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Scientific Progress



The project during the first year was focusing on (1) deriving the maximum entropy (MaxEnt) distributions of Type I and II 

multi-scaling processes and establish the links between the multi-scaling distributions and the aggregated properties of the 

corresponding field variables; (2) developing a model of evapotranspiration (ET) over the land surfaces using the Principle of 

Maximum Entropy Production (MEP).

1. Derivation and validation of MaxEnt distributions of Type I multi-scaling processes

Following the MaxEnt formalism, the probability distribution of a Type I multi-scaling process (i.e. self-similar process with 

constant parameters), z, has been derived under the constraints of given multi-scaling moments and geometric mean of the 

incremental process |z1 – z2|,

 ,

where Z is the partition function (normalization factor), ?0 is determined from the constraint of given geometric mean, M the 

highest order of multi-scaling moment of the incremental process and ?q the Lagrangian multipliers corresponding to the given 

multi-scaling moments. Figure 1 The MaxEnt distributions have been validated against empirical histograms of soil moisture 

and topographic fields (not shown). The findings have been published in Physical Review Letters. 

2. Derivation and validation of MaxEnt distributions of Type II multi-scaling processes

The probability distribution of the more general case of Type II multi-scaling (i.e. multi-fractal) process, similar to that of 

Type I, where the parameters are described by probability distributions has also been derived following the MaxEnt formalism 

where an additional constraint of multi-fractal condition to those of multi-scaling moments and geometric mean was imposed. 

The MaxEnt distributions have been validated against empirical histograms of topographical fields. The findings has been 

published in Geophysical Review Letters.  

function in terms of the surface fluxes (latent, sensible and ground); and (3) solve numerically the heat fluxes as functions of 

input variables of net radiation, temperature and humidity at/near the surface. A key component of the MEP model is the 

concept of “thermal inertia” for latent heat flux, which was postulated according to three heuristic arguments: (1) the turbulent 

mixing responsible for the transport of heat in the ABL is also responsible for the transport of water vapor, (2) 

evaporation/transpiration may be expressed in terms of surface soil/leaf surface temperature and humidity according to the 

maximum principle of evaporation so that the thermal inertia should be expressed in terms of these two surface variables as 

well, and (3) water vapor within an infinitesimal layer next to the evaporating (soil/leaf) surface is presumably in equilibrium with 

the liquid water within the soil/leaf-tissues. The model for the case of bare soil is expressed as follows,  

with                     

where Rn is the net radiation, Ts the surface temperature, qs the surface specific humidity, Is the thermal inertia of the soil, I0 is 

the ‘‘apparent thermal inertia of the air’’ ? is the latent heat of vaporization of liquid water, Cp the heat capacity of air at constant 

pressure, and Rv the gas constant of water vapor. E, H and G can be solved from the three nonlinear algebraic equations for 

given input of Rn, Ts, and qs, referred to as the MEP model of ET over non-vegetated land surfaces. Figure 2 shows a test of 

the MEP model using field observations.

The MEP model of ET over vegetated surfaces can be obtained through setting G=0 in the above equations,

 

where all variables are the same as those defined for the case of non-vegetated surfaces. Figure 3 shows an example of the 

MEP model predicted vs observed E and H.

The findings have been published in Water Resources Research (see below), which was one of the most popular papers 

(in terms of number of downloads).

Technology Transfer
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Activities and Findings 

 The project during the first year was focusing on (1) deriving the maximum entropy 

(MaxEnt) distributions of Type I and II multi-scaling processes and establish the links between 

the multi-scaling distributions and the aggregated properties of the corresponding field variables; 

(2) developing a model of evapotranspiration (ET) over the land surfaces using the Principle of 

Maximum Entropy Production (MEP). 

 

1. Derivation and validation of MaxEnt distributions of Type I multi-scaling processes 

 

 Following the MaxEnt formalism, the probability distribution of a Type I multi-scaling 

process (i.e. self-similar process with constant parameters), z, has been derived under the 

constraints of given multi-scaling moments and geometric mean of the incremental process |z1 – 

z2|, 
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where Z is the partition function (normalization factor), 0 is determined from the constraint of 

given geometric mean, M the highest order of multi-scaling moment of the incremental process 

and q the Lagrangian multipliers corresponding to the given multi-scaling moments. Figure 1 

The MaxEnt distributions have been validated against empirical histograms of soil moisture and 

topographic fields (not shown). The findings have been published in Physical Review Letters.  

