatial filter of the design gradients is the most
popular (Bendsøe and Sigmund 2003). For the heavily-
constrained optimization problems developed below, this
degradation in gradient accuracy was found to cause dif-
ficulties in improving the objective function in a feasible
manner. As such, a density filter developed by Bruns and
Tortorelli (2001) is used for this work, where the element
densities x are obtained by filtering a vector of design
variables x̃. This is done via a linearly-decaying cone-
shape function, generically represented by a filtering matrix:
x = H · x̃. The gradients may then be altered in an exact
fashion via the chain rule. For example:

∂λ∗

∂ x̃
= ∂λ∗

∂x
· H (39)

where the gradients with respect to x are what is com-
puted in the previous section, but gradients with respect to

the actual design variables x̃ are required by the optimizer.
A continuation method is then used: once the optimization
problem has converged to within a suitable tolerance, the fil-
tering radius is decreased, and the problem is restarted. As
the radius becomes zero, x → x̃. This was found to be a
suitable strategy for obtaining a final topology largely com-
posed of strictly solid and void elements. The initial radius
size is set to 15 % of the panel thickness h.

The first topology optimization problem considered here
seeks to maximize the critical buckling temperature:

max
x̃

T ∗

s.t. :

⎧
⎪⎪⎨

⎪⎪⎩

0 < xmin < x̃e < 1 e = 1, . . . , Ne

vT · x ≤ V ∗

Tk − Tk−1 ≥ εT k = 2, . . . , Nm

(40)

where the elemental design variables are constrained to lie
between xmin and unity. Because the filter H is volume-
preserving, the elemental densities x will also lie within
these side constraints. The volume constraint V ∗ is required
as an implicit penalty on intermediate densities via the
SIMP scheme (Bendsøe and Sigmund 2003), and is writ-
ten directly in terms of x rather than x̃. The final set of
constraints in (40) requires that the first Nm eigenvalues be
separated by some small tolerance εT , in order to prevent
discontinuities associated with critical mode switching. For
the high aspect ratio of the panel cross section in Fig. 1, this
constraint is typically active only for higher mode numbers
k (as opposed to the closely spaced first and second buckling
eigenvalues seen during optimization of lower aspect ratios
by Neves et al. 1995), and is of only minor importance.

The second topology optimization seeks to maximize the
flutter speed λ∗. As seen in Fig. 2, flutter may occur (as the
parameter λ is increased) when the imaginary portions of
two distinct eigenvalues coalesce. Shortly after this coales-
cence, the real part of one of these eigenvalues (mode 1,
in the figure) becomes positive, defining λ∗. Simply max-
imizing λ∗ during the optimization process will inevitably
cause critical mode switching, where the eigenvalues of two
higher modes coalesce, redefining the flutter point. This
may happen at a value of λ well below the previous design
iterate’s flutter point λ∗, causing a sharp drop in the objec-
tive function (Odaka and Furuya 2005). In order to prevent
this, a series of constraints can be formulated such that the
imaginary portions of two consecutive eigenvalues, βk−1

and βk , be separated by some finite amount at every value
of λ between 0 (no flow) and λ∗ (Langthjem and Sugiyama
1999):


ωk = min
0≤λ≤λ∗ Im(βk(λ)−βk−1 (λ))≥εω k=3, . . . , Nm

(41)
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where the dynamic eigenvalues have been ordered based
upon their imaginary parts. The point of minimum separa-
tion between two modes is λ
ωk , and may coincide with λ∗.
If the λ-marching method described above is used to locate
an initial guess for the flutter point, λ
ωk and 
ωk for each
mode pair will be available at the end of this process. These
will only be approximate values, but provided 
λ is of a
moderate size, their accuracy will be acceptable for the cur-
rent purpose, and no direct method to hone in on an exact
value of λ
ωk is considered here.

The frequency separation 
ω2 is of no consequence (as
interactions between modes 1 and 2 will always cause flut-
ter, and λ
ω2 is always equal to λ∗), and so k starts at 3 in
(41). If, for two consecutive eigenvalues, this frequency sep-
aration is minimum at the flutter point

(
λ
ωk = λ∗), then

the constraint gradients may be computed with (35). If, on
the other hand, the point of minimum separation occurs at
any other point (λ
ωk < λ∗), the second term in the chain
rule of (35) becomes zero. This is because (41) is a local
minimum: ∂(
ωk)/∂λ = 0. Similar arguments can be made
(Greene and Haftka 1991) for critical point constraints in
time during a transient analysis.

For variable-thickness aeroelastic plate problems, Odaka
and Furuya (2005) show that the frequency-separation con-
straint becomes more important for larger side-bounds on
the thickness of each finite element. Topological design
represents an extreme of this process (as elements can
become completely void), and so this set of constraints is
expected to be very important. If flutter is always char-
acterized by a modal coalescence, then the constraints
of (41) are enough to stabilize the optimization problem,
as the “nature” of the eigenvalue migration is forced to
remain unchanged during the design process (Langthjem
and Sugiyama 1999). For the topologically-optimized pan-
els considered here, however, it was found that flutter could
occasionally occur without a strong eigenvalue coalescence.
For these cases, the enforcement of a series of 
ωk con-
straints is not enough to prevent mode switching during the
optimization process, as the interaction between modes k

and k − 1 may still cause flutter even though 
ωk ≥ εω.
Additional constraints are then required to stabilize the
process:

Re
(
β∗

k

) = g∗
k ≤ gk|λ=0 k = 2, . . . , Nm (42)

where it is required that the aeroelastic damping at the flutter
point be more stabilizing (i.e., more negative) than the struc-
tural (no flow) damping (similar constraints are considered
by Haftka 1975). This constraint is impossible to satisfy for
mode 1, as g∗

1 = 0 is the definition of a flutter point, and so
(42) starts with mode 2.