 

2. Derivation and validation of MaxEnt distributions of Type II multi-scaling processes 

 

 The probability distribution of the more general case of Type II multi-scaling (i.e. multi-

fractal) process, similar to that of Type I, where the parameters are described by probability 

distributions has also been derived following the MaxEnt formalism where an additional 

constraint of multi-fractal condition to those of multi-scaling moments and geometric mean was 

imposed. The MaxEnt distributions have been validated against empirical histograms of 

topographical fields. The findings will be published in Geophysical Review Letters (in press).   
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3. Development and test of a MEP model of ET over the land surfaces 

 

 Built on the case of dry soil, a MEP model of ET has been formulated following the MEP 

formalism. The formulation has three steps: (1) formulate the dissipation function including 

latent heat flux (evaporation/transpiration) term; (2) find the stationary point of the dissipation 

Figure 1. From top to 

bottom. Left panels: 

L2B AMSR-E soil 

moisture map for 

October 18, 2009 and 

region R1SSM, 

associated empirical 

(pe) and the MaxEnt 

distributions (pt) for 

M=1,2 (pt;M=1 and 

pt;M=2). Right panels: 

same for region 

R2SSM. Maps are 

represented in 

longitude and latitude. 

All probabilities are 

plotted versus the 

absolute value of the 

increments z = |z(x1) - 

z(x2)| for different 

separation distances r = 

|x1 - x2| where x1 and x2 

are two locations over a 

two-dimensional 

domain. 
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function in terms of the surface fluxes (latent, sensible and ground); and (3) solve numerically 

the heat fluxes as functions of input variables of net radiation, temperature and humidity at/near 

the surface. A key component of the MEP model is the concept of “thermal inertia” for latent 

heat flux, which was postulated according to three heuristic arguments: (1) the turbulent mixing 

responsible for the transport of heat in the ABL is also responsible for the transport of water 

vapor, (2) evaporation/transpiration may be expressed in terms of surface soil/leaf surface 

temperature and humidity according to the maximum principle of evaporation so that the thermal 

inertia should be expressed in terms of these two surface variables as well, and (3) water vapor 

within an infinitesimal layer next to the evaporating (soil/leaf) surface is presumably in 

equilibrium with the liquid water within the soil/leaf-tissues. The model for the case of bare soil 

is expressed as follows,  
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where Rn is the net radiation, Ts the surface temperature, qs the surface specific humidity, Is the 

thermal inertia of the soil, I0 is the ‘‘apparent thermal inertia of the air’’  is the latent heat of 

vaporization of liquid water, Cp the heat capacity of air at constant pressure, and Rv the gas 

constant of water vapor. E, H and G can be solved from the three nonlinear algebraic equations 

for given input of Rn, Ts, and qs, referred to as the MEP model of ET over non-vegetated land 

surfaces. Figure 2 shows a test of the MEP model using field observations. 

 

 The MEP model of ET over vegetated surfaces can be obtained through setting G=0 in 

the above equations, 
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where all variables are the same as those defined for the case of non-vegetated surfaces. Figure 3 

shows an example of the MEP model predicted vs observed E and H. 

 

 The findings have been published in Water Resources Research (see below), which was 

one of the most popular papers (in terms of number of downloads).  
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Figure 2 Evaporation E, 

sensible heat flux H, and 

ground heat flux G 

predicted by the MEP 

model (broken red), 

according to Eq (1), 

versus the corresponding 

observed fluxes (solid 

blue) at Lucky Hills site 

of the Walnut Gulch 

Experimental Watershed 

16 Nov–26 Dec 2007 

[Wang and Bras, 2011]. 

Three rain events 

occurred during this 

period with three wetting 

and drying cycles of soil 

moisture (data not shown 

here, but can be found in 

[Wang and Bras, 2011]). 

Figure 3 Latent E and 

sensible heat flux H (broken 

red), predicted by the MEP 

model using the observed qs, 

Ts and Rn (not shown) versus 

the observed fluxes (solid 

blue) at the Harvard Forest 

(an AmeriFlux site with 

eddy-covariance flux tower) 

during 19 August – 8 

September 1994 (data 

courtesy of Steven Wofsy of 

Harvard University). 
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