The combination of frequency separation (41) and damp-
ing separation (42) was found to prevent mode switching

for all of the cases presented in this work. The complete
optimization problem is written as:

max
x̃

λ∗

s.t. :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 < xmin < x̃e < 1 e = 1, . . . , Ne

vT · x ≤ V ∗


ωk ≥ εω k = 3, . . . , Nm

g∗
k ≤ gk|λ=0 k = 2, . . . , Nm

(43)

Both the thermal buckling and the flutter optimization
problems are solved with the method of moving asymp-
totes (Svanberg 1987), a scheme known to be effective
for topology problems with large numbers of variables and
constraints.

Presumably, it may be expected that an alternative han-
dling of the eigenvalue-switching issues, as opposed to
the separation constraints in (40) and (43), could pro-
vide superior optimal results (larger values of T ∗ or λ∗)
by removing limitations on the feasible design space. For
the thermal buckling problem of (40), a bound formula-
tion, in conjunction with an eigen-tracking scheme (when
the modes inevitably switch) and algorithms to compute
bimodal eigenvalue sensitivities (Seyranian et al. 1994) may
be a preferred method. As noted above, however (and shown
in Fig. 12), switching of the critical thermal buckling mode
is never observed for this particular panel geometry, and
the separation-based formulation in (40) should give very
similar results to a bound formulation.

The separation constraints of the aeroelastic optimiza-
tion problem in (43), on the other hand, will be shown to
be highly active, and unquestionably drive the design pro-
cess to some extent. However, alternative schemes to those
used in (41) and (42) are less obvious, due primarily to the
fact that the flutter problem is an eigenvalue migration prob-
lem, rather than just computing and optimizing eigenvalues
at some fixed point. Mode tracking schemes and repeated
eigenvalue sensitivity methods remain viable, but a bound
formulation becomes far more complex. Multiple flutter
points would be obtained to formulate the series of bound
constraints: λ∗

1 ≤ λ∗
2 ≤ . . . λ∗

Nm−1 ≤ λ∗
Nm

. The computa-
tional cost of this is large, as the range of the λ-marching
method (to obtain initial guesses for each λ∗

k) would need
to extend to very high flight speeds, and then the recurrence
formula of (22) used to strongly converge to each flutter
point. It is also very possible, during the optimization pro-
cess, for the slope ∂G/∂λ of a higher mode to become zero
at the flutter point, and that mode then cease to flutter at all
(a hump mode, Haftka 1975). This would pose difficulties
for the bound method, in the sense that the number of flutter
points Nm would change.
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The separation constraints of the current flutter opti-
mization method are likely to limit the design process to
some extent, but only require the computation of a single
(lowest) flutter point, and are therefore relatively inex-
pensive. Clearly, more research is needed in this area to
compare these methods, not just for topology optimization,
but for any design of fluttering structures that relies upon
gradients-based optimization.

6 Results

All results presented here are for a titanium panel (a typical
material choice for thermoelastic panel flutter studies, see
Librescu et al. 2004 and Culler and McNamara 2010) oper-
ating at μ/M∞ = 0.1 and an aspect ratio L/h = 25. The
damping parameters are set as αc = 5 s−1 and βc = 10−7 s.
The penalization factor p is set to 3, the first 8 eigenmodes
(Nm) are considered for the separation constraints in (40)
and (43), and xmin is set to 0.01. Three basic sets of results
are given: flutter of an unheated panel, buckling of a heated
panel, and flutter of a heated panel, where the latter prob-
lem should pose a topological compromise between the two
former. For each optimal topology, a logical comparison is
to an entirely solid panel with the same mass. This is drawn
in Fig. 4 for a given volume fraction V ∗, where finite ele-
ments in the upper portion of the panel are set as solid; the
remainder are void. The domain thickness h is still used as a
length-scale for normalization in (10) and (15) (rather than
V ∗ · h), in order to maintain a consistent comparison with
the optimal topologies.

6.1 Flutter of an unheated panel

Results are first obtained for a volume fraction V ∗ of 0.35,
and a frequency separation constraint (εω, normalized by the
characteristic frequency ωo) of 0.95. The panel is unheated,
a situation which is obtained by setting the multiplicative
temperature T to zero in (18). The topology of the panel at
selected design iterations of (43) is given in Fig. 5, while
the actual objective function and constraint metrics are plot-
ted at every design iteration in Fig. 6. The baseline design
in Fig. 5 consists of setting the density xe of each element in
the design domain to a value slightly less than 0.35: account-
ing for the areas of the panel which are fixed as solid (xe = 1

Fig. 4 Geometry of a fully-solid panel with a volume fraction of V ∗

within the top 10 % and bottom 5 % of the panel), the vol-
ume fraction of the complete structure vT · x is then exactly
equal to 0.35. Within the first 30 iterations, material is allo-
cated to the center and the two ends of the panel, where the
former is mostly due to inertial considerations, and the latter
due to stiffness effects. The structure is entirely symmetric
at this point, though the biasing effects of the flow vector
(plotted at the top of Fig. 5) provides the optimizer with
some incentive to develop asymmetric topologies in order
to further increase the flutter point λ∗. The advent of asym-
metry after 30 iterations occurs (not coincidentally) at the
same point when two of the frequency separation constraints
(
ω5 and 
ω6) become active, and convergence becomes
much slower as the optimizer must travel along these highly
nonlinear constraint boundaries.

A third frequency separation constraint (
ω3) becomes
active at iteration 380, by which time the skewed shape of
the center mass and the cross-bracing at the leading edge
is fully formed. The topology at the trailing edge contin-
ues to develop through to iteration 700, at which point the
entire process has converged. Constraints 
ω4, 
ω7, and

ω8 (the latter is very large, and not shown in Fig. 6)
remain inactive, as do all of the damping separation con-
straints (42). For this case, the frequency separation has
acted as a more-conservative surrogate for the damping sep-
aration in preventing critical mode switching, but for many
of the cases presented below, both sets of constraints are
active. Though not shown in Fig. 6, the volume constraint
is also active beyond iteration 20. After iteration 700, the
continuation process described above is utilized, by contin-
ually shrinking the radius of the filter H and re-running the
optimizer to convergence. Only the final design from this
process (when the filter radius is zero) is given at the bottom
of Fig. 5: the structure has largely converged to a solid-void
design by removing the blurred boundaries of the topology,
as intended. The flutter speed has been further increased
during this process, and the active constraints at iteration
700 remain active. All topologies shown in Fig. 5 are the fil-
tered element densities x, as opposed to the design variables
x̃, which have no physical meaning. For the final design
obtained via continuation, the filter radius is zero, and so
x and x̃ coincide.

Though a relatively large number of design iterations are
required for convergence in Fig. 6, the improvements in
the flutter speed λ∗ are substantial. This objective has been
increased by a factor of 3 over the baseline, though this may
not be a logical comparison, as the baseline is composed of
a fictitious material with an intermediate density. The opti-
mal flutter point, 474.08, is lower than the unheated flutter
point of the solid panel in Fig. 3 (633.05), though this isn’t
a good comparison either, as the structure in Fig. 3 is much
heavier (V ∗ = 1) than the current case (V ∗ = 0.35). The
best comparison is with the solid panel drawn in Fig. 4: the
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Fig. 5 Flutter-optimal topology
formation: V ∗ = 0.35,
εω/ωo = 0.95

dynamic eigenvalues for this case are shown in Fig. 2, with
a flutter speed of 40.52. As such, the optimal topology has a
flutter speed over ten times higher than the equivalent solid
panel with the same mass.

For further comparison with Fig. 2, the eigenvalue migra-
tion of the optimal topology is given in Fig. 7. The flutter
point of 474.08 is noted, as are the active frequency sepa-
ration constraints. The critical separation of modes 2 and 3
and modes 5 and 6 occur at the flutter point, the critical sep-
aration of modes 4 and 5 occurs just before the flutter point.
For the solid panel of Fig. 2, the higher mode eigenvalues

experience very little drift as λ increases, the imaginary por-
tion of modes 1 and 2 strongly coalesce, and the damping
slope of the flutter mode (∂G/∂λ) is very steep. Contrast-
ingly, both the real and the imaginary portions of the optimal
eigenvalues in Fig. 7 are strong functions of λ. No coales-
cence of modes 1 and 2 occurs, though the flutter mode
(ψR∗) is clearly a combination of these two modes (shown
in Fig. 8), where larger vibration amplitudes occur near
the three-quarters point of the panel length (Dowell 1966).
Furthermore, the damping slope at flutter is very shallow:
if the panel were to operate at a flow speed just beyond

Fig. 6 Convergence metrics
of the topologies in Fig. 5:
objective function λ∗ (top),
frequency separation
constraints (middle),
and damping separation
constraints (bottom)
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Fig. 7 Normalized eigenvalue
migration for the optimal
topology of Fig. 5

λ∗, unacceptable deformations would accumulate through-
out the structure relatively slowly (as the system is lightly
unstable), which is in stark contrast to most aeronautical
structures (Bisplinghoff et al. 1955), including the results of
Fig. 2.

It can also be seen in Fig. 7 that a strong coalescence of
modes 5 and 6 occurs after λ∗: mode 5 flutters at a value
of 521.12, and similarly, mode 2 flutters at 598.06. These
are both “conventional” flutter points in the sense that the
damping slope ∂G/∂λ is very steep, and they occur via
a frequency coalescence. Without the presence of the fre-
quency separation constraints in (43), these higher flutter
modes would become critical during the optimization pro-
cess (presumably near iteration 30, which is when the first
set of constraints becomes active in Fig. 6), and the resulting
design space discontinuity would hinder further improve-
ments in λ∗ (Odaka and Furuya 2005). This would result in
a substantially non-optimal topology, as λ∗ is increased by
over 100 between iteration 30 and the final design.

The presence of these higher mode flutter points beyond
λ∗ = 474.08 are of no consequence in a deterministic
sense, as the flow speeds over aerospace structures are typ-
ically ramped up from λ = 0, and so the lowest instability
is encountered first (Bisplinghoff et al. 1955). In a non-
deterministic sense however, where the material properties,
topology boundaries, flow details, etc., may be inherently
uncertain, these higher flutter modes may become criti-
cal in certain areas of the random variable space. It is
demonstrated by Odaka and Furuya (2005) that more robust
designs are obtained with higher values of εω, via smaller

Fig. 8 First two free-vibration modes and the flutter mode (ψR∗) for
the optimal topology of Fig. 5

standard deviations in the flutter speed. Though stochastic
effects are not considered here, the topological effect of εω

is demonstrated in Fig. 9, where the topology/eigenvalues
at the center of the figure are reproduced from above.
Increasing the required separation distance from 0.95 to a
normalized value of 1.32 (i.e., making the constraint harder
to satisfy) decreases the flutter speed λ∗ and also forces
more of the frequency separation constraints to become
active, as expected. The next flutter point, however, is well
beyond the marked value of λ∗, and presumably this design
(which removes material from the center mass to increase
the cross-bracing at the edges of the panel) is very robust in
the presence of uncertainties. Opposite trends are seen for a
normalized separation distance of 0.56, which has the high-
est flutter speed, the fewest number of active constraints, but
a modal coalescence (modes 3 and 4) shortly after λ∗.

Fixing the normalized frequency separation to the origi-
nal value of 0.95, the effect of the volume fraction V ∗ is now
explored. The upper and lower areas of the panel which are
fixed as solid account for a volume fraction of 0.15, so the
lowest constraint boundary considered in Fig. 10 is 0.20. For
this volume the topology is entirely symmetric, with sparse
truss-like members at the ends and center of the panel.
Increasing the volume constraint has the expected result of
increasing the flutter speed, by increasing the thickness of
the cross-bracing at either end, as well as the width of the
center mass. Topological asymmetries are seen for every
panel above V ∗ = 0.20 (where the design for V ∗ = 0.35 is
repeated from above), but no clear pattern emerges concern-
ing which side of the panel may be allocated more stiffness
or mass, as the volume is increased. The final topology in
Fig. 10 has a volume of 0.587, but the volume constraint for
this case, which was set to 0.60, is inactive. Higher values of
V ∗ therefore need not be considered, as the optimizer can-
not take advantage of the relaxed constraint. Similar trends
are noted in thickness design variables for flutter-optimal
panels: areas of low stiffness increase the flutter speed
via decreased inertial loads (Weisshaar 1976; Barboni et al.
1999).

This point is reinforced by noting that all topologies
above V ∗ = 0.40 have a higher flutter speed than the fully
solid panel of Fig. 3 (λ∗ = 633.05), despite weighing much
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Fig. 9 Flutter-optimal
topologies (bottom) and their
associated eigenvalues (top)
for three values of εω

less. The flutter speeds of solid panels of volume fractions
between 0.05 and 1.00 (referencing Fig. 4) are also given on
the right of Fig. 10; each of which is non-Pareto-optimal as
compared to the optimized topologies. The nonlinear rela-
tionship between V ∗ and λ∗ for solid panels is due to the h3

term in the definition of the bending stiffness D. It should
be noted that if the true thickness of the panel V ∗ · h were
used in the definition of D, the flutter speed λ∗ would not
be a function of V ∗, instead everywhere equal to the plot-
ted value at V ∗ = 1.00 (notwithstanding finite element
discretization errors). It can also be seen that the flutter
speed at V ∗ = 1.00 has a slightly different flutter speed
than that quoted for Fig. 3. This is due to the fact that the
data in Fig. 10 includes structural damping, whereas the
verification study in Fig. 3 does not.

The topological boundaries in most of the panel struc-
tures in Fig. 10 are well-defined, though “grey stripes” are
present in three of the cases: V ∗ = 0.30, 0.40, and 0.45.
These regions of intermediate-density are entirely due to the
filter-based continuation process. When the radius of the
filter H is decreased from one size to a slightly smaller
size, a level of non-smooth discreteness is introduced to
the problem, as the number of elements which fall within
the neighborhood of any central element drops. This effect
causes the optimizer, in some cases, to struggle to hold

the highly nonlinear frequency separation constraints 
ωk

(many of which are active during the continuation process)
directly after the filter radius is decreased, and some grey
material is added in response. More sophisticated filters and
continuation schemes (which gradually force the topology
to entirely black and white designs without changing the fil-
ter size, as reviewed by Sigmund 2007) may out-perform
the methods used here, particularly with regards to this
problem.

6.2 Thermal buckling

Next, results are provided for buckling-optimal topologies
designed under (40), where aeroelastic effects are not con-
sidered. A topological convergence for a volume fraction
V ∗ of 0.35 and an eigenvalue separation εT of 0.5 is seen
in Fig. 11. For the initial results in this section, the heating
is entirely uniform, obtained by setting TL = TU = 1. This
effectively turns the conduction problem (3) “off”, as the
temperature of each finite element is equal to unity, regard-
less of its element density. All terms associated with ∂Tx/∂x

in the sensitivity analysis derived above may be disregarded
for uniform heating. Comparing Fig. 11 with similar con-
vergence results in Fig. 5, it can be seen that the optimal
buckling problem converges much quicker than the optimal

Fig. 10 Flutter-optimal
topologies for increasing volume
fraction (left), and the Pareto
front (right): εω/ωo = 0.95
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Fig. 11 Buckling-optimal
topology formation under
uniform heating: V ∗ = 0.35,
εT = 0.5

flutter problem, as it has fewer constraints. Furthermore,
these eigenvalue separation constraints (Tk − Tk−1 ≥ εT )
are only active for higher modes, as seen in Fig. 12. It
is understood that the normalized buckling eigenvalue for
mode 1 defines the normalized objective function R∗, and at
no point during the optimization is any higher mode poised
to become critical. Modes 3 and above are all separated by
the critical distance εT . Numerical experiments (not shown
here) indicate that increasing εT by an order of magnitude
has no discernible effect upon the topology. This lack of
dependence on eigenvalue separation is in stark contrast to
the flutter results (e.g., Fig. 9), and is presumably (from
a buckling standpoint) due to the high aspect ratio of the
geometry considered here (Bendsøe and Sigmund 2003).

The topology in Fig. 11 is fully converged after 300
iterations; the continuation process largely removes the
grey transition areas between solid and void, and further
increases the normalized objective function R∗ as well. A
relatively high normalized value of R∗/π2 = 10.21 is
obtained, much higher than the value of 4 quoted above for
a fully solid (and much heavier) panel. Objective function
improvements over the baseline design are moderate, but as

Fig. 12 Normalized buckling eigenvalues corresponding to the
topologies in Fig. 11

above, this comparison is of limited usefulness due to the
use of intermediate-density material. The optimal topology
is entirely symmetric (about the mid-chord) as the biasing
effect of the flow velocity is not present here, and consists of
a series of diagonally-oriented truss-like members. Whereas
the flutter-optimal panel of Fig. 5 utilizes a large inertial
mass within the center of the structure, static-stress metrics
drive the design process in Fig. 11. According to the critical
buckling mode shown in Fig. 13, flexural stresses will be
relatively small at the panel center, and so material can be
removed from the panel center and reallocated to the highly-
stressed panel ends. Largely due to this effect, a strong
trade-off between buckling- and flutter-optimal topologies
is to be expected, and will be demonstrated in the next sec-
tion. It is also noted that the third buckling mode in Fig. 13,
though largely of a global nature, shows some local buck-
ling patterns along the thin members that make up the lower
panel surface.

The relationship between volume fraction and the
buckling-optimal topology is seen in Fig. 14, again starting
with a V ∗ of 0.20. Like the flutter data of Fig. 10, beyond a
certain threshold (0.628 in this case) the volume constraint
boundary becomes inactive, and so higher values are of no
interest. Indeed, the last topology in Fig. 14, which was
designed under V ∗ = 0.65, is non-Pareto-optimal (in the
V ∗, R∗ space) with respect to the preceding lighter optimal
topologies. The remaining topologies are all Pareto-optimal,

Fig. 13 First three buckling modes of the optimal topology in Fig. 11
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Fig. 14 Buckling-optimal
topologies for increasing
volume fraction (left),
and the Pareto front (right)

and highly superior (for a given volume fraction) to the crit-
ical buckling temperature of the solid panels, which is also
plotted in Fig. 14. As before, metrics for the solid panels
are obtained using concepts of Fig. 4. Unlike the flutter
data of Fig. 10, the buckling-optimal topology changes in a
consistent manner with increases in V ∗, with thickness pri-
marily added to the ends and the center of the panel along
with a continual decrease in the length scale of the diagonal
truss-like members.

For the remainder of this paper, the volume fraction is
fixed at 0.35. Attention is now turned to the effect of a
thermal gradient; leaving the upper surface temperature TU

at unity, the buckling topology optimization problem of
(40) is solved for various values of the lower surface tem-
perature TL between zero and one. TL values above one
are probably unrealistic, as aerodynamic/radiated heating
will typically flow from the environment into the structure
(Thornton 1992) through the top surface, as the bottom sur-
face is not exposed to the flow. It should also be noted
here that radiation heat transfer within the panel, a nonlin-
ear effect which may be important at elevated temperatures,
has not been included here. Radiation can be systemati-
cally included in topology optimization problems with a
structure surrounded by a hot environment (a cooling fin,
for example) via a nonlinear convective boundary condi-
tion (Bruns 2007). The current internal radiation case is far
more challenging however, with the role of radiation view
factors in the variable-density SIMP approach a particularly
interesting complication.

Topologies for TL values of 0, 0.25, 0.5, 0.75, and 1.0
are given in Fig. 15. The critical value of R∗ for each
design is given as well; this is the critical buckling mea-
sured at the design temperature. For different values of TL,
R∗ for a given design will change, as the stresses will have
been redistributed (4) and (7). Typically, decreasing TL will
increase the multiplicative buckling temperature R∗ due to
the subsequent decrease in stress throughout the panel. The
upper topology in Fig. 15 (TL = TU = 1) is repeated
from above, and every finite element has the same temper-
ature. Lower values of TL bring about minor changes in
the topology at the center and the ends of the panel, and
the number of thin diagonal truss-like members continually
increases.

Given the large aspect ratio of the panel and the spatially-
uniform upper and lower surface boundary conditions, the
thermal profile for most cases in Fig. 15 is entirely expected:
bulk heat transfer from top to bottom, with the orientation
of the temperature gradient vector altered to travel along
the local axis of individual truss-like members. In light of
this, an interesting question is the impact that simply fix-
ing the temperature distribution (a linearly-varying spatial
distribution between TL and TU , for example) would have
on the topology optimization. Taking the case of TL = 0.5
as a representative example, setting λT equal to zero in
(30) (which essentially removes the relationship between
the elemental density and the temperature distribution) will
change dTk/dx by 7.2 % for the initial baseline design, and
12.3 % for the final optimal design in Fig. 15: a moderate

Fig. 15 Buckling-optimal
topologies and temperature
fields for increasing values of TL
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impact. This result is problem-dependent of course, depend-
ing somewhat upon the geometry of the design domain, and
strongly upon the type of boundary condition (convection
heat-flux, e.g.).

For a TL of zero however (and to a lesser extent, 0.25),
the optimizer has developed a topology in which the upper
heated surface is entirely disconnected from the remainder
of the panel, which thus remains unheated and unstressed.
The critical eigenvalue for this case is purportedly very
high (R∗/π2 = 19.22), though clearly the buckling eigen-
value for the upper heated layer, considered on its own,
should be much lower (i.e., the buckling mode should be
entirely localized to the upper layer, but is instead of a global
nature). A closer inspection reveals that the upper surface
and the remainder of the truss members are separated by a
single row of low density (xe) finite elements. Their den-
sity is low enough such that very little thermal energy may
pass through, but high enough to structurally reinforce the
surface at several locations. Clearly, this topology is of lit-
tle practical value; the optimizer has taken advantage of
the problem description in general and the finite element
discretization in particular. Additional constraints may be
formulated into (41) to prevent this behavior, but as will be
seen in the next section, this structure is highly non-optimal
in an aerothermoelastic sense.

6.3 Flutter of a heated panel

Flutter-optimal results are now provided for heated panels,
which involves solving the optimization problem of (43)
for various value of the multiplicative temperature T . It
is repeated here that T is in no way related to the buck-
ling temperature T ∗ of the panel’s topology (which is not
included in the design optimization), but instead is a quan-
tity which is held fixed during the optimization. A series of
topologies are given in Fig. 16 for various levels of uniform
heating, along with the value of R used to design the struc-
ture, the resulting objective function (flutter speed, λ∗), and
the resulting critical buckling load R∗. This latter metric is
not utilized by the optimizer, but is provided for complete-
ness. The first topology in Fig. 16 is repeated from Fig. 5,
which was developed under zero thermal load. The buckling
temperature of this case is R∗/π2 = 6.03, which is much
lower than the buckling-optimum result’s in Fig. 11. This

would confirm the topological trade-off between buckling-
and flutter-optimal structures discussed above.

Increasing the value of the applied temperature R in
Fig. 16 has a substantial effect upon the flutter-optimal
topology. With increasing R, the inertial mass at the cen-
ter of the panel becomes less defined (and is completely
removed from the hottest structures), and the cross-bracing
is increased at the ends of the panel. The maximum attain-
able flutter speed generally decreases, as higher thermal
loads weaken the structure, but the critical buckling load
R∗/π2 is relatively insensitive, between 6.0 and 6.4 for
each case. This is surprising in the sense that the topologies
optimized for flutter under higher thermal loads clearly are
being driven by strategies observed for buckling-optimum
structures in the previous section. The third structure of
Fig. 16 is an outlier in the sense that its flutter point is
larger than the adjacent structures optimized for higher or
lower heating levels. This may be indicative of a highly-
complex design space, or the fact that the continuation
process in this case has not provided a truly solid-void
design. The optimizer may be taking advantage of this fic-
tional intermediate-density material (seen in the center of
the panel) to obtain a higher flutter speed than would be
obtained if every finite element was explicitly forced to its
density limits.

Off-design behavior for the five topologies of Fig. 16, the
buckling-optimum design in Fig. 11, and a solid panel, are
given in Fig. 17. Each panel in this figure has the same vol-
ume (V ∗ = 0.35), and each is largely composed of solid
and void elements. The plot is provided in the same format
as the verification study of Fig. 3: the flutter boundary λ∗
is given has a function of the applied thermal load R, and
the boundary across which, for a given value of R, the panel
is blown flat, is also shown. This latter boundary emanates
from the buckling load R∗, and eventually merges with the
flutter boundary at some larger value of R. The design point
in (R, λ∗) space is also indicated in the figure. Several inter-
esting observations can be made from Fig. 17. First, many
topologies are seemingly out-performed by another topol-
ogy’s off-design behavior. For example, the unheated panel
has a flutter speed of 474.08 at its design point (R/π2 = 0),
but the panel optimized at R/π2 = 6.11 has a higher flutter
speed (541.93) at this same point. Only the unheated panel is
feasible at this point however, as the other topologies violate

Fig. 16 Flutter-optimal
topologies under various levels
of uniform heating: V ∗ = 0.35,
εω/ωo = 0.95

Author's personal copy

18 
Approved for public release; distribution unlimited.



Aerothermoelastic topology optimization with flutter and buckling metrics 167

Fig. 17 Off-design flutter and
buckling boundaries for panels
with a volume fraction of 0.35,
under uniform heating

the frequency separation constraints when their off-design
behavior is computed, and as such, cannot be considered as
robust.

An indicator of this robustness manifests itself through
changes in the critical mode along the flutter boundary. At
the design point, the critical flutter mode is always the first
mode, as this is stipulated by the frequency and damping
separation constraints added to the optimization problem
(43). For an off-design point, however, the critical flutter
mode could be due to an interaction of higher modes. Again
taking the panel designed under unheated conditions as an
example: the flutter speed starts at the designed value of
474.08, and decreases in a monotonic fashion with increas-
ing values of R, which is very similar to the behavior seen
for a solid panel (Fig. 3). At R/π2 = 3.53, a coales-
cence of modes 2 and 3 becomes more critical than the
original flutter mode, and λ∗ drops off at a much faster
rate. At R/π2 = 4.91, the flutter mode changes again
(a coalescence of modes 5 and 6), after which the flutter
speed actually increases with increased heating. This would
indicate a highly complex relationship between the flutter-
ing fifth vibration mode and the stresses accumulated by
uniform heating.

At R/π2 =6.07, the flutter mode reverts back to the orig-
inal first mode, and λ∗ decreases until the flutter boundary

merges with the buckling boundary. The end result is a dan-
gerous “flutter dip”, whose presence would go undetected
if higher mode effects were not included in the analy-
sis. A discontinuous flutter boundary (namely, a dip) via
mode-switching is a commonly-seen behavior in aeroelas-
tic systems undergoing parametric sweeps: see for example
Forster and Yang (1998) (via changes in skin thickness) and
Beran et al. (2004) (via changes in Mach number), among
many others.

In many of the cases in Fig. 17, these areas of low flut-
ter occur only for highly off-design areas of the plot. An
alternative aerothermoelastic optimization procedure to the
one taken here is to maximize the unheated flutter speed
λ∗ under a series of constraints upon the critical buckling
temperature R∗: in this way, a Pareto front may be formed.
The aeroelastic behavior of these designs under (off-design)
heated conditions, however, is likely to be very poor, due to
the advent of higher flutter modes and their associated dips.
The procedure used here, to maximize flutter directly under
a heated environment, is superior. The panel optimized at
R/π2 = 6.11, for example (bottom topology of Fig. 16),
has a relatively high flutter speed through the entire heat-
ing range of Fig. 17, and a very mild dip between 1.21 and
4.37. As expected, the flutter performance of the buckling-
optimal design is poor despite having the largest R∗ in the

Fig. 18 Normalized eigenvalue
migration for the topology
optimized at R/π2 = 6.11:
increased λ for a fixed heating
of R/π2 = 7.5
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Fig. 19 Flutter-optimal
topologies under various levels
of non-uniform heating:
V ∗ = 0.35, εω/ωo = 0.95

plot, and both the heated flutter and the buckling character-
istics of the solid panel (with a volume fraction of 0.35) are
very low.

The qualitative shape of each design’s lower buckling
boundary is the same, which would indicate that higher
buckling modes do not become active in the same way that
is observed along the flutter boundary. To further explore the
“blown flat” concept (which occurs across this boundary),
eigenvalue migration for the flutter-optimal panel topology
designed at R/π2 = 6.11 are given in Fig. 18. This is done
across a range of flow speeds λ for a fixed value of the
heating parameter R/π2 = 7.50, which is greater than the
buckling temperature of this design (R∗/π2 = 6.36, given
in Fig. 16). For low values of λ the panel is buckled: one
of the eigenvalues has a positive real part, but its imaginary
portion (frequency) is 0, and so this is a static instability.
The panel is blown flat at λ = 37.50, when the imaginary
portion becomes positive and the real part negative (stabi-
lizing) This occurs due to the collision of two real-valued
eigenvalues, which then become complex conjugates. This
same pair loses stability at λ∗ = 175.68, which defines the
flutter speed.

The λ-marching concept outlined above to locate a good
initial guess for the flutter point will fail in the case of
Fig. 18. To repeat, λ is increased from a low value (typ-
ically 0) until G = max(Re(βk)) becomes positive. But
it can be seen in the figure that G is positive at λ = 0
(due to the static buckling instability), though this clearly
is not the desired flutter point. The problem is solved by

only considering eigenvalues whose imaginary portions are
greater than zero (i.e., dynamic) in the identification of G.
This issue is not encountered for any of the cases given in
Fig. 16, as none are operating under a thermal load greater
than their buckling load, and so all of their eigenvalues will
have a nonzero imaginary part. The exercise of Figs. 16 and
17 is repeated for the case of non-uniform heating. Two of
the topologies are subjected to a temperature in the post-
buckled regime, and so the modification to the λ-marching
process is required. Flutter-optimal topologies under non-
uniform heating (specifically, TL = 0) are given in Fig. 19
and off-design behavior is given in Fig. 20.

The first topology in Fig. 19 is repeated from above,
designed without a thermal load. The critical buckling tem-
perature is higher than that cited in Fig. 16, as less of the
panel is being heated, though of course the flutter speed is
the same. As above, increasing the thermal load on the struc-
ture leads the optimizer to remove the central mass in favor
of additional cross-bracing at the panel ends. For the high-
est thermal load, the structure is almost entirely symmetric,
composed of a series of thin diagonally-oriented members.
Despite the fact that flutter speed is the actual objec-
tive function, the buckling-sensitive aspects of the problem
drive the design process: in (18), the energy associated
with the thermal term T · Kσ dominates the aerodynamic
contribution from λ ·Ka during the λ∗ computation. A com-
promise is forced between flutter-optimal topologies and
bucking-optimal topologies, although the latter metric is not
explicitly included in the optimization statement.

Fig. 20 Off-design flutter and
buckling boundaries for panels
with a volume fraction of 0.35,
under non-uniform heating
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The lower surface temperature TL is set to zero for
these results, a potentially poor choice given that the buck-
ling optimizer gave questionable results for this value in
Fig. 15. It is seen in Fig. 20 that the off-design aerother-
moelastic performance of the buckling-optimal design is
very poor however, with consistently low flutter speeds.
Furthermore, none of the topologies in Fig. 19 mimic the
structures seen above, where the heated upper panel was
largely disconnected from the remainder of the topology.
The off-design flutter boundaries in Fig. 20 are similar to
those found for uniformly-heated panels, with strong flut-
ter dips for heating values far less than the design point.
It is further noted that data for a solid panel has not been
included in Fig. 20: because the lower portion of this panel
is fixed as entirely void, the imposition of a thermal gra-
dient from the top to the bottom surface is not a feasible
situation.

7 Conclusions

This work has optimized the internal topology of a metallic
panel subject to a high supersonic flow over its upper sur-
face, and prescribed temperature boundary conditions along
the upper and lower surfaces. The cross-section of the panel
is discretized into finite elements, each of which is assigned
a density-based design variable which indicates a solid ele-
ment or a void. The quasi-steady temperature distribution
throughout the panel is computed, followed by the ther-
mal stresses and the critical buckling temperatures. Using
well-known piston theory aerodynamics, the flutter speed
of the structure can be found for a given thermal load,
which occurs at a Hopf-bifurcation point. Both eigenvalue-
related metrics (buckling temperature and flutter point)
are optimized using the SIMP-based topology optimiza-
tion methodology, though each problem must be outfitted
with highly nonlinear eigenvalue-separation constraints to
prevent switching of the critical mode (and the associ-
ated design space discontinuities) during the optimization
process. Following a model verification study, three sets
of results are presented: unheated flutter-optimal topolo-
gies, thermal buckling-optimal topologies (no aerodynamic
loading), and flutter optimal topologies under a thermal
load (aerothermoelastic). The following conclusions can be
drawn:

1. Unheated flutter-optimal topologies can be obtained
by allocating mass to the center of the panel (inertial
effects) and cross-bracing at the ends of the panel (elas-
tic effects). Due to the biasing effect of the flow vector,
asymmetries develop in the structure later in the opti-
mization process, though the initial iterates are entirely
symmetric.

2. Whereas the flutter of a solid panel occurs very rapidly
(steep damping slope) after the coalescence of the imag-
inary portion of two eigenvalues, the flutter of an opti-
mized topology does not involve a strong coalescence,
and the damping slope through the Hopf-bifurcation is
very moderate.

3. Frequency separation constraints are typically active at
values of λ both equal to and less than the flutter point.
Increasing the required separation distance drops the
optimal flutter value and increases the number of active
constraints, but should provide more robust designs in
the presence of uncertainties, as higher mode flutter
points are forced to reside at much higher λ-values
than λ*.

4. The thermal buckling optimization problem converges
much faster than the flutter problem, as fewer eigen-
value separation constraints are needed, and are typ-
ically only active among the higher buckling modes.
These designs involve removing all mass from the cen-
ter of the panel (where the stresses will be small)
in favor of truss-like members. These topologies are
entirely symmetric.

5. Accuracy issues are noted in the buckling-optimal
topology when designed under a large thermal gradient,
as the optimizer obtains a structure where the heated
upper panel is entirely disconnected from the lower por-
tion of the panel, which thus remains unheated. This
structure is found to be highly non-optimal in a flutter
sense.

6. Aerothermoelastic conditions are obtained by optimiz-
ing the flutter speed under a specified thermal load.
Increasing this load forces a compromise between the
flutter-optimal topologies and buckling-optimal topolo-
gies, although buckling is not explicitly included as an
objective function or a constraint.

7. Off-design flutter behavior for these structures (over a
range of heating levels) is characterized by changes in
the critical flutter mode, which can cause drastic drops
in the flutter speed. Robust panels will clearly need to
simultaneously consider several heating conditions dur-
ing the topology optimization process, a common tactic
in aerospace design.
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